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Preface

The development of high-speed fiber-based optical communication systems that has
taken place since the early 1970s can be really considered as a technological wonder. In
a few years, key components were devised (such as the semiconductor laser) with the
help of novel technological processes (such as epitaxial growth) and found immediate
application thanks to the development of low-loss optical fibers. New compound semi-
conductor alloys (namely, InGaAsP) were ready to provide their potential to emit the
right wavelengths needed for long-haul fiber propagation. When electronic repeaters
seemed unable to provide a solution to long-haul propagation, fiber amplifiers were
developed that allowed for all-optical signal regeneration. And the list could be contin-
ued. A miracle of ingenuity from a host of researchers made it possible to assemble this
complex puzzle in a few years, thus bringing optoelectronic technology to a consumer
electronics level.

Increasing the system capacity by increasing the transmission speed was, of course,
a main concern from the early stages of optical system development. While optoelec-
tronic devices behave, on the electronic side, in a rather conventional way up to speeds
of the order of 1 Gbps, for larger speeds (up to 40 Gbps and beyond) RF wave propa-
gation has to be accounted for in designing and modeling optoelectronic devices. When
speed increases, the distributed interaction between RF and optical waves becomes a
useful, sometimes indispensable, ingredient in many optoelectronic devices, like mod-
ulators and (to a lesser extent) detectors. Similarly, the electronic circuits that interface
light sources, modulators, and detectors should provide broadband operation up to
microwave or millimeter-wave frequencies, thus making it mandatory to exploit com-
pound semiconductor electronics (GaAs- or InP-based) or advanced Si-based solutions
(like SiGe HBT integrated circuits or nanometer MOS processes).

Increasing speed beyond the 10 Gbps limit by improving device performance, how-
ever interesting it is from the research and development side, may in practice be less
appealing from the market standpoint. The ultimate destiny of optoelectronic devices
(such as sources, modulators, and detectors) optimized for 40 Gbps (or even faster) sys-
tems after the post-2000 market downturn still is uncertain, and research in the field
has followed alternative paths to the increase of system capacity. At the same time,
new application fields have been developed, for instance in the area of integrated all-Si
optical signal processing systems, and also for integrated circuit level high-capacity
communications. However, the development of high-speed optoelectronic devices has
raised a number of stimulating (and probably lasting) design issues. An example is the
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principle of the distributed interaction between optical and RF waves, which is com-
mon to a variety of high-speed components. Another relevant theme is the co-design
and the (possibly monolithic) integration of the electronic and optoelectronic compo-
nents of a system, not to mention the critical aspects concerning device packaging and
interconnection in systems operating at 40 Gbps and beyond.

Taking the above into account, it is not surprising that the main purpose of the present
book is to provide a kind of unified (or, perhaps, not too widely separated) treatment
of high-speed electronics and optoelectronics, starting from compound semiconduc-
tor basics, down to high-speed transistors, ICs, detectors, sources and modulators. Part
of the material was originally developed for a number of postgraduate and Master
courses, and therefore has the ambition (but also the limitation) of providing a treat-
ment starting from the very basics. It is hoped that this justifies both the presence of
introductory material on semiconductors and semiconductor optical properties, and a
treatment of high-speed electronics starting from a review of transmission lines and
scattering parameters. From this standpoint, the text attempts to be as self-contained
as possible. Of course, the choice of subjects is somewhat influenced by the author’s
personal tastes and previous research experience (not to mention the need to keep the
page count below 500): some emphasis has been put on noise, again with an attempt
to present a self-contained treatment of this rather difficult topic, and many important
optoelectronic components have not been included (to mention one, semiconductor opti-
cal amplifiers). Yet another innovative subject that is missing is microwave photonics,
where of course the RF and microwave and optoelectronic worlds meet. Nevertheless,
the text is (in the author’s opinion, at least) different enough from the many excellent
textbooks on optoelectronics available on the market to justify the attempt to write it.

I wish to thank a number of colleagues (from Politecnico di Torino, unless otherwise
stated) for their direct or indirect contribution to this book. Ivo Montrosset provided
many useful suggestions on the treatment of optical sources. Incidentally, it was under
the guidance of Ivo Montrosset and Carlo Naldi that (then an undergraduate student)
I was introduced to the basics of passive and active optoelectronic devices, respectively;
this happened, alas, almost 30 years ago. Helpful discussions with Gian Paolo Bava and
Pierluigi Debernardi (Consiglio Nazionale delle Ricerche) on laser noise, with Simona
Donati Guerrieri on the semiconductor optical properties and with Fabrizio Bonani and
Marco Pirola on active and passive high-speed semiconductor electronic devices and
circuits are gratefully acknowledged. Michele Goano kindly revised the sections on
compound semiconductors and the numerical problems, and provided useful sugges-
tions on III-N semiconductors. Federica Cappelluti prepared many figures (in particular
in the section on photodetectors), initially exploited in lecture slides. Finally, Claudio
Coriasso (Avago Turin Technology Center, Torino) kindly provided material on inte-
grated electroabsorption modulators (EAL), including some figures. Additionally, I am
indebted to a number of ME students who cooperated in research, mainly on lithium
niobate modulators; among those, special mention goes to F. Carbonera, D. Frassati, G.
Giarola, A. Mela, G. Omegna, L. Terlevich, P. Zandano. A number of PhD students also
worked on subjects relevant to the present book: Francesco Bertazzi (now with Politec-
nico di Torino) on EM modeling of distributed electrooptic structures; Pietro Bianco,
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on high-speed modulator drivers; Federica Cappelluti, on electroabsorption modulator
modeling; Gloria Carvalho, on EAL modeling; Antonello Nespola (now with Istituto
Superiore Mario Boella), on the modeling of distributed high-speed photodetectors.
Part of the thesis work of Antonello Nespola and Federica Cappelluti was carried out
within the framework of a cooperation with UCLA (Professor Ming Wu, now at Univer-
sity of California, Berkeley). Finally, I gratefully recall many helpful discussions with
colleagues from the industry: among those, Marina Meliga, Roberto Paoletti, Marco
Romagnoli, and Luciano Socci.

Giovanni Ghione
January 2009





1 Semiconductors, alloys,
heterostructures

1.1 Introducing semiconductors

Single-crystal semiconductors have a particularly important place in optoelectronics,
since they are the starting material for high-quality sources, receivers and amplifiers.
Other materials, however, can be relevant to some device classes: polycrystalline or
amorphous semiconductors can be exploited in light-emitting diodes (LEDs) and solar
cells; dielectrics (also amorphous) are the basis for passive devices (e.g., waveguides
and optical fibers); and piezoelectric (ferroelectric) crystals such as lithium niobate are
the enabling material for a class of electrooptic (EO) modulators. Moreover, polymers
have been recently exploited in the development of active and passive optoelectronic
devices, such as emitters, detectors, and waveguides (e.g., fibers). Nevertheless, the
peculiar role of single-crystal semiconductors justifies the greater attention paid here
to this material class with respect to other optoelectronic materials.

From the standpoint of electron properties, semiconductors are an intermediate
step between insulators and conductors. The electronic structure of crystals generally
includes a set of allowed energy bands, that electrons populate according to the rules
of quantum mechanics. The two topmost energy bands are the valence and conduction
band, respectively, see Fig. 1.1. At some energy above the conduction band, we find the
vacuum level, i.e., the energy of an electron free to leave the crystal. In insulators, the
valence band (which hosts the electrons participating to the chemical bonds) is separated
from the conduction band by a large energy gap Eg , of the order of a few electronvolts
(eV). Due to the large gap, an extremely small number of electrons have enough energy
to be promoted to the conduction band, where they could take part into electrical con-
duction. In insulators, therefore, the conductivity is extremely small. In metals, on the
other hand, the valence and conduction bands overlap (or the energy gap is negative),
so that all carriers already belong to the conduction band, independent of their energy.
Metals therefore have a large conductivity. In semiconductors, the energy gap is of the
order of 1–2 eV, so that some electrons have enough energy to reach the conduction
band, leaving holes in the valence band. Holes are pseudo-particles with positive charge,
reacting to an external applied electric field and contributing, together with the electrons
in the conduction band, to current conduction. In pure (intrinsic) semiconductors, there-
fore, charge transport is bipolar (through electrons and holes), and the conductivity is
low, exponentially dependent on the gap (the larger the gap, the lower the conductivity).
However, impurities can be added (dopants) to provide large numbers of electrons to
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Vacuum level U0

Affinity

+ + + + + + + +

––––––––

Ionization

I0

Ec

Eg

Ev

qχ

Figure 1.1 Main features of semiconductor bandstructure. Eg is the energy gap; Ec is the conduction band
edge; Ev is the valence band edge.

the conduction band (donors) or of holes to the valence band (acceptors). The resulting
doped semiconductors are denoted as n-type and p-type, respectively; their conductiv-
ity can be artificially modulated by changing the amount of dopants; moreover, the dual
doping option allows for the development of pn junctions, one of the basic building
blocks of electronic and optoelectronic devices.

1.2 Semiconductor crystal structure

Crystals are regular, periodic arrangements of atoms in three dimensions. The point
set r defining the crystal nodes, corresponding to the atomic positions (Bravais lattice)
satisfies the condition r = ka1 + la2 + ma3, where k, l,m are integer numbers and a1,
a2, a3 are the primitive vectors denoting the primitive cell, see Fig. 1.2. Bravais lattices
can be formed so as to fill the entire space only if the angles α1, α2, α3 assume values
from a discrete set (60◦, 90◦, 120◦, or the complementary value to 360◦). According to
the relative magnitudes of a1, a2, a3 and to the angles α1, α2, α3, 14 basic lattices can be
shown to exist, as in Table 1.1. In semiconductors, only two lattices are technologically
important at present, i.e. the cubic and the hexagonal. Most semiconductors are cubic
(examples are Si, Ge, GaAs, InP. . . ), but some are hexagonal (SiC, GaN). Both the cubic
and the hexagonal structure can be found in carbon (C), where they are the diamond and
graphite crystal structures, respectively.

Three kinds of Bravais cubic lattices exist, the simple cubic (sc), the face-centered
cubic (fcc) and the body-centered cubic (bcc), see Fig. 1.3. The cubic semiconductor
crystal structure can be interpreted as two shifted and compenetrated fcc Bravais
lattices.

Let us consider first an elementary semiconductor (e.g., Si) where all atoms are equal.
The relevant cubic lattice is the diamond lattice, consisting of two interpenetrating
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Table 1.1 The 14 Bravais lattices.

Name Bravais lattices Conditions on primitive vectors

Triclinic 1 a1 �= a2 �= a3, α1 �= α2 �= α3
Monoclinic 2 a1 �= a2 �= a3, α1 = α2 = 90◦ �= α3
Orthorhombic 4 a1 �= a2 �= a3, α1 = α2 = α3 = 90◦
Tetragonal 2 a1 = a2 �= a3, α1 = α2 = α3 = 90◦
Cubic 3 a1 = a2 = a3, α1 = α2 = α3 = 90◦
Trigonal 1 a1 = a2 = a3, α1 = α2 = α3 < 120◦ �= 90◦
Hexagonal 1 a1 = a2 �= a3, α1 = α2 = 90◦, α3 = 120◦

α1

α2 α3

a3–

a2–

a1–

Figure 1.2 Semiconductor crystal structure: definition of the primitive cell.

(a)

a

a

a

(b) (c)

Figure 1.3 Cubic Bravais lattices: (a) simple, (b) body-centered, (c) face-centered.

fcc Bravais lattices, displaced along the body diagonal of the cubic cell by one-
quarter the length of the diagonal, see Fig. 1.4. Since the length of the diagonal is
d = a

∣∣x̂ + ŷ + ẑ
∣∣ = a

√
3, the displacement of the second lattice is described by the

vector

s = a
√

3

4

x̂ + ŷ + ẑ√
3

= a

4

(
x̂ + ŷ + ẑ

)
.

1.2.1 The Miller index notation

The Miller indices are a useful notation to denote planes and reference directions
within a lattice. The notation (h, k, l), where h, k, l are integers, denotes the set of
parallel planes that intercepts the three points a1/h, a2/k and a3/ l, or some multiple
thereof, while [h, k, l] in square brackets is the direction orthogonal to plane (h, k, l).
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a
4

(x + y + z)ˆ ˆ ˆ

Figure 1.4 The diamond lattice as two cubic face-centered interpenetrating lattices. The pale and dark gray
points represent the atoms falling in the basic cell.

a a
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Figure 1.5 Examples of planes and directions according to the Miller notation.

Additionally, {h, k, l} is a family of planes with symmetries and 〈h, k, l〉 is the related
direction set. In cubic lattices, the primitive vectors coincide with the Cartesian axes
and a1 = a2 = a3 = a, where a is the lattice constant; in this case, we simply have
[h, k, l] ≡ hx̂ + k ŷ + l̂ z where x̂ , ŷ and ẑ are the Cartesian unit vectors.

To derive the Miller indices from the plane intercepts in a cubic lattice, we normalize
with respect to the lattice constant (thus obtaining a set of integers (H, K , L)), take the
reciprocal (H−1, K −1, L−1) and finally multiply by a minimum common multiplier
so as to obtain a set (h, k, l) such as h : k : l = H−1 : K −1 : L−1. Notice that a zero
index corresponds to an intercept point at infinity. Examples of important planes and
directions are shown in Fig. 1.5.

Example 1.1: Identify the Miller indices of the following planes, intersecting the coor-
dinate axes in points (normalized to the lattice constant): (a) x = 4, y = 2, z = 1;
(b) x = 10, y = 5, z = ∞; (c) x = 3.5, y = ∞, z = ∞; (d) x = −4, y = −2, z = 1.

We take the reciprocal of the intercept, and then we multiply by the minimum com-
mon multiplier, so as to obtain an integer set with minimum module. In case (a),
the reciprocal set is (1/4, 1/2, 1), with minimum common multiplier 4, leading to
the Miller indices (1, 2, 4). In case (b), the reciprocals are (1/10, 1/5, 0) with Miller
indices (1, 2, 0). In case (c), the plane is orthogonal to the z axis, and the Miller indices
simply are (1, 0, 0). Finally, case (d) is similar to case (a) but with negative intercepts;
according to the Miller notation we overline the indices rather than using a minus sign;
we thus have (1, 2, 4).
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1.2.2 The diamond, zinc-blende, and wurtzite semiconductor cells

The cubic diamond cell includes 8 atoms; in fact, if we consider Fig. 1.6, the corner
atoms each contribute to eight adjacent cells, so that only 8/8 = 1 atom belongs to the
main cell. The atoms lying on the faces belong half to the main cell, half to the nearby
ones, so that only 6/2 = 3 atoms belong to the main cell. Finally, the other (internal)
4 atoms belong entirely to the cell. Therefore, the total number of atoms in a cell is
1 + 3 + 4 = 8. In the diamond cell, each atom is connected to the neighbours through
a tetrahedral bond. All atoms are the same (C, Si, Ge...) in the diamond lattice, while in
the so-called zinc-blende lattice the atoms in the two fcc constituent lattices are different
(GaAs, InP, SiC. . . ). In particular, the corner and face atoms are metals (e.g., Ga) and
the internal atoms are nonmetals (e.g., As), or vice versa.

In the diamond or zinc-blende lattices the Miller indices are conventionally defined
with respect to the cubic cell of side a. Due to the symmetry of the tetrahedral atom
bonds, planes (100) and (110), etc. have two bonds per side, while planes (111) have
three bonds on the one side, two on the other. Moreover, the surface atom density is
different, leading, for example, to different etch velocities.

Some semiconductors, such as SiC and GaN, have the hexagonal wurtzite crystal
structure. Hexagonal lattices admit many polytypes according to the stacking of succes-
sive atom layers; a large number of polytypes exists, but only a few have interesting
semiconductor properties (e.g. 4H and 6H for SiC). The wurtzite cell is shown in
Fig. 1.7, including 12 equivalent atoms. In the ideal lattice, one has

∣∣a3

∣∣ = c,
∣∣a1

∣∣ = ∣∣a2

∣∣ = a,
c

a
=
√

8

3
≈ 1.633.

Some properties of semiconductor lattices are shown in Table 1.2.1 It can be
noted that wurtzite-based semiconductors are often anisotropic (uniaxial) and have two
dielectric constants, one parallel to the c-axis, the other orthogonal to it.

Figure 1.6 The diamond (left) and zinc-blende (right) lattices.

1 Semiconductor properties are well documented in many textbooks; an excellent online resource is provided
by the Ioffe Institute of the Russian Academy of Sciences at the web site [1].
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Table 1.2 Properties of some semiconductor lattices: the crystal is D (diamond), ZB (zinc-blende) or W
(wurtzite); the gap is D (direct) or I (indirect); ε‖ is along the c axis, ε⊥ is orthogonal to the c axis for
wurtzite materials. Permittivities are static to RF. Properties are at 300 K.

Material Crystal Eg D/I εr or ε‖ ε⊥ a c Density, ρ
(eV) gap (Å) (Å) (g/cm3)

C D 5.50 I 5.57 3.57 3.51
Si D 1.12 I 11.9 5.43 2.33
SiC ZB 2.42 I 9.72 4.36 3.17
Ge D 0.66 I 16.2 5.66 5.32
GaAs ZB 1.42 D 13.2 5.68 5.32
GaP ZB 2.27 I 11.11 5.45 4.14
GaSb ZB 0.75 D 15.7 6.09 5.61
InP ZB 1.34 D 12.56 5.87 4.81
InAs ZB 0.36 D 15.15 6.06 5.67
InSb ZB 0.23 D 16.8 6.48 5.77
AlP ZB 2.45 I 9.8 5.46 2.40
AlAs ZB 2.17 I 10.06 5.66 3.76
AlSb ZB 1.62 I 12.04 6.13 4.26
CdTe ZB 1.47 D 10.2 6.48 5.87
GaN W 3.44 D 10.4 9.5 3.17 5.16 6.09
AlN W 6.20 D 9.14 3.11 4.98 3.25
InN W 1.89 D 14.4 13.1 3.54 5.70 6.81
ZnO W 3.44 D 8.75 7.8 3.25 5.21 5.67

a2–

a1–

a3 = c– –

Figure 1.7 The hexagonal wurtzite cell. The c-axis corresponds to the direction of the a3 = c vector.

1.2.3 Ferroelectric crystals

Ferroelectric materials have a residual spontaneous dielectric polarization after the
applied electric field has been switched off. The behavior of such materials is some-
what similar to that of ferromagnetic materials. Below a transition temperature, called
the Curie temperature Tc, ferroelectric materials possess a spontaneous polarization
or electric dipole moment. The magnitude of the spontaneous polarization is greatest
at temperatures well below the Curie temperature, and approaches zero as the Curie
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Table 1.3 Properties of some ferroelectric crystals. KDP stands for potassium dihydrogen phosphate.
Data from [2], Ch. 13, Table 2.

Material class Material Curie temperature Spontaneous polarization
Tc (K) Ps (μC/cm2)

KDP KH2PO4 123 4.75
Perovskites BaTiO3 408 26
Perovskites LiNbO3 1480 71
Perovskites KNbO3 708 30

temperature is approached. Ferroelectric materials are inherently piezoelectric; that is,
in response to an applied mechanical load, the material will produce an electric charge
proportional to the load. Similarly, the material will produce a mechanical deformation
in response to an applied voltage. In optoelectronics, ferroelectric materials are particu-
larly important because of the excellent electrooptic properties, i.e., the strong variation
of the material refractive index with an applied electric field. The crystal structure is
often cubic face-centered, and the material is anisotropic and uniaxial. The most impor-
tant ferroelectric crystal for optical applications is probably lithium niobate, LiNbO3

(LN for short); some other materials (such as barium titanate) belonging to the so-
called perovskite class are also sometimes used. The crystal structure of perovskites
is face-centered cubic. Above the Curie temperature, the crystal is strictly cubic, and
positive and negative ions are located in the cell so as to lead to zero dipole moment.
Below the Curie temperature, however, a transition takes place whereby positive and
negative ions undergo a shift in opposite directions; the crystal structure becomes tetrag-
onal (i.e., the elementary cell height a3 is different from the basis a1 = a2) and, due
to the charge displacement, a net dipole moment arises. Table 1.3 shows a few prop-
erties of ferroelectric crystals, namely the spontaneous polarization Ps and the Curie
temperature [2].

1.2.4 Crystal defects

In practice, the crystal lattice is affected by defects, either native (i.e., not involv-
ing external atoms) or related to nonnative impurities. Moreover, defects can be point
defects (0D), line defects (1D), surface defects (2D), such as dislocations, and vol-
ume defects (3D), such as precipitates. Native point defects are vacancies, see Fig. 1.8,
and self-interstitials, while interstitials are nonnative atoms placed in the empty space
between the already existing lattice atoms. Substitutional defects involve an external
atom, e.g., a dopant, which replaces one native atom. Typically, dopants act as donors
or acceptors only if they are in a substitutional site; if they are in an interstitial site, they
are inactive (chemically inactivated).2

2 Dopants can also be electrically inactivated when they are not ionized.
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Vacancy (1D)

Substitutional defect (1D) Frenkel defect (1D)
Dislocation (2D)

Self-interstitial and
interstitial (1D)

Figure 1.8 Point defects in a crystal (1D) and dislocations (2D).

1.3 Semiconductor electronic properties

1.3.1 The energy–momentum dispersion relation

A crystal is a periodic arrangement of atoms; since each positively charged nucleus
induces a spherically symmetric Coulomb potential, superposition yields in total a
periodic potential U (r) such as

U (r) = U (r + L),

where L = ka1 + la2 + ma3. In such a periodic potential, electrons follow the rules of
quantum mechanics, i.e., they are described by a set of wavefunctions associated with
allowed electron states. Allowed states correspond to allowed energy bands, which col-
lapse into energy levels for isolated atoms; allowed bands are separated by forbidden
bands. Low-energy electrons are bound to atoms, and only the two topmost allowed
bands (the last, being almost full, is the valence band; the uppermost, almost empty,
is the conduction band) take part in carrier transport. As already recalled, the vac-
uum level U0 is the minimum energy of an electron free to move in and out of the
crystal.

Electrons in a crystal are characterized by an energy–momentum relation E(k), where
the wavevector k is related to the electron momentum p as p = h̄k. The dispersion
relation E(k) is defined in the k space, also called the reciprocal space; it is generally
a multivalued function, periodic in the reciprocal space, whose fundamental period is
called the first Brillouin zone (FBZ). A number of branches of the dispersion relation
refer to the valence band, a number to the conduction band; the total number of branches
depends on the crystal structure and is quite large (e.g., 12 for the conduction band and
8 for the valence band) in wurtzite semiconductors.

In cubic semiconductors, the FBZ is a solid with six square faces and eight hexagonal
faces, as shown in Fig. 1.9. Owing to symmetries, only a portion of the FBZ, called
the irreducible wedge, actually includes independent information; all the rest can be
recovered by symmetry. Important points in the FBZ are the center (� point), the X
point (center of the square face), and the L point (center of the hexagonal face).

The full details of the dispersion relation are not essential for understanding low-
energy phenomena in semiconductors; attention can be restricted to the branches
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Irreducible
wedge

K'

K

L

Γ: kx = ky = kz = 0

L: |kx| = |ky| = |kz| = π/a

X: |kx| = 2π/a, ky = kz = 0
Γ

X

Figure 1.9 The first Brillouin zone (FBZ) in a cubic lattice (lattice constant a).
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Figure 1.10 Simplified dispersion relation for GaAs.

describing low-energy electrons in the conduction band (around the conduction band
edge Ec) and high-energy electrons (low-energy holes) in the valence band (around
the valence band edge Ev). Valence band electrons are more efficiently described in
terms of pseudoparticles (the holes) related to electrons missing from the valence band.
Holes behave as particles with positive charge and potential energy opposite to the elec-
tron energy, so that the topmost branches of the dispersion relation (i.e., the branches
describing low-energy holes) define the valence band edge.

As a relevant example, let us discuss the dispersion relation for a direct-bandgap
semiconductor, GaAs. The term direct bandgap refers to the fact that the minimum
of the conduction band and the maximum of the valence band (both located in the �
point) correspond to the same momentum h̄k, in this case h̄k = 0. The dispersion rela-
tion shown in Fig. 1.10 is simplified, in the sense that only the lowest branch of the
conduction band is shown, while three branches of the valence band appear, the heavy
hole (HH), the light hole (LH), and the split-off band. Light and heavy hole bands are
degenerate, i.e., they share the same minimum in the � point, and they differ because
of the E(k) curvature near the minimum, which corresponds to a larger or smaller hole
effective mass. The split-off band enters some transport and optical processes but can
be neglected in a first-order treatment. The conduction band has the lowest minimum at
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the � point, and two secondary minima at the L and X points. The main gap is 1.42 eV,
while the secondary gaps are 1.72 eV (L point) and 1.90 eV (X point). Only a section of
the dispersion relation is presented, running from the L point to the � point (the center
of the FBZ), and then from the � point to the X point and back to the origin through the
K point.

Since electrons and holes have, at least in the absence of an applied field, a Boltz-
mann energy distribution (i.e., their probability to have energy E is proportional to
exp(−E/kB T ), where kB T = 26 meV at ambient temperature), most electrons and
holes can be found close to the conduction band and valence band edges, respectively.

Consider now the lowest minimum of the conduction band or highest maximum in
the valence band; the dispersion relation can be approximated (around the � point) by
a parabola as

En − Ec ≈ h̄2k2

2m∗
n
, Ev − Eh ≈ h̄2k2

2m∗
h
,

where m∗
n and m∗

h are the electron and hole effective masses.3 Therefore, the electron
kinetic energy En − Ec or hole kinetic energy Ev − Eh (assuming the valence band
edge energy Ev and the conduction band edge energy Ec to be the energy of a hole
or of an electron, respectively, at rest) have, approximately, the same expression as the
free-space particle kinetic energy, but with an effective mass m∗

n or m∗
h instead of the

in vacuo inertial mass m0. If the minimum is not located in the center of the first BZ
(as for the conduction band of indirect bandgap semiconductors) the momentum (in a
dynamic sense) can be defined “with respect to the minimum,” so that the following
approximation applies:

En − Ec ≈ h̄2
∣∣k−kmin

∣∣ 2

2m∗
n

.

The effective mass can be evaluated from the inverse of the curvature of the dispersion
relation around a minimum or a maximum. In general, the approximating surface can
be expressed as

En − Ec = h̄2k
2
a

2m∗
na

+ h̄2k
2
b

2m∗
nb

+ h̄2k
2
c

2m∗
nc
,

which is an ellipsoid; the coordinate system coincides with the principal axes. If the
three effective masses are equal, the ellipsoid degenerates into a spherical surface, and
we say that the minimum is spherical, with isotropic effective mass. This typically
happens at � point minima. In indirect-bandgap semiconductors, the constant-energy

3 Corrections to the parabolic approximation accounting for nonparaboliticity effects can be introduced (e.g.,
in the conduction band) through the expression:

Ek (1 + αEk ) = h̄2k2

2m∗
n
,

where Ek is the electron kinetic energy En − Ec and α is a nonparabolicity correction factor.
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surfaces are rotation ellipsoids, and we can define two effective masses, one transversal
m∗

nt (common to two principal directions) and one longitudinal m∗
nl (along the third

principal direction). The electron effective mass increases with Eg , according to the
fitting law (see (2.9)):

m∗
n

m0
≈ Eg

∣∣
eV

13
.

Due to degeneracy, the valence bands have a more complex behavior near the valence
band edge, but can anyway be approximated with isotropic masses; however, since the
heavy and light hole populations mix, a properly averaged effective mass has to be
introduced; the same remark applies for electrons with anisotropic effective mass. The
averaging law is related to the application, and is not unique; we can therefore have an
effective mass for transport and also (as discussed later) an effective mass for the density
of states that follow different averaging criteria. Concerning the density of states mass
(denoted with the subscript D), we have for the electrons

m∗
n,D �

(
m∗

nam∗
nbm∗

nc

)1/3
M2/3

c .

The above expression refers to the general case of ellipsoidal minima with multiplicity
Mc (more than one minimum in the FBZ); for a � point spherical minimum in the
conduction band we have simply

m∗
n,D = m∗

n,

while for the rotation ellipsoid case in Si (where 6 equivalent minima are present in the
FBZ) we obtain

m∗
n,D � 62/3(m∗

nl)
1/3(m∗

nt )
2/3.

For holes, in the case of degeneracy:

m∗
h,D �

[
(m∗

hh)
3/2 + (m∗

lh)
3/2
]2/3

,

while of course m∗
h,D reduces to m∗

hh or m∗
lh if degeneracy is removed (as in a strained

quantum well, see Section 1.7). Concerning the effective masses for transport, since on
average the electron moves along all three principal directions with the same probability,
we have that the transport or conductivity average electron mass is given by

1

m∗
n,tr

= 1

3m∗
na

+ 1

3mnb
+ 1

3mnc
,

which reduces, for Si, to

1

m∗
n,tr

= 2

3m∗
nt

+ 1

3mnl
.

In a spherical minimum (isotropic effective mass) we finally have

m∗
n,tr = m∗

n .
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For holes, the situation is more complex, since heavy and light holes exist. It can be
shown that the transport hole effective mass is given by a weighted average over the
heavy and light holes as (see e.g., [3], Section 8.1.2)

1

m∗
h,tr

= phh

pm∗
hh

+ plh

pm∗
lh
,

where plh and phh are the light and heavy hole densities and p = plh + phh is the total
hole density. At or near equilibrium, the HH and LH populations are related through the
effective densities of states, so that

phh

p
= m∗

hh
3/2

m∗
lh

3/2 + m∗
hh

3/2
,

plh

p
= m∗

lh
3/2

m∗
lh

3/2 + m∗
hh

3/2
;

it follows that

1

m∗
h,tr

= m∗
hh

1/2 + m∗
lh

1/2

m∗
hh

3/2 + m∗
lh

3/2
.

For instance, in Si we have m∗
hh = 0.49 m0, m∗

lh = 0.16 m0; thus:

m0

m∗
h,tr

= 0.491/2 + 0.161/2

0.163/2 + 0.493/2
→ m∗

h,tr = 0.37m0.

1.3.2 The conduction and valence band wavefunctions

Electrons and holes belonging to the conduction and valence bands are character-
ized, from the standpoint of quantum mechanics, by a wavefunction. According to the
Bloch theorem, wavefunctions in a periodic potential (e.g., a crystal) can be generally
expressed as

ψk(r) = exp(−jk · r)uk(r), (1.1)

where uk(r) is a periodic function in the crystal space, such as uk(r) = uk(r + L), L
being a linear combination (with integer indices) of the primitive lattice vectors. The
functional form of the wavefunction in (1.1), called the Bloch wave, ensures that the
probability associated with the wavefunction is indeed a periodic function in the crystal
space. For k ≈ 0 (e.g., near the � point) one has ψk(r) ≈ u0(r), where u0(r) follows
single-atom-like wavefunctions (s-type or p-type, see Fig. 1.11).

Since the detailed spatial behavior of wavefunctions is relevant to optical properties,
we recall that conduction band wavefunctions are, near the � point, s-type, i.e., they
have a probability distribution with spherical constant-probability surfaces. On the other
hand, the valence band wavefunctions are p-type, i.e., they are even with respect to two
orthogonal directions and odd with respect to the third, see Fig. 1.11. For instance,
px is even with respect to the y and z axes and odd with respect to the x axis. The
detailed shape of the wavefunctions is much less important than their property of being
even in all directions (the s-type wavefunction) or odd with respect to one direction.
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Figure 1.11 Conduction band (s-type) and valence band (p-type) wavefunctions: probability distribution and
wavefunction sign (for p-type).

More specifically, it can be shown that heavy and light hole wavefunctions result from
a superposition of p-type wavefunctions:

φH H (x, y, z) = − 1√
2

(
px ± jpy

)
(1.2)

φL H (x, y, z) = − 1√
6

(
px ± jpy ∓ 2pz

)
, (1.3)

where the prefactors are introduced for normalization, see e.g., [4], Section 2.4.

1.3.3 Direct- and indirect-bandgap semiconductors

A simplified version of the dispersion relation, including the main conduction band
minima and valence band maxima, is often enough to explain the electronic and opti-
cal behavior of a semiconductor. Such an example is shown in Fig. 1.12(a), for GaAs:
the coincident maxima and minima in the � point make this semiconductor a typical
example of direct-bandgap material. Direct-bandgap semiconductors are particularly
important in optics, because they are able to interact directly with photons; in fact, those
can provide an energy of the order of the energy gap, but negligible momentum. To pro-
mote an electron from the valence to the conduction band, an energy larger than the gap
has to be provided, but, in GaAs, negligible momentum, since the valence band maxi-
mum and conduction band minimum are both at k = 0. Since the interaction involves
only one electron and one photon, the interaction probability is high.

Silicon, the most important semiconductor in electronics, is an example of an
indirect-bandgap semiconductor, i.e., a material in which the valence band maximum
and conduction band minimum occur at different values of k, see Fig. 1.12(b). In par-
ticular, the main conduction band minimum is close to point X but within the FBZ, and
six minima exist in the FBZ. The electron energy around such minima can be expressed
as a function of the transverse (e.g., orthogonal to (100)) and of the longitudinal (e.g.,
parallel to (100)) wavenumbers:

En ≈ Ec + h̄2k2
t

2m∗
nt

+ h̄2k2
l

2m∗
nl
.

In Si, the electron–photon interaction leading to band-to-band processes requires a sub-
stantial amount of momentum, which has to be supplied by a further particle, typically
a lattice vibration (phonon). The multibody nature of the interaction makes it less
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Figure 1.12 Simplified dispersion relation for (a) GaAs, (b) Si, (c) Ge. In Ge, the main conduction band
minimum (A) is indirect, and has an impact on transport and low-energy optical properties; the
secondary direct minimum (B) influences the optical properties at high photon energy.

probable, and therefore the interaction strength is lower. Typically, direct-bandgap semi-
conductors are able to absorb and emit light; indirect-bandgap semiconductors absorb
light (albeit less efficiently) but are unable to operate as high-efficiency light emitters,
particularly in lasers. Germanium (Ge), see Fig. 1.12(c), is an indirect-bandgap semi-
conductor; the lowest conduction band minimum is at point L , but a direct bandgap
exists with a higher energy (0.9 eV) at point �. As a result, the main transport properties
of Ge are typical of an indirect-bandgap material, but optical properties are influenced
by the fact that high-energy photons can excite electrons directly from the valence band
to the direct minimum. Some of germanium’s optical properties (e.g., the absorption)
exhibit both indirect- and direct-bandgap semiconductor features, depending on the
photon energy.

In the above materials, the central minima can be characterized by isotropic or quasi-
isotropic (as for the valence band) effective masses, while indirect bandgap minima are
typically anisotropic and have to be described in terms of a longitudinal and transverse
effective mass. A summary of the effective masses and other band properties in Si and
GaAs is shown in Table 1.4.

Many III-V semiconductors have a bandstructure similar to GaAs. InP, see
Fig. 1.13(a), has a slightly lower bandgap, but a larger difference between the cen-
tral and the lateral minima. This has important consequences on transport properties,
since it increases the electric field at which the electrons are scattered from the cen-
tral minimum (characterized by high mobility, i.e., high electron velocity with the same
applied electric field) to the lateral minima (with low mobility). This ultimately leads to
a decrease of the average electron velocity with increasing field, see Fig. 1.14. The max-
imum velocity is larger in InP than in GaAs, allowing for the development of electron
devices (such as transistors) with superior properties in terms of maximum speed. The
peak electron velocity (corresponding to the onset of the negative differential mobil-
ity region) occurs at a field Em related to the energy difference �E between the � and
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Table 1.4 Main band properties of Si and GaAs. The electron mass m0 is 9.11 × 10−34 kg.

Property Si GaAs

Electron effective masses m∗
nl = 0.98m0 m∗

n = 0.067m0
m∗

nt = 0.19m0
m∗

n,D = 1.08m0 m∗
n,D = 0.067m0

m∗
n,tr = 0.26m0 m∗

n,tr = 0.067m0
Hole effective masses m∗

hh = 0.49m0 m∗
hh = 0.45m0

m∗
lh = 0.16m0 m∗

lh = 0.08m0
m∗

h,D = 0.55m0 m∗
h,D = 0.47m0

m∗
h,tr = 0.37m0 m∗

h,tr = 0.34m0

Energy gap Eg(T ), T (K) 1.17 − 4.37 × 10−4T 2

636 + T
1.52 − 5.4 × 10−4T 2

204 + T

Electron affinity qχ (eV) 4.01 4.07
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Figure 1.13 Simplified bandstructure of (a) InP, (b) InAs, (c) AlAs.

lateral minima; in GaAs�E ≈ 300 meV with Em ≈ 3.2 kV/cm while in InP�E ≈ 700
meV with Em ≈ 10 kV/cm.4 InAs, see Fig. 1.13(b), has a very similar bandstructure,
but with lower energy gap. For certain compound semiconductors, such as AlAs, see
Fig. 1.13(c), the central minimum is higher than the lateral minima, thus making the
material of indirect-bandgap type. InAs and AlAs are not particularly important per
se, but rather as the components of semiconductor alloys. Some additional compound
semiconductor properties are listed in Table 1.5, where vs is the electron high-field
saturation velocity (also denoted as vn,sat), vmax is the maximum steady-state electron
velocity. Notice that, while the saturation velocity is almost independent of doping, the
maximum in the nonmonotonic velocity–field curve of most compound semiconductors

4 In GaN, on the other hand, �E ≈ 3 eV, leading to a peak field in excess of 200 kV/cm, see, e.g., [5].
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Table 1.5 Band properties of some important compound semiconductors. Mobility data are upper
bounds referring to undoped material.

Property In0.53Ga0.47As GaAs InP AlAs InAs

a (Å ) 5.869 5.683 5.869 5.661 6.0584
Eg @300 K (eV) 0.717 1.424 1.34 2.168 0.36
qχ (eV) 4.07 4.37 3.50 4.90
m∗

n/m0 0.041 0.067 0.077 0.150 0.027
m∗

lh/m0 0.044 0.08 0.12 0.150 0.023
m∗

hh/m0 0.452 0.45 0.6 0.76 0.60
ε(0)/ε0 13.77 13.18 12.35 10.16 14.6
ε(∞)/ε0 11.38 10.9 9.52 8.16 12.25
Ebr (kV/cm) 3.0 3.2 11
μn (cm2/Vs) 12000 8500 5500 40000
vmax (107 cm/s) ≈ 2.5 ≈ 1.7 ≈ 2.7
vs (107 cm/s) 0.7 1

3
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Figure 1.14 Electron drift velocity–field curves of Si, GaAs, InP, GaN, and InGaAs lattice matched to InP.
The GaN velocity has a peak toward 200 kV/cm and then saturates with GaAs-like behavior.
Adapted from [6], p. 13.

(see Fig. 1.14) depends on the low-field mobility and therefore on doping; the values
provided (referring to intrinsic material) are therefore indicative.

Compound semiconductor families are classified according to the chemical nature
of the metal and nonmetal components. If the metal component belongs to group III
and the nonmetal to group V, we obtain a III-V compound. Examples of III-V com-
pounds are GaAs, InP, GaSb, InAs (direct bandgap) and AlAs, GaP (indirect bandgap).
III-V compounds with nitrogen such as GaN, InN, AlN are often referred to as III-
N compounds. III-V compounds are probably the most important semiconductors for
high-frequency electronics and optoelectronics. II-VI compounds include CdTe, HgTe,
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ZnS, CdSe, ZnO (direct bandgap; note that HgTe has a negative bandgap and therefore
has a metal rather than semiconductor behavior). IV-IV compounds are SiC and SiGe,
both of them of indirect bandgap type. Finally, I-VII semiconductor compounds also
exist, such as AgI and CuBr.

1.4 Carrier densities in a semiconductor

1.4.1 Equilibrium electron and hole densities

According to the picture drawn so far, a simplified representation of the semiconductor
bandstructure includes two energy bands, the valence and conduction bands, separated
by the energy gap Eg . Some electrons have large enough energy to be promoted from the
valence to the conduction band, leaving behind positive charges called holes. Both elec-
trons and holes can interact with an external electric field, and with photons or other par-
ticles. Further details of the bandstructure are introduced in Fig. 1.1, such as the electron
affinity qχ , i.e., the distance between the conduction band edge and the vacuum level
U0, and the ionization I0, i.e., the distance between the valence band edge and the vac-
uum level. The electron and hole populations n and p depend on the number of electron
and hole states per unit volume in the two bands (density of states Nc and Nv , respec-
tively, both functions of the energy), and on how those states are populated as a function
of the energy. According to statistical mechanics, electrons and holes follow at equi-
librium the Fermi–Dirac distribution,5 while the out-of-equilibrium distribution can be
often approximated, in optoelectronic devices, by the so-called quasi-Fermi distribution.

In the effective mass approximation, the density of states (DOS) in a 3D (bulk)
semiconductor can be shown to be

Nc(E) ≡ gc(E) = 4π

h3
(2m∗

n,D)
3/2
√

E − Ec

Nv(E) ≡ gv(E) = 4π

h3
(2m∗

h,D)
3/2
√

Ev − E,

whose behavior is shown in Fig. 1.15. Owing to the effect of heavy holes, the valence
band DOS typically is larger than the conduction band DOS.

The Fermi–Dirac distributions describing the electron and hole equilibrium occupa-
tion statistics are expressed as

fn(E) = 1

1 + exp

(
E − EF

kB T

) (1.4)

fh(E) = 1

1 + exp

(
EF − E

kB T

) , (1.5)

5 Or by the Boltzmann distribution, an approximation of the Fermi–Dirac distribution holding for energies
larger than the Fermi energy.
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Figure 1.15 Valence (gv) and conduction band (gc) density of states in a bulk semiconductor.

where the Fermi level EF is constant in the whole system. If the Fermi level is within
the energy gap (this case corresponds to nondegenerate semiconductors) the Boltzmann
approximation of the statistics holds:

fn(E) ≈
E�EF

exp

(
EF − E

kB T

)
, fh(E) ≈

E�EF
exp

(
E − EF

kB T

)
.

The Boltzmann approximation applies, in fact, if the distance between E and EF is
larger than a few kB T units. In the degenerate case the Fermi level can fall into the
conduction or valence bands, and this condition is violated; in such cases, the full
Fermi–Dirac statistics has to be used.

The behavior of the two Fermi–Dirac distributions for electrons and holes is shown
in Fig. 1.16. Integrating the product between the density of states and the statistical
distributions (with the Boltzmann approximation) over all energies (i.e., from Ec to
≈ ∞ for the conduction band and from ≈ −∞ to Ev for the valence band), we have

n =
∫ ∞

Ec

Nc(E) fn(E) dE = Nc exp

(
EF − Ec

kB T

)
p =

∫ Ev

−∞
Nv(E) fh(E) dE = Nv exp

(
Ev − EF

kB T

)
,

where the effective densities of states are

Nc = 2
(2πm∗

n,DkB T )3/2

h3
, Nv = 2

(2πm∗
h,DkB T )3/2

h3
. (1.6)

In an intrinsic (undoped) semiconductor p = n = ni , where

ni = Nc exp

(
EFi − Ec

kB T

)
= pi = Nv exp

(
Ev − EFi

kB T

)
,

from which the intrinsic Fermi level can be derived; the intrinsic Fermi level is located
at midgap, with a small (typically negative) correction related to the ratio Nc/Nv =
(m∗

n,D/m∗
h,D)

3/2:

EFi = kB T log

√
Nc

Nv
+ Ec + Ev

2
.

Moreover, the intrinsic concentration can be directly related to the energy gap:
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Figure 1.16 Fermi–Dirac distributions for electrons (left) and holes (right).
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Figure 1.17 Intrinsic concentration for Ge, Si, GaAs, InP and GaN (wurtzite) as a function of the lattice
temperature. Data from [1].

ni pi = n2
i = Nc Nv exp

(
− Eg

kB T

)
. (1.7)

The intrinsic concentration as a function of the temperature for Si, Ge, GaAs, InP and
GaN is shown in Fig. 1.17. With increasing T , the intrinsic concentration increases
exponentially; this is one of the main limitations in high-temperature semiconductor
operation, since when the intrinsic concentration is of the order of the doping, doping
becomes ineffective.

In equilibrium conditions, the product of the concentrations n and p does not depend
on the position of the Fermi level, and is equal to the square of the intrinsic concentration
(mass action law):

np = n2
i . (1.8)
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1.4.2 Electron and hole densities in doped semiconductors

The mass action law also holds for doped semiconductors. A semiconductor can be
doped with a donor (density ND), an element able to provide an additional electron
when substituting an atom of the native semiconductor lattice. Examples of donors in Si
are As and P (both belonging to group V, and therefore with an extra electron in the outer
shell vs. Si). The additional electron is weakly bound to the donor (ionization energy
into the conduction band of the order of 10 meV for shallow donors) and therefore can
easily be ionized and enter the conduction band, thus participating in conduction.6 In
this case, the semiconductor is called n-type. Semiconductors can also be doped with
acceptors (concentration NA). For instance, Si atoms have 4 electrons in the outermost
shell; acceptors (e.g., B, a group III element) have 3 electrons in the outermost shell
(i.e., one electron less than the substituted native atom) and can therefore attract an
electron from the valence band, leaving behind a hole (again with a ionization energy
of the order of 10 meV). The semiconductor in this case is called p-type.

If donors and acceptors are fully ionized one has, also taking into account the mass
action law (1.8):

n ≈ N+
D ≈ ND, p ≈ n2

i /ND n-type semiconductor

p ≈ N−
A ≈ NA, n ≈ n2

i /NA p-type semiconductor.

In a doped semiconductor, the carrier concentration evolves with temperature according
to a three-region behavior; the relevant intervals are the freeze-out, the saturation, and
the intrinsic range.

At extremely low temperature, most carriers do not have enough energy to ionize into
the conduction band, and the carrier population decreases with T well below the value
n ≈ ND (freeze-out range). The intermediate range (called the saturation range), cor-
responding to normal device operation, begins at a temperature such as (3/2)kB T ≈ 20
meV, i.e., T ≈ 150 K (this is just an indicative value, since the donor or acceptor ion-
ization energy depends on the doping and semiconductor materials), and ends at a
temperature such as ni (T ) ≈ ND (in n-type Si with ND = 1015 cm−3 this corresponds
to T ≈ 200oC). In the saturation range, n ≈ ND or p ≈ NA; the maximum operat-
ing temperature increases with increasing gap. Finally, above the saturation range we
find the intrinsic range: at high temperature the intrinsic concentration becomes large
enough to flood the semiconductor with electrons not originating from the donors (or
holes not originating from the acceptors).

6 A donor or acceptor introduces an isolated energy level in the forbidden band. Shallow donors have an
energy level ED close to the conduction band edge (typically a few meV), while for shallow acceptors
the energy level E A is close to the valence band. Deep donors and acceptors have energy levels close to
the center of the gap and act more as electron or hole traps (or recombination centers) than as dopants,
since their ionization (or electrical activation) is low. Ionized dopants follow electron- or hole-like Fermi
statistics: donors are almost 100% activated if the Fermi level is below the donor level, while acceptors are
almost 100% activated if the Fermi level is above the acceptor level. This implies, for example, that a deep
donor is not ionized in an n-type semiconductor, and even the activation of shallow donors ultimately drops
for extremely large n-type doping, since for increasing donor concentration the Fermi level finally becomes
larger than the donor level.
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From the expressions for the electron and hole densities, the Fermi level can easily
be evaluated. In n-type semiconductors, the Fermi level increases vs. EFi , becom-
ing closer to the conduction band edge, while for p-type semiconductors the Fermi
level decreases and becomes closer to the valence band edge. For very high dop-
ing (e.g., in excess of 1019 cm−3), donors and acceptors cannot be assumed to be
100% ionized (or electrically activated) any longer, but their ionization is related to the
very position of the Fermi level and typically decreases, as already remarked, when
the Fermi level becomes larger than the donor or smaller than the acceptor energy
level.

In a degenerate semiconductor, the Fermi level (or the quasi-Fermi level out of equi-
librium) is very close to the conduction or valence band edges or even falls within one
of the two bands. Typically, a semiconductor cannot be made degenerate by doping, but
degeneracy is a condition that can be achieved out of equilibrium (e.g., in a direct-bias
pn junction under high carrier injection).

1.4.3 Nonequilibrium electron and hole densities

To address the out-of-equilibrium statistics in a simplified way, we note that deviations
from thermodynamic equilibrium may imply two quite different consequences: dis-
equilibrium between the electron and the hole populations, and disequilibrium in carrier
populations due to an applied (electric) field.

In equilibrium, the electron and hole populations follow the mass action law, any
deviation from this being compensated for by generation–recombination (GR) processes
whereby electron–hole (e-h) pairs are generated or disappear by recombination. The
excess charge n′ or p′ (with respect to equilibrium) is removed according to the time
behavior

n′(t) = n′(0) exp(−t/τn),

with a characteristic time (called the excess lifetime, τn or τh for electrons and
holes, respectively) whose order of magnitude can range from a few milliseconds to
nanoseconds according to the restoring mechanism. Recombination processes basi-
cally involve an exchange of energy and momentum with other particles, e.g., phonons
(lattice vibrations, corresponding to the so-called thermal GR process), photons (radia-
tive GR), other electrons and holes (Auger recombination and impact generation).
If the carrier population deviation with respect to equilibrium is maintained by an
external cause (e.g., a photon flux leading to radiative generation of e-h pairs) the
resulting out-of-equilibrium condition can be characterized by a slightly modified
form of the equilibrium probability distribution (called the quasi-Fermi distribu-
tion).

A second nonequilibrium situation derives from the effect of an applied electric
field. While the average carrier velocity is zero at equilibrium, and therefore the
carrier distribution in the velocity space is symmetrical with respect to the origin,
application of an electric field leads to an increase of the average velocity and to a
nonsymmetrical velocity distribution. For very large fields, the change in shape of
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the distribution with respect to the equilibrium may become dramatic and a simple
quasi-Fermi approach will not be sufficient. However, this form of extreme field–carrier
disequilibrium is not essential in the analysis of most optoelectronic devices, and there-
fore a simplified discussion based on the static carrier velocity–field properties will
suffice.

To describe electron–hole imbalance with respect to the equilibrium, we there-
fore introduce the so called quasi-Fermi statistics, where the single Fermi level is
replaced by two separate quasi-Fermi levels EFn and EFh according to the following
formulae:

fn(E, EFn) = 1

1 + exp

(
E − EFn

kB T

) ≈
E�EFn

exp

(
EFn − E

kB T

)
(1.9)

fh(E, EFh) = 1

1 + exp

(
EFh − E

kB T

) ≈
E�EFh

exp

(
E − EFh

kB T

)
, (1.10)

where the relevant Boltzmann approximations have also been introduced. Within the
Boltzmann approximation the carrier densities become

n = Nc exp

(
EFn − Ec

kB T

)
, p = Nv exp

(
Ev − EFh

kB T

)
,

while the mass action law can be modified to allow for a difference in the two quasi-
Fermi levels (in equilibrium EFn = EFh = EF ):

np = n2
i exp

(
EFn − EFh

kB T

)
. (1.11)

In particular,

np > n2
i for EFn > EFh (carrier injection)

np < n2
i for EFn < EFh (carrier depletion).

In the degenerate case, the Boltzmann approximation is invalid and we have to express
the charge density with the help of special functions (the Fermi–Dirac integrals):

n = 2√
π

NcF1/2

(
EFn − Ec

kB T

)
, p = 2√

π
NvF1/2

(
Ev − EFh

kB T

)
.

The computation of the Fermi–Dirac integral can be performed through suit-
able analytical approximations; an example is given by the Joyce–Dixon (inverse)
formulae:

EFn ≈Ec + kB T

[
log

n

Nc
+ 1√

8

n

Nc

]
(1.12)

EFh ≈Ev − kB T

[
log

p

Nv
+ 1√

8

p

Nv

]
. (1.13)
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Figure 1.18 Behavior of the Fermi–Dirac integral (F1/2) in the degenerate and nondegenerate ranges.
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Figure 1.19 Examples of the position of the Fermi level in several semiconductors at equilibrium. In practice,
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The overall behavior of the Fermi integral in the two ranges (nondegenerate and degen-
erate) is shown in Fig. 1.18. For extreme degeneration, the following polynomial
approximation holds:

n ≈
√

2m3/2
n,D

π2h̄3

2

3
(EFn − Ec)

3/2 , p ≈
√

2m3/2
h,D

π2h̄3

2

3
(Ev − EFh)

3/2 .

A summary of some possible equilibrium bandstructures is shown in Fig. 1.19; notice
that the n-type and p-type degenerate cases are purely theoretical, since increasing
the doping level beyond a certain level makes EF > ED or EF < E A, thus decreas-
ing the donor or acceptor activation. This implies that the degenerate condition cannot
practically be obtained at equilibrium. Finally, Fig. 1.20 concerns examples out of
equilibrium; degeneracy arises in these cases from the high-injection condition.
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Figure 1.20 Examples of transition from the equilibrium (left) to the out-of-equilibrium bandstructure for
degenerate and nondegenerate semiconductors.

1.5 Heterostructures

Crystals with different lattice constants grown on top of each other by epitaxial tech-
niques are affected by interface defects called misfit dislocations. Such defects operate
as electron or hole traps, and therefore the resulting structure is unsuited to the develop-
ment of electron devices. However, if the lattice mismatch between the substrate and the
heteroepitaxial overlayer is low or zero, an ideal or almost ideal crystal can be grown,
made of two different materials. The resulting structure is called a heterostructure, and,
since the electronic properties of the two layers are different, we also refer to it as a het-
erojunction. The material discontinuity arising in the heterojunction leads to important
electronic and optical properties, such as confinement of carriers (related to the discon-
tinuity of the conduction or valence bands) and confinement of radiation (due to the
bandgap discontinuity and to the related refractive index step).

Heterostructures can be lattice-matched (if the two sides have the same lattice con-
stant) or affected by a slight mismatch (indicatively, the maximum mismatch is of the
order of 1%), which induces tensile or compressive strain. In this case, we talk about
pseudomorphic or strained heterostructures, see Fig. 1.21. A small amount of strain in
the heterostructure can be beneficial to the development of electronic or optoelectronic
devices, since it leads to additional degrees of freedom in the band structure engineer-
ing, and in many cases allows for an improvement of the material transport or optical
properties.

A double heterojunction made with a thin semiconductor layer (the thickness
should be typically of the order of 100 nm) sandwiched between two layers (e.g.,
AlGaAs/GaAs/AlGaAs) creates a potential well in the conduction and/or valence band
and is often referred to as a quantum well (QW). A succession of weakly interacting
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Figure 1.21 Pseudomorphic or strained growth. Above, the epilayer lattice constant is larger than that of the
substrate: nonepitaxial growth with interface misfit dislocations and strained epitaxy. Below, the
epilayer lattice constant is smaller than that of the substrate.

quantum wells is called a multi quantum well (MQW); if the MQW has many layers,
with significant overlapping between the wavefunctions of adjacent wells, we finally
obtain a superlattice (SL). The artificial periodicity imposed by the superlattice over the
natural periodicity of the crystal introduces important modifications in the electronic
properties.

1.6 Semiconductor alloys

Heterostructures are largely based on semiconductor alloys. The idea behind alloys is
to create semiconductors having intermediate properties with respect to already exist-
ing “natural” semiconductors. Among such properties are the lattice constant a and the
energy gap Eg . In several material systems, both a and Eg approximately follow a lin-
ear law with respect to the individual component parameters. The motivation to tailor
the lattice constant is of course to achieve lattice matching to the substrate; tailoring the
energy gap gives the possibility to change the emitted photon energy, thus generating
practically important wavelengths, such as the 1.3 or 1.55 μm wavelengths needed for
long-haul fiber communications (since they correspond to minimum fiber dispersion and
absorption, respectively, see Fig. 1.22). Examples are alloys made of two components
and three elements (called ternary alloys: e.g., AlGaAs, alloy of GaAs and AlAs) and
alloys made of four components and elements (called quaternary alloys, e.g., InGaAsP,
alloy of InAs, InP, GaAs, GaP). By proper selection of the alloy composition, semicon-
ductor alloys emitting the right wavelength and matched to the right substrate can be
generated.
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In order to quantitatively define an alloy, we have to consider that compound semi-
conductors (CS) are polar compounds with a metal M combined with a nonmetal N
in the form M N . Two different CSs sharing the same metal or nonmetal give rise to a
ternary alloy or compound:

(M1 N )x (M2 N )1−x =M1x M2(1−x)N , e.g., Alx Ga1−x As

(M N1)y (M N2)1−y =M N1y N2(1−y), e.g., GaAsyP1−y,

where x and 1 − x denote the mole fraction of the two metal components, and y and
1 − y denote the mole fraction of nonmetal components. Four different CSs sharing
two metal and two nonmetal components yield a quaternary alloy or compound. In the
following formulae, M and m are the metal components, N and n are the nonmetal
components, and α + β + γ = 1:

(M N )α (Mn)β (m N )γ (mn)1−α−β−γ = Mα+βm1−α−βNα+γ n1−α−γ
= Mx m1−x Nyn1−y (e.g., Inx Ga1−x AsyP1−y).

Most alloy properties can be derived from the component properties through (global
or piecewise) linear interpolation (Vegard law), often with second-order corrections
(Abeles law); examples are the lattice constant, the energy gap, the inverse of the
effective masses, and, in general, the bandstructure and related quantities. Varying the
composition of a ternary alloy (one degree of freedom) changes the gap and related
wavelength, but, at the same time, the lattice constant; in some cases (AlGaAs) the
two components (AlAs and GaAs) are already matched, so that alloys with arbitrary Al
content are lattice matched to the substrate (GaAs).

On the other hand, varying the composition of a quaternary alloy (two degrees of
freedom) independently changes both the gap and the lattice constant, so as to allow for
lattice matching to a specific substrate, e.g., InGaAsP on InP.
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Figure 1.23 Evolution of the bandstructure of AlGaAs changing the Al content from 0 to 1.

The Vegard or Abeles laws must be applied with care in some cases. As an example,
consider the Alx Ga1−x As alloy and call P an alloy parameter, such as the energy gap.
The Vegard law can be written as:

P(x) = (1 − x)PGaAs + x PAlAs;
by inspection, this yields a linear interpolation between the two constituent parameters.
However, this law fails to accurately reproduce the behavior of the AlGaAs energy gap
because GaAs is direct bandgap, and AlAs is indirect. To clarify this point, let us con-
sider the simplified bandstructure of the alloy as shown in Fig. 1.23. We clearly see that
the main and secondary (X point) minima have the same level for x = 0.45; for larger
Al mole fraction, the material becomes indirect bandgap. Since the composition depen-
dence is different for the energy levels of the � and X minima, a unique Vegard law
fails to approximate the gap for any alloy composition, and a piecewise approximation
is required:

Eg ≈1.414 + 1.247x, x < 0.45

Eg ≈1.985 + 1.147(x − 0.45)2, x > 0.45.

The same problems arise in the InGaAsP alloy, since GaP is indirect bandgap; thus, a
global Vegard approximation of the kind

PInGaAsP = (1 − x)(1 − y)PGaAs + (1 − x)y PGaP + xy PInP + x(1 − y)PInAs

(by inspection, the approximation is bilinear and yields the correct values for the four
semiconductor components) may be slightly inaccurate.

1.6.1 The substrate issue

Electronic and optoelectronic devices require to be grown on a suitable (typically, semi-
conductor) substrate. In practice, the only semiconductor substrates readily available
are those that can be grown into monocrystal ingots through Czochralsky or Bridgman
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techniques – i.e., in order of decreasing quality and increasing cost, Si, GaAs, InP, SiC,
and a few others (GaP, GaSb, CdTe). Devices are to be grown so as to be either lattice
matched to the substrate, or slightly (e.g., 1%) mismatched (pseudomorphic approach).
The use of graded buffer layers allows us to exploit mismatched substrates, since it dis-
tributes the lattice mismatch over a larger thickness. This approach is often referred to
as the metamorphic approach; it is sometimes exploited both in electronic and in opto-
electronic devices. Metamorphic devices often used to have reliability problems related
to the migration of defects in graded buffer layers; however, high-quality metamorphic
field-effect transistors with an InP active region on a GaAs substrate have recently been
developed with success.

1.6.2 Important compound semiconductor alloys

Alloys are often represented as a straight or curved segment (for ternary alloys) or
quadrilateral area (for quaternary alloys) in a plane where the x coordinate is the lattice
constant and the y coordinate is the energy gap; see Fig. 1.24. The segment extremes
and the vertices of the quadrilateral are the semiconductor components. In Fig. 1.24
some important alloys are reported:

• AlGaAs, lattice-matched for any composition to GaAs, direct bandgap up to an Al
mole content of 0.45.

• InGaAsP, which can be matched either to GaAs or to InP substrates; InP substrate
matching includes the possibility of emitting 1.55 or 1.3 μm wavelengths;7 the alloy
is direct bandgap, apart from around the GaP corner, whose gap is indirect.

• InAlAs, which can be lattice matched to InP with composition Al0.48In0.52As.
• InGaAs, a ternary alloy matched to InP with composition Ga0.47In0.53As; it is a

subset of the quaternary alloy InGaAsP.
• InGaAsSb, the antimonide family, a possible material for long-wavelength devices,

but with a rather underdeveloped technology vs. InGaAsP.
• HgCdTe, a ternary alloy particularly relevant to far infrared (FIR) detection owing to

the very small bandgap achievable.
• SiGe, an indirect bandgap alloy important for electronic applications (heterojunction

bipolar transistors) but also (to a certain extent) for detectors and electroabsorption
modulators;

• III-N alloys, such as AlGaN and InGaN, with applications in short-wavelength
sources (blue lasers) but also in RF and microwave power transistors. AlGaN can
be grown by pseudomorphic epitaxy on a GaN virtual substrate; GaN has in turn no
native substrate so far, but can be grown on SiC, sapphire (Al2O3) or Si. The InGaN
alloy is exploited in optoelectronic devices such as blue lasers and LEDs, besides
being able to cover much of the visible spectrum.8

7 InGaAsP lattice-matched to InP can emit approximately between 0.92 and 1.65 μm.
8 The InN gap is controversial, and probably is much smaller than the previously accepted value around 2

eV. The nitride data in Fig. 1.24 are from [8], Fig. 3.
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Since GaN, AlN, and InN have the wurtzite (hexagonal) crystal structure, an equiva-
lent lattice constant aC,eq has to be defined for comparison with cubic crystals, so as to
make the volume of the wurtzite cell VH (per atom) equal to the volume of a cubic cell
(per atom); taking into account that the wurtzite cell has 12 equivalent atoms, while the
cubic cell has 8 equivalent atoms, we must impose:

1

12
VH = 1

12

3
√

3

2
ca2

H = 1

8
a3

C.eq → aC,eq =
(√

3ca2
H

)1/3
,

where VH is the volume of the wurtzite cell prism of sides a and c. For GaN aH = 0.317
nm, c = 0.516 nm; it follows that

aC,eq =
(√

3ca2
H

)1/3 =
(√

3 · 0.516 · 0.3172
)1/3 = 0.448 nm.

1.7 Bandstructure engineering: heterojunctions and quantum wells

Although the bandstructure of a semiconductor depends on the lattice constant a, which
is affected by the operating temperature and pressure, significant variations in the band-
structure parameters cannot be obtained in practice. Nevertheless, semiconductor alloys



30 Semiconductors, alloys, heterostructures

enable us to generate new, “artificial” semiconductors with band properties intermedi-
ate with respect to the components. A more radical change in the bandstructure occurs
when heterojunctions are introduced so as to form quantized structures. A deep varia-
tion in the density of states follows, with important consequences in terms of optical
properties (as we shall discuss later, the absorption profile as a function of the photon
energy mimics the density of states). Moreover, strain in heterostructures allows for fur-
ther degrees of freedom, like controlling the degeneracy between heavy and light hole
subbands.

Heterojunctions are ideal, single-crystal junctions between semiconductors having
different bandstructures. As already recalled, lattice-matched or strained (pseudomor-
phic) junctions between different semiconductors or semiconductor alloys allow for
photon confinement (through the difference in refractive indices), carrier confinement
(through potential wells in conduction or valence bands), and quantized structures such
as superlattices, quantum wells, quantum dots, and quantum wires. An example of a het-
erostructure band diagram is shown in Fig. 1.25, where the band disalignment derives
from application of the affinity rule (i.e., the conduction band discontinuity is the affin-
ity difference, the valence band discontinuity is the difference in ionizations). In many
practical cases, however, band disalignments are dominated by interfacial effects and do
not follow the affinity rule exactly; for instance, in the AlGaAs-GaAs heterostructure
one has

|�Ec| ≈ 0.65�Eg, |�Ev| ≈ 0.35�Eg. (1.14)

More specifically, the valence and conduction band discontinuities as a function of the
Al fraction are (in eV) [1]:

|�Ev| = 0.46x

|�Ec| =
{

0.79x, x < 0.41
0.475 − 0.335x + 0.143x2, x > 0.41.

According to the material parameters, several band alignments are possible, as shown in
Fig. 1.26; however, the most important situation in practice is the Type I band alignment
in which the energy gap of the narrowgap material is included in the gap of the widegap
material.

Ev

Ec

U0

|ΔEv|

|ΔEc|

EgA EgB

I0B

I0A

qχB

qχA

Figure 1.25 Heterostructure band alignment through application of the affinity rule to two materials having
different bandstructures.
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Figure 1.26 Classification of heterostructures according to band alignment; �E j = E j B − E j A.

Heterojunctions can be made with two n-type or p-type materials (homotype hetero-
junctions) so as to form a pn junction (heterotype heterojunctions). Often, the widegap
material is conventionally denoted as N or P according to the type, the narrowgap mate-
rial as n or p. According to this convention, a heterotype heterojunction is, for example,
N p or n P and a narrowgap intrinsic layer sandwiched between two widegap doped
semiconductors is Ni P .

Single or double heterostructures can create potential wells in the conduction and/or
valence bands, which can confine carriers so as to create conducting channels (with
application to electron devices, such as field-effect transistors), and regions where
confined carriers achieve high density and are able to recombine radiatively. In the
second case, the emitted radiation is confined by the refractive index step associ-
ated with the heterostructure (the refractive index is larger in narrowgap materials).
An example of this concept is reported in Fig. 1.27, a Ni P structure in direct bias
that may operate like the active region of a light-emitting diode or a semiconductor
laser.

Carriers trapped by the potential well introduced by a double heterostructure are con-
fined in the direction orthogonal to the well, but are free to move in the two other
directions (i.e., parallel to the heterojunction). However, if the potential well is very
narrow the allowed energy levels of the confined electrons and holes will be quantized.
The resulting structure, called a quantum well (QW), has a different bandstructure vs.
bulk, where sets of energy subbands appear (see Fig. 1.28). Also the density of states is
strongly affected.

The quantum behavior of carriers in narrow (conduction or valence band) potential
wells originated by heterojunctions between widegap and narrowgap semiconductors
can be analyzed by applying the Schrödinger equation to the relevant particles (elec-
tron or holes) described in turn by a 3D effective mass approximation. Solution of the
Schrödinger equation enables us to evaluate the energy levels and subbands, given the
well potential profile. In a rectangular geometry, we start from bulk (3D motion possible,
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Figure 1.27 Example of carrier and light confinement in a Ni P double heterostructure in direct bias.

E1

E2

E1

E2

Ev

Ec EF

Figure 1.28 Qualitative example of quantization in a quantum well: in the conduction and valence bands,
subbands arise with minimum energies corresponding to the levels E1, E2, . . .; the total electron
and hole wavefunction is given by the product of the 3D (bulk) wavefunction and of the
envelope wavefunction shown. For simplicity, only the heavy hole subbands are shown.

no confinement) and obtain, by progressively restricting the degrees of freedom of the
particle, the so-called reduced dimensionality structures corresponding to:

1. Confinement in one direction (x): particles are confined along x by a potential well
but are free to move along y and z (quantum well).

2. Confinement in two directions (x and y): particles are confined along x and y, but
they are free to move along z (quantum wire).

3. Confinement in three directions (x , y, z): particles are entirely confined and cannot
move (quantum dot).

For a quantum well defined in a Cartesian space, the particle (electron or hole) wave-
function can be expressed, in the effective mass approximation, as the product of three
factors:9

ψ(x, y, z) = φ(x) exp
(−jky y

)
exp (−jkzz) . (1.15)

9 The effective mass approximation implies that, in the absence of the well, the particle is completely free,
i.e., it behaves like a free electron with proper effective mass. The approximate total electron wavefunction
of a confined electron is therefore the product of the electron Bloch function and the envelope wavefunction.
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For a particle at rest (ky = 0, kz = 0) the wavefunction reduces to φ(x), called the
envelope wavefunction, to be derived from the solution of the 1D Schrödinger equation
with the well potential profile U (x). Notice that, independent on the kinetic energy
of the particle, the probability (corresponding to the particle distribution in space) is
always:

|ψ(x, y, z)|2 = |φ(x)|2 ,
i.e. the particle density only depends on the shape of the envelope wavefunction φ(x),
and in particular only depends on the x coordinate. The envelope wavefunction therefore
provides a picture of the particle distribution in the well. From the allowed energies Ei

we can express the total particle energy as

E = Ek + Ei = Ei + h̄2

2m∗ (k
2
y + k2

z ),

where Ek is the particle kinetic energy. This expression holds for all values of i ;
therefore the quantum well introduces in the conduction or valence bands a subband
structure; in each subband the dispersion relation is, at least approximately, parabolic,
but, contrarily to the 3D case, the particle motion occurs in the plane (y, z) only. Parti-
cles therefore form a 2D gas, i.e. a population able to move in a 2D space only. We
suppose that the effective mass is isotropic and (for simplicity) independent of the
subband considered.

For a quantum wire (QWire), we have a similar situation: the particle wavefunction
can be written in the form

ψ(x, y, z) = φ(x, y) exp (−jkzz) ,

where φ(x, y) satisfies a 2D Schrödinger equation with proper energies Ei j . The
particle energy can therefore be written as

E = Ek + Ei j = Ei j + h̄2

2m∗ k2
z ,

i.e., the dispersion relation is parabolic in kz , starting from one of the allowed ener-
gies Ei j . Finally, a quantum dot only exhibits finite-energy states with energy Ei jk , in
which the particle cannot move along any spatial direction (but can undergo radiative
recombination and intersubband transitions).

1.7.1 Carrier density and density of states in a quantum well

We want now to evaluate the sheet density ns (cm−2) of the electrons trapped in a
conduction band QW (a similar treatment would apply to holes in a valence band QW),
on the basis of the system Fermi level EF . As usual, we can exploit the product of the
density of states in the 2D system (QW) multiplied by the Fermi–Dirac distribution fn ,
see (1.4):

dns(E) = g2D(E) fn(E)dE,
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where g2D(E) is the QW density of states (per unit surface). Assuming that the
QW energy levels are El , l = 1, 2, 3... and that each energy level has an associated
wavefunction

ψl(x, y, z) = φl(x) exp(−jky y) exp(−jkzz),

we immediately notice that the carrier distribution depends only on x according to the
probability |φl(x)|2. We suppose that the wavefunction is normalized with respect to
the total concentration per unit surface of the electrons belonging to each subband (hav-
ing minimum energy El ). The total density of states can be obtained by summing the
densities relative to each subband:

g2D(E) =
∑

l

gl(E).

To evaluate gl , we suppose that the 2D electron gas is enclosed in a (large) poten-
tial well with infinitely high barriers placed in y = 0, y = L y and z = 0, z = Lz , with
L y, Lz � W , where W is the QW thickness. Quantization in the transversal plane only
allows for the (positive) wavenumbers

ky = m
π

L y
, kz = n

π

Lz
,

where m and n are integer numbers. Let us evaluate the number of states N (E) having
kinetic energy Ek < E ; those are the states included in the circle

Ek = h̄2

2m∗ (k
2
y + k2

z ),

where an isotropic effective mass has been introduced. The number of allowed states
with E < Ek can be derived, taking into account that only positive wavevectors are
considered, by dividing the area of one quarter of the circle with radius

√
2m∗Ek/h̄ of

the (kx , ky) plane by the area associated with each state, i.e., π2/(Lx L y). With a further
factor 2 accounting for the spin, we finally obtain

N (E) = N (El + Ek) = 2 × 1

4
π

2m∗Ek

h̄2

Lx L y

π2
= m∗ (E − El)

h̄2

Lx L y

π
,

for E > El (N (E) = 0 for E < El ), with corresponding surface state density (we
divide by the total laterally confined 2D gas area L y Lz):

gl(E) = 1

L y Lz

dN (E)

dE
= m∗

π h̄2
= 4πm∗

h2
,

for E > El ; for E < El , gl(E) = 0. Introducing the Heaviside step function u(E), (u =
0 for E < 0, u = 1 for E > 0) we can express the total density of states of the 2D
electron gas as the following staircase function:

g2D(E) =
∞∑

l=1

4πm∗

h2
u(E − El) =

∞∑
l=1

m∗

π h̄2
u(E − El),



1.7 Bandstructure engineering: heterojunctions and quantum wells 35

gc2D(E)

gv2D(E)

Δgl

Δge

Δge

Δge

Δge

Δgl = 4πmlh /h2

Δge = 4πme /h2
Δgh = 4πmhh /h2

Δgh

Δgh

... E1lh E1hh

Ev Ec

Δgl

Δgh

Δgl

*

*

*

Effective QW gap

EE2e ...E1e

Figure 1.29 Staircase-shaped density of states in a QW for the valence and conduction bands as a function of
energy.

where El are the allowed energies obtained by solving the Schrödinger equation in
direction x . Integrating on all energies we finally obtain the sheet carrier density for
electrons:

ns =
∫ ∞

Ec

g2D(E) fF D(E) dE = 4πm∗
n

h2

∑
l

∫ ∞

El

dE

1 + exp
(

E−EF
kB T

)
=4πm∗

nkB T

h2

∑
l

log

[
1 + exp

(
EF − El

kB T

)]
.

Contrary to the 3D case, we do not have to invoke the Boltzmann approximation to
obtain a closed-form expression in terms of elementary functions. The above expression
is therefore valid for both degenerate and nondegenerate cases.

A sketch of the QW DOS showing the electron and the hole density of states is
shown in Fig. 1.29. In the valence band the DOS actually follows a composite staircase
behavior including both heavy hole and light hole states:

g2D,v(E) =
∞∑

l=1

4πm∗
hh

h2
u(E − El)+

∞∑
k=1

4πm∗
lh

h2
u(E − Ek);

the state ordering with increasing hole energy is HH1, LH1, HH2, LH2, etc. In both
staircases the position of steps is variable, but the step size is the same for each kind of
particle (electrons, heavy holes, light holes). In general, the fundamental level for heavy
and light holes will be different (E1lh �= E1hh), thus removing the degeneracy between
HH and LH typical of 3D systems.

Example 1.2: A double AlGaAs-GaAs-AlGaAs heterojunction generates a potential well
(QW) both in the conduction and in the valence band. Evaluate the energy levels and
dispersion relations for electrons and holes assuming for simplicity that the potential
barrier has infinite height. Assume the potential well is located between z = 0 and
z = W .
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In a QW the wavefunction is factorized; assuming that the particle is able to move in
the directions x and y, while it is quantized in z, we can express the total wavefunction as

ψ = φ(z)ψx (x)ψy(y).

Substituting in the 3D Schrödinger equation we have (for the moment we use a generic
effective mass m∗)

h̄2

2m∗

[
φψy

d2ψx (x)

dx2
+ φψx

d2ψy(y)

dy2
+ ψxψy

d2φ(z)

dz2

]
+ [E − U (z)]φ(z)ψx (x)ψy(y) = 0

i.e.,

1

ψx

d2ψx

dx2︸ ︷︷ ︸
−k2

x

+ 1

ψy

d2ψy

dy2︸ ︷︷ ︸
−k2

y

+ 1

φ

d2φ

dz2
+ 2m∗

h̄2
[E − U ] = 0,

from which we can derive, by separation of variables, the factorized 1D equations:

h̄2

2m∗
d2φ(z)

dz2
+
[

E − h̄2

2m∗ (k
2
x + k2

y)− U (z)

]
φ(z) = 0 (1.16)

d2ψx (x)

dx2
+ k2

xψx (x) = 0 (1.17)

d2ψy(y)

dy2
+ k2

yψy(y) = 0. (1.18)

Equation (1.16) can also be written as

h̄2

2m∗
d2φ(z)

dz2
+ [

E ′ − U (z)
]
φ(z), E ′ = E − h̄2

2m∗ (k
2
x + k2

y). (1.19)

From the solution of (1.17) and (1.18) we obtain

ψx (x) = Ax exp(−jkx x), ψy(y) = Ay exp(−jky y),

where Ax and Ay are arbitrary constants, while from (1.19), assuming that the well is
located between z = 0 and z = W , and that therefore (due to the infinite height of the
well) φ(0) = φ(W ) = 0, we obtain

φ(z) = Az sin(kzz), kz =
√

2m∗E ′

h̄2
.

In order to have Az sin(kz W ) = 0 the following quantization condition must be
enforced:

kz W =
√

2m∗E ′

h̄2
W = nπ, n = 1, 2, ...,
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i.e.,

E ′
n = n2h̄2π2

2m∗W 2
,

or

En = E ′
n + h̄2

2m∗ (k
2
x + k2

y) = n2h̄2π2

2m∗
nW 2

+ h̄2

2m∗
n
(k2

x + k2
y).

In the above expression the conduction band edge Ec is taken as the reference energy
(since we assumed U = 0 in the well). The total wavefunction is thus

ψ = φ(z)ψx (x)ψy(y) = A sin(kzz) exp(−jkx x) exp(−jky y),

which can be normalized, for example, by imposing that the total probability is unity:∫ W

0
|ψ |2 dz =A2

∫ W

0
sin2(kzz) dz = A2

∫ W

0

(
1

2
− 1

2
cos 2kzz

)
dz

=A2 W

2
+ A2 1

4kz
sin 2kzz

∣∣∣∣W
0

= A2 W

2
= 1 → A =

√
2

W
,

i.e.,

ψ(x, y, z) =
√

2

W
sin(kzz) exp(−jkx x) exp(−jky y).

Wavefunctions in the well therefore are either even or odd with respect to the center of
the well, the fundamental state (minimum energy) corresponding to an even probability
distribution with respect to the well center. From the expression for E ′, specializing
for electrons (reference energy Ec) and heavy or light holes (reference energy Ev and
Eh = −Ee), we obtain (k2

T = k2
x + k2

y , kT transverse wavevector)

E (n)e (kT ) = Ec + n2h̄2π2

2m∗
nW 2

+ h̄2k2
T

2m∗
n

= Ene + h̄2k2
T

2m∗
n

E (m)hh (kT ) = Ev − m2h̄2π2

2m∗
hh W 2

− h̄2k2
T

2m∗
hh

= Emhh − h̄2k2
T

2m∗
hh

E (l)lh (kT ) = Ev − l2h̄2π2

2m∗
lh W 2

− h̄2k2
T

2m∗
lh

= Ellh − h̄2k2
T

2m∗
lh
.

Assembling the parabolic dispersion relation for the valence and conduction bands, we
finally have the situation shown in Fig. 1.30. Note that E (1)lh (0) ≡ E1lh < E (1)hh (0) ≡
E1hh due to the larger effective mass of heavy holes; thus, in an (unstrained) QW heavy
holes are the fundamental valence band level.

In practice, the valence band dispersion relation is more involved than shown in
Fig. 1.30 due to HH and LH coupling (note that the light and heavy hole dispersion
relations would cross at high energy).
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Figure 1.30 Approximate dispersion relation (left) for a QW with high (ideally, infinite) potential barriers
(right).

1.7.2 Carrier density and density of states in a quantum wire

The density of states nl(E) of a quantum wire can be evaluated in a similar way. In the
1D case, we can write

dnl(E) = g1D(E) fn(E)dE,

where g1D(E) is the number of states per unit length and unit energy interval. The
energy levels Ei j of the wire, obtained through a solution of the 2D quantum problem,
can be conveniently ordered through a single integer index l as El , l = 1, 2, 3... such as
El < El+1; each energy level has the associated wavefunction ψl(x, y, z):

ψl(x, y, z) = φl(x, y) exp(−jkzz)

with envelope wavefunction φl(x, y). The carrier distribution in the plane orthogonal to
the wire direction follows the probability |φl(x, y)|2, which we assume as normalized
with respect to the total concentration of the electrons in subband l. Also in this case,
the total state density can be obtained by summing contributions from all individual
subbands:

g1D(E) =
∑

l

gl(E).

To evaluate gl we artificially limit the QW through potential barriers located in x = 0,
x = Lz . Quantization allows for the positive wavenumbers:

kz = n
π

Lz
.

The number of states N (E)with kinetic energy Ek < E can be evaluated by considering
the states in the interval [0, Ek], where

Ek = h̄2

2m∗ k2
z .
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Since the corresponding kz value is
√

2m∗Ek/h̄, the number of allowed states having
energy < Ek can be obtained from the ratio of

√
2m∗Ek/h̄ and the length associated

with each state, which is π/Lz ; also accounting for the spin we finally obtain

N (E) = N (El + Ek) = 2 ×
√

2m∗Ek

h̄

Lz

π
=

√
8m∗(E − El)

h̄

Lz

π
, E > El;

the corresponding density of states per unit length will be

gl(E) = 1

Lz

dN (E)

dE
= 2

√
2m∗
h

1√
E − El

, E > El

while gl(E) = 0, E < El . We can thus express the total state density as a kind of
staircase function with singular (but integrable) steps:

g2D(E) =
∞∑

l=1

2
√

2m∗
h

1√
E − El

u(E − El).

The electron density can be finally recovered as

n f =
∫ ∞

Ec

g1D(E) fF D(E) dE = 2
√

2m∗
n

h

∑
l

∫ ∞

El

(E − El)
−1/2dE

1 + exp

(
E − EF

kB T

) .
Note that the integral cannot be expressed in an elementary way.

An overall picture of the 3D and 2D DOS is shown in Fig. 1.31, while the 1D
DOS is shown in Fig. 1.32, left. For the zero-dimensionality (0D) quantum dot (QD
or QDot), only discrete energy levels exist rather than subbands and the DOS simply

U(x,y)z

y y

x x

vx, vy, vz
vy, vz

g3D g2D

E – Ec E – EcE1 E2 E3 E4

Quantum well (2D)Bulk (3D)

Figure 1.31 Above: degrees of freedom for electrons in bulk (left) or in a quantum well along x , with
potential profile U . Below: density of states for bulk (left) and QW (right).
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Figure 1.32 Above: degrees of freedom for electrons in a quantum wire (left) with potential profile U ,
allowing motion along z only, or in a quantum dot (right), no motion possible. Below: QWire
(left) and QDot density of states (right).

is a summation of Dirac delta functions of the energy located at each energy level; see
Fig. 1.32, right.10

1.7.3 Superlattices

Molecular beam epitaxy (MBE) allows several, almost monoatomic, layers to be grown
in a controlled and orderly way. The resulting structure is a MQW or, for a large number
of (coupled) wells, a superlattice. From the electronic standpoint, N coupled QWs cause
the N -fold splitting of the system energy levels, finally leading to subbands, in much
the same way as coupled atoms merge their individual energy levels into crystal energy
bands.11 An example of such a subband structure is shown in Fig. 1.33. Superlattices are
therefore a kind of artificial 3D medium allowing for new features – e.g., low-energy
transitions between subbands can be exploited to absorb (emit) long-wavelength IR.
Superlattices can also be obtained by a periodic arrangement of QWires or QDs.

1.7.4 Effect of strain on bandstructure

Tensile or compressive strain changes the semiconductor bandstructure in several ways.
A first consequence concerns the lattice constant becoming larger (tensile isotropic

10 The QD density of states is purely indicative, since the position and area of each δ function depends on the
dot shape. In real structures, the density of states has finite peaks due to linewidth-broadening mechanisms.

11 The basic differences between a MQW and a superlattice is the well number (typically small or large) and
above all in the coupling between the wavefunctions of neighboring wells. If the coupling is weak almost
isolated energy levels are generated rather than subbands.
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Figure 1.33 Superlattice (SL) and SL bandstructure with subbands in the valence and conduction bands.
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Figure 1.34 Effect of strain on bandstructure in a 3D (bulk) semiconductor. In the figure m∗
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strain) or smaller (compressive isotropic strain); since the energy gap is inversely pro-
portional to the lattice constant (at least in a direct bandgap material: in indirect bandgap
semiconductors local trends can mask this simple effect), Eg increases with compres-
sive strain and decreases with tensile strain. Moreover, strain eliminates the degeneracy
of HH and LH states, leading (in 3D) to heavier (compressive uniaxial strain) or lighter
(tensile uniaxial strain) holes. Such effects are shown in Fig. 1.34.

In a QW, the situation is even more complex, since the equivalent gap (i.e., the dis-
tance between the fundamental levels in the conduction and valence bands) changes.
However, degeneracy is usually already removed without strain (the first heavy hole
subband being typically on top, as already remarked).

Proper tensile strain can bring back degeneracy, which, in some optoelec-
tronic devices (e.g., in electroabsorption modulators or detectors) allows for
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polarization-independent operation, see p. 407. The first light hole subband can be also
brought on top by tensile strain, thus reducing the hole density of states effective mass.
This makes it easier, at least in theory, to achieve population inversion and therefore
positive gain, with advantages in QW laser threshold condition, see p. 287.

1.8 Semiconductor transport and generation–recombination

1.8.1 Drift and diffusion

Under the application of an external electric field, electrons and holes experience a
driving force that increases their average velocity. Electrons and holes under equilibrium
condition (no applied field) at a temperature T have a Fermi–Dirac (Boltzmann) energy
distribution, with average (kinetic) energy Eave ≈ 3kB T/2 (39 meV at 300 K). This
means that, although the velocity or momentum distribution is symmetric with respect
to the origin (i.e., carriers have zero ensemble average velocity), the root mean square
(r.m.s.) carrier velocity (also called the thermal velocity) is extremely high (of the order
of 107 cm/s). In the presence of an applied field, the ensemble average velocity assumes
a value proportional to the electric field:

vn,ave = −μnE, vh,ave = μhE,

where μn and μh are the electron and hole mobilities, measured in cm2 V−1s−1. The
low-field mobility depends on the interaction with lattice vibrations (phonons), impuri-
ties, etc., and typically decreases with increasing doping and increasing temperature (at
least, at ambient temperature and above). For very large fields (values around 10 kV/cm,
depending on the semiconductor) the average velocity saturates:

vn,ave → vn,sat, vh,ave → vh,sat,

where the saturation velocities have magnitude around 107 cm/s. The motion of elec-
trons and holes due to the application of an electric field is called the drift motion and
gives rise to the drift (conduction) current density:

J n,dr = −qnvn,ave = qnμnE (1.20)

J h,dr = qpvh,ave = qpμhE . (1.21)

As already remarked, the average carrier velocity is generally limited by scattering with
phonons and impurities. However, for extremely small time (picoseconds) or space (�
1 μm, also depending on material) scales, electrons and holes can experience ballistic
motion, i.e., motion unaffected by collisions. In such conditions, the average carrier
velocity can be substantially higher in the presence of strong electric fields than the
static saturation velocity. Such effect is called velocity overshoot and plays a role in
increasing the speed of transistors such as nanometer-gate field-effect transistors.
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Electrons and holes also exhibit diffusion due to concentration gradients, yielding the
diffusion current densities

J n,d = q Dn∇n, J h,d = −q Dh∇ p,

where Dn and Dh are the electron and hole diffusivities, respectively. At or near equi-
librium the diffusivities and mobilities follow the Einstein relation Dα = (kB T/q)μα ,
α = n, h.

The electron velocity–field curves of a few semiconductors are shown in Fig. 1.14. In
compound semiconductors such as GaAs, InP, and InGaAs (lattice matched to InP) the
electron velocity–field curve is nonmonotonic: at low electric field, electrons are mainly
in the � minimum of the conduction band, but with increasing field they are ultimately
scattered into the indirect-bandgap minima, where their velocity is lower. As a result, the
average velocity decreases. This happens for electric fields of the order of 3 kV/cm in
GaAs where the energy difference is about 300 meV, but for larger fields in InP where
a larger energy difference is involved. The saturation velocity is, however, similar in
all semiconductors, including Si, which has a monotonically increasing velocity with a
much lower initial (low field) mobility. The hole mobility in compound semiconductors
is similar to (or even worse than) the hole mobility in Si, and therefore n-type (or npn)
transistors are preferred for high-speed applications.

1.8.2 Generation and recombination

Generation–recombination (GR) of carriers is described by generation and recombina-
tion rates for electrons and holes (Gn for the number of electrons generated per unit time
and volume, Rn for the number of electrons recombining per unit time and volume, and
similarly for holes) and by the electron and hole net recombination rates:

Un = Rn − Gn, Uh = Rh − Gh .

In many conditions, moreover, Un = Uh . This always happens in DC stationary con-
ditions, and whenever the GR process is band-to-band, i.e., involves direct transitions
between the valence and conduction bands. In such a case, generation of an e-h pair
immediately causes the increase of the electron and hole populations. However, GR can
take place through intermediate traps or recombination centers, acting as electron or
hole reservoirs; in such cases, the instantaneous net recombination rates of electrons
and holes can be different in time-varying conditions. Since the net recombination rate
should vanish in equilibrium, in many cases we can write

Un = rn(pn − n2
i ),

where the recombination term is proportional to pn and the generation term to n2
i . From

a physical standpoint, the pn dependence suggests that recombination involves a col-
lision process whose probability increases with increasing electron and hole densities.
Very often the recombination rate rn pn can be conveniently expressed in terms of a
lifetime τ . For definiteness, let us consider the electron (excess) density n; the excess
electron lifetime is defined by the rate equation
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dn′

dt
≈ − n′

τn
, (1.22)

where in principle the electron lifetime τn depends inversely on the carrier population
(τn = 1/rn p). However, τn is constant for excess minority carriers (electrons) in a p-
type semiconductor (where p ≈ NA; same for the dual case of an n-type semiconductor
with excess holes). The lifetime definition implies (at least, if τn is constant) an excess
electron population exponentially decreasing with time,

n′(t) = n′(0) exp(−t/τn),

and is defined as the average time between the carrier (electron–hole pair) creation and
the carrier recombination, i.e.,

〈t〉 =
∫∞

0 tn′(t) dt∫∞
0 n′(t) dt

=
∫∞

0 t exp(−t/τn) dt∫∞
0 exp(−t/τn) dt

= τ 2
n

τn
= τn .

As already recalled, GR mechanisms can be phonon-assisted or thermal, photon-
assisted or radiative (optical), and, finally, assisted by other electrons or holes. More-
over, generation and recombination can occur through interband transitions (direct
mechanisms), or through indirect mechanism assisted by intermediate trap levels in the
forbidden band. In direct-bandgap semiconductors, direct optical GR is typically the
dominant mechanism, whereas in indirect-bandgap semiconductors trap-assisted GR
can be a stronger competitor to the weaker optical GR.12

The spatial evolution of excess carrier densities (for definiteness, we consider excess
electrons with density n′) in a region with negligible electric field is dominated by the
carrier GR and diffusion; solution of the continuity equation for the diffusion current in
the presence of carrier recombination modeled according to the lifetime approximation
(1.22) yields for n′(x) the exponential solution

n′(x) = A exp(−x/Ln)+ B exp(x/Ln),

where A and B are determined from the boundary conditions and Ln is the (excess)
electron diffusion length. A similar solution holds for excess holes, with Lh the (excess)
hole diffusion length. From the continuity equation we obtain

Lα = √
Dατα, α = n, h.

1.8.3 Trap-assisted (Shockley–Read–Hall) recombination

Consider a semiconductor with a trap density Nt , and suppose that traps introduce, in the
forbidden gap, a discrete energy level Et . Thermal carrier transitions from the valence to
the conduction bands are made easier by the trap level, since two successive transitions
with �E ≈ Eg/2 (if the trap level is at midgap) are much more probable than a single
transition with �E = Eg . A detailed analysis shows that, in stationary conditions, the
net trap-assisted recombination rate can be expressed as

12 In indirect-bandgap semiconductors the optical GR is also phonon-assisted, and therefore (partly) thermal.
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U S R H = np − n2
i

τ S R H
h0 (n + n1)+ τ S R H

n0 (p + p1)
(1.23)

where

τ S R H
h0 = 1

r S R H
ch Nt

, τ S R H
n0 = 1

r S R H
cn Nt

.

The parameters r S R H
ch and r S R H

cn are the trap capture coefficients for electrons and holes,
while

p1 = ni g exp

(
EFi − Et

kB T0

)
, n1 = ni

1

g
exp

(
− EFi − Et

kB T0

)
.

Trap-assisted GR is called Shockley–Read–Hall (SRH) generation–recombination. The
coefficient g is an nondimensional parameter, called the trap degeneracy factor, and EFi

is the intrinsic Fermi level, close to midgap. Expression (1.23) can be simplified under
some important conditions.

Consider first a doped semiconductor, e.g., n-type, and suppose r S R H
ch ≈ r S R H

cn =
r S R H

c . In low-injection conditions (excess electrons concentration negligible vs. the
equilibrium electron concentration, n′ � ND; excess hole concentration p′ � n2

i /ND)
we have np − n2

i ≈ np′; therefore:

U S R H ≈ p′

τ S R H
0

[
1 + 2ni

n
cosh

(
EFi − Et

kB T0

)]−1

,

where

τ S R H
0 = 1

r S R H
c Nt

. (1.24)

Since ni � n, the minimum lifetime is obtained for a trap energy near midgap; such a
minimum lifetime will be given by (1.24). The lifetime is independent of semiconductor
doping and decreases for increasing trap density. Midgap traps are often called recombi-
nation centers, owing to their ability to cause recombination in a semiconductor and to
reduce the thermal lifetime vs. the intrinsic material. Similar remarks apply to the elec-
tron lifetime in a p-doped semiconductor. A second important case concerns the role of
SRH recombination as a competitor to radiative recombination in high-injection con-
ditions. Suppose now that for quasi-neutrality n ≈ p and assume for simplicity again
r S R H

ch ≈ r S R H
cn = r S R H

c ; we have

U S R H = p

2τ S R H
0

[
1 + ni

n
cosh

(
EFi − Et

kB T0

)]−1

.

For traps near the midgap, the hole (or electron) lifetime in high injection is therefore

τ S R H
0hi = 2τ S R H

0 = 2

r S R H
c Nt

.
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Finally, if the quasi-neutrality condition does not hold but np � n2
i and Et ≈ EFi , we

also have, with the condition r S R H
ch ≈ r S R H

cn = r S R H
c , that

U S R H ≈ np

τ S R H
0 (n + p)

.

The capture coefficients can be evaluated as the product of two parameters, the
thermal velocity vth and the electron or hole trap cross section σn or σh :

r S R H
cn = vthσn, r S R H

ch = vthσh .

Trap cross sections are of the order of 10−15 cm2 in Si for electrons and holes while,
for III-V materials, σn ≈ 10−14 cm2, σh ≈ 10−13 cm2. Finally, the thermal velocity is
vth = √

3kB T/m∗, with order of magnitude vth ≈ 107 cm/s.
Trap-assisted recombination is a strong competitor of radiative recombination in

indirect-gap semiconductors. In fact, consider that in Si we have

r S R H
c ≈ 105 m/s · 10−17 m2 = 10−12 m3/s,

so that, for a middle-gap trap density as low as Nt = 1014 cm−3, one obtains

τ S R H
0 = 1

10−12 · 1020
= 10 ns,

a value close to the radiative lifetime in indirect-bandgap semiconductors. The situation
is much more favorable in direct-bandgap semiconductors, where the radiative lifetime
is lower.

1.8.4 Auger recombination and generation by impact ionization

The electron- or hole-assisted recombination is called Auger recombination, and the
related rate is proportional to p2n or pn2, implying proportionality not only with respect
to the colliding populations (electrons and holes) but also to the population of the energy
suppliers. Due to this dependence, the Auger recombination is important (and is indeed
an unwanted competitor of the radiative recombination) in high-injection devices like
semiconductor lasers. The inverse process of the Auger recombination is the genera-
tion by impact ionization. In high-field conditions (i.e., for fields of the order of 100
kV/cm), electrons and holes gather enough energy from the electric field between
two successive scattering events (i.e., collisions with phonons, impurities or – less
important – other carriers) to be able to interact with another electron and promote
it to the conduction band. Each electron or hole is therefore able to generate, over a
certain length, a number of electron–hole pairs, that undergo in turn the same process
(energy increase, scattering and e-h pair generation). The resulting chain can lead to
diverging current, i.e., to avalanche breakdown in the semiconductor. Avalanche break-
down occurs for electric fields of the order of the breakdown field, which increases
exponentially with the material gap; see Fig. 1.35.
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Figure 1.35 Avalanche breakdown fields for some important semiconductors. Insulators (such as C, SiO2,
Si3N4) have breakdown fields in excess of 104 kV/cm.
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Figure 1.36 Electron and hole impact ionization coefficients as a function of the inverse of the electric field
for Si, Ge, GaAs. Adapted from [9], Figs. 2, 4 and 6.

The impact ionization phenomenon can be described by the following carrier
generation model:

∇ · J n = −qGn − qGh, ∇ · J h = qGn + qGh,

where

Gα = 1

q
αα(E)Jα, α = n, h. (1.25)
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The impact ionization coefficients αn and αh (or α and β, dimension cm−1) show a
strong increase with the electric field; see Fig. 1.36 [9]. In Si, αn � αh , while αn ≈ αh

in GaAs and Ge. The condition of different ionization coefficients will be shown to
represent an optimum condition in low-noise avalanche photodiodes, which exploit the
avalanche generation of electron–hole pairs to amplify the photocurrent.

1.9 Questions and problems

1.9.1 Questions

1. Describe the crystal structure of Si and of GaAs. Explain the difference between
the diamond and zinc-blende lattice cells.

2. What is the wurtzite crystal structure? Quote at least one important wurtzite
semiconductor.

3. Explain why ferroelectric crystals already have, with zero applied electric field, a
net dipole moment. What is the Curie temperature?

4. Quote at least one important ferroelectric material exploited in electrooptic modu-
lators.

5. What is the behavior of the semiconductor energy gap Eg of direct-bandgap
semiconductors vs. the lattice constant a?

6. Give examples of point defects in a crystal. Explain what kind of defect is a dopant
atom.

7. Qualitatively sketch the equilibrium band diagram of a n-type AlGaAs – intrinsic
GaAs heterostructure. Assume an Al fraction x = 0.3. Explain why the hetero-
junction generates a dipole charge layer (ionized donors on the AlGaAs side, free
electrons on the GaAs side). (Hint: the conduction band and valence band discon-
tinuities are given by Eq. (1.14); assume that the difference in AlGaAs and GaAs
affinities is ≈ �Ec and impose a constant Fermi level.)

8. To grow a heterostructure, is perfect lattice matching needed? Explain.
9. Two materials (with different energy gaps and different doping) form a heterostruc-

ture. Suppose that the initially isolated materials are ideally connected, and that
electrons and holes move to reach the equilibrium condition. Explain whether the
carrier motion takes place:
(a) in opposite directions, always;
(b) in directions depending on the Ec and Ev discontinuity;
(c) always from the wide-gap to the narrowgap material.
(Hint: before equilibrium the local Fermi levels act as quasi-Fermi levels for elec-
trons and holes, whose gradient is the driving force of the two carriers, having
opposite charge. When the two materials are joined and before equilibrium the two
quasi-Fermi levels have a jump, implying the same driving force for electrons and
holes.)

10. What is a strained or pseudomorphic heterostructure?
11. Justify the importance of the InGaAsP alloy in optoelectronic devices.
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12. HgTe has a negative energy gap and therefore metal-like electronic behavior.
Explain this statement.

13. A semiconductor has a direct bandgap of 2 eV and an indirect bandgap of 1.5 eV.
Justify this statement and define the semiconductor Eg .

14. Sketch the bandstructures of GaAs, InP, and AlAs.
15. Explain the transition between GaAs (direct bandgap) and AlAs (indirect bandgap)

when changing the alloy Al content.
16. What are the �, X and L points in the Brillouin zone for a cubic crystal? Explain

the meaning of the irreducible wedge in the FBZ.
17. In a QW made with an heteroepitaxial layer (double heterojunction) the heavy and

light hole degeneracy in the � point is typically removed. Explain this remark
and suggest some consequences for the material density of states and transport
properties. Describe the effect of strain on the removal of the hole degeneracy.

18. Sketch the effect of strain on the semiconductor bandstructure for a bulk direct-
bandgap semiconductor.

19. The energy–momentum relation of a semiconductor is approximated by a second-
order surface (a parabola in the variable k for a spherical minimum) near the
conduction band minimum. Justify this approximation and explain the meaning of
the electron effective mass in this context. What is the nonparabolic correction to
the dispersion relation?

20. Explain the meaning of isotropic and anisotropic effective mass for the electrons.
21. Sketch the electron velocity–field curve for Si and for GaAs. Explain the origin of

negative differential mobility in GaAs.
22. Explain why the onset of the negative differential mobility region occurs at higher

electric fields in InP when compared with GaAs.
23. Sketch the density of states in 3D (bulk), 2D (quantum well), 1D (quantum wire),

0D (quantum dot).
24. What are the degrees of freedom of a carrier in a quantum well, a quantum wire, a

quantum dot?
25. Explain why a quantum well allows for carrier and photon confinement.
26. Explain how carriers can be injected and removed from a quantum dot, taking into

account that carrier motion is not allowed in the dot.
27. A quantum well locally modifies the electronic structure of the bulk semiconductor.

Justify this remark.
28. What is a superlattice, and what features has the superlattice bandstructure?
29. Explain the difference between a degenerate and a nondegenerate semiconductor.
30. Is the mass action law pn = n2

i always true, or only in a nondegenerate semicon-
ductor?

31. Describe the behavior of the carrier density in a doped semiconductor as a function
of the lattice temperature.

32. Explain the physics behind thermal, radiative and Auger GR mechanisms in a
semiconductor.

33. The impact ionization coefficients in a semiconductor increase with increasing
applied electric field. Justify this fact.



50 Semiconductors, alloys, heterostructures

34. Explain why the avalanche breakdown field is larger in a wide-gap semiconductor
than in a narrow-gap semiconductor.

1.9.2 Problems

1. Sketch the planes denoted, according to the Miller notation, as (101), (001), (1̄1̄1̄).
2. Consider a Si crystal that has been cut 1 degree off the (001) direction toward the
(110) direction. Due to the misalignment, steps form on the surface. Assuming that
the step height is a, where a is the lattice constant, what is the step width?

3. In an out-of-equilibrium semiconductor, where Nc = 1018 cm−3, Nv = 1019 cm−3,
evaluate the position of the quasi-Fermi levels with respect to the conduction and
valence band edges, assuming n ≈ p ≈ 2 × 1018 cm−3. (Hint: use the Joyce–Dixon
approximation.)

4. Assume that the defect density in Si ranges from 1013 cm−3 (intrinsic material) to
1019 cm−3 (highly doped material). What is the average distance between impurity
atoms in the two cases? For comparison, evaluate the number of Si atoms per unit
volume.

5. Evaluate the composition range of InGaAsP achieving lattice matching to InP (use
the Vegard law). Repeat the computation for InGaAs. For InGaAsP, evaluate the
alloy lattice-matched to InP and able to emit 1.3 μm wavelength. Exploit the
following values for the semiconductor parameters:

GaAs: aGaAs = 5.68 Å, EgGaAs = 1.42 eV

GaP: aGaP = 5.45 Å, EgGaP = 2.27 eV

InP: aInP = 5.87 Å, EgInP = 1.34 eV

InAs: aInAs = 6.06 Å, EgInAs = 0.36eV.

6. A QW with infinite potential discontinuity is realized in the GaAs conduction band.
The quantum well thickness is d = 20 nm. Evaluate the first two energy levels of
the QW and the electron sheet concentration, assuming that the electron Fermi level
is 20 meV above the first energy level. Try to repeat the computation assuming a
finite conduction band well.

7. A quantum dot is made with a cubic potential box with infinitely high walls. The
box side is 5 nm. Exploiting for the electron an effective mass of 0.1m0, sketch the
density of states of the QD. Consider an array of quantum dots with 20 nm spacing
between the centers.

8. A deep submicrometer CMOS has a gate length of 40 nm. How many Si atoms can
be found along the gate length?

9. Calculate the cell density per unit volume in Si, GaAs, and GaN. (Hint: for GaN,
exploit the equivalent cubic cell.)

10. In GaAs, assume that the electron lifetime, for an (excess) electron concentration
n = 1017 cm−3, is τn = 1 μs at 300 K. Evaluate the net recombination rate Un .

11. The momentum of an electron in the � valley of GaAs is
∣∣k∣∣ = 0.1/a, where

a is the lattice constant. What is the electron energy from the conduction band
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edge Ec? What is the electron semiclassical velocity? Can the electron be eas-
ily scattered into the lowest secondary valley, located at the L point (assume
�E = EcL − Ec� = 300 meV)? Supposing that the electron energy is �E from
the conduction band edge, what would be its momentum? Compare the result
with the momentum difference between the L and � minima. Repeat the problem
exploiting the nonparabolic correction Ek (1 + αEk) = (h̄k)2 /2m∗

n with α = 0.67
eV−1.

12. In a GaAs sample the radiative lifetime is 0.5 ns. Considering a trap defect at
midgap with cross section σn ≈ σh ≈ σ = 5 × 10−15 m2 (assume for the thermal
velocity at 300 K vth = 107 cm/s), evaluate the trap concentration for which the
nonradiative minority carrier lifetime is the same as the radiative lifetime τo ≈ 0.5
ns (a) at 300 K, (b) at 77 K. Evaluate in such conditions the electron and hole
diffusion lengths. Assume μn = 4000 cm2 V−1 s −1, μh = 600 cm2 V−1 s −1.

13. An electron is injected into a high-field semiconductor sample with length W = 10
μm. The electron ionization coefficient is αn = 104 cm−1. Evaluate the number of
carriers directly generated by the carrier through impact ionization while crossing
the sample, and the total number of carriers generated in a direct or secondary way.
Assume that the hole impact ionization is zero.

14. In a semiconductor sample αn = αh = α. Derive the breakdown condition, i.e., the
condition in which the current diverges over a length W . Assume that an electron
current is injected in W as Jn(W ) and that the hole current in 0 is Jh(0) = 0. (Hint:
for a full discussion, see Section 4.11.1.)



2 Semiconductor optical properties

2.1 Modeling the interaction between EM waves and the semiconductor

The interaction between an electromagnetic (EM) wave and a semiconductor can be
analyzed at several levels. EM waves can be described as classical fields (i.e., in terms
of the electric and magnetic field) or, according to quantum mechanics, as a set of pho-
tons traveling with the speed of light. The crystal’s response to the EM wave may be
modeled in terms of macroscopic parameters such as the permittivity and permeabil-
ity (the macroscopic picture of the interaction) or with reference to the microscopic
interaction mechanisms between carriers and photons, leading to photon absorption
or emission (spontaneous and stimulated) and, correspondingly, to electron–hole (e-h)
pair generation or recombination (the microscopic picture). Moreover, we can look
at the interaction between the EM wave and the semiconductor from two closely
related viewpoints: the EM wave standpoint, yielding the wave absorption and gain,
and the semiconductor standpoint, leading to the e-h generation and recombination
rates.

Figure 2.1 presents a summary of the EM spectrum with decreasing energy and
increasing wavelength. Two frequency (energy) bands are of main interest for high-
speed optoelectronic applications.

The first band concerns the semiconductor sources, whose energy ranges from the
near infrared to the UV (roughly 3 octaves, from 0.5 eV to 4 eV). Semiconductor energy
gaps cover the same interval. The second band is the frequency range corresponding
to radiofrequencies and microwaves (up to 40 GHz) or even millimeter waves, up to
300 GHz, where the spectra of the modulating and/or detected electrical signals carried
by an optical transmission system are found. Electronic devices and circuits for high-
speed optoelectronic systems operate in this range.

The visible spectrum (from 700 to 400 nm, see Table 2.1), is relevant to several appli-
cations, also involving, as might be expected, human vision, but in fact most telecom
systems work at lower frequencies, around 800 nm (“first window” of optical fibers)
or around 1300 and 1550 nm (“second window” and “third window” of optical fibers),
see Fig. 1.22. As already noted, the second and third windows correspond to minimum
dispersion and attenuation, respectively.



2.2 The macroscopic view: permittivities and permeabilities 53

Table 2.1 The visible spectrum and the colors.

Color Wavelength (nm) Frequency (103 THz) Energy (eV)

Red (limit) 700 4.29 1.77
Red 650 4.62 1.91
Orange 600 5.00 2.06
Yellow 580 5.16 2.14
Green 550 5.45 2.25
Cyan 500 5.99 2.48
Blue 450 6.66 2.75
Violet (limit) 400 7.50 3.10
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Figure 2.1 The electromagnetic spectrum, expanded near the visible region.

2.2 The macroscopic view: permittivities and permeabilities

We recall now a few macroscopic properties of the interaction between the EM
wave and matter. Assuming the electric field E (V/m) and the magnetic field H
(A/m) as causes, the effects produced in the interacting material are the dielectric
displacement vector D (C/m2) and the magnetic induction B (tesla, T), respec-
tively. In a linear, memoriless (or nondispersive) isotropic medium the instantaneous



54 Semiconductor optical properties

value of the cause is directly proportional to the instantaneous value of the effect,
so that1

D(t) = εE(t), B(t) = μH(t),
where ε is the dielectric permittivity (farad per meter, F/m) andμ is the magnetic perme-
ability (henry per meter, H/m). Vacuum (or free space) is a particularly simple example
of a linear, nondispersive medium, with parameters

ε = ε0 = 8.85 × 10−12 F/m, μ = μ0 = 4π × 10−7 H/m.

The permittivity and permeability can in turn be expressed in terms of the in vacuo
parameter as

ε = εrε0, μ = μrμ0,

where εr is the relative permittivity and μr is the relative permeability. In all cases
considered here, μr = 1, i.e., the medium is nonmagnetic. The material refractive index
(or index of refraction) is nr = √

εr .
For time-varying harmonic fields (i.e., having time dependence exp(jωt)) we asso-

ciate to the electrical fields the complex phasors D(ω) and E(ω) such that

E(t) = √
2 Re

[
E(ω) exp(jωt)

]
, D(t) = √

2 Re
[
D(ω) exp(jωt)

]
.

The two phasors are related by a complex, frequency-dependent dielectric permittiv-
ity as

D(ω) = ε(ω)E(ω) = (ε′ − jε′′)E(ω),

where the imaginary part is related to material losses. In a dispersive material, the com-
plex dielectric permittivity varies with frequency. With the complex permittivity we can
associate a complex refractive index nr = √

εr , whose imaginary part is associated with
losses:

nr (ω) = n′
r (ω)− jn′′

r (ω).

In general, EM waves interact with all the electric charges or dipoles in a medium,
including (with decreasing mass) molecules, atoms, and electrons. With increasing fre-
quency, each of those interactions ceases in turn to be effective at a certain cutoff
frequency, above which the relevant contribution to the dielectric response vanishes.
Moreover, close to each cutoff frequency losses have a peak. The resulting overall
behavior is qualitatively as shown in Fig. 2.2.

Since the permittivity describes the frequency-domain response of a causal system
(where the input is the electric field and the output the dielectric displacement field),

1 Given an independent variable x (the cause) and a dependent variable y (the effect) we say that the relation
between x and y is memoriless (y(t) = f (x(t))) when the instantaneous value of y depends only on the
instantaneous value of x . If this does not hold true, the relation is called dispersive or with memory and
formally we write y(t) = f (x(t), d/dt).
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Figure 2.2 Qualitative behavior of the real and imaginary part of the refractive index as a function of the
EM wave frequency.

it has to satisfy to a set of integral relations between the real and imaginary parts of
ε(ω) = ε′(ω)− jε′′(ω), known as the Kramers–Kronig relations:

ε′(ω) = ε0 + 2

π
· P

∞∫
0

�ε′′(�)
�2 − ω2

d�

ε′′(ω) = −2ω

π
· P

∞∫
0

ε′(�)− ε0

�2 − ω2
d�,

where P denotes the principal part. Since the real and imaginary parts of the permittivity
are related, the real part can be derived from measurements of the imaginary part and
vice versa. Moreover, a variation of the real part (due, e.g., to the electrooptic effect,
see Section 6.3.1) implies a variation of the imaginary part (i.e., of the absorption),
and vice versa. This has a significant impact on the spurious frequency modulation
(chirp) of electroabsorption modulators (EAMs) and of directly modulated lasers, see
Section 6.8.3 and 5.12.3.

Example 2.1: Suppose that the real part of the dielectric permittivity has a step behavior:

ε′(ω) =
{
ε, ω ≤ ω0

ε0 ω > ω0.

Derive the corresponding behavior of the imaginary part from the Kramers–Kronig
relations.

Since

ε′(ω)− ε0 =
{
ε − ε0, ω ≤ ω0

0 ω > ω0,
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Figure 2.3 Imaginary part of permittivity in the presence of a step in the real part.

the Kramers–Kronig integral becomes

ε′′(ω) = −2ω

π
· P

∞∫
0

ε′(�)− ε0

�2 − ω2
d� = −2ω

π
· P

ω0∫
0

ε − ε0

�2 − ω2
d�

= −2ω

π
(ε − ε0) lim

ξ→0

⎡⎢⎣ ω−ξ∫
0

ε − ε0

�2 − ω2
d�+

ω0∫
ω−ξ

ε − ε0

�2 − ω2
d�

⎤⎥⎦
= −ε − ε0

π
lim
ξ→0

(
ln

∣∣∣∣−ξ2ω

∣∣∣∣− ln

∣∣∣∣0 − ω

0 + ω

∣∣∣∣+ ln

∣∣∣∣ω0 − ω

ω0 + ω

∣∣∣∣− ln

∣∣∣∣ ξ2ω
∣∣∣∣)

= ε − ε0

π
ln

∣∣∣∣ω0 + ω

ω0 − ω

∣∣∣∣ .
An example of the resulting behavior is shown in Fig. 2.3 for the normalized value
ε = 2ε0 at low frequency; removing the step discontinuity by modeling the permittivity
variation through a continuous function, the singularity in the imaginary part peak also
disappears. In general, a variation of the real part corresponds to a peak in material
losses.

In a lossy medium, the phasor associated with the electric field of a plane wave (i.e.,
a wave whose constant phase surfaces are planes, often used as a local approximation
for a generic EM wave) propagating in the z direction is

E = E0e−jkz =
[

E0e−ᾱz
]

e−jβz,

since

−jkz = −jωnr
√
ε0μ0z = j

ω

c0

(
n′

r − jn′′
r

)
z = −jβz − ᾱz,
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where k = β − jᾱ (or γ = ᾱ + jβ) is the complex propagation constant; β is the
propagation constant, and ᾱ is the field attenuation:

β = ω

c0
n′

r = 2π

λ
= 2π

λ0
n′

r (rad/m)

ᾱ = ω

c0
n′′

r (Np/m or m−1),

and λ is the wavelength, λ0 is the free space wavelength, c0 is the light velocity in
vacuo.2 Therefore, the magnitude of a harmonic electric field decreases exponentially
in the direction of propagation, while its phase decreases linearly with distance.

From the field magnitude |E(z)| = ∣∣E0

∣∣ exp(−ᾱz), we obtain that the Poynting
vector decreases as

S =
∣∣E(z)∣∣2

Z0
ẑ =

∣∣E0

∣∣2 exp(−2ᾱz)

Z0
ẑ,

where Z0 = √
μ/ε is the medium impedance. The component of S along the propaga-

tion direction is the power density associated with the optical wave, Pop (W/m2); one
has, therefore,

Pop(z) = S · ẑ = Pop(0) exp(−2ᾱz) ≡ Pop(0) exp(−αz),

where α = 2ᾱ is the absorption. The absorption coefficient α is always associated with
the same symbol as the attenuation (denoted only in this chapter as ᾱ). Absorption and
attenuation can be expressed in natural units (m−1 or Np/m, Neper per meter) and in
this case they differ by a factor 2. However in decimal log units one has

ᾱz|dB = −20 log10

∣∣E(z)∣∣∣∣E0

∣∣ = 20 log10 eαz = 8.686ᾱz → ᾱ|dB/m = 8.686 ᾱ|Np/m

αz|dB = −10 log10
Pop(z)

Pop(0)
= 10 log10 eαz = 4.343αz → α|dB/m = 8.686 ᾱ|Np/m ,

i.e., attenuation and absorption in dB/m are expressed by the same number. Remember
that the value in dB/m must not be used in connection with exp(−αz) or exp(−αz)
expressions; the following conversion formulae can be used (α is the attenuation, α the
absorption):

α|dB/m = 8.6859 α|Np/m

α|dB/m = 4.3429 α|Np/m = 8.6859 α|Np/m

α|Np/m = 0.1151 α|dB/m = 11.51 α|dB/cm

α|Np/m = 0.2303 α|dB/m = 0.2303 α|dB/m = 23.03 α|dB/cm .

2 In discussing the microscopic interaction between photons and electrons the photon energy is, however,
always related to the free space wavelength, which for simplicity will be denoted in that context as λ.
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2.2.1 Isotropic vs. anisotropic media

The D and E fields are parallel only in isotropic materials. In an anisotropic medium,
D and E will, in general, have different directions. This can be modeled by introducing
the permittivity as a matrix, i.e., as the Cartesian representation of a tensor:

D = ε · E →
⎛⎝Dx

Dy

Dz

⎞⎠ =
⎛⎝εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎞⎠⎛⎝Ex

Ey

Ez

⎞⎠ .
In all media considered, the permittivity matrix is symmetrical, i.e., εi j = ε j i . It can be
shown that a proper choice of the rectangular reference system (the principal axes) leads
to a diagonal permittivity matrix. The permittivity tensor is diagonal in an isotropic
medium for any orientation of the Cartesian axes; moreover, all diagonal values are
equal, i.e., ε = ε I , where I is the identity matrix. In an anisotropic medium the repre-
sentation of the permittivity tensor in the principal axes can assume different features,
according to whether all diagonal values are different, or two are equal and one is
different. We have three possible cases:

1. All diagonal values are different, i.e.

ε =
⎛⎝εxx 0 0

0 εyy 0
0 0 εzz

⎞⎠ .
In this case, the medium is biaxial.

2. Two diagonal values are equal: assume for instance that εxx = εyy = εo (the ordinary
permittivity), while εzz = εe (the extraordinary permittivity). In this case, we have

ε =
⎛⎝εo 0 0

0 εo 0
0 0 εe

⎞⎠ .
The z axis is the optical or extraordinary axis, while any direction in the plane
orthogonal to z is the ordinary axis. Therefore, the medium is isotropic with respect
to rotations in the plane orthogonal to the optical axis. In this case, the medium is
uniaxial.

3. All diagonal values are equal:

ε =
⎛⎝ε 0 0

0 ε 0
0 0 ε

⎞⎠ = ε

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠ = ε I .

In this case, the medium is isotropic. All cubic semiconductors are isotropic.

A summary of the cases considered is shown in Fig. 2.4.
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Figure 2.4 Permittivity matrix in the principal reference frame (above) and optical axes (below) in a biaxial,
uniaxial and isotropic medium. In the isotropic case the principal axes are arbitrary.

2.3 The microscopic view: EM wave–semiconductor interaction

At a microscopic level, an EM wave with frequency f is interpreted as a collec-
tion of photons of energy E ph = h f = h̄ω. Photons are zero-mass particles, traveling
with speed c0/nr . Photons have momentum p = h̄k, where k is the propagating wave

wavevector;3 the magnitude of the momentum is 2π/λ. Always at a microscopic level,
semiconductors are containers of charged particles (electrons and holes) that interact
with the EM wave photons. The interaction can be visualized as a collision or scattering
process; the possibility of interaction is quite obvious, since charged particles in motion
are subject to the Coulomb force (EM wave electric field) and to the Lorentz force (mag-
netic field of the EM wave). However, the semiconductor response is peculiar when
compared with the response of a generic dielectric material due to the presence of band-
to-band processes. In fact, the useful semiconductor response is dominated by the ability
of radiation to cause band-to-band carrier transitions with corresponding emission or
absorption of a photon.

A useful relation exists between the EM wave photon energy and the related
wavelength; since λ f = c0 one has

E ph = h f = hc0

λ
= 4.136 × 10−15 eV s · 2.998 × 108 m/s

λ|μm × 10−6 m
= 1.24

λ|μm
eV. (2.1)

Therefore, wavelengths of the order of 1 μm are associated with energies of the order
of 1 eV, which in fact correspond to “typical” semiconductor bandgaps.

In the EM wave–semiconductor interaction, three cases are possible according to the
value of E ph vs. the energy gap Eg:

1. E ph < Eg , as in RF, microwaves, and far infrared (FIR): the interaction is weak
and does not involve band-to-band processes, but only the dielectric response and
interband processes (e.g., the so-called free electron/hole absorption);

3 For brevity the wavevector k is often referred to as momentum, in particular when discussing particles.
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2. E ph ≈ Eg and E ph > Eg , as in near infrared (NIR), visible light, and ultravio-
let (UV): light interacts strongly through band-to-band processes leading to the
generation–recombination of e-h pairs and, correspondingly, to the absorption–
emission of photons;

3. E ph � Eg , as for X rays: high-energy ionizing interactions take place, i.e., each
photon causes the generation of a high-energy e-h pair, which generates a large num-
ber of e-h pairs through avalanche processes. This case is exploited in high-energy
particle and radiation detectors, but it is outside the scope of our discussion.

Optical processes leading to band-to-band transitions involve at least one photon and
one e-h pair. At a microscopic level, there are three possible fundamental processes:

1. Photon absorption (and e-h pair generation): the photon energy (momentum conser-
vation is discussed later) is supplied to a valence band electron, which is promoted
to the conduction band, leaving a free hole in the valence band. Because of the
absorption process, the EM wave decreases its amplitude and power.

2. Photon stimulated emission (and e-h pair recombination): a photon stimulates the
emission of a second photon with the same frequency and wavevector; the e-h pair
recombines to provide the photon energy. The emitted photon is coherent with the
stimulating EM wave, i.e., it increases the amplitude of the EM field and the EM
wave power through a gain process.

3. Photon spontaneous emission (and e-h pair recombination): a photon is emitted
spontaneously; the e-h pair recombines to provide the photon energy. Since the
emitted photon is incoherent, the process does not imply the amplification of an
already existing wave, but rather the excitation of an EM field with a possibly
broad frequency spectrum (if many photons are incoherently emitted in a specific
bandwidth).

The three processes are shown in Fig. 2.5, Fig. 2.6, and Fig. 2.7, respectively. Note
that absorption and stimulated emission are in fact the same process with time reversal.

The rules of the photon–electron interaction are established by quantum mechanics
through the so-called perturbation theory. According to the perturbation theory, the
interaction must satisfy two sets of rules. The first set is quite obvious and coincides with

Ec

Ev Ev
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Ev

hf hf hf

hf = Ec – Ev
hf

Ec

e-h pair generation

Before During After
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Figure 2.5 Photon absorption.
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Figure 2.6 Photon stimulated emission.
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Figure 2.7 Photon spontaneous emission.

classical collision rules, i.e., the conservation of the total energy and momentum from
before to after the interaction. The second set is less obvious and consists of the so called
selection rules, according to which some interactions are in fact not allowed (i.e., their
probability, or interaction strength, is zero), although they satisfy energy and momentum
conservation. Selection rules derive from a detailed quantum-mechanical treatment of
the system before and after the interaction, including the particle wavefunctions in the
initial and final states (e.g., the electron wavefunctions in the valence and conduction
bands).

2.3.1 Energy and momentum conservation

Let us discuss first energy and momentum (or wavevector) conservation, which can be
generally expressed as∑

i

Ei,before =
∑

i

Ei,after,
∑

i

ki,before =
∑

i

ki,after,

where the summation extends to all particles involved in the interaction in the initial and
final states (namely, electrons and photons). Holes are not explicitly taken into account,
as long as their energy and momentum do not vary in the process. Moreover, energies
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and momenta are evaluated with respect to an absolute reference, not a local reference
to the conduction band minimum or valence band maximum.

To make explicit examples of energy and momentum conservation we refer to a few
important cases:

1. Absorption of a photon through a direct process, i.e., a process involving only
electrons and photons. One has

E f = Ei + E ph, k f = ki + k ph,

where E f is the final energy of the electron in the conduction band, Ei is the initial
energy of the electron in the valence band, E ph is the energy of the absorbed photon
(similarly for momenta). We can equivalently write

�E f i = E f − Ei = E ph = h f, �k f i = k f − ki = k ph = 2π

λ
k̂ ph,

implying that the changes in energy and momentum of the electron are supplied by
the absorbed photon.

2. Spontaneous or stimulated emission of a photon through a direct process, i.e., a
process involving only electrons and photons. One has:

E f + E ph = Ei , k f + k ph = ki ,

where E f is the final energy of the electron in the valence band, Ei is the initial
energy of the electron in the conduction band, E ph is the energy of the emitted photon
(similarly for momenta). We can equivalently write

�Ei f = Ei − E f = E ph = h f, �ki f = ki − k f = k ph = 2π

λ
k̂ ph,

implying that the changes in energy and momentum of the electron are supplied to
the emitted photon.

Direct processes typically involve a photon energy of the order of the energy gap Eg ,
which photons in the NIR and visible ranges are able to provide, see (2.1). However, the
amount of momentum a photon can supply is indeed very small if the wavelength is in
the micrometer range. To clarify this point, remember that electron momenta are defined
in the reciprocal space, whose fundamental cell is the first Brillouin zone (FBZ). We can
assume as a large electron momentum one corresponding to the distance between the
center of the FBZ (the � point, where the maximum of the valence band is found) and
the periphery of the FBZ (close to the minimum of the conduction band in indirect-gap
semiconductors). Such a distance, see Fig. 1.9, is of the order of

ke,max ≈ π

a
,

where a is the lattice constant, of the order of 0.5 nm. Since the photon wavelength is of
the order of 1 μm we conclude that

ke,max

kph
≈ λ

2a
≈ 103,
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Figure 2.8 Simplified bandstructure of (a) a direct-bandgap semiconductor (GaAs, InP, . . . ) showing
radiative transitions involving negligible momentum difference; (b) an indirect-bandgap
semiconductor (Si, SiC, [Ge]), showing radiative transitions involving a large momentum
difference.

or kph � ke,max. Thus, the momentum difference between the initial and final states
caused, in a direct transition, by the photon momentum, is altogether negligible.
Direct transitions are possible in direct-bandgap semiconductors, where electron and
hole states are available near the point � with negligible momentum difference; see
Fig. 2.8(a).

In indirect bandgap semiconductors, such as Si, radiative transitions involve a large
momentum variation, which is indeed of the order of π/a, see Fig. 2.8(b). Such a
momentum cannot be provided by photons, and the transition is possible only by involv-
ing other particles, the phonons, having low energy but comparatively large momentum.
Phonons are quantized elastic waves carrying mechanical energy (in the form of sound
or heat) through the crystal.

In the presence of one or more phonons, the possible interaction mechanisms mul-
tiply, since a photon can be emitted or absorbed through the help of an emitted or
absorbed phonon. Let us denote as Eφ = hF the phonon energy (F is the phonon fre-
quency), as kφ = 2π/� the phonon momentum (� is the phonon wavelength). We have
four possible cases:

1. Absorption of a photon through an indirect process, i.e., a process involving electrons
and photons but also phonons. The phonon can be absorbed or emitted.
a. Phonon absorption:

E f = Ei + E ph + Eφ, k f = ki + k ph + kφ,

where E f is the final energy of the electron in the conduction band, Ei is the
initial energy of the electron in the valence band, E ph is the energy of the absorbed
photon and Eφ is the energy of the absorbed phonon (similarly for momenta).
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b. Phonon emission:

E f + Eφ = Ei + E ph, k f + kφ = ki + k ph,

where E f is the final energy of the electron in the conduction band, Eφ is the
energy of the emitted phonon, Ei is the initial energy of the electron in the valence
band, E ph is the energy of the absorbed photon (similarly for momenta).

2. Emission of a photon through an indirect process, i.e., a process involving electrons
and photons but also phonons. The phonon can be absorbed or emitted.
a. Phonon absorption:

E f + E ph = Ei + Eφ, k f + k ph = ki + kφ,

where E f is the final energy of the electron in the conduction band, E ph is the
energy of the emitted photon, Ei is the initial energy of the electron in the valence
band, and Eφ is the energy of the absorbed phonon (similarly for momenta).

b. Phonon emission:

E f + E ph + Eφ = Ei , k f + k ph + kφ = ki ,

where E f is the final energy of the electron in the conduction band, E ph is the
energy of the emitted photon, Eφ is the energy of the emitted phonon, Ei is the
initial energy of the electron in the valence band (similarly for momenta).

Since indirect interactions are many-body processes, their probability of occurrence
is smaller than for direct processes. In particular, the emission efficiency of an indirect-
bandgap semiconductor is low enough to make (at least at present) the realization of
devices based on stimulated emission, like lasers, extremely critical (indirect-bandgap
light-emitting diodes, LEDs, working with spontaneous emission, are feasible but have
low efficiencies). On the other hand, devices based on the absorption process, like pho-
todetectors, can still be realized through indirect-bandgap semiconductors, albeit with
inferior performance with respect to direct-bandgap materials.

Concentrating on the indirect (phonon-assisted) photon absorption process, we can
express the energy or momentum difference between the final (conduction band)
electron state and the initial (valence band) electron state as

�E f i = E ph ± Eφ ≈ E ph, �ki f = k ph ± kφ ≈ ±kφ,

where the upper sign corresponds to phonon emission and the lower sign to phonon
absorption. Phonon absorption slightly decreases the minimum energy a photon must
have in order to be able to promote an electron from the valence band to the conduction
band, i.e., it slightly decreases the absorption threshold energy with respect to Eg . On
the other hand, phonon emission slightly increases the absorption threshold energy with
respect to Eg .

If we compare a direct and an indirect transition, see Fig. 2.9, we see that the momen-
tum (the wavevector k) that the phonon should provide is typically of the order of π/a,
since, as already mentioned, indirect conduction band minima are located at or near the
boundary of the FBZ (while the valence band maximum is always located in point �).
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Figure 2.9 Direct and indirect optical transitions in a semiconductor: momentum and energy variations vs.
the bandstructure parameters.
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Figure 2.10 Schematic dispersion relation of phonons in a cubic crystal; only the section from the � to the L
point is shown. The parameter EφR is the Raman phonon energy.

The question is, of course, whether the phonon can be a high-momentum particle
while preserving a low enough energy to make it compatible with the total energy
balance of the process, which is dominated by the large photon energy.

As already recalled, phonons are mechanical waves in the crystal. Taking into account
that vibrational waves can be longitudinal (i.e., the matter displacement occurs parallel
to the propagation direction) or transverse (the displacement occurs orthogonal to the
propagation direction) and that two vibrational modes are possible according to whether
nearby atoms oscillate in or out of phase (these are referred to as the acoustical [low
energy] phonons and the optical [high energy] phonons), we have, in a cubic crystal,
four possible vibrational modes, the longitudinal/transverse, optical/acoustic phonons
(denoted as LA, TA, LO, TO, see Fig. 2.10). Since the crystal space supporting lat-
tice vibrations is the same periodic space in which the electron motion takes place, the
phonon dispersion relation is defined in the same reciprocal space as for the electrons,
i.e., the FBZ, see Fig. 2.10. The maximum value for the phonon momentum within the
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FBZ is therefore of the order of π/a. However, the phonon energy is small: while optical
phonons have a maximum energy (called the Raman phonon energy, EφR) of the order
of 60 meV in Si and 35 meV in GaAs, the maximum energies for the acoustic phonons
are Eφ,TA(L) ≈ 20 meV in Si and ≈ 10 meV in GaAs, Eφ,LA(L) ≈ 50 meV in Si and
≈ 30 meV in GaAs; notice that the acoustical phonon energy vanishes at the � point. A
phonon with k = π/a will have propagation constant and wavelength

kφ = 2π

�
= π

a
→ � = 2a.

However, the dispersion relation of acoustic phonons can be approximated, at low
momentum, as

F = vs

�
,

where vs � c0 is the velocity of sound in the medium. The maximum phonon energy
will be

Eφ = hF = hvs

�
≈ hvs

2a
.

Taking into account that the energy of a photon with wavelength λ is E ph = h f =
hc0/λ, and that vs is of the order of 104 m/s in a solid while c0 = 3 × 108 m/s, we have,
assuming 2a ≈ 1 nm, λ ≈ 1 μm, that

Eφ
E ph

≈ vs

2a

λ

c0
≈ 103 · 104

3 × 108
≈ 1

30
.

For a photon energy of 1 eV this means a phonon energy near 33 meV. Note that the total
phonon momentum and energy need not be necessarily carried by just a single phonon,
but also by two or more phonons. It is clear, however, that a low number of phonons
together can have at the same time a large momentum and a low enough energy with
respect to the photon energy.

Example 2.2: Consider an indirect-bandgap semiconductor with Eg ≈ 1 eV; suppose
that a photon is absorbed and that an acoustic phonon (emitted or absorbed) provides
the momentum difference. Assuming for the phonon energy Eφ = 30 meV, evaluate the
absorption shift in energy and wavelength.

We have that the minimum photon energy is E ph = 1000 ± 30 meV where the upper
sign is for phonon emission, the lower sign for phonon absorption. Taking into account
that λ = 1240/E μm, where the energy is in meV, we have that, in terms of wave-
length, the absorption edge for absorption is λ1 = 1240/1030 = 1.2038 μm for phonon
emission, and λ2 = 1240/970 = 1.2783 μm for phonon absorption. The total shift is
λ2 − λ1 = 74.5 nm.

Assuming a monotonic behavior of the dispersion relation of the valence and conduc-
tion bands (e.g., the parabolic band approximation in a direct-bandgap semiconductor),
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Figure 2.11 Energy conservation in a vertical transition (generation due to phonon absorption).

energy and momentum conservation lead to the following conclusion: having assigned
the photon energy, the initial and final electron states (i.e., their energy and momentum)
are uniquely determined. To show this, we use a simple parabolic model for the valence
and conduction bands and assume vertical transitions (same momentum in the initial
and final states, or negligible photon momentum). To fix the ideas, assume that the ini-
tial state is in the valence band, the final state in the conduction band (as in the case of
absorption), see Fig. 2.11. The initial and final energies satisfy the dispersion relations
for the valence and conduction bands, with ki = k f = k:

Ei = Ev − h̄2k2

2m∗
h
, E f = Ec + h̄2k2

2m∗
n
.

The absorbed photon energy is equal to the energy difference between final and initial
states:

E ph = h̄ω = E f − Ei = Ec − Ev + h̄2k2

2

(
1

m∗
h

+ 1

m∗
n

)
= Eg + h̄2k2

2m∗
r
,

where

m∗
r =

[(
m∗

h

)−1 + (
m∗

n

)−1
]−1

(2.2)

is the valence-conduction band reduced mass or joint density of states (JDOS or JDS)
reduced mass. Solving for the initial or final momentum k, we obtain

h̄2k2 = 2m∗
r

(
h̄ω − Eg

)
,

i.e.,

k = ki = k f =
√

2m∗
r

h̄

√
h̄ω − Eg.
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Substituting in the expression for the initial and final energies, we find that they are
uniquely defined by the photon energy:

Ei = Ev − m∗
r

m∗
h

(
h̄ω − Eg

) ≡ Eh(h̄ω)

E f = Ec + m∗
r

m∗
n

(
h̄ω − Eg

) ≡ Ee(h̄ω).

The minimum photon energy occurs when k = 0 and is equal to the energy gap:

E ph = Eg −→ k = 0, Ei = Ev, E f = Ec.

Therefore, Eg can be referred to as the absorption edge.

2.3.2 Perturbation theory and selection rules

According to quantum theory, the state of a system subject to time-independent forces
is described by the solution of the Schrödinger equation with given Hamiltonian H0

(related to total energy, e.g., of electrons and holes):

H0ψ(r , t)+ jh̄
∂ψ(r , t)

∂t
= 0,

where ψ(r , t) is the particle wavefunction and the Hamiltonian is related to the total
particle energy as

H0 = − h̄2

2m
∇2 + V (r). (2.3)

The first term in (2.3) is the quantum version of the kinetic energy, the second term the
potential energy. A time-dependent (small) external force (here associated with an EM
field, i.e., to a photon) can be described as perturbation of the Hamiltonian:

H0 → H0 + H ′.

The perturbed solution can be expressed (according to perturbation theory) as linear
combination of unperturbed states; if the perturbing force is time-varying (in our case,
harmonic) the probability of finding a particle belonging to the system (which was in
the initial state i) in the final state f increases linearly with time. The per unit time (and
sometimes per unit volume) transition probability from the initial to the final state is the
scattering rate w f i , see Fig. 2.12. If the time duration of the interaction and size of the
interaction region are suitably large, quantum theory also suggests that the scattering
rate is zero if energy and momentum are not conserved.

Given a certain amount of cause (e.g., optical power, photons, . . . ) the strength of
the effect (e.g., the number of electrons promoted per unit time from the valence to
the conduction band through photon absorption) depends on the magnitude of the
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Figure 2.12 Perturbation theory picture of the transition between the initial and final state of a system.

scattering rate w f i . Perturbation theory shows that the scattering rate is proportional
to the magnitude square of the so-called matrix element M f i :

M f i =
∫

r
ψ∗

f (r) · H ′(r ,∇r ) · ψi (r) dr , (2.4)

where ψ f (r) and ψi (r) are the final and initial state wavefunctions, respectively,
H ′(r ,∇r ) is the perturbation Hamiltonian, and ∇r is the gradient operator (operating
on ψi ). For an EM wave, the perturbation Hamiltonian is

H ′ ∝ A · ∇r ∝ ∂

∂ξ
,

where A is the EM wave vector potential (in a plane wave, A is parallel to the electric
field and orthogonal to the propagation direction, see e.g. [10]) and ξ is the coor-
dinate along the direction of the vector potential. In other words, the perturbation
Hamiltonian operates on the initial state wavefunction as a directional derivative oper-
ator, with direction parallel to the EM field polarization. From the Bloch theorem (see
Section 1.3.2), wavefunctions in a crystal are the product of a periodic function of space
and of an atom-like wavefunction; near the � point of the FBZ, such wavefunctions
can be approximated by their even or odd atom-like component (s-type or p-type for
the conduction and valence band, respectively, see Fig. 1.11). Since a spatial deriva-
tive operator turns an even function of space into an odd function and vice versa, the
integral kernel can, in some cases, be an odd function of space, leading to an identi-
cally zero matrix element in (2.4). For brevity, we will confine the discussion to some
representative examples.

Consider, for example, an initial s-type state and a final px -state, which is odd along
x , even along y and z. The two states can be synthetically described (assume functions
are real for simplicity) as

s(x, y, z) = e(x)e(y)e(z), px (x, y, z) = o(x)e(y)e(z),

where e is a (generic) even function, o an odd function of the argument. Assume, for
instance, that the perturbation Hamiltonian is ∝ ∂/∂x . The application of H ′ on the
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initial state leads to an odd function of x ; multiplying by the final px state we globally
obtain an even function of x (and also of y, z):

M f i ∝
∫

o(x)e(y)e(z)
∂

∂x

[
e(x)e(y)e(z)

]
dx dy dz =

∫ [
o(x)e(y)e(z)

]2 dx dy dz.

In this case the kernel is even, and M f i �= 0.
On the other hand, consider an initial s-type state and a final py-state, which is odd

along y, even along x and z; assume again that the perturbation Hamiltonian is ∝ ∂/∂x .
The application of H ′ to the initial state leads to an odd function of x ; multiplying by
the final py state, which is even along x , we have

M f i ∝
∫

e(x)o(y)e(z)
∂

∂x

[
e(x)e(y)e(z)

]
dx dy dz

=
∫

e(x)o(y)e(z)o(x)e(y)e(z) dx dy dz

=
∫

e(x)o(x) dx︸ ︷︷ ︸×
odd kernel

∫
o(y)e(y) dy︸ ︷︷ ︸
odd kernel

×
∫

e(z)e(z) dz︸ ︷︷ ︸
even kernel

= 0 × 0 × K = 0.

Thus, the integral kernel is an odd function of x, an odd function of y, and an even
function of z. In this case, therefore, the integral is zero and M f i = 0. Generalizing
the above result, it can be shown that, given an electric field directed along ξ, the only
interaction possible is between pξ states and s states; for all other p states the matrix
element is zero.

We can conclude that, while optical transitions must satisfy energy and momen-
tum conservation, some transitions that are possible from this standpoint have in
fact zero strength, i.e., zero matrix element. Selection rules state that the initial and
final state pair must have an “even”–“odd” or “odd”–“even” nature to allow for a
transition.

In bulk semiconductors, the matrix element depends on sets of states (initial or final)
of the s and p type. It can be shown that, for any field polarization, there is always
some interacting set of initial and final states (see Section 2.3.3); the matrix element
is never zero and turns out to be polarization independent. This also occurs because
light and heavy holes are degenerate and therefore contribute in a similar way to the
transition.

The situation changes in quantum wells, since in this case the p-type or s-type wave-
functions are multiplied by the envelope wavefunction ψ(z) (see (1.15) and suppose
confinement takes place along z; if the QW is an epitaxial structure, z is orthogonal to
the stratification), which can in turn be even or odd (typically even in the fundamen-
tal state, then alternately odd and even; in an asymmetric well the envelope functions
will be only approximately even or odd). The presence of the envelope wavefunction
alters the parity of the initial or final state wavefunctions, but only along the direc-
tion parallel to the QW stratification. Moreover, in a QW the degeneracy of light
holes (LH) and heavy holes (HH) is removed and the different composition of the
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Figure 2.13 Examples of intraband (left), interband (center), and intersubband (right) transitions.

two wavefunctions, see (1.2) and (1.3), becomes effective in making the interaction
polarization-dependent.

To introduce a specific example, let us recall some more vocabulary on radiative
transitions. We talk about intraband transitions when the initial and final states are in the
same band (e.g., conduction band or valence band); and of interband transitions if they
are in different bands (e.g., initial conduction band, final valence band). In a quantum
well we also have subbands, thus we have intrasubband transitions when the initial
and final states are in the same subband, and intersubband transitions when they are
in different subbands (e.g., initial and final in two different subbands of the conduction
band, or one in a subband of the conduction band, the other in a subband of valence
band); for some examples see Fig. 2.13. Note that intraband or intrasubband transitions
are never direct, while intersubband transitions typically are, both if the two subbands
belong to the same band (conduction or valence) and if they belong to two different
bands (conduction and valence).

To discuss selection rules in a quantum well, consider a symmetrical QW where
the envelope wavefunctions ψi (z) are even or odd according to the index (the fun-
damental state i = 1 is even in z, the second state is odd, and so on). The enve-
lope wavefunctions are slowly varying in z with respect to the conduction and
valence subband s- and p-like wavefunctions (periodic in the crystal lattice). To
obtain the total subband wavefunctions near the � point, valence (HH and LH)
and conduction band wavefunctions are multiplied by ψi (z), leading to the total
wavefunctions:

φi,c(x, y, z) = ψc
i (z)s(x, y, z), i = 1, 2 . . .

φi,vξ (x, y, z) = ψvi (z)pξ (x, y, z), i = 1, 2 . . . , ξ = x, y, z.

The matrix element of the transition between a valence band p state and a conduction
band s state can therefore be expressed as



72 Semiconductor optical properties

M f i ∝
∫
φ∗

i,c
∂

∂η
φ j,vξ dr =

∫
ψ∗c

i (z)s
∗(r) ∂

∂η

[
ψvj (z)pξ (r)

]
dr

=
∫ [

ψ∗c
i (z)s

∗(r)pξ (r)
∂ψvj (z)

∂η
+ ψ∗c

i (z)s
∗(r)ψvj (z)

∂pξ (r)

∂η

]
dr

≈
∫ ∞

−∞
ψ∗c

i (z)
∂ψvj (z)

∂η
dz × 1

�

∫
�

s∗(r)pξ (r) dr︸ ︷︷ ︸
always 0

+
∫ ∞

−∞
ψ∗c

i (z)ψ
v
j (z) dz︸ ︷︷ ︸

�=0 if i, j are both even/odd

× 1

�

∫
�

s∗(r)
∂pξ (r)

∂η
dr︸ ︷︷ ︸,

�=0 if ξ=η

i = 1, 2 . . . , ξ, η = x, y, z,

where � is the elementary crystal cell volume. In the above development, we have
made use of the 3D extension of the following result (where g is a periodic function
with period L and f is a slowly varying function over the period L , like the envelope
wavefunctions):∫ ∞

−∞
f (z)g(z) dz =

∑
i

∫ (i+1)L

i L
f (z)g(z) dz

≈
∑

i

f (Li)
∫ L

0
g(z) dz ≈

∫ ∞

−∞
f (z) dz × 1

L

∫ L

0
g(z) dz.

The integral

I =
∫ ∞

−∞
ψ∗c

i (z)ψ
v
j (z) dz

can in principle be different from zero even if the two envelope wavefunctions do not
have the same index, because they refer to two different potential profiles (valence and
conduction band wells); however, if the two wells are similar, or approximated, for
example, by an infinite well, I ≈ δi j , i.e., M f i is not negligible only if the two indices
are equal.

We can conclude that the element matrix is zero unless two conditions are met:

• The indices of the envelope wavefunctions in the valence and conduction bands are
both even or odd (1-1, 2-2, but also in general 1-3, etc.); however, while the 1-1, 2-2,
etc. interaction is strong, the 1-3, etc. interaction is typically very weak.

• The interaction caused by an electric field polarized in the direction ξ involves the
valence band state pξ .

In general, if the first condition is met, the interaction will have a different weight
according to the field polarization. This happens because, while the LH states include
all possible pξ wavefunctions, in the HH states one of these (pz) does not appear, see
(1.3) and (1.2). For HH states, therefore, the matrix element for a z-polarized field is
zero, while LH states react (albeit with a different strength) to all polarizations. Since in
a QW LH and HH states are not degenerate (and therefore the relevant interactions have
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Figure 2.14 Examples of selection rules and polarization sensitivity in a QW with the stratification parallel to
the z axis (left); the band structure is shown on the right. The thick arrows (right) define allowed
interband or intersubband transitions. The horizontal (TE) field is absorbed by the well, the
vertical (TM) does not interact.

a different minimum photon energy), a global polarization sensitivity of the allowed
transitions results.

In summary, the allowed transitions between subbands in different bands are of the
kind 1-1, 2-2, 3-1, etc. (i.e., the subband indices must be both even or odd), but strong
transitions are typically with equal indices; the forbidden transitions are 1-2, 2-1, 1-4,
etc. (i.e., the subband indices must be one even and the other odd); this is apparently the
opposite of bulk rule (even–even, odd–odd rule), but is in fact the same rule, account-
ing for the envelope wavefunctions (see Fig. 2.14). On the other hand, intersubband
transitions within the same band (conduction or valence) obey the even–odd rule as in
bulk, thus 1-2 is allowed, 1-3 is forbidden, and so on. Allowed intersubband transitions
(1-2, etc.) will, however, have low strength (at least in a symmetric well) due to the
orthogonality of the envelope wavefunctions belonging to the initial and final states.

As an example of the polarization sensitivity arising in a QW from the removal of
the degeneracy between HH and LH bands, consider a QW with wells orthogonal to
the z axis. The TE polarization (electric field orthogonal to z) will cause both LH-C
and HH-C transitions, while the TM polarization (electric field along z) will only cause
LH-C transitions (C stands for conduction band). The relative transition strengths (also
referred to as oscillator strengths) can be shown to be (see e.g. [11], Section 9.5):

• for TE polarization, 3/4 for HH-C, 1/4 for LH-C,
• for TM polarization, 0 for HH-C, 1 for the LH-C.

Consider for instance the QW in Fig. 2.14; suppose that the fundamental (lowest
photon energy) transition is between the HH1 band and the conduction band; HH-C
transitions correspond to an absorption process. Assuming that the photon energy is
larger than the HH-C transition threshold but lower than the LH-C transition threshold,
only a TE field will interact (through the HH-C transition), while the TM field interac-
tion strength will be zero. As a consequence, the TE field (parallel to the stratification)
will be absorbed by the QW, while the TM field (orthogonal to the stratification) will
be unaffected. A qualitative example of the resulting absorption and refractive index
profiles is shown in Chapter 6, Fig. 6.34 (right).
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2.3.3 Total scattering rates

Quantum mechanics enables as to evaluate the scattering rates (i.e., the probability of the
transition, or the number of transitions per unit time, between an initial and a final state,
see Fig. 2.12) for the three fundamental processes—spontaneous emission, stimulated
emission, and absorption. The scattering rates can be shown to assume the following
forms:4

w
sp
em = wδ(E f − Ei + h̄ω)

wst
em = wn phδ(E f − Ei + h̄ω)

wabs = wn phδ(E f − Ei − h̄ω),

where w (dimension J m3 s−1) is proportional to the matrix element M f i describing
the interaction strength, and is the same for all processes; for the expression in a bulk
semiconductor, see (2.6). The δ function is a placeholder for energy conservation (it
states that in a direct process the electron energy variation is equal to the photon energy),
while n ph is the average photon number, related to the photon density ρph as

ρph = n ph

V
,

where V is the crystal volume considered. The photon density is in turn related to the
EM wave power as

Pop = S · n̂ = (
h̄ωρph

) c0

nr
−→ ρph = nr

S · n̂

h̄ωc0
= nr

Pop

h̄ωc0
, (2.5)

where Pop is the optical power per unit surface, h̄ωρph = E phρph is the photon energy
density, and n̂ is a unit vector parallel to the propagation direction.

From perturbation theory one has, for a bulk semiconductor,

w = 2π

h̄

q2

m2
0

h̄

2ωε
p2

cv, (2.6)

where p
cv

is the momentum matrix element in the so-called dipole approximation (or

dipole matrix element):5

p
cv

=
∫
�

u∗
kc
(r)
(−jh̄∇r

)
ukv (r) dr =

∫
�

u∗
kc
(r)pukv (r) dr . (2.7)

The functions ukc
and ukv are the Bloch waves of the conduction and valence band

states, respectively, see (1.1), having s-type or p-type behavior near the � point. In

4 See [4], Section 4.3 and in particular (4.51), (4.54) and (4.55). The absorption scattering rate can be derived
through the Fermi golden rule via a semiclassical approach; the stimulated emission follows from time
reversal, but in order to derive spontaneous emission the thermodynamic equilibrium condition must be
enforced. A direct evaluation of the scattering rates requires, on the other hand, the so-called second quan-
tization process. The square magnitudes of the integrals appearing in (4.51), (4.52) of the quoted reference
are the square magnitude of the dipole matrix element in (2.7) while the prefactor is wn ph p−2

cv with w
defined in (2.6).

5 From quantum mechanics, p → −jh̄∇r .
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bulk materials, the dipole matrix element assumes the following values according to
polarization (see e.g. [4], Section 4.4.1):

x-polarized light →
{

HH-C → p2
cv = 1

2p2
cv

LH-C → p2
cv = 1

6p2
cv

y-polarized light →
{

HH-C → p2
cv = 1

2p2
cv

LH-C → p2
cv = 1

6p2
cv

z-polarized light →
{

HH-C → p2
cv = 0

LH-C → p2
cv = 2

3p2
cv.

The parameter pcv (a momentum) is better expressed through the corresponding
energy as

E p = 2p2
cv

m0
, (2.8)

where m0 is the free electron mass and E p ≈ 20 eV for compound semiconductors.6

Assuming unpolarized light, the average momentum matrix element is the same (p2
cv/3)

for HH and LH; thus, for unpolarized light and for an arbitrary mixture of light and
heavy holes the average momentum matrix element will be7〈

p2
cv

〉
= 2

3
p2

cv.

Thus, for unpolarized light interacting with a bulk semiconductor, we have

w = 2π

h̄

q2

m2
0

h̄

2ωε

2

3
p2

cv J m3 s−1. (2.10)

The scattering rates defined so far yield the transition probabilities between two exist-
ing states which are properly populated (the initial state is full, the final state is empty,
according to the exclusion principle). Therefore, they do not take into account:

• The availability (i.e., the density) of initial and final states having the proper energy;
it can be shown that this corresponds to a weight called the joint density of states
(JDS) of the valence and conduction bands, Ncv(h̄ω):8

Ncv(h̄ω) = (2m∗
r )

3/2

2π2h̄3

√
h̄ω − Eg m−3J−1. (2.11)

6 Such an energy is related to the effective mass, see, e.g., [11], Section 4.2.3 and 4.2.4:

2p2
cv

m0h̄ω
≈ 2p2

cv
m0 Eg

≈ m0

m∗
n

− 1. (2.9)

7 Note that the same average value holds for light polarized along x , y, or z if we assume a 50% mixture of
heavy and light holes.

8 The joint density of states formally derives from the integration on all allowed k states, with the constraint
of energy conservation. A variable change into energy introduces as the Jacobian the JDS.
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• The state occupation probability (Fermi or quasi-Fermi statistics) fn and fh (elec-
trons and holes):

fn(En) = 1

1 + exp

(
En − EFn

kB T

) (2.12)

fh(Eh) = 1

1 + exp

(
EFh − Eh

kB T

) , (2.13)

where EFn and EFh are the quasi-Fermi levels for electrons and holes.

Due to momentum conservation in direct transitions, the initial and final momenta
coincide in magnitude; moreover, their value is related to the photon energy
E ph = h̄ω as

kn =
√

2m∗
r

h̄

√
h̄ω − Eg =

√
2m∗

r

h̄

√
E ph − Eg,

so that the initial and final energies are (for absorption; for emission, the two energies
are interchanged)

Ei = Ev − h̄2k2
n

2m∗
h

= Ev − m∗
r

m∗
h

(
E ph − Eg

)
(2.14)

E f = Ec + h̄2k2
n

2m∗
n

= Ec + m∗
r

m∗
n

(
E ph − Eg

)
. (2.15)

Let us consider first the absorption process. The total absorption scattering rate includ-
ing, together with the transition probability, also the information on the density of states
and on their occupation probability, is obtained as

Wabs(h̄ω) = wn ph Ncv(h̄ω)
[
1 − fh (Ei (h̄ω))

] [
1 − fn

(
E f (h̄ω)

)]
s−1. (2.16)

Thus, to obtain the total absorption scattering rate Wabs we multiply wabs by the joint
density of states Ncv , and by the probability that the initial state (valence band) is filled
by an electron (empty of a hole: 1 − fh) AND the final state (conduction band) is empty
of an electron (probability 1 − fn); this, because of the exclusion principle.

Similarly, to obtain the total emission scattering rate Wem = Wsp
em + Wst

em we multi-
ply wem = w

sp
em + wst

em by the joint density of states Ncv and by the probability that the
initial state (valence band) is filled by a hole, fh , AND the final state (conduction band)
is filled by an electron, fn ; we therefore obtain

Wem(h̄ω) = Wsp
em(h̄ω)+ Wst

em(h̄ω)

= w(1 + n ph)Ncv(h̄ω) fn(En(h̄ω)) fh(Eh(h̄ω)) s−1. (2.17)
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Note the following (quite obvious) result: the total scattering rates for stimulated and
spontaneous emission are clearly related, since, from (2.17),

Wst
em = n phwNcv fn fh, (2.18)

Wsp
em = wNcv fn fh . (2.19)

Thus,

Wst
em = n phWsp

em . (2.20)

In what follows, we will also exploit the scattering rates per unit volume, (W , dimension
m−3 s−1) for the absorption and stimulated emission:

Wabs(h̄ω) = 1

V
Wabs(h̄ω) = 2π

h̄

q2

m2
0

h̄ρph

2ωε

2

3
p2

cv︸ ︷︷ ︸
1
V wn ph=wρph

Ncv(h̄ω)

× [
1 − fh (Ei (h̄ω))

] [
1 − fn

(
E f (h̄ω)

)]
= wρph Ncv(h̄ω)

[
1 − fh (Ei (h̄ω))

] [
1 − fn

(
E f (h̄ω)

)]
(2.21)

W st
em(h̄ω) = 1

V
Wst

em(h̄ω) = 2π

h̄

q2

m2
0

h̄ρph

2ωε

2

3
p2

cv︸ ︷︷ ︸
1
V wn ph=wρph

Ncv(h̄ω)

× fh (Ei (h̄ω)) fn
(
E f (h̄ω)

)
= wρph Ncv(h̄ω) fh (Ei (h̄ω)) fn

(
E f (h̄ω)

)
. (2.22)

We can similarly define the scattering rates for spontaneous emission per unit volume
W sp

em = Wsp
em/V and the total scattering rate for emission per unit volume as

Wem = W st
em + W sp

em = Wem/V, (2.23)

where Wem is defined in (2.17).

Example 2.3: Check that at equilibrium (2.16) and (2.17) are compatible with the
equilibrium Bose–Einstein photon statistics.

In fact, at thermodynamic equilibrium Wabs = Wem = Wsp
em + Wst

em , thus

wn ph × Ncv(h̄ω)× [
1 − fn(En(h̄ω))

]× [
1 − fh(Eh(h̄ω))

]
= w(1 + n ph)× Ncv(h̄ω)× fn(En(h̄ω))× fh(Eh(h̄ω)).

Simplification of w and Ncv , taking into account that EFn = EFh = EF , leads to

exp

(
En − Eh

kB T

)
= exp

(
h̄ω

kB T

)
= 1

n ph
+ 1.



78 Semiconductor optical properties

The Bose–Einstein statistics for photons follows:

n ph = n ph0 = 1

exp

(
h̄ω

kB T

)
− 1

. (2.24)

2.4 The macroscopic view: the EM wave standpoint

The photon–semiconductor interaction is described, macroscopically, by parameters
characterizing the behavior of an EM wave traveling through the semiconductor. These
are the complex dielectric constant ε(h f ) = ε′ − jε′′ and, equivalently, the complex
propagation constant γ = ω

√
εμ0 = ᾱ + jβ. The absorption coefficient can, in the

presence of stimulated emission, become negative, corresponding to gain g and to
net gain g = g − α. In modeling the interaction between the EM wave and the semi-
conductor, this can be defined as the EM wave standpoint. From the semiconductor
standpoint, on the other hand, the interaction with the EM wave can be characterized by
the radiative recombination rate Ro, the radiative generation rate Go or the net radiative
recombination rate Uo = Ro − Go.

We will now relate the microscopic behavior (scattering rates) to the macroscopic
parameters of the EM wave (absorption, gain, net gain). Let us assume that the electric
field in the medium propagates as a (monochromatic) plane wave

E = E0 exp(−γ z) = E0

[
exp(−ᾱz) exp(−jβz)

]
,

with optical power (power density)

Pop = Pop(0) exp(−2ᾱ) ≡ Pop(0) exp(−αz),

where we have denoted by ᾱ the field attenuation, while α = 2ᾱ is the absorption coef-
ficient. Describe the EM wave as a set of traveling photons (photon gas); the photon
density ρph must satisfy, in steady state, the continuity equation:

dρph

dt

∣∣∣∣
em,abs

≡ Wem − Wabs = d�ph

dx
= d

dx

(
ρph

c0

nr

)
, (2.25)

where �ph is the photon flux (photon density by photon velocity). Expressing the
scattering rates from (2.21) and (2.23), one has

d

dx

(
ρph

c0

nr

)
= ρphwNcv

[
fn fh − (1 − fn)(1 − fh)

]+ 1

V
wNcv fn fh . (2.26)

The first term in the r.h.s. (including the stimulated emission and absorption rates) is
proportional to ρph , while the second term is an incoherent source, associated with
spontaneous emission. While the first term will lead to gain or loss of radiation, the
second term does not contribute to increasing or decreasing the power of an EM wave
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propagating in the medium, but rather generates photons propagating in random direc-
tions. For this reason, we do not consider the second term when evaluating the material
absorption or gain.

In the presence of absorption or gain, the photon density increases or decreases
exponentially in the propagation direction:

ρph(x) = ρph(0) exp(−αx) exp(gx),

where α is the absorption, g is the gain due to stimulated emission. Substituting in (2.26)
we readily identify

α = nr

c0
wNcv(1 − fn)(1 − fh) (2.27)

g = nr

c0
wNcv fn fh . (2.28)

Finally, the net gain g = g − α can be expressed as

g = nr

c0
wNcv fn fh − nr

c0
wNcv(1 − fn)(1 − fh) = nr

c0
wNcv( fn + fh − 1).

To understand when the net gain is positive and when, in contrast, absorption prevails
leading to negative net gain, we have to consider the occupation probabilities fn and fh .

In “ordinary” conditions, the occupation probability of the conduction and valence
band states is described by the Boltzmann tail of the Fermi–Dirac statistics, i.e., both
occupations are ≈ 0. In such conditions, the net gain is negative and absorption prevails.

On the other hand, the occupation probability increases in the presence of large injec-
tion of electrons and holes, until all valence and conduction band states are full, so that
fn and fh may be close to 1 (at least, in a certain carrier energy range). Now, radiative
recombination is fostered and stimulated emission prevails, leading to positive gain.
Due to the effect of stimulated emission and gain, a semiconductor can amplify the
light traveling through it, as in optical amplifiers and lasers.

The condition for positive net gain can be expressed in terms of the electron and hole
quasi-Fermi levels as follows. Taking into account that

g = nr

c0
wNcv( fn + fh − 1), (2.29)

where fn and fh are given by (2.12) and (2.13), and g > 0 if fn + fh − 1 > 0. The
condition

fn + fh − 1 > 0 −→ 1

1 + exp

(
En − EFn

kB T

) + 1

1 + exp

(
EFh − Eh

kB T

) > 1,

directly implies

exp

(
En − Eh − EFn + EFh

kB T

)
< 1 −→ EFn − EFh > En − Eh .



80 Semiconductor optical properties

Since the minimum allowed electron–hole energy difference is En − Eh = Eg , the
positive gain condition (called the population inversion condition: notice that this
condition has nothing to do with the inversion condition in a MOS system) is

EFn − EFh > Eg.

In inversion conditions np � n2
i ; this only happens in a forward biased pn junction

or heterojunction. Conversely, in a depleted region np � n2
i and therefore absorption

prevails.

2.4.1 The semiconductor gain energy profile

The qualitative behavior of g(E ph), taking as a parameter the concentration of the
injected carrier populations (for simplicity assume quasi-neutrality, n ≈ p), can be
obtained as follows. We start from (2.29) and approximate the Fermi distribution at
0 K as a step function. For E ph < Eg , the joint density of states is zero and g = 0. If
the population inversion condition is not met (n < ninv), on the other hand, fn(E ph) ≈
fh(E ph) ≈ 0 for all photon energies, and

g(E ph) ≈ −nr

c0
wNcv(E ph) = α(E ph) ∀E ph .

Let us assume now that, for a given carrier injection corresponding to population inver-
sion (n > ninv), fn(E ph) ≈ fh(E ph) ≈ 1 for E ph < E0 (where E0 = EFh + EFn +
Eg), while fn(E ph) ≈ fh(E ph) ≈ 0 for E ph > E0; then

g(E ph) ≈ nr

c0
wNcv(E ph), E ph < E0

g(E ph) ≈ −nr

c0
wNcv(E ph) = α(E ph), E ph > E0.

Thus, the gain is positive and proportional to the joint density of states up to E0, while
the absorption is proportional to the joint density of states for E > E0. For increas-
ing population injection, E0 increases, leading to the qualitative behavior shown in
Fig. 2.15 for a bulk material (above) and a quantum well (below), with staircase density
of states (for simplicity, exciton resonances, see Section 2.4.3, were not considered). In
the energy range considered we have also assumed that w is weakly dependent on the
photon energy.

For temperatures above 0 K the gain profile vs. the photon energy can be evaluated
numerically. As already stated, the inversion population condition is implemented in a
direct-bias pn junction or double heterojunction where quasi-neutrality holds (p ≈ n).
From n = p and the photon energy h̄ω, we derive the initial and final electron energy
and the electron and hole quasi-Fermi levels. More explicitly, in (2.29) we express the
Fermi distributions (2.12) and (2.13) by setting En − EFn = (En − Ec)− (EFn − Ec),
EFh − Eh = (EFh − Ev)− (Eh − Ev). The terms EFn − Ec and EFh − Ev can be
approximated as a function of the population density n ≈ p through the Joyce–Dixon
formulae (1.12) and (1.13), while En − Ec and Eh − Ev are derived from the photon
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Figure 2.15 Qualitative behavior of gain at T = 0 K as a function of the photon energy from below inversion
(left) and for increasing injected carrier density above inversion (center and right). Above: bulk
(3D); below: QW (2D) with staircase joint density of states.

energy h̄ω according to (2.14) and (2.15), i.e., using energy conservation in vertical
transitions, as

En − Ec = m∗
r

m∗
n

(
h̄ω − Eg

)
, Eh − Ev = − mr

m∗
h

(
h̄ω − Eg

)
.

As an example, the resulting gain profile g(h̄ω, n = p) of an AlGaAs/GaAs double
heterostructure is shown in Fig. 2.16. The net gain is zero for photon energies below
Eg because of the zero joint density of states; it increases for photon energies above
Eg and then decreases again as a function of h̄ω, since at high energy fewer and fewer
states are available. A larger n = p corresponds to larger gain, for small n = p the gain
is negative, i.e., absorption prevails.

Gain in QW structures follows a similar behavior but, as already remarked, the shape
of gain vs. the photon energy is different due to the presence of the staircase density of
states. A qualitative picture at 300 K is shown in Fig. 2.17.

The gain profile g = nr c−1
0 wNcv fh fn derived so far depends on the photon energy

and on the carrier population and is based on the assumption that the electron and
hole distributions fn and fh can be approximated through the quasi-Fermi distri-
butions. In laser diodes above threshold, however, electrons and holes of a specific
energy En and Eh selectively recombine to emit (through stimulated emission) pho-
tons with energy h̄ω = En − Eh . In high injection conditions (corresponding to high
photon concentration and emitted optical power) the carrier lifetime is in the picosec-
ond range and the restoring mechanisms of the quasi-Fermi distribution (typically,
phonon scattering), whose characteristic time constants are around 1 ps, are unable to
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Figure 2.16 Gain profile in a AlGaAs/GaAs double heterojunction as a function of the electron and hole
injected populations.
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Figure 2.17 Qualitative behavior of the gain of a QW for different injected population density, starting from
depletion conditions.

immediately compensate for the carrier depletion arising in narrow energy intervals
around En and Eh (the effect is also called spectral hole burning). As a consequence,
the occupation probabilities fn and fh decrease and so does the gain. Let ρph be
the density of photons emitted through stimulated emission; gain compression can be
approximated as

g(E ph) = gF (E ph)

1 + εcρph
≈ gF (E ph)

(
1 − εcρph

)
, (2.30)

where gF is the unperturbed (quasi-Fermi distributions) gain profile, and εc is the
nonlinear gain compression (or suppression) coefficient, with values of the order of
10−16 − 10−17 cm3, see e.g. [11], Section 11.2.1. Gain compression ultimately limits
the stimulated carrier lifetime and therefore the dynamic of lasers; see Section 2.5.1.
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2.4.2 The semiconductor absorption energy profile

In a depleted region (e.g., a pn junction in reverse bias) fn ≈ fh ≈ 0 and absorption
prevails; by expanding w from (2.10), one has from (2.29) for direct-bandgap bulk
semiconductors (we assume bulk material, unpolarized light):

α = nr

c0
wNcv(h̄ω) = πq2h̄nr

2εm0c0

2

3

(
2p2

cv

m0

)
1

h̄ω
Ncv(h̄ω), (2.31)

where Ncv is the JDOS defined in (2.11) and pcv is the dipole matrix element, related
to the energy E p ≈ 20 eV, see (2.8). For GaAs, E p ≈ 22.71 eV, for InP E p ≈ 17 eV,
see [12] for example. The overall behavior of the absorption coefficient is dominated by
the JDOS,9 since the 1/h̄ω term becomes significant for energies at which the effective
mass approximation breaks down. Making explicit JDOS in (2.31), one has

α = q2nr (2m∗
r )

3/2

2πεh̄2m0c0

2

3

(
2p2

cv

m0

)
1

h̄ω

√
h̄ω − Eg ≈ K

h̄ω

√
h̄ω − Eg,

where K ≈ 5.6 × 104 for GaAs if α is in cm−1 and all energies are in eV.10 In direct-
bandgap semiconductors, the absorption profile increases sharply for h f > Eg , due to
the

√
h̄ω − Eg term, see Fig. 2.18. Such a behavior dominates the absorption profile

close to the absorption edge in compound semiconductors like GaAs, InP, CdTe, and
GaN, see Fig. 2.20.

In indirect-bandgap semiconductors, the photon absorption requires the emission or
absorption of one or more phonons. This weakens the interaction strength (due to the
multibody interaction), and changes the absorption threshold. Denoting by Eφ the aver-
age phonon energy (meV at ambient temperature), the total absorption is α = αe + αa ,

Eg hf

α

Figure 2.18 Theoretical behavior of the absorption coefficient in a direct-bandgap semiconductor.

9 A subtle point concerns what kind of hole effective mass has to be exploited in the definition of the reduced
mass: mlh , mhh or some average. A possibility is to separately consider the HH and LH contributions, see
e.g. [13], Section 4.2. Alternatively, an average hole mass can be assumed, which is often taken as mhh
(for k �= 0 the HH-C transition dominates).

10 This value results from a reduced GaAs mass m∗
r = 0.065m0.
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Figure 2.19 Absorption coefficient of an indirect-bandgap semiconductor at different temperature.

where αe is the absorption with phonon emission, αa that with phonon absorption.
Second-order perturbation theory yields (see e.g. [4], Section 4.5)

αe ∝ (h̄ω − Eg − Eφ)
2, h̄ω > Eg + Eφ

αa ∝ (h̄ω − Eg + Eφ)
2, h̄ω > Eg − Eφ.

Since Eφ increases with T , the absorption cutoff is also temperature dependent.
The overall behavior of the absorption coefficient vs. the photon energy is shown
in Fig. 2.19; the phonon contribution shifts the absorption edge to lower energies.
The theoretical behavior is confirmed by experimental data (for Si see, e.g., [14]);
above threshold, the absorption coefficient has a temperature sensitivity of the order
of 0.2 cm−1/K. In direct-bandgap semiconductors, on the other hand, the absorption
edge depends only on temperature through the temperature variation of the energy gap
(Eg increases with decreasing T , leading to a blue shift in the absorption edge).

The indirect bandgap behavior can be affected by the presence of secondary direct
minima, as in Ge, where the main minimum is indirect, but a direct (� point) min-
imum exists, see Fig. 1.12(c), so that for h f < 0.66 eV, absorption is negligible; for
0.66 < h f < 0.9 eV, the material behaves as an indirect-bandgap material, absorption
is low and increases slowly vs. the photon energy; for h f > 0.9 eV, finally, the dominant
process is direct, and absorption increases sharply. Such a composite behavior is shown
in Fig. 2.20.

2.4.3 The QW absorption profile

In a QW, conduction and valence subbands exist. Conduction band subbands can be
labeled, according to increasing minimum energy, as C1, C2, etc. Valence band sub-
bands include both heavy and light hole subbands, which generally are nondegenerate.
In an unstrained QW, typically the first valence band sublevel is HH1, the second is
LH1 and then HH2, LH2, etc. follow. The resulting absorption profile inherits the stair-
case behavior of the QW JDOS, but only the steps relative to allowed transitions having
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Figure 2.21 Dispersion relation for a QW with a qualitative picture of the HH and LH bands.

nonnegligible strength are present; see the qualitative picture in Fig. 2.21 in which the
ordering of subbands is not represented exactly. The staircase profile of the absorption
is shown in Fig. 2.22; the absorption edge is shifted with respect to the bulk material
value. However, the measured absorption profile of a QW differs from the ideal stair-
case profile because sharp transitions are enhanced and overlap with a new effect, the
exciton resonance peaks. Such peaks can also be detected in bulk materials, but only at
low temperature, while in QW they appear at ambient temperature and can be strongly
modulated by an applied electric field.11

11 Excitons also change the theoretical absorption profile near the absorption edge, leading to absorp-
tion enhancement for E ph > Eg . For a more detailed treatment on excitons, see, for example, [11],
Section 13.3 and references therein.
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Figure 2.22 Absorption profile (neglecting exciton peaks) and joint density of states for a QW: staircase
behavior with steps corresponding to the allowed transitions.
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Figure 2.23 Qualitative picture of exciton levels in the semiconductor density of states.

Excitons can be introduced in a simplified way as follows. The electron and hole
charges are −q and q , respectively. An electron and a hole therefore experience
Coulomb attraction in real space, leading to a weak form of bond similar, in princi-
ple, to the (strong) bond existing between the hydrogen nucleus and the hydrogen atom
electron. While in the hydrogen atom the binding energy is large (more than 10 eV), the
weak (typically less than 10 meV in bulk semiconductors) electron–hole bond is broken
at ambient temperature, where the average energy of particles is of the order of 40 meV.
A weakly bound e-h pair is called an exciton. Excitons can be shown to introduce a
set of closely packed discrete levels in the forbidden band of the semiconductor, see
Fig. 2.23, plus an additional continuum set of states that merge with the conduction
band state density.

The position of the exciton levels can be explained from the fact that a small amount
of energy breaks the exciton, bringing the bound electron into the conduction band.
The exciton level can therefore be understood as an energy level immediately below the
conduction band, in much the same way as a shallow donor level is located immedi-
ately below the conduction band edge. In such conditions, an ionization energy of the
order of 10 meV is enough to promote an electron trapped in the shallow level into the
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conduction band. It can be shown, in fact, that the exciton dispersion relation (in the
effective mass approximation) can be expressed as

Enx (kx ) = Eg − R∗∞
n2

+ h̄2k2
x

2m∗
x
, n = 1, 2, . . .∞,

where m∗
x = m∗

h + m∗
n is the exciton effective mass, and R∗∞ is the effective Rydberg

constant,

R∗∞ = m∗
r

m0

1

n4
r

R∞,

while R∞ = 13.605 eV is the Rydberg constant. Due to the effect of the reduced mass
and of the refractive index, R∗∞ � R∞.

Example 2.4: Evaluate the fundamental exciton energy in GaAs and GaN.
For GaAs assume m∗

n = 0.067m0, m∗
h = 0.51m0, εr = 13. The reduced mass is

therefore m∗
r = (1/m∗

n + 1/m∗
h)

−1 = (1/0.067 + 1/0.51)−1m0 ≈ 0.06m0. The bind-
ing energy for the fundamental state will be

Ex = Eg − E1x (0) = R∗∞ = m∗
r

m0

1

n4
r

R∞ = 0.06

132
× 13.605 = 4.8 meV

which is much lower than the average thermal energy at ambient temperature.
On the other hand, in GaN m∗

n = 0.22m0, m∗
h ≈ m0, m∗

r = (1/m∗
n + 1/m∗

h)
−1 =

(1/0.22 + 1)−1m0 ≈ 0.18m0, εr ≈ 10. With respect to GaAs, the effective mass
is much larger (consistent with the larger energy gap, 3.4 eV). As a result
we have

Ex = m∗
r

m0

1

n4
r

R∞ = 0.18

102
× 13.605 ≈ 25 meV,

so that at room temperature Ex ≈ kB T and the fraction of nonionized excitons is
significant.

Excitons can interact with photons having energies immediately below the absorp-
tion edge Eg , thus creating strong absorption peaks and an increase of the absorption
profile for E ph ≈ Eg . Such peaks appear close to the absorption edge energy in bulk
semiconductors or close to each staircase step in the QW response, and merge with the
step due to the effect of finite linewidth.

In a bulk material like GaAs, exciton peaks disappear at ambient temperature and are
only visible at low T , see Fig. 2.24 [15]. In a quantum well, however, the binding energy
of excitons is substantially larger; in fact, it can be shown that, in this case, the binding
energy of the fundamental exciton state is
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Figure 2.24 Absorption profiles in bulk GaAs vs. temperature, showing the effect of excitons. From [15],
Fig. 3, ( c©1962 American Physical Society).
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Figure 2.25 Measured absorption profile of InGaAs/InAlAs 10nm/200m undoped MQW. The exciton peaks
are clearly visible also at ambient temperature. From [16] Fig. 2 (a) ( c©1988 IEEE).

Ex = Eg,eff − E1x (0) = 4m∗
r

m0

1

n4
r

R∞,

where Eg,eff is the effective gap (i.e., the distance between the fundamental level in the
conduction band and the fundamental level in the valence band). The energy Ex turns
out to be four times larger than in the bulk semiconductor, thus in GaAs, for example,
making the exciton effect significant at room temperature also. In fact, in the QW the
exciton resonant peaks also do not disappear at T = 300 K [16] [17]; see Fig. 2.25 for
the profile at ambient and low temperature. Exciton peaks are particularly important
in the design of QW electroabsorption modulators, since they are strongly modulated
in energy and amplitude by the application of an electric field. Due to the different
oscillator strengths relative to the HH and LH interactions with conduction band states,
the QW absorption profile is also polarization dependent; a qualitative behavior for TE
and TM polarizations is shown in Fig. 6.34.
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2.4.4 Spontaneous emission spectrum

The spontaneous emission spectrum describes the spectral distribution of the EM energy
radiated by the semiconductor (at or outside equilibrium) due to photon spontaneous
emission. It can be derived by summing the spontaneous emission scattering rate over
all possible photon states satisfying energy conservation. To this end, we select as a vol-
ume a cube with side L and apply to the photons the so-called pseudo-quantization, i.e.,
we require that the photon wavenumber satisfy the resonance condition along x , y, z:

k ph = l
2π

L
x̂ + m

2π

L
ŷ + n

2π

L
ẑ,

where l, m, n are integers; the space allocated to each state is (2π)3/2L3 = 4π3/V ,
where the factor 2 accounts for the presence of two polarization states (TE and TM).

Summing over all photon wavevectors, and taking into account that Wsp
em(k ph) =

Wsp
em(kph), and that kph = ω/c, we express the total spontaneous emission rate per unit

volume, Rsp
o , in the form12

Rsp
o = 1

V

∑
k ph

Wsp
em(k ph) ≈ 1

4π3

∫
Wsp

em(kph) dk ph

= 1

4π3

∫ ∞

0
Wsp

em(kph)k
2
ph dkph

∫ π

0
sin θ dθ

∫ 2π

0
dφ

= 1

π2

∫ ∞

0
Wsp

em(kph)k
2
ph dkph = 1

π2h̄3c3

∫ ∞

Eg

Wsp
em(h̄ω)(h̄ω)

2 dh̄ω

=
∫ ∞

Eg

Wsp
em(h̄ω)gph(h̄ω) dh̄ω,

where

gph(h̄ω) = 2(h̄ω)2

2π2h̄3c3
= 2ω2n3

r

2π2h̄c3
0

J−1 m−3 (2.32)

is the photon density of states per unit energy and volume. Substituting for the scattering
rate from (2.19), we obtain

Rsp
o = 1

π2h̄3c3

∫ ∞

Eg

wNcv(h̄ω) fh (Ei (h̄ω)) fn
(
E f (h̄ω)

)
(h̄ω)2 dh̄ω

=
∫ ∞

Eg

rsp
o (h̄ω) dh̄ω, (2.33)

12 Since each spontaneous emission corresponds to a recombination event, we exploit for the emission and
recombination rates the same symbol Rsp

o or rsp
o , where the “r” suggests “recombination.”
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where rsp
o (dimension cm−3 s−1 J−1) is the spontaneous emission spectrum. Taking into

account (2.10) and (2.11), we have

rsp
o (h̄ω) = q2(2m∗

r )
3/2

3π3h̄5m2
0c3ε

p2
cv

√
h̄ω − Eg fh (Ei (h̄ω)) fn

(
E f (h̄ω)

)
h̄ω. (2.34)

A useful alternative form is

rsp
o (h̄ω) = 1

τ0

h̄ω

Eg
Ncv (h̄ω) fe (Ee, EFn) fh (Eh, EFh) , (2.35)

where the spontaneous radiative lifetime τ0 is defined in (2.47). The spontaneous emis-
sion spectrum has a maximum immediately above Eg and a (half-power) linewidth
of the order of 1.8kB T in energy (47 meV at 300 K) in low-injection conditions;
see Fig. 2.26. In high-injection conditions the spectrum broadens; see Example 2.5.
For further details on the spontaneous emission linewidth in low- and high-injection
(nondegenerate and degenerate) conditions, see Section 5.2.5.

Example 2.5: Evaluate the spontaneous emission spectrum in GaAs, for different carrier
densities, assuming quasi-neutrality. Assume τ0 ≈ 0.5 ns.

We exploit for rsp
o (h̄ω) the expression (2.35), including as limiting cases the degen-

erate and nondegenerate semiconductor, and we evaluate the joint density of states from
(2.11). For GaAs, assume m∗

n = 0.067m0, mh = 0.4m0, from which

m∗
r = (

1/mh + 1/m∗
n

)−1 = 0.057m0

(m0 = 9.11 × 10−31 kg), h̄ω = Eg = 1.42 eV, Nc = 4.45 × 1017 cm−3, Nv = 7.72 ×
1018 cm−3. From n ≈ p, Nc, and Nv , we derive EFn − Ec and Ev − EFh through
the Joyce–Dixon approximation (1.12) and (1.13). The resulting behavior is shown in
Fig. 2.27; for each density the spectrum is normalized with respect to the maximum.
Notice that for low carrier density the spectral width is of the order of 1.8kB T but
increases in high injection.
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Figure 2.27 Normalized spontaneous emission spectrum for GaAs as a function of the photon energy and of
the electron population (quasi-neutrality assumed).

2.4.5 Spontaneous emission, gain, and absorption spectra

In the analysis of some devices we conveniently exploit an alternative expression
for the spontaneous emission rate for a specific photon wavevector rsp

o ≡ Wsp
em =

wNcv fn fh(s−1); see (2.19).13 Such an expression relates the spontaneous emission
spectrum to the gain spectrum, or, at or near equilibrium, to the absorption spectrum.

From the definition of the net gain (2.29) and introducing the quasi-Fermi statistics
(2.12) and (2.13), we have

c0

nr
g = wNcv( fn + fh − 1)

= wNcv

1 − exp

(
h f − EFn + EFh

kB T

)
[

1 + exp

(
En − EFn

kB T

)][
1 + exp

(
EFh − Eh

kB T

)] , (2.36)

where En − Eh = h f . On the other hand, from (2.19), (2.12), and (2.13) we have

rsp
o = wNcv fn fh = wNcv[

1 + exp

(
En − EFn

kB T

)][
1 + exp

(
EFh − Eh

kB T

)] . (2.37)

13 In evaluating rsp
o we do not integrate the spontaneous rate over all possible wavevectors, but select photons

with a specific E and k state. The concept is useful, for example, in the analysis of lasers, where we are
interested in the amount of spontaneous emission falling in the laser cavity photon states, rather than in the
whole spontaneous emission spectrum.
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Comparing (2.36) and (2.37), we obtain

rsp
o (hω) =

c0

nr
g(hω)

1 − exp

(
h f − EFn + EFh

kB T

) = c0

nr
g(hω)nsp(hω), (2.38)

where we have introduced the nondimensional spontaneous emission factor nsp:14

nsp = 1

1 − exp

(
h̄ω − EFn + EFh

kB T

) . (2.39)

Equation (2.38) relates the spontaneous emission spectrum (with reference to a specific
photon state with energy h̄ω and wavenumber k ph) to the net gain spectrum. Assuming,
(as in laser diodes, where population inversion occurs) that the separation of the quasi-
Fermi levels is larger than the gap (EFn − EFh > Eg), while h̄ω ≈ Eg , the exponential
turns out to have a negative argument, possibly large in absolute value, due to the small
value of kB T ; we therefore have nsp > 1 but typically nsp ≈ 2 − 3.

At or near thermodynamic equilibrium the quasi-Fermi levels coincide and g ≈ −α;
(2.38) therefore yields

rsp
o0(hω) =

c0

nr
α(hω)

exp

(
hω

kB T

)
− 1

= c0

nr
α(hω)n ph0(h̄ω), (2.40)

where n ph0(h̄ω) is the equilibrium Bose–Einstein photon distribution, see (2.24).
Equation (2.40) holds for a specific photon state; we can extend the result to consider
all photon states having a certain energy by summing over all possible photon states
and exploiting the photon state density weight (2.32), as outlined in Section 2.4.4. We
obtain

Rsp
o0 ≈ 1

V

∑
k ph

Wsp
em(k ph) ≈

∫ ∞

Eg

c0

nr
α(h̄ω)

exp

(
h̄ω

kB T

)
− 1

gph(h̄ω) dh̄ω =
∫ ∞

Eg

rsp
o0 (h̄ω) dh̄ω,

14 The parameter nsp has, unfortunately, the same name as βk , the fraction of spontaneous emission into
mode k of a laser. An alternative name for nsp is population inversion factor (see [18], Section 11.2.3 and
11.2.16).
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where15

rsp
o0 (h̄ω) = n2

r (h̄ω)
2

π2h̄3c2
0

α(h̄ω)

exp

(
hω

kB T

)
− 1

(2.41)

rsp
o0 ( f ) = 8πn2

r f 2

c2
0

α(h f )

exp

(
h f

kB T

)
− 1

. (2.42)

Equations (2.41) or (2.42), called the van Roosbroeck–Shockley relation [19], connect
the equilibrium spontaneous emission spectrum rsp

o0 (J−1 m−1 s−1 or Hz−1 m−1 s−1)
with the absorption spectrum. From a physical standpoint, (2.41) or (2.42) imply that,
to satisfy the equilibrium condition, the number of photons absorbed by the material and
the number of photons generated by spontaneous emission must be (energy by energy)
related.

2.5 The macroscopic view: the semiconductor standpoint

From the EM wave standpoint, absorption and stimulated emission cause wave attenua-
tion or amplification, respectively, while spontaneous emission can be interpreted as an
incoherent photon source term not leading to the amplification of an incident EM wave.

From the semiconductor standpoint, absorption and emission (stimulated and sponta-
neous) correspond to generation and recombination, respectively, of e-h pairs. Deriving
the semiconductor optical or radiative generation and recombination rates (i.e., the
number of electrons and holes generated or recombined per unit time and volume)
corresponding to the interaction with a monochromatic EM wave with specific prop-
agation constant k is indeed straightforward, since each photon absorption event
corresponds to the generation of an e-h pair, and each photon emission corresponds
to the recombination of an e-h pair. It follows that:

• The generation rate Go equals the absorption rate (per unit volume) Wabs .
• The recombination rate Ro equals the emission rate (per unit volume) Wem .
• The net recombination rate Uo equals the rate difference Wem − Wabs .

15 Remember the variable change

∫
F(h̄ω) dh̄ω =

∫
2π h̄F(2π h̄ f ) d f =

∫
�( f ) d f,

with �( f ) = 2π h̄F(2π h̄ f ); for brevity we often identify (somewhat ambiguously) � ≡ F .
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We thus have, expressing the scattering rates per unit volume from (2.21) and (2.23):

Uo ≡ dn

dt

∣∣∣∣
RG

≡ dp

dt

∣∣∣∣
RG

≡ dρph

dt

∣∣∣∣
em,abs

= Wem(h̄ω)− Wabs(h̄ω)

= ρphwNcv
[

fn fh − (1 − fn)(1 − fh)
]+ 1

V
wNcv fn fh .

We can conveniently relate the total recombination rate to the overall parameters of
the EM wave, such as absorption and gain, see (2.27) and (2.28):

Uo(h̄ω, n, p) = ρphwNcv fn fh − ρphwNcv(1 − fn)(1 − fh)+ 1

V
wNcv fn fh

= gρph
c0

nr
− αρph

c0

nr
+ 1

V
wNcv fn fh

= g
Pop

h̄ω
+ 1

V
wNcv fn fh︸ ︷︷ ︸

Rst
o (h̄ω)+rsp

o (h̄ω)·V −1

− α
Pop

h̄ω︸ ︷︷ ︸
Go(h̄ω)

(2.43)

where Pop is the power flux (W/cm2), Rst
o is the stimulated recombination rate, rsp

o V −1

the spontaneous recombination rate (per unit volume) for a specific k-state, Go is the
generation rate.

For Rst
o (h̄ω) and Go(h̄ω), we can assume that photons are single-energy or narrow-

band (as in a laser, where photons may belong to a specific k-state, or in a photodetector
illuminated by a single-frequency optical beam); if the material is illuminated by an
optical signal with assigned spectral content, the generation (or stimulated recombi-
nation) rates can be integrated over the photon energy profile, i.e., over the spectral
distribution of Pop. Spontaneous generation, on the other hand, is intrinsically broad-
band, as discussed in Section 2.4.4. The total associated spontaneous recombination rate
should, therefore, account for the (broad) spontaneous emission spectrum, which also
includes the photon density of states (2.32).

To further clarify this point, we note that recombination rates can refer to a single
specific photon k-states, or to all photons having a certain energy, or to all possible pho-
ton states, integrated over the energy spectrum. In discussing stimulated recombination,
we typically refer to a specific photon state, as in a laser cavity, and denote the relevant
recombination rate as Rst

o . Concerning spontaneous recombination, we must distinguish
several relevant cases according to the following notation:

• Rsp
o is the total spontaneous recombination rate per unit volume, integrated over all

possible photon states and energies; it coincides with the total spontaneous emission
rate per unit volume. Rsp

o is obtained by integrating, over all photon energies, rsp
o .

• rsp
o is the spontaneous recombination rate per unit volume accounting for all photon

states of given energy; it coincides with the spontaneous emission spectrum (2.34).
• rsp

o ≡ Wsp
em is the spontaneous recombination rate for a specific photon state; it

coincides with the scattering rate for spontaneous emission.
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• rsp
o V −1 ≡ R

sp
o is the spontaneous recombination rate per unit volume for a specific

photon state.16

To express rsp
o we directly exploit (2.34) and we assume, for the moment, that the

semiconductor is nondegenerate, e.g., is in low injection conditions. Taking into account
(1.9), (1.10), (1.11) and expressing Ee − Eh in terms of the photon energy h̄ω we have,
in the Boltzmann approximation:

fn(Ee, EFn) fh(Eh, EFh) = e
EFn−Ee

kB T e
Eh−EFh

kB T = np

n2
i

e
− h̄ω

kB T .

Thus, the spontaneous recombination rate per unit volume (the spontaneous recombina-
tion spectrum) has the following energy distribution:

rsp
o,ND (h̄ω) = K ′h̄ω

√
h̄ω − Ege

− h̄ω
kB T , K ′ = q2(2m∗

r )
3/2

3π3h̄5m2
0c3ε

p2
cv

np

n2
i

. (2.44)

The energy behavior of the low-injection spontaneous recombination spectrum coin-
cides with the spontaneous emission spectrum and is therefore shown in Fig. 2.26. The
total spontaneous recombination rate Rsp

o defined above can be recovered by integrat-
ing over all photon energies; note that, in the nondegenerate case, the total rate will be
proportional to pn, i.e., it follows the elementary law Rsp

o,ND ∝ pn.

2.5.1 Carrier radiative lifetimes

In the lifetime approximation the recombination rates are expressed as

Rn = n

τn
, Rh = p

τh
,

where Rn = Rh for band-to-band processes. In general, however, lifetimes will depend
on the carrier population and a constant lifetime can be only defined in small-signal
conditions and (often) in low-injection conditions.17 However, many optoelectronic
devices (e.g., semiconductor sources) operate in high injection, quasi-neutrality con-
ditions (n ≈ p); in this case, the lifetime concept can be still applied, but τ will depend
on the carrier concentration.

In fact, in nondegenerate conditions we have

Rn = rn pn ≈ rnn2 = n

τn

16 The symbol R
sp
o will be exploited in the analysis of lasers; we will approximate R

sp
o ≈ βk Rsp

o , where
βk � 1 is the spontaneous emission factor, see (5.60) and (5.61).

17 Low injection occurs in a semiconductor when the excess minority carrier concentration is much larger
than the equilibrium concentration, while the majority carrier concentration is practically at the equilibrium
condition, e.g., in an n-type material n ≈ ND , p ≈ p′, p′ excess hole concentration.
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where rn is a proper recombination coefficient and quasi-neutrality has been assumed;
in this case,

τn = 1

rnn
,

i.e., the lifetime depends inversely on the carrier concentration.
Let us now discuss the lifetime associated with recombination due to spontaneous

and stimulated emission of photons.
We start by considering the emission of photons having a specific energy and

wavenumber, and extend the treatment to the case of spontaneous emission, where
a broad emission spectrum is involved. The discussion is done in two steps: nonde-
generate semiconductors (i.e., the Fermi levels are within the forbidden gap, and the
Boltzmann statistics hold); and degenerate semiconductors (the Fermi levels are within
the conduction and valence bands, the injection level is high, and the Fermi statistics
must be used).

Using the Boltzmann approximation for densities and substituting for the JDS and for
n and p, the following expression is obtained for the net radiative recombination rate of
a nondegenerate semiconductor, in the presence of a photon wave with assigned energy
and momentum (single-photon state), see (2.43):

Uo,ND = [
Rst

o,ND(h̄ω)− Go(h̄ω)
]+ R

sp
o,ND,

where

Rst
o,ND(h̄ω)− Go(h̄ω) = nr Pop

h̄ωc0
w

√
2m∗3/2

r

π2h̄3n2
i

√
h̄ω − Eg

[
exp

(
− h̄ω

kB T

)
np − n2

i

]

R
sp
o,ND ≡ 1

V
rsp

o,ND = 1

V
w

√
2m∗3/2

r

π2h̄3n2
i

√
h̄ω − Eg exp

(
− h̄ω

kB T

)
np.

In thermodynamic equilibrium, Uo,ND vanishes if two conditions are met: the photon
number follows the Bose–Einstein statistics (2.24), and the carrier equilibrium condition
np = n2

i holds.18 Out of equilibrium, and assuming quasi-neutrality (n ≈ p), we can
separate the recombination rates due to stimulated and spontaneous emission as19

R
sp
o,ND = n

τ
sp
n,ND (h̄ω)

≈ w

V

√
2m∗3/2

r

π2h̄3n2
i

√
h̄ω − Ege

− h̄ω
kB T n2 = Hn2

Rst
o,ND = n

τ st
n,ND (h̄ω)

≈ nrw

h̄ωc0

√
2m∗3/2

r

π2h̄3n2
i

√
h̄ω − Ege

− h̄ω
kB T n2 Pop = K n2 Pop,

18 Note that the net recombination rate does not follow the elementary law U0 = ro(np − n2
i ), unless the

photons are near equilibrium (i.e., the net recombination rate is zero only when equilibrium holds for
photons and carriers).

19 The notation for the recombination rates was also formally extended to lifetimes.
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where K and H do not depend on the carrier population. The two lifetimes τ sp
n,ND and

τ st
n,ND therefore exhibit the following dependence on the carrier population:

τ
sp
n,ND = 1

Hn
(2.45)

τ st
n,ND = 1

K Popn
. (2.46)

As already recalled, the spontaneous lifetime defined here (τ sp
n ) is for single-

frequency and propagation vector photons; to obtain the total recombination rate Rsp
o

(and the total spontaneous lifetime τ sp
n ) we integrate the recombination (emission) spec-

trum (2.34) over all photon energies. In the nondegenerate case rsp
o (h̄ω) is provided by

(2.44). Exploiting the integral

I =
∫ ∞

Eg

ξ
√
ξ − Ege

− ξ
kB T dξ = e

− Eg
kB T (kB T )3/2

√
π

2

[
Eg + 3kB T

2

]
≈ e

− Eg
kB T (kB T )3/2

√
πEg

2
,

and expressing the intrinsic concentration from (1.7) and the effective densities of states
of the valence and conduction bands from (1.6), we obtain

Rsp
o,ND =

∫ ∞

Eg

rsp
o,ND (h̄ω) dh̄ω = 1

2τ0

(
2π h̄2m∗

r

kB T m∗
hm∗

n

)3/2

np = 1

2τ0

Ncv

Nc Nv
np,

where τ0 is the spontaneous radiative lifetime:20

1

τ0
= 2q2nr Eg

3π h̄2c3
0m2

0ε0
p2

cv, (2.47)

with typical values around 0.1–0.5 ns (τ0 decreases with increasing energy gap and is
equal to 0.44 ns for Eg = 1 eV), and the joint effective density of states Ncv is

Ncv = 2
(2πm∗

r kB T )3/2

h3
.

Example 2.6: Evaluate the spontaneous radiative lifetime in GaAs. For GaAs we assume
nr = 3.4, Eg = 1.42 eV, and 2p2

cv/m0 = 23 eV.
From (2.47) we obtain

1

τ0
= q2nr Eg

3πε0m0c3
0 h̄2

(
2p2

cv

m0

)

=
(
1.6 × 10−19

)2 · 3.4 · 1.42 × 1.6 × 10−19 · 23 × 1.6 × 10−19

3π · 8.86 × 10−12 · 9.11 × 10−31 · (3 × 108
)3 · (1.055 × 10−34

)2 = 1

0.32 ns
.

20 The expression used is in agreement with the parameter τR in [12], Eq. (7.37bis).
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Assuming quasi-neutrality (p ≈ n) we have Rsp
o ≡ Rsp

o,ND = n/τ sp
n,ND where the

result for the total spontaneous lifetime for the nondegenerate case, τ sp
n,ND, is

1

τ
sp
n,ND

= 2q2nr hEg

3
√

2πε0m2
0c3

0

p2
cv

(
m∗

r

kB T m∗
hm∗

n

)3/2

n ≈ 1

2τ0

Ncv

Nc Nv
n

= 2(π)3/2h̄3

√
2(kB T )3/2

(m∗
r )

3/2

(m∗
nm∗

h)
3/2

n

τ0
. (2.48)

Apparently, from (2.48) we have that τ sp
n,ND → 0 for n → ∞. The paradox of zero life-

time for extremely large carrier densities can be removed by accounting for degeneracy.
In the degenerate case, we can obtain an approximate expression of the lifetime asymp-
totic value by assuming the quasi-Fermi distributions at 0 K, and quasi-neutrality; we
obtain (see Example 2.7) for the recombination rate Rsp

o ≡ Rsp
o,D:

Rsp
o,D = n

τ
sp
n,D

≈ 2q2nr Egp
2
cv

3π h̄2c3
0m2

0ε0

[
1 + n2/335/3π4/3h̄2

10Egm∗
r

]
n ≈ n

τ0
, (2.49)

since the second term in square brackets in (2.49) is typically � 1.21 With this
approximation, the spontaneous radiative lifetime under degenerate conditions tends
to the constant value τ sp

n,D = τ0. The spontaneous radiative lifetime τ0 can therefore be
assumed as the limiting value of the lifetime due to spontaneous emission for very large
population densities.

Example 2.7: Derive the asymptotic value for the spontaneous lifetime (2.49).
Integrating (2.35), we have

Rsp
o = 1

τ0

∫ ∞

Eg

h̄ω

Eg
Ncv(h̄ω) fn(En(h̄ω)) fh(Eh(h̄ω)) dh̄ω. (2.50)

The integral can be approximated by assuming the quasi-Fermi statistics at 0 K and
quasi-neutrality (n ≈ p), i.e.,

fn (Ee, EFn) ≈ 1 if En < EFn, 0 otherwise

fh (Eh, EFh) ≈ 1 if Eh > EFh, 0 otherwise.

21 In fact, assuming, e.g., for GaAs m∗
n = 0.067m0, m∗

h = 0.4m0, and therefore

m∗
r = (

1/m∗
h + 1/m∗

n
)−1 = 0.057m0,

with m0 = 9.11 × 10−31 kg, Eg = 1.42 eV, one has

n2/3 35/3π4/3h̄2

10Egm∗
r

≈ n2/3
35/3π4/3 ·

(
10−34

)2

10 · 1.42 · 1.6 × 10−19 · 0.057 · 9.11 × 10−31
=
(

n

n0

)2/3
,

where n0 ≈ 3 × 1020 cm−3. Also for large electron densities, the term will be � 1.
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The conditions En < EFn and Eh > EFh imply in turn, from energy conservation, see
(2.14) and (2.15):

En = Ec + m∗
r

m∗
n

(
h̄ω − Eg

)
< EFn → h̄ω < Eg + m∗

n

m∗
r
(EFn − Ec) (2.51)

Eh = Ev − m∗
r

m∗
h

(
h̄ω − Eg

)
> EFh → h̄ω < Eg + m∗

h

m∗
r
(Ev − EFh) . (2.52)

With the same approximation, let us evaluate n and p; we have

n ≈
∫ EFn

Ec

Nc (En) dEn =
√

2m∗3/2
n

π2h̄3

∫ EFn

Ec

√
En − Ec dEn

= 2
√

2m∗3/2
n

3π2h̄3 (EFn − Ec)
3/2 (2.53)

p ≈
∫ Ev

EFh

Nv (Eh) dEh =
√

2m∗3/2
h

π2h̄3

∫ Ev

EFh

√
Ev − Eh dEh

= 2
√

2m∗3/2
h

3π2h̄3 (Ev − EFh)
3/2 .

Quasi-neutrality now implies

m∗
n (EFn − Ec) = m∗

h (Ev − EFh) .

It follows that the limitations in h̄ω given by (2.51) and (2.52) become symmetrical,
i.e., h̄ω < Emax, where

Emax = Eg + m∗
n (EFn − Ec)

m∗
r

= Eg + m∗
h (Ev − EFh)

m∗
r

. (2.54)

Using the above approximations we obtain

Rsp
o ≈ 1

2π2h̄3c3

2π

h̄

q2

m2
0

h̄2

ε

2

3
p2

cv

∫ Emax

Eg

Ncv(h̄ω)h̄ω dh̄ω

= 1

2π2h̄3c3

2π

h̄

q2

m2
0

h̄2

ε

2

3
p2

cv

√
2m∗3/2

r

π2h̄3

∫ Emax

Eg

√
h̄ω − Egh̄ω dh̄ω. (2.55)

From the integral,

I =
∫ Emax

Eg

√
ξ − Egξdξ = 2

3
Eg

[
m∗

n

m∗
r
(EFn − Ec)

] 3
2
[

1 + 3

5

m∗
n

m∗
r

(
EFn − Ec

Eg

)]
,

expressing EFn − Ec as a function of n from (2.53),

(EFn − Ec)
3/2 = n

3π2h̄3

2
√

2m∗3/2
n

, (2.56)

and using (2.55), we finally obtain (2.49).
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For stimulated lifetime, a similar result is obtained. In fact, from (2.43) one has

Rst
o = g Pop

h̄ω

but the (maximum) gain is approximately proportional to the carrier density as g ≈ an,
where a is the differential gain, so that the stimulated lifetime becomes

1

τ st
n

= a Pop

h̄ω
, (2.57)

i.e., for large carrier injection, the stimulated lifetime is constant with respect to the
charge density but decreases with increasing optical power. This implies that τ st

n can
be typically decreased below the value of spontaneous lifetime, with consequences for
the relative speed of devices operating on stimulated emission (lasers) rather than on
spontaneous emission (LEDs).

For increasing optical power, however, gain compression has to be taken into account.
Since the optical power is proportional to the photon density ρph , see (2.5), as Pop =
h̄ω(c0/nr )ρph , we can from (2.30) approximate the gain for large carrier densities as

g ≈ an

1 + εcρph
;

we therefore obtain

Rst
o = g Pop

h̄ω
≈ c0

nr

anρph

1 + εcρph
,

with carrier lifetime

1

τ st
n

= c0

nr

aρph

1 + εcρph
→

ρph→∞
c0

nr

a

εc
. (2.58)

Assuming a = 10−15 cm2 for the differential gain, εc = 10−17 cm3 for the gain com-
pression coefficient, nr ≈ 3, we obtain for the limiting value of stimulated lifetime:

1

τ st
n

= c0

nr

a

εc
= 3 × 1010

3

10−15

10−17
= 1

10−12
s−1,

i.e., τ st
n is of the order of 1 ps, corresponding to a cutoff frequency 1/(2πτ st

n ) ≈
160 GHz. This purely indicative value at least suggests that the dynamics related with
stimulated emission is much faster than that associated with spontaneous emission.

Example 2.8: Evaluate the GaAs spontaneous lifetime as a function of the population
density, assuming quasi-neutrality.

We can evaluate Rsp
o from (2.50) and then compute the lifetime as τn (h̄ω) = n/Rsp

o .
The integral in (2.50) has to be performed through numerical quadrature. To relate the
population density to the quasi-Fermi levels we can exploit the Joyce–Dixon formu-
lae which are, however, slightly inaccurate for very high densities; a more accurate
approach is the Nilsson approximation [20]. For GaAs, we assume m∗

n = 0.067m0,
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Figure 2.28 Normalized electron lifetime in GaAs as a function of the carrier population.

mh = 0.4m0, from which m∗
r = (

1/mh + 1/m∗
n

)−1 = 0.057m0 (m0 = 9.11 × 10−31

kg), h̄ω = Eg = 1.42 eV, Nc = 4.45 × 1017 cm−3, Nv = 7.72 × 1018 cm−3. The result
is shown in Fig. 2.28; for large carrier density the lifetime is asymptotically close to τ0.

2.6 Questions and problems

2.6.1 Questions

1. Explain why the dielectric properties and losses of a material (as a function of the
photon energy) are not independent.

2. What is the qualitative behavior of the absorption of a direct-bandgap semiconduc-
tor as a function of the photon energy?

3. Explain the effect of excitons on the low-temperature absorption profile vs. the
photon energy for a direct-bandgap semiconductor.

4. Define interband, intraband, intersubband transitions in a bulk and in a QW
semiconductor.

5. Define indirect and direct transitions in a semiconductor.
6. Explain why some semiconductors are called direct bandgap and others indirect

bandgap.
7. Explain the role of photons in direct transitions.
8. Explain the role of phonons in indirect transitions.
9. Classify as direct/indirect bandgap the following semiconductors: GaAs, InP,

InGaAsP, AlGaAs, AlAs, SiC, Ge, Si, SiGe, HgCdTe, GaSb, GaN.
10. What is a phonon?
11. Qualitatively explain the role of selection rules in bulk semiconductors and quantum

wells.
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12. Justify the even–odd selection rule in bulk interband transitions. How does the
even–odd rule transform into a even–even, odd–odd rule for intersubband transi-
tions in a quantum well (subbands in the conduction and valence bands)?

13. Consider an intersubband direct transition between two subbands of a symmetric
QW. What selection rule has to be applied in this case?

14. Explain why photons cannot effectively assist alone an indirect transition, and why
phonons are needed to make the transition possible.

15. Qualitatively draw the ideal behavior of the absorption in a bulk indirect-bandgap
semiconductor as a function of the photon energy. What happens if the temperature
is changed?

16. Sketch the behavior of the absorption in a quantum well as a function of the photon
energy.

17. Given the absorption coefficient α and the photon energy h̄ω, how is the optical
generation rate Go related to the optical power per unit area?

18. Select a material well suited for making a detector in FIR, UV, NIR, and visible
range among HgCdTe, GaN, GaAs, InGaAsP.

19. Explain why the absorption profile of Ge becomes sharper (as a function of the
photon energy) at energies of the order of 0.9 eV.

20. Explain why the density of states enters into the absorption coefficient, while the
occupation probability (Fermi function) does not.

21. What is the spontaneous radiative lifetime τo? What is the order of magnitude of τo?
22. Explain why the stimulated radiative lifetime can be made smaller than the

spontaneous lifetime.
23. Explain the reason why gain decreases for very high optical power (gain compres-

sion).
24. Discuss the effect of gain compression on the stimulated lifetime.
25. Explain why a quantum well is polarization sensitive, while an isotropic bulk

material is not.
26. Sketch the absorption profile of a quantum well for TE and TM polarization.

2.6.2 Problems

1. A semiconductor has a direct bandgap of 2.5 eV. What is the maximum wavelength
absorbed?

2. A photon impinges on a material with Eg = 1.41 eV. What is the minimum photon
energy E ph,min needed to generate an electron–hole pair? Assuming that the photon
energy is h f = 2 eV, what is the destination of the extra energy h f − E ph,min? What
is the photon momentum? What is the kinetic energy of an electron (assume GaAs)
with the same momentum?

3. A photon with energy E ph = 1.6 eV is absorbed by an InP sample. Evaluate the
energy of the electron and heavy hole after the generation, assuming m∗

n = 0.082m0,
m∗

hh = 0.85m0, and Eg = 1.35 eV.
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4. Light is incident at one end of a semiconductor sample of thickness d = 10 μm. If
15% of the light is absorbed per μm, calculate the absorption coefficient and the
fraction of light that is transmitted.

5. For GaAs, compare the theoretical absorption spectrum with experimental values.
6. Evaluate the spontaneous radiative lifetime in an HgCdTe alloy with a bandgap of

0.1 eV. Assume for the momentum matrix element EP = 20 eV and for the refractive
index nr = 3.4.

7. Evaluate the absorption in a HgCdTe alloy (bandgap of 0.1 eV) as a function of
the energy and compare it with the GaAs absorption. Assume for the momentum
matrix element EP = 20 eV. To estimate the electron effective mass m∗

n suppose
that this varies with the gap according to (2.9); for the hole effective mass assume
m∗

h = 0.443m0 and for the refractive index nr = 3.4.
8. In an InP sample the minority carrier nonradiative lifetime is τnr = 1 μs. Estimate the

carrier concentration needed to have a radiative lifetime τr = τnr/10. Assume quasi-
neutrality and m∗

n = 0.082m0, m∗
h = 0.85m0; for the InP limit radiative lifetime

assume τ0 = 0.5 ns.
9. Calculate the electron diffusion length in GaAs at T = 300 K assuming a radia-

tive lifetime of τ r
n = 1 ns. Repeat the computation in Si (τ r

n = 100 ns). The carrier
mobilities are μn = 5000 cm2 V−1 s −1 (GaAs) and μn = 1000 cm2 V−1 s −1 (Si);
the nonradiative lifetime is τ nr

n = 10 ns in both materials.



3 High-speed semiconductor devices
and circuits

3.1 Electronic circuits in optical communication systems

As well as optoelectronic devices such as optical sources, modulators (electrooptic
or electroabsorption), optical amplifiers and detectors, high-speed optical communi-
cation systems also include dedicated electronic circuits and subsystems. Although
most of these are in the low-speed digital sections of the system, and can therefore
be implemented with conventional Si-based technologies, some strategic components
and subsystems operate at the maximum system speed, e.g., at 10 Gbps or 40 Gbps,
often with rather demanding requirements in terms of noise or output voltage (current
driving) capabilities. Since high-speed digital data streams are ultimately transmitted
and received in baseband, high-speed (high-frequency) subsystems must also possess
ultrawide bandwidth. Relevant examples are the driver amplifiers of lasers or modula-
tors (in direct or indirect modulation systems, respectively), and the detector front-end
amplifiers.

The enabling technologies in high-speed circuits for optoelectronic systems are the
same as found in RF, microwave and millimeter-wave analog integrated circuits. In
these domains, silicon-based (CMOS or bipolar) electronics with conventional inte-
grated circuit (IC) approaches are replaced, at increasing frequency, by ICs based
on SiGe or III-V compound semiconductors (GaAs or InP). Such circuits exploit, as
active devices, advanced bipolar transistors (heterojunction bipolar transistors, HBTs)
or heterostructure-based field-effect transistors (such as the high electron mobility
transistors, HEMTs).

Besides active devices, high-speed circuits also include passive (distributed or con-
centrated) elements. Examples of distributed components amenable to monolithic
integration are planar transmission lines such as the microstrip and the coplanar lines
on semiconductor substrates. The transmission line theory also enables one to read-
ily introduce, as a typical high-frequency modeling and characterization tool for linear
multiports, the scattering parameters.

3.2 Transmission lines

Transmission lines (TXLs) are a convenient model for 1D wave propagation;
besides their direct importance as high-speed circuit components, the analysis of
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TXLs is also useful because they are also a basic building block in electro-
optic distributed components, such as traveling wave photodiodes or distributed
modulators.

Two parallel ideal conductors (one is the active or signal conductor, the other the
return or ground conductor) surrounded by a homogeneous, lossless medium, see
Fig. 3.1(a), support a transverse electromagnetic (TEM) propagation mode in which
both the electric and the magnetic fields lie in the line cross section and are orthogo-
nal to the line axis and wave propagation direction. In such a TEM TXL, the electric
field can be rigorously derived from a potential function that satisfies the Laplace equa-
tion in the line cross section. The transverse electric potential is uniquely determined
by the conductor potentials, or, assuming the ground conductor as the reference, by the
signal line potential v(z, t), where z is parallel to the line axis and propagation direc-
tion. Under the same conditions, the transverse magnetic field is related to the total
current i(z, t) flowing in the signal conductor. From the Maxwell equations, v and i
can be shown to satisfy the partial differential equation system (called the telegraphers’
equations):

∂

∂z
i(z, t) = −C ∂

∂t
v(z, t) (3.1)

∂

∂z
v(z, t) = −L ∂

∂t
i(z, t), (3.2)

where L is the per-unit-length (p.u.l.) line inductance and C is the p.u.l. line capacitance.
The telegraphers’ equations are compatible with the voltage and current Kirchhoff equa-
tions applied to the lumped equivalent circuit of a line cell of infinitesimal length, see
Fig. 3.1(b). The p.u.l. parameters have a straightforward meaning – they correspond to
the total series inductance of the unit-length cell and to the total capacitance between
the two conductors in the unit-length cell.

The circuit model can be extended to account for losses by introducing a series
p.u.l. resistance R (associated with ohmic losses in the conductors) and a parallel p.u.l.
conductance G (associated with the dielectric losses in the surrounding medium), see
Fig. 3.1(c). In fact, series losses cause small longitudinal field components, thus mak-
ing the field distributions slightly different from the ideal TEM pattern; however, the
TXL model can be heuristically extended to cases in which the propagating mode is
not exactly TEM due to the presence of metal losses, or because the cross section is
inhomogeneous (i.e., it includes materials with different dielectric permittivities). In the
latter case, we say that the structure supports a quasi-TEM mode. Quasi-TEM propa-
gation can be approximately modeled as a TXL with frequency-dependent propagation
parameters. In both the TEM and quasi-TEM cases the operating bandwidth is wide,
ranging from DC to an upper frequency limit associated with the onset of high-order
modes or sometimes to limitations related to line losses, and the frequency dispersion
of the propagation parameters (due to modal dispersion in the quasi-TEM case but also
to ohmic losses) is low, at least in the high-frequency range.
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Figure 3.1 Example of a TEM transmission line (a) and equivalent circuit of a line cell of length dz in the
lossless (b) and lossy (c) cases.

The telegraphers’ equations admit, in the lossless cases, a general solution in terms
of forward (V+, I+) or backward (V−, I−) propagating waves:

v(z, t) = V±(z ∓ v f t) (3.3)

i(z, t) = I±(z ∓ v f t). (3.4)

Substitution into system (3.1), (3.2) yields

∂

∂z
I±(z ∓ v f t) = −C ∂

∂t
V±(z ∓ v f t) → I ′± = ±Cv f V ′±

∂

∂z
V±(z ∓ v f t) = −L ∂

∂t
I±(z ∓ v f t) → V ′± = ±Lv f I ′±,

where the derivative with respect to the argument is denoted by the primed function
symbol. Elimination of the voltage unknown leads to

I ′± = LCv2
f I ′±,

from which the line phase velocity results as

v f = 1√LC .

The voltage and current waveforms are related by the characteristic impedance Z0:

V ′± = ±
√
L
C I ′± → V± = ±Z0 I±, Z0 =

√
L
C . (3.5)

From (3.3) and (3.4), we conclude that a lossless TXL supports undistorted wave
propagation. Time-harmonic voltages or currents of frequency f and angular frequency
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ω = 2π f yield propagating waves of the form:

v±(z, t) = V±(z ∓ v f t) = √
2 Re

[
V ± exp

(
jωt ∓ j

ω

v f
z

)]
= √

2 Re
[
V ± exp (jωt ∓ jβz)

]
i±(z, t) = I±(z ∓ v f t) = √

2 Re
[
I ± exp (jωt ∓ jβz)

]
= 1

Z0

√
2 Re

[
V ± exp (jωt ∓ jβz)

]
,

where V ± is a complex proportionality constant to be determined through the initial
and boundary conditions,1 while

β = ω

v f
= ω

√
LC

is the propagation constant of the line. The time-periodic waveform with period T =
1/ f is also periodic in space with spatial periodicity corresponding to the guided
wavelength λg as

β = 2π

λg
→ λg = v f

f
= λ0

neff
,

where neff = √
εeff is the line effective refractive index and εeff is the line effective

(relative) permittivity.
Undistorted propagation is typical of lossless TXLs, where the signal phase velocity

is frequency independent. For lossy lines the telegraphers’ equations can be modified,
by inspection of the related equivalent circuit, as

∂

∂z
i(z, t) = −C ∂

∂t
v(z, t)− Gv(z, t) (3.6)

∂

∂z
v(z, t) = −L ∂

∂t
i(z, t)− Ri(z, t). (3.7)

In this case, propagation is no longer undistorted and the simple solution outlined so far
is not generally valid. The lossy case can be conveniently addressed in the frequency
domain, i.e., for time-harmonic v and i . We assume now that the time-domain solution
has the form:

v±(z, t) = √
2 Re

[
V ±(z, ω) exp (jωt)

]
i±(z, t) = √

2 Re
[
I ±(z, ω) exp (jωt)

]
,

where V ±(z, ω) and I ±(z, ω) are the space-dependent phasors associated with v± and
i±, such as

V ±(z, ω) = V ± exp (∓αz ∓ jβz) = V ± exp (∓γ z) (3.8)

I ±(z, ω) = I ± exp (∓αz ∓ jβz) = V ±(z, ω)
Z0

= V ±

Z0
exp (∓γ z) , (3.9)

1 The
√

2 factor is introduced to normalize V ± to the effective value rather than the peak value of the voltage.
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where α is the line attenuation,2 γ = α + jβ is the complex propagation constant,
Z0 is the (now possibly complex) characteristic impedance, and V ± is a constant to
be determined from initial and boundary conditions. In general, an arbitrary solution
v(z, t) (i(z, t)) can be associated with a phasor V (z, ω) (I (z, ω)), resulting from the
superposition of forward and backward propagating waves V ±(z, ω) (I ±(z, ω)).

For time-harmonic signals, system (3.6), (3.7) becomes

d

dz
V (z, ω) = −(jωL + R)I (z, ω) (3.10)

d

dz
I (z, ω) = −(jωC + G)V (z, ω). (3.11)

Substituting V ± and I ± from (3.8) and (3.9) we obtain, for the complex propagation
constant γ and the complex characteristic impedance Z0:

γ = α + jβ = √
(jωL + R)(jωC + G) (3.12)

V ±(z, ω)
I ±(z, ω)

= ±
√

jωL + R
jωC + G ≡ ±Z0. (3.13)

The dispersive behavior of the line is thus apparent already when the p.u.l. parameters
are frequency independent; in fact, R, L, and G are themselves frequency dependent
because of the presence of metal and dielectric losses. Equations (3.12) and (3.13)
can be written in a more compact and general form by introducing the series p.u.l.
impedance Z = R + jωL and p.u.l. admittance Y = G + jωC of the line as

γ = √
Z (ω)Y (ω), Z0 =

√
Z (ω)
Y (ω) . (3.14)

In a lossless or lossy line, power is transmitted by forward and backward waves in
the positive and negative z direction, respectively. The net power transmitted in the
positive z direction is in fact (assume for simplicity that the characteristic impedance is
approximately real, as in the high-frequency approximation):

P(z) = Re(V I ∗) = 1

Z0
Re
{[

V +(z)+ V −(z)
] [

V +(z)− V −(z)
]∗}

= 1

Z0
Re
[∣∣V +(z)

∣∣2 − ∣∣V −(z)
∣∣2 + V +∗(z)V −(z)− V +(z)V −∗(z)

]
= 1

Z0

∣∣V +(z)
∣∣2 − 1

Z0

∣∣V −(z)
∣∣2 = 1

Z0

∣∣V +∣∣2 e−2αz − 1

Z0

∣∣V −∣∣2 e2αz

= P+(z)− P−(z) = P+(0)e−2αz − P−(0)e2αz,

2 From now on we denote by α both the attenuation and the absorption, the difference being clear from the
context.
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i.e., the net power can be decomposed into a forward and backward (or incident and
reflected) power. Forward power is absorbed in the positive z direction with an absorp-
tion equal to 2α, while backward power is absorbed in the negative z direction with the
same characteristic length (the line absorption length) Lα = (2α)−1.

3.2.1 RG, RC, and high-frequency regimes

The line parameters have been assumed so far to be frequency independent. In fact, the
presence of lossy metals and dielectrics implies that L, R, and G depend on the operat-
ing frequency. Due to the finite metal conductivity, electric and magnetic fields penetrate
the line conductors down to an average thickness called the skin penetration depth δ:

δ =
√

2

μσω
=
√

1

πμσ f
, (3.15)

where μ ≈ μ0 = 4π × 10−7 H/m is the metal magnetic permeability (we assume
conductors to be nonmagnetic). If δ is much smaller than the conductor thickness, the
current flow is limited to a thin surface layer having sheet impedance3

Zs(ω) = Rs + jXs = 1 + j

σδ
= (1 + j)

√
ωμ

2σ
. (3.16)

Thus, the high-frequency p.u.l. resistance follows the law

R( f ) ≈ R( f0)

√
f

f0
,

while the high-frequency p.u.l. inductance can be split into two contributions: the
external inductance Lex (related to the magnetic energy stored in the dielectric
surrounding the line), and the frequency-dependent internal inductance Lin (related to
the magnetic energy stored within the conductors). Since the corresponding reactance
Xin( f ) behaves as Xin( f ) ≈ Xin( f0)

√
f/ f0, one has

L( f ) = Lex + Lin( f ) ≈ Lex + Lin( f0)

√
f0

f
≈

f →∞ Lex .

At high frequency, therefore, the total inductance can be approximated by the external
contribution. For different reasons, the p.u.l. conductance will also be frequency
dependent; in fact, this is associated with the complex permittivity of the surrounding
dielectrics ε = ε′ − jε′′ = ε′

(
1 − j tan δ̄

)
, where tan δ̄ ≈ δ̄ is the (typically small,

10−2 − 10−4) dielectric loss tangent.4 Consider, in fact, a parallel-plate capacitor of

3 The sheet impedance is the impedance of a square piece of conductor; it is often expressed in ohm per
square (�/�).

4 The loss angle δ̄ is usually denoted as δ; we use a different notation to avoid confusion with the skin
penetration depth.
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area A and electrode spacing h; the capacitor admittance will be

Y = jωε
A

h
= jωε′ A

h
+ ωε′′ A

h
= jωC + ωC tan δ̄ = jωC + G(ω),

where the conductance scales linearly with frequency, i.e., G(ω) = (ω/ω0)G(ω0).
(We assume that the loss angle is weakly dependent on frequency.) The result can be
generalized to a transmission line with transversally homogeneous (or inhomogeneous)
lossy dielectrics, where in general

G( f ) ≈ f

f0
G( f0),

i.e., the line conductance increases linearly with frequency. Materials characterized
by heavy conductor losses (such as doped semiconductors), on the other hand, have
frequency-independent conductivity.

In a lossy line, the propagation parameters γ and Z0 are real at DC and very low
frequency:

α + jβ ≈ √RG, Z0 ≈
√R

G ,

since in this case the line works as a resistive distributed attenuator. In an intermediate
frequency range jωC + G ≈ jωC, while jωL + R ≈ R in most lines because typically
series losses prevail over parallel losses. The line performances are therefore dominated
by the p.u.l. resistance and capacitance (RC regime), with parameters

α + jβ ≈ 1 + j√
2

√
ωCR, Z0 ≈ 1 − j√

2

√
R
ωC .

In the RC regime the line is strongly dispersive and the characteristic impedance is com-
plex. Finally, in the high-frequency regime jωC � G and jωL � R; the imaginary part
of Z0 can be neglected and the complex propagation constant can be approximated as

Z0 ≈ Z0l =
√
L
C (3.17)

γ = α + jβ ≈ R ( f )

2Z0
+ G ( f ) Z0

2
+ jω

√
LC = αc ( f )+ αd ( f )+ jβl , (3.18)

where Z0l is the impedance of the lossless line, αc ∝ √
f and αd ∝ f are the conduc-

tor and dielectric attenuation, respectively (usually αc � αd in the RF and microwave
range), and βl is the propagation constant of the lossless line. Therefore, in the high-
frequency regime a wideband signal with little or no low-frequency content propagates
undistorted, apart from the signal attenuation. The onset of the high-frequency regime
depends on line parameters; integrated structures with micrometer-scale dimensions can
operate in the RC range for frequencies as high as a few gigahertz. Moreover, the impact
of losses is related to the length of the TXL; in short structures (like those arising in
some distributed optoelectronic devices) signal distortion can be modest even though
the line operates under very broadband excitation.
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3.2.2 The reflection coefficient and the loaded line

The voltage and current phasors in a TXL are, in general, a superposition of forward
and backward waves:

V (z) = V +(z)+ V −(z) = V +
0 e−γ z + V −

0 eγ z (3.19)

I (z) = I +(z)+ I −(z) = V +(z)
Z0

− V −(z)
Z0

= V +
0

Z0
e−γ z − V −

0

Z0
eγ z . (3.20)

An alternative formulation results from introducing the (voltage) reflection coefficient
of the line at section z, �(z):

�(z) ≡ V −(z)
V +(z)

= V −
0

V +
0

exp (2γ z) = �0 exp (2γ z) , (3.21)

where �0 = �(0). In terms of the reflection coefficient (3.19), (3.20) become

V (z) = V +(z) [1 + �(z)] = V +
0 e−γ z

[
1 + �0e2γ z

]
(3.22)

I (z) = V +(z)
Z0

[1 − �(z)] = V +
0

Z0
e−γ z

[
1 − �0e2γ z

]
. (3.23)

At a section z the V/I ratio, which can be interpreted as the line input impedance
Z(z), can be now expressed as

Z(z) = V (z)

I (z)
= Z0

1 + �(z)

1 − �(z)
= Z0

1 + �0e2γ z

1 − �0e2γ z
; (3.24)

conversely, � can be uniquely derived from the normalized impedance ζ(z) = Z(z)/
Z0 as

�(z) = Z(z)− Z0

Z(z)+ Z0
= ζ(z)− 1

ζ(z)+ 1
. (3.25)

Using the reflection coefficient, we can readily decompose power into an incident and
reflected component as

P(z) = P+(z)− P−(z) = P+(z)
[
1 − |�(z)|2

]
.

Consider now a line closed on a load ZL at z = zL (Fig. 3.2) and assume we want
to evaluate the input impedance in section z, z < zL . The load imposes the boundary
condition V (zL)/I (zL) ≡ Z(zL) = ZL , which becomes

�(zL) ≡ �L = ZL − Z0

ZL + Z0
= ζL − 1

ζL + 1
, (3.26)

with ζL = ZL/Z0. From (3.21) we have

�0 = �Le−2γ zL → �(z) = �Le2γ (z−zL ).
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Z0, γ

Zi

z = zL–l z = zL

ZL

z

l

Figure 3.2 Input impedance of a loaded transmission line.

The input impedance at section z (such as zL − z = l, l = line length) can therefore be
expressed as

Zi = Z(z) = Z0
1 + �(z)

1 − �(z)
= Z0

1 + �Le−2γ l

1 − �Le−2γ l
.

Expanding the load reflection coefficient and expressing the exponential in terms of
hyperbolic functions we obtain

Zi = Z0
ZL cosh(γ l)+ Z0 sinh(γ l)

ZL sinh(γ l)+ Z0 cosh(γ l)
.

Notice that for l → ∞, Zi → Z0 independent of the load. For a lossless line, however,
the input impedance is periodic vs. the line length, with periodicity λg/2 (due to the tan
function)

Zi = Z0
ZL + jZ0 tan(βl)

Z0 + jZL tan(βl)
.

In particular, if the load is a short (ZL = 0) or an open (YL = 0) we have

Zi (ZL = 0) = jZ0 tan(βl)

Zi (YL = 0) = −jZ0 cot(βl) ;
a reactive load is therefore obtained, alternatively inductive and capacitive according to
the value of the line electrical angle φ = βl = 2πl/λg . Finally, it can readily be shown
by inspection than the input impedance of a shorted lossy line for l → 0 is Zi ≈ jωLl +
Rl, while the input impedance of a short line in open circuit is Zi ≈ (jωCl + Gl)−1.

Equations (3.24) and (3.25) establish a biunivocal correspondence between (normal-
ized) impedances and reflection coefficients. Impedances with positive real part map
into the unit circle of the � plane |�| = 1; in fact, denoting ζ = r + jx , for reactive
impedances (ζ = jx) one has

�(z) = jx − 1

jx + 1
→ |�| = 1.

On the other hand, real impedances map onto the real � axis, � = 0 corresponding to
Z = Z0 (impedance matching condition), while Z = 0 corresponds to � = −1 (short
circuit) and Y = 0 corresponds to � = 1 (open circuit). The image of the r = const. and
x = const. lines within the � plane unit circle is a set of circles and circular segments,
often referred to as the Smith chart; see Fig. 3.3.
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Figure 3.3 Constant normalized resistance and reactance lines in the �L plane: the Smith chart.

3.2.3 Planar integrated quasi-TEM transmission lines

The practical implementation of hybrid or monolithic integrated circuits on a dielec-
tric or semiconductor substrate typically requires that the TXL have an inhomogeneous
cross section (partly air, partly dielectric) rather than a uniform dielectric as in coaxial
cables and striplines; see Fig. 3.4. Due to the nonuniform cross section of the line, the
propagation mode is quasi-TEM rather than TEM. This implies that the phase velocity
is weakly dependent on frequency, at least for frequencies well below the onset of the
first higher-order propagation mode. In quasi-TEM lines an effective permittivity εeff

can be introduced, such as

λg = λ0√
εeff

= λ0

neff
, v f = c0√

εeff
= c0

neff
,

where neff = √
εeff is the effective refractive index and c0 the velocity of light in vacuo.

The quasi-TEM line propagation parameters can be expressed in a more convenient
way by introducing the in-air (or in-vacuo) p.u.l. capacitance and inductance, La and
Ca , defined as the parameters of a (TEM) line with homogeneous cross section and
ε = ε0. For such a line we have

v f = 1√LaCa
= c0 → La = 1

c2
0Ca

, (3.27)

since the phase velocity of a TEM mode equals the velocity of light in the dielec-
tric medium. However, assuming that the line cross section does not include magnetic
media, the p.u.l. line inductance does not depend on the dielectric properties of the line
cross section, i.e., L ≡ La . In a lossless or low-loss (high-frequency approximation)
line we can therefore write
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Figure 3.4 TEM lines: (a) coaxial cable, (b) stripline. Quasi-TEM lines: (c) microstrip, (d) coplanar
waveguide (CPW). G.P. stands for ground plane.

Z0 =
√
L
C =

√
La

C = 1

c0

√
1

CCa
(3.28)

v f = 1√LC = c0

√
Ca

C → C = εeffCa =
√
εeff

c0 Z0
. (3.29)

The effective permittivity therefore is a proper “average” value of the cross section per-
mittivity. Moreover, (3.27) suggests that a high-inductance line is a low-capacitance
line and vice versa, while from (3.28) a high-capacitance line has low impedance and
vice versa. Low- and high-impedance lines can be immediately recognized from their
high- and low-capacitance characteristics, e.g., a microstrip with a wide signal conduc-
tor (W/h � 1) has high C and Ca , low Z0, while a narrow microstrip (W/h � 1) has
low C and Ca , high Z0.

3.2.4 Microstrip lines

In the most common planar transmission line, the microstrip, see Fig. 3.4(c), the sig-
nal conductor lies on a dielectric substrate backed by a ground plane. Propagation
is quasi-TEM due to the inhomogeneous cross section (partly air, partly dielectric).
Microstrip lines on composite semiconductor substrates can be exploited in distributed
optoelectronic components, such as traveling-wave photodiodes or electroabsorption
modulators; in such cases, the analysis becomes complex due to the inhomoge-
neous, lossy substrate. Also in the simplest case of a low-loss dielectric substrate, no
closed-form expressions exist for the characteristic parameters (impedance, effective
permittivity and losses); however, several approximations are available in the literature;
see, e.g., [21], [22].

An example of the behavior of the characteristic impedance and effective refrac-
tive index vs. the normalized strip width W/h is shown in Fig. 3.5. As anti-
cipated, the impedance decreases with increasing W/h; in hybrid circuit substrates (e.g.,
ceramic, such as alumina, εr ≈ 10) or semiconductor substrates (εr ≈ 13), Z0 ranges
from 120 to 25�. Typical semiconductor substrate thicknesses are between 500 and 100
μm; the minimum strip width is limited by the resolution of lithographic processes and
(above all) by the increase of ohmic losses to ≈ 30 μm, while for W/h � 1 spurious
(lateral) resonances arise, thus limiting the maximum width. The frequency dispersion
of the effective permittivity can be approximated by fitting formulae, such as



3.2 Transmission lines 115

0.05
0

50

100

Z
0,

 Ω

150

200

250

0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0
1.0

1.5

2.0

n
eff

2.5

3.0

3.5

εr = 13

εr = 2.5

εr = 2.5

εr = 10

εr = 10

εr = 13

W/h
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εeff( f ) =
[√
εeff(0)+ ψ1.5

1 + ψ1.5

(√
εr −√

εeff(0)
)]2

, (3.30)

where ψ ∝ h f
√
εr − 1. Equation (3.30) yields increasing effective permittivity with

increasing frequency, with asymptotic value εeff → εr for f → ∞. Since the onset of
the first higher-order mode occurs for frequencies such as ψ ≈ 1, a small substrate
thickness h is required for high-frequency operation.

An example of conductor and dielectric attenuation behavior vs. the line aspect ratio
is shown in Fig. 3.6; the conductor attenuation αc is higher for narrow strips, while
it decreases for wider strips. The dielectric attenuation increases for increasing strip
width, since in this case an increasing fraction of the electric field energy is in the
substrate.

3.2.5 Coplanar lines

While in microstrip lines the impedance depends on the substrate thickness, thus requir-
ing careful technological control of this parameter, in coplanar waveguides (CPWs) on
a thick substrate the line impedance only depends on the strip width W = 2a and on the
lateral ground plane spacing W + 2G = 2b, where G is the gap width, and can therefore
be accurately controlled by lithographic processes. Moreover, under such conditions
the high-frequency effective permittivity is independent of the line impedance. Accord-
ing to a rather conservative estimate, such favorable properties occur if the substrate
thickness h is of the order of the ground plane spacing 2b.

CPWs are at present quite popular in millimeter-wave monolithic integrated
circuits; moreover, they are exploited as a building block in a number of distributed
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optoelectronic devices such as distributed electrooptic modulators on ferroelectric
substrates.

For h → ∞, exact closed-form expressions are available for the line parameters (see,
e.g., [23], also for approximations holding if h is finite or in asymmetric CPWs):

Z0 = 30π√
εeff

K (k′)
K (k)

(3.31)

εeff = εr + 1

2
, (3.32)

where k = a/b = W/(W + 2G), k′ = √
1 − k2 and K (k) is the complete elliptic

integral of the first kind. The ratio K (k)/K (k′) can be approximated as [24]:

K (k)

K (k′)
≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

π
log

(
2

1 + √
k

1 − √
k

)
, 0.5 ≤ k2 < 1

[
1

π
log

(
2

1 + √
k′

1 − √
k′

)]−1

, 0 < k2 ≤ 0.5.

(3.33)

The frequency dispersion of the effective permittivity leads to an increasing behavior
with increasing frequency, as in the microstrip; the characteristic frequency correspond-
ing to the upper limit of the line operating range is given by the onset of the first TE
surface mode fT E = c0/(4h

√
εr − 1). Finally, conductor and dielectric losses can be

expressed as
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αc = 8.68Rs
√
εeff

480πK (k)K (k′)(1 − k2)

×
{

1

a

[
π + log

(
8πa(1 − k)

t (1 + k)

)]
+ 1

b

[
π + log

(
8πb(1 − k)

t (1 + k)

)]}
dB/m

αd = 27.83
tan δ̄

λ0

εr

2
√
εeff

dB/m,

where the parameter Rs = √
ωμ/2σ is the skin-effect surface resistance (σ is the met-

allization conductivity, μ is the metal magnetic permeability). The impedance range of
a CPW on ceramic or semiconductor substrates is similar to the microstrip case; see
Fig. 3.7. However, both very narrow and very wide lines exhibit high conductor losses.
In fact, for a → 0 the line resistance diverges, and so does the conductor attenuation;
for a → b the line impedance Z0 → 0, and therefore αc ≈ R/2Z0 → ∞. Conductor
losses obviously depend on the CPW size, which is reduced down to a = 5 μm in
some electrooptic components (e.g., lithium niobate modulators). In such cases, the
line thickness can be increased to reduce ohmic losses; however, in the high-frequency
(high-speed) regime the line resistance depends on the conductor periphery rather than
on the conductor area, due to the skin effect, thus making conductor thickening less
effective than in low-speed operation.

3.3 The scattering parameters

Consider a linear, nonautonomous (i.e., without independent sources) two-port
network in the frequency domain. The port voltage V = (V1, V2)

T and current
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I = (I1, I2)
T phasors are related as

V = ZI , (3.34)

where Z is a 2 × 2 complex matrix called the impedance matrix. Similarly, we can
define Y = Z−1 as the two-port admittance matrix. In the same way as we charac-
terize a one-port through its reflection coefficient rather than its impedance, we can
describe a two-port (or, in general, an N -port) through the scattering matrix. In fact,
consider that any voltage and current can be uniquely decomposed (also in a lumped-
parameter circuit) into a forward and backward component, which are conveniently
normalized as

Vi = √
R0i ai +√

R0i bi , Ii = ai√
R0i

− bi√
R0i

.

The parameters (dimension W1/2) ai and bi are the forward and backward power waves,
while R0i is the normalization resistance (or impedance) of port i . The two relations can
be inverted to provide the power waves from the total voltages and currents as

ai = 1

2
√

R0i
Vi +

√
R0i

2
Ii , bi = 1

2
√

R0i
Vi −

√
R0i

2
Ii .

If the voltages and currents are replaced in (3.34) by the power waves, on defining
a = (a1, a2) and b = (b1, b2) we derive the representation:

b = Sa, (3.35)

where S is the scattering matrix of the two-port. Although the normalization impedances
can be different for each port, typically they are chosen all equal (R0i = R0), often
with the default value R0 = 50 �. In this case, the scattering matrix is related to the
impedance matrix as

S = (Z−R0I)(Z+R0I)−1, (3.36)

where I is the identity matrix. For a one-port, (3.36) clearly reduces to (3.25), i.e.,
S ≡ �.

To appreciate the advantages of the scattering matrix representation, we can conve-
niently expand (3.35) in scalar form as

b1 = S11a1 + S12a2

b2 = S21a1 + S22a2;
thus, the scattering matrix elements are, by definition,

S11 = b1

a1

∣∣∣∣
a2=0

, S21 = b2

a1

∣∣∣∣
a2=0

S12 = b1

a2

∣∣∣∣
a1=0

, S22 = b2

a2

∣∣∣∣
a1=0

.
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Figure 3.8 Loading conditions for measuring (a) S11 and S21 and (b) S12 and S22.

The condition ai = 0 can be achieved by properly loading port i ; see Fig. 3.8. In fact,
loading port i with a resistance R0i implies Vi = −R0i Ii (the current positively enters
the port), i.e.,

ai = 1

2
√

R0i
Vi +

√
R0i

2
Ii = − R0i Ii

2
√

R0i
+

√
R0i

2
Ii = 0.

Thus, S11 is the reflection coefficient seen at port 1 when port 2 is closed on the
normalization resistance, S21 is the transmission coefficient between ports 1 and 2
under the same conditions, and similarly for S22 and S12. From a practical standpoint,
measuring the scattering matrix elements is easier and more convenient than measur-
ing the impedance or admittance matrix elements. Indeed, the scattering matrix and
power wave description also applies for structures in which voltages and currents do
not, strictly speaking, exist (such as a non-TEM metal or dielectric waveguide, as an
optical fiber). Moreover, ideal wideband matched loads can be far more easily imple-
mented than short or open circuits (required for the Y or Z parameter characterization,
respectively). Finally, most high-speed transistors happen to be unstable when closed
on reactive terminations, thus making the direct measurement of Z or Y parameters
virtually impossible.

3.3.1 Power and impedance matching

The term power waves applied to the a and b parameters naturally follows from the
definition of the total power entering port i :

Pi = Re
(
Vi I ∗

i

) = Re
[
(ai + bi )

(
a∗

i − b∗
i

)] = |ai |2 − |bi |2 = |ai |2
(

1 − |�|2
)
,

where |ai |2 is the incident power into port i , and |bi |2 the reflected power from port i .
If a two-port is lossless, the total power entering the two-port is zero, i.e., P1 + P2 = 0;
this implies

P1 + P2 = a · aT ∗ − b · bT ∗ = a ·
(

I − S · S∗T
)

· aT ∗ = 0,

where I is the identity matrix. Setting ST ∗= S† we obtain

S†S = I,

i.e., the scattering matrix is Hermitian. Finally, the scattering matrix of a reciprocal
two-port (N -port) is symmetric, Si j = S ji .
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Assume now that a two-port is connected to a generator with internal impedance Zg

at port 1 and to a load with impedance ZL at port 2.5 From circuit theory one immedi-
ately obtains that, if the generator and load are directly connected, the maximum power
transfer from the generator to the load occurs when ZL = Z∗

g (conjugate matching or
power matching conditions). In this case the power delivered to the load is the generator
available power Pav:

Pav =
∣∣Eg

∣∣2
4Rg

,

where Eg is the phasor associated with the generator open-circuit voltage (normalized
with respect to the effective value). A dual expression holds for a generator with short-
circuit current Ag and internal admittance Yg = Gg + jBg:

Pav =
∣∣Ag

∣∣2
4Gg

. (3.37)

If we assume now that the generator and load are connected through the two-port
(which could be the model of a linear amplifier), maximum power transfer occurs when
port 1 and port 2 are conjugately matched:

Zin = Z∗
g, ZL = Z∗

out , (3.38)

where Zin and Zout are the input and output impedance of the two-port when loaded
at port 1 with Zg and at port 2 with ZL , respectively. Conditions (3.38) can be also
expressed in terms of reflection coefficients as

�g = �∗
in(S, �L), �L = �∗

out (S, �g), (3.39)

where S is the two-port scattering matrix. The load and generator reflection coefficients
that simultaneously meet (3.39) yield maximum power transfer between the generator
and the load. However, conjugate matching is not always possible, but only if the two-
port is unconditionally stable (i.e. if

∣∣�in,out
∣∣ < 1 for any

∣∣�L ,g
∣∣ < 1).6

Power matching corresponds to the maximum power transfer between a load and
a generator connected by a two-port (e.g., an amplifier). This is an optimum con-
dition in narrowband systems; however, in wideband design and in the presence of
distributed components (such as transmission lines) another matching approach (often
called impedance matching) is preferred, since it allows minimization of reflections
and the related signal distortion. For the sake of definiteness, consider a lossless trans-
mission line with real characteristic impedance Z0, and load and generator resistances
Rg and RL ; the transfer function between the load voltage VL and the genera-
tor voltage Eg can be evaluated from (6.24) and (6.25) taking into account that

5 In the present chapter we use Zg to avoid confusion with the symbol G as the initial of “gate”; elsewhere
the generator impedance will be denoted by ZG .

6 In what follows, we will assume that the active components considered (in particular, the amplifiers) are
unconditionally stable; this is also a convenient choice in wideband design. For a discussion on stability
issues see e.g. [25].
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V (L) = V +e−jβL + V −ejβL (β = ω/v f ):

H(ω) = VL

Eg
= Z0

Z0 + Zg

1 + �L

1 − �L�g exp(−2jβL)
exp(−jβL).

If the load and generator are impedance matched to the line (RL = Rg = Z0), one has

H(ω) = Z0

Z0 + Zg
exp(−jβL),

i.e., the magnitude of H is constant and the phase is linear, corresponding to constant
group delay and no linear distortion. The same situation in fact arises also if the line
is mismatched at one end only (RL = Z0 or Rg = Z0) since in both cases �L�g = 0
and no multiple reflections take place between the generator and the load. However,
if both the generator and the load are mismatched the response shows magnitude and
phase ripples, as shown in Fig. 3.9; those lead to signal distortion and should therefore
be reduced or eliminated by properly terminating the distributed element. Note that
generator and load impedance matching with a line having real Z0 also corresponds to
the power-matching condition.

3.4 Passive concentrated components

Passive components for high-speed hybrid and monolithic integrated circuits can be
either distributed or concentrated (or lumped). Distributed components are based on
single or multiconductor (coupled) transmission lines; TXLs can be exploited to design
impedance-matching sections, filters, reactive equalizers, directional couplers, and other
low-loss components. The typical size of distributed components at centerband is a frac-
tion of the guided wavelength (e.g., λg/4); thus, such components have a comparatively
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Figure 3.10 Examples of integrated RF passive lumped components.

large size. Moreover, the design based on distributed components is often narrowband.7

Finally, low-loss TXL components are reactive and cannot therefore be exploited in
resistors, attenuators, or other dissipative components.

Lumped capacitors, resistors, or inductors are implemented in hybrid and integrated
circuits according to several approaches. Such components have small size with respect
to the operating wavelength and can be potentially wideband. However, losses typi-
cally limit the operating bandwidth of reactive components (capacitors and, above all,
inductors).

Many lumped components can be integrated monolithically on semiconductor sub-
strates. Integrated inductors can be realized through short, high-impedance transmission
lines or, more conveniently, as spiral inductors; see Fig. 3.10. Since no magnetic cores
are available for frequencies above a few hundred megahertz, all RF inductors are in
air, with rather low inductance values.8 The maximum inductance of planar integrated
spiral inductors is of the order of 100 nH; however, the larger the inductance, the larger
is the parasitic capacitance and therefore the smaller is the resonance frequency. Spiral
inductors can be exploited for bias T design or for low-Q filters. Integrated capacitors
usually follow the so-called MIM (metal insulator metal) approach, where a first-level
metal is exploited as a ground plane, a suitable insulator (silicon dioxide, silicon nitride,
polymide) acts as a dielectric, and the second-level metal is the signal conductor. Finally,
integrated resistors can be obtained through high-resistivity metals or low-doping lay-
ers. Examples of integrated resistors and capacitors are shown in Fig. 3.10. Integrated
lumped elements allow one to obtain concentrated forms of components such as direc-
tional couplers, power dividers, matching sections; such lumped versions typically
have a reduced size with respect to the distributed ones, but also higher losses and a
lower-frequency operation range.

7 An important exception is given by the so-called traveling-wave design where impedance matched TXLs
are exploited. Relevant examples are distributed amplifiers and traveling-wave optoelectronic components
such as distributed photodiodes and modulators.

8 Some attempt has been made recently to increase the inductance through the use of magnetic conductors,
e.g., permalloy. The approach has some advantages in the RF range, but is complex from the technological
standpoint.
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Figure 3.11 Examples of discrete RF lumped components: (a) thin-film chip resistor for surface mount;
(b) coplanar broadband chip resistor up to 40 GHz on fired alumina substrate; (c) chip capacitor;
(d) chip inductor; (e) ultrabroadband conical inductor.

Discrete lumped components can be externally inserted into hybrid integrated circuits
(i.e., circuits where the substrate is dielectric, and the active semiconductor devices are
not monolithically integrated), usually as surface-mount chip resistors, inductors, or
capacitors. Chip resistors are commonly exploited as external loads in a number of
integrated optoelectronic components; see Fig. 3.11(b) where a coplanar resistor made
of two resistors in parallel (the lateral pads are connected to the ground plane, the central
pad to the active conductor) is realized by depositing a NiCr high-resistivity alloy on a
fired alumina substrate

Chip resistors are obtained by deposing a resistive thin film over a dielectric (e.g.,
ceramic) chip. Wrap-around or flip-chip contacts are then added, allowing for surface
mounting (SM) on a microstrip or coplanar circuit. An example of such structures
(shown bottom up) can be found in Fig. 3.11(a); the side size of the component is
often well below 1 mm. Chip capacitors can be obtained by depositing a dielectric layer
(e.g., SiO2) on a conductor or semiconductor (e.g., Si); the dielectric layer is then coated
with metal so as to define the external contacts, which can be surface mounted through
flip-chip (i.e., by connecting the component upside down); see Fig. 3.11(c).

While chip resistors can be properly manufactured so as to achieve spectacular
bandwidths (e.g., from DC to millimeter waves), thus making it possible to provide
ultrabroadband matched terminations in traveling-wave components (such as 40 Gbps
distributed electrooptic modulators), broadband inductors are difficult to obtain because
of the increase of losses with frequency and the upper limitation related to the LC res-
onant frequency. The quality factor of RF and microwave inductors typically peaks
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in a very narrow band, with maximum values well below 102. An example of an RF
and microwave chip inductor is shown in Fig. 3.11(d); achievable inductance values
typically decrease with increasing operating frequency.

However, ultrabroadband bias Ts (see Section 3.4.1) for optoelectronic devices, and
the related electronic circuitry and instrumentation, require broadband inductors as RF
blocks. Conical inductors (Fig. 3.11(e)) are a particular technology allowing for very
broadband behavior, due to a strong reduction of the parasitic capacitance and to the
scaling invariance of the design (see, e.g., [26]).

3.4.1 Bias Ts

Most electronic or optoelectronic devices have to be properly DC biased at the input
and output. DC bias is typically imposed under the form of a DC voltage applied
through an (almost) ideal DC voltage source. The total applied voltage is therefore
v(t) = VDC + vRF (t), where the second contribution is the (zero-average) signal volt-
age. However, v(t) cannot be applied by a single generator including VDC in series with
vRF (t), because the DC and RF generator impedances should be different (e.g., 50 �
for the RF, ≈ 0 for the DC), and the impedance of a DC source is beyond control at
RF. The easiest way to implement such a separation between the DC and RF parts is
through a 3-pole component called the bias T because of its shape; see Fig. 3.12(a). The
operation of the bias T is trivial if the capacitors and inductor values are assumed to be
very large; in this case, we can analyze the structure in two limiting cases: DC ( f → 0)
and RF ( f → ∞). In DC, C1 and C2 are open and L is a short; thus, the RF signal is
blocked by the open C1 while the DC bias is connected to the output through L (acting
as a DC short). C2 is open and does not interfere with the DC path. At RF, C1 and C2

are shorted while L is an open circuit, thus blocking the DC signal from reaching the
output. At the same time, the RF signal is shorted to the input, but cannot reach the DC
bias node (DC IN) because of the RF blocking inductor. C2 adds an additional RF block,
shorting the RF signal to ground; it could be omitted in an ideal design with arbitrarily
large component values. In Fig. 3.12(b) two bias Ts are exploited to bias the input and
output of a field-effect transistor.

In practice, however, the bias T has to be realized with finite-valued components.
This leads to two operating bands, the “DC” in the interval 0 < f < f1 and the “RF”
in the interval f2 < f < ∞. The bias T design becomes difficult if f1 is very close to
f2 and f2 is low, as in many wideband amplifiers for optical communication systems or
instrumentation; see Example 3.1.

Example 3.1: Suppose a bias T is connected to the input of a FET as in Fig. 3.12(b); for
simplicity, the FET input is considered as an open circuit, while the DC bias generator
(VG) internal impedance is negligible. Using a simple structure with C2 = 0, find the
C1 ≡ C and L values such as f1 = 100 kHz and f2 = 10 MHz. As a condition, impose
that in the “DC” range the input impedance seen from RF IN is |Zin| > 1 k� (so that
the RF generator is effectively decoupled from the device input in the “DC” range),
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Figure 3.12 Applying a DC bias through a bias T: (a) possible structure of a lumped bias T; (b) transistor bias
through an input and output bias T.

while in the “RF” range the input impedance seen from RF IN is again |Zin| > 1 k�
(implying that the path through the blocking inductor L to the DC generator is an open
circuit in the “RF” range). Repeat for (b) f1 = 100 kHz, f2 = 1 GHz and for (c) f1 =
100 kHz, f2 = 200 kHz.

Taking into account that the FET input is an open circuit, we can select the LC circuit
so that the series resonance is between f1 and f2. At low frequency, the impedance
seen between the RF input and the DC input (which is shorted to ground; remember
that the internal impedance of the DC source is assumed as negligible) will be large and
capacitive (the inductor is almost a short in this range), and at high frequency will be
large and inductive (the capacitor is almost a short in this range). This yields the two
conditions

|Zin( f1)| = 1 − ω2
1 LC

ω1C
, |Zin( f2)| = ω2

2 LC − 1

ω2C
,

and, conveniently selecting the resonance frequency as

1√
LC

= 2π
√

f1 f2,

we have

|Zin( f1)| = 1

2πC

(
1

f1
− 1

f2

)
= 1

2πC

� f

f1 f2
= |Zin( f2)| .

Thus,

C = 1

2π |Zin|
� f

f1 f2
, L = 1

(2π)2 f1 f2C
= |Zin|

2π� f
.
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For f1 = 100 kHz, f2 = 10 MHz we have

C = 1

2π · 1 × 103

10 × 106 − 100 × 103

10 × 106 · 100 × 103
= 0.157 nF

L = 1 × 103

2π
(
10 × 106 − 100 × 103

) = 16 μH;

while for f1 = 100 kHz, f2 = 1 GHz, C = 0.159 nF, L = 15.9 nH; for f1 = 100 kHz,
f2 = 200 kHz, C = 0.79 nF, L = 1.59 mH. While the capacitance value is almost con-
stant ( f1 is in fact constant), the inductance becomes extremely large if the transition
between “DC” and “RF” is narrow. In such cases, more complex circuit schemes have
to be exploited to allow for reasonably valued components.

3.5 Active components

High-speed circuits exploit as active components both field-effect (FET) and bipo-
lar junction transistors (BJT), implemented in several conventional and compound
semiconductor technologies. Si-based MOSFETs with nanometer gate length have
demonstrated microwave and even millimeter-wave operation; such devices are not
well suited to high-power (high breakdown voltage) applications, but can be conve-
niently exploited, for example, in receiver stages with some noise penalty in comparison
with compound semiconductor technologies. Compound semiconductor FETs based on
GaAs and InP substrates are currently implemented as high electron mobility transistors
(HEMTs) in lattice-matched (LMHEMT) or pseudomorphic (PHEMT) form. Although
conventional, Si-based bipolar transistors are limited to RF operation, heterojunction
bipolars (HBTs) in compound semiconductor technologies (GaAs or InP) or based on
the SiGe material system have shown good performances up to millimeter waves. HBTs
are characterized by features similar to the conventional bipolars, i.e., larger current
density and current driving capability with respect to FETs.

3.5.1 Field-effect transistors (FETs)

High-speed field-effect transistors (FETs) are based on a conducting channel whose
current (driven by the potential difference between the drain and source electrodes) is
modulated by the potential applied to the control electrode (the gate), which is iso-
lated from the channel (by a metal-oxide-semiconductor junction in MOSFETs or by a
reverse-biased Schottky junction in compound semiconductor FETs); see Fig. 3.13.

The first high-speed field-effect transistor able to operate at microwave frequencies
was the GaAs-based MESFET (metal-semiconductor FET), in which the channel is a
layer (implanted or epitaxial) of highly doped bulk semiconductor. A simplified cross
section of a high-breakdown-voltage MESFET is shown in Fig. 3.14; in such devices,
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Figure 3.13 Schematic operation principle of an n-channel FET: electrons are driven by the channel electric
field induced by the VDS potential difference between drain and source, and the resulting
channel is modulated by the control electrode (the gate, here a reverse-biased Schottky junction)
through the application of a vertical control electric field. Lg is the gate length, W the gate
periphery.
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Figure 3.14 Cross section of an epitaxial recessed-gate power MESFET.

the control action of the gate occurs by depleting the active layer underneath the Schott-
ky contact, thus reducing its cross section and, as a consequence, the total device current.
Recessed-gate power MESFETs exhibit drain breakdown voltages in excess of 20 V
and can still be exploited for frequencies up to 10 GHz; in high-performance appli-
cations they have generally been replaced by heterojunction-based FETs (HEMTs and
PHEMTs).

The qualitative behavior of the DC characteristics of the MESFET can be derived
by inspection of Fig. 3.15. Suppose that most of the VDS potential difference falls in
the active channel located underneath the Schottky gate; for low VDS , the potential
difference between the gate and each point in the conducting channel is almost con-
stant; as a consequence, the channel potential φch increases linearly from the grounded
source to the drain, but the depletion region is uniform along the gate, and the chan-
nel cross section is constant. In such a condition (Fig. 3.15(a)) the device behaves
as a variable resistor; the resistance depends on the applied VGS . For VGS = VTH

(the threshold voltage) the conducting layer is completely depleted and the channel
conductance is zero. Increasing VDS , the local potential difference between the gate
and the channel becomes more and more nonuniform (Fig. 3.15(b)) and, as a conse-
quence, the channel cross section narrows from the source to the gate, giving rise to a
nonlinear channel potential distribution. For large enough VDS (Fig. 3.15(c)) the elec-
tric field at the drain edge of the gate increases so as to lead to velocity saturation of
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Figure 3.15 Qualitative explanation of the DC n-channel MESFET characteristics for constant VGS and
increasing VDS .

the carriers (this happens in GaAs for electric fields ε much larger than a critical field
εc ≈ 3.2 kV/cm). Beyond this point, the channel current approximately saturates, and
for larger VDS the saturation point is displaced toward the source, leading to a small
decrease in the length of the nonsaturated (ohmic) part of the channel (Fig. 3.15(d));
this causes a small increase of the drain current ID , which turns out to be more evi-
dent in short-gate devices (e.g., with gate length Lg < 0.5 μm). In materials where the
velocity saturation effect is less abrupt than in GaAs (e.g., in Si), current saturation is
due to the channel pinchoff, that is, it takes place at a voltage VDS such that the cross
section of the conducting channel vanishes at the drain edge of the gate.

In conclusion, the FET output characteristics (at the input no DC current is absorbed
since the gate is isolated) have a linear region for low VDS , a triode region where the
drain conductance begins to decrease, and finally, beyond a certain knee voltage, the
saturation region, where the drain current is approximately independent of VDS . In an
n-channel FET, decreasing VGS increases the amount of channel depletion and therefore
leads to a lower current. For very large VDS and/or large currents, breakdown occurs
in the form of a sometimes catastrophic increase of the drain current. In high-speed
Schottky gate FETs the breakdown voltage is low in the on-state (high current) and
high in the off-state (low current, device at threshold). The resulting DC characteristics
are qualitatively shown in Fig. 3.16; note that the ID corresponding to VGS = 0 is often
referred to as IDSS ; since the gate is a Schottky barrier, the maximum VGS is limited
by the Schottky barrier built-in voltage; indicative values are 0.6–0.7 V for GaAs and
0.9–1 V for AlGaAs. The soft breakdown effect shown in Fig. 3.16 is a peculiarity of
HEMTs and PHEMTs, due to a substrate charge injection mechanism; it is considerably
alleviated by technology optimization.

3.5.2 FET DC model

A simplified analytical model for the DC current of any FET can easily be devel-
oped according to the channel pinchoff saturation mechanism; current saturation due
to carrier velocity saturation will be discussed in Section 3.5.4.
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Figure 3.16 DC drain characteristics for Schottky gate FET. The kinks are typical of HEMT devices and are
referred to as the kink or soft breakdown effect.

Consider an n-type FET with channel along x ; let us denote by −Qch(x) the total
mobile charge (per unit surface) in the channel; in a MESFET we simply have

−Qch(x) = −q
∫

channel
n (x, y) dy,

where n(x, y) is the channel electron density (n ≈ ND in a MESFET). The channel drift
current is

ID = Wμn0 Qch(x)
dφch

dx
, (3.40)

in which W is the gate periphery, μn0 is the low-field electron mobility, while the
channel electric field (directed along x) is

Ech = −dφch(x)

dx
;

φch is the channel potential. In general, Qch(x) depends on the potential difference
between the gate and section x of the channel:

Qch(x) = Qch (VGS − φch(x)) .

Integrating (3.40) from x = 0 to x = Lg (corresponding to φch = VS = 0 and φch =
VD − VS = VDS), we obtain∫ Lg

0
ID dx = Wμn0

∫ Lg

0
Qch (VGS − φch)

dφch

dx
dx

= Wμn0

∫ VDS

0
Qch (VGS − φch) dφch,

i.e.,

ID = Wμn0

Lg

∫ VDS

0
Qch (VGS − φch) dφch. (3.41)
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We now approximate the function Qch(VGS − φch) in a linear way (this is indeed
almost exact in some FETs, such as the MOSFET), as follows:

|Qch| =
⎧⎨⎩Cch (VGS − φch − VTH) , VGS − φch − VTH ≥ 0

0, VGS − φch − VTH < 0

where Cch has the dimension of a capacitance per unit surface. Substituting in (3.41)
and integrating, we obtain

ID = Wμn0

Lg

∫ VDS

0
Cch (VGS − φch − VTH) dφch

= Wμn0Cch

Lg

[
(VGS − VTH) VDS − 1

2
V 2

DS

]
. (3.42)

For increasing VDS , (3.42) yields a current that first increases linearly (linear region),
then begins to saturate (triode region) to finally reach a maximum IDs for VDS = VDSS ,
corresponding to channel pinchoff at x = Lg , and therefore to current saturation. From
(3.42) the saturation voltage VDSS reads

VDSS = VGS − VTH;
for VDS > VDSS (3.42) no longer holds and the current is approximately constant with
value IDs = ID(VDSS):

IDs = ID(VDSS) = Wμn0Cch

2Lg
(VGS − VTH)

2. (3.43)

Although saturation in compound semiconductor FETs is typically due to velocity sat-
uration, the above model can serve as a simple analytical tool to explore some of the
main features of different classes of high-speed FETs.

3.5.3 FET small-signal model and equivalent circuit

The analog operation of transistors often corresponds to small-signal conditions, i.e., a
small-amplitude signal source is superimposed on the DC bias. The small-signal device
response can be approximated by a linear, frequency-dependent model, e.g., under the
form of the admittance or scattering matrix. (FETs often operate in common source
configuration, i.e., the source is signal grounded, the gate acts as the input and the
drain as the output.) It is, however, useful to associate with the small-signal behavior
a circuit model (the small-signal equivalent circuit), whose elements can be physi-
cally mapped into the FET structure as shown Fig. 3.17 (for simplicity, we refer to a
MESFET, but the approach is readily extended to other FET families). The external
parasitic resistances RS , RD , RG appear here as access resistances of the source, drain,
and gate terminals, respectively, while the intrinsic resistance RI is the resistance of
the ohmic part of the channel. The capacitances CGS and CG D derive from partitioning
the total capacitance associated with the gate depletion region, while CDS is mostly a
geometrical capacitance between drain and source. The other elements of the equivalent
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Figure 3.17 Physical mapping of a small-signal circuit into the MESFET cross section.
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Figure 3.18 High-speed FET equivalent circuit; the intrinsic part is enclosed in the box.

circuit of the intrinsic device (describing its specific transistor action) can be derived by
differentiating the ID(VGS, VDS) relation as

gm = ∂ ID

∂VGS
, R−1

DS = ∂ ID

∂VDS
.

The transconductance gm is the device amplification between the input driving voltage
(the voltage v∗ applied between the intrinsic gate and the channel, across the deple-
tion region) and the output (drain) current. The parameter τ describes an additional
phase delay between the driving voltage v∗ and the generated current gmv

∗; it is often
associated with the delay that carriers experience drifting below the gate contact, thus
justifying the name transit time. A more readable form of the equivalent circuit, in which
also some external inductive parasitics have been added, is shown in Fig. 3.18.

The parameters of the equivalent circuit can be exploited to derive two figures of
merit related to the device speed or, equivalently, to the maximum operating bandwidth:
the cutoff frequency fT and the maximum oscillation frequency fmax.
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Figure 3.19 Evaluating the cutoff frequency (a) and the maximum oscillation frequency (b) of a FET.

The cutoff frequency fT is the frequency at which the short-circuit current gain of
the transistor has unit magnitude. Such a parameter can be estimated from measure-
ments, either directly or from extrapolation; however, a straightforward connection to
the equivalent circuit parameters is possible if a simplified intrinsic equivalent circuit is
exploited in the analysis. By inspection of Fig. 3.19(a) one has (we assume harmonic
generators and phasor notation)

ID = gm

jωCGS
IG ,

i.e., imposing |ID/IG | = 1 at ωT = 2π fT ,

fT = gm

2πCGS
.

The maximum oscillation frequency is the frequency at which the maximum available
power gain (MAG, the ratio between the available power at the device output and the
generator available power) is unity. Since the MAG decreases with frequency, for f >
fmax the device becomes passive and cannot provide gain even if it is power-matched
at the input and output (i.e., if Zg = Z∗

in , ZL = Z∗
out , thus leading to maximum power

transfer). Again, fmax can be related to the parameters of a simplified equivalent circuit;
some extra elements have to be added to avoid singular values in the output available
power and in the input power. Assuming that the output is power matched, the output
available power will be (see (3.37)):

Pav,out = g2
m |V ∗|2
4R−1

DS

.

However, if the input is power matched, the generator reactance compensates for the
CGS reactance, Rg = RG + RI and the gate current is

IG = Eg

RG + RI
→ V ∗ = Eg

jωCGS (RG + RI )
.

Thus,

Pav,out = g2
m

∣∣Eg
∣∣2 RDS

4ω2C2
GS (RG + RI )

2
= g2

m RDS

ω2C2
GS (RG + RI )

Pav,in,

since Pav,in = ∣∣Eg
∣∣2 /(4Rg) and Rg = RG + RI .
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The available power gain Gav = Pav,out/Pav,in corresponds to the MAG, because
power matching is implemented at the input; moreover, it coincides (since the output
is also matched) with the operational power gain Gop = Pout/Pin . The condition to be
imposed to evaluate fmax is

MAG = g2
m RDS

(2π fmax)2C2
GS (RG + RI )

= 1,

leading to

fmax = fT

√
RDS

RG + RI
. (3.44)

Since RDS � RG + RI (typically by one order of magnitude), fmax > fT unless the
input resistance is high. Equation (3.44) also holds for bipolar transistors in common
emitter configuration with the substitutions RG → RB (the base resistance), RDS →
RC E (the collector–emitter output resistance).

3.5.4 High-speed FETs: the HEMT family

High-speed field-effect transistors (FETs) today exist in a number of technologies based
both on Si and on compound semiconductors. Deep scaling down to nanometer gate
lengths of Si-based MOSFETs has made available transistors with cutoff frequencies
in the millimeter wave range; due to the comparatively high gate input resistance, the
maximum oscillation frequencies are in fact less outstanding. Heterostructure FETs are
currently manufactured on several compound semiconductor substrates: GaAs, InP and
also GaN. Devices of choice for high-speed electronic and optoelectronic applications
are the GaAs- or InP-based pseudomorphic high electron mobility transistor (PHEMT)
and, in the future, the GaN HEMT (mainly for high-power or high-voltage applications).

The basic building block of heterojunction FETs is the so-called modulation doped
heterojunction, consisting of a highly doped (n-type) widegap layer on top of an intrinsic
narrowgap layer; see Fig. 3.20. In a modulation doped heterostructure in equilibrium,
the doped layer (supply layer) donors are ionized, and therefore transfer their electrons
into the conduction band potential well, originated by the bandgap discontinuity. A thin
conducting channel is generated and confined in the interface well, in a way that is not
dissimilar to the MOS surface inversion channel. Moreover, the electrons in the potential
well suffer little or no impurity scattering, since the narrowgap material is undoped; this
leads to an improvement in the channel electron mobility with respect to FETs (like the
MESFET) exploiting a doped channel.9 A last important advantage of the modulation
doped approach is the possibility of making the doped widegap layer (supply layer)
thin, but highly doped, thus reducing the distance between the controlling gate and

9 Huge mobility increases that led to the (historical) name of the HEMT can, however, be detected only
at cryogenic temperature, where phonon scattering becomes ineffective and the mobility is dominated by
impurity scattering; at ambient temperature, phonon scattering prevails and the mobility advantage is less
dramatic.
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Figure 3.20 Example of the band diagram for modulation-doped structure with triangular potential profile
QW; the charge distribution (ionized donors in the supply layer, free electrons in the QW) is
shown below.
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Figure 3.21 Cross section of a conventional AlGaAs/GaAs HEMT.

the channel. Since electrons in the channel are confined in the vertical direction, the
modulation doping heterojunction typically is a QW for the channel electrons, which
form a charge sheet often referred to as a two-dimensional electron gas (2DEG).

The (conventional) HEMT, shown in Fig 3.21, is a Schottky gate FET where a reverse
bias applied to the gate electrostatically modulates the 2DEG. The supply layer is typi-
cally AlGaAs (widegap), while the substrate is semi-insulating GaAs (narrowgap). The
Alx Ga1−x As layer has an Al fraction x between 23% and 30%; larger Al fractions
would be desirable to increase the conduction band discontinuity �Ec and the channel
confinement; unfortunately, for x > 30% the AlGaAs supply layer develops a trap level
(the so-called DX centers) which actually limits the effectiveness of the doping. In order
to decrease the surface impurity scattering from the donors in the supply layer, a thin
undoped AlGaAs spacer layer is epitaxially grown between the GaAs substrate and the
doped supply layer.

State-of-the art HEMTs are based on a double heterostructure, wherein a narrowgap
material is sandwiched between the widegap substrate and the widegap supply layer.
The resulting rectangular (rather than triangular) conduction band QW has superior
confinement properties and may also have better transport performance than in the con-
ventional HEMT. According to whether the narrowgap layer is lattice-matched or in
a strained (tensile or compressive) condition, we have the LMHEMT (lattice-matched
HEMT) or the PHEMT (pseudomorphic HEMT).
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Figure 3.22 Energy gap–lattice constant diagram for the AlGaAs, the InGaAsP and the InAlAs alloys.

Several material systems and modulation doping techniques in the supply layer
(including δ doping instead of uniform doping) can be exploited in PHEMTs. Rep-
resentative examples are:

• The GaAs-based PHEMT, where the supply layer is doped AlGaAs, the channel is
In1−x Gax As with low indium content (see the black dot close to GaAs in the energy
gap–lattice constant diagram in Fig. 3.22), and the substrate is GaAs. Due to the
strained (pseudomorphic) channel, the conduction band discontinuity is increased,
thus improving the confinement and sheet carrier density in the conducting channel.
The potential barrier between the channel and the substrate is low, however.

• The InP-based PHEMT, for which several choices exist. Taking into account that
Al0.48In0.52As and Ga0.47In0.53As are lattice matched to InP, a possible lattice-
matched structure with an Al0.48In0.52As supply layer (doped), a Ga0.47In0.53As
channel (undoped), and an InP substrate (undoped) is shown in Fig. 3.23. Imple-
menting the channel through a pseudomorphic layer of Ga0.47−x In0.53+x As, x small,
we increase the bandgap discontinuity toward both the supply layer and the substrate,
thus obtaining a PHEMT with improved performances.

The GaN-based HEMT has a conventional HEMT structure made of a widegap sup-
ply layer of AlGaN grown on an undoped GaN substrate. A peculiar feature of the
AlGaN/GaN system is the presence of a piezoelectrically induced electron charge in the
interface QW, even without any supply layer doping. The AlGaN-GaN HEMT therefore
has excellent properties in terms of channel charge, which can be further improved by
intentional doping.

InP-based PHEMTs are probably the devices of this class offering the best per-
formance in terms of high cutoff and maximum oscillation frequencies, with record
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Figure 3.24 Cross section of GaAs-based power PHEMT.

values well into the millimeter-wave range. GaAs-based PHEMTs offer some advan-
tages in terms of breakdown voltage (which can be pushed into the 10–20 V range) but
are confined to applications below 50–60 GHz. However, the superior development of
the GaAs technology and lower cost with respect to InP make this the device of choice
for many applications, e.g., in 40 Gbps systems. An example of a GaAs-based PHEMT
structure is shown in Fig. 3.24; note the asymmetric placement of the gate, typical of
power devices and aimed at decreasing the maximum field in the drain–gate region, i.e.,
at increasing the breakdown voltage.

A comparison between a number of competing Si-based and III-V based FET
technologies is shown in Fig. 3.25 [6], [27], [28]. Experimental data suggest that InP-
based pseudomorphic or lattice-matched HEMTs have record cutoff frequency; GaAs
PHEMTs, while slightly inferior, perform better than GaAs MESFETs. Si-based NMOS
exhibit very high cutoff frequencies for nanometer gate lengths, but the corresponding
fmax is often compromised by the large input resistance. One may note that, for decreas-
ing gate length, the Si penalty related to the lower initial mobility is somewhat mitigated
by the fact that nanometer-scale MOSFETs operate in velocity saturation conditions. In
this respect, the large threshold field for velocity saturation in InP is a significant advan-
tage over GaAs or Si. An alternative approach to direct growth on InP substrates, which
would considerably decrease the device cost, has been proposed under the name of
the metamorphic approach. In general, metamorphic devices are grown on substrates
mismatched with respect to the active region (GaAs or even Si; see e.g., [29]); properly
designed buffer layers have to be interposed in order to avoid defects. As a simple exam-
ple, an InP-based HEMT can be grown on a GaAs substrate topped by a graded InGaAs
epitaxial buffer leading from the GaAs to the InP lattice constant. Recently, metamor-
phic HEMTs (MHEMTs) have shown good reliability and performances comparable to
lattice-matched or pseudomorphic HEMTs.
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Figure 3.26 GaAs-based PHEMT band structure in equilibrium.

The carrier density hosted by the interface potential well of a modulation doped struc-
ture can be evaluated taking into account the modified density of states of the QW and
the equilibrium band structure shown in Fig. 3.26. The complete analysis will be omitted
here; we only remark that increasing the Fermi level EF with respect to Ec(0) causes
an increase of the Ec slope in 0+ and therefore an increase of the QW surface electric
field in 0+, Es . However, from the Gauss law, this is related to the total surface charge
density ns in the potential well:

Es = q

ε
ns . (3.45)

In general, ns depends on EF − Ec(0) according to an implicit law that has to be made
explicit through numerical techniques. However, in a suitable range of energies and
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Figure 3.27 Behavior of sheet carrier density ns for a PHEMT as a function of the gate bias. VTH is the
threshold voltage, VGsat is the gate voltage at which the sheet carrier density saturates at nss ,
Vbi is the Schottky gate barrier built-in voltage. The sheet carrier densities ns D and ns f
refer to the donor trapped carriers and free carriers in the supply layer, respectively.

surface charge densities the relation can be linearly approximated as

EF − Ec(0) ≈ ans, (3.46)

where a is a fitting parameter of the order of 10−17 eV m2; in MKS units the parameter
has to be expressed as qa, where q is the electron charge.

The sheet carrier density ns can be modulated by acting on the external bias of a
reverse-biased Schottky junction connected to the supply layer. Denote by d the thick-
ness of the supply layer, by ds the thickness of the spacer layer (meant to screen the
channel carriers from surface donor scattering); if the Schottky barrier reverse bias is
increased the Ec(0+) slope decreases, leading to a decrease of ns ; conversely, if the
Schottky negative bias is reduced, the slope increases, thus increasing the sheet carrier
density ns . The threshold voltage VTH corresponds to the (flatband) condition in which
Ec(0+), and therefore the channel charge, vanishes; the increase in ns is, however, lim-
ited by the fact that, for positive Schottky contact (gate) bias, the supply layer ultimately
ceases to be depleted, thus decoupling the population ns from the gate control. Thus, ns

vanishes at threshold, then increases to saturate at a value nss ; such behavior is shown
in Fig. 3.27.

In order to relate the gate bias VG to the sheet electron concentration ns , the Poisson
equation can be suitably solved in the depleted supply layer plus spacer. Taking into
account the jump condition in 0,

Ec(0
−) = Ec(0

+)+�Ec,

and the boundary condition in −d,

Ec(−d) = qVbi − qVG + EF,

we finally have, from the solution of Poisson’s equation,

qVbi − qVG + EF = q2 ND

2ε
(d − ds)

2 − qEsd + Ec(0
+)+�Ec,
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where ND is the supply layer doping, and ε is the supply layer permittivity. Solving by
the surface electric field we obtain

Es = q ND

2dε
(d − ds)

2 − Vbi

d
+ VG

d
+ Ec(0+)− EF +�Ec

qd
. (3.47)

Taking into account that, for VG = VTH , ns ∝ Es ∝ EF − Ec(0+) ≈ 0 by definition,
we can define the threshold voltage VTH as

VTH = −q ND

2ε
(d − ds)

2 + Vbi − �Ec

q
. (3.48)

Finally, since from (3.45) εEs = qns and

ns ≈ EF − Ec(0+)
aq

,

we obtain from (3.47) and (3.48) the result

1

ε

(
d + εa

q

)
qns = (VG − VTH) .

Defining the equivalent thickness of the 2DEG, �d , as

�d = εa

q
≈ 13 · 8.86 × 10−12 · 10−17

1.69 × 10−19
≈ 7 nm,

we evaluate the surface mobile charge associated with the 2DEG, Qs = qns , as

Qs = ε

d +�d
(VG − VTH) = Ceq(VG − VTH), (3.49)

where Ceq is the equivalent 2DEG capacitance. Equation (3.49) provides a simple tool
with which to analyze the PHEMT through the linear charge control approximation. Of
course (3.49) ceases to be valid when the 2DEG saturates to nss ; a detailed analysis,
based again on the solution of the Poisson equation, leads to the result

nss ≈
√
�Ec

q

2NDε

q
,

which shows that the saturation density increases with increasing supply layer doping,
but also with the conduction band discontinuity between the supply layer and the nar-
rowgap channel. The saturation gate voltage can be derived, assuming Qs = qnss and
d +�d ≈ d in (3.49), as

VGsat ≈ VTH + dq

ε
nss . (3.50)

Starting from the charge control relation (3.49) and assuming, more realistically, that
the drain current saturation is due to velocity saturation rather than to channel pinchoff,
we can easily develop an approximate model for the drain current. To this end, assume
a simplified piecewise velocity–field curve for the electrons, in which abrupt saturation
occurs for the threshold field Eth ≈ vn,sat/μn0, where μn0 is the low-field mobility.
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The drain current can be obtained by assuming that velocity saturation takes place
at the drain edge of the gate (x = Lg) for VDS = VDSSv . In the velocity saturated region
the current is

IDs = Wvn,satqns = Wvn,sat
ε

d +�d
[VGS − VDSSv − VTH],

where W is the gate periphery, since VGS − VDSSv is the potential difference between
gate and channel at x = Lg in velocity saturation conditions. Since the current must be
continuous from the ohmic to the velocity-saturated part of the channel, we should have

Wvn,sat
ε

d +�d
[VGS − VDSSv − VTH]

= Wμn0

Lg

ε

d +�d

[
(VGS − VTH)VDSSv − 1

2
V 2

DSSv

]
,

where we have exploited (3.42). We therefore obtain

VDSSv = (VGS − VTH + LgEs)−
√
(VGS − VTH)2 + (LgEs)2,

where Es = vn,sat/μn0, and the saturation current IDs due to velocity saturation is

IDs = Wvn,sat
ε

d +�d

[√
(VGS − VTH)2 + (LgEs)2 − LgEs

]
. (3.51)

Equation (3.51) defines the saturation transcharacteristics of the PHEMT; by differenti-
ation, we obtain the device transconductance:

gm = Wμn0

Lg

ε

d +�d

VGS − VTH√(
VGS − VTH

LgEs

)2

+ 1

. (3.52)

For short gate devices we can approximate the maximum transconductance (at VGS =
0) by letting Lg → 0 in (3.52), as

gm ≈ Wvn,sat
ε

d +�d
, (3.53)

and the maximum cutoff frequency approximately is

2π fT = gm

CGS
≈ Wvn,sat

ε

d +�d
× d +�d

W Lgε
= vn,sat

Lg
= 1

τt
.

The expression for gm in (3.53) suggests a major advantage of PHEMTs over MESFETs
and other FETs: the fact that gm can be increased by reducing the supply layer thickness
d (and increasing its doping) without compromising the current (as would happen in a
MESFET due to the thinner active layer) or introducing extra impurity scattering due to
the increase in doping. The cutoff frequency can be readily interpreted in terms of the
transit time of electrons below the gate, τt .
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3.5.5 High-speed heterojunction bipolar transistors

Conventional bipolar transistors are based on two pn junctions with a common side,
leading to the so-called pnp and npn dual structures. In the npn device (preferred for
analog applications due to the superior transport properties of electrons with respect to
holes) the np emitter–base junction is in forward bias and injects electrons into the thin
p-type base layer. A small fraction of such electrons recombine in the base, attracting
holes from the base contact to sustain e-h pair recombination and thus giving rise to a
small base current IB . Most of the electrons injected from the emitter are swept by the
electric field in the reverse-bias base–collector junction, so as to be ultimately collected
by the collector contact as the collector current IC = −IB − IE = −α IE (we assume
all currents are positive entering). The parameter α < 1 (but close to 1) is denoted as
the common base current gain. We thus have, solving for IC :

IC = α

1 − α
IB = β IB , β = α

1 − α
� 1,

where β is the common emitter current gain. The common base current gain α can be
shown to be expressed as the product of two factors:

α = γ b,

where γ < 1 is the emitter efficiency, b < 1 is the base transport factor. The emitter
efficiency γ accounts for the fact that, in an npn transistor, the emitter current has two
carrier components – electrons injected from the emitter into the base and holes injected
from the base into the emitter. The latter component is useless, since it is not finally
collected by the collector, and does not contribute to current gain. The parameter γ < 1
is the ratio between the useful component of IE and the total emitter current and should
therefore be made as close as possible to unity. On the other hand, the base transport
factor b is the fraction of injected electrons that successfully travel through the base to
reach the collector. To achieve a large current gain β, α (and therefore both γ and b)
should be almost unity.

The base transport factor b can be optimized by making the base thickness (length)
as small as possible (in conventional transistors, with respect to the carrier diffusion
length in the base), or, equivalently, by making the transit time of minority carriers
in the base (electrons in an npn) much smaller than the minority carriers’ lifetime
in the base. Epitaxial growth allows reduction of the base thickness to the nanome-
ter scale (although this of course increases the base distributed resistance, unless the
emitter width is reduced through self-aligning techniques similar to those exploited in
submicrometer CMOS gate technology).

Optimization of the emitter efficiency γ traditionally required the emitter–base junc-
tion to be strongly asymmetrical, with NDE � NAB . Assume for completeness that a
bandgap difference �Eg = EgE − EgB may exist between the emitter and the base; it
can be shown that

γ = 1

1 + NAB DhE WB NvE NcE

NDE DnB WE NvB NcB
exp

(
−�Eg

kB T

) , (3.54)
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where DhE is the hole diffusivity in the emitter, DnB is the electron diffusivity in the
base, WB and WE are the base and emitter thickness, respectively, and Nvα (Ncα) are the
effective valence (conduction) band state densities in the emitter or base (α = E, B). In
a conventional, homojunction bipolar �Eg = 0 and NαE = NαB , α = c, v; taking into
account that DhE ≈ DnB (the hole diffusivity is in fact lower, but of the same order of
magnitude as that of the electrons) and that WB < WE (but again with similar orders of
magnitude), the only way to have γ close to unity is to set

NAB

NDE
� 1,

i.e., to make the emitter doping much larger (e.g., one order of magnitude) than the base
doping. Since the base doping should be larger than the collector doping,10 we finally
have the conventional bipolar design rule NDE � NAB > NDC . Assuming b ≈ 1 and
using the Einstein relation D = (kB T/q) μ, we have from (3.54)

β ≈
(
μnB WE NvB NcB

μhE WB NvE NcE

)
NDE

NAB
exp

(
�Eg

kB T

)
, (3.55)

which will be exploited in the rest of the discussion.
As in field-effect transistors, two figures of merit can be introduced to character-

ize the bipolar transistor speed: the cutoff frequency fT and the maximum oscillation
frequency fmax. Faster transistors can generally be obtained by scaling down the device
geometry and scaling up the doping level. Increasing the doping level is mandatory
in order to properly scale the junction depletion region sizes (roughly, dopings scale
as l−2, where l is some characteristic dimension, so that a size scaling down of 100
corresponds approximately to an increase in the doping level of a factor of 100). Con-
ventional, homojunction bipolars are, unfortunately, affected by basic limitations if the
cutoff frequency has to be pushed beyond a few gigahertz. In fact, the increase in the
doping level in the emitter (the region with the highest doping in the whole device) leads
to the so-called bandgap narrowing effect, whereby the material gap decreases slightly
for high doping according, or example, to the Lanyon–Tuft model [30], [31]:

�EgE = 3q3

16πε3/2
s

√
NαE

kB T
,

where εs is the semiconductor permittivity, NαE is the donor or acceptor emitter doping,
T is the absolute temperature, and �EgE is the emitter gap decrease. For Si at ambient
temperature one has

�EgE ≈ 22.5

√
NαE

1 × 1018
meV

10 This is typically needed for two purposes: decreasing the width of the base depletion layer in the base–
collector junction and its sensitivity to the applied VC E : this minimizes the so-called Early effect and as a
consequence the small-signal output resistance of the transistor, increasing the breakdown voltage of the
base–collector junction and therefore the transistor’s maximum output power.
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with the doping in cm−3 units. At NDE ≈ 1 × 1019 cm−3 the bandgap narrowing is of
the order of 100 meV; since, from (3.55),

β(NDE ) ≈ β(0) exp

(
−�EgE

kB T

)
,

where β(0) is the low-doping current gain, we immediately see that even a small
bandgap narrowing leads to a decrease in the common emitter current gain. Another
important point to consider is the fact that the low base doping required by the condi-
tion NDE � NAB implies a high value for the input base distributed resistance, which
in turn compromises the transistor fmax. In conclusion, homojunction bipolars have lim-
ited space for optimization for operation above a few gigahertz because this would need
to increase the base doping to reduce the input resistance, which would imply extremely
large emitter dopings, leading in turn to emitter bandgap narrowing.

A possible way out of this stalemate is obtained by a bipolar design where the
bandgap of the base is different (in particular, smaller) than the emitter bandgap. In
this case we can satisfy the condition

NAB

NDE
exp

(
−�Eg

kB T

)
� 1

by exploiting a suitably large �Eg , even if NAB ≈ NDE . This allows a decrease in the
base resistance and, as a consequence, an increase in fmax (of course, the emitter width
also has to be scaled down to submicrometer size to reduce the base resistance). The
band diagram of a heterojunction bipolar transistor in the forward active region (i.e.,
when the emitter–base junction is in forward bias and the base–collector junction is in
reverse bias) is shown in Fig. 3.28. The increase in the emitter efficiency can also readily
be interpreted in terms of a potential barrier opposing the hole back-diffusion into the
emitter; in fact, the global effect of the heterojunction is related to the entire bandgap
difference �Eg , which also has an influence on the relative intrinsic concentrations. In
the example shown, the base and collector are narrowgap and the base–emitter hetero-
junction is abrupt; alternative designs can be obtained through a graded base–emitter
heterojunction and by using a widegap collector.

3.5.6 HBT equivalent circuit

Bipolar transistors (both conventional and heterojunction) are junction-based devices
for which a few fundamental theoretical relations hold, at least approximately. In the
direct active region (we refer to a npn device) the emitter current follows the junction
law vs. the driving voltage VB E :

IE ≈ IE0

(
eVB E/VT − 1

)
,

where VT = kB T/q (26 mV at 300 K). Since IE ≈ IC we also have

IC ≈ IC0

(
eVB E/VT − 1

)
≈ IC0eVB E/VT ,
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Figure 3.28 Bandstructure of a npn heterojunction bipolar in the direct active region. In the example shown,
the emitter is widegap, the base and collector are narrowgap.

so that the intrinsic bipolar transconductance gm can be expressed as

gm = ∂ IC

∂VB E
= IC

VT
.

On the other hand, IB = IC/β; thus, the input differential conductance of the bipolar
can be expressed as

G B′ E = ∂ IB

∂VB E
≈ IB

VT
= IC

βVT
= gm

β
.

The intrinsic base has been denoted as B ′, as opposed to the external (extrinsic) base
contact. Due to the input junction structure, the input capacitance of the bipolar, CB E , is
the capacitance of a forward-biased pn junction, and therefore appears in the equivalent
small-signal circuit in parallel to G B′ E = R−1

B′ E . Addition of other parasitic capacitances
and inductances, together with the output resistance RC E arising from the weak depen-
dence of IC on VC E (the so-called Early effect) finally leads to the equivalent circuit in
Fig. 3.29. The distributed base resistance RB B′ models the resistive path between the
transistor input and the intrinsic base (the base current flows in the narrow base layer
orthogonal to the collector and emitter current densities); due to the very small base
thickness such a resistance tends to be large (therefore negatively affecting the device
fmax) unless the base is suitably doped and the emitter is very narrow. The bipolar cutoff
frequency

fT = gm

2πCB E
= IC

2πCB E VT

increases with the collector bias current, but for high values of IC saturation occurs
due to high-injection effects, which causes a drop of the transistor current gain β. In
conclusion, the cutoff frequency typically exhibits a maximum vs. IC , and decreases
for low and high IC values. Plotting IC and IB as a function of VB E in semilog scale we
obtain the result shown in Fig. 3.30: for low currents IB is mainly due to leakage effects
and the base current may be larger than the collector current. In an intermediate range
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Figure 3.29 Small-signal equivalent circuit of a bipolar transistor. The gray box is the intrinsic device.
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Figure 3.30 Qualitative Gummel plot of heterojunction bipolar transistor.

IC = β IB , as foreseen by ideal transistor operation; finally, for large VB E both currents
saturate and β decreases. The diagram in Fig. 3.30 is referred to as the Gummel plot of
the transistor. InP-based HBTs currently reach cutoff frequencies of the order of several
hundreds of gigahertz and maximum oscillation frequencies of the order of 1 THz.

3.5.7 HBT choices and material systems

Heterojunction bipolar transistors can be implemented in a variety of material systems.
III-V-based HBTs exploit either GaAs or InP substrates. For the GaAs-based device,
the widegap emitter is obtained through lattice-matched AlGaAs (another choice is to
exploit lattice-matched InGaP); in AlGaAs the Al content must be kept below 30% since
above this value a trap level (the DX centers) appears in the widegap material, leading
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Table 3.1 Epitaxial structure of InP-based HBT; t is the layer thickness. After [32], Table 1. ( c©1995
Elsevier)

Layer Material t (nm) Doping (cm−3)

Cap 1 InAs 15 ND = 3 × 1019

Cap 2 In0.53Ga0.47As 100 ND = 3 × 1019

Cap 3 In0.52Al0.48As 50 ND = 3 × 1019

Emitter In0.52Al0.48As 150 ND = 1 × 1017

Spacer In0.53Ga0.47As 30 undoped
Base In0.53Ga0.47As 150 NA = 5 × 1018 − 1.3 × 1019

Spacer In0.53Ga0.47As 30 undoped
Collector In0.53Alx Ga0.47−x As 400 ND = 7 × 1016

Buffer In0.53Ga0.47As 200 ND = 3 × 1019

Substrate InP 350 μm ND = 1 × 1018

Substrate: GaAs S.I.

Subcollector: GaAs n+

Collector: GaAs n–

E

B

C

Passivation Passivation

Base: GaAs p+

Emitter: Al0.3Ga0.7As n–

Figure 3.31 Cross section of epitaxial GaAs-based HBT.

to an increase of the leakage currents. The base can be either GaAs (lattice matched)
or InGaAs (pseudomorphic), while the collector, subcollector, and substrate are GaAs.
A simplified example of GaAs-based epitaxial HBT structure is shown in Fig. 3.31.

Although the GaAs-based technology is well consolidated, still better performance
can be obtained with InP-based devices, thanks to the larger bandgap difference between
the emitter and the base. Typical devices have an InAlAs emitter, a lattice-matched
or pseudomorphic InGaAs base, and an InP collector, subcollector, and substrate. An
example of epitaxial structure is reported in Table 3.1 [32].

Of particular interest are HBTs exploiting Si substrates. The SiGe alloy is a narrow-
band material, which can be epitaxially grown over a Si substrate in pseudomorphic
form. In fact, the Si1−x Gex alloy exhibits a lattice mismatch with respect to Si equal
to ≈ 4x%, where x is the Ge fraction. An example of advanced SiGe HBT is shown
in Fig. 3.32; the only SiGe layer is the narrowgap base; the device is made with a
self-centered polysilicon emitter process and deep trench isolation between neighboring
devices. SiGe HBTs are an interesting alternative to other high-speed transistors for
low-power analog circuits and digital circuits, although the process is more complex
than for CMOS-based circuits. SiGe bipolars can reach millimeter wave operation,
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Figure 3.33 Example of mixed bipolar-FET integration on GaAs substrate (not to scale): the cross section
shows a depletion-mode HEMT, an enhancement-mode HEMT, a GaAs-based HBT, a NiCr
resistor and a MIM capacitor. Adapted from [33], Fig. 1.

but with low breakdown voltages (below 3 V; the breakdown voltage decreases
with increasing cutoff frequency, see Ch. 6, Fig. 6.61), while GaAs-based (and, to
a lesser extent, InP-based) transistors exhibit larger breakdown voltages and power
densities.

Finally, the advent of HBTs has made it possible to extend mixed bipolar-FET process
such as the BICMOS (where bipolars are SiGe HBTs) but also HBT-HEMT integra-
tion, as shown in Fig. 3.33 [33]. Depletion-mode HEMTs (D-HEMTs) are in the on
state for VGS = 0, while enhancement-mode HEMTs (E-HEMTs) are in the off state
for VGS = 0 and begin to conduct for VGS > 0. The integration of D-HEMTs and
E-HEMTs is important in applications such as fast logical circuits (e.g., multiplexers
and demultiplexers for 40 Gbps operation).

3.6 Noise in electron devices

In real circuits, all electrical signals are affected by small-amplitude random fluctuations
(the noise); noisy signals can be modeled as the superposition of an ideal, noiseless
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signal, and of a zero-average stochastic process. Since noise is a signal with nonzero root
mean square (r.m.s.) value, it is associated, at a circuit level, with power exchange. Noise
power depends on the second-order statistical properties of the signal fluctuations, such
as the autocorrelation function, the power spectrum, the r.m.s. value, or the quadratic
mean. For simplicity, we will assume all devices considered to be linear or in small-
signal operation. In large-signal conditions the treatment becomes more involved, since
noise sources are modulated by the instantaneous working point.

3.6.1 Equivalent circuit of noisy N-ports

A noisy one-port can be modeled by adding to a noiseless equivalent circuit a ran-
dom voltage or current source, according to a series (Thévenin) or a parallel (Norton)
approach; see Fig. 3.34. The one-port available noise power can be obtained by integrat-
ing the available noise power spectrum pn( f ) (W/Hz) over the operating bandwidth,
and is related to the open-circuit voltage or short-circuit current power spectra Sen ( f )
(V2/Hz) or Sin ( f ) (A2/Hz) as follows:

Pn,av = v2
n

4R
=
∫ ∞

0

Sen ( f )

4R
d f = i

2
n

4G
=
∫ ∞

0

Sin ( f )

4G
d f =

∫ ∞

0
pn( f ) d f,

where R and G are the one-port internal resistance or conductance.
The equivalent circuit of noisy two-ports, see Fig. 3.35, includes two correlated ran-

dom voltage or current sources; the noise model therefore consists of the two-port
small-signal parameters (e.g., the impedance, admittance or scattering matrix), and
of the generator’s power (real) and correlation (complex) spectra. For the series and
parallel cases:

Sin1(ω), Sin1in2(ω), Sin2(ω),

Sen1(ω), Sen1en2(ω), Sen2(ω).

Noisy
bipole

(a) (b) (c)

Z(ω) Y(ω)

en

in

Figure 3.34 Noisy one-port (a); series (b) and parallel (c) equivalent circuit with noise generators.

(a) (b)

Z(ω)

en1 en2

in1 in2Y(ω)

Figure 3.35 Series (a) and parallel (b) equivalent circuit of a noisy two-port with correlated generators.
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3.6.2 Noise models of active and passive devices

Semiconductor noise is associated with fluctuations of the carrier velocity and popula-
tion. Diffusion noise is a general term addressing fluctuations associated with transport
(reducing to thermal noise at or near thermodynamic equilibrium), while generation–
recombination (GR) noise refers to population fluctuations associated with optical,
thermal, or avalanche (Auger) GR mechanisms. In some cases, noise models exist relat-
ing the noise behavior to the DC or small-signal parameters of the device. Examples
are passive circuits, diodes, and, with some added complexity, bipolar and field-effect
transistors.

According to the Nyquist law, the (white, i.e., frequency-independent) power spectra
of the open-circuit noise voltage or short-circuit noise current of a resistor are

Svn ( f ) = 4kB T R V2/Hz, Sin ( f ) = 4kB T G A2/Hz,

with available power spectral density

pn( f ) = Svn ( f )

4R
= Sin ( f )

4G
= kB T W/Hz.

The r.m.s. values of the open-circuit voltage and short-circuit current are, respectively,

vn,rms =
√
v2

n = √
4kB T RB V, in,rms =

√
i
2
n = √

4kB T G B A,

where B is the system bandwidth (B ≈ Br , the bit rate). For a passive RLC one-port,
the generalized Nyquist law holds:

Svn (ω) = 4kB T Re [Z(ω)] V2/Hz, Sin (ω) = 4kB T Re [Y (ω)] A2/Hz,

where Z and Y are the one-port impedance and admittance, respectively.
Diffusion and GR noise from junction devices (like diodes and bipolar transistors)

can be modeled through a shot noise model according to which noise is described by
a Poissonian process, whose power spectrum is proportional to the process mean (DC)
value according to Campbell’s theorem [34]. For a diode, the power spectrum of the
short-circuit noise current is

Sin (ω) = 2q (ID + 2I0) ≈ 2q ID,

where ID is the total diode current and I0 the reverse saturation current. Note that in
reverse bias ID = −I0 and Sin (ω) = 2q I0. This model also holds in photodiodes, where
the total reverse current is dominated by the photocurrent IL , while I0 ≡ Id is the dark
current. The bipolar transistor noise is also described by a shot noise model.

For field-effect transistors (FETs), compact noise models exist relating the short-
circuit gate and drain current fluctuation power and correlation spectra to a set of small-
signal parameters. An example is the so-called PRC or Cappy high-frequency noise
model for the intrinsic FET noise [35], yielding
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Figure 3.36 Noise model for a high-frequency field-effect transistor.
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SiDn ≈ 4kB T0gm P (3.56)

SiGn ≈ 4kB T0
ω2C2

GS

gm
R (3.57)

SiGniDn ≈ jC
√

SiDn SiGn , (3.58)

where gm is the device transconductance, CGS is the input capacitance, according to
the equivalent circuit shown in Fig. 3.36, and T0 is a reference temperature at which
the parameters P , R, and C are measured (the default value is the ambient temperature
or, more exactly, T0 = 290 K). The circuit also includes thermal noise models for the
parasitic resistances. The parameters P , R, and C can be considered as fitting factors; P
(also called β in MOSFET modeling) has an ideal value P = 2/3 in long-gate devices;
for R the ideal value is R = 5/4, while C expresses the correlation magnitude (typically
C ≈ 0.6 − 0.7).11 The imaginary correlation spectrum implies that short-circuit gate
and drain current fluctuations are in quadrature due to the capacitive coupling of channel
current fluctuations to the gate. At low frequency, the gate noise spectrum SiGn and the
correlation spectrum SiGniDn become negligible, and only the output drain noise (white)
is significant. A simplified intrinsic circuit, neglecting parasitics, is shown in Fig. 3.37.

11 For a more detailed treatment, see, e.g., [36].
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3.7 Monolithic and hybrid microwave integrated circuits
and optoelectronic integrated circuits

High-speed electronic integrated circuits (ICs) can be implemented through two com-
plementary approaches, the hybrid IC and the monolithic IC. Integrated circuits oper-
ating in the microwave range (i.e., up to 30–40 GHz or 40 Gbps) are often denoted as
(monolithic) microwave integrated circuits, (M)MICs.

In the hybrid approach, the circuit is realized on a dielectric substrate, integrating all
distributed components and, possibly, some lumped components (which may, however,
also be inserted as discrete lumped elements through wire bonding or surface mount
techniques). In the hybrid approach, the semiconductor active elements are inserted as
lumped components and connected again through wirebonding or surface mount.

On the other hand, monolithic circuits integrate all active and passive elements on
a semiconductor substrate. While hybrid circuits often exploit distributed components
based on transmission line approaches, at least for narrowband applications, in mono-
lithic circuits the lumped approach is preferred, owing to the possibility of reducing the
circuit size (lumped components are much smaller than the guided wavelength, while
distributed elements, as already recalled, have characteristic sizes of the order of λg/4 at
centerband). Monolithic integrated circuits can be based on GaAs, InP, or Si substrates
and as active elements may exploit FETs or bipolars (typically HBTs).

According to the transmission medium used, we may have microstrip or coplanar
integrated circuits. Microstrip circuits are more compact in size due to the lower ground
plane, but require a precise control of the dielectric thickness, while coplanar circuits
are preferred at very high frequency (mm waves) or, as in mixed optoelectronic circuits,
because the coplanar waveguide is immediately compatible with the layout of some
optoelectronic devices (e.g., electrooptic modulators). Microstrip circuits in fact only
allow for straightforward connection of series elements (parallel elements are required
to reach the lower ground plane, often by etching a hole in the substrate, the so-called
via hole), while a coplanar circuit allows for the connection of both series and parallel
elements. Finally, the on-wafer high-frequency characterization requires connection of
the integrated circuit to the measurement setup through coplanar probes; to this purpose,
coplanar ground planes must be made available (e.g., through via holes) at the circuit
input and output.

A final step toward monolithic integration is the integration of electronic circuits
with optoelectronic devices, leading to the so-called optoelectronic integrated circuits
(OEICs). In practice, the development of OEICs is confined to a few specific com-
ponents, such as detectors and the related front-end amplifier stages. In such cases,
the monolithic integration drastically reduces the interconnection parasitics; however,
the implementation of OEIC integration is fraught with problems associated with the
difficulty of realizing both transistors and optoelectronic components on the same semi-
conductor substrate with possibly different epitaxial layer structures. A few techniques
for realization of OEICs are reported in Fig. 3.38; the regrowth option allows us to
achieve the maximum degree of freedom in terms of the E and OE epitaxial structure,
but can create reliability problems, while in cases (a) and (b) etching is required to
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Figure 3.38 Techniques for optoelectronic integration (OEICs): (a) growth of the electronic part (E) through
a unique epitaxial structure in which the optoelectronic (OE) and E part have been separated
through isolation; (b) growth of the E and the OE part using the same layers; (c) epitaxial
regrowth of the E part after the OE has been realized. Adapted from [37], Fig. 12.2.

remove the extra layers in the OE part. Note that most OE devices are junction devices
requiring doped layers, while E devices should be grown on a semi-insulating substrate.
In some cases, the same epitaxial structure can be used for the E and OE parts (see
Fig. 3.38(b)), with some compromise on layer optimization. Note that optoelectronic
integration with long-wavelength detectors or sources also requires the use of InP-based
electronics rather than of the more convenient GaAs-based electronics.

A qualitative example of the layout of a hybrid or monolithic integrated circuit in
microstrip or coplanar technology can be introduced as a simple, single-stage open-loop
amplifier with two lumped bias Ts and input and output matching section. Figure 3.39
presents two possible circuit implementations, with distributed matching sections (a),
typically (but not necessarily) hybrid, or with lumped matching sections (b), usually
monolithic. Figure 3.39 (a) also shows the equivalent circuit of two microstrip to coaxial
connectors, modeled through a low-pass filter.

Figure 3.40 shows a simplified hybrid microstrip implementation of the single-
stage amplifier, in which the input and output matching sections have been separately
realized on two different ceramic substrates. The active device is introduced in pack-
aged form and exploits as the ground plane (and also as the heat sink) a ridge
in the metal package. Bias Ts are implemented using as series inductors the par-
asitic wire bonding inductance; chip capacitors connected to the package as the
ground are also part of the bias T. The same amplifier can be implemented in
monolithic form, as shown in Fig. 3.41, through lumped input and output matching
sections. Via holes are used quite liberally to provide local grounding, in addi-
tion to the ground pads needed for the input and output coplanar connectors. The
circuit shown is unpackaged. Finally, Fig. 3.42 shows a coplanar waveguide mono-
lithic implementation exploiting distributed matching sections. Due to the typically
small size of MMICs, such a solution is realistic only if the frequency is high
enough to make distributed elements compact, e.g., for millimeter wave opera-
tion. While coplanar waveguides easily allow for open- and short-circuit line stubs
(i.e., short pieces of transmission lines for the implementation of the distributed
matching sections), the layout is globally less compact, and ground planes have
to be connected together by air bridges to suppress spurious modes where the
two ground planes are at different potentials. Both in the microstrip and in the
coplanar layout, a source air bridge is used in the active component. The active device
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Figure 3.39 Circuit implementation of a simple one-stage amplifier with input and output matching sections:
(a) with distributed elements, mainly hybrid; (b) with lumped elements, mainly integrated.
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Figure 3.40 Hybrid microstrip implementation (distributed matching section) of a single-stage amplifier.

layout has been kept the same in the microstrip and coplanar versions, although the
difference in operation frequency (microwave vs. millimeter-wave) also has an impact
on the FET layout (e.g., on the length of the gate fingers, which is decreasing with
increasing frequency).
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Figure 3.41 Example of monolithic microstrip implementation of single-stage microwave amplifier (lumped
matching sections). The layout is qualitative, with elements only approximately to scale. The
chip size is ≈ 0.5 mm × 1 mm. The source air bridge area is shown with a dashed line.
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Figure 3.42 Example of monolithic coplanar implementation of millimeter-wave single-stage amplifier
(distributed matching sections). The layout is qualitative, with elements only approximately to
scale. The chip size is ≈ 1 mm × 2 mm. The source air bridge area is shown with a dashed line.

Both hybrid and monolithic integrated circuits are typically packaged (in a metal
or dielectric enclosure) and connected to other subsystems through electrical con-
nectors. RF connectors are often coaxial, with diameter decreasing with increasing
frequency, and they correspond to microstrip–coaxial transitions. Sometimes, unpack-
aged MMICs are directly connected to a hybrid circuit that is in turn packaged, as shown
in Fig. 3.43.

A few coaxial to microstrip transitions ordered by increasing frequency operating
range are shown in Fig. 3.44. Soldered connectors can be used up to a few gigahertz,
while at higher frequency wire bonding or ribbon bonding (having lower parasitic p.u.l.
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Figure 3.43 MMIC on-chip connection into a hybrid circuit, which in turn is packaged and connected to
other circuits through coaxial connectors.
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Figure 3.44 Microstrip to coaxial connectors: (a) soldered; (b) wire bonding; (c) ribbon bonding;
(d) unsoldered connector.

inductance) are exploited. High-frequency connectors operating, e.g., at 40 GHz and
beyond are not based on wire or ribbon bonding, but rather on contact connectors.12

3.8 Questions and problems

3.8.1 Questions

1. Identify the digital and analog electronic subsystems in a high-speed optical
transceiver (transmitter and receiver). What components are more critical?

2. Define the frequency ranges corresponding to RF and microwaves. In which
frequency range does the electronic part of a 10 Gbps system operate?

12 High-frequency coaxial connectors are denoted by conventional names, some of them referring to the
frequency band they were initially meant to cover. Thus we have the K connectors (up to 40 GHz),
the V connectors (up to 60 GHz) and the so-called W1 connectors (Anritsu name, 1 mm radius) up to
110 GHz, which is currently the highest frequency exploited in standard instrumentation. The connector
size decreases with increasing frequency.
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3. Explain the difference between a lumped-parameter and a distributed-parameter
high-speed circuit.

4. Explain why impedance or admittance parameters are difficult to measure at
microwave frequencies.

5. An impedance has scattering parameter 0.5 with respect to 50 �. What is the
impedance value?

6. An impedance has scattering parameter j with respect to 50 �. What is the
impedance value? What component (lumped) could implement it?

7. Explain the meaning of conjugate matching.
8. Can a non-TEM waveguide be exploited to transmit a digital signal in baseband?

Justify the answer.
9. Explain the difference between a TEM and a quasi-TEM waveguide.

10. Sketch a microstrip and a coplanar line.
11. Explain why in a coplanar waveguide losses are not monotonic vs. the characteristic

impedance, whereas they are in a microstrip.
12. What is the effective permittivity in a quasi-TEM line?
13. A quasi-TEM line is on a dielectric with permittivity 2. The effective permittivity

is 3.5. Explain why something is wrong with the information provided.
14. Sketch the behavior of the line attenuation vs. frequency for a quasi-TEM line.
15. Explain the skin effect in a quasi-TEM transmission line.
16. Explain why lumped inductors for MMICs are not implemented with magnetic

materials.
17. Justify the fact that the frequency range of a lumped inductor is narrower when the

inductance is higher.
18. Justify the shape of the velocity–field curve in GaAs and InP. Why can the

maximum carrier velocity be higher than the saturation carrier velocity?
19. Explain why a heterostructure can be profitably used in a field-effect transistor.
20. Explain the motivation behind the evolution from HEMTs to PHEMTs.
21. Suppose you want to exploit MOSFETs for the electronic part of a 40 Gbps system,

and assume to need a cutoff frequency at least 3 times the maximum operating
frequency. What should the approximate gate length be?

22. Describe the structure of a InP-based PHEMT.
23. Explain the operation of the HBT.
24. Justify the interest in SiGe HBTs for high-speed optical communication systems.
25. In a SiGe HBT-based circuit, where do you find Ge?
26. What is the purpose of the bias T in a high-speed circuit?
27. Explain why the conjugate matching approach for an amplifier design cannot be

applied as such to a wideband amplifier. What is the purpose of the input and output
matching network in this case? (Hint: a wideband amplifier must have flat gain, but
the MAG decreases with frequency.)

28. What are the main differences between a coplanar and a microstrip circuit layout?



3.8 Questions and problems 157

3.8.2 Problems

1. The conductivity of a 2 μm thick conductor is σ = 1 × 105 S/m. Evaluate the fre-
quency at which the skin-effect penetration depth is equal to the conductor thickness.
Repeat the problem using a metal conductivity (σ = 1 × 107 S/m).

2. A transmission line has (high-frequency regime) characteristic impedance Z0 =
30 �, effective refractive index neff = 2, loss equal to 0.2 dB/mm at 1 GHz. Sup-
posing that the loss is due to metal losses, evaluate the per-unit-length parameters of
the line. What is the p.u.l. resistance at 100 GHz?

3. What is (approximately) the impedance Z0 of a microstrip with substrate permittivity
εr = 10, substrate thickness 0.5 mm, strip width 0.5 mm?

4. Evaluate the input impedance of a transmission line of length l, propagation constant
β, attenuation α, closed by a load ZL and with characteristic impedance Z0. What
happens if ZL = Z0 or if ZL is a short or an open? Is it always true that the input
impedance of an infinitely long line is Z0?

5. Evaluate the transmission line parameter expression (3.18) in the high-frequency
approximation. (Hint: assume that the characteristic impedance is real and equal to
the limit for f → ∞ and expand the complex propagation constant.)

6. A PHEMT with gate periphery W = 0.5 mm has a process transconductance of
200 mS/mm. The gate length is Lg = 150 nm, the AlGaAs thickness is d = 100 nm
and the relative permittivity is εr = 13. Estimate the cutoff frequency fT and, assum-
ing a total input resistance Rin = 10 � and an output resistance RDS = 100 �, the
maximum oscillation frequency.

7. A PHEMT with gm = 200 mS, fT = 200 GHz, P = 0.9 is connected at the input
with a generator with internal resistance Rg = 50 �. Evaluate the ratio between the
total output short-circuit drain noise current due to the cumulative effect of the noisy
input generator and of the PHEMT noise and the same quantity due to the noisy
input generator only. This parameter is called the device noise figure (NF). How
does the NF behave as a function of frequency? Suppose that the system bandwidth
is B = 1 Hz and compute the NF at low frequency and at fT /2.
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4.1 Photodetector basics

Photodetectors (PDs) are the first block in the system receiver chain.1 Their purpose is
to convert an optical (analog or digital) signal into an electrical signal, typically a current
(the photocurrent, iL ). The physical mechanism at the basis of semiconductor detectors
is the optical generation of electron–hole (e-h) pairs through the absorption of incident
photons. Photogenerated e-h pairs are then separated and collected to the external circuit
by an electric field. Such a collecting field can be induced by an external voltage bias
in a reverse-biased junction (as in pn, pin, and Schottky detectors), or in bulk (as in
photoconductors). In some cases, a third step (after photogeneration and collection) is
present: the photocurrent is amplified through external or built-in gain processes.

In the absence of illumination, detectors still have an output current, the dark cur-
rent id . The photocurrent is often linearly related to the input optical power pin(t)
as iL(t) = Rpin(t), where R is the detector responsivity (A/W); however, for large
input optical power the generated photocarriers ultimately screen the collecting electri-
cal field, leading to current saturation. Since the photocurrent depends on the amount of
photogenerated carriers and, therefore, on the material absorption profile vs. the wave-
length λ of the modulated optical carrier, the responsivity will depend on λ, R = R(λ),
with bandpass behavior. However, the optical bandwidth of most detectors is wide.

Finally, the quasi-static, memoriless relation iL = Rpin holds only when the optical
power varies slowly with time, or, for time-harmonic input optical power, with a mod-
ulation frequency lower than the device cutoff frequency. When the input power varies
too rapidly with time, the output current does not follow its instantaneous value, because
of low-pass or delay mechanisms, such as the effect of the device capacitance and the
effect of the transit time that photocarriers experience before being collected. We can
therefore define, in small-signal conditions and for a harmonic input optical power, a
frequency domain (complex) responsivity R(ω) relating the amplitude and phase of the
small-signal photocurrent component at ω to the amplitude and phase of the harmonic
input optical power. The function R(ω) is typically low-pass.

1 The input optical signal may be optically amplified before detection by a semiconductor optical amplifier
(SOA); this closely corresponds to the architecture of RF receivers, where the first function is low-noise
amplification, followed by signal demodulation through a mixer or (in the simplest case) an envelope
detector. Photodetectors in direct detection receivers operate, in fact, as envelope detectors.
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The output of the PD is a current, i.e., from the electrical standpoint the PD is a
high-output impedance device. In order to drive the receiver circuits connected to the
detector, the PD current has to be converted into a voltage through a load resistance
or, better, a transimpedance amplifier (TIA) providing power amplification. Besides the
photocurrent and dark current, the PD also generates an output noise current, that can
be modeled, in junction devices, according to a shot noise approach. PD noise can be
negligible composed with the noise from the front-end amplifier, or dominant; in the
former case the receiver operates in the thermal noise limit, in the latter it operates in
the shot noise limit.

4.2 Photodetector structures

Photogenerated carriers are collected by an electric field E , induced by an applied volt-
age in a bulk semiconductor or in a reverse-bias junction. Possible semiconductor-based
detector structures are:

• Bulk: photoresistors (photoconductors);
• pn junction-based: pn photodiodes, pin photodiodes, avalanche photodiodes

(APD), phototransistors;
• Metal–semiconductor junction based: Schottky barrier photodiodes, metal–

semiconductor–metal (MSM) photodiodes.

Among nonsemiconductor device choices, we have vacuum detectors and organic
detectors (somewhat similar to semiconductor detectors), which will not be discussed
here.

In photoconductors (Fig. 4.1(a)), photocarrier generation takes place in a neutral or
lightly doped bulk semiconductor, i.e., in a resistive region. The photogenerated excess

n-type or
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n-type n+-type

p+-typep-type

hf hf hf

–
– –

+ + +

(a) (b) (c)

depletion

intrinsic,
depleted

Figure 4.1 Simplified scheme of (a) photoresistor; (b) pn photodiode; (c) pin photodiode. The bias circuit
is not shown.
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carrier density modulates the conductivity, thus leading to current modulation under
constant bias voltage. Carriers are removed to the external circuit by the almost uni-
form electric field induced by the voltage bias. The device turns out to have high gain,
but the bandwidth is limited by the photocarrier lifetime. The dark current is very high
(but can be capacitively decoupled from the load) and (thermal) noise is typically large;
notice that the photoresistor is always working in the thermal noise limit. Photoconduc-
tors are simple, low-speed devices, not very well suited for high-performance telecom
applications.

Junction-based devices exploit the photocarrier generation in a reverse-bias pn, pin,
or Schottky junction. Photocarriers are removed to the external circuit by the junction
reverse electric field, thus increasing the diode reverse saturation current (which, in
the absence of illumination, is the dark current). A somewhat naive implementation of
the concept is the pn photodiode, see Fig. 4.1(b); owing to the very small width of the
depletion region, photons are also absorbed in the adjacent diffusion regions, leading
to poor frequency response, limited by transit time and lifetime (besides RC capacitive
effects). As for other junction photodetectors, the dark current is small and noise is
mainly shot noise.

Optimization of the photodiode structure leads to pin photodiodes (Fig. 4.1(c)),
in which e-h generation occurs in a large intrinsic region sandwiched between high-
doping layers. The width of the intrinsic layer can be made large enough with respect
to the absorption length to render the related photocurrent contribution dominant over
the photocurrent originating from the diffusion regions; moreover, in Pi N heterostruc-
ture devices the doped layers are widegap and do not absorb light altogether at the
operating wavelength. Photocarriers are removed to the external circuit by the almost
uniform electric field induced in the intrinsic region by the applied reverse bias. The
frequency response is limited by transit time and RC effects; noise is shot noise and the
dark current is low. The pin photodiode is a high-performance device, with achievable
bandwidths in excess of 40 GHz; due to the unit gain, the sensitivity is not outstanding.

Figure 4.2(a) shows a simplified scheme of the avalanche photodiode (or APD). In the
version shown, the structure is a pin diode to which an additional pn junction has been
added with a highly doped n side. Photogenerated electrons in the intrinsic layer are
removed to the high-field region associated with the n+ p junction depletion layer, and
undergo avalanche multiplication. From the standpoint of responsivity, the APD can be
interpreted as a pin device to which a photocarrier gain (multiplication) block has been
added. The increase in responsivity is, however, obtained at the expense of increased
noise (multiplied shot noise and excess noise) and a reduction of bandwidth (due to the
additional delay introduced by the avalanche buildup). Despite the increase in noise,
the larger responsivity typically leads, at least in a thermal noise-limited receiver, to a
better (i.e., smaller) sensitivity. APDs were traditionally implemented in Si or Ge, but
in recent years more advanced heterostructure devices based on InGaAs have appeared
as competitors of pin photodiodes, at least up to 10 Gbps.

In phototransistors (Fig. 4.2(b)) photocarriers are generated in the base of a bipolar or
heterojunction bipolar transistor. The resulting base current is amplified by the transistor
common emitter current gain β, thus leading to an output collector current IC ≈ βRPin
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Figure 4.2 Simplified scheme of (a) avalanche photodetector; (b) phototransistor; (c) Schottky photodiode.
The bias circuit is not shown.

where R = IB/Pin is the responsivity, referred to the base current IB . The phototran-
sistor has high gain, shot noise of the amplified collector current (but no excess noise
as in APDs); the bandwidth used to be limited by the low cutoff frequency of con-
ventional bipolar transistors but, at least in the laboratories, high-speed heterojunction
phototransistors reach speeds in excess of 10 Gbps.

Schottky or MSM detectors are based on Schottky (metal–semiconductor) junctions
in reverse bias (Fig. 4.2(c)); the operation is somewhat similar to that of pn or pin
diodes (although an additional photogeneration mechanism is introduced by carriers
photoexcited from the metal into the semiconductor) and the device structure is sim-
pler; however, illumination of the device area is an issue, due to metal absorption, thus
requiring interdigitated electrode structures. Moreover, the frequency response is often
affected by slow tails, which make the device less appealing for high-speed applications.

4.3 Photodetector materials

While the collection of photogenerated e-h pairs requires an electric field to be applied
to photocarriers – a step whose implementation depends on the detailed device struc-
ture – the very possibility of carrier generation is related to the material absorption
profile and, in particular, to the absorption threshold, i.e. the minimum energy photons
must have to be absorbed. From (2.1), absorbed photons must satisfy the condition:

E ph = h̄ω ≥ Eg −→ λ [μm] ≤ 1.24

Eg [eV] .

Both direct-bandgap (GaAs, InGaAs, InP,. . . ) and indirect-bandgap (Si, Ge) semi-
conductors can be exploited in PDs; direct-bandgap materials typically have higher
absorption, which results in smaller absorption volumes and higher speed.
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Figure 4.3 Absorption coefficients of some direct-bandgap (InP, GaAs) and indirect-bandgap (Ge, Si)
semiconductors and comparison between the absorption lengths of Si and GaAs at the same
distance from the absorption edge; note the Ge composite behavior.

In fact, the exponential decrease of the optical power in the absorption region can be
expressed as

Pin(x) = Pin(0) exp(−αx) = Pin(0) exp(−x/Lα), (4.1)

where Lα = 1/α is the absorption length, i.e., the distance wherein light attenuates by a
factor exp(−1) = 0.37 or −10 log10 (0.37) = 4.31 dB. To absorb light almost entirely,
the thickness d of the detector’s active (or absorption) region must be suitably larger
than Lα , or at least d ≈ Lα . Considering the absorption length of typical direct-bandgap
and indirect-bandgap detectors (see Fig. 4.3), we see that in a direct-bandgap material
the thickness of the absorption region should be d ≈ 1 μm, while in indirect-bandgap
materials (e.g., in Si) d ≈ 100 μm. A large d corresponds to a high transit time, the
delay with which photocarriers are collected; this is a major limitation to the detector
speed.

In junction-based detectors (pn, pin and Schottky), however, the (depleted) absorp-
tion region acts as a capacitor, whose capacitance C ∝ d−1 limits the detector speed,
due to RC cutoff. Increasing d , the transit-time-limited speed decreases, while the RC-
limited speed increases, thus leading to the need for a design trade-off, see Section 4.9.5.
Si-based detectors are typically limited by transit time, while in direct-bandgap
detectors a compromise is sought between transit time and RC cutoff.

Example 4.1: Compare the transit times for a direct-bandgap detector (assume α1 ≈
104 cm−1) and an indirect-bandgap detector (α2 ≈ 102 cm−1). Suppose that photocarri-
ers travel at saturation speed (v ≈ 107 cm/s).

We assume αL ≈ 1 or L = Lα = 1/α, with a transit time τ = L/v = 1/αv.
In the two cases considered, we obtain τ1 = (α1v)

−1 = (104 · 107)−1 = 10 ps;
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τ2 = (α2v)
−1 = (102 · 107)−1 = 1 ns. The transit-time-limited bandwidth will be of

the order of fT = (2πτ)−1, i.e., fT 1 = (2πτ1)
−1 = (2π · 10−11)−1 = 16 GHz and

fT 2 = (2πτ2)
−1 = (2π · 10−9)−1 = 0.16 GHz, respectively.

To introduce an overview on the practically important photodetector materials, let
us consider the relation between the energy gaps of two semiconductors operating as
the emitter and the receiver in the same optical link. Since the emitted photon energy
is of the order of the emitting material energy gap Eg,e, this has to be larger than
the receiver material energy gap Eg,r , i.e., Eg,e ≥ Eg,r . In principle, detectors have
a wide optical bandwidth, but this is limited by the behavior of the responsivity versus
the photon energy; such behavior suggests that the photon energy should be suitably
larger than the receiver gap, but not too large. Figure 4.4 shows the energy gap of
many relevant semiconductors and semiconductor alloys as a function of the lattice con-
stant, and includes three horizontal lines, one corresponding to AlGaAs/GaAs emission
(around 0.8 μm) and the others to InGaAsP emission (1.3 and 1.55 μm, exploited in
long-haul optical systems). AlGaAs/GaAs sources can exploit, as a receiver, materials
such as Si, Ge, and GaAs- or InP-based alloys. For long-wavelength sources (1.3 and
1.55 μm), possible receiver materials are Ge (or SiGe with a small Si fraction), InGaAs,
InGaAsP, InGaAsSb, and CdHgTe. Due to the relative immaturity of antimonides
and of CdHgTe, the receiver materials of choice are, in this case, InGaAs and (to a
certain extent) Ge. Si-based receivers cannot be exploited at all for long-wavelength
detection.
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The most popular material for 1.55 and 1.3 μm high-performance detectors is prob-
ably InGaAs. This ternary alloy is a direct-bandgap material, with tunable Eg; it can
be grown through lattice-matched heteroepitaxy on InP substrates, with composition
In0.53Ga0.47As; in this case, of course, the bandgap is uniquely defined. The corre-
sponding direct-bandgap quaternary alloy (InGaAsP) can be grown lattice-matched to
InP substrates, with variable gap. Although InGaAsP is the material of choice for long-
wavelength sources, in PDs the ternary alloy is usually preferred. Antimonide-based
alloys, such as the direct-bandgap ternary AlGaSb, can be grown on GaSb; however,
the technology of antimonides (including the quaternary InGaAsSb) is not competitive
at present with the InP technology.

Detectors for short-haul (e.g., local area network, LAN) applications (0.8 μm wave-
length) can be based on AlGaAs/GaAs. This direct-bandgap (up to 45% Al mole
fraction) ternary alloy can be grown lattice-matched on GaAs substrates and has a
mature technology and a comparatively low cost. Due to the very similar avalanche
ionization coefficients of electrons and holes, however, this material is not well suited
to avalanche detectors; see Section 4.12. Silicon used to be a material of choice for
0.8 μm detectors, and obviously has the advantage of mature technology and low
cost, besides being well suited to avalanche detector design due to the very different
hole and electron avalanche ionization coefficients. However, the comparatively low
absorption confines silicon to low-speed applications, at least if conventional (vertical)
photodetector structures are used.

Germanium is an indirect bandgap material (Eg,i ≈ 0.66 eV) with a larger direct
bandgap (Eg,d ≈ 0.8 eV). The corresponding absorption edge wavelengths are

λi ≈ 1.24

0.66
= 1.87 μm, λd ≈ 1.24

0.8
= 1.55 μm.

The secondary, direct absorption edge therefore allows for the detection of long-
wavelength radiation (in particular 1.3 μm). The substrate technology is mature enough
and the avalanche coefficients of electrons and holes are quite different (so that good
quality, low noise avalanche detectors can be developed). Emerging SiGe technologies
have given this material interesting perspectives for integration on a Si substrate; unfor-
tunately, Si-rich alloys, with low mismatch with respect to the Si substrate, have optical
properties close to those of Si. Ge-rich alloys, on the other hand, exhibit large mismatch
with the Si substrate, and the related growth technology on Si substrates still poses
problems.

HgCdTe (cadmium mercury telluride, also called MERCAD or MERCATEL) is a
ternary alloy whose components are a semiconductor (CdTe) and a compound with
metal bandstructure (HgTe). Assuming that a metal has negative energy gap (i.e., the
valence band edge is above the conduction band edge, and the two bands overlap), the
MERCAD gap can be tuned down to almost zero, making this material a suitable alloy
for FIR detection. The substrate of choice is CdTe. Despite the complex technology, this
material still is very popular for FIR detectors (much less for long-wavelength com-
munication detectors), although the small gap and resulting large intrinsic population
require low-temperature operation.
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Figure 4.5 Extrinsic absorption in bulk, involving a trap level (left), and in a quantum well (right), as an
intersubband transition.

4.3.1 Extrinsic and QW detectors

The detectors discussed so far, called intrinsic detectors, are based on band-to-band
absorption processes, and their responsivity vanishes for photon energies below the
material absorption edge Eg . This limitation can be somewhat overcome in the so-called
extrinsic detectors. Bulk extrinsic detectors make use of low-energy transitions between
trap levels and the conduction or valence band, and can therefore detect FIR radia-
tion, albeit with low responsivity (Fig. 4.5, left). The same result can be achieved by
exploiting low-energy intersubband transitions, as in quantum well (QW) detectors; see
Fig. 4.5, right. Compared with low-gap HgCdTe FIR detectors, the QW solution allows
for a larger energy gap, and therefore is able to relax constraints on low-temperature
operation related to the need to lower the intrinsic carrier concentration (however, low-
T operation is also needed to suppress background noise). Another promising area for
QW intersubband detectors based on widegap semiconductors (e.g., GaN) may be the
development of long-wavelength receivers.

4.4 Photodetector parameters

4.4.1 PD constitutive relation

From the electrical standpoint, photodetectors are one-ports with a second (optical)
input port. Assume that the (modulated) input optical power around wavelength λ is
pin(t) and that the output current is iP D (including the photocurrent iL and the dark
current id ); the PD is generally characterized by the constitutive relation

iP D(t) = f

(
pin(t), vP D(t); d

dt
, λ

)
, (4.2)

where vP D is the detector voltage, and λ is the wavelength of the optical carrier (influ-
encing the material absorption and therefore the amount of generated photocarriers).
The time derivative implies that the relation between pin , vP D and the output current
iP D will not, in general, be memoriless. In fact, as already mentioned, the photocurrent
response vs. pin is lowpass and, moreover, detectors typically include reactive electri-
cal elements (such as junction capacitances and stray inductances). The output current
(taken as positive entering, see Fig. 4.6, left) can be decomposed as

iP D = iL + id ,
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Figure 4.6 Photodetector input–output diagram (left); photodetector current as a function of the optical
power in stationary (DC) or quasi-stationary conditions (right).

where the dark current id (the current in the absence of optical power) and the
photocurrent iL (the current contribution due to incident light) can be defined as

id = f

(
0, vP D(t); d

dt
, λ

)
(4.3)

iL = f

(
pin(t), vP D(t); d

dt
, λ

)
− id . (4.4)

In DC stationary conditions we have

IP D = f (Pin, VP D; 0, λ) = IL + Id ,

where Id = f (0, VP D; 0, λ) is the DC dark current, IL = f (Pin, VP D; 0, λ)− Id is
the DC photocurrent.

Equation (4.2) implies that, in general, the relation between the photodiode current
and the optical power is nonlinear (i.e., the photocurrent is not simply proportional
to the input optical power) and dispersive or with memory (according to the already-
mentioned low-pass behavior). However, for a slowly varying pin(t), (4.2) reduces to a
memoriless (quasi-static) relation that can be often linearly approximated as

iP D(t) = iL + id ≈ R(λ, vP D)pin(t)+ id(vP D), (4.5)

where R is the photodetector responsivity, in general (as already mentioned) a function
of the optical carrier wavelength, but also, in some devices (e.g., in avalanche detectors),
of the photodiode output voltage. In many detectors (e.g., photodiodes in reverse bias),
both the dark current and the responsivity are, however, virtually independent of vP D ,
and the dark current (the diode reverse saturation current) is small, so that

iP D(t) = R(λ)pin(t)+ Id ≈ R(λ)pin(t).

The linear dependence for the photocurrent iL , see Fig. 4.6, right, typically holds
for input optical powers Pin < Pin,sat where Pin,sat is the saturation optical power at
which the photocurrent saturates at IL ,sat (the total photodetector current saturates at
IP D,sat = IL ,sat + Id ≈ IL ,sat). The decrease in the responsivity at high optical power
and the ultimate saturation (Fig. 4.6, right) is due to device-specific intrinsic effects
(e.g., space-charge screening of the electric field collecting photocarriers); however, the
total photodetector current can also saturate due to the circuit loading conditions.
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4.4.2 Responsivity and quantum efficiency

The detector photocurrent (and therefore the responsivity) can in principle be derived
by integrating the optical generation rate Go, see (2.43), over the device active volume:

IL = q
∫

V
Go(r , Pin) dr .

From IL the device responsivity can in turn be obtained as

R = IL

Pin
or Rdiff = dIL

dPin
.

The first definition is called the incremental responsivity, the second the differential
responsivity; they coincide if the current–power characteristic is linear, see (4.5).

A more elementary derivation of Go can, however, be useful to derive an ideal, best-
case limit to the detector sensitivity. As a first step, we directly relate Go to the optical
power as follows. Differentiating (4.1) with respect to x and defining P̃in = Pin/A as
the optical power density (W/m2), with A the detection area, we have

dP̃in(x)

dx
= −α P̃in(x) → Energy lost due to absorption

t · V
= −�P̃in

�x
= α P̃in .

Dividing by the photon energy E ph = h̄ω, we obtain

(Energy lost) / (t · V )

Photon energy h̄ω
= α P̃in

h̄ω
= Number of photons absorbed

t · V

= Number of e-h pairs generated

t · V
= Go.

That is,

Go = α P̃in

h̄ω
, (4.6)

where Go is the optical generation rate associated with the external photon flux, i.e.,
the number of e-h pairs generated per unit time and volume. Equation (4.6) coincides
(with Pop ≡ P̃in) with the result in (2.43), derived from perturbation theory. Since the
optical power density decreases exponentially with x , the same behavior is followed by
the optical generation rate:

Go(x) = α P̃in(x)

h̄ω
= α P̃in(0)

h̄ω
exp(−x/Lα) = Go(0) exp(−x/Lα).

Assume now that all the incoming optical power is absorbed, and all of the generated
e-h pairs are collected as a current flowing in the external circuit (each photogenerated
e-h pair, once collected in the external circuit, causes one electron to flow through it).
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We have

Number of electrons in the external circuit

t
= IL

q

= V · Number of e-h pairs generated

t · V
= Number of photons absorbed

t · V

= A
∫ ∞

0
Go(x) dx = A

∫ ∞

0

α P̃in(x)

h̄ω
dx = − A

h̄ω

∫ ∞

0

dP̃in(x)

dx
dx ≈ Pin(0)

h̄ω
,

i.e.,

IL

q
= Pin(0)

h̄ω
,

where Pin(0) is the incident power. From this simplified model, it follows that the
photocurrent indeed depends linearly on Pin(0) through the responsivity R:

IL = q

h̄ω
Pin(0) = RPin(0). (4.7)

Using power and current densities, we similarly have JL = RP̃in(0). The responsivity is
thus measured in A/W (as the current–power ratio, or, equivalently, the current density–
power density ratio).

The above analysis is based on the assumption that each incident photon generates an
electron in the external circuit, and leads to an ideal, best-case value for the responsivity.
From (4.7) one has

R = q

h̄ω
= q

E ph
, (4.8)

holding when all of the incident photons are absorbed and converted into the exter-
nal short-circuit current. In such best-case conditions, the responsivity has a maximum
Rmax as a function of the photon energy that can be derived as follows: for photon ener-
gies below the absorption threshold, the responsivity is zero; assuming a sharp increase
of α above threshold, from (4.8) one has that R is maximum for E ph ≈ Eg , i.e.,

Rmax ≈ q

Eg
= 1

Eg [eV]
≈ λ[μm]

1.24
. (4.9)

For E ph > Eg , the responsivity ideally decreases with increasing E ph as

R(E ph) ≈ Rmax
Eg

E ph
,

according to the behavior in Fig. 4.7; for energies close to the threshold, the responsivity
approximately follows the absorption coefficient, while for higher energies it decreases
as the inverse of the photon energy.2

2 From a physical standpoint, the decrease of responsivity with increasing photon energy is related to the fact
that an energetic photon having an excess energy with respect to the threshold ≈ Eg still generates just
one electron–hole pair, the extra energy being dissipated through phonon emission, i.e., heat. For example,
a photon with E ph = 2Eg still generates the same current as a photon with E ph ≈ Eg , at the expense of
twice the optical power; as a consequence, the responsivity is one half of the maximum value at E ph ≈ Eg .
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Figure 4.7 Behavior of absorption α and responsivity R (in arbitrary units, normalized so that R ≈ α near
Eg) vs. the photon energy.
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Figure 4.8 Ideal maximum responsivity 1/Eg[eV] vs. energy gap and corresponding wavelength.

Due to the inverse dependence of Rmax on the energy gap, see Fig. 4.8, very large
maximum responsivities are achieved in far infrared detectors; for long-wavelength
infrared detectors for optical communications the maximum responsivity has an order
of magnitude of 1 A/W. Responsivities in excess of the maximum ideal value can be
achieved in devices with internal gain.

In real devices, the number of electrons flowing in the external circuit can be substan-
tially lower than the number of incident photons, leading to a responsivity smaller than
the ideal value given by (4.8). This happens because the incident light has to undergo a
number of steps before being converted into a current, see Fig. 4.9:
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Figure 4.9 Nonideality mechanisms affecting the detector response.

1. The optical power Pin(0) is incident on the photodetector.
2. Part of the power is reflected at the PD interface due to dielectric mismatch.
3. Part of the power is absorbed in regions of where it does not contribute to useful

output current.
4. Part of the power is transmitted through the PD without being absorbed.
5. Finally, part of the power is absorbed and yields a useful current component.

Additional detector figures of merit are the internal quantum efficiency ηQ and the
external (or device) quantum efficiency ηx . The internal quantum efficiency is defined as

ηQ = generated pairs

photons reaching the active region
;

typically ηQ ≈ 1. On the other hand, ηx is directly related to the responsivity, since

ηx = collected pairs

incident photons
= IL/q

Pin/h̄ω
= h̄ω

q
R < ηQ . (4.10)

In general, ηx ≤ 1 in the absence of gain. If we assume ideal operation ηx = 1 ≡ ηQ

and we obtain again (4.8) and (4.9).
The responsivity of real devices is smaller than the ideal value, but clearly exhibits the

theoretical bandpass behavior versus the operating wavelength. An example is reported
in Fig. 4.10, referring to a Si pin photodiode and a Pi N InGaAs photodiode.3 The
measured responsivity shows an abrupt increase corresponding to the absorption edge,
and then decreases with increasing energy. For the InGaAs Pi N diode, the abrupt fall
of the responsivity at short wavelength is due to the fact that, for such energies, absorp-
tion also takes place in the surrounding cladding widegap layers, in particular in the
upper cladding layer (producing no useful output current). Both devices exhibit a very
large optical bandwidth, well in excess of 200 nm. The same remark applies to a Ge
photodiode realized with an innovative Ge on Si process [38]; Fig. 4.10 also shows,
for comparison, the maximum responsivity Rmax of an ideal detector with unit external
efficiency, see (4.9); the ideal value is remarkably close to the peak responsivity of real
devices. From the material standpoint, InGaAs offers excellent properties at long wave-
length (1.55 and 1.3 μm), and so does Ge; Si, as already remarked, is only effective at
short wavelength, e.g., around 0.8 μm.

3 Data from Hamamatsu Photonics web site [39]; the S5971 Si diode has a cutoff frequency of 1 GHz, the
G8196 InGaAs diode has a cutoff frequency of 3 GHz.
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Figure 4.10 Responsivity versus wavelength for a Si homojunction, an InGaAs heterojunction high-speed
pin photodiode (Hamamatsu Photonics, [39]), and a Ge-on-Si photodiode (data from [38],
Fig. 1). The dotted curve is the ideal case with external quantum efficiency ηx = 1 and
responsivity R = q/(h̄ω); see (4.10).

4.4.3 PD electrical bandwidth and equivalent circuit

The responsivity concept can readily be extended to describe the detector frequency
response, assuming that the device operates linearly (or is linearized, e.g., around a
DC condition). We start from the constitutive relation in (4.2), for brevity dropping the
wavelength dependence:

iP D(t) = f

(
pin(t), vP D(t),

d

dt

)
.

We separate the DC and signal component (the subscript 0 denotes the DC working
point):

Pin = Pin,0 + p̂in(t), VP D = VP D,0 + v̂P D(t), IP D = IP D,0 + ı̂ P D(t),

and, assuming sinusoidal modulation of light, we associate phasors with the signal
components as follows:

p̂in(t) = Re
(

P̂inejωt
)
, v̂P D(t) = Re

(
V̂P Dejωt

)
, ı̂ P D(t) = Re

(
ÎP Dejωm t

)
,

where ω is the light angular modulation frequency. Linearizing around a DC working
point we obtain

IP D,0 + ı̂ P D(t) = f
(
Pin,0, VP D,0, 0

)︸ ︷︷ ︸
IP D,0

+ ∂ f (d/dt)

∂pin

∣∣∣∣
0

p̂in(t)+ ∂ f (d/dt)

∂vP D

∣∣∣∣
0
v̂P D(t),
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where the second and third terms are the small-signal photocurrent ı̂L and dark current
ı̂d , respectively. Exploiting the phasor notation, we can express the small-signal detector
current ı̂ P D as

ı̂ P D(t) = ı̂L(t)+ ı̂d(t) = Re
(
R(ω)P̂inejωt

)
+ Re

(
YP D(ω)V̂P Dejωt

)
,

where R(ω) is the (complex) small-signal responsivity, YP D(ω) the detector small-
signal admittance. The phasor associated with ı̂ P D(t) is therefore

ÎP D(ω) = YP D(ω)V̂P D(ω)+ ÎL(ω),

where the signal photocurrent phasor ÎL(ω) is linearly related to the signal optical power
phasor as

ÎL(ω) = R(ω)P̂in(ω).

In the linearized model, ÎP D = ÎL for V̂P D = 0; thus, ÎL is often referred to as the
short-circuit photocurrent (i.e., the photocurrent of the detector whose small-signal load
is a short).

The complex responsivity R(ω), describing the detector small-signal frequency
response, is typically a low-pass function of the modulation frequency; see Fig. 4.11.
Narrowband photodetectors can, however, be designed for analog applications (i.e.,
for detecting analog narrowband signals modulating an optical carrier). A normalized
responsivity r(ω) can be defined from

ÎL(ω)

ÎL(0)
= R(ω)

R(0)

P̂in(ω)

P̂in(0)
= r(ω)

P̂in(ω)

P̂in(0)
.

Assuming constant P̂in(ω) we have

r(ω) = ÎL(ω)

ÎL(0)
= R(ω)

R(0)
→ |r(ω)|dB = 20 log10

∣∣∣∣R(ω)R(0)

∣∣∣∣ .
For low-pass detectors, the 3 dB bandwidth is defined as the frequency f3dB (or fT ) at
which the normalized responsivity drops by 3 dB with respect to the DC value, i.e.,

3 dB

fT f, log scale

Figure 4.11 Typical low-pass behavior of the photodetector frequency response under sinusoidally
modulated light.
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Figure 4.12 Small-signal equivalent circuit of loaded photodetector (left) and large-signal simplified model
for a photodiode-like detector (right). The boxed capacitor symbol denotes a nonlinear capacitor.

|r(ω3dB)|dB = −3 → 20 log10

∣∣∣∣R(ω3dB)

R(0)

∣∣∣∣ = −3 → R( f3dB) = 1√
2
R(0).

The above (intrinsic) cutoff frequency refers to the short-circuit photocurrent and is
therefore independent of the detector loading. Transit time, avalanche buildup delay,
phototransistor current gain high-frequency cutoff are typically accounted for in the
intrinsic cutoff frequency. On the other hand, the overall detector response is also
affected by the load impedance and by parasitic (extrinsic) elements. The main load-
related cutoff mechanism is the RC cutoff, caused by the combined effect of the device
internal and extrinsic capacitance with the load resistance.4

A quantitative evaluation of the total cutoff frequency can be based on the simpli-
fied equivalent circuit of the photodetector in Fig. 4.12. In the frequency domain, the
photodetector can be modeled by the current–voltage phasor relation:

IP D(ω) =
[
Y i

P D(ω)+ Y x
P D(ω)

]
VP D(ω)+ IL(ω),

where IL = R(ω)Pin is the short-circuit photocurrent component at ω (modeled as a
current source), Y i

P D is the detector intrinsic admittance, and Y x
P D is the detector par-

asitic (usually capacitive) admittance. The above representation leads directly to the
circuit in Fig. 4.12, left. The load impedance ZL (modeling, for example, the input
capacitance or resistance of a front-end amplifier) clearly adds to the detector capacitive
and resistive loading, and therefore influences the bandwidth of the loaded detector. As
already mentioned, we include in the frequency-dependent responsivity R(ω) intrinsic
cutoff effects only, while the RC cutoff is handled at a circuit level. Assuming ZL = RL

and a total detector capacitance CP D , the current on the load IRL = −IP D will be

IRL (ω) = − IL(ω)

1 + jωRLCP D
→ ∣∣IRL (ω)

∣∣ = |IL(ω)|√
1 + ω2 R2

LC2
P D

.

Therefore, even if IL(ω) = RPin , R frequency independent, the responsivity of the
loaded detector,

|Rl(ω)| = R√
1 + ω2 R2

LC2
P D

,

4 As discussed later, the RC bandwidth limitation can be overcome through distributed (traveling-wave)
photodetectors, in which the bandwidth is limited by velocity mismatch with the optical signal and/or
losses.
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will be frequency dependent, with RC-limited cutoff frequency

f3dB = 1

2πRLCP D
.

Since in junction-based detectors the DC current is small (dark current) and often
bias-independent, in the first approximation the detector large-signal model is sim-
ply the parallel of a capacitive (sometimes nonlinear) admittance with two current
generators modeling the photocurrent iL (linearly dependent on the optical power)
and the dark current id (often negligible); see Fig. 4.12, right. Other effects, such
as a voltage-dependent photocurrent (due, e.g., to a voltage-dependent internal gain)
or a nonlinear detector input admittance (as in pn photodiodes), can be readily
implemented at a circuit level, as well as more complex parasitic networks includ-
ing series connector resistances, wire inductances and distributed transmission line
elements.

4.4.4 Photodetector gain

In some detectors (e.g., pn and pin photodiodes), the number of collected pairs is
approximately equal to the number of generated pairs. However, certain detectors have
internal gain mechanisms whereby the number of collected pairs may be much larger
than the number of generated pairs. The internal gain implies the amplification AI of
the photocurrent that would have been (in theory) generated if no gain were present
(called the primary photocurrent). If we define a comparison ideal device with primary
photocurrent only and responsivity R|AI =1, we have

R = AI R|AI =1 .

Examples of photodetectors with gain are the avalanche photodiode (due to the
avalanche multiplication of carriers), the phototransistor (due to the transistor current
gain), and also the photoresistor. Apart from intrinsic mechanisms, photodetector gain
can also be obtained by cascading the detector with active blocks:

• in front of the detector, as an optical amplifier (e.g., a semiconductor optical
amplifier, SOA);

• after the detector, as an electronic front-end amplifier, possibly integrated with the
detector into an integrated receiver.

4.5 Photodetector noise

The short-circuit photocurrent is affected by random fluctuations, i.e., by noise.
Photodetector noise is the result of noise in the input light (e.g., laser noise, see
Section 5.13.4, plus additional noise from optical amplifiers) converted into current,
plus the contribution of the detector; see Fig. 4.13. We neglect for the moment the
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Figure 4.13 Generation of noise from the photodetector.
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Figure 4.14 Simplified equivalent circuit of a detector connected to a load, including noise generators (in
gray). For simplicity the load is resistive and the detector is modeled through a linear admittance.

converted input noise,5 and focus on the detector noise contribution. This can be rep-
resented, from a circuit standpoint, as a zero-average noise current in superimposed on
the detector current as

iP D = Rpin + id + in,

where in is a random process with power spectrum Sin (ω) and square mean value (in,rms

is the root mean square, r.m.s., value):

i2
n,rms = i2

n =
∫ ∞

0
Sin ( f ) d f.

A simplified equivalent circuit of the detector including noise generators is shown in
Fig. 4.14. In many cases, the power spectrum is white (i.e., constant with frequency) and

i2
n = Sin B,

where B is the system bandwidth (B ≈ Br , the bit rate).
Detector noise can be modeled as thermal noise (in photoresistors), shot noise (in

photodiodes and phototransistors), or multiplied shot noise (in avalanche detectors).
For photoresistors we have, from the Nyquist law, Sin = 4kB T G, where kB is the Boltz-
mann constant, T the operating temperature, and G the photoresistor conductance; the
r.m.s. value of the noise current is

in,rms =
√

i2
n = √

4kB T G B.

5 Converted input noise is light noise transformed into electrical (current) noise by detection. In the ideal
case, light noise is only affected by the shot noise deriving from the corpuscular nature of light; conversion
of such a light quantum noise leads to the so-called quantum noise limit of the receiver.
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In photodiodes operating with constant current IP D the shot noise model yields the
power spectrum:

Sin = 2q IP D = 2q IL + 2q Id = 2qRPin + 2q Id ≈ 2qRPin . (4.11)

If the photodiode operates in small-signal conditions (as in an analog link), the shot
noise process is second-order stationary and (4.11) applies, where IP D is the photodiode
bias current. In digital operation, the photodiode current ideally assumes two values
corresponding to the one and zero levels (e.g., 0 for the low level and IL for the high
level), and the shot noise process becomes nonstationary. However, for realistic bit rates
a quasi-stationary approximation can be made, and a slowly varying power spectrum
with average value between 2q IL + 2q Id and 2q Id ≈ 0 can be assumed as the noise
spectrum. The r.m.s. noise current for the high level is therefore

i2
n = 2q IL B + 2q Id B ≈ 2qRPin B,

neglecting the shot noise contribution of the dark current, and the averaged value (over
high and low states, assuming 50% probability) is i2

n/2.
Noise is obviously a major concern in detectors, owing to their position as the first

block in the receiver chain, and affects the receiver sensitivity S, i.e., the minimum input
power needed to achieve a desired SNR (signal to noise ratio) at the receiver output.
Neglecting input laser noise, the detector output SNR can be expressed as the ratio of
the signal and noise available powers. We refer here to a digital link, with a simple
intensity modulation (IM) scheme. In the high state, the input power is Pin and the
detector current I 2

P D ≈ I 2
L ; in the low state, the input power is zero and I 2

P D = I 2
d ≈ 0.

We can now compute the photodiode output SNR, averaging both the output available
detector signal and noise powers and assuming a detector output conductance G P D

(which actually simplifies out) as follows:6

SNR = Ps,av

Pn,av
=

1
2

(
I 2

L/4G P D
)

1
2

(
i2
n/4G P D

) = I 2
L

i2
n

= I 2
L

2q IL B
= IL

2q B
= RPin

2q B
, (4.12)

where we have neglected the dark-current shot noise. The averaged SNR is therefore
simply the SNR in the high level; we will exploit this result in what follows without
further discussion.

Since in a loaded detector the SNR is also influenced by the noise (typically thermal)
introduced by the front-end amplifier stage, (4.12), corresponds to an ideal case (called
the shot noise limit) in which the detector load is noiseless and the SNR increases as the
photocurrent, i.e., as the optical power. Suppose now that we consider the load thermal
noise contribution as a noise current in,L in parallel to the photodiode noise current in ,
such as √

i2
n,L = √

4kB T Gn B,

6 The discussion holds for a digital modulation scheme, or for an analog, large-signal, modulation scheme
where the signal amplitude is comparable to the bias; in (strictly) small-signal analog modulation, noise is
established by the DC working point and the r.m.s. noise current is independent of the signal current.
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where Gn is the load noise conductance (coinciding with the load conductance for a
simple resistive load); we have for the SNR:

SNR = I 2
L

i2
n + i2

n,L

= I 2
L

2q IL B + 4kB T Gn B
.

If the load noise is dominant with respect to the detector shot noise we have

SNR ≈ I 2
L

4kB T Gn B
= (RPin)

2

4kB T Gn B
,

where the SNR increases as the square of the optical power. This condition is the thermal
noise limit of the detector. From the desired SNR, the sensitivity S can be obtained
directly; in the shot noise limit one has

S = 2q B

R
SNR,

i.e., the sensitivity increases as the bandwidth or the bit rate.
The SNR and the sensitivity can be considered as system-level figures of merit for

the receiver. More specific device-level noise parameters are:

• The noise equivalent power, NEP or PN E P , defined as the optical input power yield-
ing a short-circuit SNR equal to one. The NEP defines the detector noise floor, since
in such conditions the detector output SNR is unity. In the short-circuit case, the load
is RL = 0 and therefore iL ,n = 0; thus, the device operates in the shot noise limit,
and we must impose

SNR = I 2
L

2q IL B + 2q Id B
= R2 P2

N E P

2qRPN E P B + 2q Id B
= 1,

from which PN E P can be derived; we also have two limiting cases according to
whether the photocurrent is larger or smaller than the dark current (remember that
in these conditions the input optical power and therefore the photocurrent is very
small):
– Shot-noise-limited NEP: PN E P = 2q B/R;
– Dark-current-limited NEP: PN E P = √

2q Id B/R.
• The photodetector detectivity, defined as the inverse of the NEP:

D = 1

NEP
.

Moreover, the specific detectivity (D∗) is defined, in the dark current limit, by
normalizing with respect to the device area A and the bandwidth:

D∗ = √
AB D =

√
AB

NEP
.

Finally, an optics-independent specific detectivity (D∗∗) can be defined with refer-
ence to the numerical aperture of the optical system NA:

D∗∗ = D∗ · NA.
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Further details on photodetector noise will be provided when discussing specific
devices and front-end amplifier choices.

4.6 Photodiodes

In general, the DC photodiode current can be modeled, taking into account the Shockley
junction diode law (yielding the dark current) and the photocurrent IL = RPin , as

IP D = RPin − I0

[
exp

(
− VP D

ηVT

)
− 1

]
,

where the current positive sign is taken in the reverse direction (i.e., the forward current
is negative, the photocurrent is positive). VP D is the reverse bias voltage, I0 is the reverse
saturation current; see Fig. 4.15. The thermal voltage is VT = kB T/q = 26 mV at T =
300 K, and η is the ideality factor (1 ≤ η ≤ 2). For VP D/ηVT � 1 (i.e., in reverse bias)
one has

IP D ≈ RPin + Id .

That is, the photodiode current is proportional to the input power, and Id = I0 is the
dark current. The region in which IP D > 0, VP D > 0 is the photodiode region; see
Fig. 4.15. If the device is under weak direct bias (VP D < 0), the photocurrent may domi-
nate IP D > 0; this is the photovoltaic region, in which the device acts as a power source,
i.e., converts the input optical power into electrical power. In this region, the applied bias
is negative but the current is positive, leading to a net power flow from the photodiode
to the external circuit. The photovoltaic region is the operation mode of the photodi-
ode as a solar cell. However, the signal properties of the photodiode degrade, since the
photocurrent is increasingly masked by the direct current; moreover, the responsivity
will rapidly saturate for increasing input optical power. Finally, in the direct region the

IPD

Pop

Pop

VPD

IPD

p+-type

n-type

VPD

Photodiode
region

Photovoltaic
region

Direct
region

+
– hf

Depletion
region

Figure 4.15 V–I characteristics of a photodiode (left) biased by an ideal voltage source and under
illumination (right).
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photocurrent is masked by the large direct current, and net electrical power is absorbed –
an operation mode unsuited to both telecom and energy applications.

In practical cases, of course, the photodiode has to be connected to a load, rather than
to an ideal voltage source; linearity of the current–power response of the loaded device
is preserved until the instantaneous device working point is in the photodiode region, but
(extrinsic) current compression and saturation arise as soon as the input optical power
increases so as to bring the instantaneous working point into the photovoltaic region.

4.7 The pn photodiode

A pn photodiode usually has a thin p-type, highly doped layer lying on the device
surface, on top of a n-type, less doped substrate; see Fig. 4.16. The total photocur-
rent results from e-h pairs generated in both the depletion region and the n-side and
p-side diffusion regions, whose equivalent width is of the order of the diffusion length
in the two sides, Lnp = √

Dnpτn for electrons in the p side (where Dnp is the electron
diffusivity, τn the electron lifetime), Lhn = √

Dhnτh for holes in the n side (where Dhn

is the hole diffusivity, τh the hole lifetime); see Section 1.8.2. Let us assume for simplic-
ity that the optical generation rate is uniform and equal to Go along the photodiode;7

the total DC current (see (4.24), evaluated for ω = 0 and with Go ≈ Gon ≈ Gop) is

IL = q A
∫

W
Go dx + ILp + ILn ≈ q AGo(W + Lnp + Lhn).

Apparently, carriers generated in the diffusion regions increase the device responsivity:

R = IL

Pin
= q

h f
α(W + Lnp + Lhn), (4.13)

p+ side

–xp xn0

n side

hf

hf

hf
Junction plane

n-Diffusion
region, low fieldLnp LhnW

p-Diffusion
region, low field

Depletion region,
high field

Figure 4.16 Generation of photocarriers in a pn photodiode: contribution of depletion and diffusion regions.

7 This implies that the total thickness of the structure is smaller than the absorption length. This approxima-
tion, which will be removed in the treatment of pin diodes, helps to simplify the analysis of pn photodiodes
while preserving the main points of the discussion.
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f

fRG ft – fRC

Figure 4.17 Frequency response of a pn photodiode: fRG is the lifetime cutoff (≈MHz), ft and fRC are the
transit time and RC cutoff, both in the GHz range (typically, the RC cutoff dominates in pn
photodiodes).

where W is the width of the depletion region.8 However, assuming time-varying input
optical power, a frequency-domain small-signal analysis shows (see (4.24), with Go ≈
Gon ≈ Gop) that

IL(ω) = q AGo(W + L̃np + L̃hn), L̃np = Lnp√
1 + jωτh

, L̃hn = Lhn√
1 + jωτn

.

Thus, the additional response proportional to L̃np + L̃hn exhibits a cutoff frequency of
the order of the inverse of the lifetime, and the whole response has a double cutoff (low
frequency, proportional to the inverse of the lifetime; high frequency, associated with
transit time and capacitance effects), as shown in Fig. 4.17. From a system standpoint,
this is quite an inconvenient response, and the device speed is practically limited by the
device lifetime (with maximum cutoff frequencies of the order of 100–200 MHz)

4.7.1 Analysis of the pn photodiode response

To evaluate the pn photodiode total current, we assume that the diode has an abrupt
doping profile, with junction plane at x = 0. The p-type side has uniform doping NA

and extends (ideally) from −∞ to 0; the n-type side extends from 0 to +∞. Across
the junction plane, a depletion (space-charge) region hosts a dipole layer supporting,
in equilibrium (i.e., for zero applied bias), the built-in voltage Vbi. The space-charge
region extends from −x p (p side) to xn (n side). By imposing equilibrium conditions
and the Boltzmann statistics, the built-in voltage can be derived, as a function of the
side dopings and of the intrinsic semiconductor concentration, as9

8 Remember that (4.13) holds when the absorption length is larger than the total equivalent absorption width,
i.e., when α(W + Lnp + Lhn) < 1. For arbitrary α, (4.13) would lead to an unphysical result, larger than
the ideal limit in (4.9).

9 The pn junction theory is covered in all textbooks on electron devices, see, e.g., [31].



4.7 The pn photodiode 181

Vbi = kB T

q
log

(
ND NA

n2
i

)
. (4.14)

Solution of the Poisson equation in the presence of an applied bias VA (VA < 0 in
reverse bias) leads to the following expressions for the depletion region widths:

xn =
√

2εNeq (Vbi − VA)

q N 2
D

(4.15)

x p = xn
ND

NA
=
√

2εNeq (Vbi − VA)

q N 2
A

, (4.16)

where N−1
eq = N−1

D + N−1
A . The total width of the depletion region will be:

W = xn + x p =
√

2ε (Vbi − VA)

q Neq
,

which increases with increasing reverse applied voltage.
To evaluate the photocurrent, assume for simplicity that the photogeneration term is

constant in the two sides and in the depletion region and assumes, respectively, values
Gop (p side), Gon (n side), and Go (depletion region). This assumption will be conve-
niently removed in the analysis of the pin photodiode. Minority carriers in excess with
respect to the thermodynamic equilibrium condition (corresponding to zero applied bias
and no illumination), i.e., excess electrons in the p side, excess holes in the n side, fol-
low the electron and hole continuity equations, respectively. In the two sides we assume
quasi-neutrality (i.e., negligible electric field), and carrier recombination is modeled by
the lifetime approximation. Assuming that the structure is one-dimensional along x , the
time-domain continuity equations read

∂n′

∂t
= − ∂

∂x

(
−Dnp

∂n′

∂x

)
− n′

τn
+ Gop (p side)

∂p′

∂t
= ∂

∂x

(
Dhn

∂p′

∂x

)
− p′

τh
+ Gon (n side).

Transforming to the frequency domain, we have

jωn′ = Dnp
d2n′

dx2
− n′

τn
+ Gop (p side)

jωp′ = Dhn
d2 p′

dx2
− p′

τh
+ Gon (n side),

Introducing the complex diffusion lengths
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1

L̃np
=
√

1 + jωτn

τn Dnp
=

√
1 + jωτn

Lnp

1

L̃hn
=
√

1 + jωτh

τh Dhn
=

√
1 + jωτh

Lhn
,

where Lnp = √
Dnpτn , Lhn = √

Dhnτh are the diffusion lengths for excess electrons in
the p side and excess holes in the n side, we finally have

d2n′

dx2
= n′

L̃2
np

− Gop

Dnp
(p side) (4.17)

d2 p′

dx2
= p′

L̃2
hn

− Gon

Dhn
(n side), (4.18)

with boundary conditions:

n′(−x p) = n2
i

NA

[
exp

(
VA

VT

)
− 1

]
, n′(−∞) = 0 (p side) (4.19)

p′(xn) = n2
i

ND

[
exp

(
VA

VT

)
− 1

]
, p′(+∞) = 0 (n side). (4.20)

In each side, the first condition derives again from the Boltzmann statistics, while the
second implies that very far away from the junction the excess carrier population should
vanish.

Solving the linear set in (4.17) and (4.18) with boundary conditions (4.19) and (4.20)
we obtain

n′(x) =
[

n2
i

NA

(
e

VA
VT − 1

)
− τnGop

1 + jωτn

]
exp

(
x + x p

L̃np

)
+ τnGop

1 + jωτn
(p side)

p′(x) =
[

n2
i

ND

(
e

VA
VT − 1

)
− τnGon

1 + jωτh

]
exp

(
− x − xn

L̃hn

)
+ τhGon

1 + jωτh
(n side).

To evaluate the current, let us express the total current density −JP D (taken as posi-
tive outgoing from the p side) as the sum of drift Jn,dr and diffusion Jh,d currents of
electrons and holes (taken as positive in the positive x direction):

−JP D = Jn,dr + Jn,d + Jh,dr + Jh,d.

However, in the n side the drift current of the minority carriers (holes) is negligible, and
so is the drift electron current density in the p side; we thus have

Jn ≈ Jn,d for x ≤ −x p (p side)

Jh ≈ Jh,d for x ≥ xn (n side).

In the depletion region, only the optical generation term is considered (thermal genera-
tion is neglected) and the continuity equations for the electron and hole current densities
can be expressed as
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dJn

dx
= −qGo (4.21)

dJh

dx
= −qGo, (4.22)

where Go is the optical generation rate in the depletion region. Integrating (4.21) on the
depletion region, we obtain

Jn(xn)− Jn(−x p) = q
∫ xn

−x p

Go dx ≈ −qW Go,

i.e.,

Jn(xn) = Jn(−x p)− qW Go.

We can now conveniently express the total current (which is independent of x) in a
section corresponding to the depletion region edges; e.g., in point xn ,

−JP D = Jn(xn)+ Jh(xn) = Jn(−x p)− qW Go + Jh(xn)

= Jn,d(−x p)+ Jh,d(xn)− qW Go,

since

Jn(−x p) = Jn,d(−x p), Jh(xn) = Jh,d(xn).

We obtain the same result evaluating the current in −x p. Expressing all current densities
as a function of the excess charge gradients (see Section 1.8.1), we finally have

−JP D = Jn,d(−x p)+ Jh,d(xn)+ qW Go

= q Dnp
∂n′

∂x

∣∣∣∣−x p

− q Dhn
∂p′

∂x

∣∣∣∣
xn

− qW Go = −Jd − JL ,

where Jd is the dark current density and JL is the photocurrent density. The correspond-
ing currents are

Id = AJd = q An2
i

(
1

L̃np

Dnp

NA
+ 1

L̃hn

Dhn

ND

)(
e

VA
VT − 1

)
(4.23)

IL = AJL = q A
(
L̃npGop + L̃hnGon + W Go

)
, (4.24)

where A is the detector area. The dark current follows the Shockley diode law and yields
a positive contribution to the total detector current IP D for large negative applied volt-
age VA. From (4.24) the photocurrent IL is found to include three contributions, the first
two referring to the diffusion regions, the last (typically much smaller) to the depletion
region. Although the diffusion contribution apparently enhances the photocurrent, in
fact this contribution rapidly decreases with increasing speed of the input optical sig-
nal, with a characteristic time given by the lifetime (in a direct-gap semiconductor, of
the order of 1 ns, much larger in indirect-gap semiconductors). As a result, the overall
device response exhibits an early cutoff (due to lifetime) plus a very high-frequency
transit-time or RC cutoff.



184 Detectors

4.8 The pin photodiode

To improve the frequency response and the high-frequency efficiency, the depletion
region width W should be made much larger than the width of the diffusion region.
However, in the pn diode this would require impractically large reverse voltages. An
obvious solution is to interpose a lightly doped or intrinsic region between the p and
n layers that is completely depleted in reverse bias and whose electric field is almost
constant (since the space charge is negligible). The resulting structure is the pin pho-
todiode, see Fig. 4.18 (above); by proper design W � Lhn + Lnp, making diffusion
photocurrents negligible. Additionally, exploiting compound semiconductors and het-
erojunction devices, the slow part of the response can be suppressed altogether through
N pP or Ni P structures, where N or P as usual denote widegap semiconductors (e.g.,
AlGaAs/GaAs/AlGaAs or InP/InAlAs/InP); in this way, no absorption at all takes place
in the external regions and the related current contribution vanishes.

Compound semiconductor pin structures (usually Pi N ) are today probably among
the best component available for 10 Gbps and 40 Gbps systems, although for 10 Gbps
application a competition exists with avalanche photodiodes. Cutoff frequencies in
excess of 80 GHz have been demonstrated. Usually, a compromise must be reached
between speed and responsivity (efficiency); the device speed is dominated by transit
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–

+

x = W + Wpx = 0 x = Wp

Figure 4.18 Schematic structure (above) and band diagram (below) of a pin photodiode in reverse bias. Jdr
and Jd are drift and diffusion current densities, respectively.
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time and the parasitic capacitance. Such limitations can be overcome in more advanced
structures such as traveling-wave waveguide photodiodes; see Section 4.10.2.

4.8.1 The pin photocurrent, responsivity, and efficiency

The depletion region of a pin photodiode in reverse bias supports a constant electric
field and linearly varying energy bands. In fact, from Poisson’s equation we have

d2φ

dx2
= −q

ε
(N+

D − N−
A + p − n) ≈ 0

if we neglect the intrinsic region background doping and assume that the generated
photocharge is negligible or quasi-neutral. This implies that φ is a linear function of
position and, therefore, so is the conduction band edge Ec = −qφ + C , where C is an
arbitrary constant; see Fig. 4.18 (below). The main contribution to the photocurrent is
given by the drift current associated with carriers generated inside the intrinsic depleted
region; secondary contributions (which disappear in heterojunction devices) come from
the diffusion regions. Due to the large width of the depletion region W , the optical
generation rate will be nonuniform, according to the law

Go(x) = ηQ
Pin (1 − R)

Ah f
αe−αx = Go(0)e

−αx ,

where ηQ is the intrinsic quantum efficiency, Pin the total incident power on the left
(upper) photodiode facet, A is the detector area, h f is the photon energy, α is the
material absorption, and R is the power reflectivity of the upper surface.

The analysis of the DC pin current IP D (taken as positive outcoming from the p
terminal; the sign is opposite to currents defined positive along the positive x axis)
follows the same ideas as for the pn photodiode, i.e., the decomposition of the total
current in electron (drift and diffusion) and hole (drift and diffusion) components. The
device current is constant in x and can be expressed as

−IP D = In(x)+ Ih(x) = In,dr(x)+ In,d(x)+ Ih,dr(x)+ Ih,d(x).

We consider a structure with a surface p+ layer and an n+ substrate. The depletion
region begins approximately in x = Wp and extends until x = W + Wp. In the p+
region the electron (minority carrier) current is diffusion only, while in the n+ region
the hole current is diffusion only. Thus,

− IP D = In,d(Wp)+ Ih(Wp) = In(W + Wp)+ Ih,d(W + Wp). (4.25)

Multiplying the electron continuity equation (4.21) on the depletion region by the diode
area A,

dIn

dx
= −q AGo,

and integrating over the depletion region, we obtain

In(W + Wp)− In(Wp) ≈ In(W + Wp)− In,d(Wp) = Ii , (4.26)
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where

Ii = −q A
∫ W+Wp

Wp

Go(x) dx (4.27)

is the photocurrent generated by the intrinsic absorption region. Substituting In(W +
Wp) from (4.26) into (4.25) we obtain

− IP D = In,d(Wp)+ Ii + Ih,d(W + Wp), (4.28)

where the first contribution includes the diffusion current from the surface layer; the
second contribution, the (photogenerated) drift current from the intrinsic layer; the third
contribution, the diffusion current from the substrate. In the diffusion currents, we have
both photocurrent and dark current components.

Carrying out the integration in (4.27) and expressing the optical generation rate Go

from (4.6), also accounting for surface reflection and the intrinsic quantum efficiency
ηQ , we obtain

−Ii = qηQ
Pin (1 − R)

h f

∫ Wp+W

Wp

αe−αx dx = qηQ
Pin (1 − R)

h f

[−e−αx]Wp+W
Wp

= qηQ
Pin (1 − R)

h f
e−αWp

(
1 − e−αW

)
. (4.29)

Concerning the diffusion contributions, we have to solve the same excess carrier equa-
tions as for the pn photodiode, but with a space-dependent generation term and slightly
different boundary conditions.

In practical structures, the highly doped surface side p+ is very thin, i.e., Wp � Lα ,
Wp � Lnp; this somewhat simplifies the solution of the diffusion equation:

d2n′

dx2
= n′

L2
np

− Go(0)e−αx

Dnp
≈ n′

L2
np

− Go(0)

Dnp
(p+ side), (4.30)

with boundary conditions

n′(0) = 0, n′(Wp) = n′
0. (4.31)

The excess population n′
0 depends on the applied voltage in the same way as in the pn

case (at least in reverse bias; in direct bias, the voltage drop over the intrinsic region
should also be considered). The solution of (4.30) can be expressed as

n′ = A exp

(
x

Lnp

)
+ B exp

(
− x

Lnp

)
+ L2

npGo(0)

Dnp
;

A and B can be obtained by imposing the boundary conditions (4.31); we obtain
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n′ = n′
0

exp

(
− x

Lnp

)
− exp

(
x

Lnp

)
exp

(
− Wp

Lnp

)
− exp

(
Wp

Lnp

)

+ L2
npGo(0)

Dnp

⎧⎪⎪⎨⎪⎪⎩
[

exp

(
x

Lnp

)
+ exp

(
Wp − x

Lnp

)][
1 − exp

(
− Wp

Lnp

)]
exp

(
− Wp

Lnp

)
− exp

(
Wp

Lnp

) + 1

⎫⎪⎪⎬⎪⎪⎭ .
For Wp � Lnp, the solution can be approximated as

n′ ≈ n′
0

x

Wp
,

i.e., the optical generation contribution is negligible.
We now consider the substrate side (assumed as n-type, see Fig. 4.18). The hole

diffusion equation here can be written as

d2 p′

dx2
= p′

L2
hn

− Go(0)e−αx

Dhn
(n+ side),

with boundary conditions

p′(Wp + W ) = p′
0, p′(∞) = 0, (4.32)

where p′
0 is the excess concentration at the depletion region edge, which depends on the

applied voltage and vanishes at zero applied bias. We now postulate the trial solution,
vanishing for x → ∞:

p′(x) = A exp

(
− x − Wp − W

Lhn

)
+ B exp(−αx).

By applying the boundary conditions (4.32) we obtain

p′(x) =
[

p′
0 − L2

hn

1 − α2L2
hn

Go(0)

Dhn
e−α(Wp+W)

]
exp

(
− x − Wp − W

Lhn

)

+ L2
hn

1 − α2L2
hn

Go(0)

Dhn
e−αx .

We can now evaluate the diffusion currents in Wp (electrons) and W + Wp (holes) as

In,d(Wp) = q ADnp
∂n′

∂x

∣∣∣∣
Wp

= q ADnp

Wp
n′

0

Ih,d(W + Wp) = −q ADhn
∂p′

∂x

∣∣∣∣
Wp+W

= q ADhn

Lhn
p′

0 − q AGo(0)Lhn

1 + αLhn
e−α(Wp+W).

The total photodiode current is therefore, from (4.28),

−IP D = q ADnp

Wp
n′

0 + q ADhn

Lhn
p′

0︸ ︷︷ ︸
−Id

−
[

q AGo(0)Lhn

1 + αLhn
e−α(Wp+W) + Ii

]
︸ ︷︷ ︸

IL

,
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where the first contribution is the dark current, the second the photocurrent. Expanding
the generation rate Go and using (4.29), the photocurrent can be expressed as10

IL = ηQ
q

h f
Pin (1 − R) e−αWp

(
1 − e−αW

1 + αLhn

)
, (4.33)

thus leading to the responsivity

R = IL

Pin
= ηQ

q

h f
(1 − R) e−αWp

(
1 − e−αW

1 + αLhn

)
,

and external quantum efficiency

ηx = IL/q

Pin/h f
= ηQ (1 − R) e−αWp

(
1 − e−αW

1 + αLhn

)
.

The diffusion contributions to currents are much slower than the drift contributions in
dynamic operation, and should be reduced to optimize the high-speed response. This can
be immediately achieved in heterojunction devices, where the substrate layer below the
absorption region is widegap and therefore does not appreciably absorb light. To maxi-
mize ηx , we must also require that the thickness of the top layer be much smaller than
α−1, or that the top layer again be widegap, i.e., transparent to the incoming light. For
high-speed, high-efficiency photodiodes αWp → 0 and αLhn → 0, so that the external
device quantum efficiency and responsivity are

ηx ≈ ηQ (1 − R)
(

1 − e−αW
)
, (4.34)

R ≈ q

h f
ηQ (1 − R)

(
1 − e−αW

)
. (4.35)

4.8.2 Conventional pin photodetector structures

Most high-performance pin detectors for long-wavelength communication systems
exploit vertically illuminated structures with InGaAs absorption layers. An example of
a diffused surface illuminated pin with planar layout and top ring electrodes is shown
in Fig. 4.19 together with a mesa version where the lateral sides are etched and the free
surface is properly passivated to avoid large dark currents. In the planar structure, the
intrinsic or n−-type (also called ν-type) absorption layer is followed by an n-doped InP
epitaxial buffer grown on the n-type InP substrate. In some cases, as in the structure
shown in Fig. 4.20(b), the intrinsic absorption layer is followed by a nonabsorbing drift
layer. The pn junction is obtained through diffusion, thus separating the junction from
the hetero-interface; diffusion also allows the junction not to extend to the device sur-
face. The ring electrode (p-contact) is clearly visible, while the n+ layer is confined
(rectangular footprint) to the device area; the external coplanar electrodes are deposited
on a semi-insulating (S.I.) InP layer to decrease the parasitic capacitance and losses. The
same device can also be realized with illumination from the bottom; the ring electrode

10 Equation (4.33) holds when αWp is small, since photocurrent generation in the top layer is explicitly
neglected.
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Figure 4.19 Planar double heterostructure pin (left); mesa single heterojunction pin (right).
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Figure 4.20 High-speed long-wavelength pin with coplanar waveguide output: (a) coplanar electrode layout;
(b) section of the epitaxial structure; (c) detail of the active region (dashed box in (a)).

is then substituted by a circular electrode. In this case, for reasons related to the car-
rier speed and resulting transit time limited bandwidth, the preferred epitaxial structure
would be with n+ surface layer and p+ bottom layer.

A guard ring, see Fig. 4.35, can be put around the pn junction to prevent breakdown
due to the high field generated at the edge of the diffused region and reduce the device
junction capacitance; however, this solution is more common in avalanche photodiodes
due to the potentially high operating voltages and fields.

4.9 The pin frequency response

Four main mechanisms limit the speed of pin photodiodes under dynamic excitation:

1. the effect of the total diode capacitance, including the depleted region diode
capacitance and any other external parasitic capacitance;

2. the transit time of the carriers drifting across the depletion layer of width W ;
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3. the diffusion time of carriers generated outside the undepleted regions (mainly in
homojunction devices);

4. the charge trapping at heterojunctions (in heterojunction devices).

Transit time effects are negligible in pn junction photodiodes owing to the small
depletion region width, but become a dominant mechanism in pin devices. Transit time
and RC cutoff are thus the main limitations in practical, technology-optimized pin
photodiodes.

4.9.1 Carrier diffusion and heterojunction charge trapping

Photogenerated carrier diffusion in the cladding layers introduces into the device
response a slow component, already discussed in the treatment of the pn junction diode.
In pin devices, such a component is potentially marginal due to the large value of W ,
but can be detected as a slow time constant in the time response; see Fig. 4.21. The
diffusion current component can be minimized in homojunction devices by cladding
the intrinsic layer between heavily doped layers; in this case, the carrier mobility μ
decreases owing to strong impurity scattering and the diffusivity D decreases (remem-
ber D/μ = kB T/q). Addition of recombination centers leads at the same time to a
decrease in the carrier lifetime τ , finally implying a decrease in the diffusion length
L = √

Dτ (remember that the diffusion component depends on αL; see (4.33)). In
compound semiconductor devices, making the top and/or bottom layers from a widegap
material ultimately prevents absorption in the cladding layers.

Heterojunction pin detectors can be affected by charge trapping at heterojunctions,
related to the valence and/or conduction band discontinuities introduced there. Con-
sider, for instance, an InP/InGaAs/InP Pi N photodiode, in which the active region is
the ternary InGaAs layer. Charge trapping can be minimized by not letting the two junc-
tions between doped and intrinsic materials (in particular the surface junction) coincide
with the heterojunctions. In this way, for example, the Pi junction becomes a Ppi
junction, where the homojunction and heterojunction are very close to the top window
layer. From a technological standpoint, this can be obtained by diffusion of a p-type
dopant into the intrinsic layer. Another possible technique, less common in practical

Diffusion tails

Carrier drift

Carrier drift

IL

t

Pop

Figure 4.21 Effect of diffusion currents on the pin dynamic response.
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devices, is inserting a thin quaternary layer or a superlattice graded bandgap layer at the
hetero-interface. Another point to be considered is the need to remove the pi junction
from the surface of the device, in order to avoid surface trapping effects; this can be
obtained in mesa-type structures also by keeping the junction entirely inside the device
volume.

4.9.2 Dynamic pin model and space-charge effects

In order to analyze the dynamics of the electrons and holes photogenerated in the intrin-
sic region, let us consider a time-domain model including the 1D continuity equations
for electrons and holes:

∂p

∂t
= − p − p0

τb
+ Gop(x, t)− 1

q

∂ Jh

∂x
(4.36)

∂n

∂t
= −n − n0

τb
+ Gop(x, t)+ 1

q

∂ Jn

∂x
; (4.37)

τb is the excess carrier lifetime, p0 and n0 are the equilibrium carrier densities, and the
electron and hole current densities are

Jh = qvh (E) p − q Dh
∂p

∂x

Jn = qvn (E) n + q Dn
∂n

∂x
,

where vn and vh are the field-dependent electron and hole drift velocities. The above
equation must be then coupled to the Poisson equation:

∂E
∂x

= ρ

εs
,

where ρ is the total charge density (evaluated neglecting the background doping in the
intrinsic region, i.e., as ρ = qp − qn).

In the intrinsic region, photogenerated carriers, under the effect of the electric field
induced by the applied bias, assume opposite drift velocities, so that electrons and
holes separate. Since their drift velocities are in principle different in absolute value,
some charge imbalance arises, which in turn perturbs (screens) the driving electric
field.

We will assume that such space charge effects are negligible, i.e., that the driving
electric field is the external field only, and that all diffusion currents are negligible.
Among diffusion currents we also include those in the depletion region; in low-field
conditions one has (e.g., for holes):

Jh = qvh (E) p − q Dh
∂p

∂x
≈ qμhE p − q Dh

∂p

∂x

≈ qμh
|VA|
W

p − q
kB T

q
μh
�p

W
= qμh

W

(
|VA| p − kB T

q
�p

)
,

where we have assumed that the injected charge in the intrinsic region is approxi-
mately linear with slope�p/W ; considering that�p ≈ p at worst, the diffusion current
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contribution is negligible when |VA| � kB T/q = 26 mV at ambient temperature, a con-
dition that is again typically met in practical devices. Moreover, we will also assume
that the transit time of drifting photogenerated carriers, τdr (defined as the average time
photocarriers need to reach the external contact), is � τb, so that carriers cannot recom-
bine during their drift to the external circuit. Finally, the electric field is assumed high
enough to saturate the carrier velocity (this approximately means E ≥ 10 kV/cm, i.e.,
E ≥ 1 V/μm for InGaAs, a condition that is easily obtained in practical devices where
W ≈ μm).

Neglecting space charge effects is legitimate when the incident optical power is small;
increasing Pin inevitably leads to an increase of the space charge ρ in the intrin-
sic region; the external electric field is screened by the space charge and becomes
nonuniform, thus decreasing the photocarrier driving force; eventually, the photocur-
rent saturates. To approximately evaluate the impact of the space charge effect, assume
that vn ≈ vh ≈ v or, in the low-field approximation, μn ≈ μh ≈ μ; moreover, n ≈ p;
it follows that

JL = Jh + Jn ≈ qμhE0 p + qμnE0n ≈ 2qμE0n = 2qvn,

where E0 is the electric field induced by the applied bias. The charge density |ρ| = qn =
qp associated with the electrons or holes is

|ρ| ≈ JL

2μE0
= JL

2v
.

If we assume, somewhat inconsistently, that, due to the displacement of photogenerated
carriers, such a charge density also acts as an uncompensated density in the Poissons
equation, we have

∂E
∂x

= ρ

εs
= JL

2μεsE0
= JL

2εsv
,

where E is the extra field induced by uncompensated space charge. Integrating over the
intrinsic layer (and assuming constant current density) we obtain

E = JL W

2μεsE0
= JL W

2εsv
. (4.38)

Therefore, the electric field induced by the space charge E is negligible with respect to
the external field E0 if (low-field case):

E = JL W

2μεsE0
� E0 → |E0| �

√
JL W

2μεs
,

or if (velocity-saturation case):

E = JL W

2εsv
� E0 → |E0| � JL W

2εsv
.

The above criteria permit estimation of the photodetector saturation power.
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Example 4.2: Consider an AlGaAs/GaAs pin photodiode with area A = 200 μm2. The
active region thickness is W = 2 μm, and the device responsivity is R = 0.5. Assuming
an applied reverse voltage of 4 V, a low-field mobility μ = 3000 cm2V−1s−1 and a sat-
uration velocity v = 107 cm/s, evaluate the optical saturation power as the input power
for which the field induced in the intrinsic region by the external voltage is E0 = 10E ,
where E is given by (4.38). Assume εs = 13ε0.

An applied voltage of 4 V leads to an internal field on the intrinsic GaAs layer:

E0 = 4

2 × 10−4 cm
= 2 × 104 V/cm

corresponding to a theoretical low-field velocity,

v = μE0 = 3000 · 2 × 104 = 6 × 107 cm/s � v.

Therefore we should use the expression for saturated velocity,

|E0| = 10 · JL W

2εsv
= 10 · RP̃inW

2εsv
→ P̃in = 2εsv |E0|

10RW

= 2 · 13 · 8.85 × 10−12 · 1 × 107 · 2 × 106

10 · 0.5 · 2 × 10−6
= 46.02 × 107 W/m2,

leading to an input optical power

Pin = AP̃in = 46.02 × 107 · 200 × 10−12 = 92 mW.

4.9.3 Transit time analysis and transit time-limited bandwidth

Let us go back to the pin photocurrent analysis; neglecting the diffusion currents, as
stated, and assuming constant electric field. System (4.36), (4.37) becomes

∂p

∂t
= Go(x, t)− 1

q

∂ Jh

∂x
(4.39)

∂n

∂t
= Go(x, t)+ 1

q

∂ Jn

∂x
, (4.40)

where

Jh = qvh,sat p, Jn = qvn,satn. (4.41)

For simplicity, the coordinate system is chosen so that x = 0 corresponds to the p+i
junction, x = W to the in+ junction. Since the system is linear, we can assume
harmonic optical incident power at the modulation angular frequency ω,

pin(t) = Pin(ω)e
jωt ,

and work in the frequency domain. Substituting (4.41) in (4.39) and (4.40), we obtain
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jωp(x) = Go(x)− vh,sat
dp(x)

dx
= Go(0)e

−αx − vh,sat
dp(x)

dx
(4.42)

jωn(x) = Go(x)+ vn,sat
dn(x)

dx
= Go(0)e

−αx + vn,sat
dn(x)

dx
, (4.43)

with boundary conditions p(W ) = 0, n(0) = 0. In fact, in the reverse-bias p+i junction
(x = 0), the total minority (electron) carrier density is zero, and so is the minority (hole)
carrier density in the reverse bias in+ junction in x = W . Since the system is also linear
in x, we look for an exponential trial solution in the homogeneous associate (we start
from the hole equation)

jωp′(x) = −vh,sat
dp′(x)

dx
(4.44)

under the form

p′(x) = Aejkx .

Substituting into (4.44), we obtain

jωAejkx = −vh,satk Aejkx → k = − jω

vh,sat
.

We now express the solution of the complete equation (4.42) as p1 + p2, where p2 is a
particular solution of (4.42).

We assume as a trial solution p2 = B exp(−αx), so that

p(x) = p1 + p2 = Ae
− jωx
vh,sat + Be−αx ,

where A and B are constants to be determined. Substituting and imposing the condition
p(W ) = 0 we obtain for the hole density

p(x) = Go(0, ω)

jω − αvh,sat
e−αW

[
e−α(x−W ) − e

− jω(x−W )
vh,sat

]
. (4.45)

For the electron density, we use for (4.43) the trial solution

n(x) = Ae
jωx
vn,sat + Be−αx .

Substituting in the electron continuity equation and imposing condition n(0) = 0, we
similarly have

n(x) = Go(0, ω)

jω + αvn,sat

[
e−αx − e

jωx
vn,sat

]
. (4.46)

From (4.45) and (4.46) the drift currents are

Jh(x) = qvh,sat p(x) = qvh,satGo(0, ω)

jω − αvh,sat
e−αW

[
e−α(x−W ) − e

− jω(x−W )
vh,sat

]
Jn(x) = qvn,satn(x) = qvn,satGo(0, ω)

jω + αvn,sat

[
e−αx − e

jωx
vn,sat

]
.



4.9 The pin frequency response 195

The total current (constant in a 1D system) is the sum of Jh(x), Jn(x) and of the
displacement current:

Jt (ω) = Jh + Jn + jωεs E(x, ω),

where E(ω) is the electric field harmonic component at ω. Integrating both sides from
0 to W we obtain

∫ W

0
Jt (ω) dx = W Jt (ω) =

∫ W

0

[
Jh(x)+ Jn(x)+ jωεs E(x, ω)

]
dx

= qvh,satGo(0, ω)

jω − αvh,sat
e−αW

∫ W

0

(
e−α(x−W ) − e

− jω(x−W )
vh,sat

)
dx

+ qvn,satGo(0, ω)

jω + αvn,sat

∫ W

0

(
e−αx − e

jωx
vn,sat

)
dx + jωεs

∫ W

0
E(x, ω) dx

= qvh,satGo(0, ω)

jω − αvh,sat
e−αW

⎡⎣e−α(x−W )

−α − e
− jω(x−W )

vh,sat

−jω/vh,sat

⎤⎦W

0

+ qvn,satGo(0, ω)

jω + αvn,sat

⎡⎣e−αx

−α − e
jωx
vn,sat

jω/vn,sat

⎤⎦W

0

+ jωεs [−V ]W
0 .

Solving:

Jt (ω) = 1

W

qvh,satGo

jω − αvh,sat
e−αW

⎛⎝eαW − 1

α
+ 1 − e

jωW
vh,sat

jω/vh,sat

⎞⎠
+ qvn,satGo

jω + αvn,sat

⎛⎝1 − e−αW

α
+ 1 − e

jωW
vn,sat

jω/vh,sat

⎞⎠+ jω
εs

W
[V (0)− V (W )] .

Introducing the electron and hole transit times,

τdr,n = W

vn,sat
, τdr,h = W

vh,sat
,

and the expression for the optical generation rate (accounting for surface reflection and
the intrinsic quantum efficiency),

Go(0, ω) = ηQ
(1 − R)

Ah f
αPin(ω),

we can express the photodiode total current It = AJt as
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It (ω) = αW
q

h f
ηQ (1 − R) Pin(ω)

×
{

e−αW − 1

αW
(
αW − jωτdr,h

) + e−αW ejωτdr,h − 1

jωτdr,h
(
αW − jωτdr,h

)
+ 1 − e−αW

αW
(
jωτdr,n + αW

) + 1 − ejωτdr,n

jωτdr,n
(
jωτdr,n + αW

)}+ jω
Aεs

W
VA(ω)

= −IL(ω)+ jωCVA(ω).

In the above equation, the term in braces is the small-signal short-circuit photocurrent
−IL , while the last term is the current absorbed by the intrinsic layer geometric capac-
itance, vanishing if a DC bias only is applied to the diode (since in this case the signal
voltage VA(ω) = 0 ∀ω and the small-signal load is a short circuit). Note that for ω → 0
the above equation reduces to

It (0) = −IL(0) = − q

h f
ηQ (1 − R) Pin(0)

[
1 − exp (−αW )

]
,

which coincides with (4.33) on the assumption of negligible αWp and αLhn . In
conclusion, the small-signal photocurrent component at the modulation frequency ω is

IL(ω) = αW
q

h f
ηQ (1 − R) Pin(ω)

×
{

1

αW − jωτdr,h

[
1 − e−αW

αW
+ e−αW 1 − ejωτdr,h

jωτdr,h

]
− 1

αW + jωτdr,n

[
1 − e−αW

αW
+ 1 − ejωτdr,n

jωτdr,n

]}
. (4.47)

The expression of the pin frequency response is rather complex, and the cutoff fre-
quency can only be evaluated numerically. However, there are a number of particular
cases in which the modulation bandwidth can be estimated analytically. Let us define
the pin normalized responsivity:

r(ω) = IL(ω)

IL(0)
= 1

αW − jωτdr,h

[
1

αW
+ 1 − ejωτdr,h

jωτdr,h

1

eαW − 1

]
− 1

αW + jωτdr,n

[
1

αW
+ 1 − ejωτdr,n

jωτdr,n

eαW

eαW − 1

]
. (4.48)

The frequency response simplifies in the following limiting cases:

• The diode is thick, i.e., αW � 1; in this case we have

|r(ω)| ≈

∣∣∣∣∣∣∣
sin
(ωτdr,n

2

)
ωτdr,n

2

∣∣∣∣∣∣∣ .
The 3 dB bandwidth condition, with ξ = jωτdr,n/2, is

20 log10

∣∣r(ω3dB,tr )
∣∣ = 20 log10

∣∣∣∣ sin (ξ)

ξ

∣∣∣∣ = −3,
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i.e.,

ω3dB,trτdr,n

2
≈ 1.391 → f3dB,tr = 2 × 1.391

2π

1

τdr,n
= 0.443

vn,sat

W
.

Notice that f3dB,tr is the so-called transit time-limited cutoff frequency, which
depends, in this approximation, on the transit time of the minority carriers gener-
ated in the most illuminated part of the intrinsic region, i.e., close to the p+ surface
side; in the present case, such carriers are the electrons.
For a diode illuminated from the back (n+ side), one would have instead

f3dB,tr = 0.443
vh,sat

W
.

Since holes are slower than electrons, illumination should rather come from the p+
side to maximize the device speed.
Assuming, on the other hand, that both carriers have the same transit time we obtain
the approximate expression

f3dB,tr ≈ 1

2.2τt
,

where τt is the electron or hole transit time.

• The diode is thin (αW � 1); in this case, the generation of pairs along the i
layer is almost uniform and the frequency response is limited by both carriers; an
approximation of the cutoff frequency is given by [40]:

f3dB,tr = 3.5v̄

2πW
, where

1

v̄4
= 1

2

(
1

v4
n,sat

+ 1

v4
h,sat

)
.

In practice, the difference between the thin and thick diode approaches may be slight
if the electron and hole saturation velocities are similar. Consider, for instance, the
example in Fig. 4.22, where the active region width is 1.5 μm and the absorption varies
from the thin to the thick diode condition; the transit-time cutoff frequency f3dB,tr , eval-
uated numerically from (4.48), undergoes a variation of 10% in the whole range, with a
maximum around αW = 2.

Independent of the kind of approximation made, the transit time-limited cutoff fre-
quency increases with decreasing W . In the example shown in Fig. 4.23, where α is
varied between 0.01 and 100 μm−1 and both the thin and the thick formulae are used,
together with the general expression for the response, we see that the cutoff frequency is
inversely proportional to W and almost independent of α. Values in excess of 100 GHz
can be obtained for very thin diodes, but in that case the responsivity will be very
low due to the low efficiency. Such a speed–efficiency trade-off will be discussed in
Section 4.9.5.

4.9.4 Capacitance-limited bandwidth

The photocurrent (4.47) derived from the frequency-domain transit time analysis can
be associated with the photocurrent generator in the detector equivalent circuit; see
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Fig. 4.24. From the equivalent circuit we can also estimate the RC-limited cutoff
frequency. Let C p be the external diode parasitic capacitance and Rs the series par-
asitic diode resistance, RD the parallel diode resistance, C j the intrinsic capacitance
(dominated by the intrinsic layer capacitance); we have, in the approximation

RD � Rs, RL ,

that the 3 dB RC-limited photodiode bandwidth is given by
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Cj RD CP
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RL

iL

Figure 4.24 Simplified pin photodiode equivalent circuit; the light gray box is the intrinsic device, the dark
gray box is the device with parasitics. The dark current is neglected.

f3dB,RC ≈ 1

2πRC
,

where

R ≈ RS + RL , C ≈ C j + C p, C j = εs A

W
.

The total cutoff frequency resulting from the transit time and RC effect can be evaluated
at a circuit level; an approximate expression is

f3dB ≈ 1√
f −2
3dB,RC + f −2

3dB,tr

. (4.49)

4.9.5 Bandwidth–efficiency trade-off

In a vertically illuminated photodiode, optimization of the external quantum efficiency
suggests W � Lα = 1/α ; moreover, the detection area A should be large in order to
improve coupling with the external source (e.g., an optical fiber). However, increasing
W increases the RC-limited bandwidth (since it decreases the junction capacitance) but
decreases the transit time-limited bandwidth. Increasing the device area has no influence
on the transit time-limited bandwidth but makes the capacitance larger and therefore
decreases the RC-limited bandwidth. Keeping the device area A constant, we therefore
have f3dB,RC ∝ W but f3dB,tr ∝ 1/W . Since f3dB < min( f3dB,RC , f3dB,tr ), the total
bandwidth is dominated by f3dB,RC ∝ W (low W ) or f3dB,tr ∝ 1/W (large W ). The
total bandwidth then first increases as a function of W , then decreases; f3dB therefore
has a maximum, which shifts toward smaller values of W and larger cutoff frequencies
with decreasing A. At the same time, the efficiency always increases with W . As a con-
sequence, high-frequency operation (high f3dB) requires small-area diodes, with small
W and increasingly poor efficiency.

An example of the trade-off between speed and efficiency is presented in Fig. 4.25,
showing the efficiency (we assume zero surface power reflectivity) and the bandwidth
of an InGaAs pin photodiode with circular illuminated area. Only the intrinsic junc-
tion capacitance is considered; in a real high-speed device as much as 50% of the total
capacitance may derive from parasitics. From Fig. 4.25, we see that 40 Gbps operation
requires diodes with diameter as low as 20 μm; the resulting efficiency is lower than
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Figure 4.25 High-speed pin optimization: trade-off between speed and efficiency.

50%. Commercially available long-wavelength, high-speed diodes exhibit responsivi-
ties around 0.7–0.9 A/W and have active region thicknesses W < 1 μm. Devices with
top or bottom illumination are possible (bottom illumination allows increase in the
active device area, since this is not partly covered by a ring contact).

4.10 Advanced pin photodiodes

Although conventional (vertical) pin photodiodes can today achieve bandwidths well in
excess of 40 Gbps, such structures are close to the limit performances. Their main limi-
tation, i.e., the efficiency–bandwidth trade-off, can be overcome by properly modifying
the device design.

From a physical standpoint, the efficiency–bandwidth trade-off originates from the
fact that photons and photogenerated carriers run parallel. This implies that increasing
the thickness of the absorption layer (and, therefore, the efficiency) automatically leads
to an increase of the transit time. However, if the angle between the power flux and the
collected photocarrier path is made larger than zero, the absorption region can be made
wider while preserving a low transit time. Alternatively, if photons are made to cross
the active region several times, absorption can be high even with a low value of the
photocarrier transit time.

The first idea is implemented in the refracting facet photodetector (RFPD, Fig. 4.26,
inset) [41]. Using a refracting facet, the angle of the light crossing the active region, φ
(Fig. 4.26, inset), is decreased from the value π/2 (typical of a conventional structure),
and the efficiency can be optimized by increasing the length of the light path in the active
region. Photocarriers to be collected travel vertically, following a path shorter than that
of the photons. Moreover, photons are reflected by the top layer, thus doubling the
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Figure 4.26 Efficiency of an RFPD compared to the conventional pin diode. The inset showing the RFPD
structure is adapted from [41], Fig. 1.

absorption region’s effective thickness. In the best case (100% metal reflectivity), given
an active region thickness W , the effective absorption thickness Weff will therefore be

Weff = 2W

cos θ
,

where θ = π/2 − φ, and the external efficiency will depend on Weff,

ηx ≈ ηQ (1 − R)
(

1 − e−αWeff
)
, (4.50)

while the carrier transit time will of course be related to W . The improvement in the
efficiency vs. the angle θ following from (4.50) is shown in Fig. 4.26. In practice, the
RFPD operation is made more critical by the coupling of the light source (e.g., a fiber)
with a slanted surface; moreover, the efficiency is decreased by the finite reflectivity of
the top metal layer. In the above remarks, we have neglected the effect of refraction at
the heterojunctions.

In resonant cavity detectors, light is made to cross the absorption layer several times
by inserting such a layer in a vertical optical resonator confined by front and back Bragg
reflectors (a grating obtained by stacking several semiconductor layers of low and high
refractive index, see Section 5.8.4). This solution increases the efficiency but, since the
cavity is resonant, the optical bandwidth is narrow.

4.10.1 Waveguide photodiodes

In waveguide photodiodes, the photon flux and the photocarriers’ motion are
orthogonal. Light is guided by an optical waveguide made of an intrinsic narrow-
gap semiconductor layer, sandwiched between two highly doped widegap layers



202 Detectors

Light

W

p-electrode

n-electrode

a

d

PD out

PD bias

RL
VL

VPD

+

Refractive
index

p+ InP

n+ InGaAsP
S.I. InP

p+ InGaAsP
p+ diffused InGaAs

i InGaAs

Figure 4.27 Schematic structure of an InGaAs waveguide photodiode (left) and details of the epitaxial
structure (right) showing the guiding refractive index profile.

(see Fig. 4.27). Applying a reverse bias voltage, photocarriers are collected by the doped
layers after a very short transit time (the waveguide height is typically d < 1 μm); as
the waveguide length can be designed so that W � Lα , the majority of photons are
absorbed, without affecting the transit time. Since the width a of the waveguide and
of the top electrode is a ≈ 2−5 μm, the capacitance is low, so that high-frequency
operation is not compromised by RC cutoff either. A disadvantage of the waveguide
approach is the fact that the optical field is not completely confined by the narrowgap
waveguide core, but partly extends into the widegap cladding, where absorption is neg-
ligible; the waveguide effective absorption is therefore a properly averaged value αeff =
�ovα, where �ov < 1 is the overlap integral and α is the core absorption. The overlap
integral is a relative measure of the optical field energy within the absorbing part of the
optical waveguide, vs. the total energy:

�ov =
∫ d

0

∣∣Eop
∣∣2 dz∫∞

−∞
∣∣Eop

∣∣2 dz
< 1,

where the absorption layer extends from z = 0 to z = d and Eop is the optical field. The
same concept is exploited in laser modeling; see Section 5.5.1.

Denoting by d the active (absorption) region thickness, by a the junction width,
and by W the optical waveguide length (see Fig. 4.27), the photodiode external device
quantum efficiency and responsivity are:

ηx ≈ ηQ (1 − R)
(

1 − e−�ovαW
)

(4.51)

R = q

h f
ηQ (1 − R)

(
1 − e−�ovαW

)
, (4.52)

while again f3dB,RC = 1/2πRC , where

R ≈ RS + RL , C ≈ C j + C p, C j = εsaW

d
.
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Finally, the transit time-limited cutoff frequency (assuming �ovαd � 1) will be

f3dB,tr = 3.5v̄

2πd
, where

1

v̄4
= 1

2

(
1

v4
n,sat

+ 1

v4
h,sat

)
.

An example of waveguide photodiode structure is shown in Fig. 4.27. In practice, the
intrinsic bandwidth of such structures can be designed well in excess of 40 GHz, but it
is somewhat limited by parasitics; moreover, the total efficiency tends to decrease due to
coupling losses between the external medium (e.g., the optical fiber) and the waveguide.
Finally, such structures suffer from earlier power saturation with respect to conven-
tional photodiodes, due to the very small cross section. Lateral waveguiding is usually
obtained by including the active region in a ridge. A similar arrangement is exploited
in electroabsorption modulators, which basically are waveguide photodetectors with
variable absorption; see Section 6.8.

4.10.2 Traveling-wave photodetectors

The high-speed operation of waveguide photodiodes is mainly limited by RC cutoff;
further bandwidth improvements can be obtained by turning the RF electrodes into a
transmission line. This can be done by properly feeding the signal from one end of
the structure (see Fig. 4.28) and by loading the other end with a matched load; the
detector becomes a nonconventional coplanar waveguide, continuously loaded by the
pin reverse-biased capacitance. The resulting traveling-wave or distributed photode-
tector (TWP) is able, at least in theory, to overcome the RC limitations of the simple
lumped-parameter waveguide photodiode [42]. TWPs are also interesting as an exam-
ple of devices wherein the interaction between the optical and RF signal is distributed;
a similar principle will also be applied in distributed electrooptic and electroabsorption
modulators.

To simplify the treatment, suppose that the transmission line is terminated, at both
sides (generator and load), on the characteristic impedance. The distributed photodi-
ode extends from z = 0 to z = W (see Fig. 4.28, right); let us consider an infinitesimal
slice of the photodiode between z and z + dz. Such a slice excites an infinitesimal small-
signal current at t , proportional to the optical power that crosses at t section z. However,

Input light
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p-electrode
Active layer

S.I. InP
VPD

RG = Z0

RL = Z0

z = 0 z = W

Output RF

p cladding

n cladding

Active
intrinsic
layer

Figure 4.28 Distributed waveguide photodiode structure (left) and equivalent circuit in terms of optical and
RF coupled waveguides (right) showing the generator and load conditions.
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the optical signal entering the photodiode at z = 0 crosses section z after a delay
t0 = z/vo, where vo is the phase velocity of the optical signal. Such a delay translates,
in the frequency domain, into a phase shift exp(−jωt0) = exp(−jωz/vo) = exp(−jβoz),
where βo = ω/vo (ω is the angular frequency of the optical signal modulation). There-
fore, the parallel photocurrent excited by light at section z, taking into account power
attenuation and phase shift, is

dIL = qηQ

h f

[
Pin(0)e

−jβoze−�ovαz − Pin(0)e
−jβoze−�ovα(z+dz)

]
= qηQ

h f
�ovαPin(0)e

−�ovαze−jβoz dz,

from which
dIL

dz
= qηQ

h f
�ovαPin(0)e

−�ovαze−jβoz = I ′
L(0)e

−(�ovα+jβo)z .

To further simplify the problem, let us suppose that the transmission line is lossless.
From the telegraphers’ equations in the frequency domain, (3.10) and (3.11), we

have, neglecting RF losses and introducing the source term related to the photocurrent,
dIL/dz:

dV

dz
= −jωLI (4.53)

dI

dz
= −jωCV + dIL

dz
, (4.54)

where L is the line inductance per unit length and C is the line capacitance per unit
length. Differentiating (4.53) and substituting (4.54) into (4.53) we obtain

d2V

dz2
= −jωLdI

dz
= −jωL

(
−jωCV + dIL

dz

)
= −ω2LCV − jωLI ′

L(0)e
−(�ovα+jβo)z .

We now use a trial solution of the form

V (z) = V +
0 e−jβm z + V −

0 ejβm z + VLe−(�ovα+jβo)z .

Substituting, we obtain

VL = − jωLI ′
L(0)

(�ovα + jβo)2 + β2
m
,

where βm = ω
√LC is the transmission line propagation constant, i.e.,

V (z) = V +
0 e−jβm z + V −

0 ejβm z − jωLI ′
L(0)

(�ovα + jβo)2 + β2
m

e−(�ovα+jβo)z . (4.55)

From the first telegraphers’ equation (4.53) we then derive the current:

I = − 1

jωL
dV

dz
= V +

0

Z0
e−jβm z − V −

0

Z0
ejβm z − (�ovα + jβo) I ′

L(0)

(�ovα + jβo)2 + β2
m

e−(�ovα+jβo)z,

(4.56)
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where Z0 = √L/C (see (3.5)), is the line characteristic impedance. The DC bias gener-
ator connected at the input behaves as a short for the sinusoidal photocurrent generated
along the line. Taking into account the load (Z0 at both sides), the boundary conditions
(b.c.) in x = 0 and x = W are therefore

V (0) = −Z0 I (0), V (W ) = Z0 I (W );
Substituting into the b.c. set the expressions for V (z) (4.55) and I (z) (4.56) we obtain
the two constants V +

0 and V −
0 as

V +
0 = −1

2
I ′

L(0)

[
jωL+Z0 (�ovα + jβo)

]
(�ovα + jβo)2 + β2

m

V −
0 = −1

2
I ′

L(0)

[
jωL−Z0 (�ovα + jβo)

]
(�ovα + jβo)2 + β2

m
e−(�ovα+jβo+jβm )W .

The current on the load (i.e., the output photocurrent) is therefore, substituting I ′
L(0) =

(q/h f ) ηQ�ovαPin(0),

I (W, ω) = IL(ω) = 1

2

q

h f
ηQ�ovαPin(0)

e−jβm W
[
1 − e−(�ovα+jβo−jβm )W

]
�ovα + jβo − jβm

.

In the same way, we can evaluate the current at the device input, i.e., the current flowing
into the matched load connected at z = 0:

I (0, ω) = −1

2

q

h f
ηQ�ovαPin(0)

1 − e−(�ovα+jβo+jβm )W

�ovα + jβo + jβm
.

At zero frequency we have

I (W, 0) = 1

2

q

h f
ηQ Pin(0)

(
1 − e−�ovαW

)
= −I (0, 0),

which corresponds to one half of the conventional waveguide pin responsivity; see
(4.52). Apart from the opposite current signs (deriving from the transmission line cur-
rent sign convention) this simply means that in DC the distributed detector works like
a lumped one, but with two loads (that are in parallel in DC), so that half of the
photocurrent is absorbed by each load.

Assuming as the device photocurrent that absorbed by the output load in z = W , this
can be cast into the equivalent form

|IL(ω)| = q

h f
ηQ
�ovαW Pin(0)

2
exp

(
−�ovαW

2

) ∣∣∣∣ sinh ξ

ξ

∣∣∣∣ ,
where

ξ(ω) = (�ovα + jβo − jβm)W

2
= (�ovα + j�β(ω))W

2
,

�β(ω) = βo − βm = ω

(
1

vo
− 1

vm

)
.
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The normalized frequency response is

|r(ω)| =
∣∣∣∣ IL(ω)

IL(0)

∣∣∣∣ = ξ(0)

sinh ξ(0)

∣∣∣∣ sinh ξ(ω)

ξ(ω)

∣∣∣∣
=
[

1 +
(
�β

�ovα

)2
]−1/2√

coth2 �ovαW

2
sin2 �βW

2
+ cos2 �βW

2
. (4.57)

The maximum of |r(ω)| as a function of �β occurs when �β = 0. This implies that
if the optical mode and microwave velocities are the same (synchronous condition) the
frequency response is flat and

IL(ω) = q

2h f
ηQ Pin(0)

[
1 − e−�ovαW

]
∀ω,

coinciding of course with the DC photocurrent (one-half of the conventional pin
photodiode output).

An example of the frequency response (4.57) as a function of the normalized fre-
quency �βW is shown in Fig. 4.29; note that the sinc behavior appears only for very
low values of �ovαW (corresponding to low efficiency). Decreasing the velocity mis-
match leads of course to lower values of �βW at a given frequency, i.e., to an increase
of the bandwidth.

For exact velocity matching, the bandwidth is (theoretically) infinity, even though in
practice RF losses limit the bandwidth in the synchronous condition as well. The 3 dB
bandwidth can be expressed in a closed form in two cases:
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Figure 4.29 Frequency response of a distributed photodetector for different values of the absorption. RF
losses have been neglected.
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1. If the absorption region is short (�ovαW � 1) one has

|r(ω)| ≈

∣∣∣∣∣∣∣
sin

�βW

2
�βW

2

∣∣∣∣∣∣∣ ,
and the 3 dB bandwidth, which depends only on the velocity difference between the
two modes, corresponds to the value �βW/2 ≈ 1.391, i.e.,

f3dB = 0.44

W

vovm

|vm − vo| .

In this case, the cutoff frequency is inversely proportional to the device length, and
the resulting response is of sin x/x type.

2. For a (more realistic) case in which the absorption region is long (�ovαW � 1), it is
convenient to write the response in a different form:

|IL(ω)| = 1

2

q

h f
ηQ�ovαPin(0)

∣∣1 − e−(�ovα+jβo−jβm )W
∣∣√

�2
ovα

2 + (βo − βm)2

≈ 1

2

q

h f
ηQ�ovαPin(0)

1√
�2

ovα
2 + (βo − βm)2

.

The normalized frequency response is

|r(ω)| =
∣∣∣∣ IL(ω)

IL(0)

∣∣∣∣ = �ovα√
�2

ovα
2 +�β2

= 1√
1 + ω2

�2
ovα

2

(
1

vo
− 1

vm

)2
.

In such a case, the photodetector 3 dB bandwidth is given by

f3dB = �ovα

2π

vovm

|vm − vo| ≈ �ovα

2π
v
v

�v
.

The approximation holds if vo ≈ vm ≈ v; �v = |vm − vo|. Note that in this case
(�ovαW � 1), f3dB is independent on W , because only the initial part of the device
generates photocurrent, and the equivalent length whereon nonsynchronous coupling
can play a role is of the order of only a few absorption lengths.

While the DC photocurrents on the generator and load impedances are equal, the
frequency response on the generator impedance shows a faster decay. In fact, for a long
photodiode, we have

|I (0)| = 1

2

q

h f
ηQ�ovαPin(0)

1√
�2

ovα
2 + (βo + βm)2

,

and the corresponding normalized frequency response is∣∣r′(ω)∣∣ =
∣∣∣∣ I (0, ω)

I (0, 0)

∣∣∣∣ = 1√
1 + ω2

�2
ovα

2

(
1

vo
+ 1

vm

)2
,
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with a 3 dB cutoff:

f ′
3dB = �ovα

2π

vovm

vm + vo
� f3dB.

In fact, the interaction between the optical wave and the regressive RF wave entering the
load in x = 0 is always counterpropagating (i.e., the two wave velocities are opposite in
sign), and synchronous coupling is never achieved. In distributed photodiodes limited
by velocity mismatch, the load in z = W will draw the majority of the photocurrent;
this conclusion is not necessarily true, however, if the speed is limited by transit time.
In any case, matching the detector at both sides (generator and load) imposes a 50%
penalty on the efficiency (although it increases the detector bandwidth).

Example 4.3: Consider a photodetector of length W = 50 μm, active region thickness
d = 0.25 μm (permittivity εr = 13), width a = 4 μm. The waveguide absorption length
is L�ovα = 30 μm. Assume for the RF velocity vm = 1.2 × 108 m/s, for the optical
velocity vo = 0.9 × 108 m/s; the photocarrier drift velocity is v̄ = 1 × 107 cm/s. The
characteristic impedance of the line is Z0 = 20 � and the photodetector is matched at
both ends on Z0. Evaluate the detector bandwidth in concentrated and distributed forms,
taking also into account the effect of the carrier transit time. Evaluate the efficiency of
the distributed and waveguide detectors and compare with a conventional, vertically
illuminated detector.

Let us consider first the transit time cutoff frequency. Since light is illuminating the
active region almost uniformly, the generation of e-h pairs along the i layer is approxi-
mately constant, and the frequency response is limited by both carriers; we can exploit
the expression for the transit-time limited bandwidth:

f3dB,tr = 3.5v̄

2πd
= 3.5 · 1 × 105

2π · 0.25 × 10−6
= 223 GHz.

Concerning the bandwidth of the distributed detector, we have (we assume from the
data that the absorption region is long)

f3dB,d = �ovα

2π

vovm

|vm − vo| = 1

2π · 30 × 10−6
· 0.9 × 108 · 1.2 × 108

1.2 × 108 − 0.9 × 108
= 1910 GHz.

The cutoff frequency for the photocurrent on the generator internal impedance is instead

f ′
3dB,d = �ovα

2π

vovm

|vm + vo| = 1

2π · 30 × 10−6
· 0.9 × 108 · 1.2 × 108

1.2 × 108 + 0.9 × 108
= 273 GHz.

For the lumped detector, the capacitance is

C j = ε0εr
aW

d
= 8.86 × 10−12 · 13 · 4 × 10−6 · 50 × 10−6

0.25 × 10−6
= 0.092 pF,

so that the RC cutoff (R = Z0/2 = 10�) is

f3dB,RC = 1

2πRC j
= 1

2π · 10 · 0.092 × 10−12
= 173 GHz.
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The approximate total cutoff frequency for the distributed detector can be evaluated
using the same approach as in (4.49):

f −2
3dB ≈ f −2

3dB,tr + f −2
3dB,d . (4.58)

We obtain f3dB = 221 GHz (distributed detector) and f3dB = 137 GHz (waveguide
detector). The total cutoff frequency for the photocurrent on the generator is instead
f3dB = 172 GHz. Although f ′

3dB,d � f3dB,d , at high frequency also the current on the
generator matched resistance is therefore far from being negligible. For the efficiency
we have, neglecting reflections and coupling loss and considering only the photocurrent
on the load:

ηx ≈1

2

(
1 − e−�ovαW

)
= 1

2

(
1 − e−50/30

)
≈ 40.5% distributed/waveguide

ηx ≈
(

1 − e−�ovαd
)

=
(

1 − e−0.25/30
)

= 0.8% conventional (vertical).

In the vertical case we have considered the total photocurrent in both the generator
and the load. In conclusion, the efficiency of the distributed and waveguide detectors
is the same while the bandwidth of the distributed detector is almost twice that of the
waveguide device. In both cases the efficiency is much larger than for the vertical case.

4.10.3 Velocity-matched traveling-wave photodetectors

In practical implementations, the ideal version of the traveling-wave photodetector is
affected by heavy RF losses; moreover, obtaining velocity matching is critical. The RF
velocity depends in fact on the kind of quasi-TEM transmission line exploited in the dis-
tributed detector. While the optical refractive index is close to the active material index,
the microwave effective index can be lower (due to quasi-TEM averaging between the
air and the dielectric, see (4.59)) or, in some structures, much larger (and also strongly
frequency-dependent) because of the slow-wave effect; see Section 6.10.

To decrease RF losses, probably the most important limitation to high-speed opera-
tion, periodically loaded distributed detectors have been proposed; see an example in
Fig. 4.30, where the RF line is a quasi-TEM coplanar stripline (a TXL made of two par-
allel coplanar conductors, one acting as the ground plane) periodically loaded with pin
photodiodes. Owing to the wider RF conductors vs. the design in Fig. 4.28 (where the
signal conductor width is a few micrometers), the RF losses decrease dramatically and
the effective length of the detector can be increased. However, over such a long struc-
ture, velocity matching becomes an issue. In fact, while the RF permittivity in a bulk
semiconductor is larger than the optical permittivity, in the coplanar stripline exploited
for the design of Fig. 4.30 the RF effective index is typically lower than the optical
effective refractive index, due to the air–dielectric quasi-static averaging; see (4.59).
Assume that the optical permittivity is εo, and that the RF permittivity of the semicon-
ductor is εRF > εo. For a coplanar stripline, as for a coplanar waveguide, the effective
line permittivity is, from (3.32)
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Figure 4.30 Distributed photodetector consisting of a RF waveguide periodically loaded with photodiodes.

εeff ≈ εRF + 1

2
< εo. (4.59)

However, the coplanar stripline in Fig. 4.30 is periodically loaded with the (shunt)
lumped capacitances of the detectors. Such capacitances do not appreciably alter the
low-frequency current density pattern in the RF electrodes and the associated magnetic
field distribution, since they behave as open circuits. The p.u.l. line inductance L is
therefore almost unchanged, and so is the in vacuo capacitance C0 ∝ L−1 (3.27); at
the same time, the average p.u.l. capacitance is increased due to the capacitive loading
effect of the junctions. The effective permittivity of a uniform line of length W can be,
in fact, expressed as the ratio between the total capacitance and the capacitance in air,
the former including the shunt (junction) loading capacitance on the length W , C j :

εeff,l = CW + C j

C0W
= C

C0
+ C j

C0W
= εeff + εl .

By properly selecting the amount of loading, the additional contribution εl can be cho-
sen so that εeff + εl = εo. In conclusion, capacitive loading decreases the RF velocity, so
that velocity matching can be obtained, by careful design, over a wide frequency range.
The resulting structure, called a velocity-matched traveling-wave detector (VMTWD)
[43] as opposed to the simple traveling-wave detector (TWD), can achieve bandwidths
well in excess of 100 GHz.

4.10.4 Uni-traveling carrier photodiodes

Uni-traveling carrier photodiodes (UTC-PDs) are a high-speed evolution of conven-
tional, vertically illuminated pin photodiodes [44]. In the conventional pin, absorption
takes place in the intrinsic layer, where electrons and holes are generated. The tran-
sit time is negatively affected by the lower velocity of holes vs. electrons; moreover,
if the absorption layer thickness is reduced to improve the transit time, the efficiency
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Figure 4.31 Simplified band diagram of uni-traveling carrier photodiode (UTC-PD) under reverse bias and
backside illumination (a); layer structure of UTC-PD (b). Adapted from [44], Fig. 1.

and the RC-limited bandwidth decrease. UTC-PDs overcome such limitations in two
ways. Firstly, photons are absorbed in a p layer where the field is low, but holes are col-
lected by the p contact, while electrons quickly diffuse into an intrinsic or n− high-field
drift region, where they undergo quasi-ballistic (i.e., not affected by scattering events)
motion to the collector. Due to the very thin absorption layer, the transit time depends
only on the electron drift through the intrinsic layer, while holes do not play a role;
however, due to quasi-ballistic motion, the electron transit time is low. Secondly, the
electron drift layer is thick enough to limit the diode capacitance, thus increasing the
RC-limited bandwidth.

Figure 4.31 shows the band diagram and layer structure of a long-wavelength UTC-
PD grown on a InP substrate. Note the InGaAsP electron barrier layer and the hole
barrier introduced by the InGaAs–InP valence band discontinuity. Typical absorption
layers are thin in order not to decrease the response speed due to diffusion in the
neutral absorption layer, with reported widths of the order of 100–200 nm, leading to
rather poor responsivities (around 0.15 mA/mW); backside illumination is exploited to
improve the photon collection and avoid photons being absorbed by the electron barrier
layer. UTC-PDs developed by NTT Photonics Labs have demonstrated record perfor-
mances for 1.55 μm detectors, with 3 dB bandwidth of 310 GHz [45]. The estimated
average electron velocity is of the order of 3 × 107 cm/s, thus demonstrating velocity
overshoot effects and quasi-ballistic transport in the drift region. With respect to dis-
tributed and waveguide photodetectors, UTC-PD have a much simpler, vertical structure
and comparable speed; typical responsivities are lower, however.

4.11 Avalanche photodiodes

Avalanche photodiodes (APDs) exploit the avalanche multiplication of photogenerated
carriers through impact ionization to amplify the detector current and improve the
device sensitivity. A larger photocurrent (for the same illumination level) is obtained
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Figure 4.33 SAM-APD (electron-triggered avalanche) with electric field profile.

with respect to pin photodiodes, but also higher noise. In principle, the device includes
two regions: the generation region (low to medium electric field) and the multiplica-
tion region (high field). The two regions can be physically the same, as in conventional
APDs (see Fig. 4.32), or can be separated (SAM-APD: separate absorption and multi-
plication APD). In the APD shown in Fig. 4.33 the avalanche is triggered by electrons;
the dual case (avalanche triggered by holes) is also possible; see Fig. 4.34.

The structure of the conventional APD is a pin diode in reverse bias, with negligible
minority carrier diffusion currents at the edges of the depletion region, i.e., Jh(0) = 0
(n+ side) and Jn(W ) = 0 (p+ side). The width of the avalanche and photogeneration
region is W ≡ Wabs ≡ Wav; see Fig. 4.32. As already mentioned, photocarrier genera-
tion takes place in a high-field region, where, at the same time, avalanche multiplication
by impact ionization occurs.

In the SAM-APD the absorption region is intrinsic, and multiplication takes place
either in an n+ p junction at the device left-hand side, see Fig. 4.33, or in a np+ junction
at the device right-hand side, see Fig. 4.34. In the first case (Fig. 4.33), the hole current
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Figure 4.34 SAM-APD (hole-triggered avalanche) with electric field profile.

at the left-hand side depletion edge is negligible, Jh(0) = 0, while the electron current
at the beginning of the avalanche region is Jn(Wav) = Jpin , where Jpin is the primary
current photogenerated by the absorption region alone. In the second case (Fig. 4.34),
the electron current at the right-hand side depletion edge is negligible, Jn(Wav) = 0,
while the hole current at the beginning of the avalanche region is Jn(0) = Jpin , where
Jpin is the primary current photogenerated by the absorption region alone.

Although the device analysis shows that the responsivity increases with increasing
avalanche multiplication, which is, in turn, larger if the hole and electron ionization
coefficients are similar (i.e., if both carriers contribute to the avalanche process), large
values of the multiplication factor are inconvenient because they increase noise and
decrease speed. Optimum noise and speed are achieved when the avalanche process
is almost unipolar: this happens when the ionization coefficient of the avalanche-
triggering carrier is much larger than the ionization coefficient of the other carrier.
For some materials, this condition is met naturally; it can be artificially introduced
through bandstructure engineering and the use of superlattices. From the technolog-
ical standpoint, early APDs were Si- or Ge-based homojunction devices, with large
operating voltages (e.g., in excess of 50 V). Today, InP-based long-wavelength APDs
are available, and also the operating APD voltage has considerably decreased, thanks
to device downsizing. Examples of APD structures are shown in Fig. 4.35; note the
guard ring introduced into the junction. The structure is typically vertical (top or bottom
illuminated), although waveguide APDs also have been proposed.

4.11.1 Analysis of APD responsivity

In order to evaluate the APD responsivity, we first consider the avalanche process in a
region of width W , in which no photogeneration is present. Avalanche may originate
from hole injection in x = 0 or electron injection in x = W ; the result is exploited to
analyze the two SAM-APD cases. The analysis of the conventional SAM (less impor-
tant, since the structure does not allow the absorption and avalanche regions to be
independently optimized and moreover, as discussed later, it exhibits larger noise) is
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carried out assuming that photogeneration is present in the avalanche region, but no
carrier injection in x = W and x = 0.

Let us first consider a DC stationary condition, in which avalanche generation is
triggered, in a region of length W and electric field E(x), by the injection of a hole
current in x = 0 and an electron current in x = W (i.e., the avalanche region extends
from 0 to W ).

From the electron and hole continuity equations, and neglecting all generation and
recombination phenomena apart from avalanche multiplication, we have

dJn

dx
= −αh Jh − αn Jn (4.60)

dJh

dx
= αh Jh + αn Jn . (4.61)

For large electric fields, carrier currents are mainly drift currents, not diffusion currents.
In this case, the electron and hole currents have the same sign, and (4.60) and (4.61)
imply that Jh increases with increasing x (from left to right) while Jn increases with
decreasing x (from right to left).

Taking into account that the current density J = Jn(x)+ Jh(x) is constant vs. x , we
can derive a single equation, for example, in the hole current density. Eliminating the
electron current density from (4.60), we obtain

dJh

dx
− (αh − αn)Jh = αn J. (4.62)

As boundary conditions for system (4.60) and (4.61), we assign a hole current incident
from 0−, Jh(0), and an electron current incident from W +, Jn(W ). To solve (4.62),
we actually only need the first boundary condition (as appropriate for a first-order
equation).

Since αn and αh are generally functions of x in the presence of a nonuniform electric
field, (4.62) is a first-order linear equation with variable coefficients of the kind

dy

dx
+ a(x)y = b(x), (4.63)
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with general solution

y(x) = e− ∫ x
0 a(ξ) dξ

[
y(0)+

∫ x

0
b(ξ)e

∫ ξ
0 a(η) dη dξ

]
.

Identifying a(x) = −(αh − αn) and b(x) = αn J (J constant), we obtain

Jh(x) = e
∫ x

0 (αh−αn) dξ
[

Jh(0)+ J
∫ x

0
αne− ∫ ξ0 (αh−αn) dη dξ

]
. (4.64)

If Jh(0) and Jn(W ) are assigned as boundary conditions, the total current density J can
be expressed as

J = Jn(W )+ Jh(W ) = Jn(W )+ e
∫ W

0 (αh−αn) dξ

×
[

Jh(0)+ J
∫ W

0
αne− ∫ ξ0 (αh−αn) dη dξ

]
.

Solving with respect to J , we obtain

J = e
∫ W

0 (αh−αn) dξ Jh(0)+ Jn(W )

1 − e
∫ W

0 (αh−αn) dξ ∫ W
0 αne− ∫ ξ0 (αh−αn) dη dξ

≡ N

D

= Mh Jh(0)+ Mn Jn(W ), (4.65)

where Mh and Mn are the electron and hole multiplication factors.
From (4.65) we see that, in the presence of a finite injected electron or hole current,

the total current becomes larger (if Mh , Mn > 1), and can diverge due to the carrier
avalanche generation. The condition J → ∞ corresponds to D → 0 in (4.65); however,
since11 ∫ W

0
(αn − αh)e

− ∫ ξ0 (αh−αn) dηdξ = e− ∫ W
0 (αh−αn) dξ − 1, (4.66)

we immediately have

D = e
∫ W

0 (αh−αn) dξ
[

1 −
∫ W

0
αhe− ∫ ξ0 (αh−αn) dη dξ

]
. (4.67)

Thus, the avalanche breakdown condition, corresponding to infinite current, is∫ W

0
αhe− ∫ x

0 (αh−αn) dξdx ≡ Ih,ion = 1, (4.68)

11 In fact, defining

−
∫ ξ

0
(αh − αn) dη = f (ξ),

Eq. (4.66) becomes∫ W

0
e f (ξ) d f

dξ
dξ =

∫ f (W )

f (0)
e f d f = e f (W ) − e f (0) = e f (W ) − 1

since f (0) = 0 by definition.
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where Ih,ion is the hole ionization integral, a function of the electron field profile
and, therefore, of the applied voltage. Similarly, we can define the electron ionization
integral:

In,ion =
∫ W

0
αne

∫ W
x (αh−αn) dξ dx . (4.69)

From (4.65) and taking into account (4.67), (4.68) and (4.69), the multiplication factors
can therefore be expressed as

Mh = 1

1 − ∫ W
0 αhe− ∫ ξ0 (αh−αn) dη dξ

= 1

1 − Ih,ion

Mn = 1

1 − ∫ W
0 αne

∫ W
ξ (αh−αn) dη dξ

= 1

1 − In,ion
.

The divergence condition can be equivalently formulated as In,ion = 1 or Ih,ion = 1;
however, In,ion is more appropriate to describe electron injection from x = W . If one of
the two injected currents vanishes, we say that the avalanche multiplication is triggered
by holes (Jh(0) �= 0, Jn(W ) = 0) or triggered by electrons (Jh(0) = 0, Jn(W ) �= 0).

We consider now some simplifying cases. If the two avalanche ionization coefficients
are equal (αn = αh), the ionization integrals become

In,ion =
∫ W

0
αn dx = Ih,ion =

∫ W

0
αh dx,

so that the avalanche condition is simply∫ W

0
αn dx =

∫ W

0
αh dx = 1. (4.70)

Condition αn ≈ αh is approximately verified in some compound semiconductors, while
in Si the ionization rates are significantly different. In many cases we can approximately
assume that the avalanche ionization coefficients are different but constant over the
avalanche region. In this case, the ionization integrals simplify as follows:

In,ion = αn

αh − αn

[
e(αh−αn)W − 1

]
Ih,ion = αh

αn − αh

[
e(αn−αh)W − 1

]
;

and the multiplication factors become

Mn = 1

1 − In,ion
= αh − αn

αh − αne(αh−αn)W
= (1 − khn) eαn(1−khn)W

1 − khneαn(1−khn)W
(4.71)

Mh = 1

1 − Ih,ion
= αn − αh

αn − αhe(αn−αh)W
= khn − 1

khneαn(1−khn)W − 1
, (4.72)

where the ionization coefficient ratio

khn = αh

αn
. (4.73)

has been introduced.
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We now apply the above approach to the analysis of the conventional APDs and
SAM-APDs. For the electron-triggered SAM-APD shown in Fig. 4.33, we set Jh(0) = 0
in (4.65), and thus J = Mn Jpin , where Jpin = Jn(W ); thus, the equivalent pin current
in multiplied by a factor Mn > 1,12 so that the APD responsivity will be

Rn
SAM-APD = MnRpin = Mn

qηQ

h f
(1 − R)

(
1 − e−αWabs

)
,

where Rpin is the responsivity of the equivalent pin.
For the hole-triggered SAM-APD shown in Fig. 4.34, we set Jn(W ) = 0 in (4.65),

and thus J = Mh Jpin , where Jpin = Jh(0); thus, the equivalent pin current is multi-
plied by a factor Mh > 1, so that the APD responsivity will be

Rh
SAM-APD = MhRpin = Mh

qηQ

h f
(1 − R)

(
1 − e−αWabs

)
.

With respect to the pin, the avalanche photodiode is therefore characterized by a larger
responsivity, possibly larger than the ideal, material-dependent, value defined in (4.9).

To model the conventional APD, see Fig. 4.32, we now finally consider the case where
in the avalanche region photogeneration occurs, while there is no current injection in
x = 0 and x = W . For simplicity, we assume that the optical generation rate is uniform;
the resulting multiplication factor Mo will however be exploited (as an approximation),
see (4.80), also in cases where the W > Lα and therefore the equivalent pin response
is described by (4.35). Introducing the optical generation in (4.60) and (4.61),

dJn

dx
= −αh Jh − αn Jn − qGo (4.74)

dJh

dx
= αh Jh + αn Jn + qGo, (4.75)

we have, accounting for the constant total current,

dJh

dx
− (αh − αn)Jh = αn J + qGo. (4.76)

As boundary conditions, we have Jh(0) = 0 and Jn(W ) = 0. From the linear equation
template (4.63), we identify b(x) = αn J + qGo, thus obtaining the solution:

Jh(x) = e
∫ x

0 (αh−αn) dξ

×
[

Jh(0)+ J
∫ x

0
αne− ∫ ξ0 (αh−αn) dη dξ + qGo

∫ x

0
e− ∫ ξ0 (αh−αn) dη dξ

]
.

(4.77)

Taking into account the boundary conditions, the total current density J can be
expressed as

12 For equivalent pin we mean a detector ideally obtained from the APD by suppressing the avalanche region
and its effect.
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J = Jh(W ) = e
∫ W

0 (αh−αn) dx

×
[

J
∫ W

0
αne− ∫ x

0 (αh−αn) dξ dx + qGo

∫ W

0
e− ∫ x

0 (αh−αn) dξ dx

]
,

or, solving by J and taking (4.66) into account,

J = qGo
e
∫ W

0 (αh−αn) dξ ∫ W
0 e− ∫ ξ0 (αh−αn) dη dξ

1 − e
∫ W

0 (αh−αn) dξ ∫ W
0 αne− ∫ ξ0 (αh−αn) dη dξ

= qGoW Mo = Mo Jpin, (4.78)

where Jpin is the photocurrent density without avalanche generation, and Mo is the
photocurrent multiplication factor:

Mo = 1

W

∫ W
0 e− ∫ ξ0 (αh−αn) dη dξ

1 − ∫ W
0 αhe− ∫ ξ0 (αh−αn) dη dξ

.

For αh = αn the multiplication factor simplifies to

Mo = 1

1 − ∫ W
0 αh dx

,

which again diverges if the avalanche breakdown condition (4.70) is met. For constant
ionization coefficients we have instead:

Mo = 1

W

e(αn−αh)W − 1

αn − αhe(αn−αh)W
= 1

Wαn

eαn(1−khn)W − 1

1 − khneαn(1−khn)W
. (4.79)

In the conventional APD, the equivalent pin responsivity is therefore multiplied by
Mo > 1:

RAPD = MoRpin . (4.80)

Thus, in both the conventional APD and the SAM-APD the responsivity is enhanced due
to the effect of avalanche multiplication. From a technological standpoint, the SAM-
APD allows for separate optimization of the avalanche region and of the absorption
region, while in the conventional APD the high-field avalanche region width should be
W > Lα; as a result, the APD voltage may be very large, unless compound semicon-
ductors are used. The separate optimization of the avalanche region thickness and of
the absorption region length can be carried out in principle by exploiting waveguide
photodetector structures; see Section 4.14.

In all cases considered, the APD multiplication factor (Mn , Mh or Mo) increases with
increasing voltage; the resulting V–I characteristics are shown in Fig. 4.36, which can
also be fitted by assuming for the multiplication factor (Mo, Mn or Mh) the empirical
expression

M ≈
[

1 −
(

VA − Rs I

Vbr

)]−n

,

where Rs is the parasitic series resistance, Vbr is the diode breakdown voltage, and VA is
the applied reverse voltage. Practical values for M typically are < 10 to decrease noise,
lower the bias voltage, and improve the device reliability.
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To compare, from the standpoint of the avalanche multiplication effectiveness, the
conventional APD and the SAM-APD with electron injection, we plot the multiplication
factors Mo and Mn as a function of the product αnW ; see Fig. 4.37. The behavior of the
multiplication factors is similar, although, for khn = 0, Mn > Mh . In fact, in this case
one has

Mn = eαn W > Mo = eαn W − 1

αnW
,

while for khn = 1,

Mo = 1

1 − αnW
= Mn .

From Fig. 4.37 we see that for khn ≤ 1 the electron-triggered SAM-APD multiplication
factor is generally larger than for the conventional APD. From a physical standpoint this
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is because in the SAM-APD the whole primary photocurrent (from the most effective
avalanching carrier, the electrons) is injected entirely at the edges of the avalanche
region, while in the conventional APD the photocurrent injection takes place only grad-
ually within the avalanche region (also acting as the absorption region). To optimize the
multiplication factor in a SAM-APD the avalanche triggering (injected) carrier should
be in principle the one with the larger ionization coefficient. If, on the other hand,
khn = 1, we have Mo = Mh = Mn , i.e., all structures are equivalent concerning the
multiplication factor.

4.12 Noise in APDs and pins

The short-circuit current fluctuation spectrum of a pin diode can, as already remarked,
be modeled as shot noise according to (4.11). Neglecting the dark current, we have that
the power spectrum of the noise current in (see Fig. 4.14) can be expressed as

Sin ,pin = 2q IL = 2qRpin Pin .

Taking into account that in the APD the (primary) photocurrent generated by the
equivalent pin is multiplied by M = Mn , Mh or Mo:

iL ,APD = MiL ,pin,

we would expect fluctuations to be amplified according to the same law. Since the power
spectrum of the process y = Ax is Sy = |A|2 Sx , this would imply the power spectrum
of the APD current fluctuations to be Sin ,APD = M2Sin ,pin . Unfortunately, the avalanche
multiplication of carriers generates additional noise with respect to the simple multipli-
cation of the shot noise associated with the primary photocurrent. We can therefore
write

Sin ,APD = M2 F Sin ,pin = 2q M2 FRpin Pin = 2q M FRAPD Pin,

where F = F(M) > 1 is the excess noise factor. The evaluation of the excess noise
factors in the conventional and SAM-APD cases is carried out in detail below in
Section 4.12.1;13 we here summarize the main results and discuss the noise behavior
vs. the material parameters, in particular the ratio khn (4.73) and knh = 1/khn .

The short-circuit noise currents for the three cases (conventional APD, SAM-APD
electron or hole triggered), neglecting the dark current, can be expressed as follows. For
the APD we have

So
δi = 2q IL Mo Fo(Mo) (4.81)

13 We follow the classical approach of McIntyre [46]. The resulting analysis is quasi-static, i.e., it assumes
that carriers injected in a high-field region immediately ionize according to the local field; this approxima-
tion is inaccurate when considering extremely thin avalanche regions, (see, e.g., [47]), where the presence
of a dead space becomes significant.
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Mo = 1

Wαn

eαn(1−khn)W − 1

1 − khneαn(1−khn)W
(4.82)

Fo = (1 + αh W Mo) (1 + αnW Mo)

Mo
. (4.83)

For the SAM-APD, electron triggered:

SSAMn
δi = 2q IL Mn Fn(Mn) (4.84)

Mn = (1 − khn) eαn(1−khn)Wav

1 − khneαn(1−khn)Wav
(4.85)

Fn = khn Mn + (1 − khn)
(

2 − M−1
n

)
= Mn

[
1 − (1 − khn)

(
1 − M−1

n

)2
]
. (4.86)

And for the SAM-APD, hole triggered:

SSAMh
δi = 2q IL Mh Fh(Mh) (4.87)

Mh = khn − 1

khneαn(1−khn)Wav − 1
(4.88)

Fh = knh Mh + (1 − knh)
(

2 − M−1
h

)
= Mh

[
1 − (1 − knh)

(
1 − M−1

h

)2
]
. (4.89)

A comparison of the different APD solutions from the standpoint of noise shows that
the excess noise factor increases if the electrons and holes have similar ionization coef-
ficients. Let us concentrate on the electron-triggered avalanche case; for khn = 0, the
excess noise factor is minimum, while it increases for increasing khn and for increas-
ing Mn ; see Fig. 4.38. Concerning the conventional APD case, the behavior is similar,
though the excess noise factor Fo tends to be larger, with the same multiplication factor,
than the excess noise factor Fn . In general, for low values of khn , the SAM-APD is able
to reach low values of the excess noise factor independent of gain, while this is not the
case for conventional APDs; see Fig. 4.39, where the Fo and Fn are plotted together as
a function of αnW . The larger excess noise factor Fo for low khn is evident.

SAM-APDs therefore, beside allowing to optimize the width of the absorption region
so that Wabs > Lα without requiring unrealistically large driving voltages, are also
potentially less noisy than conventional APDs; moreover, in SAM-APDs the avalanche
region can be implemented with a larger gap material.

Concerning materials for APDs, the suitability of compound semiconductors for
which khn ≈ 1 should be discussed. Asymptotic high-field values for GaAs are αn =
1.9 × 105 cm−1, αh = 2.22 × 105 cm−1, making the ratio close to one; GaAs and also
AlGaAs therefore are not particularly well suited to APD development. In0.53Ga0.47As
has the asymptotic values of αn = 2.27 × 106 cm−1, αh = 3.95 × 106 cm−1; this would
suggest that for very high field, hole injection devices are a more convenient choice.
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Independent of the material, however, low-voltage operation leads to low multiplication
factor, but also to low excess noise.

4.12.1 Analysis of APD noise

Estimating the excess noise factor requires a microscopic-level analysis. We start
by remarking that both optical and avalanche generation lead to fluctuations in the
carrier population, and therefore in the current density. Fluctuations originating in
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section x of the avalanche photodetector are propagated to the external circuit through
a multiplication process, leading to their amplification. We first have to characterize the
local fluctuations from a statistical standpoint and, then to evaluate their propagation to
the overall device current fluctuations.

Consider, first, the statistical characterization of fluctuations in section x . From the
hole continuity equation we have, introducing fluctuations as random source terms
according to the Langevin approach (see Section 5.13)

dJh

dx
= αh Jh + αn Jn + qGo + γh + γn + γo,

where γh , γn , γo are zero average random processes that express the fluctuations in
the avalanche generation of holes and electrons, and in the optical generation, respec-
tively. Since the total current is constant, the electron current continuity equation does
not add independent information, also considering that the noise source terms corre-
spond to direct (interband) process, and that, as a consequence, population fluctuations
in the conduction and valence bands are fully correlated (i.e., the same fluctuation source
appears in both continuity equations). Note that we have here made an approximation
in neglecting the time dynamics of the avalanche process; since the microscopic noise
sources are modeled by a white process, the resulting current fluctuations will also be
white.

To model the second-order statistical properties of γh , γn , γo, we assume that
(particle) generation and recombination can be described by a Poissonian process
x(t) = X + δx(t) in the particle number, where X is the average value and δx(t) the
zero-average fluctuation; the related (charge) GR process will be qx(t). The power spec-
trum of (particle) number fluctuations δx(t) will follow the Campbell theorem, i.e.,
Sδx = 2X . More specifically, consider now that fluctuations γh , γn , γo in the generation
rate refer to generated charge per unit time and volume; the corresponding (average)
particle generation rates are (αh Jh) /q , (αn Jn) /q, (qGo) /q, respectively. Since the
power spectrum of qδx(t) is q2Sδx , we have14

γh(x)γ ∗
h (x

′) = Sγh (ω, x, x ′) = q2 · 2

(
αh Jh

q

)
δ(x − x ′)

= 2qαh Jh(x)δ(x − x ′) ≡ Kγh (ω, x)δ(x − x ′) (4.90)

γn(x)γ ∗
n (x

′) = Sγn (ω, x, x ′) = q2 · 2

(
αn Jn

q

)
δ(x − x ′)

= 2qαn [J − Jh(x)] δ(x − x ′) ≡ Kγn (ω, x)δ(x − x ′) (4.91)

γo(x)γ ∗
o (x

′) = Sγo(ω, x, x ′) = q2 · 2

(
qGo

q

)
δ(x − x ′)

= 2q2Goδ(x − x ′) ≡ Kγo(ω, x)δ(x − x ′), (4.92)

14 Given a process x(t) with Fourier transform X (ω), we formally denote the power spectrum of x , Sx , as a
spectral ensemble average X X∗.
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where the Dirac delta δ(x − x ′) accounts for spatial uncorrelation of the noise sources
in points x and x ′, and Kγi denotes the local noise source.

Since the continuity equations are linear (also with respect to forcing terms and
boundary conditions), we can exploit superposition and analyze a template continuity
equation pair of the kind

dJh

dx
= αh Jh + αn Jn + γ (4.93)

dJn

dx
= −αh Jh − αn Jn − γ, (4.94)

where γ is a unit amplitude impulsive source located in x ′, γ (x) = δ(x − x ′), and
there is no injection at the region ends (Jh(0) = Jn(W ) = 0). The two equations are
not independent, since the total current is constant; however, introducing the electron
continuity equation makes it easier to impose the boundary conditions. Thus, impos-
ing constant total current J and with boundary conditions Jh(0) = Jn(W ) = 0 and
assuming γ (x) = δ(x − x ′), we have the set

dJh(x, x ′)
dx

= (αh − αn) Jh(x, x ′)+ αn J + δ(x − x ′) (4.95)

dJn(x, x ′)
dx

= (αh − αn) Jn(x, x ′)− αh J − δ(x − x ′). (4.96)

Integrating (4.95) from x ′− to x ′+ we obtain a jump condition for the hole current
density that will be exploited further on:∫ x ′+

x ′−
dJh(x, x ′)

dx
= Jh(x

′+, x ′)− Jh(x
′−, x ′) = 1. (4.97)

We can now solve (4.95) and (4.96) for x �= x ′ (i.e., an equation without the impulsive
forcing term) according to the approach already developed in Section 4.11.1.

Let us split the domain into two parts, x < x ′ and x > x ′; for x < x ′ solution of
(4.95) with boundary conditions Jh(0) = 0 yields

Jh(x) = Je
∫ x

0 (αh−αn) dξ
∫ x

0
αne− ∫ ξ0 (αh−αn) dη dξ, x < x ′. (4.98)

On the other hand, for x > x ′ we have, solving (4.96)15

Jn(x) = e− ∫ W
x (αh−αn) dξ Jn(W )+ Je

∫ x
0 (αh−αn) dξ

∫ W

x
αne− ∫ ξ0 (αh−αn)dη dξ,

that is, with, Jn(W ) = 0 and Jh = J − Jn ,

Jh(x) = J

[
1 − e

∫ x
0 (αh−αn) dξ

∫ W

x
αhe− ∫ ξ0 (αh−αn) dη dξ

]
, x > x ′. (4.99)

15 We can in fact express the solution of the template equation as:

y(x) = e
∫W

x a(ξ) dξ y(W )− e− ∫ x
0 a(ξ) dξ

∫ W

x
b(ξ)e

∫ ξ
0 a(η) dη dξ.
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The impulsive term in (4.93) and (4.94) causes a variation of the total current density J ;
since J is constant, such a variation will be position-independent. Let us denote the total
current density induced by a unit source in x = x ′ as J ≡ M(x ′); this, in fact, coincides
with the multiplication factor already discussed in the APD responsivity analysis.16

To simplify the treatment, from now on we will assume that ionization coefficients
are constant. In this case, the expressions of the hole current density in (4.98) and (4.99)
reduce to

Jh(x, x ′) = J
αn

αn − αh

[
1 − e−(αn−αh)x

]
, x < x ′,

Jh(x, x ′) = J
αn

αn − αh

[
1 − khne(αn−αh)(W−x)

]
, x > x ′.

From the jump condition (4.97) we can now derive the value of the total current density
fluctuation J ≡ M(x ′) induced by an unit impulsive current density source in x = x ′:

M(x ′) = (αn − αh) e(αn−αh)x ′

αn − αhe(αn−αh)W
= (1 − khn) eαn(1−khn)x ′

1 − khneαn(1−khn)W
. (4.100)

For electron injection in W or hole injection in 0, M(x ′) reduces to the already
introduced electron and hole multiplication factors defined in (4.71) and (4.72), i.e.,
M(W ) = Mn , M(0) = Mh .

We now evaluate the output current fluctuations as a function of the local noise source
Kγ (ω, x) associated with γ . The total fluctuation induced by a generic source γ (x)
will be

δ J =
∫ W

0
M(x ′)γ (x ′) dx ′,

where spatial superposition (allowed by spatial uncorrelation) was used. From the
frequency-domain average we obtain for the noise current power spectrum Sδ J :

Sδ J = δ Jδ J ∗ =
∫ W

0

∫ W

0
M(x ′)M(x ′′)γ (x ′)γ ∗(x ′′) dx ′ dx ′′

=
∫ W

0

∫ W

0
M(x ′)M(x ′′)Kγ (ω, x ′)δ(x ′ − x ′′) dx ′ dx ′′

=
∫ W

0
M2(x ′)Kγ (ω, x ′) dx ′. (4.101)

We now apply (4.101) separately to discuss three cases: the conventional APD, the
SAM-APD with electron-triggered avalanche, and the SAM-APD with hole-triggered
avalanche.

16 From the dimensional standpoint, a δ source in the continuity equation has the value of 1 A m2 m−1; since
the resulting induced current variation will be M · 1 A/m2, M is actually adimensional.
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In the conventional APD, both avalanche and optical generation take place in the
absorption region; in this case one has, exploiting (4.101) and superposition:

Sδ J =
∫ W

0
M2(x)

[
Kγh (ω, x)+ Kγn (ω, x)+ Kγo(ω, x)

]
dx

= 2q
∫ W

0
M2(x) {αh Jh(x)+ αn [J − Jh(x)] + qGo} dx

= 2q (αh − αn)

∫ W

0
M2(x)Jh(x)dx + 2q (αn J + qGo)

∫ W

0
M2(x) dx .

The total current in the conventional APD is, from (4.78),

J = qW Go Mo,

while the hole current density is derived from (4.77) and (4.78), assuming position-
independent ionization coefficients, as

Jh(x) = qGo

αn − αh
(1 + Wαn Mo)

[
1 − e−αn(1−khn)x

]
.

With some manipulations we have

Sδ J = 2q (αh − αn)

∫ W

0
M2(x)Jh(x) dx + 2q (αn J + qGo)

∫ W

0
M2(x) dx

= 2q2Go (1 + Wαn Mo)

∫ W

0
M2(x)e−αn(1−khn)x dx

= 2q J [(1 + Wαn Mo) (1 + Wαh Mo)] , (4.102)

since, from (4.100),

∫ W

0
M2(x)e−αn(1−khn)x dx = 1

αn

(1 − khn)
(
eαn(1−khn)W − 1

)(
1 − khneαn(1−khn)W

)2
= 1

αn
Wαn Mo (1 + Wαh Mo) , (4.103)

where we have taken into account (see (4.79)) the transformation

Wαn Mo = eαn(1−khn)W − 1

1 − khneαn(1−khn)W
→ eαn(1−khn)W = 1 + Wαn Mo

1 + Wαn Mokhn
.

From (4.102), the short-circuit current fluctuation spectrum of the conventional APD,
So
δi , can be finally expressed as

So
δi = ASδ J = 2q I Mo Fo(Mo),



4.12 Noise in APDs and pins 227

where A is the detector area,17 with excess noise factor given by

Fo(Mo) = (1 + αh W Mo) (1 + αnW Mo)

Mo
.

In the electron-triggered SAM-APD there is no optical generation in the multiplica-
tion region, only avalanche generation; however, there is injection of a noisy primary
photocurrent from the absorption region. This corresponds to an equivalent generation
noise source in x = W , such as

qGo(x
′) = Jn(W )δ(x ′ − W ) = Jpinδ(x

′ − W ) = J

Mn
δ(x ′ − W ).

Introducing all relevant noise sources into (4.101) we have

Sδ J =
∫ W

0
M2(x)

[
Kγh (ω, x)+ Kγn (ω, x)+ J

Mn
δ(x ′ − W )

]
dx

= 2q
∫ W

0
M2(x) {αh Jh(x)+ αn [J − Jh(x)]} dx + 2q

J

Mn
M2(W )

= 2q (αh − αn)

∫ W

0
M2(x)Jh(x) dx + 2qαn J

∫ W

0
M2(x) dx + 2q J Mn .

The hole current density for the electron injection case can be evaluated, e.g., using
(4.64) with Jh(x) = 0 and constant ionization coefficients, as

Jh(x) = J
1 − e−αn(1−khn)x

1 − khn
.

Thus,

Sδ J = −2qαn(1 − khn)

∫ W

0
M2(x)Jh(x) dx + 2qαn J

∫ W

0
M2(x) dx + 2q J Mn

= 2qαn J
∫ W

0
M2(x)

[
e−αn(1−khn)x − 1

]
dx + 2qαn J

∫ W

0
M2(x) dx + 2q J Mn

= 2qαn J
∫ W

0
M2(x)e−αn(1−khn)x dx + 2q J Mn .

Using (4.71),

Mn = (1 − khn) eαn(1−khn)W

1 − khneαn(1−khn)W
→ eαn(1−khn)W = Mn

1 + khn (Mn − 1)

and (4.103) we have∫ W

0
M2(x)e−αn(1−khn)x dx = 1

αn

[
khn M2

n + (1 − 2khn)Mn − (1 − khn)
]
.

17 Multiplication by the area A results from the fact that all current density fluctuations in the device cross
section are spatially uncorrelated.
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We thus obtain

Sδ J = 2qαn J
∫ W

0
M2(x)e−αn(1−khn)x dx + 2q J Mn

= 2q J
[
khn M2

n + (1 − 2khn)Mn − (1 − khn)+ Mn

]
= 2q J Mn

[
khn Mn + (1 − khn)

(
2 − 1

Mn

)]
.

The spectrum of the short-circuit current fluctuations δi for electron-triggered
avalanche, SSAMn

δi , can be finally recovered by multiplying Sδ J by the diode area A as

SSAMn
δi = ASδ J = 2q I Mn Fn(Mn),

where the excess noise factor Fn(Mn) is given by

Fn(Mn) = khn Mn + (1 − khn)

(
2 − 1

Mn

)
= Mn

[
1 − (1 − khn)

(
Mn − 1

Mn

)2
]
.

It is useful to analyze the asymptotic behavior of the excess noise factor. For small and
large Mn one has the following limits:

Fn(Mn) −−−−−→
Mn→∞ khn Mn, Fn(Mn) −−−−→

Mn→1
1, Fn(Mn) −−−−→

khn→1
Mn .

In the SAM-APD with hole-triggered avalanche, as in the dual electron-triggered
case, there is no optical generation contributing to noise, only avalanche, and injec-
tion of a noisy hole current in x = 0; this corresponds to an equivalent generation noise
source in x = 0 such as

qGo(x
′) = Jh(0)δ(x

′) = Jpinδ(x
′) = J

Mh
δ(x ′).

Instead of explicitly solving this case, we can derive the expression by duality from
the electron injection case, using Mn → Mh , khn = knh = 1/khn ; we obtain that the
short-circuit current fluctuation spectrum SSAMh

δi for hole-triggered avalanche can be
expressed as

SSAMh
δi = 2q I Mh Fh(Mh),

where the excess noise factor Fh(Mh) is given by

Fh(Mh) = Mh

khn
+
(

1 − 1

khn

)(
2 − 1

Mh

)
= Mh

[
1 −

(
1 − 1

khn

)(
Mh − 1

Mh

)2
]
.

4.13 The APD frequency response

Let us consider for simplicity a SAM-APD with electron-triggered avalanche, absorp-
tion region width Wabs , avalanche region width Wav . We assume with this structure
khn ≤ 1. The frequency response can be approximately expressed in terms of the delay
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that carriers undergo before being collected. Such delays are related to several factors
(note that we mention only intrinsic effects, leaving extrinsic RC-cutoff to a circuit-level
analysis):18

• The electron transit time in the absorption region:

τtr = Wabs/vn,sat.

• The avalanche buildup time (or avalanche delay), which can be expressed as

τA ≈ r (khn)MnWavkhn

ve
, (4.104)

where r (khn) is a slowly varying function of khn such as r (1) = 1/6, r(0) = 1, and
ve is an effective velocity defined as

ve = vn,satvh,sat

vn,sat + vh,sat
.

Expression (4.104) is actually valid if Mnkhn > 1, see [48], [49], [50].
• The transit time of avalanche-generated holes:

τtr,Ah = Wabs + Wav

vh,sat
.

From the above partial delays, we can approximately derive the total delay of a SAM-
APD as

τ = τtr + τA + τtr,Ah = Wabs

vn,sat
+ MnWavkhn

vn,sat
+ Wabs + Wav

vh,sat

implying that the total delay is minimized if khn � 1, i.e., if the ionization coefficient of
the avalanche triggering carrier is much larger than the ionization coefficient of the other
carrier. On this basis, the intrinsic cutoff frequency can be approximately expressed as

fT ≈ 1

2.2τ
.

Due to the additional delay mechanisms, the APD is typically slower than the pin;
moreover, the device response is faster when only the avalanche triggering carriers (e.g.,
electrons) ionize. In fact, if both electrons and holes have the same ionization probabil-
ity, an electron pulse injected into the high-field region generates holes which, instead of
simply being collected in the p-side, in turn generate secondary electrons, whose delay
before collection is of course larger than the delay of the electrons directly generated
by the initial pulse. Secondary electrons generate new holes, and so on; if the multipli-
cation factor is finite, the process finally dies out with a slow tail. As a result, a larger
number of carriers is collected with respect to the khn = 0 case (and, indeed the multi-
plication factor is larger), but such carriers will be collected over a longer time interval,

18 The analysis of the APD avalanche region frequency response is straightforward but lengthy, and the
formulae presented are just an approximation of a transit time-like cutoff. For a complete discussion see
[48], [49], [50].
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leading to an output current pulse with a large spread in time. This finally amounts to a
slower response.

Example 4.4: Consider a hole-triggered InGaAs SAM-APD with Wabs = 1 μm, Wav =
0.03 μm, αn = 2.27 × 105 cm−1, αh = 3.95 × 105 cm−1. Assuming vn,sat = vh,sat =
107 cm/s, evaluate the multiplication factor, excess noise factor and detector intrinsic
bandwidth in a hole-triggered APD.

We have

khn = αh

αn
= 3.95

2.27
= 1.74

and therefore

Mh = khn − 1

khn exp [αn(1 − khn)Wav] − 1

= 1.74 − 1

1.74 · exp
[
2.27 × 105 · (1 − 1.74) · 0.03 × 10−4

]− 1
= 14. 44

and

Fh(Mh) = Mh

khn
+
(

1 − 1

khn

)(
2 − 1

Mh

)
= 14. 44

1.74
+
(

1 − 1

1.74

)(
2 − 1

14. 44

)
= 9. 11.

Delay times can be derived exploiting dual relations with respect to those for the
electron-triggered SAM-APD. We obtain (with ve = vh,sat/2 = 0.5 · 107 cm/s):

τtr = Wabs

vh,sat
= 10−4

107 = 10−11 s

τA = r (knh)Mh Wavknh

ve
≈ Mh Wav

vekhn
= 14. 44 · 0.03 × 10−4

0.5 · 107 · 1.74
= 0.498 × 10−11 s

τtr,An = Wabs + Wav

vn,sat
= 10−4 + 0.03 × 10−4

107 = 1.03 × 10−11 s

τ = (1 + 0.498 + 1.03) · 10−11 s = 2. 528 × 10−11 s,

so that the cutoff frequency will be

fT ≈ 1

2.2τ
= 1

2.2 · 2. 528 × 10−11
= 17.98 GHz

while the corresponding pin transit time-limited cutoff frequency (assuming, somewhat
arbitrarily, the long diode expression) is

fT,pin ≈ 1

2.2τ
= 1

2.2 · 10−11
= 45.45 GHz.

However, the APD responsivity is 14. 44 times larger than the pin responsivity.
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4.14 Advanced APD structures

Due to internal gain, APDs are able to reach spectacular efficiencies; however, the addi-
tional delay introduced by the avalanche process typically leads, at least in conventional
(vertically illuminated) APDs, to lower cutoff frequency vs. pin photodiodes. The APD
speed can be improved by applying some of the solutions already investigated in the
development of high-speed pins, namely, the use of resonant structures [51], [52] and
of waveguide photodiodes [53], [54]. In both cases, the absorption layer can be made
thinner with respect to vertically illuminated structures, thus reducing the transit time
and globally improving the device speed (which, however, remains inferior to that of
the equivalent pin).

In [51] a resonant-cavity AlGaAs–GaAs–InGaAs SAM-APD (RCAPD) is presented
with a peak ηx = 80%, achieved with a 35 nm thick In0.1Ga0.9As absorption region;
the low-gain bandwidth was 20 GHz; operation is in the first window. An optimized
RCAPD structure developed by the same research group is presented in [52]. The struc-
ture has a number of additional layers besides the thin (35 nm) In0.1Ga0.9As absorption
layer and the 80 nm Al0.2Ga0.8As undoped avalanche layer, to improve the field pro-
file (see Fig. 4.40(a)); bottom reflection is provided by a λ/4 AlGaAs/GaAs 20-layer
stack, while the top reflector is a p+ Al0.2Ga0.8As layer grown to a suitable thick-
ness to make the cavity resonant at the desired wavelength (not explicitly specified,
but around 0.8 μm). The measured 3 dB bandwidth in the low-gain regime (multipli-
cation factor down to 2, achieved with a reverse bias around 10 V) is 33 GHz, while

hf
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75 nm undoped
graded layer
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Al0.2Ga0.8As multiplication
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Figure 4.40 Layer structure of (a) reflecting-facet APD [52] and (b) waveguide APD [54].
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the gain–bandwidth product in the high-gain regime is 290 GHz. The resulting external
quantum efficiency in the low-gain, high-speed regime is not specified.

Waveguide avalanche photodiodes (WAPD) can be obtained both in conventional and
in the SAM version. In conventional WAPDs photons are injected in the absorption
region, which also operates as the avalanche multiplication region, parallel to the junc-
tion plane. High efficiency can therefore be obtained, as in waveguide pins, without
increasing the photogenerated and multiplied carriers’ transit time. Better results can
be obtained in SAM-WAPDs, where the waveguide absorption layer is followed by
an avalanche layer. A long-wavelength (1.55 μm) SAM-WAPD was proposed in [53],
exploiting a 200 nm InGaAs absorption layer sandwiched between two 100 nm InAl-
GaAs guiding layers (the waveguide) and an external 150 nm InGaAs avalanche layer
lattice-matched to the InP substrate. The detector is built on a mesa structure with length
10–100 μm. The low-gain bandwidth was reported as 28 GHz, with a maximum exter-
nal quantum efficiency of 16% and a maximum gain–bandwidth product of 320 GHz.
However, the maximum ηx was not in fact achieved with the high-bandwidth device,
for which coupling losses reduced the efficiency down to 5%.

More recently, an InAlAs/InGaAs WAPD was presented in [54], see Fig. 4.40(b);
the waveguide structure consists of an InAlAs/InGaAs core region sandwiched between
upper p+ and a lower n+ InAlGaAs guiding layers. The InGaAs absorption layer is
500 nm thick and is separated from the 100 nm thick InAlAs multiplication layer by
a 20 nm InAlAs field buffer layer (intended to improve the RF field distribution). The
overall thickness of the optical guiding layers is 700 nm and was designed to improve
the multimode coupling efficiency. The waveguide mesa was 6 μm wide and 20 μm
long. The measured low-gain detector bandwidth was 35 GHz with responsivities in the
range 0.73–0.88 A/W at 1.3 μm and 1.55 μm, respectively, corresponding to external
efficiencies around 70% in both cases; the overall receiver sensitivity (the receiver also
included a transimpedance front-end amplifier) was −19 dBm at 40 Gbps.

In conclusion, high-speed APDs still exhibit frequency responses that are not com-
parable with fast pins; however, the gain–bandwidth products obtained are promising
and further optimization could make APDs the devices of choice also above 10 Gbps.

4.15 Concluding remarks on high-speed PDs

Standard high-speed photodetectors are vertically illuminated structures whose perfor-
mances are limited by the bandwidth–efficiency product: high speed is obtained at
the expense of reduced responsivity. In waveguide photodetectors the speed and effi-
ciency issues are decoupled, but the speed limitation in terms of RC and transit time
cutoff remains; efficiency can be high, though in practice coupling losses are critical
due to the small waveguide cross section, but cutoff frequencies of the order of 100
GHz can be obtained with proper design. To completely overcome the RC-cutoff lim-
itation, traveling-wave detectors have been proposed, in which the main limitation is
velocity mismatch; however, (vertical) transit time may also again become important
at extremely high speed. Due to the high losses and poor velocity match of simple
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Figure 4.41 Efficiency–bandwidth trade-off in some high-speed detectors. Partly adapted from [40], Fig. 1
( c©1999 IEEE); the WAPD point data are from [54].

distributed detectors, periodically loaded distributed detectors have been developed to
further increase the speed. Such detectors also have the advantage of a larger absorption
volume and therefore of lower saturation power.

High-speed APDs are based on vertical geometries similar to those exploited in pins.
Despite being slower than pins of similar structure, during the last few years compound
semiconductor APDs have gained popularity for applications in the 10 Gbps range, due
to the better sensitivity when included in a receiver dominated by the front-end amplifier
white noise (usually referred to as “front-end thermal noise”). Advanced waveguide
APDs have also been developed, with performances in the 40 Gbps range.

In Fig. 4.41 we show a few examples of the performances of high-speed detectors
[40]. VPD is the conventional vertically illuminated pin; WGD is the waveguide pho-
todetector; TWP the traveling-wave photodetector; RCE-PD is the resonant cavity enh-
anced photodetector; RFPD the reflecting-facet photodetector; WAPD the waveguide
APD. Two vertical APD examples are also shown for comparison. For some structures,
a multimode waveguide was exploited as a guiding device. Top results in terms of speed
are achieved by TWPs, with efficiencies of the order of 40%; however, both waveguide
detectors and VPDs (with a somewhat decreased efficiency) have comparable perfor-
mances. WAPDs show promising performances in terms of efficiency and speed. It may
be concluded that the real need for traveling-wave detectors is still to come in the appli-
cation field, while waveguide detectors may be an asset for photonic integrated circuits
bringing together passive components based on waveguiding structures and detectors.

4.16 The photodiode front end

The (weak) photodetector output signal current can be converted into a voltage through
a load resistor and then amplified by a front-end preamplifier stage; in high-speed
receivers, conversion and amplification are typically integrated in a transimpedance
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amplifier (TIA) providing both power gain and current–voltage conversion. The usual
photodiode bias point is at negative voltage and negative current, to optimize linearity,
dynamic range and dark current. Detectors can be capacitively coupled to the load or
TIA front-end to suppress the dark current and other DC current components. Before
discussing some possible front-end choices, we consider the equivalent signal and noise
circuit exploited in the detector model.

4.16.1 Photodetector and front-end signal and noise model

A photodiode equivalent circuit has already been introduced, see Fig. 4.14. The internal
admittance is mainly reactive, due to the photodiode capacitance CD . The deterministic
current generator includes the photocurrent iL (in small-signal phasor form IL ) and the
dark current Id (often neglected), while the random generator in models the current
fluctuations. We will here confine the treatment to the pin and APD cases.

As already discussed, the noise in pin detectors is intrinsic shot noise, plus some
thermal noise arising from parasitics that we will neglect for simplicity. One has,
therefore,

Sin ,pin = 2q (IL + Id) .

In APD photodiodes, we have multiplied and excess shot noise; for the SAM-APD with
electron-triggered avalanche the noise current power spectrum is, from (4.84),

Sin ,APD = 2q IAPD Mn Fn

where the multiplication factor Mn and the excess noise factor Fn are reported in (4.85)
and (4.86). Similar expressions hold for the other cases.

The front-end amplifier input can be modeled in turn as an impedance Zi ; the front-
end noise can be approximately represented through a parallel current noise generator
according to the scheme in Fig. 4.14 where RL → Zi .

4.16.2 High- and low-impedance front ends

Let us initially consider a front end made of a load resistor with resistance Ri , connected
to a high-input-impedance voltage amplifier. In such a case, we can approximate Zi =
Ri . Suppose, for simplicity, that the amplifier noise is negligible and that only the load
resistor (thermal) noise is significant. It can easily be shown that the choice of the load
resistance directly impacts on the receiver performance in terms of bandwidth, noise,
and input linear dynamic range.

In fact, high load resistance implies low noise but low bandwidth B; low input resis-
tance implies high bandwidth but also high noise. Concerning the input dynamic range
in which the device operates linearly, this is wide for low input resistance and narrow
for large input resistance.

To simplify the discussion, we will exploit a simple bias scheme in which the DC
bias resistance is the same as the signal resistance. The two resistances can actually be
decoupled by use of proper bias Ts (see Section 3.4.1).
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Figure 4.42 Low-impedance front-end amplifier: load line (left) and stage simplified structure (right).
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Figure 4.43 High-impedance front-end amplifier: load line (left) and stage simplified structure with equalizer
(right).

In low-impedance front ends (see Fig. 4.42) the load resistance Ri , and there-
fore the time constant Ri CD , are small, leading to a wide RC-limited bandwidth
(remember that other, intrinsic, limitations to bandwidth exist, such as the transit
time). However, the Nyquist noise generated by the load is large, since it is pro-
portional to Gi = 1/Ri . As a result, this configuration is rather noisy. However, the
large slope of the load line of the photodiode allows for a wide linear dynamic
range of input optical power (intrinsic saturation effects may also limit the receiver
dynamics).

In high-impedance front ends (see Fig. 4.43) the load resistance Ri is high, and there-
fore the time constant Ri CD is large, leading to narrow RC-limited bandwidth. The
front-end stage may behave like an integrator, thus requiring an equalization stage to
be inserted after the amplifier to reshape the waveform. The Nyquist noise generated
by the load is small, however, since it is proportional to Gi = 1/Ri . As a result, this
configuration is slow, but has low noise. A further disadvantage is related to the small
slope of the load line, which leads to a limited linear dynamic range in the input optical
power.

The frequency response of the low- and high-input impedance stages can be ana-
lyzed from the equivalent circuit of Fig. 4.44, in which the high-impedance amplifier
is modeled as an input capacitance and an output voltage-controlled voltage generator.
Define as R(ω) the small-signal responsivity resulting from intrinsic mechanisms (such
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Figure 4.44 Equivalent circuit for the analysis of the low- and high-impedance front end.

as transit time and avalanche buildup), and approximate such a frequency behavior by a
single pole response, as

R(ω) = R(0)

1 + jω/ωT i
,

where ωT i = 2π fT i is the intrinsic PD cutoff frequency. The total PD cutoff (includ-
ing RC-cutoff) also results from extrinsic elements, and is circuit dependent. From the
amplifier small-signal circuit one has

Vi = −R(ω)Pin
Ri

1 + jω(CD + Ci )Ri

Vout = −AVi = AR(ω)Pin Ri

1 + jω(CD + Ci )Ri
;

solving, the overall response (output voltage vs. input optical power) is

Vout

Pin
= ARiR(0)

1

1 + jω/ωT i

1

1 + jω/ωT x
,

with extrinsic cutoff frequency

ωT x = 2π fT x , fT x = 1

2π(CD + Ci )Ri
.

The extrinsic cutoff frequency usually dominates, leading to the behavior shown in
Fig. 4.45 for low- and high-input-impedance front ends, respectively. In the high-
impedance case, the amplifier behaves like an integrator, and a derivative equalizing
block is needed in cascade to the amplifier to restore the signal.

4.16.3 Transimpedance amplifier front ends

A far better compromise between bandwidth, dynamics, and noise requirements is
achieved through the transimpedance amplifier (TIA) front end. The purpose of the TIA
is to turn an input current into an output voltage; due to the input current drive, the input
impedance is typically low and the gain (the transimpedance Zm) has the dimension of
an impedance. TIAs can be implemented through voltage amplifier stages with parallel
resistive feedback; see Fig. 4.46 (right). Let A be the open-loop voltage amplification;
from the analysis, the TIA input impedance is
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frequency, fT i the intrinsic cutoff frequency.
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Figure 4.46 Transimpedance front end: load line (left) and stage simplified structure (right).

Ri ≈ R f /A,

where R f is the feedback resistance. For large gain, the input resistance is low, yielding
high linear dynamic range and high bandwidth. However, the input noise resistance can
be shown to be equal to R f , thus yielding low parallel thermal noise (“cold resistance
stage”).19 Let us analyze first the transimpedance cutoff frequency and response. From
Fig. 4.47, one has the nodal (input and output) equations:

R(ω)Pin + [
jω (Ci + CD)

]
Vi + 1

R f
(Vi − Vout ) = 0

Vout = −AVi .

19 The name “cold resistance” comes from the fact that the r.m.s. noise current can be expressed as√
4kB T Gn where Gn = 1/R f ; alternatively we can associate the noise current to the input conductance

Gin ≈ A/R f but with a noise temperature Tn = T/A as
√

4kB Tn Gin . In this second case we can imag-
ine that the input conductance has low noise because its noise temperature is low (from which comes the
idea of “cold resistance”).
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Figure 4.47 Transimpedance stage analysis: equivalent circuit.

Substituting Vout into the first equation and solving by Vi , we obtain

Vi = −R(ω)Pin

1 + A

R f

1

1 + jω
Ci + CD

1 + A

R f

≈
A�1

−R(ω)Pin︸ ︷︷ ︸
Iin

· R f

A

1

1 + jω
(Ci + CD) R f

A

and

Vout = R(ω)Pin A
1 + A

R f

1

1 + jω
Ci + CD

1 + A

R f

≈
A�1

−R(ω)Pin︸ ︷︷ ︸
Iin

· R f
1

1 + jω
(Ci + CD) R f

A

.

Thus, the input impedance is

Zin = Vi

Iin
= R f

A

1

1 + jω
(Ci + CD) R f

A

≈
ω→0

R f

A
= Rin .

The transimpedance Zm of the stage (i.e., the ratio between the output voltage and the
input current) can therefore be evaluated as

Zm = Vout

Iin
= − A

1 + A

R f

1

1 + jω
Ci + CD

1 + A

R f

≈
A�1

− R f

1 + jω
(Ci + CD) R f

A

, (4.105)

That is, at low frequency,

Zm = −R f .

The stage frequency response is therefore

Vout

Pin
= R(ω)R f

1 + jω
(Ci + CD) R f

A

,

with extrinsic cutoff frequency

fT x = A

2π(CD + Ci )R f
,
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Figure 4.48 Noise analysis of transimpedance stage: (a) feedback with noisy resistor; (b) the noise generator
is brought to the input.

which is typically large owing to the amplification factor. In conclusion, the trans-
impedance stage exhibits low input impedance and high extrinsic bandwidth, without
the trade-off required by high- or low-impedance stages.

To justify the noise properties of transimpedance stages, we evaluate the effect of the
noisy feedback resistor by computing the total noise voltage at the output and inter-
preting it as the result of an input noise generator inin (the “input referred current
noise generator”) to be compared to the input noise generators in the high- and low-
impedance cases. For simplicity, we assume that the amplifier introduces no additional
noise due to active elements, though in fact this may be significant, as discussed later,
(see Section 4.16.4).

In order to carry out the computation, we consider the circuit as excited by the noise
generator of R f , In f (power spectrum 4kB T/R f ); the corresponding nodal equations
of the circuit in Fig. 4.48 (all other deterministic or noise current generators have been
disconnected, i.e., replaced by an open circuit) are[

jω (Ci + CD)
]

Vni + 1

R f
(Vni − Vnout ) = In f

Vnout = −AVni .

Substituting Vnout into the first equation and solving by Vni and Vnout , we obtain

Vni = In f

1 + A

R f

1

1 + jω
Ci + CD

1 + A

R f

≈
A�1

In f
R f

A

1 + jω
(Ci + CD) R f

A

Vnout = −AIn f

1 + A

R f

1

1 + jω
Ci + CD

1 + A

R f

≈
A�1

− In f R f

1 + jω
(Ci + CD) R f

A

.

We have evaluated the input and output noise voltages induced by the feedback noise
generator. Now we want to compute the input noise generator Inin needed to produce
the same noise output voltage Vnout .
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The generator Inin should satisfy the equation

Vnout = − R f

1 + jω
(Ci + CD) R f

A

In f = Zm Inin,

but, taking into account (4.105), we obtain that the input generator coincides with the
feedback generator:

Inin = In f ,

i.e., the input noise generator has r.m.s. short-circuit current equal to

i2
nin = Sinin × B = 4kB T

B

R f
= 4kB T

B

ARin
.

Thus, the noise input resistance is equal to the low-frequency input impedance Rin , mul-
tiplied by the amplification A; in other words, the low input impedance is not obtained
at the price of a larger noise conductance.

4.16.4 High-speed transimpedance stages

In high-speed (high-frequency) transimpedance amplifier (TIA) stages, noise from the
amplifier active elements cannot be neglected with respect to feedback resistor noise.
We assume that the TIA noise can be referred to the input as a noise current generator
in parallel to the photodetector. This is just an approximation, since a complete input-
referred model can be shown to require two correlated series voltage and a parallel
current input generators, (see e.g. [36]); however, the series voltage generator is less
important due to the low input impedance of the stage, and will be neglected.

The power spectrum of the input-referred current noise generator in,T I A will be
shown to include an f 2 component, see (4.106), besides a 1/ f (flicker) component
which will be neglected in the analysis. The f 2 component can be attributed to the
drain or collector noise of the front-end amplifier referred to the input.

To evaluate the power spectrum of in,T I A we shall separately take into account the
effect of the amplifier and of the feedback resistor. We will consider a simple one-
stage FET amplifier whose noise behavior is dominated by the drain (output) current
generator.

The FET equivalent circuit considered is shown in Fig. 4.49, where Ci is the gate–
source capacitance, and gm Vin is the short-circuit drain current. Note that this form of
the TIA actually requires a finite load to operate as a transimpedance amplifier, since
the output circuit is a current generator. The drain noise current generator inD has power
spectrum SiDniDn ≈ 4kB T gm P; see (3.56). We want now to identify the input genera-
tor in,T I A leading to the same short-circuit noise current as the output generator inD .
From Fig. 4.49(above), we have inout = inD while from Fig. 4.49(below), we obtain in
the frequency domain, considering only the input generator in,T I A and suppressing the
output generator inD ,
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Figure 4.49 Equivalent circuit of the FET TIA (above); equivalent circuit for the evaluation of the
input-referred current generator with a FET TIA (below).

Inout = gm Vin = gm In,T I A
R f

1 + jωCT R f
,

where CT = Ci + CD . Since we must impose that inout = inD and find in,T I A as a
consequence, we have

In,T I A = 1 + jωCT R f

gm R f
InD.

The power spectrum of the input-referred TIA noise generator will therefore be

Sin,T I A = 1 + (
ωCT R f

)2(
gm R f

)2 SinD = 1 + (
ωCT R f

)2(
gm R f

)2 4kB T gm P. (4.106)

Note the high-pass behavior with cutin frequency:

fc = 1

2πCT R f
.

In conclusion, the total, input-referred TIA noise power spectrum, including the
feedback resistor contribution, will be

Sn,in = 4kB T
1

R f
+ 4kB T

P

gm R2
f

+ 4kB T
P (2πCT )

2

gm
f 2,

with a highpass behavior whose characteristic frequency is typically lower than the TIA
cutoff. In fact we have, for the TIA extrinsic cutoff frequency:

fT x,T I A = A

2π(CD + Ci )R f
= A

2πCT R f
= A fc, A � 1.
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Figure 4.50 Noise overshoot in the TIA input-referred noise generator; the dark gray dashed line is the total
noise spectral density. Notice the 1/ f contribution at low frequency.

As a consequence, the total input-referred noise generator exhibits an overshoot at a fre-
quency below the amplifier cutoff frequency, as shown in Fig. 4.50 (the 1/ f component,
not reported in the formulae, has been added to the plot).

Finally, the total input noise current including the detector contribution will be

Stot
n,in = Sn,in + 2q IL = 2q IL + 4kB T

1

R f
+ 4kB T

P

gm R2
f

+ 4kB T
P (2πCT )

2

gm
f 2.

The input-referred noise current spectrum overshoot can be minimized by reduc-
ing the total capacitance CT at high frequency through narrowband compensation by
a series inductor. Having somewhat reduced CT , some further optimization can be car-
ried out by taking into account that the FET cutoff frequency is fT = gm/2πCi ; we
have

Stot
n,in = 2q IL + 4kB T

1

R f
+ 4kB T P

1

gm R2
f

+ 4kB T Pgm
(CD + Ci )

2

C2
i︸ ︷︷ ︸

f (Ci )

(
f

fT

)2

,

but f (Ci ) can be minimized by making Ci = CD through a proper choice of the FET
device periphery. Therefore, careful noise matching of the detector and input stage
capacitance can lead to a minimization of the f 2 component of the spectrum.20

4.17 Front-end SNR analysis and pin–APD comparison

In the following discussion, we will model the input-referred front-end noise current
with a noise conductance gn . Moreover, we will approximately consider all spectra to be
white, and make reference to the quadratic values of the photodiode and front-end (FE)

20 The flicker noise component initially considered is in fact neglected in the final result.
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stage noise and signal currents. Assuming a receiver with a photodiode of responsivity
R and input optical power Pin , the FE output signal to noise ratio (SNR) is given by

SNR = i2
s

i2
P D + i2

F E

= R2 P2
in

2qRPin B + 4kB T gn B
,

where i2
s is the quadratic mean of the signal current, i2

P D is the quadratic mean of the

photodiode (shot) noise current, and i2
F E = 4kB T gn B is the quadratic mean of the FE

input referred noise current. For PD noise, reference is made for the moment to a con-
ventional pin. For low input optical power, the photodiode noise is negligible and the
SNR is in the thermal noise limit, where it increases as the square of the optical power:

SNR ≈ R2 P2
in

4kB T gn B
.

On the other hand, at high input optical power, the FE noise becomes negligible and the
SNR is in the shot noise limit, where it depends only linearly on the optical power:

SNR ≈ R2 P2
in

2qRPin B
= RPin

2q B
= IL

2q B
.

For extremely high Pin , the laser relative intensity noise (RIN) dominates. However,
most links work (in practice) in the thermal noise limit or, at best, near the onset of
the shot noise-limited regime.21 An example of the overall behavior of the link SNR is
shown in Fig. 4.51. For simplicity the laser RIN has been kept constant and independent
of the input power.

The receiver sensitivity S is the minimum input power (averaged between 0s and
1s for a digital link) required to yield, with a given detection scheme (e.g., intensity
modulation, direct detection: IM-DD), an SNR or bit error rate (BER) complying with
the system specifications (e.g., BER ≤ 1 × 10−9 or BER ≤ 1 × 10−12). Given

BER = 1

2
erfc

(
Q√

2

)
,

where

Q =
√

SNR

2
= 1

2

√√√√ (RPin1)
2

i
2
n

= RS√
i
2
n

,

Pin1 being the high level optical power in a digital scheme, one has,

S = Q
√

i
2
n

R
,

21 In a fiber link, an upper limitation to the spurious-free dynamic range also comes from the effect of the
fiber nonlinearity, which we completely neglect here.
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Figure 4.51 SNR of a link as a function of the received power: thermal noise-limited, shot noise-limited, and
RIN-limited regions.

where in is the total input noise current (including PD and FE noise) (see, e.g., [55]).
For a shot noise-limited pin receiver and a given Q, i.e., a given SNR or BER:

Spin = Q

√
2q
(
Rpin Spin

)
B

Rpin
−→ Spin = 2q Q2 B

Rpin
≈ 2q Q2 Rb

Rpin
.

That is, for a given BER, S increases linearly with the bit rate Rb.
Let us consider now the sensitivity in a FE with an APD photodetector. With reference

(as usual) to the SAM-APD case with electron-triggered avalanche we obtain

SAPD = Q

√
2q (RAPDSAPD Mn Fn) B

RAPD
−→ SAPD = 2q Q2 B Mn Fn

RAPD
.

Comparing with the pin case, we have RAPD = Rpin Mn , i.e.,

SAPD = 2q Q2 B Mn Fn

RAPD
= 2q Q2 B Mn Fn

MnRpin
= Fn Spin .

Apparently, the APD sensitivity is always worse than the pin sensitivity since the
excess noise factor Fn (see Fig. 4.52) is always Fn > 1 (the lowest values are obtained
for khn → 0). However, this result holds only if both detectors work in the shot noise
regime.

A more complete analysis shows that the APD may be superior if the detector is
working in a thermal noise-limited link.
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Figure 4.52 Ratio between the APD and the pin sensitivities in the shot noise limit; khn is the αh/αn ratio.

Going back to the APD SNR in the general case, one has

SNR = i2
s

i2
APD + i2

F E

= R2
APD P2

in

2q Mn FnRAPD Pin B + 4kB T gn B

= M2
nR2

pin P2
in

2q M2
n FnRpin Pin B + 4kB T gn B

= R2
pin P2

in

2qRpin Fn Pin B + 4kB T
gn B

M2
n

.

Thus, an APD is equivalent to a pin receiver where the weight of receiver noise is
decreased by M2

n while the pin noise is increased by Fn .
In particular, if the receiver operates in the thermal noise limit, one has

SNR ≈ R2
APDS2

APD

4kB T gn B
= R2

pin M2
n S2

APD

4kB T gn B
= R2

pin S2
pin

4kB T gn B
→ SAPD = Spin

Mn
.

In the thermal noise limit the APD is therefore always superior. However, with
increasing Mn one ultimately has Fn ≈ khn Mn , i.e., for the APD,

SNR|APD ≈
Mn→∞

R2
APDS2

APD

2qkhn M2
nRAPDSAPD B + 4kB T gn B

≈ RAPDSAPD

2qkhn M2
n B

= Rpin SAPD

2qkhn Mn B
,
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Figure 4.53 APD versus pin sensitivity as a function of the multiplication factor for several values of khn .
We assume that the front-end thermal noise is 100 times the pin noise.

while, for the pin,

SNR|pin = R2
pin S2

pin

2qRpin Spin B + 4kB T gn B
≈

Mn→∞
Rpin Spin

2q B
.

That is, with the same SNR,

SAPD

Spin
≈

Mn→∞ khn Mn .

Therefore, in the limit of a large multiplication factor the APD sensitivity finally
becomes worse than the pin sensitivity; again, the avalanche coefficient ratio should
be kept as small as possible. Since, for intermediate values of the multiplication factor,
thermal noise prevails and the APD is increasingly better for increasing Mn , while for
extremely large values we are again in the shot noise limit, an optimum value of the
multiplication factor exists that yields the minimum value of the SAPD/Spin ratio. As
shown in Fig. 4.53, which was derived assuming a specific value for thermal noise (FE
noise equal to 100 times the pin noise for input power equal to the pin sensitivity), the
sensitivity ratio becomes < 1 (i.e., favorable to the APD) and exhibits a well-defined
minimum that is deeper for low value of khn . Of course, the physical realization of
extremely low khn values may be difficult.

In conclusion, the pin has better sensitivity than the APD in the shot noise limit; in
the thermal noise limit or in intermediate cases, APDs have better sensitivity, despite the
higher noise, due to the larger responsivity. A theoretical optimum value for the multipli-
cation rate exists, and more favorable conditions are reached anyway when decreasing
khn . Large multiplication factors should, however, be avoided because they may lead to
a reduction of the bandwidth.
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An example is shown in Fig. 4.54, where the SNR of a link with APD and pin
receiver is plotted as a function of the input power. For low power (thermal noise limit)
the APD is superior, while for high power (shot noise limit) the pin finally prevails (i.e.,
has a larger SNR).

APD sensitivities are typically better than pin sensitivities, but the device is slower.
The choice may also be dictated by the application: the SNR required by digital vs.
analog systems (e.g., CATV, microwave photonics) systems is much lower (e.g., ≈ 17
dB vs. ≈ 40 dB), so that digital systems may work in the thermal noise limits with lower
SNR, while analog systems, which require higher SNR, may work at or near the shot
noise limit and therefore can better exploit pin devices.

4.18 Front-end examples

Several hybrid and OEIC (optoelectronic integrated circuit) TIA implementations have
been presented so far with different technologies (conventional bipolar transistors,
HBTs, FETs, HEMTs, PHEMTs, more recently MOS). Alternative solutions to the
front-end stage are the hybrid solution (photodiode externally connected to an integrated
TIA) and the OEIC solution where both the photodiode and the TIA are integrated on
the same chip. Moreover, the detector gain can be introduced, not only through APDs,
but also by amplifying the input optical signal through a SOA. Figure 4.55 reports the
performances of a number of detector-TIA receivers with different technologies appear-
ing mainly before 2000 [56]; see also [57], Table 1, 2 and 3, [58] and [59]. The figure
of merit FO E I C is a gain–bandwidth product defined as
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FO E I C = R |Zm(0)| B,

where R is the detector responsivity.
A few commercial TIA products are reported in [60], Table 5.2, with a single-ended

or differential topology. The products (which appeared before 2005) are listed according
to the speed (2.5, 10, and 40 Gbps). Technologies include for the 2.5 Gbps products Si
BJTs, SiGe HBTs, and GaAs MESFETs and HEMTs; at higher speed HBTs (SiGe
and GaAs) dominate, with some examples of GaAs HEMT. The r.m.s. noise current√

i2
n,T I A obviously increases with the receiver bandwidth and the values reported are

200–500 nA/
√

GHz electrical bandwidth. More recently, both 10 Gbps and 40 Gbps
transceivers in silicon-on-insulator (SOI) CMOS 0.13 μm technology were presented
[61], showing that nanometer-scale NMOS devices can also play a role in high-speed
optical receivers.

Although the monolithic integration of a detector with the transimpedance ampli-
fier appears to be a promising process, in practice this approach is fraught with a
number of technological problems – mainly compatibility between the electron and
optoelectronic device process flow. An example of monolithic 40 Gbps InP-based
pin-HBT integration is shown in Fig. 4.56, with the layer breakdown shown in
Fig. 4.57 [56]. Note that the transistor collector layer is also exploited for the pin
active region. The HBT preamplifier includes a low-input-impedance common-base
stage, followed by a TIA closed on a common emitter buffer; two designs were imple-
mented, with bandwidth of 30 GHz or 50 GHz, respectively, with a gain difference of
about 7 dB.
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An example of the InP-based layer structure of the 40 Gbps receiver stage, integrat-
ing a coplanar MIM (metal–insulator–metal) detector with an InAlAs–InGaAs PHEMT
front-end amplifier, is shown in Fig. 4.58 [62]. Epitaxial regrowth was exploited in this
case to realize the MSM photodiode. The circuit layout is shown in Fig. 4.59.

More recently, monolithic integration of long-wavelength receivers explored all-Si
solutions, based on combining nanometer CMOS processes with Ge-based photodiodes
monolithically grown on a Si substrate. Germanium-on-Si photodetectors have been
demonstrated in the past, see [63], [38], and integration of a Ge detector with the already
mentioned 130 nm CMOS process was achieved [64] for a 10 Gbps transceiver, with a
sensitivity around −15 dBm. The all-Si transceiver implementation also requires that a
Si-based modulator be available.

In general, monolithic integration should introduce benefits for high-speed receivers,
where removing inductive and capacitive parasitics associated with interconnections
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allows for bandwidth improvements. For applications below 10 Gbps, performance
advantages are probably low, but cost benefits associated with large volume production
could be an asset of monolithic integration.

4.18.1 Hybrid and monolithic front-end solutions

Figure 4.60 shows the sensitivity vs. bit rate of a number of hybrid and integrated
receiver solutions. The hybrid, OEIC and APD best fits are from [57], Fig. 3, and refer to
pre-1998 results; they suggest that hybrid receivers are superior to integrated receivers
for speeds lower than 10 Gbps, inferior for high speed; APD-based hybrid receivers
nevertheless, show sensitivities 10 dB better (typically) than pin based receivers. More
recent results reported in Fig. 4.60 point out that high-speed OEIC receivers may out-
perform the 1998 best fit, but also that impressive results can be obtained through
photo-HBT based OEICs and APD hybrids. In [59] a 40 Gbps pin-MHEMT receiver
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is implemented in both hybrid and monolithic form, and the OEIC implementation
is found to have a larger gain (7 dB) and a wider bandwidth (6 GHz), confirming the
conclusions in [57] at least for speeds well in excess of 10 Gbps.

In concluding the comparison between the pin and the APD photodiode, we should
mention that other possible competitors to these solutions exist. Amplification of the pri-
mary photocurrent can take place by an avalanche mechanism, but another possibility is
amplification within a phototransistor. HBT-based phototransistors have shown promis-
ing performances in the laboratory in terms of speed, but of course such devices require
a compromise between transistor and photodetector active region design. A completely
different approach is to move amplification from the electrical to the optical domain,
inserting an optical amplifier (e.g., a SOA, semiconductor optical amplifier) between the
fiber output and the pin input. The resulting solution can be competitive with respect to
the APD in terms of sensitivity.

4.19 Questions and problems

4.19.1 Questions

1. What is the photodetector responsivity? Explain the behavior of responsivity as a
function of the photon energy.

2. Define the internal (ηQ) and external (ηx ) quantum efficiency for a photo
detector.

3. Define the dark current of a detector.
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4. Choose a material system for (a) long-wavelength detection in a high-speed, long-
haul fiber link; (b) detection in the first window in a LAN; (c) far infrared detection
for temperature mapping.

5. Discuss the role of Si and Ge as possible detector materials.
6. Explain the operation of a photoresistor and of a photodiode (pn).
7. What is a phototransistor? Explain why this device has internal gain.
8. Explain why the performances of a pin photodiode are superior to those of a pn

photodiode.
9. Explain the operation of the avalanche photodiode (APD). What are the advantages

of the SAM-APD with respect to the conventional APD?
10. Explain why the order of magnitude of the responsivity of an ideal semiconductor

photodiode at 1 μm wavelength is close to 1.
11. Sketch the equivalent circuit of a photodiode.
12. What is the photovoltaic operation region of a photodiode? Is this bias condition

convenient for a digital receiver?
13. Discuss the frequency response of a pn photodiode.
14. What is the difference between the intrinsic and the extrinsic cutoff frequency of

a photodiode? Explain the role of the device capacitance in the extrinsic cutoff
frequency.

15. Discuss the frequency response and modulation bandwidth of a pin photodiode.
16. Discuss the modulation bandwidth of an avalanche photodiode. Why is the SAM-

APD faster than the simple APD? Why is the APD slower than the pin?
17. Select a suitable device for a high-speed communication system among pin diodes,

photoresistors, APDs, phototransistors.
18. Suggest a reason why heterostructure InGaAs pin detectors typically exploit a

diffused pi junction.
19. Explain why a distributed PD can overcome the RC limitation on bandwidth.
20. Explain the physical origin of photodetector gain in an APD.
21. Describe the disadvantages of a homojunction photodiode, and how they can be

overcome by using a heterojunction photodiode.
22. Sketch a heterojunction photodiode suitable for 1.55 μm wavelength detection.

What is the typical material system for this application?
23. Discuss the bandwidth–efficiency trade-off in vertical pin photodiodes.
24. Explain why waveguide detectors offer improved bandwidth–efficiency product

with respect to vertically illuminated PDs.
25. Describe the bandwidth limitation factors in traveling-wave photodetectors.
26. Describe the structure of a velocity-matched traveling-wave detector.
27. Describe some possible solutions for high-speed APDs.
28. Define the sensitivity of a photodetector.
29. Discuss the thermal limit and the shot noise limit to the photodetector sensitivity.
30. Define the quantum limit to the photodetector sensitivity.
31. Explain why an avalanche photodiode can be superior to a pin diode despite having

a higher noise than the latter.
32. Explain the pros and cons of the low-impedance, high-impedance, and trans-

impedance front-end stages.



4.19 Questions and problems 253

33. Define the noise equivalent power (NEP) in a photodiode.
34. What is the optimum condition in an APD for the ratio of the avalanche ionization

coefficients of electrons and holes (supposing electrons are the avalanche-triggering
carriers)?

35. Discuss noise optimization in a high-speed transimpedance stage.

4.19.2 Problems

1. A photodiode has an intrinsic cutoff frequency of 10 MHz and an extrinsic RC
cutoff of 100 kHz. What is the cutoff frequency?

2. A photodiode has a capacitance of 50 fF and is closed on a 50� resistance. Evaluate
the extrinsic cutoff frequency.

3. A pin photodiode has an intrinsic layer of thickness d = 1.5 μm. The absorption
coefficient for the active region is 103 cm−1. (1) Calculate the external quantum
efficiency if only light absorbed in the undoped region contributes to the photocur-
rent. Assume no reflection losses and unit internal quantum efficiency. (2) Calculate
the intrinsic layer thickness d needed to ensure an external efficiency of 0.9.

4. A GaAs pn photodiode has the following parameters at 300 K: side dopings ND =
1017 cm−3, NA = 1017 cm−3, Dn = 20 cm2/s, Dh = Dn/2; τn = τh = 100 ns;
α = 300 cm−1. Taking into account the GaAs intrinsic concentration (assume
ni = 2.1 × 106 cm−3), evaluate the depletion region width at a reverse voltage of
10 V and the diffusion lengths (assume εr = 13). Evaluate the maximum theoreti-
cal device responsivity in DC (for hω ≈ Eg) and sketch the modulation response
of the diode. Suppose that the diode sides are long (with respect to the diffusion
length). Is the assumption of constant optical power vs. x realistic with the data
provided?

5. A pin photodiode has an area of 0.05 mm2 and the absorption region is 4 μm
thick. Supposing that the carriers travel at saturation velocity, evaluate the overall
frequency response from the capacitance and transit time contributions and the pho-
todiode external efficiency. Assume εr = 12, RL = RG = 50 �, α = 104 cm−1,
100% internal quantum efficiency and 30% surface power reflectivity.

6. We want to design a Si pin photodiode with a (minimum) 300 MHz bandwidth
at 20 V reverse bias. The device area is 0.2 mm2; the (thin) surface side is p+
while the substrate is n+. The efficiency (considering only the intrinsic layer)
should be at least 50% (with unit internal quantum efficiency and zero surface
reflectivity). Repeat the computation by considering also diffusion currents in the
substrate. What is the (approximate) frequency response in this case? Assume α =
200 cm−1, εr = 12, μn = 1000 cm2 V−1s−1, μh = 500 cm2 V−1s−1, RL = 50�,
τh = 100 ns.

7. The quantum efficiency of an InGaAsP/InP avalanche photodiode is 80% when
detecting a radiation with λ = 1.3 μm. With an incident optical power of 1 μW
the output current is 20 μA. Calculate the avalanche gain or current multiplication
factor of the device.

8. An AlGaAs detector is designed to have a cutoff wavelength of 0.68 μm.
Estimate the Al content of the detector. (Hint: for the AlGaAs energy gap
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in the direct-bandgap region assume Eg = 1.42 + 1.25x where x is the Al
fraction.)

9. A Ge-based pin photodiode has the following parameters: W = 50 μm,
α = 500 cm−1, A = 1 mm2, εr = 11. Evaluate the external quantum efficiency
(assume unit internal efficiency and zero power surface reflection coefficient) and
the total bandwidth as a function of the applied voltage assuming μn ≈ μh ≈
1000 cm2 V−1s−1 and a carrier saturation velocity of vsat = 107 cm/s. Assume
a piecewise field–velocity curve for electrons and holes. The load resistance is
RL = 100�.

10. A waveguide pin photodetector has an InGaAs active region thickness of
d = 0.5 μm. The device width is W = 2 μm. Evaluate the device length L so as
to achieve ηx = 0.9 (neglect coupling losses) and estimate the resulting bandwidth.
Assume an absorption length of 5 μm, εr = 12, and a carrier saturation velocity
vsat = 107 cm/s. Suppose a load resistance RL = 20 �.

11. The avalanche region of a SAM avalanche photodiode is 0.8 μm thick. Assuming
αn = αh = 104 cm−1, discuss the multiplication factor of the device for electron
triggered and hole triggered avalanche. Repeat for αn = 104 cm−1, αh = 102 cm−1.

12. The avalanche region of an avalanche photodiode is 2.5 μm thick. Suppose αn =
104 cm−1, αh = 102 cm−1. Evaluate the excess noise factors of the electron-
triggered SAM-APD and of the conventional APD.

13. A shot noise-limited detector has 10 GHz bandwidth. Evaluate the photocurrent
needed to ensure a SNR of 60 dB.

14. A photodiode is connected to a front-end amplifier with a r.m.s. noise current of 14
pA/

√
Hz. Supposing that the PD responsivity is 0.8 mA/mW, evaluate the optical

power for which the diode noise equals the front-end noise.
15. What is the input resistance of a transimpedance amplifier with a feedback resis-

tance of 500� and an open-loop amplification of 1000? What is the input noise
resistance?

16. A photodiode operates at 10 Gbps and has a responsivity of 0.4 mA/mW. Evaluate
the NEP neglecting the dark current.

17. Consider a pin diode with photocurrent Iph = 1 mA and a SAM-APD with
photocurrent Iph Mn (where Mn = 10 is the avalanche multiplication factor, the
electrons being the avalanche triggering carriers). (a) Compare the shot noise r.m.s.
currents for the two cases on a 10 GHz bandwidth assuming khn = 0.2. (b) Assum-
ing that the thermal noise current from the front end is equal to ten times the pin
shot noise current, evaluate the SNR in the two cases.

18. A pin photodiode has an internal capacitance C j = 40 fF and is connected to a
transimpedance amplifier with an input resistance Rin = 50� and an input capac-
itance Cin = 10 fF. The equivalent photodiode transit time is τt = 10 ps. Evaluate
the maximum bit rate for the photodiode.

19. A silicon pin diode is illuminated by an optical power Pin = 100 nW at λ = 1 μm.
The external quantum efficiency of the device is 55% and the dark current at the
operating bias is negligible. Calculate the photocurrent and the r.m.s. shot noise
current if B = 500 MHz and evaluate the output SNR.
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5.1 Optical source choices

Two solid-state optical sources are currently available, the light-emitting diode (LED)
and the laser diode (LASER stands for light amplification by the stimulated emis-
sion of radiation). LEDs have poor spectral purity and low speed under direct
modulation, and are therefore unsuited to long-haul or high-speed communication
systems.

Lasers, on the other hand, have at least one order of magnitude narrower linewidth
than LEDs and, under direct modulation, can reach bit rates in excess of 10 Gbps
(albeit with some deterioration of the spectral purity due to the spurious frequency
modulation or chirp associated with the amplitude modulation). Lasers are therefore
well suited for long-haul and high-speed applications, although indirect modulation
is required to achieve bit rates in excess of 10 Gbps over long distances (e.g., L >
10 km).

5.2 Light-emitting diodes

Light-emitting diodes (LEDs) are based on electron–hole (e-h) pair recombination in
a forward-biased pn junction or heterojunction, leading to spontaneous photon emis-
sion. Due to the emission mechanism, the LED output spectrum is comparatively broad
(with a total width at half power of the order of 1.8kB T ≈ 47 meV at ambient tem-
perature), or, in terms of wavelength, about 50 nm (or 500 Å) with respect to a central
wavelength around 1 μm. The spectral purity of LEDs is therefore low with respect to
lasers, whose linewidth is at least one order of magnitude narrower. At the same time,
the LED maximum modulation speed is of the order of 100 Mbps, about two orders
of magnitude slower than the laser direct modulation response. From the standpoint of
optical communication systems (operating in the near infrared), the LED is therefore
confined to short-distance, low-speed links. However, a number of important applica-
tions exist for visible and also UV light LEDs, such as displays and lighting (automotive
and domestic). Developments in the latter area have been fostered by GaN-based blue-
light LEDs, which have in turn allowed for the development of white-light LED-based
sources.
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Figure 5.1 Principle of homojunction (a) and heterojunction (b) LEDs.

5.2.1 LED structures

Homojunction LEDs exploit a directly biased pn junction. In forward bias, excess car-
rier populations are injected into the two junction sides; carriers recombine (radiatively
or nonradiatively) both in the two diffusion, low-field, regions and in the space-charge
region; see Fig. 5.1(a). In the homojunction LED the emitted photons can, however, be
absorbed back by the material, since the photon energy is larger than the material gap.
As a consequence, photons emitted toward the substrate are mostly absorbed, while
those emitted toward the device upper surface can escape and be coupled to an exter-
nal medium (if they are not absorbed first or reflected by the upper device surface). To
increase the device efficiency, therefore, photons must be mostly emitted near the sur-
face; this can be obtained by means of an asymmetric junction where the (thin) surface
layer is less doped than the substrate; in this way, excess carrier injection takes place
mainly from the substrate into the surface layer. In the structure shown in Fig. 5.1(a),
pn+ doping allows surface generation to be maximized. Homojunction LEDs can be
diffused or epitaxial.

In heterojunction LEDs carriers are injected, in direct bias, into a narrowgap material
sandwiched between two widegap layers, e.g., an AlGaAs/GaAs/AlGaAs heterojunc-
tion or InAlAs/InGaAs/InP heterojunction. Injected excess carriers radiatively recom-
bine, emitting photons; see Fig. 5.1(b). In heterojunction LEDs the photons emitted
by the narrowgap layer cannot be absorbed by the widegap cladding; photons emitted
toward the substrate can be recovered, e.g., through mirrors, thus improving the device
efficiency.

LEDs can also be classified according to the direction along which the output beam
is emitted with respect to the junction plane. Vertical emission LEDs, also called Burrus
LEDs [70] are well suited to coupling with wide-core multimode optical fibers (with
core widths of the order of 50–100 μm) due to the large emission area (see Fig. 5.2(a)).
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Many high-performance LEDs are, on the other hand, edge-emitting structures (see
Fig. 5.2(b)) needing lateral coupling and alignment with the optical fiber. Edge-emitting
LEDs closely resemble Fabry–Perot lasers in which the cavity quality factor is low due
to the lack of mirrors. In some heterojunction edge-emitting LEDs, high injection condi-
tions enable the onset of gain in the narrowgap material, thus allowing emitted photons
to undergo multiplication through stimulated emission. The resulting device, called a
superradiant LED (or superluminescent LED [71]), shows an increase in the optical
power and also spectral narrowing (due to the fact that the gain spectrum is narrower
than the spontaneous emission spectrum).

5.2.2 Homojunction LED power–current characteristics

The homojunction LED is a pn junction where radiative recombination dominates over
nonradiative effects. Following the Shockley model, the total junction current can be
written as the sum of three contributions, arising from recombination in the two injection
sides (to define the structure, we suppose that the p side is on the surface, while the
substrate is n+) and in the space charge region. Let NA be the doping of the (surface) p
side, ND the doping of the (substrate) n side, and Lnp and Lhn the diffusion lengths of
electrons in the p side and holes in the n side, respectively:

Lnp = √
Dnτn, Lhn = √

Dhτh,

where Dn and Dh are the electron and hole diffusivities, τn and τh are the carrier
total lifetimes. The current contribution from electron injection from the substrate into
the surface layer is denoted as In0, while the current contribution from hole injec-
tion from the top layer into the substrate is denoted as Ih0. Finally, the current arising
from generation and recombination in the space-charge region is IG R . The total diode
current is

ID = In0 + Ih0 + IG R,
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where

In0 = q ADnn2
i

Lnp NA

[
exp

(
VA

VT

)
− 1

]
(5.1)

Ih0 = q ADhn2
i
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[
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VT

)
− 1

]
(5.2)

IG R = qni W

2τ

[
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(
VA

2VT

)
− 1

]
. (5.3)

In the above expressions, A is the device area, W is the space charge region width, τ is
an equivalent lifetime for carriers in the space charge region, ni is the semiconductor
intrinsic density, and VA is the applied voltage. The GR component is small, due to the
reduced width of the space charge region in direct bias, and will be neglected in the rest
of the discussion, i.e.,

ID ≈ In0 + Ih0.

Since photons emitted in the substrate side are typically lost by absorption, only In0 is
a useful LED current component. We define the LED injection efficiency ηi as the ratio
of the useful current (injected into the p side) to the total current:

ηi ≈ In0

In0 + Ih0
≈ In0

ID
= 1

1 +
√

Dh

Dn

√
τn

τh

NA

ND

≤ 1 → In0 = ηi ID. (5.4)

The injection efficiency ηi can be maximized making the junction asymmetric, with
ND � NA; of course the p and n sides can be interchanged (i.e., the surface side can
be low-doping n-type, the substrate high-doping p-type).

Let us now evaluate the optical generation associated with the current component In0.
Since the photon generation rate (per unit time and volume) coincides with the (excess)
minority carrier radiative recombination rate (per unit time and volume), we have, in
the lifetime approximation and considering injected electrons in the surface p layer:

d

dt

n ph

V

∣∣∣∣
sp. em.

= n′(x)
τn,r

= n′(−x p)

τn,r
exp

(
x − x p

Lnp

)
,

where τn,r is the radiative electron lifetime, −x p is the p-side boundary of the deple-
tion layer, the surface p layer extends from x = −Wp to x = 0 (corresponding to the
junction plane) with (for simplicity) Wp � Lnp, and the excess carrier concentration in
the depletion layer boundary is given by the junction law as

n′(−x p) = n2
i

NA

[
exp

(
VA

VT

)
− 1

]
,

where VA is the applied voltage.
The total generated optical power can be recovered by integrating the photon genera-

tion rate per unit time and volume from −Wp ≈ −∞ to −x p and over the junction area
A, and multiplying the result by the photon energy h̄ω ≈ Eg; we obtain
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]
.

Taking into account the expression of In0 from (5.1) and (5.4) we can also write

Pout = h̄ω

q

τn

τn,r
ηi ID.

The total lifetime τn can be derived (by applying a Matthiessen rule) from the lifetimes
associated with radiative recombination (τn,r ) and with nonradiative mechanisms, such
as thermal and Auger recombination (τn,nri ), as

1

τn
= 1

τn,r
+
∑

i

1

τn,nri
= 1

τn,r
+ 1

τn,nr
.

The ratio

ηr = τn

τn,r
= τn,nr

τn,r + τn,nr
= τ−1

n,r

τ−1
n,r + τ−1

n,nr
(5.5)

is the radiative efficiency, i.e., the ratio between the optical power generated by the
LED and the optical power the device would generate (with the same bias current ID) if
recombination were entirely radiative. Finally, photon losses also arise because photons
are reflected by the semiconductor–air interface with power reflection coefficient R. The
transmission efficiency is the ratio between the transmitted and the generated optical
power and therefore coincides with the transmission coefficient T = 1 − R:

ηt = 1 − R.

For normal incidence on a semiconductor–dielectric interface, the power reflection
coefficient is

R =
(

nr1 − nr2

nr1 + nr2

)2

,

where nr1 is the semiconductor refractive index, nr2 is the external dielectric refractive
index. We can thus express the power–current relation of the LED as

Pout = h̄ω

q
ηtηrηi ID ≈ Eg

∣∣
eV ηx ID, (5.6)

where ηx = ηtηrηi is the total LED external efficiency. The parameter

dPout

dID
= ηx Eg

∣∣
eV (5.7)
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is also called the LED slope efficiency.1 For high power level, the linear relation no
longer holds, mainly due to device heating (which in turn decreases the thermal lifetime)
and, in high injection, to Auger recombination. The power–current LED characteristics
therefore saturates at high current and power.

5.2.3 Charge control model and modulation bandwidth

The asymmetric homojunction LED can be conveniently modeled through a more intu-
itive charge-control approach. Introducing the excess electron charge −Qn stored in the
p side of the diode, we have2

Qn = q A
∫ −x p

−∞
n′(−x p) exp

(
x − x p

Lnp

)
dx = q A

√
Dnτn

n2
i

NA

[
exp

(
VA

VT

)
− 1

]
,

and, from (5.1)

In0 = ηi ID = q A

√
Dn

τn

n2
i

NA

[
exp

(
VA

VT

)
− 1

]
= Qn

τn
, (5.8)

i.e., the current In0 supplies the charge flow needed to replace the total charge recom-
bined per unit time in the diffusion region. However, the total charge is also related to
the radiated power (we neglect reflections) as

Pout = h̄ω

q

Qn

τn,r
.

Thus, including reflection losses and taking into account (5.8), (5.4) and (5.5), we obtain
again the power–current relation in (5.6).

The charge control approach can be exploited to evaluate the LED modulation
response. For simplicity we assume ID ≈ In0; we can extend the static charge control
equation to time-varying conditions as

dqn(t)

dt
= iD(t)− qn(t)

τn
.

Introducing for all quantities a DC and small-signal component,

i(t) = ID + ÎD exp(jωmt), qn(t) = Qn + Q̂n exp(jωmt)

pout (t) = Pout + P̂out exp(jωmt),

we have, for the signal components and transforming to the frequency domain,

jωm Q̂n = ÎD − Q̂n

τn
→ Q̂n = τn

1 + jωmτn
ÎD,

1 Note the analogy between (5.7) with ηx = 1 and the expression for the (ideal) photodiode responsivity
R = d I/d Pin = 1/ Eg

∣∣
eV.

2 For simplicity we define such charge as −Qn , Qn > 0.
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that is,

P̂out = ηr
h̄ω

q

Q̂n

τn,r
= h̄ω

q

τn

τn,r

1

1 + jωmτn
ÎD.

Therefore, the modulation response m(ωm) will be a low-pass transfer function3

m(ωm) =
∣∣∣∣ P̂out (ωm)

P̂out (0)

∣∣∣∣ = 1√
1 + ω2

mτ
2
n

, (5.9)

with cutoff frequency associated with the carrier total lifetime:

f3dB = 1

2πτn
.

Since the radiative lifetime decreases with increasing charge injection to reach an
asymptotic value τo (the spontaneous radiative lifetime), the modulation bandwidth
depends on the LED bias. Assuming the dependence

τn ≈ τn,r = K

Qn
,

where K is a proper constant, we have

ID = Qn

τn
= Q2

n

K
→ Qn = √

K I , τn =
√

K

ID
, f3dB ∝ √

ID.

The LED bandwidth therefore increases as the square root of current, to reach the limit-
ing value f3dB,M = 1/(2πτo). For GaAs, the maximum modulation bandwidth is of the
order of 300 MHz. Although the limiting value is material dependent, LEDs are anyway
confined to applications below 1 Gbps.

5.2.4 Heterojunction LED analysis

The charge control model can be applied to the heterojunction LED as follows. Assum-
ing an injected electron and hole density n ≈ p, we have for the current and the
generated optical power Pop:

IL ≈ q A
∫ d

0

n(x)

τn
dx = Qn

τn

Pop = h̄ωA
∫ d

0

n(x)

τn,r
dx = h̄ω

q

Qn

τn,r
= h̄ω

q

τn

τn,r
IL ,

3 As discussed in detail in Section 6.2.3, the modulation response can make reference to the signal optical
output power (optical definition) or to the electrical power originated by detecting the signal output power
through a photodetector, proportional to the square of the optical power (electrical definition). The “optical”
response is therefore |m(ω)| and in dB (called dBo), 10 log10(|m(ω)|); the “electrical” response is |m(ω)|2
and in dB (called dBe), 20 log10(|m(ω)|). The 3 dB bandwidth corresponds to |m(ω)| = 1/2 for the optical
definition and to |m(ω)| = 1/

√
2 for the electrical definition.
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where d is the active layer thickness and −Qn is the total electron charge stored in the
narrowgap active layer, equal to the total hole charge (Qn = Qh) for quasi-neutrality.
The total LED current is approximated with the GR contribution in the narrowgap layer,
while diffusion currents in the cladding layers have been neglected.

The output optical power will be, taking into account (5.5) and (5.8):

Pout = ηt
h̄ω

q

Qn

τn,r
= ηt

h̄ω

q

τn

τn,r
ID = h̄ω

q
ηtηr ID ≈ ηx Eg

∣∣
eV ID,

where ηx = ηtηr is the device external efficiency. In heterojunction LEDs the injection
efficiency (as defined in homojunction devices) is ideally 1, but in this case also photons
emitted toward the substrate can be lost, thus decreasing the efficiency. Backside mirrors
(cleaved or based on Bragg reflectors, see Section 5.8.4) can be exploited to recover the
photon flux directed toward the substrate.

As in homojunction LEDs, the charge control analysis can be extended to the dynamic
regime, obtaining the same results for the modulation response (5.9) and bandwidth.

Quantum well (QW) LEDs are heterojunction LEDs with d � 1 μm; the charge
control analysis still holds, with an injected electron charge:

Qn = q Ans,

where ns is the sheet carrier density in the QW. The charge-control model enables us
to directly relate the output power to the bias current. The voltage–current character-
istic in heterojunction LEDs still qualitatively follows the Shockley law; however, the
diode current in direct bias is mainly recombination current in the narrowgap material
rather than a diffusion current as in homojunction LEDs, with implications for the diode
threshold and ideality factor.

5.2.5 LED emission spectrum

The spontaneous emission spectrum rsp
o (h̄ω) of a direct-bandgap semiconductor is

reported in (2.34). For low injection conditions (and nondegenerate material), (2.34)
simplifies into (2.44); introducing the normalized variable x = (

h̄ω − Eg
)
/kB T and

taking into account (2.47), rsp
o,ND can be approximated as a function of x as

rsp
o,ND (h̄ω) = 1

τ0

np

n2
i

(2m∗
r kB T )3/2

2π2h̄3
exp

(
− Eg

kB T

)(
kB T x + Eg

Eg

)√
x exp (−x)

≈ 1

τ0

np

n2
i

(2m∗
r )

3/2 (kB T )5/2

2π2h̄3
exp

(
− Eg

kB T

)√
x exp (−x)

= K
√

x exp (−x) , x > 0.

for h̄ω − Eg � Eg . The behavior is shown in Fig. 5.3. To derive the full spec-
tral width at half maximum (FWHM), we notice that the function y = √

x exp (−x)
has a maximum at x = 1/2 with value yM = e−1/2/

√
2. Solving the equation y =√

x exp (−x) = e−1/2/
(

2
√

2
)

, we find x1 = 5. 091 × 10−2, x2 = 1. 847,�x = 1.795.

The low-injection LED FHWM is therefore �E ≈ 1.8kB T .



5.2 Light-emitting diodes 263

FWHM

0
0

0.1

0.2

0.3

0.4

1 2 3 4 5

E
m

is
si

on
 s

pe
ct

ru
m

, a
.u

.

Normalized photon energy hf – Eg, kBT units

Figure 5.3 Normalized emission spectrum (arbitrary units, a.u.) as a function of the normalized photon
energy x .

Example 5.1: Evaluate the LED FWHM for an emission wavelength of λ = 1.3 μm in
terms of wavelength and frequency.

We have, with wavelengths in μm and energies in eV:

�E

E
= 1.8kB T

1.24/λ
= �λ

λ
→ �λ = 63.8 nm.

The spectral width in Hz is given by �E = �h f = 1.8kB T , i.e., at T = 300 K:

� f = 1.8kB T

h
= 1.8 · 1.381 × 10−23 · 300

6.626 × 10−34
= 11.255 THz.

In high injection, the linewidth increases due to the onset of degeneracy. In general the
emission spectrum must be evaluated numerically; a high-injection trend can, however,
be recovered from the limit at 0 K. The high-injection (degenerate) emission spectrum
at 0 K, assuming quasi-neutrality, can be obtained as the function under the integral in
(2.55); for h̄ω − Eg � Eg one has

rsp
o,D ≈ 2

√
2q2nr m∗3/2

r Egp
2
cv

3π3h̄3m2
0c3

0ε0

√
h̄ω − Eg, Eg < h̄ω < Emax

where (see (2.54) and (2.56) with Emax − Eg = EFn − Ec):

Emax = Eg + h̄2
(
3π2

)2/3
2m∗

r
n2/3.

In high-injection conditions, we approximate �E = Emax − Eg , i.e.,

�E ≈ h̄2
(
3π2

)2/3
2m∗

r
n2/3.



264 Sources

Using (for GaAs) m∗
r = 0.057m0 we obtain, e.g., for n = 1019 cm−3:

�E |eV ≈ h̄2
(
3π2

)2/3
n2/3

2qm∗
r

=
(
1.05 × 10−34

)2 · (3π2
)2/3 · (1025

)2/3
1.6 × 10−19 · 2 · 0.057 · 9.11 × 10−31

= 294 meV,

much larger than the low-injection value. At high injection, however, the LED may
become superradiant or superluminescent, thus implying that part of the spontaneous
emission spectrum is affected by gain, and that the resulting total spectrum will follow
the narrower gain spectrum. Other effects, such as nonparabolic bands, can play a role
in narrowing the LED emission. As an example, in the superradiant LED analyzed in
[71] the linewidth reduces from 20 nm to 9 nm when increasing the LED current from
750 mA to 1.5 A (emission is around 0.87 μm); see [71], Fig. 12.

In QW heterojunction LEDs the emission spectrum follows a staircase density
of states, where exciton peaks are also present; in fact, in low-injection condi-
tions the Roosbroeck–Shockley relation (2.41) suggests that the emission spectrum is
proportional to the absorption spectrum, where resonance peaks appear:

rsp
0 ≈ 2n2

r

πhc2
0

(ω)2α(h̄ω) exp

(
− hω

kB T

)
, hω � kB T .

A similar behavior, with marked emission peaks, is observed in quantum wire or quan-
tum dot (QD) LEDs. An example of a QD LED emission spectrum, with broadened
peaks related to the δ-like density of states, is shown in Fig. 5.4 [72].

5.2.6 LED materials

Since the LED emission spectrum is concentrated around the semiconductor energy
gap, the material of choice depends on the application. Visible LEDs (with emis-
sion between 400 and 700 nm) exploit materials with a comparatively large gap.
Examples of visible LED materials are the GaAs1−x Px alloy, covering red, orange,
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Figure 5.4 Emission spectrum (arbitrary units, a.u.) of an InGaAsP QD LED with increasing injection
current. Adapted from [72], Fig. 1 (inset).
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and yellow colours, and GaN based alloys, covering green, blue, and violet. Since
GaAs1−x Px is indirect bandgap for x > 0.5, the problem arises of exploiting indirect-
bandgap materials for spontaneous emission. Due to the high radiative lifetime and
low radiative efficiency, indirect-bandgap materials are characterized by very low exter-
nal efficiencies, unless the material is doped with an impurity (e.g., nitrogen) called
an isoelectronic impurity, whose effect is to improve radiative processes without lead-
ing to acceptor or donor behavior (isoelectronic means that the number of external
electrons of the impurity is the same as for the hosting material). Isoelectronic dop-
ing improves the radiation efficiency of indirect-bandgap compound semiconductors
by about two orders of magnitude, although this is always much lower than in direct-
bandgap alloys. While the InGaN alloy covers the visible range from green to blue,
UV LEDs require AlGaN, with a wider bandgap. Applications of UV LEDs include
monitoring of contaminants and ambient-temperature portable water purification
systems.

LEDs for optical communications operating in the first window exploit
AlGaAs/GaAs/AlGaAs heterostructures. Long-wavelength operation is possible with
InP-based alloys, such as InGaAsP; the resulting LEDs, often edge-emitting and
superradiant, offer the best performance in this device class with 1.3 μm and 1.5 μm
emission.

5.3 From LED to laser

Both the LED and the laser diodes exploit radiative recombination of electron–hole
pairs in a forward-biased junction to emit light. However, LEDs are based on sponta-
neous emission, implying broad linewidth (of the order of 2kB T ) and narrow modulation
bandwidth, well below 1 GHz. The dominant emission mechanism in lasers is stimu-
lated emission: photons of a specific energy and wavenumber stimulate the emission
of coherent photons (with the same energy and wavenumber), thus leading to EM
wave amplification; all e-h pairs recombine to generate coherent photons, and narrow
linewidth results. At the same time, the lifetime associated with stimulated emission can
be shorter, for high photon density, than the spontaneous radiative lifetime τ0; thus, the
laser can achieve modulation bandwidths as wide as 20–30 GHz.

In summary, stimulated emission is the key to improving the LED spectral purity
and modulation bandwidth or speed. To turn a LED into a laser, however, we need a
mechanism able to foster stimulated rather than spontaneous recombination at a certain
photon energy, i.e., a frequency-selective structure such as an optical resonator or cavity.
The optical cavity is compatible with a discrete set of photon states, whose density is
large within the cavity, and which operate as positive feedback with respect to stimulated
emission.4

4 The coupling of a gain block (the junction where stimulated emission occurs) and a frequency-selective
feedback block makes the laser somewhat similar to an electronic oscillator, whose basic components are
an amplifier and a frequency-selective feedback loop.
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Figure 5.5 Scheme of the Fabry–Perot cavity laser.

In the simplest cavity lasers, the Fabry–Perot (FP) lasers, the cavity and the junction
are completely integrated, as shown in Fig. 5.5.5 The pn junction is typically imple-
mented through a Pi N heterostructure, in which the narrowgap central portion acts
as the active layer (where stimulated emission occurs through e-h pair recombination),
while the two external widegap (cladding) layers, having slightly lower refractive index
than the active region, contribute to the vertical confinement of the optical field. The
cavity optical field can be described as a superposition of waves guided (in the direc-
tion orthogonal to the junction plane) by the narrowgap layer, and reflected back and
forth from the two polished faces (lateral faces are typically roughened to suppress
the so-called transversal resonances). A forward-bias current is fed into the junction
and injected carriers recombine, sustaining the photon density inside the cavity and
compensating for photon losses due to absorption in the cladding and, above all, to per-
meable (i.e., non-perfectly-reflecting) mirrors. The mirror power reflectivity (r is the
field reflectivity), defined at normal incidence by the refractive index step with respect
to air:

R = |r |2 =
(

nr − 1

nr + 1

)2

is typically � 1 (for example, R = (
√

13 − 1)2/(
√

13 + 1)2 = 0.32 for a GaAs–air
interface); therefore, many photons escape the cavity, allowing the laser field to be
coupled with an external propagation medium (e.g., an optical fiber). Since the field
distribution on the mirror faces is narrow across and broad parallel to the heterojunc-
tion, the far-field laser radiation pattern (proportional to the spatial Fourier transform
of the aperture field distribution) will be narrow in the horizontal plane and broad in

5 The Fabry–Perot cavity is originally made of two permeable metal mirrors, while the semiconductor
implementation mirrors are obtained by cleaving the facets of a semiconductor chip.
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Figure 5.6 Laser functional scheme below threshold (a) and above threshold (b). R is the mirror power
reflectivity; Nsp and Nst are the photon densities emitted via spontaneous and stimulated
emission.

the vertical plane. In summary, the double heterojunction enables, in the vertical direc-
tion, carrier confinement (due to the heterojunction potential wells in the conduction
and valence bands) and photon confinement (due to the higher refractive index of the
active layer vs. the cladding).

The cavity feedback makes stimulated emission dominant only when the photon den-
sity in the cavity is large enough. Consider the laser block scheme in Fig. 5.6. The
junction hosts two radiative recombination mechanisms, spontaneous and stimulated;
we neglect for the moment other competing nonradiative processes, such as thermal and
Auger recombination. The diode current injects carriers recombining in either radiative
mechanism according to the relative lifetimes. For low current, the carrier density in the
junction is small, and so is the phonon density in the cavity. In this region, spontaneous
emission dominates over stimulated emission and the laser works as a LED, according
to the flow scheme shown by the thick arrows in Fig. 5.6(a). The output power near
the laser emission wavelength is small, because most photons are emitted on a broad
spectrum.
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Increasing the current density, the photon density in the cavity allowed modes
increases. Correspondingly, the stimulated lifetime (inversely proportional to the cavity
mode photon density) decreases, becoming smaller than the spontaneous lifetime. The
feedback loop identified by the thick arrow in Fig. 5.6(b) now becomes dominant
and typical laser operation starts. Above the laser threshold – corresponding to self-
sustaining oscillations where the photons lost in one cycle are replaced by the photons
generated by stimulated emission – the laser spectrum narrows. A small fraction of car-
riers still recombine spontaneously, emitting incoherent photons and thus contributing
to the laser phase noise and finite linewidth.

Above threshold, the number of carriers injected per unit time (i.e., the junction cur-
rent) is approximately equal (with unit quantum efficiency, i.e., neglecting nonradiative
recombination processes) to the number of photons generated per unit time within the
cavity; in steady-state conditions the photon density N remains constant because gen-
erated photons are lost at a rate N/τph where τph (the photon lifetime) is the average
survival time of a photon before it leaves the cavity through the mirrors or is absorbed;
we assume here that the first mechanism, called mirror or end loss, is dominant. Mirror
loss is the source of the output optical power, which is therefore proportional to the
input electric current. At very high input current densities, however, the radiative effi-
ciency of the laser decreases, due to nonradiative (e.g., Auger) recombination processes
competing with the stimulated recombination, self-heating, and gain compression, so
that the laser output power finally saturates.

Taking into account that the total number of photons generated is anyway propor-
tional to the input current both in the LED-like and in the laser regime (below and
above threshold), it is clear that the different slope of the laser power-current char-
acteristics (see the insets in Fig. 5.6), also called slope efficiency, depends on the
fact that the laser concentrates, around a narrow linewidth all the photons generated,
which are emitted on a broader bandwidth in the LED. FP lasers have linewidths of the
order of 2–3 nm (20–30 Å), at least one order of magnitude narrower than typical LED
linewidths.

5.4 The Fabry–Perot cavity resonant modes

Let us consider in more detail the operation of the FP cavity laser. The cavity length is
L and the cavity width W (along x and y axes, respectively, see Fig. 5.5). The active
region thickness is d; the front and back cavity edges are cleaved so as to act as a pair
of flat parallel mirrors, while the lateral faces (across y) are treated to minimize lateral
reflections. The optical field can be TE or TM (electric field parallel or perpendicular
to the stratification; see Fig. 5.7). Due to the refractive index step between the active
layer and the surrounding widegap cladding layers, the optical field is confined in the
active region, and extends into the cladding with exponentially decreasing tails. Reso-
nant modes are characterized by a longitudinal (x) field pattern, similar to that shown in
Fig. 5.5, i.e., the cavity length L is an integer multiple of a half-wavelength (we assume
that the cavity facets are ideal mirrors). In the y direction the optical field may exhibit
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Figure 5.7 TE (left) and TM (right) polarization in a Fabry–Perot cavity.

transversal resonances, depending on the cavity width W and on the treatment of the
lateral facets.

Concerning the cavity mode polarization, TE modes typically have better overlap
integral �ov (see Section 5.5.1) and better vertical (z) confinement of the optical field;
the mirror reflectivity is also slightly better for TE polarization.

The FP cavity is 3D; however, in the vertical (z) direction, only the fundamental
mode (with one maximum) is excited. Since the field distribution can be factorized as
X (x)Y (y)Z(z), we refer to transversal and longitudinal modes with reference to func-
tions X and Y , respectively; in particular, modes with many oscillations in the transverse
direction (x) are higher-order transversal modes.

5.4.1 Analysis of the TE slab waveguide fundamental mode

The laser-active region, sandwiched between two cladding layers, is an example of
three-layer slab waveguide. In most advanced laser structures, however, the confine-
ment of the optical field occurs not only in the vertical (z) direction but also in the
lateral (y) direction, due to either a refractive index variation (index-guided lasers) or to
a variation of gain (gain-guided lasers). The closed-form analysis of the propagation in
the slab waveguide is, however, useful to introduce a number of important parameters
and to provide explicit analytical approximations for them. Propagation in more com-
plex structures where the refractive index varies in the cavity cross section as n(y, z)
often has to be analyzed by numerical techniques; however, the propagation parameters
can always be expressed through the help of a modal effective refractive index, neff,
already introduced in the analysis of quasi-TEM waveguides; see Section 3.2.

Let us consider now the analysis of the slab waveguide optical field in terms of TE
and TM modes. For the more important TE case, the electric field can be expressed as

Ey(x, z) = E(z) exp(−jβx),

i.e., the field is polarized in the stratification plane. The corresponding wave equation
yields

d2 E(z)

dz2
−
[
β2 − n2(z)k2

0

]
E(z) = 0, (5.10)
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where k0 is the free-space propagation constant and n is the refractive index. Suppose
now, for simplicity, that the slab waveguide is symmetrical, with active region refractive
index n1 and cladding index n2 < n1; the active region extends between z = −d/2 and
z = d/2 and the cladding is unbounded. The fundamental mode electric field is even in
z; since the wave equation is linear, we look for exponential or sinusoidal solutions:

E(z) = A exp(−α2z), z > d/2

E(z) = B cos(α1z), −d/2 < z < d/2

E(z) = A exp(α2z), z < −d/2.

Substituting into (5.10) and simplifying, we obtain

α2 =
√
β2 − n2

2k2
0, α1 =

√
n2

1k2
0 − β2. (5.11)

Imposing now that the TE field be continuous, with continuous first derivative, in
z = d/2 (continuity conditions in z = −d/2 follow from symmetry) and eliminating
the arbitrary constants A and B we obtain, using (5.11),

√
n2

1k2
0 − β2 tan

⎛⎝
√

n2
1k2

0 − β2d

2

⎞⎠ =
√
β2 − n2

2k2
0 . (5.12)

The dispersion relation (5.12) can be expressed in a more suitable way by introducing
the normalized parameters:

u =
√

n2
1k2

0 − β2d

2
= k0d

2

√
n2

1 − n2
eff

w =
√
β2 − n2

2k2
0d

2
= k0d

2

√
n2

eff − n2
2,

where the propagation constant is β = k0neff (neff mode effective refractive index,
εeff = n2

eff mode effective permittivity). The normalized frequency v and propagation
constant b (0 ≤ b ≤ 1) are defined as

v =
√

u2 + w2 = k0d

2

√
n2

1 − n2
2 = √

2π
d

λ0

√
n�n (5.13)

b = n2
eff − n2

2

n2
1 − n2

2

, (5.14)

where n = (n1 + n2) /2, �n = n1 − n2. From the above results we obtain

w2 =
(

k0d

2

)2 (
n2

eff − n2
2

)
= b

(
k0d

2

)2

(n2
1 − n2

2) = bv2

u2 =
(

k0d

2

)2 (
n2

1 − n2
eff

)
=
(

k0d

2

)2 [(
n2

1 − n2
2

)
−
(

n2
eff − n2

2

)]
= (1 − b)v2.
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Therefore, the dispersion relation (5.12) for the fundamental mode becomes

tan
(√

1 − bv
)

=
√

b

1 − b
→ v = 1√

1 − b
arctan

√
b

1 − b
. (5.15)

In the dispersion relation the parameter v is defined from the structure data (dimension
and refractive index profile) and the operating frequency (or wavelength); b is then
derived from the solution of (5.15). From b, the effective refractive index is

neff =
√

bn2
1 + (1 − b)n2

2.

An approximate explicit solution for b can be expressed as

b ≈ 1 − 1

2v2
log(1 + 2v2). (5.16)

Example 5.2: Assuming n1 = 3.6, n2 = 3.2, d = 0.5 μm, λ = 1.55 μm, evaluate the
effective permittivity according to the exact and approximate approaches.

The normalized frequency is

v = k0d

2

√
n2

1 − n2
2 = πd

λ

√
n2

1 − n2
2 = π · 0.5

1.55

√
3.62 − 3.22 = 1.671.

Solving the dispersion relation (5.15) we find b = 0.703, i.e.,

neff =
√

bn2
1 + (1 − b)n2

2 =
√

0.703 · 3.62 + (1 − 0.703) · 3.22 = 3.486.

The approximate explicit solution is

b ≈ 1 − 1

2 · 1.6712
log(1 + 2 · 1.6712) = 0.662,

leading to the approximate effective index

neff ≈
√

0.662 · 3.62 + (1 − 0.662) · 3.22 = 3.470.

As an example of the diffraction index step �n that may arise in the active region
of InP based lasers, Fig. 5.8 shows the InP and InGaAsP refractive index as a func-
tion of wavelength for different quaternary alloys supporting emission at 1.1, 1.33, and
1.55 μm. The refractive index of In1−x Gax AsyP1−y lattice-matched to (x = 0.46y) can
be approximated, as a function of the emission energy E p ≈ EG and of the photon
energy E ph , as [73]

n2 = 1 +
2∑

k=1

Ak

[
1 −

(
E ph

E p + Ek

)2
]−1

,
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Figure 5.8 Refractive index of InP and of several quaternary alloys suited for emission at λ = 1.1, 1.3,
1.55 μm as a function of wavelength.

where (energies in eV):

A1 = 13.3510 − 5.4555E p + 1.2332E2
p

A2 = 0.7140 − 0.3606E p

E1 = 2.5048 eV

E2 = 0.1638 eV.

5.4.2 Longitudinal and transversal cavity resonances

Let us denote the cavity side lengths as L = Lx and W = L y ; assume an oscillating
(TE or TM) field pattern:

E(x, y, z) = E0(z) sin(kx x) sin(ky y).

The modal distribution E0(z) was already analyzed in detail for the TE polarization.
Assuming for simplicity � = −1 for the mirror reflectivity, the total electric field on the
mirrors is zero and the resonance condition follows as

kx Lx = nπ, ky L y = mπ,

where m and n are integers. For modes with effective refractive index neff, the following
dispersion relation arises (the field is assumed as a plane wave in the (x, y) plane):

k2
x + k2

y =
(

nπ

Lx

)2

+
(

mπ

L y

)2

= k2
0 =

(
2πneff

λ0nm

)2

.
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The resonant wavelengths λ0nm become

neff

λ0nm
=
√(

n

2Lx

)2

+
(

m

2L y

)2

, (5.17)

where typically n � m since many oscillations arise in the longitudinal direction but
only a few (or, hopefully, just one) in the transversal direction. Indeed, let us initially
assume that no oscillations exist in the transversal direction; the electric field is constant
along y, a condition compatible with roughened lateral surfaces imposing homogeneous
Neumann boundary conditions on the field. Condition (5.17) then reduces to

neff

λ0n
= n

2Lx
→ n

λ0n

2nr
= Lx → λ0n = 2neffLx

n
.

Therefore, having assigned an “excited interval” around λ0, where the lasing mode will
fall, the mode index will be

n ≈ 2neffLx

λ0
.

For a cavity with typical length of 100 μm, effective refractive index neff ≈ 3, emission
wavelength in vacuo λ0 ≈ 1 μm, this amounts to n ≈ 600. A high-order longitudinal
mode is therefore excited in common (edge-emitting) lasers, while for vertical emission
lasers (VCSELs) the mode order can be much lower due to the reduced cavity length.
Correspondingly, the resonant frequencies are

fn = n
c0

2neffLx
.

It is important to evaluate the spacing between two successive resonant wavelengths.
We have

�λ0n = λ0n − λ0(n+1) =
(

1

n
− 1

n + 1

)
2neffLx = 2neffLx

n (n + 1)
≈ λ0n

n
,

and therefore

�λ0n ≈ 2neffLx

n2
.

The corresponding, uniform, frequency spacing will be

� fn = fn+1 − fn = [(n + 1)− n]
c0

2neffLx
= c0

2neffLx
.

Since λ0n fn = c0, by differentiation we obtain

� fn

fn
≈ �λ0n

λ0n
.

Let us introduce again transversal modes, but assuming n � m; in this case, the res-
onant condition of the transversal modes can be evaluated perturbatively from the
corresponding longitudinal mode as
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neff

λ0nm
=
√(

n

2Lx

)2

+
(

m

2L y

)2

≈
(

n

2Lx

)[
1 + 1

2

(m

n

)2
(

Lx

L y

)2
]
,

leading to

λ0nm ≈ λ0n

[
1 + 1

2

(m

n

)2
(

Lx

L y

)2
]−1

≈ λ0n − λ0n
1

2

(m

n

)2
(

Lx

L y

)2

,

that is,

λ0nm − λ0n

λ0n
≈ −1

2

(m

n

)2
(

Lx

L y

)2

.

Example 5.3: Suppose L = 200 μm, W = 50 μm, neff = 3.3, excitation wavelength
around 0.8 μm; evaluate the spacing between longitudinal and transversal modes.

The modal order is

n ≈ 2neffLx

λ0
= 2 × 3.3 × 200

0.8
≈ 1650 → λ0n = 800 nm,

leading exactly to the prescribed excitation wavelength. The longitudinal mode line
spacing is

�λ0n ≈ λ0n

n
= 800

1650
= 0.48 nm,

which corresponds to a frequency spacing

� fn = c0

2neffLx
= 3 · 108

2 × 3.3 × 200 · 10−6
= 227 GHz.

The longitudinal mode spacing �λ0n is typically smaller than the FP laser linewidth;
thus, more than one longitudinal mode is usually excited. Consider now some transver-
sal modes around the longitudinal mode selected; we have, in general,

λ0,1650,m = neff√(
n

2Lx

)2

+
(

m

2L y

)2
= 3.3√(

1650

2 × 200

)2

+
(

m

2 × 50

)2
,

which corresponds, e.g., to

λ0,1650,0 = 800 nm, λ0,1650,1 = 799.998 nm, λ0,1650,2 = 799.991 nm.

Transversal modes are therefore close to the longitudinal (fundamental) one, and
are usually all excited, contributing to undesirable features in the laser emission and
coupling to external media. Higher-order transversal modes are inconvenient from the
standpoint of the laser linewidth, but also of the far-field radiation pattern. Odd-order
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Figure 5.9 Aperture and radiation patterns of fundamental and higher-order transversal Fabry–Perot
cavity modes. θ = 0 corresponds to the paraxial direction.

transversal modes have a paraxial zero in the far-field radiation pattern, and there-
fore are poorly coupled with an optical fiber. Higher-order even modes tend to be less
directional and therefore their coupling to an optical fiber deteriorates; see Fig. 5.9.
transversal mode suppression can be achieved by making the cavity width W narrow,
ideally ≈ λ0/neff.

5.5 Material and cavity gain

Stimulated emission, and therefore cavity gain, is the key to laser operation. However,
the optical field extends also to the cladding, i.e., outside the active region of thickness
d where gain is present; see Fig. 5.10. To account for this, an effective gain, called the
cavity gain gc, can be introduced. The cavity gain is related to the material gain in the
active region by the relation

gc = �ovg,

where the parameter �ov < 1 is the overlap integral (see Section 5.5.1):

�ov =
∫ d

0

∣∣Eop
∣∣2 dz∫∞

−∞
∣∣Eop

∣∣2 dz
< 1. (5.18)

Eop is the optical electric field.

5.5.1 Analysis of the overlap integral

Assuming a symmetrical slab waveguide with fundamental TE mode, the overlap
integral can be evaluated from the field distribution. Exploiting the field symmetry,
we have

�ov =
∫ d/2

0

∣∣Eop
∣∣2 dz∫ d/2

0

∣∣Eop
∣∣2 dz + ∫∞

d/2

∣∣Eop
∣∣2 dz

=
⎛⎝1 +

∫∞
d/2

∣∣Eop
∣∣2 dz∫ d/2

0

∣∣Eop
∣∣2 dz

⎞⎠−1

, (5.19)
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Figure 5.10 (a) AlGaAs/GaAs/AlGaAs double heterojunction laser structure; (b) band diagram under
direct bias, and (c) gain and optical field intensity.

but ∫∞
d/2

∣∣Eop
∣∣2 dz∫ d/2

0

∣∣Eop
∣∣2 dz

= A2

B2

∫∞
d/2 exp(−2α2z) dz∫ d/2
0 cos2(α1z) dz

= α1

α2

1 + cos dα1

dα1 + sin dα1

=
√

1 − b

b

1 + cos
(
2
√

1 − bv
)

2
√

1 − bv + sin
(
2
√

1 − bv
)

= 1√
b

√
1 − b

v
√

1 − b
[
tan2

(
v
√

1 − b
)+ 1

]+ tan
(
v
√

1 − b
)

= 1√
b

(1 − b)

v + √
b
, (5.20)

where we have exploited the relations

α1

α2
=
√

n2
1k2

0 − β2√
β2 − n2

2k2
0

= u

w
=
√

1 − b

b

dα1 = d
√

n2
1k2

0 − β2 = 2u = 2
√

1 − bv,

and the dispersion relation (5.15). We finally obtain from (5.19) and (5.20):

�ov =
√

b
(
v + √

b
)

√
bv + 1

.

Using the approximate expression (5.16) for b, an explicit expression can be derived as
a function of the normalized frequency v; the resulting behavior is shown in Fig. 5.11.

For large values of d (and therefore of v) the overlap integral saturates to 1, while for
small d (and therefore small v), we have from (5.16) the asymptotic behavior

b ≈
v→0

v2,
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Figure 5.11 Overlap integral versus normalized frequency.

leading to

�ov ≈
v→0

2v2

v2 + 1
≈ 2v2 = 4π2 d2

λ2
0

n�n,

where n is the average cladding and active region index, and �n is the index difference
between the active region and the cladding.

If n1 undergoes a variation �n1, the variation of the effective propagation index can
be expressed through �ov in a somewhat intuitive manner. In fact, from the dispersion
relation (5.15), rewritten here for convenience,

f (b, v) = tan
(√

1 − bv
)

−
√

b

1 − b
= 0,

we can express the derivative

db

dv
= −∂ f/dv

∂ f/db
= 2

√
b (1 − b)√
bv + 1

,

and rewrite �ov in terms of it:

�ov =
√

b
(
v + √

b
)

√
bv + 1

= b + v

2
· 2

√
b (1 − b)√
bv + 1

= b + v

2

db

dv
. (5.21)

Expressing v and b from (5.13) and (5.14) in terms of permittivities (rather than of
refractive indices) we obtain

v2 =
(

k0d

2

)2

(ε1 − ε2) , b = εeff − ε2

ε1 − ε2
.
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It follows that

v2b =
(

k0d

2

)2

(ε1 − ε2) · εeff − ε2

ε1 − ε2
=
(

k0d

2

)2

(εeff − ε2) .

But from (5.21), taking into account that ε1 is varying, inducing a change in εeff:

�ov = b + v

2

db

dv
= b + v2 db

dv2
= d

(
v2b

)
dv2

= d (εeff − ε2)

d (ε1 − ε2)
= dεeff

dε1
≈ �neff

�n1
, (5.22)

if the index variation between the active region and the cladding is small. Thus, the
variation of the effective index is simply the variation of the active region refractive
index, weighted by the overlap integral:

�neff ≈ �ov�n1.

If material gain is small, this can be interpreted as a (small) perturbation of the imag-
inary part of the active region complex refractive index nr = nr1 − jnr2 from 0 to
nr2 ≡ �n1:

g

2
= 2π

λ0
nr2 ≡ 2π

λ0
�n1;

the related perturbation of the modal gain (i.e., the cavity gain gc) will be proportional
to the variation �neff in the imaginary part of the (complex) effective index, as

gc

2
= 2π

λ0
�neff = 2π

λ0
�ov�n1 = �ov

g

2
.

Thus,

gc = �ovg. (5.23)

5.6 The FP laser from below to above threshold

Let us now summarize a few points from the previous discussion. In the FP cavity, a
total current I is injected in forward bias, corresponding to a current density J = I/A,
A being the junction area. Holes and electrons build up in the active layer with den-
sities n ≈ p (because of quasi-neutrality), and positive net gain results over a certain
energy interval. At the same time, photon losses occur due to absorption in the cladding
(denoted as αloss), and to the effect of mirrors (referred to as mirror loss or end loss).
Mirror loss, however concentrated in space, can in turn be expressed in terms of an
equivalent absorption αm , as discussed later. Within the cavity, a suitable modal spec-
trum exists, with longitudinal modes and (if any) clusters of closely spaced transversal
modes around them.

Suppose that the current density is much lower than the threshold density required
for lasing, J � Jth ; also the electron (hole) concentration in the active region will be
lower than the threshold value, n � nth , and the gain will be lower than the total loss
αloss + αm . In such conditions, the laser operates like a LED, with a broad emission
spectrum dominated by spontaneous emission; see Fig. 5.12(a).
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Figure 5.12 The laser gain profile and photon emission from below to above threshold.

Increasing the current density will cause the electron density (and, as a consequence,
the material and cavity gain) to increase. When the gain almost compensates for the
total losses, the photons belonging to the cavity modes close to the gain maximum
begin to experience positive feedback from stimulated emission. The corresponding
lifetime decreases, so that more and more e-h pairs recombine by stimulated emis-
sion. At threshold, losses and gain are equal, and the output spectrum narrows; see
Fig. 5.12(b).

Above threshold, increasing current injection does not cause an appreciable increase
of the electron density above nth ; this happens because the corresponding increase of the
optical power density in the cavity reduces the carriers’ stimulated lifetime. A certain set
of modes (among which one can be dominant: in FP lasers, however, many longitudi-
nal modes are typically excited) stimulates the e-h pair recombination, thus subtracting
photons to the other modes and to spontaneous recombination, which remains as an
incoherent noise background. In this way, only a few FP cavity lines are above thresh-
old (with different amplitudes) while the others are quenched and below threshold; see
Fig. 5.12(c).

5.6.1 The threshold condition

The FP laser threshold condition can be derived by considering that, at threshold, laser
oscillations are self-sustaining. This means that two conditions are simultaneously met:

• The optical wave recovers the initial phase after a round-trip in the cavity, corre-
sponding to cavity resonance.

• The optical wave recovers the initial amplitude after a round-trip in the cavity; this
means that the cavity net gain is zero, i.e., the cavity gain equals the cavity losses
(mirror or end loss, loss external to the active region or at least not accounted for in
the active region material net gain).
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Figure 5.13 Round-trip phase and amplitude evaluation of FP cavity threshold condition.

We can follow the electric field through a cavity round-trip, as shown in Fig. 5.13.
We first consider a cavity with unequal field mirror reflectivities r1 and r2.6 The round-
trip begins at point 1, immediately before the mirror. Following reflection from the
mirror, the field amplitude is multiplied by the mirror reflectivity r1 (point 2). The field
then travels through the cavity, experiencing a total field attenuation and gain 1

2 (αloss −
g)L (remember that the power absorption and gain must be divided by 2 to obtain the
corresponding field parameters). At the same time, a phase delay builds up, proportional
to kx L . After reflection from the second mirror (point 3 to 4 in Fig. 5.13), the round-trip
is closed at point 5 with a further amplitude and phase variation. We now require that
the amplitude and phase should be the same at points 1 (beginning of round-trip) and 5
(end of round-trip).

For simplicity, we will assume now that the mirror reflectivities are equal
(r1 = r2 = r ) and that r2 = |r |2 = R (real, power reflectivity; we assume that the phase
of r is π – a different phase would lead to a small variation of the resonance condition).7

The round-trip consistency condition yields

E0 = RE0 exp (−αloss L + g�ovL + j2kx L) , (5.24)

but the phase term vanishes, since

kx L = 2πnr

λ0
× n

λ0

nr
= n × 2π.

Therefore, from (5.24) we obtain

1 = exp (−αloss L + g�ovL + log R) → −αloss L + g�ovL + log R = 0;

6 This situation is common in practice, since one of the facets is treated so as to emit a low signal, exploited
for monitoring purposes.

7 The case of unequal complex reflectivities is trivial, since the phases are included in the resonance
conditions, while the equivalent power reflectivity is Req = |r1r2|.
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i.e., introducing the threshold cavity gain �ovgth ,

gth(h̄ω)�ov = αloss + 1

L
log

1

R
= αloss + αm = αt , (5.25)

where αt is the total (cavity) loss, αm is the mirror (or end) equivalent loss:

αm = 1

L
log

1

R
, (5.26)

and αloss , as already stated, is the absorption in the cladding. The mirror loss or
end loss acts like a concentrated loss equivalent to a distributed absorption such as
−αm L = log R. Note also that the transparency condition g(h̄ω)�ov = 0 (often close
to the threshold in the presence of very low mirror loss, as in VCSELs).

5.6.2 The emission spectrum

As already mentioned, below threshold the laser emission is similar to the LED
broadband spectrum. Increasing the device current initially brings the device into a
superradiant LED regime, with some spectral narrowing due to the onset of stimu-
lated emission. Above threshold, the spectrum is narrowed but, still, a few FP cavity
lines are excited. Some data relative to a GaAs/AlGaAs based FP laser are shown in
Fig. 5.14 [74].
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Figure 5.14 Evolution of the FP laser linewidth from below to above threshold. Inset: expansion of the
behavior above threshold near the maximum. Adapted from [74], Fig. 4.14.
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Below threshold a LED-like behavior dominates, with a FWHM linewidth of the
order of 50 meV or 60 nm (around 1.3 μm). Near threshold, we have superradiant LED
behavior, with a shift of the maximum around the gain maximum and linewidth around
20 nm (200 Å). Above threshold, we find typical laser behavior, with envelope linewidth
(see inset in Fig. 5.14) around 1 nm or 10 Å; note, however, that the single-line linewidth
is of the order of 1 Å. We shall return later to the cause of the finite linewidth of the laser,
even in the case where multiple longitudinal resonances are suppressed.

5.6.3 The electron density and optical power

Below threshold, increasing the current increases the junction electron density n (and
therefore the gain); recombination is, however, dominated by the spontaneous life-
time, which decreases with increasing injected charge to finally reach a limiting value
τ0. Above threshold, stimulated recombination prevails for some cavity modes; this
leads to smaller stimulated lifetimes vs. spontaneous recombination, which is therefore
reduced to a background noise. Always above threshold, the current increases but the
junction injected charge density remains approximately constant to the threshold value
(n ≈ nth); however, the increase of the optical power leads to a decrease of the stimu-
lated lifetime; this allows the optical output power and the current density to increase,
even with a junction charge density approximately constant to the threshold value.
Finally, the slope efficiency dPout/dI increases after threshold because the emission
spectrum becomes narrowband. Such behavior is summarized in Fig. 5.15.

In practice, the behavior of the laser spectrum above threshold is considerably more
involved. Laser heating leads to a variation of the gain spectrum (e.g., due to a variation
of the energy gap vs. temperature) and also to a variation of the cavity size and refrac-
tive index (with a shift of the cavity resonant modes). As a consequence, the emission
spectrum shifts and mode hopping can occur (i.e., the dominant mode can change with
increasing optical power).

Below
threshold
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threshold

Ith

Pout

I

log nth
log n

Figure 5.15 Power–current (continuous line) and electron density–current (dashed line) characteristics
for a laser.
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5.6.4 The power–current characteristics

To approximate the power–current characteristics above threshold, we express the laser
current as a recombination current in the active region. Neglecting nonradiative effects
we obtain from a charge-control model,

I = dQn

dt
= q

∫
active

Ur dV = q A

(
1

τ
sp
n

+ 1

τ st
n

)
nd, (5.27)

where −Qn is the active-region electron charge, Ur is the radiative recombination rate,
n is the electron density in the active region of thickness d, and A is the junction area.
The spontaneous and stimulated lifetimes are denoted by τ sp

n and τ st
n , respectively. At

threshold (5.27) becomes

Ith = q A
nthd

τn,th
= q A

(
1

τ
sp
n,th

+ 1

τ st
n,th

)
nthd. (5.28)

The total lifetime at threshold τn,th can be approximately assumed of the order of 4τ0

(see [4], Section 4.7 (iv)). Above threshold, stimulated recombination becomes dom-
inant; since, from (2.46) and (2.57) one has (both in low and high injection) that τ st

n
is inversely proportional to the optical power, the corresponding carrier lifetime can be
expressed as

τ st
n ≈ τ st

n,th
Pout,th

Pout
. (5.29)

On the other hand, above threshold n ≈ nth and τ sp
n,th ≈ τ

sp
n ; we therefore have, from

(5.28) and (5.29),

I = q A

(
1

τ
sp
n,th

+ 1

τ st
n

)
nthd = q A

(
1

τ
sp
n,th

+ 1

τ st
n,th

+ Pout − Pout,th

τ st
n,th Pout,th

)
nthd

= Ith + q A
nthd

τ st
n,th

Pout − Pout,th

Pout,th
,

and, solving for the optical power,

Pout − Pout,th = Pout,th

A

τ st
n,th

qnthd︸ ︷︷ ︸
slope efficiency

(I − Ith) . (5.30)

5.6.5 The photon lifetimes

A useful parameter in laser modeling is the photon lifetime τph , that is, the average
lifetime of a photon between its emission and loss (due to external loss or to mirror
loss). We defined the equivalent total loss of the cavity in (5.25) and (5.26) as

αt = αloss + 1

L
log R−1 = αloss + αm .
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However, the 1D continuity equation for the photon density N yields, in DC steady-state
conditions,

dN

dt

∣∣∣∣
tot

= d

dx

[
c0

nr
N (x)

]
= c0

nr

d
[
N (0) exp(−αt x)

]
dx

= −αt
Nc0

nr
= − N

τph
,

where we have introduced the photon total lifetime:

1

τph
= c0

nr
αt = c0

nr

(
αloss + 1

L
log R−1

)
= 1

τloss
+ 1

τm
. (5.31)

The total lifetime can readily be split into the photon (external) loss lifetime and mirror
loss lifetime (or end loss lifetime):

1

τloss
= c0

nr
αloss (5.32)

1

τm
= c0

nr

1

L
log R−1. (5.33)

Introducing the photon cavity volume V such that the photon number is n ph = V N , we
can express the output power in terms of the photon number and of the mirror loss as

Pout = h̄ω
n ph

τm
. (5.34)

Combining (5.30) and (5.34) we also obtain that the photon number increases with the
driving current with the same law as the output power:

n ph = n ph,th + τm

h̄ω

Pout,th

A

τ st
n,th

qnthd
(I − Ith) ≈ τm

h̄ω

Pout,th

A

τ st
n,th

qnthd
(I − Ith) .

Note that, in this approximation, the output power vanishes at threshold (i.e., the
spontaneous generation of photons is neglected).

5.6.6 Power–current characteristics from photon lifetimes

An alternative expression for the power–current characteristics of the laser above thresh-
old (5.30) can be derived in terms of the photon lifetimes. Let us consider as the output
power the power associated with the cavity modes above threshold; such power will be
negligible at threshold and below. Assuming that all carriers injected into the junction
recombine, emitting coherent photons, and that such photons are either absorbed in the
cladding or emitted through the mirrors, we have the balance equation for the excess
current vs. the threshold current:

I − Ith

q
≈ n ph

τph
. (5.35)

However, the output power corresponds to photons disappearing through mirrors with a
lifetime τm :

Pout ≈ h̄ω
n ph

τm
.
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Eliminating the photon number n ph we obtain

Pout ≈ h̄ω

q

τph

τm
(I − Ith) = h̄ω

q

1

L
log R−1

αloss + 1

L
log R−1

(I − Ith) . (5.36)

Equations (5.36) and (5.30) are equivalent, see Example 5.7.
A best-case estimate of the laser slope efficiency dPout/dI can be derived by consid-

ering an ideal situation, in which each e-h pair recombining in the active region above
threshold leads to the stimulated emission of a photon, which is then radiated out of the
cavity. Assuming that such e-h pairs are related to the extra current vs. the threshold,
I − Ith , one has

E ph · I − Ith

q
= photon energy × photons generated per unit time = Pout ,

or, approximating h̄ω ≈ Eg, Pout ≈ Eg

q
(I − Ith) , (5.37)

which yields an ideal slope efficiency, independent of the specific laser structure and
only dependent on material properties. For low external loss, τph ≈ τm and (5.36)
coincides (assuming h̄ω ≈ Eg) with (5.37). Notice that, in all the expressions con-
sidered, we have of course neglected power saturation, thus yielding a constant slope
efficiency.

5.7 The laser evolution: tailoring the active region

The evolution of the laser active region is briefly summarized in Fig. 5.16. Early
semiconductor lasers exploited homojunctions,8 providing little confinement to carri-
ers (whose concentration decreases away from the junction because of diffusion). The
increase in the carrier concentration around the junction, due to carrier injection in
direct bias, leads to a small variation of the refractive index (weakly proportional to
the free carrier concentration). Low carrier and photon confinement required extremely
high threshold currents and led to very short laser average time to failure, even at low
operating temperature.

A fundamental step toward the development of practical semiconductor lasers was
achieved with the introduction of heterojunctions (initially simple, and then double),
providing strong confinement of injected carriers together with photon confinement
through the refractive index increase in the low-gap (active) region. To decrease the
threshold current Ith with the same amount of threshold charge density, the thickness d
of the active region was progressively decreased. Below a certain thickness (a few hun-
dred nanometers), however, two effects arise. First, the low-gap active region becomes a

8 The first demonstration of the junction laser was in 1962.
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Figure 5.16 Evolution of the active-region design from homojunction (a) to single (b) and double
(c) heterojunction, quantum well (d), quantum well with separate carrier and photon
confinement (e), graded index separate confinement heterostructure (GRINSCH) lasers (f).

quantum well (QW), with a change (usually an improvement) in the bandstructure and
optical properties. On the other hand, the overlap integral becomes increasingly small,
due to the poor photon confinement provided by the increasingly thin QW. To improve
photon confinement, the QW was embedded in another double heterojunction, realized
with a material of intermediate gap between the active layer and the cladding (e.g., the
active layer is GaAs, the optical confinement layer is Al0.1Ga0.9As, and the cladding
is Al0.3Ga0.7As, all lattice matched); this provided separate confinement to carriers and
the optical field. As a further step, nonuniform refractive index profiles were exploited in
the so-called GRINSCH (graded index separate confinement heterostructure) lasers, so
as to optimize the overlap integral. Furthermore, multiple QW (MQW) lasers were intro-
duced, typically providing separate confinement to electrons and photons, to increase
the output laser power while preserving the same advantages as provided by simple
QW structures.

In summary, the evolution of the laser active region was in the direction of improving
the vertical confinement of electrons, holes, and photons, at the same time exploiting
the potential advantages or features offered by QWs in terms of optical properties.
Before discussing this point, however, we have to mention that lateral confinement
should also be improved with respect to the conventional FP solution. The two main
approaches (gain-guided and index-guided lasers) will be discussed in Section 5.8.2
and Section 5.8.3.

5.7.1 Quantum-well lasers

Introducing a QW leads to a change in the material gain properties, which become
polarization dependent. Moreover, in the QW the degeneracy between the two topmost
hole bands (HH and LH) is removed. Typically, the HH band is topmost in unstrained
wells; tensile strain can reestablish degeneracy and even bring the LH band on top: this
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Figure 5.17 Behavior of threshold current vs. active region thickness (Example 5.4).

would decrease the hole effective mass and density of states, thus leading to an improve-
ment in gain, and therefore in the threshold current. However, compressive strain is also
beneficial since it reduces the valence band discontinuity and the hole escape lifetime,
thus improving the injection efficiency. Another advantage of the QW approach is a
reduction of Auger rates [4]. Finally, QW lasers are the ultimate step in decreasing the
active-region laser thickness to reduce the threshold current density.

Decreasing the active region thickness in a conventional or QW laser initially leads
to a decrease of the threshold current. Assume, as an approximation, that the material
gain depends linearly on the carrier density; the threshold gain can be approximated as
gth = K�ovnth , where K is a suitable constant. Using the classical expression for the
threshold current we obtain

Ith ≈ q A
nthd

4τ0
= q A

gth

4τ0 K

d

�ov
,

meaning that, for large d , the threshold current decreases with decreasing d, while for
small d we ultimately have

�ov ∝ d2 → Ith ∝ q A
gth

4τ0 K

d

d2
∝ 1

d
,

i.e., the threshold current increases for decreasing d, as shown in Fig. 5.17.

Example 5.4: A double heterojunction laser with λ0 = 1.3 μm has an InP cladding with
n1 = 3.2 and an InGaAsP intrinsic layer, thickness d, with refractive index n2 ≈ 3.55.
Assuming a threshold gain gth = 4000 cm−1 and a threshold electron density nth = 1 ×
1018 cm−3, junction area A = 300 × 5 μm2, estimate the threshold current as a function
of d. Assume τ0 = 0.7 ns.



288 Sources

For large values of d , �ov ≈ 1 and we can express the threshold current as

Ith = q A
nthd

4τ0
= 1.6 × 10−19 · 300 · 5 × 10−12 · 1 × 1024 · d|nm × 10−9

4 · 0.7 × 10−9

= 0.085 · d|nm mA.

For small d , the overlap integral can be expressed as

�ov ≈ 4π2 d2

λ2
0

n�n = 4π2 (d|nm)
2 × 10−18(

1.3 × 10−6
)2 3.2 + 3.55

2
· 0.35

= 2.76 × 10−5 · (d|nm)
2 .

However, gth ≈ nth K�ov ≈ nth K for large d; thus gth/K ≈ nth and, for small d:

Ith = q A
gth

4τ0 K

d

�ov
= q A

nth

4τ0

d

�ov

= 1.6 × 10−19 · 300 · 5 × 10−12 · 1 × 1024 × 10−9

4 · 0.7 × 10−9 · 2.76 × 10−5 · d|nm
= 3105

d|nm
mA.

Blending the two asymptotic behaviors we obtain the result shown in Fig. 5.17. The
minimum threshold current is around 25 mA corresponding to a current density of
1.6 kA/cm2 for an optimum thickness around 200 nm.

In the above analysis, we have assumed that the active layer sheet density can be
given a quasi-3D expression as nd, where n is the active layer 3D concentration.
In fact, the electron density of a QW exhibits quantum features, such as a density
profile (orthogonal to the stratification) proportional to the squared magnitude of the
subband envelope wavefunction. The electron sheet density relative to each subband
can be denoted by n2D , and, assuming for simplicity that only the first subband is
involved in the laser action, the threshold laser current can be now more conveniently
expressed as

Ith = q A
nth,2D

τn,th
= q A

(
1

τ
sp
n,th

+ 1

τ st
n,th

)
nth,2D ≈ q A

nth,2D

4τ0
.

The already discussed behavior is, however, found when decreasing the QW thickness.
In typical QW lasers, the emitted power density is increased through the use of MQW
structures (but this, also leads to a higher current density).

The gain spectra of QWs exhibit slightly different features with respect to the bulk,
due to the different joint density of states (JDOS), which is a step-like function, each
step corresponding to an allowed transition between subbands. The energy behavior of
gain in bulk was shown in Fig. 2.16 (for GaAs); the gain envelope globally follows the
JDOS profile. In a QW the gain profile vs. energy, shown in Fig. 2.17, clearly exhibits
features inherited from the QW JDOS; notice that increasing the electron density leads
to a deeper modification of the gain profile, which exhibits peaks. Quantum wire and



5.7 The laser evolution: tailoring the active region 289

TE
TE TM

TM TM TE

750 850 950
Eph, meV

750 850 950
Eph, meV

750 850 950
Eph, meV

g,
 c

m
–1

–100

100

300

500

700

g,
 c

m
–1

–100

100

300

500

700

g,
 c

m
–1

–100

100

300

500

700

TE TE TETM TM TM
C1

HH1

LH1

C1

HH1
LH1

C1

HH1
LH1

(a) (b) (c)

Figure 5.18 Gain profile in strained and unstrained QWs. The structure is an InGaAs/InGaAsP QW.
Compressive strain (a), unstrained (b), tensile strain (c). The gain profiles are from [11],
Fig. 10.31 ( c©1995, John Wiley & Sons); this material is reproduced with permission of
John Wiley & Sons, Inc.

quantum dot gain spectra are even more deeply modified due to the strongly resonant
JDOS behavior found in such structures.

A further degree of freedom in gain profile engineering finally originates from the
use of strained or pseudomorphic QWs, which may allow for polarization-independent
emission. In fact, strained QWs can lead to an alignment or disalignment of the valence
subband level, as shown in Fig. 5.18. The interaction strength of the light holes (LH) and
heavy holes (HH) with the electron subband is different, however, and turns out to be
polarization dependent (from the computation of the corresponding matrix elements).
The relative interaction strengths are (see, e.g., [11]):

HH→C LH→C

TE 3/4 1/4
TM 0 1

Such behavior is clearly visible in Fig. 5.18, which refers to an InGaAs/InGaAsP
QW with sheet carrier density ns = 3 × 1012 cm−2 [11]. Three cases are considered:
(a) QW with compressive strain, Ga mole fraction x = 0.41, well width L = 4.5 nm;
(b) lattice-matched QW, Ga mole fraction x = 0.47, well width L = 6 nm; (c) QW
with tensile strain, Ga mole fraction x = 0.53, well width L = 1.5 nm. In all cases
the structure was designed so as to obtain the lowest band-edge transition wave-
length close to 1.55 μm (energy ≈ 0.8 eV). The gains were normalized to a total
length of 20 nm including the QW width L and the InGaAsP barrier widths [11]. In
cases (a) and (b) the C1-HH1 transition is dominant, and the TE polarization gain
prevails. In case (c) tensile strain equalizes the HH1 and LH1 levels, and the TM
polarization gain is slightly prevalent (note that, with the same interaction strength,
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light holes are characterized by a lower density of states effective mass and therefore
more easily reach the population inversion condition). Equalization of the gain spectra
in a strained QW structure also corresponds (in the absence of current injection) to
the equalization of absorption profiles, which can be exploited, as already remarked,
in the realization of polarization-independent electroabsorption modulators or wave-
guide photodiodes.

5.7.2 Laser material systems

The material choice for the laser active region is related to the emission wavelength
and therefore to the specific application. Material systems for the laser are somewhat
similar to those exploited in the LED. The early development of lasers in the 1970s
was mainly driven by the AlGaAs/GaAs material system, with emission wavelengths
around 0.8 μm. Long-haul fiber communications stimulated the development in the
1980s of long-wavelength lasers, emitting at 1.3 and 1.55 μm in the regions of min-
imum fiber dispersion and attenuation, respectively. Such lasers were based on InP
technology and, in particular, on the InGaAsP material system. In the same years, the
introduction of CD players brought GaAs-based lasers into the consumer market, with a
drive toward reducing the wavelength into the visible region (e.g., red) in DVD players
to increase storage density. In the 1990s, InP-based lasers gradually became commer-
cially available, while new material systems were investigated to achieve emission in
the blue (0.4 μm wavelength). This was finally achieved by exploiting the widegap
InGaN/GaN material system, opening the path to new applications, such as DVD sys-
tems with dramatically increased capacity (25 Gb per single-layer disc). On the other
hand, extralong-wavelength emission was sought by exploiting, rather than band-to-
band transitions, intersubband effects in multiquantum well (the so-called quantum
cascade lasers, also suited for terahertz emission). As a last point, we may mention
the quest for the Si laser – announced in recent years, but in the form, for the moment,
of an optically pumped device based on the Raman effect [75]. For datacom and tele-
com applications, however, AlGaAs/GaAs and InGaAsP/InP today remain the main
players.

5.8 The laser evolution: improving the spectral purity and stability

Early semiconductor lasers exploited Fabry–Perot cleaved cavities with rather large lat-
eral dimension W . Several longitudinal and transversal modes were excited, making
the linewidth one order of magnitude better than in LEDs, but still poor for long-haul
applications.

Partial suppression of the higher-order transversal modes was first achieved by inject-
ing current only in a stripe, thus causing a reduction of the lateral cavity size due to
the so called gain guiding effect (only part of the laser offered gain and was therefore
able to support the lasing action). Gain guiding was then replaced by more efficient
index-guided structures, with just one transversal mode.
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On the other hand, single longitudinal mode lasers required either the coupling of
two Fabry–Perot cavities (as in cleaved coupled cavity or C3 lasers),9 or making use of
a different mirror approach, based on distributed reflection from a diffraction grating,
rather than on concentrated reflection by a cleaved mirror. Distributed reflectors have
nonflat reflection coefficients vs. wavelength, and therefore more effectively suppress
spurious longitudinal modes.

Gratings can be either integrated into the cavity as in DFB (distributed-feedback)
lasers, or can be placed outside of the cavity, as in DBR (distributed Bragg reflector)
lasers. External distributed mirrors involve additional complexities in the technology,
but their reflecting properties are immune from the change in the laser bias current.
DBR lasers therefore have better line stability and, if the external mirrors are suit-
ably polarized with currents, the emitted wavelength can be changed, leading to tunable
lasers.

Transition from the FP to the DFB and DBR lasers also leads to an improvement of
the temperature stability of the emitted wavelength, but, if stringent requirements are
imposed on this parameter, the laser has to be thermally stabilized through a Peltier
cell, leading to expensive packaging and high-cost devices, such as those exploited
in long-haul WDM (wavelength division multiplexing) systems. In recent years, how-
ever, market demand has been pushing more on short-length links supported through
low-cost, integrated modules not needing temperature stabilization; this has in turn
fostered the development of uncooled lasers exploiting material systems with reduced
temperature sensitivity, like AlGaInAs alloys [76].

5.8.1 Conventional Fabry–Perot lasers

Conventional Fabry–Perot lasers have a simple manufacturing process; a pn hetero-
junction is grown epitaxially, and then cut so as to create bars approximately as long
as the final cavity. End-facet cleaving along proper crystal planes allows the creation
of the end mirrors, while the lateral sides are roughened so as to obtain a non-
mirroring surface. However, due to the impossibility of laterally cleaving the cavity
down to a few micrometers, the FP cavity is wide enough to excite many transversal
modes (besides many longitudinal modes); see Fig. 5.19(a). Transversal mode excita-
tion leads to poor coupling with the fiber, while the excitation of many longitudinal
modes causes poor spectral purity (typically of the order of 1–3 nm) and current- and
temperature-dependent spectral emission.

5.8.2 Gain-guided FP lasers

A first step toward improving the FP cavity laser resulted from confining the cur-
rent injection to a narrow stripe. In its simplest form, the resulting stripe laser has a

9 In C3 lasers two unequal-length cavities act according to a vernier principle to allow oscillation only for a
few isolated modes; see e.g., [4].
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Figure 5.19 Fabry–Perot cavity laser (a) and gain-guided stripe laser (b).

passivated upper surface, while current flow is limited to the unpassivated metal stripe;
see Fig. 5.19(b). Owing to the current injection, the region lying below the ohmic
contact has higher carrier concentration than the rest of the device and exhibits gain.
Since the current density also spreads laterally, the boundary between the gain region
and the region without gain is not sharp. Moreover, the gain is not laterally uniform due
to the inhomogeneous current injection. Lasing takes place only in the central region
with gain (gain guiding) but, due to the nonuniform gain and refractive index, the optical
field wavefronts bend so as to give rise to multiple longitudinal modes (while higher-
order transversal modes are effectively suppressed). No strong lateral confinement is
provided by this structure to the optical field or to carriers. Due to the multiple lon-
gitudinal modes excited, gain-guided lasers often exhibit kinks in the power–current
characteristic, caused by the mode transition (Fig. 5.20); this also leads to a change in
the emission wavelength.

5.8.3 Index-guided FP lasers

Further improvements to the laser structure were introduced by lateral confinement
of photons through a refractive index step (index-guided laser) and/or of the carriers
through an insulating interface and/or a potential well associated with a heterojunc-
tion. A first example of index-guided structure is the ridge laser (Fig. 5.21), in which
the current density is injected through a ridge structure that increases the effective
refractive index of the slab dielectric waveguide section lying below it, so as to con-
fine the field in the region below the ridge. Although the gain profile is laterally not
uniform, the consequence is less dramatic due to the improved lateral optical field
confinement.

Better results can be obtained by creating a nonuniform lateral structure, either
by passivation, or by epitaxial regrowth of a widegap material around the central
active region. In both cases the structure is referred to as the buried laser (or buried



5.8 The laser evolution: improving the spectral purity and stability 293

Laser current

Kinks

O
pt

ic
al

 o
ut

pu
t p

ow
er

Gain-guided
Index-guided

Figure 5.20 Power–current characteristics of gain-guided lasers (with kink effect) and of index-guided lasers.

Ohmic
contact

Ridge

p-type cladding,
widegap

n-type cladding,
widegap

n+-type
substrate

neff1

neff1

neff2>neff1

Active layer,
narrowgap

I
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heterostructure, BH, laser); see Fig. 5.22(a) for a passivated example and Fig. 5.22(b)
for an epitaxially regrown device.

In index-guided structures, the active region is limited by barriers that laterally con-
fine both carriers and photons. In such structures, the carrier concentration and, to some
extent, also the photon density, can be considered as uniform in the lateral direction.
The access region is often wedge-shaped in order to decrease the parasitic series resis-
tance of the diode. Although the laser has more than one longitudinal mode excited,
mode hopping as a function of the excitation current and of the temperature is avoided
(Fig. 5.20). Despite the absence of mode hopping, the output wavelength changes with
increasing current, for example, due to the change in refractive index associated with
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Figure 5.22 Buried laser, index-guided, with oxide isolation (a) and epitaxially regrown buried laser (b).
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the increasing temperature, but the current and temperature sensitivity of the emitted
spectrum is smaller than for gain-guided lasers.

5.8.4 Distributed-feedback (DFB and DBR) lasers

Single (longitudinal) mode lasers are achieved with the help of mirror (diffraction) grat-
ings (see Fig. 5.23), which substitute cleaved mirrors, or provide additional feedback.
In DFB or distributed-feedback lasers (see Fig. 5.24(a)), the grating is integrated with
the gain region, while gratings are external in DBR or distributed Bragg reflector lasers
(see Fig. 5.24(b)).

The distributed mirror concept was introduced in the early 1970s [77]. While a
cleaved mirror acting on the basis of the refractive index step has a reflection coeffi-
cient that is (almost) independent of the operating wavelength, the grating reflection
coefficient can be strongly frequency dependent. If the distributed reflector is properly
designed, side modes see a larger mirror or end loss with respect to the central mode,
and therefore are below threshold.

A diffraction grating (see Fig. 5.23) can be created within or outside the active region
of the laser by properly etching a periodic corrugation (with a submicrometer step
related to the reflection peak) through a photoresist mask exposed by electron-beam
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Figure 5.24 Distributed feedback (DFB) laser (a), distributed Bragg reflector (DBR) laser (b). Part of the
lateral and front structure has been removed to expose the grating.

lithography (EBL) or other deep-UV processes. Interference-based techniques can be
used to avoid the use of deep submicrometer lithography. Once the surface of the wide-
gap material has been suitably etched, the epitaxial growth continues with a narrowgap
material, thus directly creating a grating adjacent to the laser active region, which acts
as a periodic perturbation of the refractive index within the active region.

To introduce the grating operation, suppose that a slab waveguide mode interacts with
a grating of periodicity � (Fig. 5.23); each step of the grating causes a small amount
of reflection. Reflections from two following grating periods have a phase difference,
�φ; this leads to constructive interference from all reflected contributions (and therefore
large overall reflection) only if

�φ = k�l = 2k� = 4π
�

λ
= 2nπ → λ = 2

�

n
.

The above condition, with n = 1, is referred to as the Bragg condition, and dictates that
the grating period must be one-half of the laser (guided) wavelength; λB = 2� is also
called the Bragg wavelength of the grating.10 Higher-order reflections with n > 1 are
sometimes used to relax lithography requirements, which can become very severe, e.g.,
for blue lasers, where the wavelength is around 400 nm. Two successive Bragg condi-
tions (e.g., with n = 1 and n = 2 ) correspond to a large wavelength interval. Compare
the Fabry–Perot resonance condition nλ/2 = L with the Bragg condition nλ/2 = �; in
both cases we obtain that

|�λ|
λ

≈ 1

n
,

10 Another interpretation of the grating operation sees the grating as a scatterer that imparts to the photons a
momentum kg , converting the forward wave into a reflected wave:

−k = k − kg → kg = 2π

�
= 2k = 4π

λ
→ λ ≡ λB = 2�.

Of course, this again corresponds to the definition of the Bragg wavelength.



296 Sources

but since L � �, the corresponding value of n is about 1000 for the FP cavity, while
it is only 1 for the grating. The spacing between two consecutive Bragg conditions is
therefore several orders of magnitude larger than the spacing between two FP cavity
modes. This, however, does not necessarily imply that grating-based lasers are safely
single-mode, since the detailed analysis of a grating reveals that, around each of its
Bragg resonances, the mirror reflectivity may have a comparatively wide bandwidth.

For the sake of simplicity, consider first the grating as a distributed mirror external
to the gain region (the corresponding structure is the DBR laser). The analysis shows
that, around a Bragg condition (e.g., that corresponding to n = 1), the grating reflection
coefficient can be expressed as [37]

r = −jκL sinh(γ L)

γ L cosh(γ L)+ j�βL sinh(γ L)
, (5.38)

where κ is the coupling coefficient between the forward and backward waves, defined
by the equations (E is the electric field phasor)

dE+(x)
dx

∣∣∣∣
grating

= −jκE−(x), dE−(x)
dx

∣∣∣∣
grating

= jκE+(x)

and

γ 2 = |κ|2 − (�β)2 .

The detuning �β is the difference in propagation constant with respect to the Bragg
condition; �β is related to the wavelength variation �λ as

�β = 2π

λB
− 2π

λB +�λ
. (5.39)

Figure 5.25 shows a plot of the grating reflectivity as a function of detuning for several
values of the normalized coupling κL . It can be seen that the region of high reflectivity
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Figure 5.25 Reflection coefficient of grating as a function of normalized detuning.
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around the zero detuning condition has the approximate width |�βL| ≈ 2κL; for
|�βL| > 2κL the reflectivity drops and the mirror loss increases.

If the grating is present together with a cleaved cavity (as in DBR lasers, see
Section 5.8.5), proper design of the grating is able to suppress lasing of all FP cav-
ity modes but one, thus making laser operation single-mode. In fact, for a FP cavity
mode we have

2kL = 2nπ.

Therefore, if kn corresponds to the central FP mode, the nearby FP side modes have nor-
malized detuning ±�βL = kn±1L − kn L = ±π . To decrease the grating reflectivity of
the side modes (thus increasing their end loss), we therefore need to impose 2κLg < π ,
where Lg is the grating length.

In DFB lasers, gain and distributed reflection occur in the same region, and the anal-
ysis of the threshold condition is more involved. In fact, the threshold condition now
corresponds to the solution of the following transcendental equation [37]:

γ L cosh(γ L)+ j

(
�βL + j

gth L

2

)
sinh(γ L) = 0,

where gth is the (cavity) threshold power net gain and

γ 2 = |κ|2 −
(
�β + j

gth

2

)2
.

Note that the threshold net gain corresponds to the sum of the external and mirror loss
(or end loss, as it is more appropriately called in this context), approximately equivalent
to the end loss. As usual, �β is the detuning with respect to the Bragg condition; see
(5.39). Although one might have expected that a solution exists for zero detuning (i.e.,
for the Bragg wavelength), this is not the case for the simple uniform grating introduced
here. In fact, with zero detuning we should have

tanh

(√
|κ|2 +

(gth

2

)2
L

)
=
√

|κ|2 +
(gth

2

)2
L

/
gth L

2
> 1,

but the hyperbolic tangent of a real argument is always < 1. Therefore, no solution
exists for zero detuning; however, having established, for example, the coupling κ , we
can numerically analyze the threshold condition so as to obtain the detuning–gain pairs
that satisfy it. The evolution of the solutions in the plane (g0L ,�βL) for different
values of the normalized coupling κL is shown in Fig. 5.26; the (cavity) field gain is
g0 = gth/2 and the normalized coupling corresponding to dots is κL = 0.5, 1, 2, 5. Two
symmetric solutions exist for positive and negative detuning, having the same possibility
for lasing.

Note that this result has been obtained by assuming that the FP mirror reflection is
entirely suppressed (i.e., that the cavity facets are transparent, only distributed reflection
takes place). From Fig. 5.26, it is clear that for high gain, low coupling the separa-
tion between the two solutions is the same as for Fabry–Perot side modes; besides, the
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Figure 5.26 Normalized threshold field gain g0L in a DBF laser as a function of the normalized detuning
�βL for different values of the normalized coupling κL .
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Figure 5.27 FP laser spectrum, left (constant end loss) and DFB laser spectrum, right (side modes have
higher end loss). In the DFB case the dashed line refers to a strictly symmetrical structure in
which two modes are above threshold, the continuous line to a structure in which asymmetries
are introduced so as to bring only one mode above threshold.

additional side solutions, with larger detuning, have a small gain penalty.11 In such con-
ditions, the DFB laser is not markedly superior to the FP, even if the introduced gain
penalty somewhat suppresses higher-order longitudinal modes. However, increasing the
coupling, the two main lines increase their distance and the gain penalty (related to the
larger end loss) of higher-order longitudinal modes becomes large enough to effectively
suppress secondary-mode lasing.

In conclusion, while in FP lasers the mirror loss is the same for all longitudinal modes
(Fig. 5.27), in the DFB laser side modes have a larger mirror loss and therefore cannot
lase. The two symmetrical lasing modes are, however, practically inconvenient; one of
them can be effectively suppressed either by introducing dissymmetries into the gain
profile or in the reflecting FP-like facets, or by introducing an appropriate phase shift in
the center of the grating (λ/4 shift DFB lasers). Quarter-wavelength shifting also leads
to a dominant lasing mode with zero detuning.

11 It can be shown that, for low coupling κL , the solution is asymptotically

�βL =
(

n − 1

2

)
π + tan−1

(
�βL

g0 L

)
.

Neglecting the last term (solutions with high gain g0 L or low detuning�βL), the mode spacing is the same
as for the FP laser (this corresponds to the vertical asymptotes in Fig. 5.26). For high coupling (κL � 1),
on the other hand, �βL ≈ π/

√
g0 L , corresponding to the external curves in Fig. 5.26.
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Figure 5.28 Output spectrum of a DFB laser with conventional grating and quarter-wavelength shifted
grating.

A schematic example of a DFB laser is shown in Fig. 5.24 (a); the template is
the buried heterostructure device already considered for the Fabry–Perot cavity laser;
besides the cavity, distributed feedback is achieved through a grating in the active region
interface. The qualitative behavior of the emission spectrum of a �/2 = λg/4 shifted
DFB laser is compared in Fig. 5.28 (dashed line) to the spectrum of a conventional, ideal
DFB laser (continuous line). With the quarter-wavelength grating, we obtain a dominat-
ing central mode with zero detuning and good suppression of additional transversal
(side) modes.

5.8.5 DBR and tunable DBR lasers

In DBR (distributed Bragg reflector) lasers, the distributed mirrors are external to the
active region. Figure 5.24(b) shows the principle of the implementation. In a DBR
laser (or, at least, in its simplest form) gratings operate as mirrors, with no gain.
The reflection coefficient (5.38) of the grating is frequency-dependent, and a proper
choice of the grating length and coupling coefficient allows for selecting a single lon-
gitudinal mode. In certain cases, gratings can be totally external and extremely long
(e.g., in an optical fiber), thus leading to very small linewidths. With respect to the
DFB implementation, DBR lasers are more critical to manufacture and less com-
pact, but external gratings are more stable than internal ones (not being influenced
by bias or modulation current), thus leading to improved line stability. Finally, the
grating reflection coefficient can be modulated by an external current, thus making
the laser tunable. Tunable lasers typically have a more complex structure, including
tunable mirror sections and phase sections; one of the laser facets can be a conven-
tional cleaved mirror; see Fig. 5.29. Tunable lasers have several applications, not only
telecom, but also in measurement systems; their tuning range varies according to the
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Figure 5.29 DBR laser structure with gain, phase, and Bragg mirror sections.

implementation but (with the combination of several sources in parallel) can be as wide
as 40 nm.

5.8.6 Vertical cavity lasers

The laser structures discussed so far are edge emitters – light is emitted in the junction
plane. Due to the aperture field pattern, the radiation diagram is not circular; this makes
coupling with a fiber more critical. Vertical emission lasers, similar to vertical emission
(or Burrus) LEDs, have better fiber coupling owing to the circular emitting area, which
translates into a circular far-field beam. However, vertical emission requires mirrors par-
allel to the junction plane, which can be manufactured, according to the DBR approach,
as diffraction gratings made by stacks of quarter-wavelength layers. The resulting cav-
ity and mirror properties, however, are more critical than in conventional edge-emitting
lasers. In fact, vertical cavity surface-emitting lasers (VCSELs) have a short cavity that
requires large gain and very low mirror loss (e.g., 99.9%) to achieve lasing. Highly
reflecting mirrors require, in turn, thick semiconductor stacks, with large series par-
asitic resistance. Because of the above issues, the development of VCSELs has been
fraught with a number of technological and design problems. A comparative simplified
picture of the typical layout of an edge-emitting Fabry–Perot laser and of an array of
VCSELs is shown in Fig. 5.30; note that the small size of a VCSEL makes it well suited
to manufacturing arrays of emitters.

In the VCSEL, the divergence of the laser beam is inversely proportional to the beam
size at the source, i.e., the smaller the source, the larger the divergence. The typi-
cal length of the cavity is 1–3 λ; due to this, the Fabry–Perot cavity mode spacing is
very large, and the cavity reflectivity is entirely dominated by DBR mirrors, which are
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Figure 5.30 Qualitative layout of a Fabry–Perot cavity edge laser (a) and of a VCSEL array (b); note the
different far-field radiation patterns. The two drawings are not to scale.
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Figure 5.31 VCSEL structure with semiconductor distributed Bragg reflectors.

formed by depositing alternating layers of semiconductor or dielectric materials with
a difference in refractive index (e.g., a heterostructure MQW). VCSELs are currently
manufactured in several wavelengths (1300, 1550, and 850 nm; mature VCSELs are,
however, in the short wavelength range) and exhibit some appealing features, such as
an easier integrated technology with respect to edge emitters, easier testability, and
therefore lower cost.

An example of VCSEL mirror and cavity structure is reported in Fig. 5.31; both
dielectric and semiconductor stacks can be used as external Bragg reflectors. Note that,
unlike in edge-emitting DBR lasers, the mirror characteristics potentially change as a
function of the emitted power, since, as in DFB lasers, the bias current is, in fact, injected
through the reflector stacks.
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5.8.7 Quantum dot lasers

The laser structures discussed so far exploit bulk semiconductors or quantum wells. A
number of advantages are expected from the use of zero-dimensionality structures, i.e.,
quantum dots (QDs). Since the density of states of a QD is a set of delta functions of the
carrier energy, see Section 1.32, we also expect the absorption and gain profiles to be
pulse-like or, allowing for some linewidth broadening mechanism, a set of broad pulses
centered around each of the QD energies. When compared with conventional or QW
structures, QDs have many favorable characteristics, such as higher differential gain
(i.e., variation of gain with respect to the carrier density), and thus a larger modulation
bandwidth, lower chirp, better spectral purity, low threshold current, and low sensitivity
to the operating temperature. In order to be effective, the size of QDs should be as small
as 10–100 nm. Nanometer-scale dots exhibit an atom-like behavior that makes them
quite similar to the molecules exploited in gas and solid-state conventional lasers.

In practice, however, the introduction of QDs into a manufacturable and effective
structure is fraught with many difficulties, see [78]. QDs can be implemented through
a potential well confined in all directions; nevertheless, confinement should not prevent
current injection into the QD, but should be strong enough (with potential barriers of
the order of 100 meV or more) not to allow carriers to escape the dots by thermalizing
into the bulk. Finally, since a single QD cannot provide significant output power, QDs
have to be suitably manufactured into QD arrays. QD arrays are a kind of 2D or 3D
superlattice (according to whether QDs are distributed in a plane or in a volume); how-
ever, the QD array should be extremely uniform in terms of QD size and spacing, since
in nonuniform or random QD arrays, with a broad distribution of QD sizes, the density
of states is smeared and the advantages of the QD optical properties are lost. QD arrays
made through etching, as sets of circular pillars exhibit good uniformity but are affected
by heavy surface effects.

The present technology of QD lasers is based on the self-assembling of 2D arrays
of dots, made of a narrowgap material grown on a widegap substrate (e.g., InAs on
GaAs). InAs nanodots are grown by molecular beam epitaxy on a GaAs substrate; in
a first stage of the epitaxial deposition, InAs (lattice mismatched vs. GaAs) aggregates
in a set of pyramidal structures whose height and width are in the nanometer range
(e.g., 10–20 nm base, 2–3 nm height, with a spacing around 100 nm between structures).
InAs growth is stopped at this early nucleation stage and an epitaxial growth of GaAs
is performed, which is able to planarize the structure leaving, at the end, a set of almost
uniformly sized square pyramidal dots of narrowgap InAs embedded into a thin layer
of GaAs. Several techniques have been developed to improve the uniformity of QD
spacing and also to allow for the growth of regular QD stacks making a 3D QD array;
see Fig. 5.32.

One of the major interests in QD lasers is in the area of low-cost directly modulated
lasers for 10 Gbps (and maybe above) applications not needing temperature stabiliza-
tion and therefore expensive packaging. Due to the reduced chirp, such devices could
be competitive with respect to lasers integrated with electrooptic or electroabsorption
modulators. An example of recent QD laser development is a temperature-insensitive
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Figure 5.32 InAs quantum dots grown on a GaAs substrates by MBE: (a) disordered arrangement of QDs
with irregular size; (b) regular arrangement of QDs with regular size; (c) 3D array of
self-arranged QDs.

(20oC to 70oC) 1.3 μm QD laser with active region made of a multilayer InAs on GaAs
QD array, including δ-doped p-type GaAs layers, with satisfactory performances in the
10 Gbps range [79].

5.9 The laser temperature behavior

The laser emission is temperature dependent: gain spectra generally depend on the
active material temperature: increasing the ambient temperature, but also the dissipated
power in the junction, leads to a shift in the gain spectrum. As a consequence, cavity
modes experience a shift, due to the temperature dependence of the effective refractive
index and, in a Fabry–Perot cavity, to the change in size of the cavity. In Fabry–Perot
cavities, this leads both to temperature sensitivity of the emission spectrum and to the
so-called mode hopping (i.e., the dominant mode changes with changing temperature).
This increases the temperature sensitivity of the emitted wavelength up to values of the
order of 4 Å/K. Mode hopping, on the other hand, is avoided in single-longitudinal-
mode lasers such as DFB lasers, leading to a reduction of the temperature sensitivity to
values of the order of 1 Å/K (see e.g., [4], Section 10.7).

Another important issue is the variation of the threshold current with tempera-
ture. Since the temperature increase favors nonoptical recombination processes, gain
decreases, leading to larger threshold currents and to a corresponding shift of the
power–current relation. The temperature dependence of the threshold current follows
an Arrhenius-like law with characteristic temperature T0:

Ith(T ) ≈ Ith(Tr ) exp

(
T − Tr

T0

)
;

Tr is the reference temperature. Particular material systems (including quantum dot-
based-structures) can be implemented to decrease the temperature sensitivity.

Example 5.5: The threshold current of a laser is measured at different temperatures:

Ith(T1) = 61 mA, T1 = 20 ◦C Ith(T2) = 67 mA, T2 = 35 ◦C
Ith(T3) = 75 mA, T3 = 50 ◦C Ith(T4) = 85 mA, T4 = 65 ◦C.
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Estimate the characteristic temperature T0.
From the Arrhenius plot expression we derive, taking the logarithm of both sides,

T0 ≈ T − Tr

log

(
Ith(T )

Ith(Tr )

) ,
from which we obtain an approximate least-squares fit of T0 ≈ 146 K.

5.10 Laser linewidth

The laser linewidth can be decreased by suppression of extra transversal and longitudi-
nal modes, but, ultimately, single-mode lasers also have a finite linewidth. Single-mode
emission is, in fact, affected by phase fluctuations (phase noise), which broaden the
laser output spectrum.

Fluctuations in the laser intensity and phase are caused by fluctuations in the cavity
photon number and carrier active region population. Phase fluctuations seem to be par-
ticularly related to the spontaneous emission of noncoherent photons; in fact, while
stimulated emission generates photons in phase with incident photons, spontaneous
emission within the laser bandwidth creates photons with random phase. However, pop-
ulation fluctuations leading to fluctuations in the number of coherent photons, besides
causing intensity fluctuations, also play a role in originating phase fluctuations, since
they cause fluctuations in the cavity gain and therefore, via the Kramers–Kronig rela-
tions, in the cavity effective refractive index neff. This causes in turn the cavity resonant
frequency (and therefore the emission frequency) to fluctuate, thus broadening the
output spectrum. Such an indirect broadening mechanism is proportional to a factor
αH defining the relative variation of nr versus the gain; αH is called the linewidth
enhancement factor or the Henry alpha factor, and reads

αH = dnr

dni
≈ �nr

�ni
, (5.40)

where nr and ni are the real and imaginary parts of the refractive index, respectively (ni

can be associated with gain or with losses). The same factor also occurs in the analysis of
the frequency chirp of lasers under amplitude modulation and in the chirp modeling of
electrooptic and electroabsorption modulators, from which comes the alternative name
of Henry chirp factor. The relevant analysis is presented in Section 5.10.1; a more com-
plete treatment (based on the Langevin approach), discussed in Section 5.13.5, leads to
the same results.

The laser linewidth resulting from the two mechanisms outlined above (emission of
incoherent photons and linewidth enhancement caused by population fluctuations), also
called intrinsic laser linewidth, can be shown to be (see (5.74) in Section 5.10.1)
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� f ≈ 1

2πτph

h f

2τph Pout
(1 + α2

H ),

where Pout is the total output laser power.
Apparently, a further, extrinsic limitation to the laser linewidth is imposed by the

resonator (i.e., the laser cavity). The resonator-limited linewidth, also called cavity
linewidth, is, however, typically larger than the intrinsic linewidth, due to the low qual-
ity factor Q of semiconductor laser cavities. In fact, the cavity linewidth can be derived
from the definition of the cavity quality factor Q = � f/ f , where � f is the cavity
FWHM bandwidth. One has immediately

�ω = ω

Q
. (5.41)

However, the cavity quality factor is defined as

Q = ω × Energy stored

Energy lost per unit time
= ω × h̄ωn ph ×

(
h̄ωn ph

τph

)−1

= ωτph, (5.42)

where n ph is the total photon number in the cavity and τph is the photon lifetime, i.e.,
the average time between the photon emission and its absorption or escape from the
cavity through the mirrors; see (5.33) and Section 5.6.5. From (5.41) and (5.42) we
obtain

�ω = ω

Q
= 1

τph
,

and, defining such a bandwidth as the cavity linewidth � fc:

� fc = 1

2πτph
.

The cavity linewidth can be extremely narrow if the cavity length is very large or the
mirrors are of high reflectivity. However, in semiconductor lasers the quality factor of
the cavity is low enough (low reflectivity mirrors and short cavity) to make the laser
linewidth dependent on or limited by intrinsic mechanisms; see Example 5.6.12

Laser linewidth requirements vary significantly according to the application. In
the datacom and telecom field, fiber dispersion limits the length–bandwidth prod-
uct of the link; moreover, the signal bandwidth is usually dominated by the source
linewidth, unless very pure laser sources are used. According to the application, the
required laser linewidth may vary. For single-wavelength local area network (LAN)
links, the 20–30 Å (2–3 nm) linewidth typical of FP lasers is adequate and sometimes

12 An intuitive explanation of the linewidth narrowing with respect to the cavity linewidth can be derived by
taking into account that in the presence of gain we have the approximate dynamic equation for the photon
density:

dN

dt
= c0gc

nr
N − N

τph
≡ N

τeq
,

where the equivalent lifetime is much larger than τph . Thus, the effective cavity Q is actually increased
by the gain mechanism.
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the 300–500 Å (or more) linewidth typical of LEDs can suffice. Long-haul single-
frequency links (with spans up to 100 km) cannot be implemented through FP lasers
but require 1–2 Å (0.1–0.2 nm) linewidths that can be achieved by DFB lasers. Finally,
wavelength division multiplexing (WDM) long-haul applications exploiting several car-
riers impose further requirements on the line stability, thus needing DFB or DBR lasers
with temperature control.

Example 5.6: Consider a cavity with L = 300 μm, effective refractive index nr = 3.3,
mirror power reflectivity of 30%, power 1 mW, αH = 5. Evaluate the cavity and intrinsic
laser linewidth. The photon energy is h f = 1 eV.

Neglecting additional losses, we have

τph ≈ nr L

c0| log R−1| = 3.3 · 300 × 10−6

3 × 108 · log 0.3−1
= 2. 74 × 10−12 s,

� fc = 1

2πτph
= 1

2π · 2. 74 × 10−12
= 58 GHz.

On the other hand, the laser linewidth is

� f = 1

2πτph

h f

2τph Pout
(1 + α2

H )

= 1

2π · 2. 74 × 10−12

1 · 1.69 × 10−19

2 · 2. 74 × 10−12 · 10−3
(1 + 52) = 47 MHz.

The cavity linewidth is, therefore, much larger than the actual laser linewidth.

5.10.1 Linewidth broadening analysis

We present here a classical treatment of the laser phase noise, leading to expression
(5.74) for the laser linewidth.13 The analysis is based on a number of steps, which we
will briefly summarize here. We start by postulating that the optical field intensity I
and phase φ are affected by fluctuations, δ I and δφ, respectively. Phase fluctuations
originate both directly from spontaneous emission events, and indirectly from intensity
fluctuations.14 Intensity fluctuations are, in fact, related to population fluctuations in the
cavity, which in turn cause a fluctuation in the gain and, because of the Kramers–Kronig
relations, in the cavity effective index and field phase. Population fluctuations are not
introduced directly, but, rather, a dynamic model for the fluctuating field is developed
in order to relate δφ to δ I through the αH parameter. Then, the phase and amplitude

13 The treatment closely follows the Henry papers [80], [81]. An alternative discussion of laser noise
according to the Langevin approach is presented in Section 5.13.5.

14 In the Henry theory of linewidth broadening, intensity fluctuations caused by stimulated emission are not
mentioned explicitly; the final result obtained is, however, consistent with the Langevin model in which
fluctuations are caused by both spontaneous and stimulated emission. It should be taken into account that
the spontaneous and stimulated emission rates are anyway proportional through the photon number.
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fluctuations derived by adding to the field a single photon with random phase are evalu-
ated, and it is shown that the average rate of this photon emission should coincide with
the spontaneous emission rate. Finally, the total δφ deriving from direct and indirect
phase fluctuations is obtained and its second-order statistical properties are evaluated,
assuming that δφ has Gaussian statistics. This allows the autocorrelation and power
spectrum of the fluctuating field to be estimated in the form a Lorentzian.15 An addi-
tional analysis allows us to express the power spectrum FWHM as in (5.74). The
analysis of intensity fluctuations will not be completed in the present section and the
treatment is left to Section 5.13.4.

We start from the electric field E(x, t) (x is the longitudinal direction) of the cavity
dominant mode. We assume that the fluctuations of E can be described by an envelope
E0(t), slowly varying with time, as16

E(x, t) ≈ E0(t) exp(−jkx + jωt). (5.43)

The cavity propagation constant is jk = jωneff/c0, where neff is the (generally complex)
cavity effective index and c0 is the free space light velocity. The perturbed field E(x, t)
should satisfy the 1D wave equation:

∂2 E

∂x2
− n2

eff

c2
0

∂2 E

∂t2
= 0, (5.44)

where

n2
eff = (nr − jni )

2 = n2
r − n2

i − 2jnr ni ,

nr and ni being related to the field propagation constant β and attenuation α as

−jk = −jωneff/c0 = −jωnr/c0︸ ︷︷ ︸
β

− ωni/c0︸ ︷︷ ︸
α

.

In a laser cavity, ni accounts for the gain gc = �ovg, the mirror loss αm , and the external
loss αloss ; since α = 2α = αloss + αm − gc we immediately obtain

ni = c0

2ω
(αloss + αm − gc) .

At and above threshold the gain and losses compensate, i.e., ni = 0. However, car-
rier populations fluctuations induce a fluctuation δni in ni , so that ni + δni ≈ δni =
(c0/2ω) (αloss + αm − gc). Because of the Kramers–Kronig relations, δni will imply a
fluctuation δnr in the real part, such as

αH = δnr

δni
, (5.45)

15 A Lorentzian spectrum has a frequency behavior (1 + ω2τ2)−1 around the central frequency, where τ is
a characteristic time.

16 Remember that we mean slow with respect to the optical field period (i.e., with frequency components
below the teraherz range).
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where αH is the Henry parameter. Assuming small variations we can therefore write

n2
eff = (nr + δnr − jδni )

2 ≈ n2
r − 2jnrδni (1 + jαH ) . (5.46)

We now show that a fluctuation in the effective index will cause a fluctuation in the
perturbed field E . In fact, substituting (5.46) into (5.44) we obtain

∂2 E

∂x2
− n2

r − 2jnrδni (1 + jαH )

c2
0

∂2 E

∂t2
= 0. (5.47)

We express the derivatives of E through (5.43), neglecting the second-order time
derivative of E0(t), as

∂2 E

∂x2
= −k2 E0(t) exp(−jkx + jωt)

∂2 E

∂t2
≈ −ω2 E0(t) exp(−jkx + jωt)+ 2jω

dE0(t)

dt
exp(−jkx + jωt).

Substituting into (5.47) and simplifying the exponentials we obtain[
−k2 + n2

rω
2

c2
0

]
E0(t)− n2

r − 2jnrδni (1 + jαH )

c2
0

2jω
dE0(t)

dt

− 2jnrδni (1 + jαH ) ω
2

c2
0

E0(t)

≈ −2jωn2
r

c2
0

dE0(t)

dt
− 2jω2nrδni (1 + jαH )

c2
0

E0(t) = 0,

where we have assumed that 2jnrδni (1 + jαH ) � n2
r . Expressing

δni = c0

2ω
(αc − gc) ,

where αc = αloss + αm , the dynamic equation for the electric field envelope assumes
the form

dE0(t)

dt
= − c

2
(αc − gc) (1 + jαH ) E0(t), (5.48)

where c is the phase velocity of the mode.
Equation (5.48) includes the fluctuating term αc − gc, but does not account yet for

the effect of spontaneous emission and the related fluctuations (the r.h.s. term is clearly
connected to absorption and stimulated emission); we will introduce this missing term
at a further stage, after having expressed E0 in terms of a normalized intensity I and a
phase φ:

E0(t) = √
I (t)ejφ(t).

For convenience, the field amplitude is normalized so that |E0|2 ≡ I = n ph , the
photon number in the cavity (the photon average density is N = n ph/V , where V
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is the equivalent cavity volume for the photon mode). Substituting into (5.48), we
obtain

dE0

dt
= 1

2
√

I

dI

dt
ejφ + j

√
I

dφ

dt
ejφ = − c

2
(αc − gc) (1 + jαH )

√
I ejφ,

i.e., simplifying the exponentials and separating real and imaginary parts:

1

2I (t)

dI (t)

dt
= − c

2
(αc − gc) (5.49)

dφ(t)

dt
= − c

2
(αc − gc) αH . (5.50)

From the ratio of (5.49) and (5.50) we obtain an auxiliary equation which relates phase
and amplitude fluctuations:

dφ(t)

dt
= αH

1

2I (t)

dI (t)

dt
, (5.51)

from which we immediately obtain the alternative definition of the Henry parameter:

αH =
dφ(t)

dt
1

2I (t)

dI (t)

dt

= 4π� f (t)
1

pout (t)

dpout (t)

dt

, (5.52)

since pout ∝ I ; � f is the instantaneous frequency deviation or chirp. From (5.51),
expressing differentials in terms of variations we have

δφ′ ≈ αH

2I
δ I, (5.53)

where we have denoted as δφ′ the phase fluctuation proportional to the amplitude
fluctuation δ I through δnr (it vanishes, in fact, if αH = 0).

Let us now introduce, in the dynamic model for the intensity, the effect of sponta-
neous emission, including in (5.49) the spontaneous emission rate rsp

o (dimension, s−1)
and the related intensity fluctuation FI :

dI (t)

dt
= −c (αc − gc) I (t)+ rsp

o + FI . (5.54)

Before exploiting (5.54), we evaluate the effect of the addition, to the unperturbed
field, of a single photon with random phase. The amplitude fluctuations δ I can be con-
sidered as the collective result of this process (see note 17, p. 311), which, however,
also leads to the phase fluctuation δφ′′. We call this fluctuation direct, to distinguish
it from phase fluctuations related to the amplitude fluctuations in (5.53). Suppose that
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the unperturbed field E0 has φ = 0 and |E0| = √
I ; we add a field δE0 = √

1 exp(jθ)
corresponding to one photon with random phase θ . The resulting total field is

E0 + δE0 = √
I + √

1 exp(jθ) = √
I + √

1 cos(θ)+ j
√

1 sin(θ), (5.55)

but we can, alternatively, write

E0 + δE0 = √
I + δ I exp

(
jδφ′′) = √

I + δ I cos(δφ′′)+ j
√

I + δ I sin(δφ′′). (5.56)

Taking the magnitude squared of (5.55), we obtain

|E0 + δE0|2 =
(√

I
)2 + 2

√
I
√

1 cos(θ)+
(√

1
)2

cos2(θ)+
(√

1
)2

sin2(θ)

= I + 2
√

I cos(θ)+ 1 = I + δ I,

i.e., the amplitude fluctuation δ I is

δ I = 2
√

I cos(θ)+ 1. (5.57)

Adding photons with random phase at times ti can therefore be modeled as a photon
generation process with generation rate

dI

dt

∣∣∣∣
em

=
∑

i

2
√

I cos(θi )δ(t − ti )+
∑

i

δ(t − ti ) =
〈

dI

dt

∣∣∣∣
em

〉
+ FI , (5.58)

where the term in angular brackets is the (ensemble) average emission rate and FI is the
zero-average fluctuation. One has, with reference to an average generation rate G (for
the moment to be determined):

〈
dI

dt

∣∣∣∣
em

〉
= lim

T →∞
1

T

∫ T

0

GT∑
i

2
√

I cos(θi )δ(t − ti ) dt

+ lim
T →∞

1

T

∫ T

0

GT∑
i

δ(t − ti ) dt = lim
T →∞

1

T

GT∑
i

2
√

I cos(θi )+ G = G,

since θi is uniformly distributed. Indeed, G is the photon generation rate to be included
in (5.54) besides stimulated emission; thus we identify G = rsp

o , the spontaneous
emission rate.

We now come back to the direct phase fluctuation δφ′′. Comparing the imaginary
parts in (5.55) and (5.56) we obtain, assuming small δφ′′:

sin(δφ′′) ≈ δφ′′ = 1√
I + δ I

sin(θ) ≈ 1√
I

sin(θ). (5.59)
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We can now express the total phase fluctuation δφ′ + δφ′′ arising from the addition of
a single photon with random phase; δφ′′ was evaluated directly from (5.59), while δφ′
is recovered through (5.53):17

δφ = δφ′ + δφ′′ = αH

2I

(
2
√

I cos(θ)+ 1
)

+ 1√
I

sin(θ)

= αH

2I
+ 1√

I
[sin(θ)+ αH cos(θ)] .

We have expressed the phase fluctuation δφ in terms of the single photon random
phase θ . We will now derive for δφ suitable statistical properties.

According to the previous identification G ≡ rsp
o , during a certain observation

time t , a number of photons with random phase adds to the initial field, with
a rate:

rsp
o = Vacβk Rsp

o ≈ Vacβkn/τ sp
n , (5.60)

where Vac is the active region volume; βk is the so-called spontaneous emission
factor (expressing the relative amount of photons emitted by spontaneous emission
into the lasing mode k);18 Rsp

o ≈ n/τ sp
n is the electron spontaneous recombination

rate per unit volume, where n is the cavity electron concentration; τ sp
n the spon-

taneous lifetime. In what follows we will also exploit the electron spontaneous
recombination rate (per unit volume) leading to spontaneous emission into the lasing
mode k:

R
sp
o = βk Rsp

o . (5.61)

The total number of photons emitted within the laser bandwidth at t is therefore rsp
o t .

The total phase fluctuation δφ over the observation time t can be now expressed by
adding all individual phase fluctuations:

δφ =
rsp

o t∑
i=1

δφi =
rsp

o t∑
i=1

{
αH

2I
+ 1√

I
[sin(θi )+ αH cos(θi )]

}
. (5.62)

From (5.62), we can derive the statistical properties of δφ, having made some assump-
tions on the statistics of θi . Assuming that the process δφ is (at least second-order)
ergodic (i.e., time and ensemble averages coincide) and denoting the time average
of a(t) as 〈a〉 and the ensemble average as a, we can now derive the average phase

17 According to the present approach, intensity fluctuations are derived from a field analysis rather than
from a photon number analysis. This implies that the equivalent emission rate considered is associated
with spontaneous emission only (see, e.g., [82], Ch. 7). In fact, intensity or photon number fluctuations
introduced this way also account for stimulated emission. Section 5.13 introduces a different approach
to photon number fluctuations, in which δ I also derives from fluctuations in the stimulated emission; as
shown in Example 5.8, the two approaches are completely equivalent.

18 In fact rsp
o is the spontaneous recombination rate for the (single wavelength and frequency) photons in the

lasing mode k, derived from the total spontaneous recombination rate through a proper weight βk .
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deviation 〈δφ〉 and the quadratic mean of δφ,
〈
(δφ)2

〉
. Since θi is uniformly distributed

between 0 and 2π , 〈sin(θi )〉 = 〈cos(θi )〉 = 0; we then have:

〈δφ〉 =
rsp

o t∑
i=1

αH

2I
+
〈rsp

o t∑
i=1

1√
I

[sin(θi )+ αH cos(θi )]

〉

= αH

2I
r sp

o t +
rsp

o t∑
i=1

1√
I

[〈sin(θi )〉 + αH 〈cos(θi )〉] = αH

2I
r sp

o t, (5.63)

i.e., the average phase deviation linearly increases with time. Concerning the quadratic
mean, we obtain, taking into account that the phases of different photons are uncorre-
lated:

〈
(δφ)2

〉
=
〈⎧⎨⎩

rsp
o t∑

i=1

αH

2I
+

rsp
o t∑

i=1

1√
I

[sin(θi )+ αH cos(θi )]

⎫⎬⎭
×
⎧⎨⎩

rsp
o t∑

j=1

αH

2I
+

rsp
o t∑

j=1

1√
I

[
sin(θ j )+ αH cos(θ j )

]⎫⎬⎭
〉

=
(αH

2I
r sp

o t
)2 +

〈rsp
o t∑

i=1

1

I

[
sin2(θi )+ α2

H cos2(θi )
]〉

=
(αH

2I
r sp

o t
)2 + 1

I

(
1

2
+ 1

2
α2

H

)
rsp

o |t | .

Note the absolute value |t |, implying that the quadratic mean should always be positive.
The average phase deviation 〈δφ〉 in (5.63) increases linearly with time; this

corresponds to a constant deviation in the average instantaneous frequency:

δ f = 1

2π

d 〈δφ〉
dt

= 1

2π

d

dt

(αH

2I
r sp

o t
)

= αH

4π I
r sp

o , (5.64)

but does not imply linewidth broadening. On the other hand, the variance σδφ of the
total phase fluctuations:

σδφ =
〈
(δφ)2

〉
− 〈δφ〉2 = 1 + α2

H

2I
r sp

o |t | (5.65)

also increases linearly with time. We will now show that such a behavior is compatible
with a finite linewidth and a Lorentzian power spectrum.

To this purpose, we assume that δφ has a Gaussian probability distribution; since
〈δφ〉 leads to a constant frequency deviation and has therefore no impact on linewidth
broadening, we will neglect it and write the Gaussian probability distribution of δφ as

P(δφ) = 1√
2πσδφ

exp

[
− (δφ)

2

2σδφ

]
, (5.66)
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where σδφ depends on the observation time according to (5.65). Let us turn now to the
electric field (without loss in generality, we suppress the space dependence):

E(t) = √
I (t)ejφ(t)ejωt = √

I (t)ejδφ(t)ejω0t ,

where ω0 takes into account the constant frequency deviation from (5.64). To obtain the
laser linewidth, we need to evaluate the power spectrum of E , which can be expressed
as the Fourier transform of the field autocorrelation function:

RE (τ ) = 〈
E(t + τ)E∗(t)

〉 = 〈√
I (t + τ)ejδφ(t+τ)ejω0(t+τ)√I (t)e−jδφ(t)e−jω0t

〉
≈ I ejω0τ

〈
ej[δφ(t+τ)−δφ(t)]〉 = I ejω0τ

〈
ejδφ(τ)

〉
, (5.67)

where we have neglected amplitude fluctuations. Since δφ(t) is stationary,19 the sta-
tistical properties of δφ(t + τ)− δφ(t) are independent of t and therefore coincide
with those of δφ(τ)− δφ(0) ≡ δφ(τ), assuming the phase in t = 0 as the reference
phase.

The time average 〈exp (jδφ(τ))〉 can be now evaluated (from ergodicity) as an
ensemble average, exploiting (5.66):

〈
ejδφ(τ)

〉
= ejδφ(τ) =

∫ ∞

−∞
P(δφ)ejδφ dδφ = 1√

2πσδφ

∫ ∞

−∞
e−(δφ)2/2σδφejδφ dδφ

= 1√
2πσδφ

∫ ∞

−∞
e−(δφ)2/2σδφ cos (δφ) dδφ = e−σδφ/2, (5.68)

where the following integral has been used

∫ ∞

0
e−a2x2

cos (bx) dx =
√
π

2a
exp

(
− b2

4a2

)
.

In conclusion, from (5.67), (5.68), and (5.65), the auto-correlation function is

RE (τ ) = I ejω0τ exp

(
−1 + α2

H

4I
r sp

o |τ |
)

= I ejω0τ e−|τ |/τc , (5.69)

where we have introduced the coherence time τc:

1

τc
= 1 + α2

H

4I
r sp

o . (5.70)

19 Remember that we have removed the average phase deviation 〈δφ〉 from (5.63), which increases with time.
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We can now evaluate the power spectrum of the field E by taking the Fourier
transform of RE (τ ) from (5.69):

SE (ω) =
∫ ∞

−∞
I ejω0τ e− |τ |

τc e−jωτ dτ

= I
∫ 0

−∞
e
τ
τc e−j(ω−ω0)τ dτ + I

∫ ∞

0
e− τ

τc e−j(ω−ω0)τ dτ

= I
τc + j (ω − ω0) τ

2
c

1 + (ω − ω0)
2 τ 2

c

− I
j (ω − ω0) τ

2
c − τc

1 + (ω − ω0)
2 τ 2

c

= 2τc I

1 + (ω − ω0)
2 τ 2

c

,

which is a Lorentzian spectrum centered around ω0 with full width at half maximum
(FWHM):

�ω = 2

τc
.

It follows that the laser linewidth can be finally expressed as

� f = 1 + α2
H

4π I
r sp

o . (5.71)

A more suitable formulation can be derived from (5.71) by expressing the field inten-
sity in terms of the laser output power, and by replacing rsp

o with a more convenient
parameter. Neglecting external losses vs. mirror losses, we have

Pout ≈ h f n ph

τph
≡ h f I

τph
→ 1

I
≈ h f

τph Pout
,

from which (5.71) becomes

� f = 1 + α2
H

4π

h f

τph Pout
r sp

o . (5.72)

Note that, if the power is referred to a single facet (assuming equal facets), one has
Pout = 2P ′

out , and therefore the equation is modified as

� f = 1 + α2
H

8π

h f

τph P ′
out

r sp
o .

However, if the two facets are highly asymmetrical (5.72) can be directly applied.
A more suitable expression for the spontaneous emission scattering rate rsp

o was
developed in Section 2.4.5. From (2.38), we have

rsp
o = c0

nr
gnsp, (5.73)

where nsp is the nondimensional spontaneous emission factor defined in (2.39); we have
nsp > 1 but, typically, nsp ≈ 2 − 3. Exploiting (5.73), we finally obtain

� f = 1 + α2
H

4π

h f

τph Pout

c0

nr
gnsp.



5.11 Laser dynamics and modulation response 315

Further approximations are possible if we take into account that g ≈ gth and that, at
threshold, the gain compensates for the total loss:

c0

nr
g ≈ c0

nr
gth = 1

τph
.

We thus obtain:

� f ≈ 1 + α2
H

4π

h f nsp

τ 2
ph Pout

,

which, for nsp ≈ 1, yields the simplified expression

� f = 1

2πτph

h f

2τph Pout
(1 + α2

H ). (5.74)

Notice that a different choice of the nsp value leads to linewidths differing by a factor
of 2 or 3 with respect to (5.74).

5.11 Laser dynamics and modulation response

A digital data stream can be transmitted through a fiber by switching the source on
(ones) and off (zeros), i.e., through the direct modulation of the laser. In LEDs, direct
modulation leads to low maximum speed or modulation bandwidth, limited to a few
hundred Mbps. The situation is potentially better in lasers, due to the expected benefits
from stimulated emission, leading to a shorter carrier lifetime vs. the spontaneous life-
time. However, on–off (or large-signal) laser modulation can be carried out in two ways:
(a) both the zero and the one levels are above threshold; (b) only the one level is above
threshold, while the zero level is below (see Fig. 5.33, left). The second alternative is
inefficient from the standpoint of speed, since, before turn-on, the laser is dominated by
spontaneous recombination; the turn-on time delay is, therefore, of the order of magni-
tude of the spontaneous lifetime. To model large-signal operation above threshold, let
us consider a simplified situation in which the laser undergoes small-signal modulation
with respect to a bias point above threshold (Fig. 5.33, right).

From above
threshold From below

threshold

t

t

i(t)
i(t)

Ith Ith

IDC

PDC

t

t

PopPop

Large-signal modulation Small-signal modulation

Figure 5.33 Large-signal (left) and small-signal (right) laser direct modulation.
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We anticipate here some conclusions of the analysis. Laser dynamics is generally
described by a dynamic system in the electron and photon densities, that is (at least)
second order. Such a system is nonlinear, but can be linearized for small-signal analysis.
Second-order systems, however, allow for an oscillatory behavior of the solution; we
therefore expect that such a resonant behavior will be found both in the time-domain
on–off switching and in the small-signal response.

Assuming a small-signal resonant behavior, i.e., a low-pass transfer function
(between the input laser current and output power) described by two complex conjugate
poles, the cutoff frequency will be decreasing (as the stimulated lifetime) with increas-
ing photon density and increasing current. In general, this leads to a faster dynamics
than for the LED, with record cutoff frequencies of the order of 30–40 GHz. The the-
oretical (intrinsic) maximum modulation frequency, however, is ultimately limited (as
the stimulated lifetime) by gain compression. Moreover, laser amplitude modulation
implies spurious phase and frequency modulation, denoted as chirp. Chirp leads to
source broadening and limits the practical modulation speed to about 10 Gbps. Direct
laser modulation cannot so far cover long-haul applications, for which external modula-
tion is needed. A qualitative example of large-signal laser dynamic response to a current
pulse (from below threshold) is shown in Fig. 5.34; the initial delay can be suppressed
if the laser is driven by a pulse from above threshold.

The laser small-signal frequency response (see Section 5.12) is described by the
normalized transfer function:

m(ω) =
∣∣∣∣ Pout (ω)

Pout (0)

∣∣∣∣ =
∣∣∣∣ N̂k(ω)

N̂k(0)

∣∣∣∣ =
∣∣∣∣∣ ω2

r(
ω2

r − ω2
)+ jωγ

∣∣∣∣∣ , (5.75)

where N̂k(ω) is the small-signal component of the photon density relative to the dom-
inant lasing mode, Pout (ω) is the small-signal laser output power, and the resonant
frequency and damping factor are given (see (5.106), (5.107), (5.108)) by

ωr =
√

dg

dn

∣∣∣∣
n0

Nk0

1 + εc Nk0

c0

nr

1

τph
(5.76)

γ = K ′ω2
r + 1

τn
, K ′ = K

(2π)2
= τph + εcnr

dg/dn|n0
c0
, (5.77)

Delay
Oscillatory behavior

Time

Laser current, a.u.
Electron density, a.u.
Photon density, a.u.

Figure 5.34 Qualitative behavior of the laser response to a current pulse (from subthreshold).
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Figure 5.35 Behavior of the maximum gain vs. the electron density; the dotted line is the linear
approximation assuming constant differential gain.

where τn is the total electron lifetime resulting from spontaneous and nonradiative
recombination, and τph is the photon lifetime (5.31); nr = neff is the lasing mode effec-
tive index, Nk0 is the DC photon density of the lasing mode. The parameter dg/dn
is the variation of gain with respect to the carrier density (differential gain); by plot-
ting the maximum gain as a function of the electron density we can derive the linear
approximation

gmax(n) ≈ a(n − ntr ),

where a is the differential gain and ntr is the transparency charge density; see Fig. 5.35
for an example referring to bulk GaAs.

Since the DC photon density is proportional to the output power, and therefore to the
DC bias current, the resonant frequency (and therefore the laser bandwidth) increases
with the square root of bias current according to the law

fr ∝ √
I − Ith .

However, for large current and photon densities the 3 dB cutoff frequency tends to satu-
rate. Taking into account that the maximum 3 dB bandwidth is achieved when 2ωr = γ

and is equal to the resonant frequency fr , we find that the theoretical intrinsic maximum
corresponds to the value (see (5.109)):

f3dB,max = 1

√
2π

(
τph + εcneff

dg/dn|n0
c0

) .
The laser modulation bandwidth (see also (5.76)) is therefore positively affected by a
large value of the differential gain, while it is limited by gain compression also for van-
ishingly small photon lifetime. Gain compression has, however, a positive influence on
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Figure 5.36 Intrinsic (laser) and extrinsic (chip, package and bias T) contributions to the laser response.

the response damping, as seen from (5.77); note that the damping enhancement pro-
vided by gain compression is constant for a given structure, i.e., it does not depend
directly on laser bias.

Although f3dB,max can, in theory, be as high as 100 GHz, in practice the maximum
modulation bandwidths are in the range 20–40 GHz. Moreover, further effects tend to
limit the laser speed under direct modulation, like transport effects (see e.g., [83], Sec-
tion 5.6) and the effect of package and chip parasitics. Figure 5.36 shows the equivalent
circuit of a junction laser, where the package and chip parasitics introduce low-pass fil-
tering. External parasitics can, in practice, limit the frequency response of the laser.
Careful RF design has to be implemented to allow the laser to approach the ideal
intrinsic response.

As already recalled, the laser amplitude modulation also implies spurious phase
(frequency or wavelength) modulation (chirp). Chirp ultimately arises because the
laser current modulation changes the gain profile, but also (from the Kramers–Kronig
relations) the real part of the refractive index. The relative variation �n′/�g =
(�nr/�n) / (�g/�n), where n is the carrier population and n′ is the real part of the
material refractive index, is expressed again through the Henry parameter αH , which we
have already introduced as the line enhancement factor. Common values of this param-
eter are 3–6 in lasers. In Fig. 5.37 a typical plot of the gain vs. the photon energy is
shown; note that the differential gain (proportional, with a constant �n, to the abso-
lute variation of the gain �g) has a maximum for energies slightly above the maximum
gain energy. Owing to the profile of the real refractive index variation (resulting from
Kramers–Kronig) we obtain that the chirp parameter is typically positive in lasers, apart
from high energies for which it may become negative.

The Henry parameter is related to the frequency deviation according to the following
relation, already introduced in the discussion of the linewidth, see (5.45) and (5.52):

αH = dn′

dn′′ = −4π

λ0

dn′/dn

dg/dn
= −4π

λ0

dn′

dg
= −4π

λ0

dneff

dgc
= 4π

� f (t)
1

pout

dpout (t)

dt

. (5.78)
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Figure 5.37 The Henry chirp parameter as a function of photon energy, as derived from the typical gain
profile vs. energy and vs. the active layer electron concentration. The vertical line denotes the
gain maximum, where αH is typically positive.
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Figure 5.38 Effect of positive (a) and negative (b) chirp on the transmission of an optical pulse in a
conventional dispersive fiber.

The meaning of positive and negative chirp parameter is further illustrated in Fig. 5.38.
Since the frequency deviation is proportional (through αH ) to the relative amplitude
variation with time, a positive αH implies that, in the presence of a square amplitude
pulse, the frequency deviation is positive (blue shift) on the rising pulse front and nega-
tive (red shift) on the settling pulse front; negative chirp leads to the opposite behavior.
In optical fibers operating at 1.5 μm wavelength, the group refractive index ng typi-
cally increases with λ; red shift therefore increases ng and decreases the group velocity;
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Figure 5.39 Measured spectrum of a 1.3 μm InGaAsP laser under sinusoidal modulation at 100 MHz.
Increasing the modulation current leads to spectrum broadening, associated with chirp. Reused
with permission from [84], Fig. 1. ( c©1984 American Institute of Physics).

blue shift, on the contrary, increases the group velocity.20 If we consider the pulse as
traveling in space, positive chirp leads to a fast (blue shift) pulse head and slow (red
shift) pulse tail; this implies pulse broadening and negatively adds to the effect of fiber
dispersion. Negative chirp, on the other hand, leads to a slow pulse head and to a fast
pulse tail; the resulting pulse compression can compensate for fiber dispersion. In con-
clusion, a controlled amount of negative chirp can be often favorable to system design,
while positive chirp is detrimental. Lasers are characterized by a somewhat large pos-
itive chirp, and therefore their direct modulation does not allow for high speed and/or
long distance fiber links.

20 Let neff be the effective refractive index in a single-mode fiber; the group velocity is

vg = c0

ng
,

with the group refractive index defined as

ng = neff + ω
dneff

dω
= neff − λ

dneff

dλ
.

The wavelength variation of the group velocity with λ is often defined through the dispersion parameter D:

D = 1

c

dng

dλ
= −λ

c

d2neff

dλ2
.

Note that D includes the effect of both the material and modal dispersion. In conventional fibers, D ≈ 0
around 1.3 μm and positive for longer wavelengths, implying increasing ng and decreasing vg vs. λ.
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Finally, using (5.78) in small-signal conditions where Pout ∝ IDC + i(t) ≈ IDC ,
dpout/dt ∝ di/dt , it follows that

� f = αH

4π
�ova

c0

nr
�n = αH

4π

1

IDC

di(t)

dt
. (5.79)

The chirp is therefore proportional to the injected charge variation and to the input
current modulation amplitude i(t). A larger amplitude leads to a larger chirp, as shown
in Fig. 5.39 [84], and so does a larger modulation frequency.

The chirp introduced so far is denoted as transient chirp, since the frequency devi-
ation vanishes in DC steady-state conditions. However, if we apply a current step to a
laser, the final frequency will be slightly different with respect to the initial one, mainly
due to the effect of gain compression; the resulting chirp is called adiabatic chirp and
is an (unwanted) peculiarity of lasers under large-signal modulation.

5.12 Dynamic large-signal and small-signal laser modeling

In this section, we develop a simple, single-mode, laser dynamic model, which will be
exploited to derive DC properties (already analyzed on a heuristic base) and a small-
signal frequency-domain model, yielding the laser frequency response. The laser chirp
can be also derived as a result of the small-signal analysis.

It is convenient to recall a number of definitions and parameters, which will be
exploited in the following discussion:

• Nk is the photon density of the k-th mode (the dominant lasing mode); NP ≡ n ph is
the total photon number in the k-th mode.

• n ≈ p (n electron concentration) holds in the active region (quasi-neutrality); N is
the total electron number in the active region.

• d is the thickness of laser active region.
• g(h̄ωk) ≈ a(n − ntr )(1 + εc Nk)

−1 is the (maximum) material gain as a function of
the electron density, accounting for gain compression.

• �ov is the overlap integral.
• nr ≡ neff is the effective refractive index of the lasing mode.
• c0 is the speed of light in vacuo.
• βk is the spontaneous emission factor for mode k; it describes the amount of the

spontaneous emission spectrum falling within the linewidth of the lasing mode.
• τr ≡ τ

sp
n is the spontaneous radiative lifetime.

• τnr is nonradiative electron lifetime (thermal and Auger); it typically depends on the
electron concentration.

• τph is photon lifetime due to losses outside the active region (αloss) and mirror
(or end) loss, see (5.31). The total lifetime can be split into the external loss (5.32)
and mirror (5.33) contributions as τ−1

ph = τ−1
loss + τ−1

m .
• J is the injected current density.
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The definition of the electron density n and of photon density Nk requires some care.
In the present model n is an average value, with reference to the (almost constant) carrier
density in the active region. Given N as the total electron number in the active region,
we therefore simply define

n = N/Vac, (5.80)

where Vac = Ad is the active region volume. Concerning the photon density Nk , this
can be interpreted as the average density of photons in the active region. Taking into
account that the local photon density nk is proportional to the energy of the optical
field, we can assume (AR stands for active region, C for the whole cavity):

nk =
∣∣Eop

∣∣2 NP∫
C

∣∣Eop
∣∣2 dV

, Nk =
∫

AR nk dV∫
AR dV

=
∫

AR

∣∣Eop
∣∣2 dV∫

C

∣∣Eop
∣∣2 dV

NP

Vac
= �ov

Vac
NP ≡ NP

V
,

where the overlap integral is expressed as

�ov =
∫

AR

∣∣Eop
∣∣2 dV∫

C

∣∣Eop
∣∣2 dV

,

and V is the modal volume of photon mode k:

V = Vac/�ov, (5.81)

such as

Nk = NP/V . (5.82)

Let us now introduce two conservation equations (or rate equations), one for the
charge (electron) density n ≈ p, the other for the photon density Nk . The charge control
equation includes electron generation due to current injection,

I = dQn

dt
= d(Adqn)

dt
= Adq

dn

dt
→ dn

dt

∣∣∣∣
gen

= I

qd A
= J

qd
,

and all sources of electron recombination, i.e., recombination due to spontaneous and
stimulated emission, and nonradiative recombination:

dn

dt
= J

qd︸︷︷︸
current
injection

− n

τr︸︷︷︸
spontaneous

recombination

− g(h̄ωk)Nk
c0

nr︸ ︷︷ ︸
stimulated

recombination

− n

τnr
.︸︷︷︸

nonradiative
recombination

(5.83)

To derive a similar rate equation for the photon density of the lasing mode k, Nk , we
exploit the photon flux continuity equation (2.25). Since the photon density increases
(because of stimulated emission) as Nk = Nk(0) exp(�ovgx), the continuity equation
for the photon flux �ph = Nkc0/nr yields

dNk

dt

∣∣∣∣
gain

= d�ph

dx
= �ovgNk

c0

nr
. (5.84)
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The source term for the photon density associated with stimulated emission is, apart
from the weight �ov , the same as the stimulated recombination term in the electron
density rate equation. The same remark holds for the spontaneous emission term (pro-
portional to the nonradiative recombination term in the electron density rate equation
through �ov), but we further have to properly weight the contribution of this wideband
spectrum over the narrowband laser emission through the parameter βk :

dNk

dt

∣∣∣∣
sp

= �ovβk
n

τr
. (5.85)

Photon loss is suitably described through the already defined photon lifetimes τph , see
Section 5.6.5 and in particular (5.32) and (5.33), as

dNk

dt

∣∣∣∣
loss

= − Nk

τph
= − Nk

τloss
− Nk

τm
. (5.86)

Assembling (5.84), (5.85), and (5.86) we finally have

dNk

dt
= �ovβk

n

τr︸ ︷︷ ︸
spontaneous

emission

+ �ovgNk
c0

nr︸ ︷︷ ︸
stimulated
emission

− Nk

τph
.︸︷︷︸

photon
total loss

(5.87)

Equations (5.83) and (5.87) yield the coupled large-signal (nonlinear) dynamic model:

dNk

dt
= �ovβk

n

τr
+ �ovg(h̄ωk)Nk

c0

nr
− Nk

τph
(5.88)

dn

dt
= J

qd
− n

τr
− g(h̄ωk)Nk

c0

nr
− n

τnr
. (5.89)

5.12.1 Steady-state (DC) solution

Assume that we neglect, at DC, the effect of spontaneous emission on the photon rate
equation, and the effect of nonradiative recombination in the electron rate equation;
from (5.88) and (5.89) we have

dNk

dt
≈ �ovg(h̄ωk)Nk

c0

nr
− Nk

τph
= 0 (5.90)

dn

dt
≈ J

qd
− g(h̄ωk)Nk

c0

nr
− n

τr
= 0. (5.91)

From (5.90) it follows that, in steady-state DC conditions:

�ovg(h̄ωk)
c0

nr
≈ �ovgth(h̄ωk)

c0

nr
= 1

τph
= αloss + 1

L
log R−1, (5.92)
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which also yields the threshold condition. Assuming for the gain the approximation
g ≈ a(n − ntr ), where ntr is the transparency charge density, one can further derive the
threshold charge density as

�ovgth(h̄ωk)
c0

nr
= 1

τph
→ nth = ntr + 1

�ova

nr

c0

1

τph
. (5.93)

Substituting the threshold charge in (5.91) and taking into account (5.93), the threshold
current is

Jth = qd

τr
nth + qda(nth − ntr )Nk

c0

nr
= qd

τr

(
nth + τr Nk

�ovτph

)
.

Expressing the DC current from (5.91), and assuming (above threshold) n ≈ nth and
Jth ≈ qd/τr nth , we finally obtain

J = qdgth Nk
c0

nr
+ qd

τr
nth︸ ︷︷ ︸

Jth

→ J − Jth = qdgth Nk
c0

nr
= qd Nk

�ovτph
.

The DC photon density can therefore be written as

Nk = �ovτph

qd
(J − Jth) . (5.94)

The output power Pk can be evaluated as the variation of the optical field energy with
time:

Wk = h̄ωk NP = h̄ωk V Nk = Ad

�ov
h̄ωk Nk,

(see (5.81) and (5.82)), caused by the mirror loss. From the definition of the mirror loss
lifetime (5.33) and from (5.86) we have

Pk = dWk

dt

∣∣∣∣
mirror

= Wk

τm
= Ad

�ov
h̄ωk

dNk

dt

∣∣∣∣
mirror

= Ad

�ov

h̄ωk Nk

τm
, (5.95)

i.e., taking into account (5.94),

Pk = h̄ωk

q

τph

τm
A (J − Jth) = h̄ωk

q

τph

τm
(I − Ith) , (5.96)

or, equivalently,

Pk = h̄ωk

q

1

L
log R−1

αloss + 1

L
log R−1

(I − Ith) . (5.97)

Equation (5.97) was already obtained by inspection; see (5.36). Note that if the mirror
loss is close to the total loss the above expression reduces to

Pk ≈ h̄ωk

q
(I − Ith) ≈ Eg

q
(I − Ith)
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already derived as an ideal, limiting approximation to the slope efficiency of the laser;
see (5.37). The above expression is also equivalent to (5.30), already introduced in the
analysis; see Example 5.7.

Example 5.7: Show that (5.96) is equivalent to (5.30), written here neglecting the output
power at threshold:

Pk ≡ Pout ≈ Pout,th

Ad

τ st
n,th

nthq
(I − Ith) ≡ Pk,th

Ad

τ st
n,th

nthq
(I − Ith).

In fact, from (5.95) evaluated at threshold we have

Pk,th = Wk,th

τm
= Ad

�ov

h̄ωk Nk,th

τm
;

thus

Pk = Pk,th

Ad

τ st
n,th

nthq
(I − Ith) = Ad

�ov

h̄ωk Nk,th

τm

1

Ad

τ st
n,th

nthq
(I − Ith)

= τ st
n,th

nth�ov

Nk,th

τm

h̄ωk

q
(I − Ith),

but, comparing the photon and electron rate equations, we obtain at threshold:

�ovnth

τ st
n,th

= �ovgth Nk,th
c0

nr
= Nk,th

τph
. (5.98)

Therefore, from (5.98),

Pk = τ st
n,th

nth�ov

Nk,th

τm

h̄ωk

q
(I − Ith) = h̄ωk

q

τph

τm
(I − Ith),

which coincides with (5.96).

5.12.2 Small-signal model

In the dynamic equations (5.88) and (5.89), let us assume for all variables a small-signal
perturbation superimposed on a DC component, as

Nk(t) = Nk0 + N̂k(t), n(t) = n0 + n̂(t),

J (t) = J0 + Ĵ (t), g = g0 + ∂g

∂n

∣∣∣∣
0

n̂ + ∂g

∂Nk

∣∣∣∣
0

N̂k,
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or, in the frequency domain:

N̂k(t) → N̂k(ω), n̂(t) → n̂(ω), Ĵ (t) → Ĵ (ω).

The model for the gain linearization is obtained from (2.30), written here as

g (n, Nk) = gF (n)

1 + εc Nk
, (5.99)

where gF is the gain at low photon density (quasi-Fermi distributions, i.e., neglecting
gain compression). By assuming a as the differential gain for low photon density, i.e.,
a = ∂gF/∂n, we approximate

g
(̂
n, N̂k

) ≈ gF (n0)

1 + εc Nk0
+ ∂g

∂n

∣∣∣∣
0

n̂ + ∂g

∂Nk

∣∣∣∣
0

N̂k

= g0 + a

1 + εc Nk0
n̂ − εcg0

1 + εc Nk0
N̂k .

Substituting into (5.88) and (5.89) we have

d̂n(t)

dt
= J0

qd︸︷︷︸
DC

+ Ĵ (t)

qd
− n0

τr︸︷︷︸
DC

− n̂(t)

τr
− g0 Nk0

c0

nr︸ ︷︷ ︸
DC

− g0 N̂k(t)
c0

nr

− aNk0

1 + εc Nk0

c0

nr
n̂(t)+ εcg0 Nk0

1 + εc Nk0

c0

nr
N̂k(t)− n0

τnr︸︷︷︸
DC

− n̂(t)

τnr

dN̂k(t)

dt
= �ovβk

n0

τr︸ ︷︷ ︸
DC

+ �ovβk
n̂(t)

τr
+ �ovg0 Nk0

c0

nr︸ ︷︷ ︸
DC

+ �ovg0 N̂k(t)
c0

nr

+ �ovaNk0

1 + εc Nk0

c0

nr
n̂(t)− �ovεcg0 Nk0

1 + εc Nk0

c0

nr
N̂k(t)− N k0

τph︸︷︷︸
DC

− N̂k(t)

τph
.

Eliminating the DC part, transforming into the frequency domain and introducing the
total lifetime τ−1

n = τ−1
r + τ−1

nr , we obtain

jωn̂(ω) = Ĵ (ω)

qd
− n̂(ω)

τr
− g0

c0

nr
N̂k(ω)+ εcg0 Nk0

1 + εc Nk0

c0

nr
N̂k(ω)

− aNk0

1 + εc Nk0

c0

nr
n̂(ω)− n̂(ω)

τnr

= Ĵ (ω)

qd
− g0

1 + εc Nk0

c0

nr
N̂k(ω)− aNk0

1 + εc Nk0

c0

nr
n̂(ω)− n̂(ω)

τn
(5.100)



5.12 Dynamic large-signal and small-signal laser modeling 327

jωN̂k(ω) = �ovβk
n̂(ω)

τr
+ �ovg0

c0

nr
N̂k(ω)+ �ovaNk0

1 + εc Nk0

c0

nr
n̂(ω)

− �ovεcg0 Nk0

1 + εc Nk0

c0

nr
N̂k(ω)− N̂k(ω)

τph

≈ �ovg0

1 + εc Nk0

c0

nr
N̂k(ω)+ �ovaNk0

1 + εc Nk0

c0

nr
n̂(ω)− N̂k(ω)

τph

≈ �ovaNk0

1 + εc Nk0

c0

nr
n̂(ω)− εc Nk0

1 + εc Nk0

N̂k(ω)

τph
(5.101)

where we have neglected the contribution of spontaneous emission and taken into
account that, from the threshold condition (5.92), we have

�ovg0

1 + εc Nk0

c0

nr
N̂k(ω)− N̂k(ω)

τph
= − εc Nk0

1 + εc Nk0

1

τph
N̂k(ω).

Defining for brevity δc = 1 + εc Nk0 (δc = 1 if we neglect gain compression), we can
now formulate the small-signal system in matrix form as

⎛⎜⎜⎜⎝
jω + aNk0

δc

c0

nr
+ 1

τn

g0

δc

c0

nr

−�ovaNk0

δc

c0

nr
jω + εc Nk0

δc

1

τph

⎞⎟⎟⎟⎠
⎛⎝ n̂(ω)

N̂k(ω)

⎞⎠ =
⎛⎜⎝ Ĵ (ω)

qd

0

⎞⎟⎠ .
(5.102)

Solution of (5.102) yields:

n̂(ω) =
jω + εc Nk0

δc

1

τph(
jω + εc Nk0

δc

1

τph

)(
jω + aNk0

δc

c0

nr
+ 1

τn

)
+ �ovaNk0g0

δ2
c

(
c0

nr

)2

Ĵ (ω)

qd

(5.103)

N̂k(ω) =
�ovaNk0

δc

c0

nr(
jω + εc Nk0

δc

1

τph

)(
jω + aNk0

δc

c0

nr
+ 1

τn

)
+ �ovaNk0g0

δ2
c

(
c0

nr

)2

Ĵ (ω)

qd
.

(5.104)

From (5.104), exploiting the threshold condition (5.92), we finally obtain the damped
resonant modulation response of the laser (corresponding to a Bode plot with two
complex conjugate poles):

P̂out (ω)

Pout (0)
= N̂k(ω)

N̂k(0)
≡ H(ω) = ω2

r(
ω2

r − ω2
)+ jωγ

, (5.105)
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where the resonant frequency ωr and the damping factor γ are expressed as

ω2
r = aNk0

δc

c0

nr

1

τph

(
1 + εcnr

ac0

1

τn

)
≈ aNk0

δc

c0

nr

1

τph

→ ωr = 2π fr =
√

a

δc

c0

nr

Nk0

τph
=
√

dg

dn

∣∣∣∣
n0

c0

nr

Nk0

τph
(5.106)

γ = aNk0

δc

c0

nr

(
1 + εcnr

ac0τph

)
+ 1

τn
= K f 2

r + 1

τn
≈ K f 2

r (5.107)

K = 4π2
(
τph + εcnr

ac0

)
→
εc→0

4π2τph, (5.108)

i.e., neglecting gain compression we have γ ≈ τphω
2
r . The parameter dg/dn|n0

is the
differential gain including the effect of gain compression. We thus see that improve-
ments in the differential gain (obtained, e.g., in QW devices) lead to a higher cutoff
frequency under direct modulation. Taking into account (5.94), we obtain from (5.106)
that the resonant frequency increases with the DC current as

fr = 1

2π

√
dg

dn

∣∣∣∣
n0

c0

nr

�ov

q Ad
(I − Ith) ∝ √

I − Ith .

However, a limit to the increase of resonant frequency (and also to the laser cutoff
frequency) with increasing current originates from gain saturation. In fact, according to
the electrical definition of the 3 dB bandwidth (see Section 6.2.3), this is defined by the
equation: ∣∣∣(ω2

r − ω2
3dB

)
+ jω3dBγ

∣∣∣ =
√(
ω2

r − ω2
3dB

)2 + ω2
3dBγ

2 = √
2ω2

r .

Solving for ω3dB we find that the maximum 3 dB cutoff frequency is obtained when the
solution shows critical damping, i.e., when

2ω2
r = γ 2 = K 2 f 4

r → fr = 2
√

2π

K
.

Under such conditions we have f3dB,max = fr (the response is monotonically decreas-
ing, with no resonant peak); therefore,

f3dB,max = 2
√

2π

K
. (5.109)

The lower limit of K , assuming negligible photon lifetime, is

Kmin ≈ K = 4π2 εcnr

ac0
= 4π2τ st

n min,

where τ st
n min is the limit stimulated lifetime in the presence of gain compression; see

(2.58). This yields the theoretical intrinsic limit to the laser modulation bandwidth:

f3dB,M = 2
√

2π

K
=

√
2

2πτ st
n min

.
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For τ st
n min ≈ 1 ps the maximum bandwidth is of the order of 200 GHz; assuming a pho-

ton lifetime of 1 ps, such a value is still of the order of 100 GHz. However, practical
values of the K parameter (around 0.2–0.6 ns, see, e.g., [11], Section 11.2.1) lead to
maximum cutoff frequencies between 20 and 40 GHz.

5.12.3 Chirp analysis

A variation of the carrier density modulates the cavity gain, but also (due to the
Kramers–Kronig relation) the (effective) complex cavity refractive index neff = nr −
jni . Since the power of the cavity optical field propagating in the x direction can be
written as

Pout (x) = Pout (0)

∣∣∣∣exp

(
−j

2π

λ0
nr x − 2π

λ0
ni x

)∣∣∣∣2 = Pout (0) exp

(
−4π

λ0
ni x

)
,

the imaginary part of the refractive index is related to the cavity gain as

gc = �ovg = −4π

λ0
ni .

The Henry parameter can be thus written as

αH = dnr

dni
= −4π

λ0

1

�ov

dnr

dg
= −4π

λ0

1

�ova

dnr

dn
, (5.110)

where we have assumed for the differential gain dg/dn ≈ a, n being the electron den-
sity. Assume now that the laser emission wavelength and frequency satisfy the FP cavity
resonance condition:

L = m
λ0

2nr
= m

c0

2nr

1

f
→ λ0 = 2nr L

m
→ f = m

c0

2nr

1

L
.

Taking the derivative of f vs. the carrier density n we have

d f

dn
= − m

2Lnr

c0

nr

dnr

dn
= − 1

λ0

c0

nr

dnr

dn
→ � f ≈ − 1

λ0

c0

nr

dnr

dn
�n.

Expressing dnr/dn from (5.110) we finally obtain

� f = αH

4π
�ova

c0

nr
�n. (5.111)

Typical values of αH are, as already recalled, 3–6 in lasers. From (5.103) we see that
(at least in small-signal conditions) the charge variation increases with the modulating
current intensity and modulation frequency; therefore, a larger chirp is expected for a
larger intensity modulation and modulation speed.

From system (5.102), second equation, and taking into account that the output power
Pout is proportional to the charge density, i.e., Pout ∝ Nk0, P̂out (ω) ∝ N̂k(ω), and
setting δc ≈ 1, we obtain

n̂(ω) = jωN̂k(ω)

�ovaNk0
c0

nr

+ εc N̂k(ω)

τph�ova
c0

nr

= 1

�ova
c0

nr

jω P̂out (ω)

Pout
+ εc N̂k(ω)

τph�ova
c0

nr

,
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i.e., identifying �n ≡ n̂(t), �Nk ≡ N̂k(t),

�n = 1

�ova
c0

nr

1

Pout

d p̂out (t)

dt
+ εc�Nk

τph�ova
c0

nr

. (5.112)

Equation (5.112) can be exploited to analyze chirp in two conditions.
In the presence of a fast-varying optical power, the first term dominates and leads to

transient chirp. In fact, from (5.111) and (5.112), neglecting �Nk , the frequency chirp
� f (t) can be expressed as

� f (t) = αH

4π
�ova

c0

nr
�n = αH

4π

1

Pout

d p̂out (t)

dt
, (5.113)

which corresponds again to the standard definition of the Henry parameter in small-
signal conditions, see (5.78) with p̂out ≡ pout . Equations (5.113) or (5.78) can also be
extended to the large-signal regime to define a time-domain (large-signal) chirp param-
eter; moreover, taking into account that the output optical power is related to the laser
current i(t) through the slope efficiency, a final expression for the chirp in terms of
time-varying and DC laser currents can be derived as in (5.79).

Chirp in large-signal conditions includes a further effect: due to the dependence of the
emission wavelength on the input current, the high and low digital levels typically cor-
respond to slightly different frequencies. Applying, for instance, a current step leading
the laser from the 0 to the 1 logical state, transient chirp occurs, as already described;
however, the asymptotic frequency deviation is not zero because the 1 state emission
frequency and the 0 state emission frequency are different. Such a residual, steady-state
chirp is called the adiabatic chirp. Adiabatic chirp can be derived taking into account,
from (5.112), that, even in steady-state DC conditions a variation of the bias current
leads to a variation of the photon density �Nk and therefore (because of gain compres-
sion) to a decrease of gain that has to be compensated through an increase of the carrier
density �n. The resulting frequency deviation will be

� f = αH

4π

εc

τph
�Nk, (5.114)

and is proportional, as expected, to the gain compression factor εc.

5.13 Laser relative intensity noise

The analysis of the laser linewidth in Section 5.10.1 has already stressed that the
(spontaneous and stimulated) emission of photons leads to both phase and amplitude
fluctuations in the optical field, and therefore in the output power. Fluctuations in
stimulated emission were associated with gain fluctuations, in turn caused by carrier
population fluctuations. In the present section the issue is addressed anew starting from
the large-signal dynamic system (5.88), (5.89). The fluctuation problem can be treated
according to a well known mathematical formulation (called the Langevin approach), in
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which random fluctuations of the carrier and photon densities originated by random pho-
ton generation events (and the related carrier recombination events) appear as forcing
terms in the dynamic system for the averages of such quantities.21 Since fluctuations
are small perturbations of the averages, these can be derived through a small-signal
approach, which already led to system (5.102). The procedure consists of the following
steps:

1. Identify the random process describing photon density fluctuations and evalu-
ate its second-order statistical properties (the self-correlation function and power
spectrum). This is called the Langevin source for the photon density fluctuations.

2. Do the same for the carrier density fluctuations and derive the statistical properties
of the corresponding Langevin source (and of its correlation to the Langevin source
for photons).

3. Apply the two random processes introduced above as the Langevin sources to the
small-signal laser dynamic system and obtain, from its solution, the second-order
statistical characterization of the average photon and carrier density fluctuations;
such characterization is suitably derived in the frequency domain as the power (and
correlation) spectrum.

For simplicity, the analysis will be carried out exploiting a small-signal model where
gain compression is neglected (εc ≈ 0). Expressions including gain compression can be
found in [83], Section 5.5.

5.13.1 Analysis of Langevin sources

Let us consider again the electron and photon density rate equations, where, for the sake
of the noise analysis, we separate the contributions due to absorption and stimulated
emission which were initially included in the net gain g (i.e., we separate the gain g and
the absorption α so that the net gain is g = g − α):

dn

dt
= J

qd︸︷︷︸
current
injection

− n

τr︸︷︷︸
spontaneous

recombination

− gNk
c0

nr︸ ︷︷ ︸
stimulated

recombination

+ αNk
c0

nr︸ ︷︷ ︸
generation due
to absorption

− n

τnr︸︷︷︸
nonradiative

recombination

(5.115)

dNk

dt
= �ovβk

n

τr︸ ︷︷ ︸
spontaneous

emission

+ �ovgNk
c0

nr︸ ︷︷ ︸
stimulated
emission

− �ovαNk
c0

nr︸ ︷︷ ︸
absorption

− Nk

τph︸︷︷︸
photon

loss

. (5.116)

The electron and photon populations can be readily interpreted as reservoirs, that are
filled or emptied by a number of processes listed above. Spontaneous and stimulated

21 For the Langevin analysis of the laser noise based on the photon and carrier rate equations, see, e.g., [83].
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radiative processes contribute, at the same time, to emptying the electron reservoir and
filling the photon reservoir.

Let us consider first a simplified case, in which two particle reservoirs exist with
populations na and nb (populations here are numbers, not densities). Each reservoir
has a generation and a recombination rate (numbers per unit time), as defined by the
following equations:

dna

dt
= Gaa + Gab − Raa − Rab (5.117)

dnb

dt
= Gbb + Gba − Rbb − Rba . (5.118)

The terms Rii , Gii describe the recombination and generation rates of each reservoir
by itself, while Ri j = G ji defines the particle transfer a → b or b → a; therefore,
Gab = Rba and Gba = Rab. Moreover, from DC steady-state we obtain

Gaa + Gab − Raa − Rab = Gaa + Rba − Raa − Rab = 0 (5.119)

Gbb + Gba − Rbb − Rba = Gbb + Rab − Rbb − Rba = 0. (5.120)

Let us now introduce a way to consider the random nature of the generation and
recombination processes, in which particles appear or disappear, respectively, at random
times ti , leading to a ±1 variation of the particle population. Consider, for simplicity, a
single carrier population n affected by an average generation rate G; if generation events
happened at regular intervals, n(t) would be an increasing staircase function of time.
Generation at random times, however, implies that n(t) is affected by fluctuations δn(t)
with respect to the (statistical) average value n, so that n(t) = n + δn(t). The fluctuation
δn(t) is a zero-average random process assuming positive or negative integer values,
so that its time derivative can be expressed as a sum of Dirac delta functions having
(with the same probability) weight αi = ±1. According to the Langevin approach, the
effect of fluctuations on the evolution of n can be derived by adding to the average
dynamic model dn/dt = G a forcing term Fn(t) (the Langevin source) equal to the
time derivative of δn(t):

Fn(t) ≡ dδn(t)

dt
=
∑

i

αiδ(t − ti ). (5.121)

The overall dynamic equation for the total population n can be therefore written as

dn

dt
= G + Fn(t),

where the Langevin random source gives rise to the fluctuation δn, while the average of
the right-hand side G leads to the average value n (linearly increasing with time). The
above equation can be linearized (if needed, e.g., if G depends on n) with respect to
the average value, so that the response to the Langevin source (small with respect to the
average forcing term) can be recovered through small-signal analysis. The second-order
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statistical properties of the zero-average Langevin source (〈Fn〉 = 0) can be derived
from the autocorrelation function

Rnn(τ ) = 〈Fn(t)Fn(t − τ)〉 =
〈∑

i

αiδ(t − ti )
∑

j

α jδ(t − τ − t j )

〉

=
〈∑

i

δ(t − ti )δ(t − τ − ti )

〉
,

since generation or recombination events at different times are uncorrelated, and
α2

i = 1. Taking into account that δ(t − ti )δ(t − τ − ti ) �= 0 only if t − τ = ti and at
the same time t = ti , i.e., with τ = 0, we can write

δ(t − ti )δ(t − τ − ti ) = δ(τ )δ(t − ti ),

and therefore〈∑
i

δ(t − ti )δ(t − τ − ti )

〉
= δ(τ )

〈∑
i

δ(t − ti )

〉

= δ(τ ) lim
T →∞

1

T

∫ T/2

−T/2

GT∑
i=1

δ(t − ti ) dt = δ(τ ) lim
T →∞

1

T
· GT = δ(τ )G,

where the summation is extended to all generation events occurring over T . Thus, the
autocorrelation function of Fn is

Rnn(τ ) = Gδ(τ ), (5.122)

and by Fourier transforming we immediately derive the white power spectrum of Fn ,
Snn(ω), as

Snn(ω) = G.

The power spectrum of the fluctuations associated with the generation process is there-
fore equal to the average value of the generation rate. This result was expected, since Fn

is a Poisson process (like shot noise); the above property is also known as Campbell’s
theorem (see e.g., [34]).

Let us now extend the Langevin source technique to system (5.117) and (5.118) by
introducing the relevant Langevin sources associated with each generation and recom-
bination process (denoted as ki j , k = r, g, i, j = a, b, for a process with average rate
Ki j , K = R,G) and the total Langevin sources Fa and Fb:

dna

dt
= Gaa + gaa(t)+ Rba + rba(t)− Raa + raa(t)− Rab − rab(t)

= Gaa + Rba − Raa − Rab + Fa(t)

dnb

dt
= Gbb + gbb(t)+ Rab + rab(t)− Rbb + rbb(t)− Rba − rba(t)

= Gbb + Rab − Rbb − Rba + Fb(t),
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where

Fa(t) = gaa(t)+ rba(t)+ raa(t)− rab(t)

Fb(t) = gbb(t)+ rab(t)+ rbb(t)− rba(t).

Note that contributions corresponding to particle transitions a → b have the same value
in the total Langevin sources Fa and Fb, but opposite sign (while a particle disappears
from reservoir a, it appears in reservoir b). Since all terms in Fa and Fb are uncorrelated,
the auto- and mutual correlation functions of Fa(t) and Fb(t) can readily be shown to
be expressed as

Raa(τ ) = 〈Fa(t)Fa(t − τ)〉 = (Gaa + Rba + Raa + Rab) δ(τ )

= 2 (Gaa + Rba) δ(τ )

Rbb(τ ) = 〈Fb(t)Fb(t − τ)〉 = (Gbb + Rab + Rbb + Rba) δ(τ )

= 2 (Gbb + Rab) δ(τ )

Rab(τ ) = 〈Fa(t)Fb(t − τ)〉 = − 〈rba(t)rba(t − τ)〉 − 〈rab(t)rab(t − τ)〉
= − (Rba + Rab) δ(τ ),

where we have taken into account the model equation (5.122) along with (5.119)
and (5.120), yielding Gaa + Rba = Raa + Rab and Gbb + Rab = Rbb + Rba . The
corresponding power and correlation spectra are

Saa(ω) = 2 (Gaa + Rba)

Sbb(ω) = 2 (Gbb + Rab)

Sab(ω) = − (Rba + Rab) .

In other words, the power spectrum of the fluctuations in each reservoir is twice the
total generation or recombination rate (equal in steady state) while the correlation spec-
trum is equal to (minus) the sum of the common transition rates (i.e., involving both
reservoirs).

Let us now go back to the laser dynamic system (5.115), (5.116). In order to derive in
a more straightforward way the relevant Langevin sources and their statistical properties
we start, however, by expressing system (5.115), (5.116) in the total photon and electron
numbers, denoted as NP and N . If V is the modal volume of photon mode k, with
density Nk , and Vac = A · d is the active-region volume (by definition, Vac = �ovV ,
see (5.80) and (5.81)) we have NP = V Nk , and N = Vacn. Thus, multiplying (5.115)
by Vac and (5.116) by V , the dynamic system becomes

dVacn

dt
= Vac J

qd
− Vacn

τr
− gVac Nk

c0

nr
+ αVac Nk

c0

nr
− Vacn

τnr

dV Nk

dt
= �ovβk

V n

τr
+ �ovgV Nk

c0

nr
− �ovαV Nk

c0

nr
− V Nk

τph
;
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i.e., substituting for N and NP , and including the Langevin sources FN (t) and FP (t),
we obtain

dN

dt
= I

q
− N

τr
− �ovgNP

c0

nr
+ αNP

c0

nr
− N

τnr
+ FN (t) (5.123)

dNP

dt
= βk

N

τr
+ �ovgNP

c0

nr
− �ovαNP

c0

nr
− NP

τph
+ FP (t). (5.124)

Taking into account the average generation and recombination rates, we can immedi-
ately derive the auto- and mutual correlation of the Langevin sources:

RN N (τ ) = 〈FN (t)FN (t − τ)〉
=
(

I

q
+ N

τr
+ �ovgNP

c0

nr
+ �ovαNP

c0

nr
+ N

τnr

)
δ(τ )

=
[

I

q
+ βk

N

τr
+ (1 − βk)

N

τr
+ �ovgNP

c0

nr
+ �ovαNP

c0

nr
+ N

τnr

]
δ(τ )

(5.125)

RP P (τ ) = 〈FP (t)FP(t − τ)〉
=
(
βk

N

τr
+ �ovgNP

c0

nr
+ �ovαNP

c0

nr
+ NP

τph

)
δ(τ ) (5.126)

RN P (τ ) = 〈FN (t)FP(t − τ)〉
= −

(
βk

N

τr
+ �ovgNP

c0

nr
+ �ovαNP

c0

nr

)
δ(τ ). (5.127)

Note that the correlation function includes terms relevant to the cross rates, and in par-
ticular those relevant to stimulated emission and absorption (second and third terms) and
the part of the spontaneous emission falling into the lasing mode (with weight βk , first
term). The expressions can be somewhat simplified taking into account the steady-state
relations derived from (5.123) and (5.124):

I

q
− N

τr
− �ovgNP

c0

nr
+ αNP

c0

nr
− N

τnr
= 0 (5.128)

βk
N

τr
+ �ovgNP

c0

nr
− �ovαNP

c0

nr
− NP

τph
= 0. (5.129)

From (5.129) and (5.126) we have

RP P (τ ) =
(
βk

N

τr
+ �ovgNP

c0

nr
+ �ovαNP

c0

nr
+ NP

τph

)
δ(τ )

=
(
βk

N

τr
+ �ovgNP

c0

nr
+ �ovαNP

c0

nr
+ βk

N

τr

+�ovgNP
c0

nr
− �ovαNP

c0

nr

)
δ(τ )

= 2

(
βk

N

τr
+ �ovgNP

c0

nr

)
δ(τ ).
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However, from the relation W st
em = n ph W sp

em (2.20) which, in the current notation, reads

�ovgNP
c0

nr
= βk

N

τr
NP = rsp

o NP , (5.130)

where rsp
o is the spontaneous emission rate into mode k (photons per second), one can

write

RP P (τ ) = 2

(
βk

N

τr
+ �ovgNP

c0

nr

)
δ(τ )

= 2rsp
o NP

(
1 + 1

NP

)
δ(τ ) ≈ 2rsp

o NPδ(τ ), (5.131)

assuming NP � 1. The autocorrelation function of the carrier population can be treated
in a similar way; exploiting (5.128), (5.130) and (5.125), we obtain

RN N (τ ) = 2

(
N

τr
+ �ovgNP

c0

nr
+ N

τnr

)
δ(τ )

= 2rsp
o NP

(
1 + 1

βk NP

)
δ(τ )+ 2

N

τnr
δ(τ ) ≈ 2rsp

o NPδ(τ )+ 2
N

τnr
δ(τ ).

With similar arguments, we have

RN P (τ ) = −
(

2βk
N

τr
+ 2�ovgNP

c0

nr
− NP

τph

)
δ(τ )

= −2βk
N

τr
NP

(
1 + 1

NP

)
δ(τ )+ NP

τph
δ(τ )

= −2rsp
o NP

(
1 + 1

NP

)
δ(τ )+ NP

τph
δ(τ ) ≈ −2rsp

o NPδ(τ )+ NP

τph
δ(τ ).

We can now go back to (5.115) and (5.116) in the photon and electron densities, where
we have reintroduced the net gain:

dn

dt
= J

qd
− n

τr
− gNk

c0

nr
− n

τnr
+ Fn(t) (5.132)

dNk

dt
= �ovβk

n

τr
+ �ovgNk

c0

nr
− Nk

τph
+ Fk(t). (5.133)

The relevant Langevin sources Fn(t) and Fk(t) are simply related to FN (t) and FP (t)
defined as

Fn(t) = 1

Vac
FN (t), Fk(t) = 1

V
FP (t). (5.134)
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Taking into account that the auto- and mutual correlations scale as the products of the
proportionality factors, we obtain

Rnn(τ ) = 〈Fn(t)Fn(t − τ)〉 = 1

V 2
ac

〈FN (t)FN (t − τ)〉 = 1

V 2
ac

RN N (τ )

= 2R
sp
o Nk

�ov
δ(τ )+ 2

n

Vacτnr
δ(τ )

Rkk(τ ) = 〈Fk(t)Fk(t − τ)〉 = 1

V 2
〈FP (t)FP(t − τ)〉 = 1

V 2
RP P (τ )

= 2�ovR
sp
o Nkδ(τ )

Rnk(τ ) = 〈Fn(t)Fk(t − τ)〉 = 1

V Vac
〈FN (t)FP(t − τ)〉 = 1

V Vac
RN P (τ )

= −2R
sp
o Nkδ(τ )+ Nk

Vacτph
δ(τ ),

where R
sp
o = rsp

o /Vac is the recombination rate per unit volume leading to sponta-
neous emission into mode k (note that the relevant volume is the electrons’ volume,
not the photons’). From the above results we immediately obtain the white power
spectra:

Snn(ω) = 2R
sp
o Nk

�ov
+ 2

n

Vacτnr
(5.135)

Skk(ω) = 2�ovR
sp
o Nk (5.136)

Snk(ω) = −2R
sp
o Nk + Nk

Vacτph
. (5.137)

Example 5.8: Show that the autocorrelation function of the photon number fluctua-
tion Langevin source (5.131), can also be directly obtained from the treatment in
Section 5.10.1, provided that we consider, as the generation process, only spontaneous
emission.

From the analysis in Section 5.10.1 we found that the emission of a single pho-
ton with random phase θi leads to a photon number fluctuation δ I = 2

√
I cos(θi )+

1 ≈ 2
√

I cos(θi ); see (5.57). Note that with this simplification the ensemble aver-
age of δ I is zero. Using the template equation for the definition of the Langevin
source (5.121), and with reference to (5.58), we can introduce a total Langevin
source FI as

dI

dt

∣∣∣∣
sp

= FI ≈
∑

i

2
√

I cos(θi )δ(t − ti ). (5.138)

where the summation is extended to all spontaneous emission events occurring at ran-
dom times ti . Since photons are spontaneously emitted with an average rate rsp

o per



338 Sources

unit time, after a time T the total emission number will be rsp
o T . As θi is uniformly

distributed, 〈FI 〉 = 0. The autocorrelation function of FI reduces to

RI I (τ ) = 〈FI (t)FI (t − τ)〉

=
〈[∑

i

2
√

I cos(θi )δ(t − ti )

]⎡⎣∑
j

2
√

I cos(θ j )δ(t − τ − t j )

⎤⎦〉

=
〈∑

i

4I cos2(θi )δ(t − ti )δ(t − τ − ti )

〉
,

since emission events occurring at different times are completely uncorrelated. Taking
into account that δ(t − ti )δ(t − τ − ti ) is different from zero only if t − τ = ti and at
the same time t = ti , i.e., with τ = 0, we have δ(t − ti )δ(t − τ − ti ) = δ(τ )δ(t − ti ),
and therefore

RI I (τ ) =
〈∑

i

4I cos2(θi )δ(t − ti )δ(t − τ − ti )

〉

= 4I δ(τ )

〈∑
i

cos2(θi )δ(t − ti )

〉
≈ 2rsp

o I δ(τ ),

since 〈∑
i

cos2(θi )δ(t − ti )

〉
= lim

T →∞
1

T

∫ T/2

−T/2

rsp
o T∑

i=1

cos2(θi )δ(t − ti ) dt

= lim
T →∞

1

T

rsp
o T∑

i=1

∫ T/2

−T/2
cos2(θi )δ(t − ti ) dt

= lim
T →∞

1

T
· rsp

o T · 1

2
= rsp

o

2
,

where we have averaged cos2(θi ) to 1/2. From the above expression for RI I (τ ) and
identifying I ≡ NP , we obtain the result RI I (τ ) = 2rsp

o NPδ(τ ); see (5.131). We can
therefore conclude that the Langevin source for photon number fluctuations can be
derived by considering as “equivalent” fluctuation events the spontaneous emissions
only.

5.13.2 Carrier and photon population fluctuations

According to the Langevin approach to fluctuation analysis, we start from the dynamic
system with random Langevin sources (5.132), (5.133) and evaluate the small-signal
response to Fn and Fk (defined in (5.134) and with power and correlation spectra
(5.135), (5.136) and (5.137)), setting to zero all deterministic forcing terms (such as the
small-signal current source). This is equivalent to rewriting the small-signal dynamic
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system (5.102) with zero impressed current density but including the Langevin sources;
the notation is also suitably modified by introducing the fluctuations δn(ω) and δNk(ω),
and gain compression has been neglected (εc = 0, δc = 1):

⎛⎜⎜⎝ jω + aNk0
c0

nr
+ 1

τn
g0

c0

nr

−�ovaNk0
c0

nr
jω

⎞⎟⎟⎠
⎛⎝ δn(ω)

δNk(ω)

⎞⎠ =
⎛⎝ Fn(ω)

Fk(ω)

⎞⎠ . (5.139)

Solving, we obtain

δn(ω) =
jωFn(ω)− g0

c0

nr
Fk(ω)

jω

(
jω + aNk0

c0

nr
+ 1

τn

)
+ g0

c0

nr
�ovaNk0

c0

nr

=
jωFn(ω)− 1

�ovτph
Fk(ω)(

ω2
r − ω2

)+ jωγ
(5.140)

δNk(ω) =
�ovaNk0

c0

nr
Fn(ω)+

(
jω + aNk0

c0

nr
+ 1

τn

)
Fk(ω)

jω

(
jω + aNk0

c0

nr
+ 1

τn

)
+ g0

c0

nr
�ovaNk0

c0

nr

= ω2
r�ovτph Fn(ω)+ (jω + γ ) Fk(ω)(

ω2
r − ω2

)+ jωγ
, (5.141)

with ωr and γ defined in (5.106) and (5.107), which have also been exploited in the
simplifications, together with the DC condition (5.92) yielding �ovg0c0/nr ≈ τ−1

ph .
We can now formally derive the power and correlation spectra of δn and δNk through

a spectral ensemble average as follows:

Sδnδn = 〈
δn(ω)δn∗(ω′)

〉

=
ω2
〈
Fn(ω)F∗

n (ω
′)
〉+ 〈

Fk(ω)F∗
k (ω

′)
〉(

�ovτph
)2 + 2 Re

(
− jω

〈
Fn(ω)F∗

k (ω
′)
〉

�ovτph

)
(
ω2

r − ω2
)2 + (ωγ )2

=
ω2

(
2R

sp
o Nk0

�ov
+ 2n

Vacτnr

)
+ 2R

sp
o Nk0

�ovτ
2
ph(

ω2
r − ω2

)2 + (ωγ )2
, (5.142)
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SδNkδNk = 〈
δNk(ω)δN∗

k (ω
′)
〉

=
(
ω2

r�ovτph
)2 〈

Fn(ω)F∗
n (ω

′)
〉+ 2 Re

[
(jω + γ ) ω2

r�ovτph
〈
Fk(ω)F∗

n (ω
′)
〉](

ω2
r − ω2

)2 + (ωγ )2

+
(
ω2 + γ 2

) 〈
Fk(ω)F∗

k (ω
′)
〉(

ω2
r − ω2

)2 + (ωγ )2

=

(
ω2

r�ovτph
)2 (2R

sp
o Nk0

�ov
+ 2n

Vacτnr

)
− 4γω2

r�ovτph R
sp
o Nk0 + 2γω2

r
Nk0

V(
ω2

r − ω2
)2 + (ωγ )2

+ 2
(
ω2 + γ 2

)
�ovR

sp
o Nk0(

ω2
r − ω2

)2 + (ωγ )2

=
2R

sp
o Nk0�ov

(
1

τ 2
n

+ ω2
)

+ 2γω2
r

Nk0

V
+ 2

(
ω2

r�ovτph
)2

n

Vacτnr(
ω2

r − ω2
)2 + (ωγ )2

, (5.143)

SδnδNk = 〈
δn(ω)δN∗

k (ω
′)
〉

=
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�ovτph
Fk(ω)(

ω2
r − ω2
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〉

=
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r�ovτph

(
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�ov
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Vacτnr

)
(
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)2 + (ωγ )2

+
2 (−jω + γ )

(
jω + 1

τph

)(
R
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o Nk − Nk

2Vacτph

)
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r R
sp
o Nk(
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)2 + (ωγ )2
. (5.144)

Both the power and correlation spectra have low-pass resonant behavior with the same
resonant frequency as the small-signal resonant frequency ωr .

5.13.3 Output power fluctuations

On the basis of the above discussion, the photon density in the cavity can be modeled
as a random process with average Nk0 and fluctuation δNk :

Nk(t) = Nk0 + δNk(t),

where the fluctuation has the Fourier representation (5.141) as a function of the
Langevin sources Fn and Fk . The cavity output power depends on the photon flux
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transmitted by the mirrors. Since photons disappear from the cavity because of the
mirror loss with a lifetime τm (mirror loss lifetime), the average transmitted power is
related to the average photon number as

Pout = h̄ω
V Nk0

τm
.

However, the fluctuation in the instantaneous output power, denoted for brevity as
δP(t), does not depend only on the cavity photon density fluctuations δNk . In fact, the
exterior of the cavity can be considered as another reservoir fed by an average “photon
generation rate” V Nk0/τm . Since photons escape the cavity through mirrors at random
times, mirror transmission is a cause of fluctuations in the number of transmitted pho-
tons, which again can be modeled through a shot noise approach. Let us define such
power fluctuations in terms of the random process Fpn(t), with autocorrelation Rpn(τ )

(pn stands for partition noise due to mirrors). Expressing the random processes in terms
of particle number fluctuations we have, from the Campbell theorem,(

1

h̄ω

)2

Rpn(τ ) =
(

1

h̄ω

)2 〈
Fpn(t)Fpn(t − τ)

〉 = V Nk0

τm
δ(τ ),

i.e.,

Rpn(τ ) = (h̄ω)2
V Nk0

τm
δ(τ ) = h̄ωPoutδ(τ ), Spn(ω) = h̄ωPout .

We can finally express the power fluctuations δP(ω) as

δP(ω) = h̄ωV

τm
δNk(ω)+ Fpn(ω)

= h̄ωV

τm

ω2
r�ovτph Fn(ω)+ (jω + γ ) Fk(ω)(

ω2
r − ω2

)+ jωγ
+ Fpn(ω).

Thus, the power spectrum of the power fluctuations, SP (ω), will be

SP (ω) = 〈
δP(ω)δP∗(ω′)

〉
=
(

h̄ωV

τm

)2

SδNkδNk (ω)+ h̄ωV

τm

(jω + γ )
〈
Fk(ω)F∗

pn(ω
′)
〉

(
ω2

r − ω2
)+ jωγ

+ h̄ωV

τm

(−jω + γ )
〈
Fpn(ω)F∗

k (ω
′)
〉(

ω2
r − ω2

)− jωγ
+ Spn(ω), (5.145)

where we have taken into account that photon fluctuations due to mirror partition
noise are uncorrelated with population fluctuations. Concerning the evaluation of〈
Fk(ω)F∗

pn(ω
′)
〉
, the process Fk = FP/V , see (5.134), is the Langevin force for pho-

ton density fluctuations. The only part physically correlated with Fpn is the fluctuation
related to mirror losses. Reducing Fk and Fpn to particle number fluctuations we con-
clude that the correlated part is indeed the same process, with average value V Nk0/τm
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(the photon disappearance rate due to mirror loss). Applying the Campbell theorem we
therefore obtain 〈

FP (ω)
F∗

pn(ω
′)

h̄ω

〉
= V

h̄ω

〈
Fk(ω)F

∗
pn(ω

′)
〉
= − V Nk0

τm

→
〈
Fk(ω)F

∗
pn(ω

′)
〉
= − Pout

V
. (5.146)

The minus sign in the correlation function takes into account that a positive fluctuation
on the cavity photon number implies that a photon is not transmitted – i.e., a negative
fluctuation in the output power. Substituting into (5.145) SδNkδNk (ω) from (5.144) and
taking into account (5.146), we find

SP (ω) =
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.

(5.147)

Equation (5.147) can be reformulated, introducing from (5.105) the magnitude
(squared) of the small-signal normalized modulation response:

|H(ω)|2 = ω4
r(

ω2
r − ω2

)2 + (ωγ )2
. (5.148)

We obtain:

SP (ω) = h̄ωPout

[
2Vac R

sp
o

ω2
r τm

(
ω2

ω2
r

+ 1

ω2
r τ

2
n

)
|H(ω)|2 + 1

]

+ 2 (h̄ω)2 Vacτ
2
phn

τ 2
mτnr

|H(ω)|2

= h̄ωPout

[(
a1ω

2 + a2

)
|H(ω)|2 + 1

]
+ a3 |H(ω)|2 . (5.149)

The coefficients a1 and a2 depend on Pout through the resonance frequency ωr and
damping factor γ . Fluctuations in the output power globally follow a low-pass fre-
quency behavior similar to the small-signal response, with a magnitude proportional
to the output power. However, the term +1 in square brackets implies that also when
H → 0 the power spectrum of power fluctuations cannot be lower than h̄ωPout ; this
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can be interpreted as the shot noise limit for SP (ω) (in fact, (h̄ω)−2 SP (ω) = Pout/h̄ω
from the Campbell theorem is the shot noise limit).

5.13.4 Relative intensity noise

Suppose that a digital data stream is transmitted by the laser on–off direct modulation;
the laser signal is then detected by a photodetector. In the ON state the laser power is
Pout and the signal to noise ratio (SNR) at the detector output (assuming the detector is
noiseless) is given by

SNR =
〈
i2
S

〉〈
i2
N

〉 = (RPout )
2〈

(RδP(t))2
〉 = (Pout )

2〈
δP(t)2

〉 ,
where R is the detector responsivity. The quadratic average of the power fluctuations
can be recovered by integrating the power spectrum over the detector bandwidth; assum-
ing that a narrowband filter was used with center frequency ω and bandwidth �ω
one has

SNR ≈ P2
out

SP (ω)�ω
.

The above relation can be expressed in terms of the so called relative intensity noise
parameter (RIN), defined as

RIN =
〈
δP(t)2

〉
P2

out
= 1

SNR
;

equivalently, for a narrowband filtered detector, we obtain the RIN per unit bandwidth
(of the modulating signal):

RIN

� f
= SP ( f )

P2
out

. (5.150)

Example 5.9: Suppose for a digital link we require BER = 1 × 10−9. What is the
minimum RIN for 1 Gbps or 10 Gbps transmission?

Taking into account that

BER ≈ exp(−Q2/2)

Q
√

2π
, SNR = 4Q2,

for BER = 1 × 10−9 one has Q ≈ 6 and SNR ≈ 21.6 dB. Thus RIN = −21.6 dB and
for 1 Gbps transmission

RIN

� f
≈ 10 log10

(
1

109 · 4 · 36

)
= −111.6 dB/Hz,

whereas for 10 Gbps transmission the RIN per unit bandwidth will be −121.6 dB/Hz.
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In (5.150), we defined the power spectrum for positive frequencies only; for a bilat-
eral power spectrum a factor 2 should be introduced. From (5.149), giving the bilateral
spectrum SP (ω), we therefore obtain
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Pout

[
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4 (h̄ω)2 Vacτ
2
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τ 2
mτnr

|H(ω)|2 , (5.151)

where 2h̄ω/Pout is the RIN shot noise limit. From (5.106) and neglecting gain
compression, we have

ωr =
√

a
c0

nr

Nk0

τph
=
√

a

V

c0

nr

τm

τph

V Nk0

τm
= k

√
Pout ,

where k is a proportionality factor; therefore

RIN
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≈ 4 (h̄ω) Vac R
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(
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τ 2
n

)
|H(ω)|2 + 4 (h̄ω)2 Vacτ

2
phn

P2
outτ

2
mτnr

|H(ω)|2 + 2 (h̄ω)

Pout

i.e., the low-frequency value of RIN decreases vs. Pout , at low power, by 30 dB per
decade. At high power, on the other hand, the RIN decreases vs. Pout by 10 dB per
decade, ultimately reaching the shot noise limit. It can readily be shown that the RIN
increases from a low-frequency plateau, peaks at the resonance frequency ωr and then
decreases to the shot noise limit at very high frequency. If we assume that the shot
noise contribution is negligible at low frequency, the peak and low-frequency RIN are
proportional, and the peak RIN decreases with increasing power. Since the resonant
value is typically much larger than the low-frequency value, bandwidth limitations are
required at the receiver to limit the effect on the laser noise.22

Example 5.10: Evaluate the RIN and the small-signal response for a laser with the
following parameters:

τm = 3 ps Vac = 300 × 2 × 0.01 (μm)3 �ov = 0.03

τnr = 0.1 ns λ = 1.55 μm γ = Kω2
r + 1

τn
τph ≈ 3 ps R

sp
o = 1023 cm−3/s K = 0.4 ns

τn = 3 ns ωr = 2π · 10 × 109

√
P

25 mW
rad/s, n = 1019 cm−3

using (5.151) and (5.148). Exploit for the damping factor the relationship including gain
compression (K factor) in evaluating the small-signal response.

22 In the above treatment we have neglected the effect of the noisy laser diode driving current, see [83]
Section 5.5.
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Figure 5.40 RIN per unit bandwidth response, parameters as in Example 5.10.
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Figure 5.41 Small-signal frequency response for the parameters in Example 5.10.

The resulting RIN response is plotted in Fig. 5.40; the RIN decreases with increas-
ing power, initially at about 30 dB per decade of power decrease; the resonant peak
is clearly visible and for very large frequency the RIN decreases down to the shot
noise limit. The small-signal response and the RIN response are closely related as far
as the peak is concerned, see Fig. 5.41; notice that the resonant frequency increases
with the laser power, but also the damping factor. For the largest power we notice a
decrease in the small-signal bandwidth. The theoretical maximum 3 dB bandwidth is
2
√

2π/K = 2
√

2π/(0.4 × 10−9) = 22 GHz.
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5.13.5 Phase noise and linewidth from the Langevin approach

Phase noise and the resulting laser linewidth can be recovered through an extension
of the Langevin approach. From (5.111) we have, replacing finite differences with
differentials:

d f = αH

4π
�ova

c0

nr
dn. (5.152)

Interpreting variations as fluctuations (d f → δ f ) and taking into account that frequency
fluctuations are proportional to the derivative of phase fluctuations δφ, we can obtain
from (5.152) a rate equation for δφ:

dδφ(t)

dt
= 2πδ f (t) = αH

2
�ova

c0

nr
δn(t)+ Fφ(t).

where the first term in the r.h.s., proportional to δφ, is related to the modulation of
the cavity effective index, while the Langevin force Fφ(t) expresses single-photon
fluctuations. In the frequency domain we have

δ f (ω) = αH

4π
�ova

c0

nr
δn(ω)+ 1

2π
Fφ(ω). (5.153)

We now analyze the Langevin force Fφ . From the linewidth analysis, we already found
that photon fluctuations lead to a direct phase fluctuation δφ′′ and to an indirect contri-
bution δφ′ related to amplitude fluctuations via the Henry parameter. We do not consider
the latter contribution δφ′, because this is included, see (5.153), in the term proportional
to δn(t). We already found that (see (5.59) with a slightly different notation)

δφ′′ ≈ 1√
I

sin(θ)

where θ is a uniformly distributed random angle and I is the photon number. The
Langevin term corresponding to a set of spontaneous photon emissions (stimulated
emissions are coherent and do not cause direct phase fluctuations) is therefore

Fφ =
∑

i

1√
I

sin(θi )δ(t − ti ).

The autocorrelation function of Fφ will be

Rφφ(τ ) = 〈
Fφ(t)Fφ(t − τ)

〉
=
〈∑

i

1√
I

sin(θi )δ(t − ti )
∑

j

1√
I

sin(θ j )δ(t − τ − t j )

〉

= 1

I

〈∑
i

sin2(θi )δ(t − ti )δ(t − τ − ti )

〉
,
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since generation or recombination events at different times are completely uncorrelated.
As already discussed, we have δ(t − ti )δ(t − τ − ti ) = δ(τ )δ(t − ti ), and therefore

Rφφ(τ ) = 1

I

〈∑
i

sin2(θi )δ(t − ti )

〉
δ(τ )

= 1

I
δ(τ ) lim

T →∞
1

T

∫ T/2

−T/2

rsp
o T∑

i=1

〈
sin2(θi )

〉
δ(t − ti ) dt

= 1

2I
δ(τ ) lim

T →∞
1

T
· rsp

o T = Vac R
sp
o

2I
δ(τ ) = Vac R

sp
o

2Nk0V
δ(τ ) = �ovR

sp
o

2Nk0
δ(τ ),

where R
sp
o = rsp

o /Vac is again the recombination rate per unit volume leading to
spontaneous emission into mode k. Now, field fluctuations providing only magni-
tude variations are coherent, and therefore yield zero-phase variation; conversely,
field fluctuations providing only phase variations are in quadrature, and therefore
lead to zero-magnitude fluctuation; thus, the phase and amplitude (or photon num-
ber) fluctuations are uncorrelated. Similarly, carrier number fluctuations are uncor-
related with direct phase fluctuations related to the Langevin force Fφ . Taking into
account such comments, we have for the power spectrum of the frequency fluctuations
simply

Sδ f δ f (ω) =
(
αH

4π
�ov

c0

nr
a

)2

Sδnδn(ω)+
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1
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)2
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|H(ω)|2 +

(
1

2π

)2
�ovR
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o
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.

Note that the low-frequency value of the frequency fluctuation spectrum is

Sδ f δ f (0) =
(

1

2π

)2
�ovR

sp
o

2Nk0

(
1 + α2

H

)
= 1

2π
� f,

where � f is the laser linewidth; in fact from (5.72) we have23

23 The result coincides with (5.71); in fact,

� f = 1 + α2
H

4π

�ovR
sp
o

Nk0
= 1 + α2

H
4π

�ovrsp
o

Vac Nk0
= 1 + α2

H
4π

rsp
o

V Nk0
= 1 + α2

H
4π I

rsp
o ,

where V Nk0 = I is the field intensity normalized to the photon number. Notice that the Schawlow–Townes
linewidth (αH = 0) can be also expressed as

� fST = 1

4π I
rsp

o .



348 Sources
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H
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Moreover, defining the so-called Schawlow–Townes linewidth � fST = � f (αH = 0)
(i.e., the linewidth in the absence of the broadening effect related to αH ), we obtain

Sδ f δ f (ω) = � fST

2π

(
1 + α2

H |H(ω)|2
)
. (5.155)

But, how does the frequency behavior of the frequency fluctuations spectrum (and in
particular the resonant peaks) impact on the laser spectral output shape and linewidth?
We start from the expression of the optical field power spectrum:

SE (ω) =
∫ ∞

−∞
RE (τ ) exp(−jωτ) dτ.

The autocorrelation RE (τ ) can be expressed, neglecting intensity noise, as in (5.67);
combining (5.67) and (5.68), in the hypothesis that δφ is gaussian, we obtain that RE (τ )

can be expressed as a function of the process variance σδφ :

RE (τ ) = I ejω0τ e−σδφ/2. (5.156)

We can generally write the variance σδφ as follows:

σδφ(τ ) =
〈
δφ2

〉
= 〈[δφ(t + τ)− δφ(t)] [δφ(t + τ)− δφ(t)]〉

=
〈
δφ2(t + τ)

〉
+
〈
δφ2(t)

〉
− 2 〈δφ(t + τ)δφ(t)〉

= 2Rδφδφ(0)− 2Rδφδφ(τ ),

where Rδφδφ(τ ) is the autocorrelation function of δφ. The related power spectrum
can be derived from the power spectrum of frequency fluctuations (5.155) as Sδφδφ =
ω−2Sδ f δ f . Taking into account that

Rδφδφ(τ ) = 1

2π

∫ ∞

−∞
Sδφδφ(ω) exp(jωτ) dω,

we immediately have

σδφ(τ ) = 1

π
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−∞
Sδφδφ(ω) dω − 1

π

∫ ∞

−∞
Sδφδφ(ω) exp(jωτ) dω

= 1

π

∫ ∞

−∞
Sδφδφ(ω) (1 − cosωτ) dω = 1

π

∫ ∞

−∞
1 − cosωτ

ω2
Sδ f δ f (ω) dω

= 2� fST

∫ ∞

−∞
1 + α2

H |H(ω)|2
ω2 (1 − cosωτ) dω
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where we have taken into account that the power spectrum is a real even function of the
angular frequency. The integral

A =
∫ ∞

−∞
1 + α2

H |H(ω)|2
ω2 (1 − cosωτ) dω

=
∫ ∞

−∞

[
1

ω2
+ 1

ω2

α2
Hω

4
r(

ω2
r − ω2

)2 + (ωγ )2

]
(1 − cosωτ) dω (5.157)

can be solved by contour integration in the complex plane. As shown in Example 5.11,
we obtain

σδφ(τ ) = 2� fST A = 2π� fST

{(
1 + α2

H

)
|τ | + α2

H

(
ω2

r − γ 2
)

2σω2
r

− α2
H e−σ |τ |

2ω2
r

[
ω2

r − γ 2

σ
cosωR |τ | + 3ω2

r − γ 2

ω0
sinωR |τ |

]}
, (5.158)

where

ωR =
√
ω2

r − σ 2, σ = 1

2
γ.

The variance therefore exhibits a first term increasing with |τ |, which has already been
derived in the simplified analysis (see Section 5.10.1, Eq. (5.65)). The Langevin tech-
nique further suggests the presence of a damped oscillatory component (note that the
constant term is such as to lead to σδφ(0) = 0).

Example 5.11: Evaluate the integral A in (5.157) by contour integration.
Owing to the parity of the integrand with respect to ω, we can conveniently express

A as

A = lim
a→0

∫ ∞

−∞
1 − ejωτ

ω2 + a2
dω︸ ︷︷ ︸

A1

+ lim
a→0

∫ ∞

−∞
α2

Hω
4
r

ω2 + a2

1 − ejωτ(
ω2

r − ω2
)2 + (ωγ )2

dω︸ ︷︷ ︸
A2

.

From (5.157) we immediately note that A is an even function of τ . We can confine the
discussion to the case τ ≥ 0 and extend to τ < 0, imposing parity. Applying Cauchy’s
theorem, for the first term one has (we close the integration path in the upper complex
ω plane):

A1 = lim
a→0

∫ ∞

−∞
1 − ejωτ

(ω + ja)(ω − ja)
dω = 2π j lim

a→0

1 − eaτ

2ja
= πτ, τ ≥ 0

i.e., A1 = π |τ |. For the second term, we have (τ ≥ 0) three poles in the upper complex
ω plane; on applying Cauchy’s theorem,

A2 = lim
a→0

∫ ∞

−∞
α2

Hω
4
r

(
1 − ejωτ

)
P(ω)

dω,
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where

P(ω) = (ω + ja)(ω − ja) (ω − ωR − jσ)

× (ω + ωR − jσ) (ω − ωR + jσ) (ω + ωR + jσ) .

Thus, decomposing, we obtain for τ ≥ 0:
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Thus, extending to τ < 0 for parity,
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)
.

From σδφ(τ ), we can finally derive the normalized power spectrum of the optical field
by taking the Fourier transform of (5.156):

SE (ω)

I
=
∫ ∞

−∞
e− σδφ(τ)

2 e−j(ω−ω0)τ dτ.

Neglecting the oscillatory terms in (5.158) and considering only the first term propor-
tional to |τ |, we have again

σδφ(τ ) ≈ 2π� fST

(
1 + α2

H

)
|τ | ,
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which corresponds to (5.65). Therefore, the spectrum is Lorentzian around ω0:

SE (ω)

I
=
∫ ∞

−∞
e−π� fST

(
1+α2

H

)|τ |e−j(ω−ω0)τ dτ = 2τc

1 + (ω − ω0)2τ 2
c
,

where the coherence time is defined as

τc = 1

π� fST
(
1 + α2

H

) ,
coinciding with (5.70). The FWHM linewidth is

� f = 1

πτc
= � fST

(
1 + α2

H

)
,

as already derived in Section 5.10.1.
The effect of the oscillatory component of σδφ(τ ) cannot be readily expressed in

closed form, since the resulting integral does not admit a representation in terms of
elementary functions.

Considering, however, that the kernel of the integrand includes the exponential of an
oscillating function, we can assume that the effect on the resulting power spectrum SE

is somewhat similar to the spectrum of a frequency-modulated signal with modulation
frequency ωR . Qualitatively, the power spectrum will have a Lorentzian shape around
ω0 plus sidebands corresponding to ω0 ± kωR with k integer. However, the sideband
amplitude is typically very small, so that the linewidth is, in practical cases, unaffected,
as shown in Fig. 5.42 [81]; note that the resonance peaks decrease with increasing laser
power, while the displacement of the peaks increases, consistent with the fact that ωR

increases with increasing output power.
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Figure 5.42 Emission spectrum of a laser as a function of emitted power, showing the central Lorentzian
peak and the secondary resonances with spacing equal to the laser resonant frequency. Adapted
after [81], Fig. 5 ( c©1983 IEEE).



352 Sources

5.14 Questions and problems

5.14.1 Questions

1. Explain why in a pn homostructure LED with a p surface layer the n substrate layer
should by highly doped, while in a heterostructure PpN LED we do not need the
substrate to be more doped than the surface layer.

2. Explain why heterostructure LEDs exploit PnN or PpN structures, but not pNn
or pPn.

3. Sketch a vertical emission (Burrus) LED structure.
4. Sketch a lateral emission LED structure.
5. Explain the difference between a conventional and superradiant LED.
6. What limits the modulation bandwidth of a LED? What is the maximum theoretical

value for non-superradiant LEDs?
7. Justify the LED emission spectrum linewidth (order of magnitude kB T ).
8. The LED linewidth can be:

(a) around 50 GHz;
(b) around 200 Å at 1 μm emission wavelength;
(c) around Eg .

9. Explain the high-current saturation of the output LED power.
10. Explain why the LED current–power characteristic is sublinear at low current.
11. The external LED quantum efficiency is lower than the internal one. Why?
12. Suppose that the external quantum efficiency of a LED is unity. Justify the fact that

Pop ≈ I (each in its own units) for materials with a gap around 1 eV.
13. A heterostructure laser exploits a PnN or PpN junction, exactly as a heterostruc-

ture LED. Which of those remarks is true?
(a) Both in lasers and in LEDs the double heterojunction confines carriers and

photons.
(b) In a laser the double heterostructure is for carrier confinement, in a LED for

photon confinement.
(c) The laser double heterojunction is for photon and carrier confinement, in a LED

it is for carrier confinement only.
14. Explain why the modulation small-signal response of a laser is faster than the small-

signal response of a LED.
15. A laser is switched on from below the threshold. Explain why the response is not

significantly faster than the LED turn-on response.
16. Define the threshold and transparency condition in a laser.
17. The spontaneous emission radiative lifetime:

(a) increases with increasing carrier concentration;
(b) decreases with increasing carrier concentration;
(c) decreases with increasing carrier concentration, but ultimately saturates to

values less than 1 ns.
18. The stimulated emission lifetime:

(a) increases with increasing carrier concentration;
(b) increases with increasing photon concentration;
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(c) keeping the carrier concentration constant, decreases with increasing photon
concentration.

19. Define the superposition integral �ov and explain its physical meaning.
20. Describe a Fabry–Perot and a DFB laser.
21. What is the difference between a DFB and a DBR laser?
22. Explain why the laser spectral purity is much better than the LED spectral purity.
23. Define the order of magnitude of the spectral purity (in Å or GHz at 1 μm emission

wavelength) of the Fabry–Perot, DFB, DBR lasers.
24. Discuss the temperature stability of a Fabry–Perot and DBR laser.
25. Explain the advantages of a stripe Fabry–Perot laser vs. a simple one.
26. Discuss the behavior of the threshold current of a laser as a function of the active

region thickness d .
27. What is a GRINSCH laser?
28. Discuss tunable lasers. What are the applications of such devices?
29. Describe the structure of a vertical cavity laser (VCSEL), and in particular the

mirror realization.
30. Sketch the behavior of the power–current characteristic of a laser.
31. Both in a laser and in a LED the number of photons generated per unit time is

proportional to the input current. Explain why, with the same current, the maxi-
mum optical power of the laser (vs. the photon energy) is much larger than that of
the LED.

32. Discuss the small-signal response of a laser above threshold.
33. Explain the role of gain compression in limiting the maximum modulation band-

width of a semiconductor laser.
34. Sketch the turn-on response of a laser from below and from above threshold.
35. Explain why the amplitude modulation of a laser leads to a spurious frequency

modulation (chirp). What is the Henry chirp parameter?
36. Does positive and negative chirp affect signal transmission on a dispersive fiber in

the same way? Explain.
37. Discuss the laser linewidth and explain why this is different from the cavity

linewidth.
38. Why is the linewidth of a gas laser better than the linewidth of a semicon-

ductor laser? Explain the role of the chirp parameter αH (also called linewidth
enhancement factor) in this context.

39. What are the physical origins of laser noise? Comment on the interpretation of laser
noise in terms of spontaneous emission.

40. What is the power spectrum of laser noise around the carrier wavelength?

5.14.2 Problems

1. A heterojunction LED has an active layer of In0.53Ga0.47As (assume Eg = 0.8 eV).
Excess electrons and holes are injected with a concentration n′ ≈ p′ = 1015 cm−3.
Calculate the photon generation rate in the system, assuming Eg = 0.8, m∗

e =
0.042m0, and m∗

h = 0.4m0. Use nr = 3 and E p = 20 eV for the dipole matrix
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element energy. Assuming a heterojunction LED with an active region thickness
d = 0.1 μm and an area A = 1 mm2, approximately evaluate the generated power
neglecting reflections and nonradiative effects.

2. A homojunction GaAs LED is made with a pn+ structure (p side on surface)
with dopings ND = 1017 cm−3, NA = 1016 cm−3. The carrier mobilities are μn =
3000 cm2 V−1s−1 and μh = 500 cm2 V−1 s−1, the electron and hole radiative life-
times are τn,r = τh,r = 10 ns, while nonradiative lifetimes are τn,nr = τh,nr = 0.1 μs.
For GaAs assume ni = 2.1 × 106 cm−3 and operating temperature T = 300 K.
(a) Evaluate the injection efficiency of the device, the radiative efficiency, and the

total efficiency, assuming a surface power reflection coefficient of 40%.
(b) Suppose the LED must transmit a binary sequence of 0s and 1s with powers

of 1 and 100 μW. Estimate the total current needed, assuming the total external
efficiency evaluated above, and bias voltage corresponding to the low and high
levels. Suppose that the area is A = 1 mm2.

(c) What is the maximum bit rate that the LED can support in direct modulation?
3. A heterojunction AlGaAs/GaAs/AlGaAs LED is biased at a current of 1 mA; the

active region thickness is d = 1 μm.
(a) Estimate the radiative lifetime in the GaAs layer, knowing that the LED band-

width is 100 MHz (neglect nonradiative recombination). What is the bandwidth
for a current of 10 mA? What is the limiting modulation bandwidth of the device
(assume a spontaneous radiative lifetime of 0.5 ns)?

(b) Assuming for GaAs Eg = 1.42 eV, estimate the output optical power with 1 mA
bias and a device efficiency of 30%. Estimate the total charge stored in the GaAs
layer and the injected electron density. The LED area is A = 0.1 mm2.

4. We want to design a heterojunction InGaAsP/InGaAs/InP LED for 1.3 μm emis-
sion, with an area A = 0.01 mm2 and an output optical power Pout = 10 mW.
The maximum injected charge density in the active InGaAsP layer is n = 5 ×
1017 cm−3. Evaluate the thickness of the active region assuming a radiative lifetime
τn,r = 3 ns and an external device efficiency of 40%.

5. A double PnN heterojunction laser has an active region of InGaAsP with Eg =
0.8 eV and thickness d = 0.2 μm. Assuming as effective masses m∗

n = 0.04m0,
m∗

h = 0.35m0, evaluate the injected electron density n ≈ p needed to achieve the
population inversion condition at 300 K (hint: use the Joyce–Dixon approximation).
Assuming a radiative lifetime τr = 2 ns, evaluate the corresponding current for a
junction effective area A = 3 × 300 μm2. What might the laser application be?

6. A GaAs Fabry–Perot laser has a cavity length of L = 125 μm. Assuming Eg =
1.42 eV, neff = 3.3, evaluate the number of longitudinal cavity modes within the
LED bandwidth (i.e., approximately from Eg to Eg + 2kB T , T = 300 K).

7. A Fabry–Perot cavity has a cavity loss αloss = 15 cm−1 and a mirror power reflec-
tivity of 35%. Evaluate the photon lifetime for a cavity length L1 = 100 μm. What
should be the Bragg mirror reflectivity to obtain the same lifetime in a VCSEL with
L2 = 2 μm? Assume an effective refractive index neff = 3.3.

8. An AlGaAs/GaAs/AlGaAs laser has a cavity length L = 100 μm and a
cavity width w = 5 μm. The mirror reflectivity is R = 0.3, the cladding
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loss αloss = 20 cm−1, and the overlap integral �ov = 0.1. Assume 1.55 μm
emission.
(a) Estimate the injected electron density needed at threshold, assuming a differ-

ential gain a = 8.0 × 10−16 cm2 and a transparency electron density ntr =
1 × 1018 cm−3.

(b) Assuming a total radiative lifetime τr = 1.5 ns, evaluate the threshold current
for an active region thickness d = 0.3 μm.

(c) Estimate the power–current characteristic of the laser above threshold and
compute the output power for I = 10Ith .

9. A laser with 1.3 μm emission has a cavity length L = 150 μm and a cavity width
w = 5 μm. The threshold current is Ith = 1 mA and the bias current is I = 15 mA.
Assume a mirror reflectivity R = 0.4, cladding loss αloss = 10 cm−1, overlap inte-
gral �ov = 0.1, and differential gain a = 20 × 10−20 m2. The cavity refractive
index is neff = 3.1.
(a) Evaluate the laser output power at the given bias and the cavity photon density

N . The active region thickness is d = 0.25 μm.
(b) Assuming an average below-threshold spontaneous lifetime τ sp

n = 4 ns, evalu-
ate the time required to reach the threshold starting from zero bias and with a
final value I = 15 mA.

(c) Evaluate the modulation bandwidth of the laser at the given bias and plot the
frequency response. Assume the total nonradiative carrier lifetime τn = 100 ns.
Neglect gain compression.

(d) Assuming for the Henry chirp parameter αH = 4.5, evaluate the laser linewidth
at the given bias.

10. A laser emitting at 1.55 μm has a threshold current Ith = 1 mA. The photon lifetime
is τph = 1 ps. Assuming that the mirror loss is ten times αloss , derive the current–
power characteristic. Evaluate the output power for 10 mA current excitation.

11. In a laser, assume a small-signal resonance frequency of 2 GHz, a K factor of 0.3 ns,
and a carrier lifetime of 5 ns. Estimate the peak RIN, taking into account that the
low-frequency RIN is −110 dB/Hz. (Hint: assume that the optical power is low.)

12. Consider an AlGaAs/GaAs laser (0.8 μm emission) with active region thickness
d = 0.1 μm. The GaAs index is n f = 3.66, the AlGaAs index is ns = 3.52.
Estimate the overlap integral.

13. A DBR laser is made with a cleaved cavity with length L = 100 μm and end
(power) reflectivity R = 0.5 coupled to two gratings of length Lg = 150 μm and
coupling coefficient such as κLg = 4. Suppose that the emission wavelength is
λ0 = 1.55 μm. Design the grating periodicity � to obtain the desired emission and
evaluate the end loss corresponding to the cleaved cavity modes around the selected
mode. Assume a cavity refractive index neff = 3.3.
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6.1 Light modulation and modulator choices

LEDs and lasers biased at a constant current emit CW (continuous wave) light with
constant average optical power. To transmit information we need to modulate the light
source by changing its amplitude and/or phase. For simplicity, we will consider only
intensity modulation (IM), where digital or analog information is associated with the
light’s instantaneous power. In digital IM, binary symbols are associated with intervals
of high (ON state) or low (OFF state) optical power; the power ratio between the ON
and OFF states is the extinction or contrast ratio (ER or CR), while the maximum
bit rate (maximum bandwidth) of the modulation process is the modulation speed (or
modulation bandwidth).

Light modulation can be internal (direct) or external (indirect). Direct modulation
is based on the modulation of the instantaneous bias point of the light source (LED or
laser); the solution is compact, since no additional external device is required, but has
worse extinction ratio and a higher chirp (i.e., spurious frequency modulation associ-
ated with the intensity modulation) than indirect modulation schemes. The modulation
bandwidth is very limited (below 1 Gbps) in LEDs, much wider (up to 10 Gbps in the
field) for lasers.

External (indirect) modulation requires an additional (sometimes large and sepa-
rately packaged) voltage-driven device, the light modulator, acting as a light switch;
see Fig. 6.1. The advantages are a higher extinction ratio, lower chirp (ideally zero in
some devices), and higher bit rate (above 40 Gbps).

Several solutions exist for the external modulation; the devices of choice today are
the electrooptic modulator (EOM) and the electroabsorption modulator (EAM). Both
EAMs and EOMs are able to achieve high-speed operation; commercially available
devices exist for 40 Gbps systems. Among less conventional modulator choices we
mention the current-driven variable-gain semiconductor optical amplifiers (SOAs); the
resulting amplitude modulator has large chirp and the contrast ratio is dominated by the
gain control dynamics, but, the modulator is active, i.e., it can provide power amplifi-
cation. In what follows, however, attention will be focused on conventional EOM and
EAM modulator approaches.
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Figure 6.1 Internal (direct) vs. external (indirect) modulation of light.

Electrooptic modulators exploit the modulation of material’s refractive index induced
by an electric field.1 The electric field is induced by a voltage applied to a semiconduc-
tor junction in reverse bias, or to an electrode system deposited on a dielectric having
electrooptic properties. Although several possible applications of this principle in
specific devices exist, the most popular today is the Mach–Zehnder (MZ) interfero-
metric modulator, in which IM is carried out through the constructive or destructive
interference of two phase-modulated beams. EOMs can be implemented with several
electrooptic materials: piezoelectric (perovskites), semiconductor (GaAs, InP, SiGe),
and more recently polymers and Si. Compared with EAMs, EOMs generally have lower
chirp, higher optical saturation power, and wider optical bandwidth (up to 100 nm); the
same device can thus modulate different WDM channels. The optical insertion loss is
typically low, since the absorption of the material is negligible (not always, however, in
semiconductor modulators). Perovskite-based modulators exhibit interaction lengths up
to 1–2 cm and are therefore large, packaged devices, with little perspective for integra-
tion; the on–off voltage is typically high (5 V for high-speed devices), thus requiring a
complex high-speed, wideband amplifier as a driver. Semiconductor EOMs are smaller
(down to 500 μm) and can be integrated (with some difficulty) with the laser source in
the so-called EOL (electrooptic integrated laser).

Electroabsorption modulators are based on the modulation of the material absorp-
tion by an electric field, typically induced by a voltage applied to a semiconductor pin
junction in reverse bias. In the ON state, absorption is low and light travels almost unaf-
fected through the device; in the OFF state, absorption is high and the EAM operates as
a photodiode with a long active region, so that the unabsorbed light escaping from the
device is negligible. Absorption modulation can occur in bulk semiconductors through
the Franz–Keldysh effect (FKE) or in a quantum well (QW) via the quantum confined
Stark effect (QCSE). Owing to the greater strength of the QCSE, QW-based modu-
lators have better extinction ratio than bulk modulators. EAMs generally have larger
chirp than EOMs; moreover, while in the latter chirp is dominated by the device geom-
etry, in EAMs (as in lasers) it is uniquely determined by the material properties. The
EAM optical bandwidth is moderately narrow for FKE-based devices (typical values

1 The refractive index variation can also be induced by injected charge; this effect was exploited in the design
of Si-based electrooptic modulators, see Section 6.6.2.
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are around 10 nm, but record 40 nm bandwidths have also been demonstrated in EAMs
integrated with tunable lasers, see [85]) and very narrow, single-channel, for QCSE-
based devices. QCSE-based EAMs are small (interaction length below 500 μm) and
potentially have lower on–off voltages (e.g., 2 V or less). Integration with the source
is possible and highly convenient in QCSE-based EAMs, where the optical bandwidth
is closely matched to the specific source; this device, also referred to as the EAL or
electroabsorption integrated laser, is gaining increasing popularity due to its superior
performance vs. direct modulation, which is obtained while preserving the source’s
compactness.

From a physical standpoint, both EAMs and EOMs exploit the modulation of the
material refractive index induced by the E-field; in EOMs the modulation of the real
part nr is used, whereas EAMs are based on the modulation of the imaginary part ni .
However, nr and ni are related via to the Kramers–Kronig relations, and so is their vari-
ation in the presence of an applied field. Such an interdependence is the basic cause of
chirp in EAMs (as in lasers), since in this device intensity modulation implies a certain
amount of phase modulation. In EOMs, on the other hand, the absorption coefficient is
so low (both in the perovskite and in the semiconductor case) that its variation has no
appreciable influence on the device performance; in such devices chirp originates from
the device geometry and dissymmetry.

6.2 Modulator parameters

Modulators (electrooptic or electroabsorption) are characterized by a number of system
parameters; some of these can be specific to the digital or analog nature of the IM. In
digital IM, the optical carrier is modulated by a baseband bit sequence whose frequency
bandwidth ideally extends from DC (or a few hundred kHz) to a maximum frequency
B related to the baseband bit rate Rb; for simplicity we will assume B ≈ Rb. In analog
IM, on the other hand, an analog, often narrowband, signal modulates the optical carrier.

Analog IM is in principle compatible with a modulating system having narrow mod-
ulation bandwidth but high central frequency; digital IM requires instead a modulating
system whose bandwidth ranges approximately from DC to Rb.2 Moreover, analog
modulation should ideally be a linear process; since practical modulators are not linear,
analog operation typically occurs under small-signal conditions. Modulator linearity
and distortion are important parameters in analog IM, less so in digital IM.

6.2.1 Electrooptic (static) response

The electrooptic response, also called the transmission characteristics or switching
curve, is the ratio of the output and input light intensity or power vs. the electrical

2 In practice, however, special-purpose, narrowband analog modulators are uncommon, and wideband
devices are typically exploited both for digital and analog modulation.
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Figure 6.2 Static (DC) input–output characteristics of electrooptic (left) and electroabsorption (right)
modulator.

input voltage in static conditions, i.e., for a DC or (sometimes) low-frequency voltage
input:

T (Vin) = Pout (Vin)

Pin
.

Typical EOM and EAM responses are shown in Fig. 6.2. In EOMs the response is
periodic vs. the input voltage, while in EAMs it is ideally monotonic (however, in real
devices the response often has a broad minimum, and then increases for large values of
Vin). A number of characteristic parameters can be derived from T (Vin).

The off-state voltage, VOFF (often called Vπ with reference to EOM operation, see
Section 6.4.2) is the voltage required to turn off the input light at the output with a
specific extinction or contrast ratio ER > 1 (see later); i.e., in natural and log units:

T (VON)/T (VOFF) = ER

T (VON)|dB − T (VOFF)|dB = ER|dB = 10 log10 ER.

The on-state voltage VON (often VON ≈ 0) corresponds to maximum transmission. In
practice T (VON) < 1, since the modulator is affected by a residual modulator loss in
the ON state called the optical insertion loss Lop:

Lop = Pout (VON)

Pin
≡ T (VON).

Finally VSW = VOFF − VON ≈ VOFF is the on–off voltage, also called the switching
voltage.

The extinction ratio or contrast ratio ER > 1 or ER|dB > 0 (also referred to as CR)
is the ratio of the ON state output light intensity to the OFF state output light intensity. It
describes the ability of the modulator to switch the input light down to a specific level.
Due to the response periodicity, for the EOM the extinction ratio is uniquely defined as

ER|dB = T (0)|dB − T (Vπ )|dB .
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In EAMs, the extinction ratio increases with VOFF; therefore, VOFF refers to a specific
ER (e.g., we define VOFF@7 dB, meaning the OFF voltage that yields an extinction ratio
of 7 dB).

6.2.2 Dynamic response

The dynamic large-signal response is the electrooptic modulator response when the
input signal is time-varying and has arbitrary amplitude. Since the static modulator
response is not strictly linear, see Fig. 6.2, and modulator structures typically include
memory effects, the modulator large-signal dynamic response should generally be mod-
eled by a dynamic nonlinear system; this implies that the response changes according to
both the speed and the amplitude of the input driving signal. In digital applications, the
large-signal response is often represented in terms of the output eye diagram with dif-
ferent input signal speeds. In most practical cases, the dynamic response has a low-pass
frequency behavior, i.e., the modulator response deteriorates with increasing input bit
rate. In order to rigorously define the frequency-domain response, we can conveniently
investigate the modulator behavior in linear, small-signal operation.

6.2.3 Small-signal frequency response

To define the small-signal modulator frequency response, assume a (small-signal) sinu-
soidal input voltage at angular frequency ω (the modulation frequency) superimposed
to a bias voltage Vin,DC :

vin(t) = Vin,DC + v̂in(t) = Vin,DC + Re
(
V̂in exp (jωt)

)
,

where V̂in is the phasor associated with the small-signal input voltage. Since the system
operates, according to the small-signal assumption, in linearity, the optical instanta-
neous output power will have a DC and a harmonic modulation component at ω, as

Pout (t) = Pout,DC + p̂out (t) = Pout,DC + Re
(
P̂out exp (jωt)

)
.

P̂out is a complex phasor, whose phase expresses the phase difference between the
input voltage and the output (small-signal) modulation component of the optical power;
see Fig. 6.3. The complex transfer function M(ω) = P̂out/V̂in can be assumed as the
small-signal frequency response of the modulator, often normalized (considering only
the magnitude) to the low-frequency or DC value as m(ω) = |M(ω)/M(0)|.

The limit value M(0) can be derived from linearizing the DC electrooptic response.
In fact, in quasi-static conditions (DC, low frequency) where memory effects are
negligible, we have (vin(t) = Vin,DC + v̂in(t))

T (vin(t)) ≈ T
(
Vin,DC

)+ dT

dvin

∣∣∣∣
DC
v̂in(t) = Pout,DC

Pin
+ p̂out (t)

Pin
.
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Figure 6.3 Definition of the small-signal frequency domain modulator response.

Assuming harmonic input and output, the signal part can be written as

p̂out (t)

Pin
= Re

(
dT

dvin

∣∣∣∣
DC

V̂in exp (jωt)

)
= Re

(
P̂out

Pin
exp (jωt)

)
,

and, in terms of phasors, as

P̂out

Pin
= dT

dvin

∣∣∣∣
DC

V̂in → P̂out

V̂in
= Pin

dT

dvin

∣∣∣∣
DC

= M(0). (6.1)

The quasi-static relation (6.1) can be extended to the dynamic case, as already
mentioned, by the transfer function

M(ω) = P̂out (ω)

V̂in(ω)
= |M(ω)| exp(j � M(ω)).

See Fig. 6.3 for the meaning of � M . The modulation frequency response m(ω) is usu-
ally defined (and measured) with respect to the low-frequency (or DC) value; typically,
only the amplitude of the response is considered:

m(ω) =
∣∣∣∣M(ω)

M(0)

∣∣∣∣ .
The modulation response m(ω) is often described in log units, according to two dif-

ferent approaches, termed the optical and the electrical definition. We start from the
definition of m(ω); in natural units we have, assuming a frequency-independent input
voltage V̂in ,

m(ω) =
∣∣P̂out (ω)/P̂out (0)

∣∣∣∣V̂in(ω)/V̂in(0)
∣∣ =

∣∣P̂out (ω)
∣∣∣∣P̂out (0)
∣∣ .

Since the modulation response is formulated as a power ratio, direct application of log
units leads to the so-called optical definition of the response:

mop(ω)
∣∣
dB = 10 log10 [m(ω)] = ∣∣P̂out (ω)

∣∣
dBm − ∣∣P̂out (0)

∣∣
dBm . (6.2)
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Figure 6.4 On the optical and electrical definition of the modulator small-signal response.

Alternatively, we measure the output power through a photodetector of responsivity R

(see Fig. 6.4). Taking into account that the detector phasor current is Iout = R
∣∣P̂out

∣∣,
we can express the modulator small-signal response as

m(ω) =
∣∣P̂out (ω)

∣∣∣∣P̂out (0)
∣∣ = R

∣∣P̂out (ω)
∣∣

R
∣∣P̂out (0)

∣∣ = Iout (ω)

Iout (0)
.

We now define the modulation response in log units (according to the so-called
electrical definition) with reference to the electrical power delivered to a load:

mel(ω)|dB = 20 log10 [m(ω)] = 20 log10

[
Iout (ω)

Iout (0)

]
= 2

∣∣P̂out (ω)
∣∣
dBm − 2

∣∣P̂out (0)
∣∣
dBm = 2 mop(ω)

∣∣
dB . (6.3)

Thus, the electrical and optical definitions are related as mel(ω)|dB = 2 mop(ω)
∣∣
dB.

According to another common notation, the optical definition is expressed in dBo
(optical dB) and the electrical definition in dBe (electrical dB). One has, therefore,

mel,op(ω)
∣∣
dB ≡ m(ω)|dBe,dBo ,

respectively; it follows that

m(ω)|dBe = 2 m(ω)|dBo .

6.2.4 Optical and electrical modulation bandwidth

From m(ω) the bandwidth can be derived, according to the optical (electrical) defini-
tion of the response, as the modulation frequency f3dB,op ( f3dB,el) at which the optical
(electrical) response has a 3 dB decay with respect to the low-frequency value:

mop( f3dB,op)
∣∣
dB = 10 log10

[
m( f3dB,op)

] = −3 dB (6.4)

mel( f3dB,el)
∣∣
dB = 20 log10

[
m( f3dB,el)

] = −3 dB. (6.5)

From the definition we see that an optical 3 dB bandwidth corresponds to an electrical
6 dB bandwidth, while an electrical 3 dB bandwidth corresponds to an optical 1.5 dB
bandwidth. Due to the low-pass modulator behavior, the optical 3 dB bandwidth is wider
than the electrical 3 dB bandwidth.
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6.2.5 Chirp

The chirp, or instantaneous frequency deviation, is the spurious frequency modulation
� f of the intensity-modulated output light with respect to the input light. Usually, the
frequency deviation is expressed through the help of the Henry parameter αH , see (5.40)
and (5.52). In large-signal conditions the Henry parameter generally is a function of
time, while it is constant (and bias point dependent) in small-signal operation. The EOM
chirp depends only on device geometry, while in EAMs chirp depends, as in lasers, on
material parameters. However, while digitally modulated lasers exhibit both transient
and adiabatic chirp (Section 5.12.3), EAMs have only transient chirp; moreover, the
EAM Henry parameter is typically smaller than in lasers.

6.2.6 Optical bandwidth

The optical bandwidth (not to be confused with the optical definition of the modulation
bandwidth) is the photon wavelength range on which the modulator operates within
specifications.

6.2.7 Electrical or RF input matching

The RF input matching is defined in terms of the modulator input reflection coefficient,
seen from the electrical input port:

�in = Zin − ZG

Zin + ZG
,

where Zin is the modulator input impedance and ZG is the generator impedance (here
real, often 50�). From the power reflection coefficient |�in|2 one can also define
the RF input insertion loss, i.e., the power loss resulting from the input reflection
1 − |�in|2. Typical design values for the power input reflection coefficient are below
−10 dB or |�in| ≈ √

0.1 = 0.32. Note that input matching can be a difficult problem in
modulators, owing to their broadband behavior.

6.2.8 Linearity and distortion

Analog modulators can be characterized in terms of signal distortion caused by the
nonlinearity of the electrooptic response T (vin). The response can be expanded in power
series of vin around a bias point and a number of figures of merit can be defined, related
to the generation of harmonics in the presence of a sinusoidal single-tone input signal
(harmonic distortion), or to the generation of intermodulation products in the presence
of two or more closely spaced sinusoidal input signals (intermodulation distortion).3

3 Given two input tones f1 and f2, the intermodulation products (IMPs) are output frequencies m f1 ± n f2
where m and n are integers. Third-order IMPs with a minus sign (2 f1 − f2 and 2 f2 − f1) are particularly
important since they fall close to the signal bandwidth, and are the main cause of nonlinear distortion.
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The intermodulation distortion also defines the upper limit of the spurious-free dynamic
range (SFDR).4

6.3 Electrooptic modulators

Electrooptic modulators are based on the modulation of the material refractive index
from the electric field, induced by an applied input voltage. A simplified setup is shown
in Fig. 6.5, consisting of a capacitor, whose dielectric is a slab of electrooptic mate-
rial. In static conditions, the input voltage applied to the capacitor is Vin = VG , and the
related electric field has magnitude E = VG/h, where h is the distance between the
metal plates. The induced index variation �n ∝ E ∝ VG linearly modulates the phase
of the optical wave crossing the capacitor, with a phase variation �φ ∝ VG . Amplitude
modulation can be obtained from phase modulation by making two phase-modulated
beams interfere constructively or destructively. This is the principle of the Mach–
Zehnder modulator; other solutions include polarization-based modulators, where the
applied field changes the field polarization and an output polarizer blocks the optical
field in the OFF state, and directional coupler modulators, where the applied field
changes the state of an optical directional coupler from transmission (ON state) to
coupling (OFF state).

Several electrooptic materials are available for implementing electrooptic modu-
lators: ferroelectric crystals having piezoelectric properties, such as lithium niobate
(LiNbO3, often denoted as LN, probably the most important material today), lithium
tantalate, barium titanate, in bulk or thin film; semiconductors (GaAs and InP);
and finally electrooptic polymers. Silicon-based modulators have been proposed for
exploiting the refractive index change resulting from charge injection.

Semiconductors exhibit a weaker electrooptic effect than ferroelectric crystals, but the
related structures are able to enhance the induced electric field due to junction effects
(i.e., the applied voltage acts across a very short distance, as in the intrinsic region of
a pin structure). Moreover, QW and MQW structures can be exploited to tailor the
material response. In the next sections, we will focus on the implementation of the
phase modulation part of the device in different materials; the Mach–Zehnder amplitude
modulator structure will be discussed in Section. 6.4.

Since the phase modulation structure in Fig. 6.5 is, from the electrical standpoint,
a capacitor, the modulation bandwidth is limited by the RC cutoff (the resistance is
the generator resistance RG ). Concentrated structures achieve in practice, with realistic
driving voltages, speeds of only a few Gbps; high-speed modulators are based on a
distributed, traveling-wave approach (see Section 6.5).

4 The SFDR is the input power or voltage interval in which the system operates with a signal-to-noise ratio
(SNR) compatible with the system specifications (lower limit), and with acceptable distortion (upper limit).
Several definitions of the upper limit are available (e.g., the input power at which the intermodulation level
at the system output equals the noise output level).
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Figure 6.5 The principle of phase modulation through an applied voltage in an electrooptic modulator.

6.3.1 Lithium niobate electrooptic modulators

Lithium niobate (LiNbO3) is an anisotropic uniaxial crystal (for the properties of lithium
niobate and other electrooptic materials, see, e.g., [55], Table 9.2). The material permit-
tivity is a tensor (whose rectangular components can be assembled in a 3 × 3 matrix),
which becomes diagonal when the reference system corresponds to the crystal princi-
pal axes. Since the crystal is uniaxial, one of the principal axes (called the optical or
extraordinary axis) is fixed, while the two other axes (called the ordinary axes) can be
chosen arbitrarily in the plane orthogonal to the optical (extraordinary) axis. In such a
reference frame (let x and y be the ordinary axes, z the extraordinary axis), the dielectric
permittivity is a diagonal matrix:

ε = ε0εr = ε0

⎛⎝ εx 0 0
0 εx 0
0 0 εz

⎞⎠ ,
where

εx = n2
o, εz = n2

e .

The two refractive indices no and ne are the ordinary and extraordinary indices, respec-
tively. Due to material dispersion, the RF or microwave values and the optical values
are quite different. At RF:

εxm = n2
om = 43 → nom = √

43 = 6.56

εzm = n2
em = 28 → nem = √

28 = 5.29.

The optical values, on the other hand, are much lower:

noo = 2.35, neo = 2.25.
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A further effect to be considered is the strong frequency dispersion that LN exhibits
(due to its piezoelectric nature) from DC to RF:

εx DC = n2
oDC = 85 → noDC = √

85 = 9.22 � nom = 6.56

εzDC = n2
eDC = 29 → neDC = √

29 = 5.38 ≈ nem = 5.29.

At low frequency piezoelectricity increases the dielectric response, but at RF and above
the associated mechanical effects are under cutoff, leading to a marked dispersion of
the dielectric parameters. This may cause an anomalous modulator response at low-
frequency (e.g., in the MHz range).

Due to the electrooptic effect, the elements of the (relative) permittivity matrix εr , εi j ,
are a function of the applied field components Ek . Such a function can be conveniently
expressed by expanding the variation of 1/εi j in power series as

�

(
1

εi j

)
=
(

1

εi j (E) − 1

εi j (0)

)
=

3∑
k=1

ri jkEk +
3∑

k,l=1

si jklEkEl + · · ·

where E= Ei ûi + E j û j + Ek ûk is the applied electric field expanded into rectangular
components (with unit vectors ûi , û j , ûk), ri jk are the elements of the linear electro-
optic tensor r (dimension 3 × 3 × 3, 27 components), and si jkl are the elements of the
quadratic electrooptic tensor s (dimension 3 × 3 × 3 × 3, 81 components). Since in LN
the linear electrooptic effect (also called the Pockels effect) dominates over the quadratic
effect (also called the Kerr effect), we will focus on the former and write

�

(
1

εi j

)
= �

(
1

n2
i j

)
=

3∑
k=1

ri jkEk → �ni j ≈ −n3
i j

2

3∑
k=1

ri jkEk, (6.6)

where we have associated, with each element of the relative permittivity matrix, a refrac-
tive index such as εi j = n2

i j , and have further assumed that the variation is small, so that
it can be obtained by applying derivation rules. The linear electrooptic tensor elements
satisfy reciprocity, independently of the applied field; this implies ri jk = r jik , so that
only 18 elements out of 27 are independent. To simplify the notation, the contracted
index representation is introduced: the 18 independent elements are assembled into a
3 × 6 matrix by contracting the first two indices i j into a unique index i according to
the rules:

i j = 11 → i = 1 i j = (23, 32) → i = 4
i j = 22 → i = 2 i j = (31, 13) → i = 5
i j = 33 → i = 3 i j = (21, 12) → i = 6.

In the contracted index notation, the variation of the refractive index ni j → ni can be
expressed as

�ni = ni (E)− ni (0) = −n3
i

2

3∑
k=1

rikEk
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or, expanding,

�ni = −n3
i

2
(ri1E1 + ri2E2 + ri3E3) , i = 1 . . . 6. (6.7)

Let us now consider the LN case in detail. We express the permittivity in the prin-
cipal axis reference system and associate the indices (1, 2, 3) with the rectangular axes
(x, y, z), where z is the optical or extraordinary axis, and x , y are the ordinary axes.
Due to LN crystal symmetry, most of the elements in r are zero, some are equal; the
only nonzero elements have values:5

r13 = r23 = 9 pm/V

r33 = r51 = r42 = 30 pm/V

r22 = −r12 = −r61 = 6.6 pm/V.

In general, an applied field will change all the components of the permittivity matrix,
thus leading to a change of the principal axes. We confine the analysis to the case rele-
vant to applications and assume that the applied field is directed along the optical axis,
i.e., that Ez ≡ E3 �= 0 while both Ex = E1 = 0 and Ey = E2 = 0. In this case, consid-
ering only the nonzero elements of r , (6.7) yields (for clarity, we partly revert to the
expanded index notation in rectangular coordinates):

�nxx = �nyy = �no = −n3
o

2
r13Ez

�nzz = �ne = −n3
e

2
r33Ez

�nyz = �nxz = �nxy = 0.

With such a choice of the applied electric field, the off-diagonal elements of the per-
mittivity matrix are always zero, and the principal axes do not vary with respect to the
zero-field case. Moreover, the largest element r33 is exploited, leading to a variation of
the extraordinary index �ne; the ordinary index �no exhibits a smaller variation.

The applied field configuration described above can be implemented in LN mod-
ulators by properly arranging the optical waveguide and electrode settings. Optical
waveguides can be realized in a LN substrate by diffusion of titanium (Ti) at 1000◦C
for 4–10 hours. The Ti diffusion slightly increases the LN refractive index, yielding a
waveguide with approximate Gaussian refractive index profile. Typical diffusion widths
are of the order of 5–10 μm, leading to a comparable optical mode spot size in the
waveguide plane. Concerning the waveguide orientation with respect to the crystal axes,
two solutions can be implemented:

• In the Z-cut configuration, the optical axis is orthogonal to the crystal surface and
the waveguide axis is parallel to the x or y axes (remember that such ordinary axes
are arbitrary); see Fig. 6.6(left). The optical mode polarization is transverse magnetic

5 The reported values are at λ = 0.633 μm, see [55], Table 9.2.
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Figure 6.6 Z-cut (left) and X-cut (right) configuration for a diffused waveguide in a lithium niobate
substrate.

(TM); i.e., the electric field polarization is along the optical axis. In such conditions,
the modal refractive index is nT M ≈ ne. Application of a RF electric field along the
z axis (parallel to the optical field) leads to a variation of the modal refractive index:

�nT M = −n3
er33Ez

2
.

• In the X-cut configuration, the optical axis is parallel to the crystal surface and
orthogonal to the waveguide axis; see Fig. 6.6(right). The waveguide axis runs along
x (or y), while the crystal surface is orthogonal to y (or x), respectively. The opti-
cal mode polarization is transverse electric (TE); i.e., the electric field polarization
is again along the optical axis, this time horizontal. In such conditions, the modal
refractive index is nT E ≈ ne. Application of a RF electric field along the z axis (par-
allel to the optical field and to the crystal surface) leads to a variation of the modal
refractive index:

�nT E = −n3
er33Ez

2
, (6.8)

the same as in the Z-cut case. The Y-cut configuration is of course equivalent to the
X-cut one.

The Z-cut and X-cut configurations appear to be altogether equivalent from the stand-
point of the optical waveguide; however, the RF electrode setting needed to create a
properly oriented electric field is different. In fact, in Z-cut substrates the optical field
must interact with a perpendicular RF field, so that both the coplanar waveguide (all
electrodes on the crystal surface) and the microstrip (one electrode on the surface, a
ground plane on the crystal bottom) configurations are possible. On the other hand, in
X-cut substrates the interaction is with the parallel component of the microwave field,
so that only a coplanar electrode configuration is feasible. The RF field lines and opti-
cal waveguide position are sketched in Fig. 6.7 for the Z-cut and X-cut configurations,
respectively. In the Z-cut case, the optical field must interact with the vertical electric
field, and therefore the waveguide position is below the RF electrode. In this way, the
field strength is maximum, but at the same time a dielectric buffer must be inserted
between the optical waveguide and the metal electrode to avoid large optical losses in
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Z-cut LiNbO3

X-cut LiNbO3

RF field

Dielectric buffer

RF field

Eperp

Epar

Figure 6.7 RF electrode configuration for the Z-cut substrate (above) and the X-cut substrate (below).

the TM mode. As discussed in Section 6.6, introduction of a dielectric buffer is also
needed to improve the synchronous coupling between the RF and optical mode in a dis-
tributed modulator. In the X-cut case, the waveguide has to interact with the horizontal
field, so that it must be located between the electrodes. No dielectric buffer is needed in
principle to avoid losses, but the field strength is somewhat lower than in the Z-cut case.
Notice that both the X-cut and Z-cut configurations are polarization dependent, i.e., the
interaction requires TE or TM polarized fields. From a system standpoint, this implies
that the polarization of the input optical signal or carrier has to be established through a
polarization-maintaining (PM) fiber.

The Z-cut configuration has approximately a 30% advantage over the X-cut one in
terms of interaction strength; however, Z-cut operation is affected by problems con-
nected with static induced charge: due to the piezoelectric nature of the material, a
static charge is induced on the free surfaces orthogonal to the optical axis. In the Z-cut
configuration, a layer of induced charge slowly builds up on the top surface, where elec-
trodes are located; the induced static field is superimposed on the applied bias, leading
to long-term fluctuations in the bias point that may compromise the device operation
and reliability. In the X-cut configuration, on the other hand, charge buildup occurs on
the two lateral surfaces (the LN edges), which are contacted by the device package and
can be suitably metallized so as to short induced fields. In the X-cut configuration, there-
fore, charge build up is ineffective and the bias point does not experience slow drifts.
Suppression of the bias drift can be obtained in the Z-cut configuration by depositing a
resistive layer, called the charge bleed layer, on the top surface; the layer redistributes
the excess induced charge, while its resistance is large enough not to compromise RF
operation and biasing. Charge bleed layers can be implemented, for example, through
polysilicon sputtering.

A last point to be considered is the fact that both the RF and optical field inten-
sity are nonuniform over the interaction region. To relate the external applied voltage
to the variation of the modal refractive index, we introduce the overlap integral �mo

between the microwave and optical fields. Consider, the wave equation for the modal
electric field (assume, for example, the TE mode; the same treatment applies for
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the TM mode), with propagation constant (along z) equal to βT E :

∇2
t Eop +

[
n2k2

0 − β2
T E

]
Eop = 0. (6.9)

A perturbation (n +�n)2 ≈ n2 + 2n�n leads to a perturbation in the propagation con-
stant (βT E +�βT E )

2 ≈ β2
T E + 2βT E�βT E . Taking into account (6.9) and assuming

that the perturbed field E ′ is E ′ ≈ Eop, we obtain

∇2
t E ′ +

[(
n2 + 2n�n

)
k2

0 −
(
β2

T E + 2βT E�βT E

)]
E ′

≈
[
2n�nk2

0 − 2βT E�βT E

]
Eop = 0.

Multiplying both sides by E∗
op and integrating over the waveguide cross section we find,

taking into account that βT E = nT E k0 and that n ≈ ne (ne and �ne are real),∫∫ ∣∣Eop(r)
∣∣2 ne�ne dS = nT E�nT E

∫∫ ∣∣Eop(r)
∣∣2 dS,

from which, since nT E ≈ ne,

�nT E ≈

∫∫ ∣∣Eop(r)
∣∣2�ne dS∫∫ ∣∣Eop(r)
∣∣2 dS

.

Denoting the RF field as Ez and taking into account (6.8), we have

�nT E = −n3
er33

2

∫∫ ∣∣Eop(r)
∣∣2 Ez(r) dS∫∫ ∣∣Eop(r)
∣∣2 dS

= −n3
er33VA

2G

∫∫ ∣∣Eop(r)
∣∣2 ez(r) dS∫∫ ∣∣Eop(r)
∣∣2 dS

,

where

ez(r) = G

VA
Ez(r)

is the normalized electric field (normalization is with respect to a uniform field induced
by a voltage VA over a distance G); VA is the applied voltage, G is the gap between the
coplanar electrodes, see Fig. 6.8. The variation of the extraordinary index corresponds
to a variation of the modal (TM or TE) index, so that

�nT E = −n3
er33VA

2G
�mo, (6.10)
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Figure 6.8 Microwave field lines and optical mode pattern in the cross section of a X-cut LN modulator
with coplanar electrodes. The electrode distance is the gap G.

where the overlap integral is6

�mo = G

VA

∫∫ ∣∣Eop(r)
∣∣2 Ez(r) dS∫∫ ∣∣Eop(r)
∣∣2 dS

.

This is equivalent to postulating a uniform equivalent RF field Ez = −�moVA/G. The
overlap integral is equal to unity if the field is uniform (as in a parallel-plate configura-
tion, in which the gap coincides with the distance between the two plates). For the TM
field, the principle is the same but the relevant overlap integral may be different due to
the different optical field pattern.

A concluding remark concerns the RF propagation characteristics of a coplanar elec-
trode configuration deposited on LN substrate. Such a coplanar waveguide supports
a quasi-TEM propagation mode, in which the electric and magnetic fields lie almost
entirely in the transverse plane. The refractive index in the transmission line cross sec-
tion (corresponding to the plane determined by the ordinary and extraordinary axes both
in the Z-cut and in the X-cut configurations) is anisotropic, but the quasi-TEM mode
effective microwave propagation index nm is given simply by7

nm ≈
√

1 + √
εxmεzm

2
=
√

1 + nomnem

2
=
√

1 + 6.56 · 5.29

2
= 4. 22. (6.11)

The RF index nm is therefore much larger than the optical refractive index nT E/T M ≡
no ≈ 2.2. Since the RF phase velocity is about twice as large as the optical phase
velocity, nm must be suitably decreased in order to achieve synchronous coupling in
distributed modulators; see Section 6.6.

6 The definition of the overlap integral is consistent with (5.18), introducing the same parameter for a dielec-
tric slab waveguide, where �n (in the laser case, the variation is related to the material gain) is assumed as
uniform in the active region.

7 The parameters of a coplanar waveguide on a semi-infinite dielectric substrate, such that two principal axes
are parallel and perpendicular to the dielectric surface, respectively, with permittivities ε1 and ε2, can be
shown to coincide with the parameters of the same waveguide on an equivalent isotropic substrate with
ε = √

ε1ε2, see [86].
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6.3.2 Semiconductor electrooptic modulators

GaAs- and InP-based Mach–Zehnder modulators have been developed both in discrete
form and integrated with a source. For the sake of brevity, let us confine the treatment
to GaAs. GaAs is isotropic, with microwave relative permittivity εm ≈ 13, microwave
refractive index nm ≈ √

13 = 3.61, and optical refractive index no ≈ 3.4. Due to crystal
symmetry, most of the elements in the linear electrooptic tensor of GaAs are again zero,
many are equal, and the only nonzero elements have values (at λ = 0.8 μm)

r41 = r52 = r63 = 1.2 pm/V.

By inspection of (6.6), only the nondiagonal elements of the permittivity matrix change
when applying an electric field; i.e., the material becomes anisotropic. For simplicity
we refer here to two practically exploited electrode configurations, shown in Fig. 6.9. In
configuration (a), the semiconductor is grown along the z direction, while the optical TE
field is polarized along the y′ direction; the applied electric field is vertical (along z). In
configuration (b), the growth is again along z, and the polarization and the applied field
are both along y′. In the primed reference system, we have z′ = z, while the other axes
are rotated by π/4 with respect to the unprimed axes x, y (defined along the crystal
directions). In both cases, the guiding structure includes a double AlGaAs-GaAs het-
erostructure providing vertical photon confinement. Doped junctions can be exploited
to enhance the effect of the applied voltage.

In an anisotropic material, the identification of the principal axes can be carried out
through the help of the index ellipsoid, defined by the equation

3∑
i, j=1

xi x j

n2
i j

= x2
1

n2
1

+ x2
2

n2
2

+ x2
3

n2
3

+ 2x1x2

n2
6

+ 2x1x3

n2
5

+ 2x2x3

n2
4

= 1,

where we have accounted for the material reciprocity and used the contracted index
notation. For GaAs we generally have

�

(
1

n2
1

)
= �

(
1

n2
2

)
= �

(
1

n2
3

)
= 0

�

(
1

n2
4

)
= r41Ex , �

(
1

n2
5

)
= r52Ey = r41Ey, �

(
1

n2
6

)
= r63Ez = r41Ez,
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y = <100>

y′ = <110>

x′

(b)

RF E-field
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RF E-field

Figure 6.9 Electrode configurations for GaAs-based electrooptic modulators: (a) with microstrip electrodes,
(b) with coplanar electrodes.
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so that, in the presence of an applied field, the index ellipsoid becomes(
1

n2
o

)
x2 +

(
1

n2
o

)
y2 +

(
1

n2
o

)
z2 + 2r41Ez xy + 2r41Ey xz + 2r41Ex yz = 1.

Consider now the case in Fig. 6.9(a); the applied electric field is vertical (along z) so
that the index ellipsoid becomes(

1

n2
o

)
x2 +

(
1

n2
o

)
y2 +

(
1

n2
o

)
z2 + 2r41Ez xy = 1.

The already introduced primed coordinate system is related to the unprimed one through
a π/4 rotation in the xy plane, as

x ′ = x − y√
2
, y′ = x + y√

2
, z′ = z,

i.e.

x = x ′ + y′
√

2
, y = x ′ − y′

√
2
.

The new y′ axis is now parallel to the optical field (cf. Fig. 6.9(a)). Substituting, we
have

x ′2 + y′2 + 2x ′y′

2n2
o

+ x ′2 + y′2 − 2x ′y′

2n2
o

+ z′2

n2
o

+ 2r41Ez
x ′2 − y′2

2

=
(

1

n2
o

+ r41Ez

)
x ′2 +

(
1

n2
o

− r41Ez

)
y′2 +

(
1

n2
o

)
z′2 = 1.

Therefore, the new (diagonal) refractive indices in the principal axes reference frame
will be

n′
xx ≈ no − n2

or41Ez

2
= no −�nV

n′
yy ≈ no + n2

or41Ez

2
= no +�nV

n′
zz = no.

The TE mode experiences a modal index variation of −�nV (along y′); in the same
conditions, the TM mode (vertical polarization) is unaffected. The refractive index also
varies along x ′, so that the optical waveguide could also be defined orthogonal to that
direction. The resulting modulator is therefore polarization dependent, and similar to a
LN Mach–Zehnder modulator.

The case in Fig. 6.9(b), is more complex, since an electric field parallel to the TE
field makes the material biaxial, with principal axes having nonzero projection on both
the TE and the TM modes. The resulting mode coupling leads to mode conversion: a
TE input mode is converted after a certain length into a TM mode with opposite phase,
and vice versa. In a Mach–Zehnder configuration, under applied voltage Vπ , the TE
components in each arm are converted to TM, with opposite sign at the output (destruc-
tive interference), while the TM components are converted into TE components with
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Figure 6.10 Electrode setting for a polarization-dependent modulator with vertical RF field (left) and
polarization-independent modulator with horizontal RF field (right). The waveguide is a double
heterostructure GaAs-AlGaAs; the ridge width is typically a few μm. Adapted from [88], Fig. 4.

opposite sign (destructive interference again); moreover, it can be shown that the effec-
tive variation of modal index is 2�nV , i.e., the configuration is twice as effective as
the one with vertical electric field [87]. The resulting modulator is therefore polariza-
tion independent. A more detailed representation of the two structures is shown in
Fig. 6.10 [88].

To compare, at a material level, the relative merits of LN and of GaAs, we should
consider that the material figure of merit is n3

0r , rather than r alone. From this stand-
point, in LN n3

0r ≈ 2.23 · 30 = 320 pm/V, while in GaAs n3
0r ≈ 3.43 · 1.3 = 51 pm/V.

However, the electrooptic potential of GaAs can be enhanced in several ways. First, QW
or MQW structures with excitonic effects at room temperature can lead to an increase of
the r coefficient with respect to bulk. Secondly, junction effects (which cannot of course
be implemented in LN) allow enhancement of the applied field with the same applied
voltage. To make a comparison, imagine applying the same voltage on a coplanar elec-
trode pair with separation G = 10 μm (about the minimum allowed by the optical spot
size in Ti-diffused waveguides) and on a pin junction with intrinsic layer of thickness
d = 0.5 μm; a factor of 20 in favor of GaAs arises, so that GaAs turns out to be 3–4
times better than LN. In practice, this advantage is shown by the comparative lengths
of LN-based modulators (about 10 mm) and of GaAs- or InP-based modulators (about
1 mm in bulk modulators and even less in QW structures). However, since the realiza-
tion of semiconductor-based modulators is fraught with many technological difficulties,
this solution is less significant than the LN-based one for applications.

More recently, all-silicon modulators were developed exploiting the refractive index
variation associated with charge injection; some further details and structure examples
are provided in Section 6.6.2.

6.3.3 Polymer modulators

Polymer-based electrooptic modulators have promising properties, although material
degradation in the long term is still a practical problem in system applications. Polymers
can be made electrooptic by means of chromophore molecules, characterized by large
dipole moments and optical nonlinearity. Chromophores can be activated in a polymer
through a process called high-temperature poling, whereby chromophores are aligned
by a strong applied electric field in a heated polymer. The randomly aligned dipole
moments keep their alignments after cooling and result in a polymer having macro-
scopic electrooptic properties that can be expressed in terms of a linear electrooptic
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Figure 6.11 Cross section of microstrip-based polymer modulator; the layout is a conventional
Mach–Zehnder interferometer. After [89], Fig. 1 ( c©1999 IEEE).

tensor. Typically, the largest coefficient is for TM polarization (i.e., the applied elec-
tric field is vertical, like the poling field, and parallel to the optical field); the situation
is somewhat similar to LN modulators in the Z-cut configuration and microstrip elec-
trodes. The corresponding r33 can be as large as 20–60 pm/V, and the refractive index
is around 1.6. Owing to the microstrip configuration (see Fig. 6.11 [89]), and to the
low refractive index, the optical and microwave refractive indices are similar, leading to
very efficient synchronous coupling in traveling-wave modulators. From a system stand-
point, polymer modulators are comparable to LN modulators concerning bandwidth and
driving voltages, but their lifetime and practical use is still impaired by long-term poly-
mer degradation. The material figure of merit is n3

0r ≈ 1.63 · 20 = 81 pm/V, somewhat
similar to GaAs.

6.4 The Mach–Zehnder electrooptic modulator

The Mach–Zehnder amplitude modulator is based on the constructive or destructive
interference of two phase-modulated beams generated by splitting the input optical
beam into two parts, each running in a separate optical waveguide; see Fig. 6.12. An
electric field is applied to each arm of the modulator through a set of coplanar or
microstrip electrodes; the electrode cross section design depends on the material and
on the optical field polarization. The applied RF field causes the two optical beams
to be phase modulated before recombination in the output optical combiner. At zero
applied voltage and RF field, the two beams reach the combiner with equal phase and
recombine constructively. When the applied voltage is equal to Vπ , the two recombin-
ing optical fields have a phase difference of π , and in the output arm of the combiner a
higher-order, below threshold mode is radiated, leading to zero output optical power.

The field profiles in the combiner are shown qualitatively in Fig. 6.12. Due to the
conversion of phase modulation into amplitude modulation through beam interference,
we can call this class of modulators interferometric modulators.
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Figure 6.12 Layout of a coplanar Mach–Zehnder modulator: ON state (above), OFF state (below). In the
OFF state the optical fields are radiated away out of the combiner.

6.4.1 The lumped Mach–Zehnder modulator

The basic building block of the Mach–Zehnder interferometric modulator (Fig. 6.13) is
the phase modulator section. We assume that the electrooptic material is LN; for semi-
conductors, the treatment is similar. Suppose that the optical waveguide lies between a
ground plane and an electrode at potential VA (this is the case for the upper modulation
section in a Mach–Zehnder modulator; see Fig. 6.12); the electric field will be directed
toward the negative z axis (consider, e.g., an X-cut case, Fig. 6.6). The phase difference
induced by VA over an interaction region of length L , with respect to the case in which
VA = 0, can be expressed as8

�φ =
∫ L

0
[k (VA)− k (0)] dx = 2π

λ0

∫ L

0
�no dx = πn3

er33�mo

λ0

L

G
VA, (6.12)

where no is the TE or TM modal index. The phase variation �φ is therefore a lin-
ear function of the applied voltage. In the symmetric Mach–Zehnder configuration, the
voltages applied to the two phase modulation sections (upper and lower, see Fig. 6.12)
induce, in the upper and lower waveguides, RF fields with opposite direction. Since the
dominant electrooptic effect is linear, the modal index variation will also be equal in
magnitude in the upper and lower modulation sections, but with opposite sign. If we
assume that the central electrode in Fig. 6.12 is at VA, while the upper and lower strips
are grounded, the phase variations of the upper and lower arms will add, so that the
phase difference between the optical fields at the end of the phase modulation section
will be

|�φU −�φL | = 2πn3
er33�mo

λ0

L

G
VA.

In the symmetric case, �φU = −�φL . When |�φU −�φL | = π , the optical fields in
the combiner interfere destructively and the modulator is in the OFF state. The voltage

8 According to our notation, a harmonic wave propagating in the positive x direction has a phase term
exp(−jkx + jωt). Thus, the additional phase rotation induced by the modulator is exp(−j�φ) rather than
exp(j�φ), see (6.12).
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Figure 6.13 Coplanar lumped Mach–Zehnder modulator.

needed to bring the modulator into the OFF state from VA = 0 (the ON state), i.e., the
modulator Vπ , can be derived from the condition:

|�φU −�φL | = 2πn3
er33�mo

λ0

L

G
Vπ = π → Vπ = λ0

2n3
er33�mo

G

L
.

Note that the phase variation for each arm is π/2 at VA = Vπ .

6.4.2 Static electrooptic response

The DC electrooptic response of the modulator can be derived as follows. Suppose that
the input splitter is matched at port 1 (the input) and at the two outputs (ports 2 and 3);
suppose that the two output ports are isolated. Neglecting losses, the scattering matrix
of the splitter can be expressed by inspection as

Ssp =
⎛⎝ 0

√
α ejφsp

√
1 − α ejφsp√

α ejφsp 0 0√
1 − α ejφsp 0 0

⎞⎠ .
The parameter α accounts for the power asymmetry of an asymmetrical splitter; if α =
1/2 the splitter is symmetrical. Note that Ssp satisfies the lossless condition SspS†

sp = 1.
Similarly, the scattering matrix of the combiner with input ports 2 and 3 and output
port 1 is Sc = Ssp. Assume that the incident optical power wave into port 1 is a1; the
transmitted power waves at ports 2 and 3 will be

b2 = √
αejφsp a1, b3 = √

1 − αejφsp a1.

Assuming that the upper and lower arms are perfectly matched, the power waves at
the combiner inputs, a′

2 (upper arm) and a′
3 (lower arm), are

a′
2 = √

αejφsp a1e−jko L−j�φU , a′
3 = √

1 − αejφsp a1e−jko L−j�φL ,
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and therefore the combiner output b′
1 will be

b′
1 = e2jφsp e−jko L

[
αe−j�φU + (1 − α) e−j�φL

]
a1. (6.13)

If the input and output optical waveguides have the same impedance, the ratio between
the input and output optical power can be expressed as

T (Vin) = Pout

Pin
=
∣∣∣∣b′

1

a1

∣∣∣∣2 = η {1 + 2α (1 − α) [cos(�φU −�φL)− 1]} , (6.14)

where the additional factor η accounts for the optical insertion loss of the modulator.
Let us now confine the treatment to a modulator with a symmetrical splitter, but with

possibly asymmetrical upper and lower arms. The case is practically important since
it corresponds to the ordinary (non-dual-drive) Z-cut modulators, due to the different
overlap integrals.

From (6.14) we have, for α = 1/2,

T (Vin) = η

2
[1 + cos(�φU −�φL)] .

Define now as VπU and VπL the voltages (applied to the upper and lower arms,
respectively) for which �φU = π , �φL = −π . We have

�φU = π
vinU

VπU
, �φL = −π vinL

VπL
. (6.15)

The two voltages VπU,L are defined by the relation:∣∣�φU,L
∣∣ = πn3

er33�moU,L

λ0

L

G
VπU,L = π → VπU,L = G

L

λ0

n3
er33�moU,L

. (6.16)

Assume now that vinU = vinL = vin ; we have

T (vin) = η

2

{
1 + cos

[
π

(
1

VπU
+ 1

VπL

)
vin

]}
= η

2

{
1 + cos

(
π
vin

Vπ

)}
, (6.17)

where

Vπ = VπU VπL

VπU + VπL

is the total modulator on–off voltage for which T (vin) = 0. The modulator static
transfer curve is therefore a raised cosine, as shown in Fig. 6.14.

6.4.3 Lumped modulator dynamic response

Suppose now that the generator open-circuit voltage vA(t) is time-varying; to evaluate
the modulator response we express the input voltage vin(t), see Fig. 6.13, as a function
of vA(t), taking into account the input equivalent circuit including the generator resis-
tance RG and the modulator input capacitance C (the circuit considered is the same as
in Fig. 6.42, in which the gray box is removed, the stray inductances are not considered,
RL → ∞, and Cpad is the modulator capacitance). The effect of other elements, such
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Figure 6.14 DC electrooptic response of a symmetric Mach–Zehnder modulator. The Vin = Vπ/2 bias
corresponds to the inflexion point in the transfer curve and therefore to the maximum (local)
linearity.

as a modulator output load resistance and parasitic stray inductances and capacitances,
can easily be accounted for at circuit level. In general, we can conveniently work in the
frequency domain and relate the modulator input voltage phasor Vin (ω) to the generator
voltage phasor VA (ω) through a low-pass transfer function H(ω) as

Vin (ω) = H(ω)VA (ω) ,

where H(0) = 1. Assuming that (6.15) holds for time-varying input voltages, we can
associate with the upper and lower phase modulation section phase delays a proper
phasor �φα(ω), α = U, L . Applying the same input voltage to the upper and lower
phase modulator sections, we therefore obtain

�φU (ω) = π
Vin (ω)

VπU
= πH(ω)

VA (ω)

VπU

�φL(ω) = −π Vin (ω)

VπL
= −πH(ω)

VA (ω)

VπL
.

In dynamic conditions, the relation between the phase delay and the input voltage is
linear but dispersive (with low-pass behavior). Taking into account that the relation
between the phase delay and the output power (6.17) is nonlinear but memoriless, we
can finally express the dynamic modulator response as

pout (t)

Pin
= η

2

{
1 + cos

(
π
vin(t)

Vπ

)}
= η

2

{
1 + cos

(
π
F−1 [H(ω)VA (ω)]

Vπ

)}
,

where F is the Fourier transform and F−1 the inverse transform.9

9 From a system standpoint, the modulator can be decomposed into a dispersive linear system (the phase
modulation sections) in cascade with a nonlinear memoriless system (the combiner). Such a decomposition
can be conveniently exploited to generate system-level CAD models for electrooptic modulators, see [90].
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To express the overall frequency response of the modulator, we assume small-signal
operation with respect to a DC working point, i.e.,

vA(t) = VA,DC + v̂A(t), vin(t) = Vin,DC + v̂in(t),

where v̂A(t), v̂in(t) are small-signal components. Linearizing around Vin,DC we obtain

pout (t)

Pin
= η

2

{
1 + cos

(
π

Vin,DC + v̂in(t)

Vπ

)}
≈ η

2

{
1 + cos

(
π

Vin,DC

Vπ

)}
︸ ︷︷ ︸

Pout,DC/Pin

− η
π

2Vπ
sin

(
π

Vin,DC

Vπ

)
v̂in(t)︸ ︷︷ ︸

p̂out (t)/Pin

.

To maximize the modulator linearity (e.g., in analog applications), the bias point can be
chosen at Vπ/2; in this case, one has

pout (t)

Pin
≈ η

2
− η

π

2

v̂in(t)

Vπ
,

i.e., the modulator bias is at half optical power (assuming no losses), and

p̂out (t)

Pin
= η

π

2

v̂in(t)

Vπ
→ P̂out (ω)

Pin
= η

π

2

Vin(ω)

Vπ
= η

π

2
H(ω)

VA (ω)

Vπ
.

The normalized modulator frequency response is, therefore

m(ω) =
∣∣P̂out (ω)

∣∣∣∣P̂out (0)
∣∣ = |H(ω)| ,

since H(0) = 1, and coincides with the frequency response of the phase modulation
section:

�φα(ω)

�φα(0)
= H(ω), α = U, L .

This is by no means surprising, since the phase modulation section is the only dispersive
block in the modulator.

6.4.4 Efficiency–bandwidth trade-off in lumped MZ modulators

To increase the modulator efficiency (i.e., the modulator’s ability to be operated by
a generator with a reduced available power and open-circuit voltage), Vπ should be
decreased. The product Vπ L is, however, constant for a given geometry, see (6.16),
and can be minimized by increasing the overlap integral, reducing the gap G, and
improving the material properties; once Vπ L has been minimized, Vπ can be decreased
only by increasing the modulator length L . Unfortunately, increasing L reduces the
lumped modulator bandwidth, since it increases the input capacitance. For the sake
of definiteness, let us consider a coplanar modulator and denote as C0 the per-unit-
length capacitance of the central strip with respect to the two ground planes; RG is
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the generator internal resistance. The modulator input voltage induced by a generator
voltage VA (ω) will be

Vin (ω) = VA (ω)
1

1 + jωRGCin
= H(ω)VA (ω) ,

where Cin = C0L is the total input capacitance of the device. The modulator response
is then

m(ω) = |H(ω)| = 1√
1 + ω2 R2

GC2
in

. (6.18)

From the definition of the 3 dB electrical bandwidth:

mop( f3dB,el)
∣∣
dB = 20 log10

[
m( f3dB,el)

] = 20 log10
1√

1 + ω2
3dB,el R

2
GC2

in

= −3 dB

we obtain:

2π f3dB,el RGCin = 1 → f3dB,el = 1

2πRGCin
∝ 1

L
.

Following the definition of the optical bandwidth, we find instead:

f3dB,op =
√

3

2πRGCin
∝ 1

L
.

Independently of the definition considered, it is clear that increasing the modulator
length decreases the on–off voltage but also decreases the modulator bandwidth. As
shown in Example 6.1, with realistic input voltages (of the order of 5 V), the bandwidth
of a lumped modulator is unsuited to applications with speed above 1 Gbps.

Example 6.1: Evaluate the product f3dB,opL for a X-cut LN modulator with “typi-
cal” parameters. Assume as a goal Vπ ≈ 5 V, with r33 = 30 pm/V, ne = neo = 2.25,
λ0 = 1.55 μm, �mo = 0.5, RG = 50�, and suppose that the gap is kept to a minimum
value to allow the optical waveguide to be defined between the central electrode and
ground plane (G = 10 μm). Furthermore, assume that the central electrode width is
W = 20 μm to ensure decoupling between the two optical waveguides.

We have

Vπ L = λ0G

2n3
er33�mo

= 1.55 × 10−6 · 10 × 10−6

2 · 2.253 · 30 × 10−12 · 0.5
= 4.5 × 10−2 V m = 4.5 V cm.

To evaluate the bandwidth, we need to compute the capacitance of the central strip with
respect to the two lateral coplanar ground planes. The capacitance per unit length can
be expressed, from (3.29) and (3.31), as

C0 = εeff

30πc0

K (k)

K (k′)
,
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where c0 is the velocity of light in vacuo, K is the elliptic integral of the first kind,
k = W/(W + 2G) = 0.5, εeff is the coplanar effective permittivity (3.32):

εeff = n2
m = 1 + √

εxmεzm

2
= 17.64.

Taking into account the approximation (3.33), we have k′ = √
1 − 0.52 = 0.87 and

K (k)

K (k′)
≈ 1

π
log

(
2

1 + √
k′

1 − √
k′

)
= 1

π
log

(
2

1 + √
0.87

1 − √
0.87

)
= 1.29;

i.e.,

C0 = εeff

30πc0

K (k)

K (k′)
= 17.64 · 1.29

30π · 3 × 108
= 8.05 pF/cm.

The resulting bandwidth–length product will be

f3dB,opL =
√

3

2πRGC0
=

√
3

2π · 50 · 8.05 × 10−12
= 690 MHz cm.

We can therefore conclude that a modulator with suitable Vπ (requiring a length of
the order of 1 cm) has a bandwidth of the order of 1 GHz (take into account that the
capacitance can be somewhat reduced by means of thick electrodes and the use of low-
permittivity dielectric layers).

6.5 The traveling-wave Mach–Zehnder modulator

As discussed in Section 6.4.4, the bandwidth of a LN concentrated modulator having
realistic on–off voltage (≈ 5 V) is of the order of 1 GHz cm. Reducing the modulator
length leads to an increase of the bandwidth, but also of the switching voltage Vπ . The
efficiency–bandwidth trade-off, however, can be substantially improved by making use
of a distributed rather than of a concentrated (lumped) modulator structure, as shown
in Fig. 6.15. In the distributed or traveling-wave modulator the RF structure works as
a transmission line rather than as a concentrated capacitor. The RF signal is fed from
the RF input through a coaxial connector (shown in idealized form), and propagates on
the coplanar waveguide (CPW) through the interaction length, inducing an electric field
that travels together with the optical signal. The optical and RF fields therefore undergo
synchronous interaction (as long as their phase velocities are the same). The coplanar
transmission line is terminated by an RF load, which may be connected (internally or
externally) to an output coaxial connector. Note that an optical fiber is also pigtailed at
the optical input and output of the modulator.
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Figure 6.15 Distributed Mach–Zehnder modulator on LN substrate.

6.5.1 Mach–Zehnder traveling-wave modulator dynamic response

In Section 6.4.3 we have shown that, since the optical combiners and dividers are mem-
oriless components, the modulator small-signal frequency response coincides with the
frequency response of the phase modulation section. We now analyze the phase modula-
tion frequency response of the traveling-wave modulator on the basis of the distributed
interaction between the RF and the optical fields. The RF waveguide is a quasi-TEM
transmission line, whose voltage can be expressed as a superposition of forward and
backward (reflected) waves:

vm(z, t) = V +ejω(t−z/vm )−αm z + V −ejω(t+z/vm )+αm z (6.19)

where vm is the RF phase velocity, αm is the RF attenuation, and V + and V − are com-
plex constants to be determined from the generator and load conditions. The RF voltage
vm(z, t) in (6.19) is expressed as a complex signal; the corresponding real signal can
be obtained as Re(vm). Suppose now that an optical wave is traveling in the forward
direction (positive z) with group velocity vo,10 entering the line (z = 0) at time t0. At
t1 > t0 the optical wavefront is at z = (t1 − t0)vo, i.e., t1 = t0 + z/vo. The time t2 at
which the optical wavefront reaches the end of the interaction region will therefore be
t2 = t0 + L/vo, where L is the length of the interaction region see Fig. 6.16.

While traveling along the line, the optical wave experiences, due to the effect of the
RF field, a local variation of the refractive index n; for the sake of generality we will
assume that n is complex, n = nr − jni . Let us call such a variation�n = �nr − j�ni ,

10 For a monochromatic laser beam entering the modulation region, vo should rather be interpreted as the
phase velocity; however, as soon as phase modulation takes place, the optical signal becomes a narrowband
modulated signal and the wavefront propagation velocity should be the group velocity. See also [91].
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Figure 6.16 Transmission line model of the phase modulation section of an electrooptic modulator.

and assume that �n depends linearly on the local voltage vm(z, t):

�n(z, t) = avm(z, t), (6.20)

where a is a proper constant. The total amplitude and phase variation of the optical field
can be recovered by integrating�n as seen by the optical field while traveling along the
transmission line, i.e., �n(z, t (z)), where

t (z) = t0 + z/vo = t2 − L/vo + z/vo.

Defining E as the optical field at the output of the interaction region, we have

E(t2) = E(t2,�n = 0) exp

[
−jko

∫ L

0
�n

(
z, t2 − L

vo
+ z

vo

)
dz

]
= E(t2,�n = 0) exp

[
−jko

∫ L

0
�nr

(
z, t2 − L

vo
+ z

vo

)
dz

−
∫ L

0
�ᾱo

(
z, t2 − L

vo
+ z

vo

)
dz

]
,

where �ᾱo = k0�ni is the variation in the optical field attenuation. The first inte-
gral describes a cumulative phase modulation, the second one a cumulative amplitude
modulation.

Introducing (6.20) and (6.19), neglecting optical losses and their modulation (�n =
�nr ), we express the phase variation as11

�φ = k0

∫ L

0
�n

(
z, t2 − L

vo
+ z

vo

)
dz = k0a

∫ L

0
vm

(
z, t2 − L

vo
+ z

vo

)
dz

= k0ae
jω
(

t2− L
vo

) ⎡⎣V + e
jω
(

L
vo

− L
vm

)
−αm L − 1

jω
(

1
vo

− 1
vm

)
− αm

+ V − e
jω
(

L
vo

+ L
vm

)
+αm L − 1

jω
(

1
vo

+ 1
vm

)
+ αm

⎤⎦ .
(6.21)

11 The phase variation �φ = �φ(t, ω) is expressed as a complex time-domain signal, with reference time
t = t2. In principle, it could be associated with a phasor �� such as �φ = �� exp(jωt).
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The coefficients V + and V − can be now derived by imposing generator (z = 0) and
load (z = L) boundary conditions:

vm(0, t) = VA exp(jωt)− im(0, t)ZG (6.22)

vm(L , t) = im(L , t)ZL , (6.23)

where ZG (ZL ) are the generator (load) impedance, respectively (typically real), and
VA is the open-circuit generator voltage. To this end, the line voltage and current can be
written, taking into account (6.19) and (3.19), (3.20), as

vm = V + exp(−γm z + jωt)+ V − exp(γm z + jωt)

im = V +

Z0
exp(−γm z + jωt)− V −

Z0
exp(γm z + jωt),

where γm is the RF complex propagation constant,

γm = αm + jβm = αm + jω/vm,

and Z0 is the line characteristic impedance. Imposing (6.22) and (6.23) leads to the
expressions

V + = 1

1 − �L�G exp(−2γm L)

Z0

Z0 + ZG
VA (6.24)

V − = �L exp(−2γm L)

1 − �L�G exp(−2γm L)

Z0

Z0 + ZG
VA, (6.25)

where the load and source reflection coefficients have been introduced:

�L = Z0 − ZL

Z0 + ZL
, �G = Z0 − ZG

Z0 + ZG
.

We finally take into account that in the Mach–Zehnder LN amplitude modulator nr = ne

and that, from (6.10) and (6.20),

k0a = πn3
r r33

λo

�mo L

G
= πn3

er33

λo

�mo L

G
.

Substituting V + and V − from (6.24) and (6.25) into (6.21) and defining

βo = ω/vo

(note that βo �= 2π/λo!), the phase variation of the optical field at the end of the phase
modulation section and at t = t2 can finally be expressed as

�φ(t2, ω) = πn3
er33

λo

�mo LVA

G

Z0

Z0 + ZG

ejωt2e−γm L

1 − �L�Ge−2γm L

×
[

1 − e−j(βo−βm )L+αm L

j(βm − βo)L + αm L
− �L

1 − e−j(βo+βm )L−αm L

j(βm + βo)L + αm L

]
, (6.26)
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or, in a more compact form and assuming t = t2 (the time at which the wavefront
reaches the end of the modulating region) as the reference time,

�φ(ω) = πn3
er33

λo

�mo L

G

Z0e−γm L

Z0 + ZG

F(u+)+ �L F(u−)
1 − �L�Ge−2γm L

VAejωt = H(ω)VAejωt ,

(6.27)
where

F(u) = 1 − exp(u)

u
(6.28)

u±(ω) = j(±βm − βo)L ± αm L = ±αm L + j
ω

c0
(±nm − no)L . (6.29)

An alternative, equivalent form for H(ω) is

H(ω) = πn3
er33�mo

λo

L

G

Zin

Zin + ZG

(ZL + Z0)F(u+)+ (ZL − Z0)F(u−)
(ZL + Z0)eγm L + (ZL − Z0)e−γm L

, (6.30)

where Zin is the RF line input impedance:

Zin = Z0
ZL + Z0 tanh (γm L)

Z0 + ZL tanh (γm L)
.

The modulation response of the distributed modulator can be finally expressed as

m(ω) =
∣∣∣∣�φ(ω)�φ(0)

∣∣∣∣ =
∣∣∣∣H(ω)

H(0)

∣∣∣∣
= RL + RG

RL

∣∣∣∣ Zin

Zin + ZG

∣∣∣∣ ∣∣∣∣ (ZL + Z0)F(u+)+ (ZL − Z0)F(u−)
(ZL + Z0)eγm L + (ZL − Z0)e−γm L

∣∣∣∣ , (6.31)

where we have assumed (neglecting DC ohmic losses) Zin(0) ≈ ZL(0) = RL , ZG(0) =
RG , F(u(0)) ≈ 1, γm(0)L ≈ 0 and therefore

�φ(0) ≈ πn3
er33�moVA

λo

L

G

RL

RL + RG
.

Note that the DC value coincides with the result already found, see (6.12), assuming that
the load is open (RL → ∞). In particular, the distributed frequency response coincides
with the lumped-parameter response if we neglect RF losses in the line. In fact, assume
RL → ∞ and make L → 0; in this case F(u) ≈ 1 and

m(ω) ≈
∣∣∣∣ Zin

Zin + RG

∣∣∣∣ ,
but

Zin →
ZL=RL→∞

Z0

tanh (γm L)
≈ Z0vm

jωL
= 1

jωL

√
L
C︸︷︷︸

Z0

1√LC︸ ︷︷ ︸
vm

= 1

jωCin

where L and C are the inductance and capacitance per unit length of the line, Cin is the
input capacitance of the line, and we have approximated tanh(γm L) = tanh (jωL/vm) ≈
jωL/vm . Therefore we obtain
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m(ω) = 1√
1 + ω2 R2

GC2
in

,

the result we already found for the lumped-parameter modulator, see (6.18).

6.5.2 Analysis of the TW Mach–Zehnder modulator response

The frequency response of the distributed Mach–Zehnder modulator is dominated by
the following main factors:

1. The velocity mismatch between the optical and RF propagating waves, related to
the index mismatch �nmo = nm − no. This parameter has an influence on u+ and
therefore on F(u+).

2. The impedance mismatch between the load, the transmission line, and the generator.
3. The RF losses of the modulator line.

In order to single out the effect of each factor, consider first the modulation response
m1(ω) of a lossless modulator (αm = 0) with a matched load and generator (ZL =
ZG = Z0). From (6.31) we obtain

m1(ω) = |F(u+)| =
∣∣∣∣ sin (U )

U

∣∣∣∣ , U = ω

2c0
(nm − no)L = π f�nmo L

c0
,

and the frequency response is dominated by the velocity mismatch between the RF and
optical signals. With zero velocity mismatch, m1(ω) = 1, independent of frequency, and
the bandwidth is ideally infinite. For finite velocity mismatch, the behavior is shown in
Fig. 6.17 for L = 11 mm; the relative mismatch is defined as�% = [

(nm − no) /no
]×

100; in LN we always have nm > no.
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Figure 6.17 Effect of velocity mismatch on the Mach–Zehnder frequency response.
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The velocity mismatch-dependent modulator electrical and optical bandwidth can be
evaluated by imposing (6.4) and (6.5) to m1(U ); we obtain U3dB,op = 1.89, U3dB,el =
1.39, i.e.,

f3dB,opL = 1.89c0

π�nmo
= 0.180

�nmo
GHz m

f3dB,elL = 1.39c0

π�nmo
= 0.133

�nmo
GHz m.

Taking into account that L ≈ 1 cm to obtain Vπ ≈ 5 V, we have that the velocity
mismatch for 10 Gbps operation (optical bandwidth) is �nmo = 1.8. For a coplanar
modulator on a LN niobate one has �nmo = nm − no = 4.22 − 2.2 ≈ 2. Thus, even
without accounting for losses, a straightforward modulator without any structure opti-
mization aimed at improving synchronous coupling can cover 2.5 Gbps applications but
can hardly satisfy 10 Gbps specifications.

RF losses cause a decrease of the bandwidth and the filling of response zeros, see
Fig. 6.18. Since the RF signal line cross section is very small (e.g., the width and thick-
ness are of the order of 10 μm), and skin effect losses increase anyway as

√
f , conductor

losses can be a major limitation to the high-speed modulator operation.
Assuming synchronous coupling and input and output impedance matching, the RF

loss-limited response m2(ω) is, from (6.31),

m2(ω) = exp (−W )

∣∣∣∣ sinh(W )

W

∣∣∣∣ , W = αm( f )L

2
= αm( f0)L

2

√
f

f0
.

The loss-dependent modulator electrical and optical bandwidth can be evaluated by
imposing (6.4) and (6.5) on m2(W );
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Figure 6.18 Effect of losses on the distributed Mach–Zehnder modulator frequency response. Losses are
introduced in the case where the velocity mismatch is 5%.
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we obtain W3dB,op = 0.794 and W3dB,el = 0.368, i.e.,

αm( f3dB,op)L

2
= 0.794 → αm( f3dB,op)L = 1.588 → αm( f3dB,op)L

∣∣
dB = 6.897 dB

αm( f3dB,el)L

2
= 0.368 → αm( f3dB,el)L = 0.736 → αm( f3dB,el)L

∣∣
dB = 6.393 dB.

The total line attenuation at the frequency corresponding to the bandwidth is there-
fore 6.9 dB for the optical bandwidth and 6.4 dB for the electrical 3 dB bandwidth. As
an example, in order to allow for 40 Gbps operation, the (loss-limited) 3 dB optical
bandwidth of a 1 cm long modulator should satisfy the constraint

αm(40 GHz)L|dB = 6.897 dB → αm(40 GHz)|dB = 6.897 dB/cm;
i.e., the 1 GHz loss should be

αm(1 GHz)

√
40 GHz

1 GHz
= 6.897 dB/cm → αm(1 GHz) = 6.897√

40
= 1.1 dB/cm.

This is a very low value, considering the small line cross section of modulator lines.
Finally, assume that no losses are present and that the velocities are matched; the

effect of impedance mismatch can be better understood by separating the phase delay
into two contributions:

�φ(ω) = �φ+(ω)+�φ−(ω),

where�φ+(ω) is the phase modulation due to codirectional coupling, i.e., the coupling
between the RF forward-traveling wave and the optical mode, while �φ−(ω) is the
phase modulation due to contradirectional coupling, i.e., the coupling between the RF
backward or reflected wave and the forward-traveling optical wave. From (6.27) we
obtain

�φ+(ω) = πn3
er33

λo

�mo L

G

Z0

Z0 + ZG

e−γm L

1 − �L�Ge−2γm L
F(u+)VAejωt

�φ−(ω) = πn3
er33

λo

�mo L

G

Z0

Z0 + ZG

e−γm L

1 − �L�Ge−2γm L
�L F(u−)VAejωt .

Contradirectional coupling is never synchronous, and typically leads to a rapidly
decreasing sin x/x behavior with increasing frequency. Neglecting losses and velocity
mismatch, we obtain from (6.27) the impedance mismatch-limited response m3(ω):

m3(ω) =
∣∣∣∣�φ(ω)�φ(0)

∣∣∣∣ =
∣∣∣∣∣ (1 − �L�G)

[
1 + �L F(U−)

]
1 − �L�G exp(−2jβm L)

∣∣∣∣∣ , U− = −j
2ω

c0
no L .

Impedance mismatch leads to ripples in the frequency response; see Fig. 6.19.
Complete mismatch is achieved with an open-circuit or short-circuit modulator.

The open-circuit modulator has a narrowband low-pass response, somewhat similar to
the response of a lumped modulator, while the short-circuit modulator has zero effi-
ciency at DC (due to the cancellation of co- and counterpropagating responses) and
exhibits a resonant peak at higher frequency; see Fig. 6.20. Shorted resonant modulators
can sometimes be used for narrowband operation, since they increase their efficiency



390 Modulators

Frequency, Hz

109

–12

–10

–8

–6

–4

–2

0

2

1010

ZL = Zg = 1.3Z0

ZL = Zg = 0.7Z0

ZL = Zg = Z0

1011

M
od

ul
at

io
n 

in
de

x,
 d

B
 (

op
tic

al
)
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Figure 6.20 Resonant modulators in short or open. The starting impedance matched structure is lossless and
the velocity mismatch is 20%.

with respect to velocity-matched modulators on a narrow band. Other examples of
narrowband modulators, which could be suited to narrowband transmission of an analog
signal over an optical fiber, are the phase reversal modulators [92].

Phase reversal modulators can be realized by periodically reversing the sign of the
applied electric field. The optical signal therefore alternately undergoes variations of
the refractive index with opposite sign. This is easily obtained with a Z-cut substrate,
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Figure 6.21 Phase modulation section of a phase reversal modulator on Z-cut LN. ACPW stands for
asymmetric ω planar waveguide.

as shown in Fig. 6.21 (for the sake of simplicity, only the phase modulation section is
shown).

The operation of the phase reversal device can be explained as follows. At low
frequency the phase delay of the RF signal is very low, so that, integrating phase vari-
ations of opposite sign over the modulator length, the net result is zero (Fig. 6.22(a)).
With increasing frequency the RF signal finally undergoes a large phase delay, assum-
ing, at a certain frequency f0, alternate positive and negative sign over the modulator
length; at that frequency the phase variation of the RF wave and the phase variation
in the periodic structure compensate, leading to an overall phase shift of the optical
signal (Fig. 6.22(b)). Thus, the response of the modulator is zero at low frequency,
while it exhibits a resonant peak around f0; see Fig. 6.23 for a simplified example
with only two reversal sections. It may be noted that the response peak occurs at
the same frequency at which a zero response occurs in the absence of phase rever-
sal. The resulting device is clearly suited to the transmission of narrowband analog
signals only.

6.5.3 The Mach–Zehnder modulator chirp

The instantaneous frequency deviation of Mach–Zehnder modulators is dominated by
geometrical factors rather than by material parameters. Let us consider again from
(6.13) the modulator output optical wave

b′
1 = exp(2jφsp) exp (−jko L)

[
α exp(−j�φU (t))+ (1 − α) exp(−j�φL(t))

]
a1

= K
[
α exp(−j�φU (t))+ (1 − α) exp(−j�φL(t))

]
,
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Figure 6.22 Behavior of the induced phase delay in a conventional (a) and phase reversal modulator
(b) at low (continuous line) and high (dashed line) frequency.
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Figure 6.23 Modulation response of a two-section phase reversal modulator.

where K is a time-independent constant. The time-varying phase of the output signal
will therefore be12

ϕ(t) = − tan−1
[

Im(b′
1/K )

Re(b′
1/K )

]
= tan−1

[
α sin(�φU (t))+ (1 − α) sin(�φL(t))

α cos(�φU (t))+ (1 − α) cos(�φL(t))

]
.

The instantaneous frequency deviation can be now directly evaluated as

� f (t) = 1

2π

dϕ(t)

dt
= 1

2π

d

dt
tan−1

[
α sin(�φU (t))+ (1 − α) sin(�φL(t))

α cos(�φU (t))+ (1 − α) cos(�φL(t))

]
.

12 We refer here to a phase term exp(jϕ).
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For simplicity, let us consider a symmetrical splitter and combiner (α = 1/2); we have

� f (t) = 1

2π

d

dt
tan−1

[
sin�φU + sin�φL

cos�φU + cos�φL

]

= 1

2π

d

dt
tan−1

⎡⎢⎣ 2 sin
�φU +�φL

2
cos

�φU −�φL

2

2 cos
�φU +�φL

2
cos

�φU −�φL

2

⎤⎥⎦
= 1

2π

d

dt
tan−1

[
tan

�φU +�φL

2

]
= 1

4π

d(�φU +�φL)

dt

1

4

[
1

VπU

dvinU

dt
− 1

VπL

dvinL

dt

]
, (6.32)

where we have expressed �φU and �φL through (6.15). The Henry chirp parame-
ter can now be conveniently introduced according to (5.52). In fact, for the amplitude
modulation we have

Pout = 1

2
η [1 + cos (�φU (t)−�φL(t))] ,

and therefore

1

Pout

dPout

dt
= π

1
2η sin (�φU −�φL)

1
2η [1 + cos (�φU −�φL)]

[
1

VπU

dvinU

dt
+ 1

VπL

dvinL

dt

]
= tan

(
�φU (t)−�φL(t)

2

)[
1

VπU

dvinU

dt
+ 1

VπL

dvinL

dt

]
. (6.33)

Thus from (6.32) and (6.33) the Henry chirp parameter αH becomes

αH = 4π� f
1

Pout

dPout

dt

=
1

VπU

dvinU

dt
− 1

VπL

dvinL

dt
1

VπU

dvinU

dt
+ 1

VπL

dvinL

dt

cot

(
�φU (t)−�φL(t)

2

)
. (6.34)

In general, αH is a function of time, which may assume positive or negative val-
ues according to the modulator parameters and the driving voltages. If we restrict the
analysis to the case vinU = vinL = vin we have from (6.34)

αH (t) = VπL − VπU

VπL + VπU
cot

[
�φU (t)−�φL(t)

2

]
= VπL − VπU

VπL + VπU
cot

[
π

2

vin(t)

Vπ

]
,

where again

Vπ = VπU VπL

VπU + VπL
.

In small-signal conditions we have vin(t) = Vin + v̂in(t) ≈ Vin and therefore the
Henry parameter becomes a constant:

αH = VπL − VπU

VπL + VπU
cot

[
π

2

Vin

Vπ

]
.
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If we bias the modulator at Vin = Vπ/2, then cot = 1 and chirp can be made positive
or negative (see Fig. 5.38) by proper design of the modulator arms. If the two arms are
unbalanced, the amount of chirp can be varied somewhat by changing the bias point with
respect to Vin = Vπ/2. If, on the other hand, the modulator is completely symmetrical
(as in X-cut Mach–Zehnder modulators on LN) the chirp is identically zero, indepen-
dent of the bias voltage. Z-cut modulators have nonzero chirp, which can conveniently
be designed to be negative to (partly) compensate for fiber dispersion.

On the other hand, variable-chirp modulators can be obtained in principle by exploit-
ing two separate driving voltages for the upper and lower arms. The relevant structure,
called a dual-drive modulator, will be discussed in Section 6.6.1. Dual-drive modulators
typically have a symmetrical structure (VπU = VπL = 2Vπ ) but the upper and lower
phase modulation sections are controlled by different voltages. Suppose we work under
small-signal conditions and apply a symmetrical bias to the two modulator arms;13 we
have

vinU,L(t) = Vin + v̂inU,L(t), v̂inU (t) = VU f (t), v̂inL(t) = VL f (t),

where f (t) is a function of time, so that, setting VπL = VπU and
cot
[
(�φU −�φL) /2

] = cot (πVin/2Vπ ) in (6.34), we obtain

αH = VU − VL

VU + VL
cot

[
π

2

Vin

Vπ

]
.

Working at Vin = Vπ/2 and properly adjusting the magnitude of the RF driving voltages
(VU and VL ), the chirp parameter can be changed from positive to negative.

6.6 High-speed electrooptic modulator design

Achieving high-speed electrooptic modulators for 10 Gbps or 40 Gbps requires the use
of traveling-wave structures. However, a large (more than 100%) velocity mismatch
naturally exists between the optical and RF velocities in a coplanar LN modulator
(see (6.11) and the following discussion), so that the RF structure has to be properly
optimized in order to reduce the microwave refractive index and improve the velocity
matching with the optical signal. Common recipes for LN are the use of low-permittivity
(e.g. SiO2) thin (<1.5 μm) buffer layers interposed between the coplanar electrodes and
the substrate, the increase of the electrode thickness through electroplating to store more
RF energy in air rather than in the high-permittivity LN substrate, and the use of ridge
optical waveguides to optimize the overlap integral.

13 Note that in a X-cut modulator the applied voltage in the center conductor induces opposite fields in the
upper and lower waveguides; in a dual drive Z-cut modulator, see Fig. 6.25(d), opposite driving voltages
have to be imposed to obtain opposite fields. In order to use the same notation as in the single-drive case,
the driving voltage in the lower arm has been assumed with a minus sign, so that equal external driving
voltages can again induce an opposite phase delay.
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For semiconductor modulators, the situation is reversed, since for GaAs the effective
permittivity of a coplanar waveguide is ≈ (1 + εr )/2 = 7, corresponding to an RF index
nm = √

7 = 2.65. On the other hand, the optical refractive index is no ≈ 3.4. To achieve
synchronous coupling, the RF index should be increased (i.e., the RF wave made slower)
through the use of proper RF slow-wave structures. A similar issue was discussed in the
context of velocity-matched traveling-wave photodetectors, see Section 4.10.3.

Reducing the RF line losses is also a must, since line losses are a major limiting
factor to operation beyond 40 GHz. Losses can be partly decreased through electrode
thickening and shaping, but, due to the skin effect, improvements are somewhat lim-
ited, and record attenuations are of the order of 0.3 dB/cm at 1 GHz [93]. Finally, the
switching voltage should be kept low (typically 5 V or less) by reducing the line gap
and sometimes placing the waveguide in a ridge or other special structure to increase
the interaction with the RF field. In semiconductor modulators the use of junctions
allows enhancement of the applied field in the active region; typical switching voltages
are, however, similar to those of LN-based devices. Reducing the switching voltage is
important in high-speed operation, since it makes the design of the driver stage less
critical.

Finally, 50� impedance matching would be highly desirable, since this would sim-
plify the design of driver stages (wideband matching is virtually impossible). This
goal is less difficult to achieve in LN traveling-wave modulators, whose typical line
impedances are of the order of 40–50�, while in semiconductor modulators very often
the impedance level is significantly lower.

To investigate together the velocity matching and loss requirements for high-speed
operation, we consider again the frequency response of a distributed modulator for the
impedance-matched case, and we consider together losses and velocity mismatch. From
(6.31), the response can be written in the form

m(ω) = exp(−u′+/2)
∣∣∣∣ sinh(u+/2)

u+/2

∣∣∣∣ ,
where

u+ = u′+ + ju′′+ = αm L + j
ω(nm − no)L

c0
.

We now plot the 3 dB bandwidth (electrical in this case) as a function of the normal-
ized velocity mismatch �neffL and of the total loss at 1 GHz, α0m L (assuming that
αm ∝ √

f due to the skin effect). The result, shown in Fig. 6.24, indicates that two
regions exist, the first (horizontal lines) is limited by velocity mismatch, the second
(vertical lines) by losses. With the present technology, 40 Gbps modulators can be man-
ufactured but require total RF losses less than 1 dB over the interaction region and
velocity mismatch of the order of 0.4 over an interaction length of 1 cm. Increasing
speed appears far more demanding in terms of attenuation requirements than in terms
of velocity matching.
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Figure 6.24 Requirements on total line loss and velocity matching in order to achieve a given modulation
bandwidth.
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Figure 6.25 Modulator cross sections: (a) low-speed unbuffered X-cut LN modulator; (b) high-speed
buffered X-cut modulator; (c) Z-cut buffered modulator with charge bleed layers; (d) dual drive
Z-cut modulator. Adapted from [94], Fig. 3.

6.6.1 Lithium niobate modulators

Due to the easier technology and the lack of piezoelectrically induced static charge
problems, X-cut modulators have been the initial choice for LN. Figure 6.25 shows a
few solutions to the interaction region, implemented through coplanar RF distributed
electrodes. Solution (a) is an unbuffered X-cut modulator which, due to large velocity
mismatch between the RF and optical modes, has a better modulation bandwidth than
the lumped modulator but cannot achieve 10 Gbps operation. Reduction of the veloc-
ity mismatch is possible through the use of a low-permittivity dielectric buffer (silicon
oxide but also polymers have been exploited to this end) and of metal electrodes thick-
ened through electroplating. Solution (c) is a Z-cut modulator, characterized by better
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efficiency, nonzero chirp, and the need to include a conductive buffer to handle the static
charge accumulation problem. Finally, (d) is an example of dual-drive solution, in which
each phase arm is driven by a different voltage level. The implementation shown is in
Z-cut technology and is symmetrical; the dual-drive Z-cut configuration has a moderate
margin in terms of modulation efficiency.

Example 6.2: Suppose (as a rule of thumb) that a single-drive Z-cut modulator
(Fig. 6.25(c)) has a 30% advantage over an X-cut single-drive modulator of similar
technology (Fig. 6.25(a)) in terms of on–off voltage, because of the superior overlap
integral of the optical waveguide located below the signal conductor. What will be the
advantage for a Z-cut dual-drive (Fig. 6.25(d))?

In the single-drive Z-cut we have VπU �= VπL ; denoting by VπU the voltage required
for π phase shift in the waveguide located under the center (signal) conductor and by
VπL the voltage required for π phase shift in the waveguide located under the ground
plane, we have that the switching voltage for the Z-cut is

VOFF,Z = VπU VπL

VπU + VπL
≈ 0.7VOFF,X

where VOFF,X is the switching voltage for the X-cut. We assume approximately that
VπU < 2VOFF,X < VπL (the modulating action is typically more effective for the central
conductor) and that, in particular,

VπU ≈ 2αVOFF,X, VπL ≈ 2VOFF,X

α
,

with α < 1. Substituting we have

VOFF,Z = α

1 + α2
2VOFF,X ≈ 0.7VOFF,X → α = 0.41.

In the dual-drive configuration, on the other hand, we have VπU = VπL = 2αVOFF,X;
thus the related on-off voltage V DD

OFF will be

V DD
OFF = αVOFF,X ≈ 0.41VOFF,X.

Therefore the Z-cut dual-drive has a 60% advantage over the single-drive X-cut
configuration, or about half of the on–off voltage.

An example of realistic modulator cross section for a X-cut buffered configuration is
shown in Fig. 6.26; the thick Au electrode technology can be based on electroplating
through mask, or on electroplating followed by etching (see, e.g., [94], Section II C).

X-cut modulators can very well cover 10 Gbps applications and are able to reach
the 40 Gbps goal with modulation voltages of the order of 5 V; Z-cut modulators have
superior performances in terms of efficiency but may have inferior chirp; moreover, the
static charge buildup issue requires additional complexities, such as the deposition of
charge bleed layers. Both in X-cut and in Z-cut configurations, a number of solutions
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Figure 6.26 Typical cross section of a high-speed low-permittivity dielectric buffered X-cut modulator.
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Figure 6.27 Some LN modulator structures: (a) coplanar waveguide, Z-cut, with dielectric buffer; (b) same,
but with finite grounds; (c) same, but X-cut with dielectric etching; (d) asymmetric coplanar
waveguide, Z-cut; (e) coplanar waveguide with slanted (overcut) electrodes; (f) coplanar with an
upper shield; (g) with slanted electrodes and dielectric underetching; (h) with slanted electrodes
(minimum loss structure); (i) and (j), same as (h), but with a two-metal layer design.

have been tried, as shown in Fig. 6.27, to reduce the modulation voltage and decrease
the line effective index (at the same time increasing the line characteristic impedance).

The best LN modulator performances have probably been achieved through Z-cut
modulators where the optical waveguides are located in ridge structures. An example
of this design approach is shown in Fig. 6.28 [95]; the characteristic impedance is
50�, the microwave effective index 2.2, and the length–bandwidth and length–on-off
voltage products are B3dB,el L = 90 GHz cm and Vπ L = 10 V cm, respectively. For
5 V operation a 2 cm modulator is needed whose electrical bandwidth exceeds 45 GHz.
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Figure 6.28 Example of Z-cut modulator structure with ridge electrodes. Adapted from [95], Fig. 1.

The RF attenuation presented (0.3 dB/cm at 1 GHz) is one of the lowest achieved in
this kind of structure.

In conclusion, the LN modulator is well qualified as a high-speed device. On this
mature technology are based many commercially available products that can meet the
requirements of long-haul links up to 40 Gbps. However, further progress toward speeds
in excess of 40 Gbps appears to be difficult without introducing entirely new elements
into the design.

6.6.2 Compound semiconductor, polymer, and silicon modulators

Mach–Zehnder semiconductor (GaAs or InP-based) interferometric modulators have
been studied extensively and have been developed to the market stage. Many semicon-
ductor modulators exploit a TE optical mode with vertical RF applied field; the active
region is a thin, undoped, bulk GaAs layer. Moreover, most high-speed devices are
traveling-wave, with slow-wave electrodes aimed at improving the velocity matching to
the optical signal [96]. An example is the Mach–Zehnder GaAs modulator developed
by GEC-Marconi [97], see Fig. 6.29. The RF signal travels on two coplanar strips (one
acting as the ground plane) loaded with T-shaped electrodes (T-rails). T-rails have the
purpose of capacitively loading the transmission line, thus decreasing the phase velocity,
through a set of lumped capacitors; moreover, T-rails apply the RF signal to the active
region where the optical waveguide is located. The connection between the striplines
and the center T-rails is made through a series of airbridges. In the active region, a
floating internal backplane obtained by means of an n-doped layer allows the two ridge
optical waveguides, located immediately below the T-rails (see Fig. 6.29(below)), to
interact with two RF electric fields having opposite directions, thus creating the same
push–pull effect as in a symmetric LN modulator. The splitter and combiner are real-
ized through MMI (multimode interference) combiners and dividers, which are more
compact and integrable than conventional adiabatic transitions. The modulator figures
of merit are B3dB,el L = 53 GHz cm and Vπ L = 7.5 V cm, respectively, comparable
to those of the best LN modulators; 40 Gbps operation is also achieved with driving
voltages of about 5 V.
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Figure 6.29 GEC-Marconi Mach–Zehnder GaAs-based intensity modulator. Adapted from [96],
Fig. 2 and Fig. 3.

Integration with the laser source is a possible advantage of the semiconductor mod-
ulator when compared to the LN solution. A few examples of lasers with integrated
modulators have been proposed so far; see, e.g., Fig. 6.30 for a lumped 10 Gbps Mach–
Zehnder InP modulator integrated with a DFB laser [98]. The modulator waveguide
is placed in the central part of a PpN structure with a MQW; the modulator exhibits
negative chirp.

With respect to other integrated solutions, the Mach–Zehnder modulator certainly
has some performance advantage (i.e., in terms of chirp) but also has the disadvantage
of large size when compared to the source. On the other hand, integration allows the
modulator efficiency to be improved through the use of MQW structures, which exploit
exciton resonances and therefore have a narrow optical bandwidth, that must be tuned
to a specific source.

Example 6.3: Evaluate the Henry parameter in the modulator shown in Fig. 6.30. The
intensity has �Pout = 0.9 − 0.1 = 0.8 in arbitrary units with an average power Pout =
0.4 and the increasing pulse has a risetime of �t ≈ 500 ps. The frequency deviation
(maximum) is � f = −5 GHz.

From the definition of αH we have

αH = 2
2π� f
1

Pout

dpout

dt

≈ 2
2π� f

1

Pout

�Pout

�t

= −2
2π · 5 × 109

1

0.5

0.8

50 × 10−12

= −1.96.

The same parameter is somewhat smaller for the decreasing pulse wavefront. The
modulator shown is actually dual-drive, with an extinction ratio of the order of
10 log10(0.9/0.1) ≈ 9.5 dB.
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Polymer-based modulators appear (from the standpoint of material properties) as a
promising substitute to LN-based devices; performances are comparable to the best LN
modulators (electrical bandwidth of 40 GHz with on–off voltage less than 4 V; optical
insertion loss of 6 dB, zero chirp), with slightly inferior optical power-handling capabil-
ities. As already mentioned, long-term stability and the need for hermetic packages is a
major problem in polymer-based devices.

During the last few years, the prospect of monolithically integrating an optical
transceiver (apart from the laser source) on a Si substrate has fostered research in
the area of Si-based modulators. In Si, the linear electrooptic effect is zero because
of crystal symmetries, and the only way to modulate the material refractive index is
through the so-called plasma dispersion effect, related to the density of free carriers in
the semiconductor. Such an effect, besides being rather weak (and therefore requiring
long interaction lengths in a MZ configuration), can be implemented in a forward-
bias pn junction, in a reverse-bias pin junction, or in a MOS junction exploiting an
inversion channel [99]. The main problems with some Si-based configurations are the
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Figure 6.31 Simplified cross sections of the phase modulation section in Si-based MZ modulators:
(a) 10 Gbps MOS modulator [100]; (b) 40 Gbps pn modulator [101].

switching times, often disappointing due to the limits posed by the minority carrier
lifetime.

A 10 Gbps modulator was implemented by INTEL researchers in the MOS technol-
ogy [100]; see Fig 6.31(a). The structure is made of n-type Si with an upper rib of p-type
Si obtained through epitaxial lateral overgrowth; between the two Si regions there is a
thin insulating layer. Positive bias applied to the p-type Si leads to charge accumula-
tion in the interface, with a change of the refractive index. The structure operates as
the phase shift block in a MZ modulator (note that no push–pull operation is strictly
possible).

More recently, a 40 Gbps modulator with 30 GHz electrical bandwidth was obtained,
again by INTEL researchers [101]. The phase modulator section makes use of a reverse-
bias pn junction, see Fig 6.31(b); the reduced capacitance allows for larger speed. The
interaction length is 1 mm, and the driving voltage exploited in the device measure-
ment was 6 V peak-to-peak superimposed on a 3 V bias; the switching voltage was
estimated as 4 V cm. To reduce the driving voltage without increasing the interaction
length, alternative approaches, such as the use of photonic crystal waveguides, were
also proposed, with a much shorter interaction length (80 μm) [102]. Other solutions
for Si-based modulators exploited SiGe-Si QW and MQW structures (see [99] and
references therein).

6.7 Electroabsorption modulator physics

Electroabsorption modulators (EAMs) exploit the variation in the semiconductor opti-
cal absorption caused by an applied electric field. EAMs can be based on two physical
mechanisms: the Franz–Keldysh effect, FKE, or photon-assisted tunneling, typical of
bulk semiconductors; or the quantum confined Stark effect (QCSE), occurring in quan-
tum wells. The QCSE also implies the modulation of excitonic absorption. The FKE
is weaker, but the resulting optical bandwidth is wider (though not as wide as in
EOMs); on the other hand, the QCSE is stronger but optically narrowband. In practice,
QCSE-based modulators are able to modulate a single channel and, therefore, more
conveniently appear as devices integrated with the laser source.
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6.7.1 The Franz–Keldysh effect (FKE)

Consider the band structure of a bulk, direct-bandgap semiconductor in the absence of
an applied electric field. To promote a transition from the conduction to the valence
band, a photon is needed with an energy larger than the gap Eg . An applied field, see
Fig. 6.32, causes the bands to bend; now, a photon with E ph < Eg can virtually bring
the electron very close to the conduction band edge; further motion in the real space,
made possible by tunneling through a thin and possibly low potential barrier, allows the
electron to be promoted to the conduction band.

From a macroscopic standpoint, the application of an external field allows the mate-
rial to absorb photons having energy lower than the absorption edge ≈ Eg . Below the
absorption edge, an energy interval exists where α ≈ 0 without applied field, but α � 0
in the presence of an applied field; in such a wavelength range, light switching can be
carried out by applying to the absorption region of the device a voltage large enough to
induce an electric field leading to a significant variation of the absorption.

The absorption profile resulting from the FKE in the presence of an applied field
is shown qualitatively in Fig. 6.33. The ripples in the absorption profile are such as
to have constant area below the α curve with respect to the zero-field case. The FKE is
typically rather weak, and requires electric fields of the order of E > 105 V/cm to obtain
significant variations of α; it is optically rather wideband and polarization insensitive.
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E = 0

Eg – hf
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Figure 6.32 Franz–Keldysh effect: semiconductor bandstructure without (left) and with (right) applied
electric field and tunneling-assisted photon absorption.
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Figure 6.33 Absorption profile with and without applied field due to the FK effect.
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6.7.2 The quantum confined Stark effect (QCSE)

Quantum wells exhibit a band structure with several subbands in the conduction and
valence bands. Let us denote the conduction band levels as C1, C2. . . and the valence
band levels (which split into heavy and light hole levels) as HH1, HH2. . . and LH1,
LH2. . . . Selection rules only allow some of the transitions between levels to occur, and,
moreover, make the transition interaction strengths generally different for TE or TM
polarized photons. The QW absorption profile is inherited from the staircase-shaped
joint density of states (JDOS), see Section 2.4.3, although only the steps corresponding
to allowed transitions are considered, see Fig. 6.34; the weight of each step will be
different for different polarizations.

The effect of excitons (see Section 2.4.3), which can be detected in quantum wells
at room temperature, play a significant role in the QW optical properties. Excitons are
bound states involving one electron and one hole, and their binding energy is larger
in a QW than in the bulk; they interact with photons, leading to absorption peaks
immediately below each step of the JDOS; see Fig. 6.34.

Due to the combined effect of polarization-sensitive selection rules, QW show, even
in the absence of an electric field, a marked dichroism, i.e., a different absorption
and refractive index profile for each polarization; see Fig. 6.34(right) for the qualita-
tive behavior. Since the interaction strength of the C1−HH1 transition is zero for TM
polarization, the first step of the JDOS is missing from the absorption response to TM
polarization, and so is the associated exciton peak.

Application of an external field causes the QW bands to bend, exactly as in the bulk
case; band bending leads to three effects:

• The energy levels involved in the transitions become closer due to the shift in the
QW potential profile; see Fig. 6.35 for an example referring to the C1−H1 transition
(H1 stands for HH1 or LH1 depending on the subband ordering, which may change
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in strained QWs). As a consequence, the absorption edge is red-shifted toward lower
energies.

• The exciton levels undergo a certain amount of energy shift.
• The envelope wavefunctions of the valence and conduction band states change, lead-

ing to a modulation of the transition interaction strength. For very large fields we
expect the interaction strength to decrease, due to the decreasing overlap between
the two wavefunctions.

We can express the photon energy as

E ph = h̄ω = Ee1
h1

− Eex ,

where Ee1
h1

is the energy difference between the C1 and H1 levels, and Eex is the exciton
binding energy (of the order of 10 meV). The intersubband transition energy can be
decomposed as

Ee1
h1

= Eg + Ee1 − Eh1,

where Ee1 is the level of C1 above the conduction band edge, Eh1 is the level of H1

below the valence band edge Ev (Eh1 is therefore negative). It can be shown that the
transition energy decreases with the applied field, according to a quadratic law:

�Ee1
h1

= Ee1
h1
(F)− Ee1

h1
(0) ∝ −C

(
m∗

e + m∗
h

)
q2E2L4

h̄2
,

where E is the applied electric field, L is the (effective) QW thickness, and C = 2.19 ×
10−3 is a dimensionless constant, see [11], Section 13.4.6. An example of the energy
shift for a 9.5 nm GaAs/AlGaAs QW is shown in Fig. 6.36. For applied fields of the
order of 100 kV/cm, corresponding to a potential difference �V = 100 × 103 · 102 ·
9.5 × 10−9 ≈ 100 mV across the QW, the shift is of the order of 10 meV.

A second contribution to the absorption edge shift is caused by the change in the
exciton binding energy; see Fig. 6.37 for an example referring to a GaAs QW [104].
For increasing applied field, the binding energy decreases slightly, i.e., excitons get
closer to the state energy levels; this partly counteracts the shift of the energy levels,
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but, for small QW thicknesses, the variation is about one order of magnitude less than
for �Ee1

h1
.

Let us consider now the total effect resulting from the application of an electric field.
Since typical QW structures are Pi N junctions, the applied voltage causes the junction
to be in reverse bias (exactly as in a pin photodiode). The resulting almost uniform field
in the intrinsic region decreases the intersubband transition energy and the magnitude
of the exciton binding energy (due to decreased Coulomb interaction between elec-
tron and hole). As the overall effect, the absorption spectrum is red-shifted to longer
wavelengths. With increasing applied field, we also observe a quenching of the peak
absorption at the exciton resonance due to decreased electron–hole overlap. Variations
in the absorption profile are finally influenced by the different interaction strength of
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Figure 6.38 Absorption spectra (arbitrary units) for GaAs/Al0.3Ga0.7As QW for TE (left) and TM (right)
polarization. Adapted with permission from [105], Fig. 2, ( c©1985 American Institute of
Physics).

the transitions between the heavy and light hole valence band levels and the electron
conduction band levels. We recall that the predicted relative oscillator strengths are

• for TE polarization, 3/4 (C1−HH1), 1/4 (C1−LH1),
• for TM polarization, 0 (C1−HH1), 1 (C1−LH1).

An example of normalized absorption spectra (derived as the material transmission
in log scale) is shown in Fig. 6.38 [105]; the dichroism also exists in the presence of an
applied field, and the effect of exciton absorption resonant peaks and their quenching
with increasing field is clearly visible. Due to the exciton peaks, large variations of the
absorption can be obtained at comparatively low fields, but only for a very narrow range
of optical wavelengths.

Dichroism may be a limitation in EAMs, at least in discrete (nonintegrated) devices,
since it requires the incoming light to be polarized in a specific TE or TM state.
Polarization-insensitive devices can be developed by removing dichroism through the
use of stressed QWs.

In the presence of applied stress, the QW bandstructure (as the bulk bandstructure)
modifies in two ways: compressive (tensile) stress leads to a decrease (increase) of
the lattice constant, and therefore to an increase (decrease) of Eg; in the bulk, stress
causes heavy and light holes to lose their degeneracy, while in a quantum well it
changes the relative alignments of the heavy and light hole levels. As a result, we
have the situation shown in Fig. 6.39; tensile strain can lead to an alignment of the
LH1 and HH1 energies, by which the polarization anisotropy is suppressed or, at least,
reduced. Introduction of tensile strain in the wells limits the total thickness of the
MQW (to avoid misfit dislocations); however, this effect can be compensated by using
a compressively-strained barrier.

A final effect concerns the dependence of the absorption profile on the carrier den-
sity. Ideally, EAMs operate with almost zero carrier density: the conduction band is
supposed to be empty, and the electric field is uniform and unperturbed by space-charge
effects. However, photogenerated carriers recombine or are swept out of the undoped
(absorption) region with an average lifetime τt , which can be considered as a transit
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or disappearance time. Taking into account that photocarriers are generated by photon
absorption, and have lifetime τt , we obtain from the photon flux continuity equation in
DC steady state:

n

τt
= − d

dx

[
Pop(0)

Ah̄ω
exp(−αx)

]
= α

Pop

Ah̄ω
,

where Pop is the incident optical power and A is the device cross section. The resulting
carrier density is therefore

n = α
Popτt

Ah̄ω
.

With increase in the optical power, the carrier density in the absorption region increases.
Beyond a certain level, optical power saturation may occur due to two effects: first,
generated photocarriers screen the applied external RF field, thus leading to a decrease
of absorption; second, emission begins to play an important role due to band filling, thus
counteracting the effect of absorption and reducing the effective absorption coefficient.
As a result of both effects, absorption will decrease with increasing optical power.

The mechanisms that limit the disappearance time τt are, in bulk modulators, charge
trapping at heterojunctions (e.g., InGaAsP/InP), and in QWs, the accumulation of holes
in the well (due to their higher mass). Bandgap engineering is needed to lower the
relevant band offset and reduce τt . Note that the same problem occurs in photodiodes
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(see Section 4.9.2), where, however, the input optical power is low enough to make
power saturation effects often less significant.14

6.8 Electroabsorption modulator structures and parameters

Early electroabsorption modulators exploited pin vertical structures similar to vertical
photodiodes, with short active (absorption) MQW region (1 μm), and large diameter
(50–100 μm) [106]; an example of the structure cross section is shown in Fig. 6.40(a).
In this vertical design, due to the small thickness of the absorbing stack (similar to the
absorption region of a vertical photodetector), the FKE is too weak to cause significant
contrast ratio, and the exploited physical mechanism was the QCSE.

To overcome these limitations, practical EAM structures are based on wave-
guide approaches (similar to those exploited in waveguide photodetectors, see Sec-
tion 4.10.1); that is, the active region is an optical waveguide with applied electric field
orthogonal to the optical mode propagation. Such structures allow the absorption region
to be long enough in the OFF state, without compromising the driving voltage. An
example is shown in Fig. 6.40(b); the pin structure is designed to form a slab wave-
guide, with typical thickness of the intrinsic absorption region d = 0.1−0.5 μm. The
total length L of the absorption region can be comparatively large (L = 50−300 μm).
Due to the small value of d , the applied field can be large even with a low reverse bias;
typical switching voltages can be as low as 1.5−2V . Both the FKE and the QCSE can
be employed as the absorption modulation mechanism.
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Figure 6.40 (a) Vertical QW electroabsorption modulator (adapted from [106], Fig. 1); (b) waveguide
concentrated EAM.

14 Photodiodes operate in the receiver stage, where the optical power is low, whereas EAMs are directly
connected to the optical source. Photodiode saturation is a major concern, however, in applications such
as the optical generation of microwaves or millimeter-waves, where the optical input power should be
maximized to increase the output RF power.
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6.8.1 EAM static response

The transmission characteristics of an EAM can be derived from the optical mode
absorption αo = �ovα, where α is the material absorption in the active region and �ov

is the overlap integral, see Section. 5.5.1 and (5.18).15 The RF field is almost uni-
form in the active region, inducing a uniform variation of α and negligible variation in
the cladding. Assuming an input and output insertion loss Lop < 1, the transmis-
sion characteristics over a uniform device of length L and input voltage Vin can be
expressed as16

T (Vin) = Pout

Pin
= Lop exp

(
−
∫ L

0
�ovα(Vin) dx

)
= Lop exp [−�ovα(Vin)L] .

The resulting transmission curve is shown in Fig. 6.41; the ON and OFF state losses
are TON,OFF = T (VON,OFF) and the extinction or contrast ratio is ER= TON/TOFF or
ER|dB = TON|dB − TOFF|dB. Note that in QCSE-based devices the response typically
increases again at large applied voltages, due to the weaker overlap between the initial
and final states involved in the absorption process.

From the standpoint of material and structure optimization, a trade-off exists between
the extinction ratio and the ON state residual transmission loss. In fact, we have

ER|dB = 10 log10

[
T (VON)

T (VOFF)

]
= 10 log10

[
Lop exp (−�ovα(VON)L)

Lop exp (−�ovα(VOFF)L)

]
= 4.343 [α(VOFF)− α(VON)]�ovL .

15 The overlap integral takes into account here the fact that the optical field also extends outside of the
active region, where the absorption variation occurs; it is therefore similar in all respects to the parameter
exploited in laser analysis. We assume here that the electric field is uniform in the active region, contrary to
what happens in LN-based EOMs, where the overlap integral takes into account the nonuniform RF field
distribution.

16 Note that Lop in log units is a positive number, i.e., Lop
∣∣
dB = −10 log10 Lop .
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Defining

�α = α(VOFF)− α(VON), α0 = α(VON), K pl = T (VON)/Lop < 1,

where K pl ( K pl
∣∣
dB = −10 log10 K pl ) is the transmission loss in the ON state, neglect-

ing the insertion loss, we have

ER|dB = 4.343 [α(VOFF)− α(VON)]�ovL = �α

α0
× 4.343α0�ovL

= −�α
α0

× 10 log10 {exp [−�ovα(VON)L]}

= −�α
α0

× 10 log10

[
T (VON)

Lop

]
= �α

α0
K pl

∣∣
dB .

Apparently, large contrast or extinction ratios can be achieved by increasing the length
L of the EAM; however, this also increases losses in the ON state. To increase the ER
without compromising the ON state losses, the parameter to be optimized is �α/α0,
i.e., the relative variation of the absorption from the ON to the OFF state. Typi-
cal ON transmission losses are in the range 10–20 dB / mm, while in practical cases
�α/α0 ≈3–10.

Example 6.4: Suppose the ON loss is 10 dB/mm and �α/α0 = 5, with an additional
insertion loss Lop of 1.5 dB. What extinction ratio can we achieve, and what is the
device length, assuming we accept an overall ON insertion loss of 3 dB?

We have K pl
∣∣
dB = 3 − 1.5 = 1.5 dB, i.e.,

ER|dB = �α

α0
K pl

∣∣
dB = 5 · 1.5 = 7.5 dB.

Moreover, the ON loss excluding Lop is 1.5 dB, which is achieved over a length L =
150 μm.

The ON state transmission loss K pl mainly consists of absorption in the wave-
guide in the ON state (equal to �ovαo, where αo is the active region absorption) but
also of free-carrier absorption in the cladding layers (α f c):

α0 ≈ �ovαo(VON)+ (1 − �ov) α f c.

Absorption in the widegap cladding layers is due to the free carrier effect, and
increases with increasing doping (a particularly critical effect in p-doped layers).
The residual absorption in the active region, on the other hand, can be reduced by
increasing the difference between the operating wavelength and the absorption peak
(or absorption edge) of the material, i.e., by detuning the operating wavelength with
respect to the emission wavelength of the material; see Section 6.8.2. Large detuning
implies low loss in the ON state, but also poor extinction ratio.
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Figure 6.42 Equivalent circuit of a lumped EAM connected to a generator and a load resistance. The box
denotes the intrinsic device.

6.8.2 Lumped EAM dynamic response

The dynamic response of lumped EAMs can be evaluated by considering the electric
equivalent circuit, shown in Fig. 6.42. From the electrical standpoint, the EAM is a
reverse-bias pin junction or heterojunction. The intrinsic equivalent circuit of the EAM
includes the series parasitic resistance Rs and the junction capacitance C j :

C j = εrε0 A

d
= εrε0wL

d
,

where A is the junction area, w is the junction width, L is the active region length, d
is the active layer thickness, and εr is the permittivity of the narrowgap intrinsic active
region. The photoresistance R0 originates from the photocurrent Iph generated by the
EAM.17 In general, the absorption depends on the voltage applied to the junction; we
therefore have

Iph = Iph(Vj ),

where Vj is the voltage applied to C j (across the active region), i.e., the driving voltage
of the average field that modulates the absorption. The presence of the photocurrent can
lead to fairly complex effects, since a large photocurrent is able to change the device bias
point by counteracting the effect of the external generator; this is indeed a further cause
of optical power saturation. Assume, however, that the bias effect of the photocurrent is
negligible; we have from (4.29),

Iph = −ηQq

h̄ω
Pin�ovα(Vj )

∫ L

0
e−�ovα(Vj )x dx = ηQ

q Pin

h̄ω

[
1 − e−�ovα(Vj )L

]
.

In small-signal operation, v j (t) = Vj + v̂ j (t) and

Iph = Iph(Vj + v̂ j (t)) ≈ Iph(Vj )+ dIph

dv j

∣∣∣∣
Vj

v̂ j (t) = Iph(Vj )+ 1

R0
v̂ j (t),

i.e., the small-signal photocurrent can be interpreted as the current in a conductance
1/R0 driven by the small-signal voltage v̂ j (t). R0 is large (and therefore negligible) in

17 The EAM photocurrent is large in the OFF state, when the output power is low, and low in the ON state;
it can be exploited, when characterizing the device, as a complementary monitor of the output power.
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the OFF state, small in the ON state. The equivalent circuit in Fig. 6.42 finally includes
some extrinsic, parasitic elements (Lw, the parasitic connector inductance, and Cpad,
the external parasitic capacitance), the generator and the load resistance.

The evaluation of the dynamic EAM response cannot generally be performed in
closed form, since the equivalent circuit includes, in principle, nonlinear elements such
as the photocurrent conductance (and also, to a smaller extent, the junction capacitance).
We therefore confine the analysis to the small-signal case, and assume that the gener-
ator voltage has a DC and signal component: vG(t) = VG + v̂G(t); as a consequence,
the junction voltage can be decomposed as v j (t) = Vj + v̂ j (t), where

Vj = VG
RL

RG + RL
.

We associate the phasors VG(ω) and Vj (ω), respectively, with v̂G(t) and v̂ j (t); neglect-
ing the parasitic resistances, the photoresistance and the parasitic inductances, and
assuming C = C j + Cpad, we obtain

Vj (ω) = Req

RG

1

1 + jωC Req
VG(ω) = H(ω)VG(ω), (6.35)

where

Req = RL RG

RG + RL
.

By linearizing the transfer curve around the DC bias point Vj we obtain

T (vin(t)) = Pout + p̂out (t)

Pin
= T (Vj + v̂ j (t)) ≈ T (Vj )︸ ︷︷ ︸

Pout/Pin

+ dT

dv j

∣∣∣∣
Vj

v̂ j (t)︸ ︷︷ ︸
p̂out (t)/Pin

.

Assuming a sinusoidal input voltage, i.e., p̂out (t) = Re
[
P̂out exp(jωt)

]
, we therefore

have

p̂out (t)

Pin
= Re

[
P̂out (ω)

Pin
exp(jωt)

]
= dT

dv j

∣∣∣∣
Vj

v̂ j (t) = Re
[
H(ω)VG(ω) exp(jωt)

]
,

where H(ω) is defined in (6.35), i.e.,

P̂out (ω)

Pin
= H(ω)VG(ω). (6.36)

From (6.36) the modulator frequency response results as

M(ω) = P̂out (ω)

Pin
= Req

RG

1

1 + jωC Req
V̂G ,

with normalized response

m(ω) =
∣∣∣∣M(ω)

M(0)

∣∣∣∣ = 1√
1 + ω2C2 R2

eq

.
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Finally, from the definition of the electrical and optical modulator bandwidth we
immediately have

f3dB,el = 1

2πReqC
, f3dB,op =

√
3

2πReqC
.

With decreasing RL , Req decreases, thus leading to a wider bandwidth. At the same
time, however, the DC efficiency decreases (it is 50% for a matched resistor, 100% for
an open load); the same effect occurs in LN modulators if we connect them to a matched
load. Due to the rather small areas and low capacitance, lumped EAMs can readily cover
10 Gbps applications; for higher speed, distributed, traveling-wave modulators can be
again introduced, see Section 6.9.

The design of EAMs has to face similar trade-offs as the EOM design. From the
absorbing material viewpoint, we should maximize �α/α0 and increase the sensitivity
of the absorption to the electric field, and therefore to the applied voltage, �α/�V .
The parameter �α/α0 depends on the difference between the EAM operating wave-
length and the material absorption edge. Such a difference is often expressed through
the detuning energy, i.e., the difference between the energy of the photons emitted
by the source E ph and the absorption edge energy of the EAM material, EEAM. For
E ph > EEAM, the zero-field absorption α0 is large and therefore �α/α0 is small;
the detuning �E = EEAM − E ph should therefore be positive. For very large detun-
ing, however, �α vanishes and therefore �α/α0 is also small; �α/α0 typically has a
maximum for intermediate values of detuning.

Optimization of the optical and RF structures required, on the other hand, several
trade-offs. Reducing the intrinsic layer thickness di increases the electric field with
the same driving voltage, thus improving the switching voltage, but at the same time
increases the EAM capacitance (thus reducing the bandwidth) and leads to poorer cou-
pling with the optical fiber. Increasing the length L again improves the switching voltage
and the extinction ratio, at the expense of the ON state loss and of the bandwidth (due
to the increased capacitance).

6.8.3 EAM chirp

While in interferometric electrooptic modulators chirp is dominated by the geometry,
the EAM chirp depends on material properties. Due to the Kramers–Kronig relations,
varying the imaginary part of the refractive index (i.e., losses), leads to a variation of the
real part, thus introducing spurious phase modulation. EAM chirp is typically lower than
for directly modulated lasers, and can in principle be reduced and properly tailored (e.g.,
made negative) by selecting the bias point. Assuming a complex refractive index n =
nr − jni and taking into account that the complex propagation constant of the optical
wave is

γo = ᾱo + jβo = 2π

λ0
ni + j

2π

λ0
nr → ni = ᾱo

(
2π

λ0

)−1

= α

2

(
2π

λ0

)−1

,
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where ᾱo is the optical field attenuation and α is the absorption, the chirp parameter αH

can be expressed from (5.40) in the form

αH = �nr

�ni
= 4π

λ0

�nr

�α
. (6.37)

The output optical field and power can be now written as

Eout = E0e
−j 2π

λ0
�nr (t)Le−�ᾱo(t)L , Pout = P0e−�α(t)L ,

where E0 is the field in the absence of refractive index variation and P0 the related
power. Differentiating the field phase φ = −2π�nr (t)L/λ0 and the output power vs.
time we obtain

� f = 1

2π

�φ

�t
= −�nr (t)

�t

L

λ0
→ �nr

�t
= −λ0� f

L
,

�Pout

�t
= −�α

�t
L Pout → �α

�t
= −�Pout

�t

1

L Pout
,

i.e., substituting into (6.37),

αH = 4π

λ0

�nr

�α
= 4π

λ0

�nr/�t

�α/�t
= 4π

λ0

λ0� f

L
× 1

1

L Pout

�Pout

�t

≈ 4π� f
1

Pout

dpout

dt

,

which corresponds to the system-level definition of αH already introduced in the dis-
cussion of laser chirp, see (5.78). The Henry parameter αH is therefore related to the
material characteristics and depends on the applied voltage (in small-signal conditions,
on the DC bias) and on the detuning energy. An example of chirp behavior in an
InGaAsP/InGaAsP QW is shown in Fig. 6.43 [107].

The parametric plot of the variation in the real and imaginary parts of the complex
refractive index (the parameter is the applied bias) yields a curve whose slope is the
chirp parameter αH . Before the maximum the chirp parameter is positive, it is zero in
the maximum, and then becomes negative. On the lower horizontal axis the absolute
transmission over L = 100 μm is also shown. On the right, the chirp parameter is plot-
ted as a function of the reverse applied voltage. For low bias voltage the chirp is large
and positive, then it becomes zero, and finally negative; negative chirp is a desirable
condition for transmission over a dispersive fiber, since it allows for compensating dis-
persion, see p. 320. The input bias voltage can be adjusted so as to make chirp small
or negative; however, this corresponds to rather large ON-state attenuations. On the
whole, chirp in EAMs can be substantially better than in directly modulated lasers, but
LN modulators are certainly superior from this standpoint.

6.9 The distributed electroabsorption modulator

To estimate the bandwidth expected from a lumped parameter EAM, let us con-
sider a structure with typical dimensions (e.g., w ≈ 2 μm, L = 200 μm, d = 0.3 μm).
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Figure 6.43 Chirp characteristics of an InGaAsP QW. Variation of the real and imaginary parts of the
refractive index at different wavelengths (left). Chirp parameter as a function of the applied
reverse bias (right). After [107], Fig. 1 and Fig. 2 ( c©1994 IEEE).

Assuming εr ≈ 13, the junction capacitance is

C j = εrε0
wL

d
= 13 · 8.86 × 10−12 · 2 × 10−6 · 200 × 10−6

0.3 × 10−6
= 0.15 pF

which leads, for a 50� load and generator, to a 3 dB electrical bandwidth of

f3dB,el = 1

2πReqC
= 1

2π · 25 · 0.15 × 10−12
= 42.5 GHz,

more than one order of magnitude larger than the bandwidth of lumped LN EOMs.
Lumped EAMs are thus able to cover applications at least up to 10 Gbps. However,
increasing the speed up to 40 Gbps and beyond may make the design critical, thus sug-
gesting in this case also the use of traveling-wave, distributed structures, in which the
RF electrodes are designed as quasi-TEM transmission lines, running parallel to the
optical waveguide and supporting a modulating microwave signal which co-propagates
with the optical signal. Also in this case, as in traveling-wave electrooptic modulators,
no RC limitation to the bandwidth exists, and the device length can be increased with-
out sacrificing speed. An example of distributed EAM structure is shown in Fig. 6.44.
The structure of the active region is similar to that in the waveguide modulator, see
Fig. 6.40(b), only the RF structure acts as a transmission line.

The modulation response of distributed EAMs can be derived, in small-signal con-
ditions, following the same approach as for the distributed electrooptic modulator
analysis; see Section 6.5. Since the RF transmission line is nonlinear (due to the volt-
age dependence of the junction capacitance and the photoresistance), we cannot readily
separate the system into a linear part with memory and a memoriless nonlinear part, as
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Figure 6.45 Equivalent circuit of an EAM transmission line section of infinitesimal length dz. The line is
loaded with the EAM pin active cell.

in LN modulators, and a closed-form dynamic analysis can be only carried out in the
small-signal case.

The RF voltage on the transmission line is expressed as

vm(z, t) = V +ejω(t−z/vm)−αm z + V −ejω(t+z/vm )+αm z,

where the RF or microwave phase velocity vm can be derived from the pseudo-lumped
equivalent circuit of an infinitely short transmission line cell, shown in Fig. 6.45.

The per-unit-length line parameters can be associated with the following physical
mechanisms:

• Rpul is the skin-effect series resistance of the metal layers (�/m).
• Lpul is the conductor per unit length inductance (H/m).
• Rs is the pin region series resistance, �·m.
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• C j (Vj ) is the junction capacitance, F/m, which weakly depends on the junction
applied voltage Vj .

• Cpul is the external parasitic capacitance, F/m.
• Ro = Ro(Vj ) is the distributed photoresistance,�· m, depending on the DC junction

voltage.

Defining the per-unit-length series impedance and parallel admittance of the EAM
RF line:

Z (ω) = Rpul (ω)+ jωLpul (ω)

Y (ω) = jωCpul + 1

Rs +
{[Ro(Vj )

]−1 + jωC j (Vj )
}−1

,

the characteristic impedance and complex propagation constant are derived, from
transmission line theory (3.14), as

Z0 =
√
Z (ω)
Y (ω) , γm = αm + j

ω

vm
= √

Z (ω)Y (ω).

Traveling along the EAM line, the optical signal experiences a local variation of the
complex refractive index �n = �nr − j�ni . Neglecting �ni (i.e., chirp), we have

�n(z, t) = −j�ni (z, t) ≈ avm(z, t), (6.38)

where we have again introduced the linear dependence on the local RF voltage through
the parameter a (now imaginary), as already done in (6.20) in the discussion of the
frequency response of the distributed EOM. We can now relate�ni to�α (the variation
in absorption), since

ko�ni (z, t) = jkoavm(z, t) = 1

2
�α(z, t) ≈ 1

2

dα

dvm

∣∣∣∣
V0

vm(z, t). (6.39)

Thus, from (6.38) and (6.39) the parameter a is given by

a = 1

2jko

dα

dvm

∣∣∣∣
V0

, (6.40)

where V0 is the DC bias point, supposed to be uniform along the line (a condition
which can be obtained by DC decoupling the load and biasing the input through a
low-impedance bias T); the local bias junction voltage Vj can be derived from the DC
equivalent circuit.

The total amplitude variation experienced by the optical field at the modulator output,
E(t2), will be derived by considering again, as in the EOM distributed analysis, the
voltage seen by the optical wave traveling through the interaction region (we neglect, as
already stressed, the phase variation):
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E(t2) = E(t2,�n = 0) exp

[
−jko

∫ L

0
�n

(
z, t2 − L

vo
+ z

vo

)
dz

]
≈ E(t2,�n = 0) exp

[
−1

2

dα

dvm

∣∣∣∣
V0

∫ L

0
vm

(
z, t2 − L

vo
+ z

vo

)
dz

]
,

since −jko�n = −ko�ni (z, t) from (6.38).
Deriving the optical power from the magnitude squared of the optical field, and tak-

ing into account that, in the absence of small-signal applied voltage, the input power
undergoes a total absorption α(V0), we obtain

pout (t)

Pin
= e−α(V0)L exp

[
− dα

dvm

∣∣∣∣
V0

∫ L

0
vm

(
z, t2 − L

vo
+ z

vo

)
dz

]

≈ e−α(V0)L

[
1 − dα

dvm

∣∣∣∣
V0

∫ L

0
vm

(
z, t2 − L

vo
+ z

vo

)
dz

]

= Pout + p̂out (t)

Pin
,

where a further small-signal linearization of the exponential exp [ε] ≈ [1 − ε] for small
ε has been carried out.

Using (6.21) to evaluate the integral and comparing with (6.26), we obtain

− dα

dvm

∣∣∣∣
V0

∫ L

0
vm

(
z, t2 − L

vo
+ z

vo

)
dz

= − dα

dvm

∣∣∣∣× Z0VG

Z0 + ZG

ejωt2 e−γm L

1 − �L�Ge−2γm L

×
[

1 − e− j (βo−βm )L+αm L

j(βm − βo)L + αm L
− �L

1 − e−j(βo+βm )L−αm L

j(βm + βo)L + αm L

]
.

Assuming a sinusoidal variation of p̂out (t) = P̂out (ω) exp(jωt), one finally has the
frequency response

M(ω) = P̂out (ω)

Pin
= −e−α(V0)L dα

dvm

∣∣∣∣
V0

Z0e−γm L

Z0 + ZG

F (u+)+ �L F (u−)
1 − �L�Ge−2γm L

where F(u) and u± are given by (6.28) and (6.29), respectively. The normalized small-
signal modulation index can be finally evaluated as

m(ω) =
∣∣∣∣ P̂out (ω)

P̂out (0)

∣∣∣∣ =
∣∣∣∣M(ω)

M(0)

∣∣∣∣ .
The small-signal frequency response of a distributed EAM is formally equivalent to
the response of a traveling-wave electrooptic modulator, as can be seen by evaluating
|H(ω)/H(0)| from (6.27); therefore, the alternative response from (6.31) can also be
exploited. In practice, however, many differences arise. First, the high optical resid-
ual insertion loss limits actual EAM lengths to a few hundred μm; besides, the RF
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propagation loss is much higher than in dielectric-based electrooptic modulators due
to the heavily doped layers (typically 10 dB/cm at 1 GHz against 0.3 dB/cm in LN).
Finally, the velocity mismatch is fairly large, but the structure is so short that this is
often no important limitation to the bandwidth; due to the small thickness of the intrinsic
layer, lines with characteristic impedance much lower than 50� are typically obtained.
Despite such limitations, traveling-wave modulators have shown significant advantages
in terms of bandwidth over lumped EAMs.

6.10 Electroabsorption modulator examples

An example of a lumped-parameter, high-speed EAM is shown in Fig. 6.46 [108]. The
guiding structure is based on an intrinsic InGaAs/InAlAs MQW, sandwiched between
a p-type InAlAs layer and an n-type layer of the same material. The substrate is n-
type InP. The length of the modulation region of this QCSE-based modulator is varied
between 50 and 150 μm, leading to the normalized transfer characteristics shown in
Fig. 6.47 (left). The contrast ratio increases from 10 dB at 3 V reverse bias to over 30 dB,
but at the same time also the ON-state insertion loss increases with the length. Note
that the transmission curve grows again after the minimum, due to the weaker QCSE
when the driving voltage becomes large, caused by the decrease in overlap between
the valence and conduction band QW wavefunctions. Figure 6.47 (right) shows the
frequency response normalized with respect to the low-frequency value; for the shortest
device the electrical bandwidth is in excess of 30 GHz.

Figure 6.48 reports a traveling-wave EAM developed by the University of Cali-
fornia at Santa Barbara (UCSB) [109], [110]. The bulk InGaAsP absorption layer
operates through FKE, and the EAM parameters are: L = 200 μm, w = 3 μm, d ≈
0.35 μm; the optical saturation power is ≈ 45 mW@ −1.3 V applied reverse bias, and
the matching impedance is 26�. Figure 6.49 shows the propagation characteristics of
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Figure 6.46 High-speed lumped electroabsorption modulator. Adapted from [108], Fig. 1 ( c©1996 IEEE).
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the RF line; the refractive index exhibits the slow-wave effect, typical of transmission
lines including semiconductors. Owing to such an effect, the RF index nm exhibits
strong low-frequency dispersion and is much larger than the refractive index of the
material (about 7 at high frequency against

√
13 = 3.6).

A simplified explanation of the slow-wave effect, which makes the synchronous cou-
pling between the optical and RF waveguide more critical, is as follows. In a Pi N
structure, the electric field is completely confined in the intrinsic layer, due to the charge
screening effect taking place in the doped surrounding layers. However, the magnetic
field permeates the doped layers, unless the frequency is so high that the skin effect
prevents the EM fields from penetrating doped layers altogether, see Fig. 6.50. While
the line capacitance is the capacitance of the intrinsic layer only, the line inductance
is (approximately) the inductance of the line without semiconductors (i.e., where only
the metal electrodes are present). However, the inductance of such a line is equal to the
inductance in air L0, and is related to the in-air capacitance C0 as L0 = 1/

(
c2

0C0
)
, see
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Figure 6.50 Slow-wave effect in semiconductor transmission lines: magnetic (left) and electric (right) field
lines; the E-field concentration in the intrinsic layer leads to high capacitance and effective
permittivity.

(3.27). Since C0 � C, where C is the intrinsic layer capacitance per unit length, one has

v f = 1√LC = 1√L0C
= c0

√
C0

C → nm =
√

C
C0

� √
εr ,

as the structures in air and with dielectrics differ not only because of the different
dielectric constant but also because of the different geometry.

Apart from the slow-wave effect, the EAM line losses are very high and the
impedance level low, see Fig. 6.49. Note the large imaginary part of the characteris-
tic impedance, typical of a RC line behavior (i.e., a line where the dominant parameters
are the series resistance and the parallel capacitance, see Section 3.2.1).

By injecting the RF signal so as to make it co-propagate or counter-propagate with
respect to the optical signal, the distributed operation can be experimentally detected. In
fact, measured data show that for the co-propagating TW-EAM the optical bandwidth
is around 35 GHz, while in the counter-propagating case it is reduced to 20 GHz. The
expected large reduction in the bandwidth confirms that the modulator operates as a
traveling-wave structure. The switching voltage with 10 dB extinction is 3 V; the smaller
extinction associated with a larger length with respect to the MQW structure can be
associated with the weaker FKE; however, the optical bandwidth is wider.
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6.10.1 Integrated EAMs (EALs)

MQW EAMs typically have to be tailored to a specific laser source, due to the very nar-
row optical bandwidth. Since directly modulated lasers have poor chirp characteristics
(αH is always positive and somewhat large, e.g., 3–5), integration of a DFB laser with
an EAM appears as an interesting solution to increase the potential of the modulated
source for high-speed, long-distance transmission. Integrated lasers and EAMs (called
EALs or EMLs) are a commercial solution available today for transmission speed up
to 10 Gbps. Moreover, EAM are similar in size to the source, in contrast to electrooptic
semiconductor modulators, which are typically much larger than the source.

The development of EALs has to overcome a number of difficulties. Excellent iso-
lation must be provided both electronically and optically between the source and the
modulator; moreover, the two epitaxial layers should not be exactly the same, but some
detuning is needed to allow the EAM to operate properly. Figure 6.51 shows some
solutions for integration. In the butt-joint approach, the EAM is obtained by epitaxial
regrowth, and the structures can be independently optimized; however, the morphol-
ogy of the interface between the two is critical. In the selective area growth (SAG)
process the epitaxial growth takes place in both structures, but silicon dioxide layers
are deposited parallel to the DFB area; see Fig. 6.52(a). The presence of such layers
induces a slightly different composition (e.g., a larger In fraction) and thickness of the
epitaxial layers, which leads to a different Eg and therefore to detuning. An example is
shown in Fig. 6.52(b), where the SAG region (DFB) and the Field region (EAM) clearly
exhibit detuning (namely, the absorption edge of the unbiased EAM is at slightly higher
energy and lower wavelength than the DFB emission; note that the photoluminescence
peak energy is slightly lower than the absorption edge and shifts with the absorption
edge). Finally, the two structures can be derived from an identical layer, operating in
direct or reverse bias; in this case the growth is easier but a strong compromise must
be made between the two devices. An example of a 10 Gbps EAL developed by Avago
Technologies is shown in Fig. 6.53; the EAM is isolated both optically and electrically
from the laser, which operates in CW conditions. The structure chirp can be made posi-
tive or negative by varying the bias voltage; the resulting chirp typically is one order of
magnitude less than in a directly modulated laser [111].

Figure 6.54 finally shows a schematic picture of the traveling-wave EAL from NTT
[112]. In the traveling-wave mode the device exhibits a bandwidth larger than 40 GHz,
which reduces to 10 GHz in the lumped configuration; see Fig. 6.55. Very-high speed

DFB LASER DFB LASER

Butt coupling

EAM EAM EAMDFB LASER

Identical layerSelective area growth

Figure 6.51 Fabrication techniques for integrated EAM-DFB lasers.
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devices can therefore be realized, whose main limitation probably remains the higher
chirp with respect to the corresponding LN electrooptic modulators.

6.11 Modulator and laser biasing

Electrooptic and electroabsorption modulators typically require a bias voltage to be
superimposed onto the signal (digital or analog). In analog EOMs, biasing for maximum
linearity is at Vπ/2, while in digital applications, according to the signal generated by
the driver, the bias point can be at 0, Vπ/2, Vπ , corresponding to an amplitude of the zero
and one levels of (0, Vπ ), ±Vπ/2, (−Vπ , 0), respectively. Several options are available
for implementing the bias circuit.

In EOMs, the RF and DC modulator inputs can be separated by implementing an
additional DC electrode in the phase modulation section. This solution is shown in
Fig. 6.56; the device length increases, but there is no need for a bias T (see Section 3.4.1)
separating the DC and the RF inputs. Note that the DC electrode has no requirements
on bandwidth (and also slightly weaker constraints on the applied voltage level); thus,
the length of the DC bias section can be different (typically smaller, to reduce the total
device length) with respect to the length of the modulating section. Increasing the DC
bias allows shortening of the DC electrode and the total device length.

Alternatively, the modulator can be driven by a single input including both the signal
and the bias. In this case, a bias T is needed, which can be external (see Fig. 6.57),
integrated into the modulator or, more commonly, integrated with the driver. The RF
load should be in any case DC blocked to avoid power dissipation and damage.

Bias Ts for high-speed modulators with ultrawide bandwidths (ranging, e.g., from
30 kHz to 40 GHz or from 50 kHz to 65 GHz) are available from several manufacturers;
often, such devices are also exploited for instrumentation. A sketch of a bias T is shown
in Fig. 6.58. Wideband discrete bias Ts are large and expensive devices, mainly due
to the need to offer enough DC blocking (between the RF and the DC inputs) and RF
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Figure 6.56 Mach–Zehnder X-cut modulator with additional DC bias electrode. For clarity the device is
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Figure 6.57 Example of dual-drive modulator setup with external bias Ts and DC-blocked load. The PM
fiber keeps constant the input light polarization.

shorting (between the DC input and the DC output) at a very low frequency (e.g., 30
kHz) but with technologies able to work also at the upper frequency (e.g., 40 GHz).
Wideband bias Ts often use a multiband design exploiting different component values
and technologies.

Laser diodes are in principle current-driven devices, implying that a high-impedance
DC current source should be used. Also, for lasers a bias T can be exploited to make
the device AC-coupled only; this allows reduction of the required bias supply value.
Typical laser bias currents are of the order of 10–100 mA; see [60], Ch. 8.

Due to the complex technology, wideband bias Ts are rarely integrated with the EAM,
EOM or laser, and a preferred solution is integration within the device driver. Modulator
drivers typically offer (for 10 Gbps or even 40 Gbps applications) peak-to-peak output
signal voltages up to 3 V, with bias control ranging, for example, from −10 to 5 V. Such
drivers are conceived for EAMs or for Mach–Zehnder LN modulators with optimized
driving voltages (typically 3 V or less at 10 Gbps, sometimes down to 2 V). However,
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Figure 6.58 Wideband external bias T.

difficulties arise in drivers for LN 40 Gbps modulators, where typical input voltages are
of the order of Vπ ≈ 5 V or more.

6.12 Modulator and laser drivers

The modulator or laser driving stage at large integrates a few basic functions, such
as data multiplexing (MUX) from lower speed into the maximum channel speed (2.5,
10, 40 Gbps), data retiming and/or reshaping, modulator or laser biasing, and finally the
driver – see Fig. 6.59 for a simplified example of the driving stages for a MZ modulator.
The multiplexer-driver architecture is typically differential, to suppress common-mode
interferers and also, sometimes, to drive differential mode modulators (such as dual-
drive modulators).

The driver includes in principle three stages: (i) a pre-driver, often exploited as a
buffer to decouple the input capacitance of the driver and to provide logical level shift-
ing; typical pre-driver architectures include emitter- or source-follower stages; (ii) a
driver, whose purpose is to provide the switching voltage; and (iii) the driver ampli-
fier, whose output is the input data stream with a suitably large driving voltage (for
modulators, 1.5–3 Vpp in EAMs, 3–6 Vpp in LN EOMs). Conventional solutions for
the driver stage can readily be derived from the so-called current-mode logic gates, see
Fig. 6.60(a), in which the driving voltage swing is able to alternately drive the two tran-
sistors of the differential pair in the off and on states, thus obtaining at the stage output
two complementary voltage levels.18 The ideal current source IM can be practically
implemented through a current mirror or other equivalent circuitry. Current-mode logic
gates have a limited input and output logical swing; with a bipolar implementation the
input swing could be of the order of 300 mV.

Figure 6.60(a) shows a current-mode gate loaded by a dummy load R′
D and by an

EAM connected to the output through a two-port including interconnects and the driver

18 The topology of current-mode gates is differential, similar to emitter coupled logics (ECL), see, e.g., [113].
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amplifier. The dummy load is introduced for symmetry; impedance matching must be
ensured (at least in the EAM bandwidth) at the “out” node, see Fig. 6.60(a), to avoid
multiple reflections between this node and the device. In a high-speed implementation
50� matching could be required. The EAM is shown as AC-coupled, with a bias T
made of an inductive block (the RF choke RFC) and a DC blocking capacitor (BC).
The frequency response of a directly coupled EAM (i.e., without a driver amplifier)
can be improved by putting in series with the back termination resistor 2R′

D a peaking
inductor. In Fig. 6.60(b) the driven device is a distributed Mach–Zehnder modulator AC
coupled to an input bias T. We assume again that the device (itself a transmission line) is
impedance matched at the input and output to the load R′

L in order to suppress multiple
reflections leading to distortion (see Section 3.3.1). Finally, Fig. 6.60(c) shows an AC-
coupled laser; the bias supply is modeled as a current source, while the loading resistor
is in series (due to the low laser series impedance). Note that, due to the possibly large
laser DC current (e.g., around 100 mA), the voltage drop on the back termination could
be large (e.g., 5 V for a back termination of 50�) and possibly incompatible with the
minimum voltage drop on the laser (of the order of 1.5–2 V).

From the standpoint of the implementation, the driver chain of high-speed systems
exhibits two critical points. First, the digital technology of the last MUX must be ade-
quate for the final channel speed. 40 Gbps digital technology is limited by the material
choice (SiGe, GaAs, perhaps InP) and by the logical family (typically HBT emitter cou-
pled logic (ECL) or FET direct coupled FET logic (DCFL)). In very high-speed logic
families the output logic swing is low, e.g., 300–500 mV, and therefore direct driving
of the modulator or laser may be unfeasible. Secondly, the modulator driver amplifier
must incorporate a number of conflicting requirements, mainly wideband operation,19

high maximum frequency but at the same time high output voltage. The required gain
depends on the modulator technology and on the output swing of the current mode
driver; for 40 Gbps systems exploiting LiNbO3 devices it can be as high as 27 dB, with
a ±1dB flatness. The acceptable group delay is specific to the system standard and can
be of the order of ±10 ps on the whole band. The electrical bandwidth can range from
0.7Br to 1.3Br where Br is the bit rate; for 50 Gbps systems this means a bandwidth
from 60–100 kHz to more than 50 GHz.

While at 2.5 Gbps, and perhaps 10 Gbps, Si-based ICs may still provide a suitable
solution, for 40 Gbps operation the enabling technologies are SiGe, GaAs, and InP.
However, SiGe HBTs, though able to cover the 40 Gbps range, exhibit decreasing
device breakdown voltages with increasing cutoff frequency. An empirical rule for this
application is that the cutoff frequency should be 3–4 times the maximum operation
frequency; this leads to breakdown voltages of the order of 2 V for the SiGe technol-
ogy; see Fig. 6.61 [6]. SiGe drivers are therefore adequate as EAM drivers, but are
critical as LN MZ drivers for 40 Gbps EOMs. A considerably larger breakdown volt-
age, compatible with LN MZ modulator operation, is obtained with InP HBTs and,

19 Modulator drivers typically are not DC-coupled but exhibit a lower cutoff frequency that should be low
enough not to affect the bit rate. Values are standard-dependent, e.g., 64 kHz for 2.5 Gbps and 257 kHz for
10 Gbps SONET systems, respectively, see [60], Section 6.2.6.
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even better, with GaAs-based HBTs. III-V FETs (in particular, PHEMTs) exhibit break-
down voltages in excess of 5 V (InP) and 10 V (GaAs), which allow 40 Gbps drivers to
be implemented in such technologies, with GaAs as a preferred material. A promis-
ing material for high-voltage applications could also be gallium nitride (GaN), whose
frequency performances are not, at least for the moment, adequate for 40 Gbps appli-
cations. In conclusion, 40 Gbps driver amplifiers for stages (like the MZ modulators on
LN) requiring large peak-to-peak voltages still are technologically demanding.

6.12.1 The high-speed driver amplifier

Broadband amplifiers can be obtained through conventional open-loop or feedback cir-
cuit approaches. Resistive feedback applied to a high-gain amplifier is a simple way
to achieve flat gain over a broad frequency band; however, the open loop gain of the
amplifier should be suitably larger than the gain with feedback at the maximum oper-
ating frequency. This is a difficult requirement for 40 Gbps drivers, which often need
alternative broadbanding approaches.20 A number of circuit recipes for broadbanding
may be based on the compensation of the load capacitance through some inductive
element connected to the load (inductive peaking).

An interesting alternative approach, allowing broadband operation up to a frequency
that can, in theory, exceed the device cutoff frequency (but is, in practice, only somewhat
larger than fT /2), consists in turning the amplifier into a distributed, traveling-wave
structure. This solution is called the distributed amplifier, and will be discussed here,
for simplicity, in terms of a single-ended structure. Differential implementations are also
possible. The distributed amplifier is also interesting from the standpoint of the operat-
ing principle, since it is an example of an electronic amplifier exploiting a distributed or
quasi-distributed interaction, yielding wideband operation.

20 For a more complete discussion, see [60], Ch. 6.
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Figure 6.62 Continuous distributed amplifier.

A somewhat idealized structure for the distributed FET (e.g., PHEMT) amplifier is
made of an input (gate) transmission line connecting, in a continuous way, the input of
each infinitesimal device cell. The output (drain) transmission line collects the current
injected by the transconductance generator. In the simplified model shown in Fig. 6.62,
the input line includes only a distributed per-unit-length (p.u.l.) inductance LG and a
distributed p.u.l. capacitance CG (mainly associated with the input gate–source capac-
itance). The output line includes the transconductance current generators (Gm = gm/L
is the p.u.l. device transconductance, gm being the total transconductance and L the
gate periphery) of p.u.l. current Gm VG(z), and a p.u.l. inductance and capacitance LD

and CD .
The gate and drain lines are transmission lines with characteristic impedances

Z0G =
√
LG

CG
, Z0D =

√
LD

CD

and propagation constants

βG = ω
√
LGCG, βD = ω

√
LDCD.

Line attenuations αG and αD are for the moment neglected. Assume that the gate line
is matched at the input and output; the line input impedance will be Z0G and there-
fore VG(0) = Eg/2. Assume VG(0) = Vin as the line input voltage; since the line is
matched, only the forward-propagating wave exists, so that VG(z) = Vine−jβG z . On
the drain line, distributed transconductance current generators are present, of value
Gm VG(z). We can therefore write the transmission line equations for the drain line
(by applying the Kirchhoff voltage and current laws to a transmission line cell of
length dz) as
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VD(z + dz) = VD(z)− jωLD ID(z) dz

ID(z + dz) = ID(z)− jωCDVD(z + dz) dz − Gm VG(z) dz,

i.e., in the limit dz → 0:

dVD

dz
= −jωLD ID(z)

dID

dz
= −jωCD VD(z)− Gm VG(z) = −jωCD VD(z)− Gm Vine−jβG z .

Taking the derivative vs. z of the first equation and substituting into the second equation,
we obtain the following second-order equation in VD:

d2VD

d2z
= −β2

D VD + jωLDGm Vine−jβG z .

We can express the solution as VD(z) = V1 + V2, where V1 is the solution of the homo-
geneous equation (no forcing term), V2 is a particular solution of the forced equation.
We have

V1(z) = V +
D0e−jβD z + V −

D0ejβD z .

We seek V2 in the form K exp (−jβG z), K to be determined. Substituting, we have

−β2
G K = −β2

D K + jωLDGm Vine−jβG z → V2 = jωLDGm

β2
D − β2

G

Vine−jβG z .

Therefore, the total solution is

VD(z) = V +
D0e−jβD z + V −

D0ejβD z + jωLDGm

β2
D − β2

G

Vine−jβG z .

For the drain current, we have

ID(z) = − 1

jωLD

dVD

dz
= V +

D0

Z0D
e−jβD z − V −

D0

Z0D
ejβD z + jβGGm

β2
D − β2

G

Vine−jβG z .

To derive V +
D0 and V −

D0 we apply the boundary conditions (assuming that also the drain
line is impedance matched):

VD(0) = Z0D(−ID(0)), VD(L) = Z0D ID(L).

Separating forward and backward contributions, we obtain

V +
D0 = − Vin

2

Gm (jωLD + jβG Z0D)

β2
D − β2

G

V −
D0 = − Vin

2

Gm (jωLD − jβG Z0D)

β2
D − β2

G

e−j(βG+βD)L .
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The load voltage VD(L) is therefore

VD(L) = − Vin

2

Gm (jωLD + jβG Z0D)

β2
D − β2

G

e−jβD L

− Vin

2

Gm (jωLD − jβG Z0D)

β2
D − β2

G

e−jβG L + jωLDGm

β2
D − β2

G

Vine−jβG L

= Vin

2

Gm (jωLD + jβG Z0D)

β2
D − β2

G

[
e−jβG L − e−jβD L

]
,

or, in a more convenient form:

VD(L) = − Vin

2
Z0DGmexp

(
−j
βG + βD

2
L

) sin

(
βG − βD

2
L

)
βG − βD

2

.

Thus, the voltage gain can be written as

|AV | =
∣∣∣∣VD(L)

Vin

∣∣∣∣ =

∣∣∣∣∣∣∣∣
Z0DGm L

4

sin

(
βG − βD

2
L

)
βG − βD

2
L

∣∣∣∣∣∣∣∣ .
The amplification is maximum and becomes frequency-independent if the coupling
between the gate and drain lines is synchronous, i.e., if

βG = βD → LDCD = LGCG .

In this case, we have

|AV | = Z0Dgm

4
, (6.41)

independent of frequency. If we account for losses in the drain and gate lines through
the attenuations αD and αG , the response becomes frequency-dependent also in case
of synchronous coupling; moreover, increasing the gate periphery L increases the
transconductance gm , but this effect is ultimately countered by the increase of the total
line attenuation, so that an optimum gate periphery exists:

Lopt = log (αD/αG)

αD − αG
.

In practice, distributed amplifiers are made with a number of discrete devices con-
nected on the inputs and outputs by delay lines, as shown in Fig. 6.63. The main
motivations for this design are the difficulty of achieving synchronous coupling in a
continuous device (due to the fact that the device input capacitance CGS typically is
much larger than the output capacitance CDS), and the large losses induced in the input
line by the extremely thin gate electrode. With the discrete setup, on the other hand, the
output line can be capacitively loaded so as to improve velocity matching (or the line
length can be properly increased to compensate delays), and losses can be decreased
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due to the wider conductors used (typically 100 μm against less than 1 μm as in the
gate fingers).

If we approximate the delay lines as LC discrete cells, the resulting gate and drain
lines become quasi-distributed structures known as artificial lines. In such structures,
the electrical behavior is similar to that of a transmission line for frequencies below a
cutoff frequency given by

fC = 1

π Z0DCD
= 1

π Z0GCG
= 1

π Z0C ,

where we have assumed that the two lines are velocity matched and have the same
characteristic impedance (and thus, the same p.u.l. parameters). In such conditions the
low-frequency voltage gain becomes

|AV (0)| = Z0

4
ngm,

where ngm is the total device transconductance, n being the number of cells. The gain–
bandwidth product will therefore be

|AV (0)| fC = Z0

4
ngm

1

π Z0C = n

2

gm

2πC = n

2
fT ;

in other words, the distributed structure increases the gain–bandwidth product with
respect to the single cell. In practice, the bandwidth obtained so far deteriorates fur-
ther because of the effect of the input and output line RF losses. Also in the discrete
cell case, there is an optimum cell number; in practice, FET-based distributed amplifiers
rarely exceed 10 cells.

Owing to the need for broadbanding the available devices as much as possible, a quite
popular configuration in the design of distributed amplifiers for optoelectronic applica-
tions is the cascode cell configuration. The cascode transistor configuration (Fig. 6.64)
is, for a bipolar, a common emitter stage connected to a common base stage. The same
configuration can be implemented in FETs with a common source and common gate
stage. The cascode configuration decreases the internal feedback capacitance and there-
fore improves the device stability and bandwidth when compared to the conventional
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Figure 6.64 Cascode configuration of (a) bipolar transistors (right), compared to the conventional
common-emitter (left) configuration; (b), same for FETs, where CE stands for common emitter,
CS for common source, CB for common base, CG for common-gate.
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Figure 6.65 Eight-stage PHEMT based cascode distributed amplifier designed as a 40 Gbps modulator driver
(above) and GaAs PHEMT cross section (below). From [114], Fig. 2 (adapted) and Fig. 7
( c©2001 IEEE).
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Figure 6.66 Scattering parameters of the 8-stage cascode amplifier with 6 V peak-to-peak output. From
[114], Fig. 9 ( c©2001 IEEE).
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stage. The two main consequences of the cascode configuration are the broadbanding
and the more resonant response.

An example of high-speed MZ modulator driver cascode distributed amplifier for
40 Gbps systems developed by Fujitsu is shown in Fig. 6.65 [114], [115]. The tech-
nology is a 0.15 μm InGaAs/GaAs PHEMT; the amplifier is able to provide 6 V
peak-to-peak output voltage with a gain around 14 dB; the 3 dB electrical bandwidth
is 45 GHz. The electrical response is shown in Fig. 6.66.

In conclusion, the present transistor technology allows the development of high-
voltage, broadband amplifiers to be exploited as LN modulator drivers; however, the
distributed amplifier solution is expensive in terms of enabling technology, circuit cost,
and power dissipation (ultrawideband amplifiers are typically class A amplifiers, with
rather poor efficiency; moreover, closing the amplifier on a 50� matched load, a 5 V
peak-to-peak output with a square-wave behavior translates into a 250 mW average
power, with a dissipated power of 2.5 W assuming overall 10% efficiency). The devel-
opment of low-driving-voltage modulators is also fostered by the opportunity to reduce
the requirements on this component or eliminate it altogether in favor of a direct digital
driver.

6.13 Questions and problems

6.13.1 Questions

1. Explain the linear electrooptic effect in a crystal and how it can be described in a
mathematical way.

2. What is the difference between an isotropic, a uniaxial and a biaxial crystal? To
which class do GaAs and lithium niobate, respectively belong?

3. Explain the structure of a lumped electrooptic modulator and justify its bandwidth
limitation.

4. Define the on–off voltage (Vπ ) in a Mach–Zehnder modulator. What happens to the
on–off voltage if we increase the modulator length?

5. Discuss the structure of X-cut and Z-cut Mach–Zehnder modulators.
6. How can chirp be electronically controlled in a Mach–Zehnder modulator?
7. Explain what causes the bandwidth limitation in a traveling-wave Mach–Zehnder

modulator.
8. Explain how the electrode structure of a lithium niobate electrooptic modulator can

be modified in order to achieve synchronous coupling.
9. Explain why a slow-wave structure has to be exploited in the electrode design of a

GaAs electrooptic modulator.
10. Quote some solutions for narrowband Mach–Zehnder modulators.
11. Explain why a distributed (traveling-wave) electrooptic modulator can overcome

the RC-limited bandwidth–efficiency product of lumped EOMs.
12. Describe the limiting factors of the bandwidth–efficiency product in traveling-wave

electrooptic modulators.
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13. What differences in implementation are found between LN and semiconductor
EOMs? Explain the need of slow-wave structures arising in semiconductor EOMs
vs. LN EOMs.

14. Discuss the purpose of charge bleed layers in Z-cut LN modulators.
15. Comment on the possible advantages of polymer based and Si-based electrooptic

modulators. What is the modulation mechanism in Si-based modulators?
16. Describe the process of electroabsorption in bulk semiconductors.
17. Describe the process of electroabsorption in quantum wells.
18. Compare performances of FKE- and QCSE-based modulators, highlighting the

physical causes of their different behavior.
19. Explain the origin of polarization dependence in QW/MQW EAMs.
20. Describe qualitatively the effect of strain on band energies in a direct-bandgap semi-

conductor, and how strain can be employed to minimize polarization dependence
in QCSE-based modulators.

21. Discuss the chirp effect in EAMs.
22. Explain the operation of a waveguide EAM.
23. Describe the effect of the optical detuning on the switching voltage (for a given CR)

and residual transmission loss of a waveguide EAM.
24. Describe the effect of the waveguide length (L) on the switching voltage (for a

given CR) and residual transmission loss of a waveguide EAM.
25. Discuss the bandwidth–efficiency trade-off in EAMs and the effect of the active

region thickness and modulator length on these parameters.
26. Compare, in terms of bandwidth-efficiency product:

(a) an open-loaded EAM;
(b) an EAM with a resistive load equal to the driver resistance.

27. Illustrate the structure of a modulator driver, specifying the role of the multiplexer,
the pre-driver, the driver, and the driver amplifier.

28. Explain why a distributed power amplifier has to be exploited to drive lithium
niobate modulators at 40 Gbps, while EAMs can also be driven by a simplified
stage.

29. Why are all logic signals in the driver stage typically represented through the
original and negated versions of the bit (i.e., in a differential architecture)?

30. Describe the structure of a distributed amplifier and its frequency response.
31. Explain the condition of synchronism in a distributed amplifier.
32. In a discrete-cell distributed amplifier, what is the main limitation to increasing the

number of cells?
33. Explain some advantages of a cascode cell in the design of distributed amplifiers.
34. Discuss the trade-off between maximum operating frequency and breakdown

voltages in heterojunction bipolar transistors.
35. Explain why a matched back termination is exploited in connecting a modulator or

laser to a current mode switching stage.
36. From the standpoint of DC bias, what is the basic difference between a modulator

and a laser diode?
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6.13.2 Problems

1. Suppose 40 Gbps operation has to be achieved in a lossless lithium niobate Mach–
Zehnder modulator with length 15 mm. What is the allowed refraction index
mismatch?

2. Suppose 40 Gbps operation has to be achieved in a velocity-matched lithium niobate
Mach–Zehnder modulator with length 15 mm. What is the allowed line attenuation
at 1 GHz?

3. A Z-cut MZ EO modulator is made with a material whose optical refraction index
is no = 2.2; the electrooptic coefficient is r33 = 30 pm/V. Supposing that a lumped
coplanar structure is exploited with superposition integral � = 0.5 and electrode gap
G = 10 μm, evaluate the modulator length L needed to obtain and ON–OFF voltage
of 5 V. The operating wavelength is 1.3 μm.

4. In the above problem, the MZ modulator is implemented with a coplanar electrode
structure of characteristic impedance Z0 = 30� and RF refractive index nm = 3.
Assume that the modulator is connected to a 50� generator and to a 30� load.

(a) Evaluate the modulation bandwidth (3 dB optical) for a modulator loaded as a
lumped structure.

(b) The same, but for a modulator loaded as a distributed structure.
5. A MZ EO modulator with symmetric optical splitter but asymmetric arms has Vπ =

4 V for the upper arm and Vπ = 8 V for the lower arm.
(a) Evaluate the total on–off voltage and the chirp parameter αH . What happens if the

two arms are exchanged? Assume the modulator is biased at half Vπ .
(b) Assuming that a triangular RF signal at 10 GHz of peak-to-peak amplitude equal

to 1 V is applied to the modulator above the bias, estimate the resulting frequency
and wavelength modulation of the modulated light. Assume a 1.5 μm source.

6. An EAM consists of a pin junction in reverse bias. The absorption (intrinsic,
depleted) region thickness is h = 0.5 μm; the absorption region width is W = 3 μm;
and the length L is to be evaluated. Suppose that the applied reverse voltage falls
entirely across the depletion region, that the electric field is uniform, and that the
superposition integral between the optical and RF fields is �o = 1. Assume that
the zero-field absorption of the material is α0 = 10 cm−1 and that α varies linearly
with the applied field up to α0 +�α = 110 cm−1 for an electric field strength of
100 kV/cm.

(a) Design L so that the ON–OFF voltage at 10 dB extinction is 2 V.
(b) In these conditions, evaluate the 3dB bandwidth of the lumped modulator, assum-

ing that the generator has 50� internal impedance; assume that in the absorption
region the RF permittivity is εr = 12.

(c) What is the ON–OFF generator voltage and the bandwidth if the EAM is also
connected to a 50� load?

7. Assume that, for a certain DC bias point, the active region absorption of an EAM
varies by ±20 cm−1 for a variation in the electric field of ± 10 kV/cm. The optical
refractive index at bias is no = 3.
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(a) Supposing that the operating wavelength is 1.3 μm and that the chirp parameter
is αH = −1, evaluate the variation of the optical index for an applied field of ±
1 kV/cm.

(b) Assume that the total modulator length is L = 200 μm; what will be the optical
path difference between the bias point and an applied field of ± 1 kV/cm?

8. An EO modulator is biased at 3 V and has 6 V ON–OFF voltage. A logical driver
is available with low logic level at −0.3 V and high logic level at 0.3 V. Evaluate
the amount of level shift and voltage amplification needed to drive the modulator.
Assuming that the driver amplifier output impedance is 50�, estimate the minimum
output available power needed.
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Notation

x(t) scalar variable, time domain
X (ω) scalar variable, frequency domain
x(t) vector variable, time domain
X(ω) vector variable, frequency domain
x(t) tensor (matrix) variable, time domain
X(ω) tensor (matrix) variable, frequency domain
X0 scalar variable, DC
X DC scalar variable, DC
x̂(t) small-signal scalar variable, time domain
X̂(ω) small-signal scalar variable, frequency domain
δx(t) scalar variable fluctuation, time domain
δX (ω) scalar variable fluctuation, frequency domain
xn(t) random (noise) variable, time domain
Xn(ω) random (noise) variable, frequency domain
〈x(t)〉 time average of deterministic function x(t)
〈x(t)〉 time average of random process x(t)
x(t) ensemble average of random process x(t)
x ensemble average of random variable x
Fx Langevin random source in the rate equation for x
Sx (ω) power spectrum of x (also Sxx )
X X∗ power spectrum of x in terms of spectral average
Sxy(ω) correlation spectrum between x and y
Rx (τ ) autocorrelation function of x (also Rxx )
Rxy(τ ) correlation function between x and y
∇ [m−1] gradient operator
∇· [m−1] divergence operator

Symbols

a [eV m2] derivative of EF − Ec(0) vs. ns (modulation-doped structure)
a bipolar transistor common base current gain
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a [m2] laser differential gain
a [m] lattice constant
a, b [W1/2] forward and backward power waves
Ag [A] short-circuit generator current
α [m−1] absorption
ᾱ [m−1] attenuation
α [m−1] attenuation
α [J−1] nonparabolic factor
αc [m−1] conductor attenuation
αd [m−1] dielectric attenuation
α f c [m−1] absorption in cladding (electroabsorption modulators)
αh [m−1] hole impact ionization coefficient
αH Henry chirp parameter (linewidth enhancement factor)
αloss [m−1] absorption in cladding (lasers)
αm [m−1] laser mirror (end) equivalent loss
αn [m−1] electron impact ionization coefficient
αt [m−1] laser total loss

b bipolar transistor base transport factor
B [Hz] bandwidth
Br [bps] bit rate
BER bit error rate
β [m−1] propagation constant
β bipolar transistor common-emitter current gain
βm [m−1] RF propagation constant (modulators)
βo [m−1] optical propagation constant (modulators)
βk spontaneous emission factor

c0 [m s−1] speed of light in vacuo, c0 = 2.997 924 58 × 108 m s−1

Cch [F m−2] channel capacitance per unit surface (FETs)
Ceq [F m−2] equivalent 2DEG capacitance (HEMTs)
CGS [F] gate-source capacitance
C j [F] junction capacitance
C [F m−1] capacitance per unit length
Ca [F m−1] capacitance per unit length in air

Dh [m2s−1] hole diffusivity
Dn [m2s−1] electron diffusivity
δ [m] skin penetration depth
δ [rad] loss angle
δ f [Hz] laser frequency fluctuation
δn [m−3] laser population fluctuation
δφ [rad s−1] laser phase fluctuation
�β [m−1] detuning vs. Bragg condition
�β [m−1] detuning vs. velocity matching condition
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�Ec [J] [eV] conduction band discontinuity
�Ev [J] [eV] valence band discontinuity
� fST [Hz] Schawlow–Townes linewidth

E(k) [J] [eV] dispersion relation
E(ω) [V m−1] electric field, frequency domain
E A [J] [eV] acceptor energy level
Ec [J] [eV] conduction band edge
ED [J] [eV] donor energy level
EF [J] [eV] Fermi level
EFh [J] [eV] quasi-Fermi level, holes
EFi [J] [eV] intrinsic Fermi level
EFn [J] [eV] quasi-Fermi level, electrons
Eg [J] [eV] energy gap
Eg [V] generator open-circuit voltage
Eh [J] [eV] hole energy
En [J] [eV] electron energy
E p [J] [eV] energy parameter associated with dipole matrix

element
E ph [J] [eV] photon energy
Et [J] [eV] trap energy level
Ev [J] [eV] valence band edge
Ex [J] [eV] exciton energy level
ER modulator extinction ratio
E [V m−1] electric field
Ebr [V m−1] breakdown electric field
ε [F m−1] dielectric permittivity
ε(ω) [F m−1] complex dielectric permittivity, frequency domain; ε = ε′(ω)−

jε′′(ω)
ε [F m−1] dielectric permittivity tensor
εc gain compression factor
εe [F m−1] extraordinary permittivity
εeff effective permittivity
εo [F m−1] ordinary permittivity
εr relative dielectric permittivity
ε0 [F m−1] vacuum dielectric permittivity, ε0 = 8.854 187 817 × 10−12

F m−1

ηi injection LED quantum efficiency
ηQ detector internal quantum efficiency
ηt transmission LED quantum efficiency
ηr radiative LED quantum efficiency
ηx total LED quantum efficiency
ηx detector external quantum efficiency
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f [Hz] frequency
fh(E) occupation probability (Fermi or Boltzmann distribution), holes
fmax [Hz] maximum oscillation frequency
fn(E) occupation probability (Fermi or Boltzmann distribution), electrons
fT [Hz] cutoff frequency
fT x [Hz] cutoff frequency, extrinsic
f3dB [Hz] 3 dB cutoff frequency
f3dBe [Hz] 3 dB cutoff frequency, electrical definition
f3dBo [Hz] 3 dB cutoff frequency, optical definition
f3dB,RC [Hz] 3 dB cutoff frequency, RC limited
f3dB,tr [Hz] 3 dB cutoff frequency, transit-time limited
F [Hz] phonon frequency
Fh excess noise factor (SAM-APD, hole-triggered avalanche)
Fk [m−3 s−1] Langevin source in the photon density rate equation
Fn excess noise factor (SAM-APD, electron triggered avalanche)
Fn [m−3 s−1] Langevin source in the electron density rate equation
Fo excess noise factor (APD)
FN [s−1] Langevin source in the electron number rate equation
FP [s−1] Langevin source in the photon number rate equation
FO E I C [A W−1�Hz] OEIC figure of merit
φ, ϕ [rad] phase
φ [V] electric potential
φch [V] channel potential

g [m−1] net gain
g [m−1] gain
gc [m−1] cavity gain
gc(E) [J−1 m−3] conduction band density of states
gF [m−1] gain, neglecting gain compression
gm [S] transconductance
gn [S] noise conductance (front-end amplifier)
gph(h̄ω) [J−1 m−3] photon density of states per unit energy and volume
gth [m−1] laser cavity gain at threshold
dg/dn [m2] laser differential gain
gv(E) [J−1 m−3] valence band density of states
g1D(E) [J−1 m−3] density of states in a quantum wire
g2D(E) [J−1 m−3] density of states in a quantum well
Gh [m−3 s−1] generation rate, holes
Gn [m−3 s−1] generation rate, electrons
Gn [S] noise conductance
Go [m−3 s−1] optical generation rate
G [S m−1] conductance per unit length
γ [m−1] complex propagation constant, γ = α+jβ
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γ bipolar transistor emitter efficiency
γ space-dependent noise source, Langevin approach (dimensions vary)
γ [s−1] small-signal laser damping factor
� reflection coefficient
�ov overlap integral
�mo overlap integral between the microwave and optical fields

h [J s] Planck constant, h = 6.626 0755 × 10−34 J s
h̄ [J s] rationalized Planck constant, h̄ = 1.054 572 66 × 10−34 J s
h̄ω [J] [eV] photon energy
h f [J] [eV] photon energy

id [A] dark current
iL [A] photocurrent
iP D [A] total photodetector current
I optical field intensity, normalized to the photon number
IB [A] base current
Id [A] DC dark current
IC [A] collector current
ID [A] drain current
IDSS [A] saturation drain current
IE [A] emitter current
IG [A] gate current
IL [A] DC photocurrent
IP D [A] total DC photodetector current
IS [A] source current
Iph [A] photocurrent (modulators)
Ith [A] laser threshold current
I0 [J] [eV] ionization

J h [A m−2] hole current density
J h,d [A m−2] hole diffusion current density
J h,dr [A m−2] hole drift current density
J n [A m−2] electron current density
J n,d [A m−2] electron diffusion current density
J n,dr [A m−2] electron drift current density
Jth [A m−2] laser threshold current density

k [m−1] wavevector
kT [m−1] transverse wavevector
kB [J K−1] Boltzmann constant, kB = 1.380 6568 × 10−23 J K−1

khn ratio between hole and electron ionization coefficients
knh ratio between electron and hole ionization coefficients
k ph [m−1] photon wavevector
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kφ [m−1] phonon wavevector

κ [m−1] Bragg grating coupling coefficient

Lα [m] absorption length
Lh [m] hole diffusion length
Lg [m] gate length
Ln [m] electron diffusion length
Lop modulator optical insertion loss
L [H m−1] inductance per unit length
La [H m−1] inductance per unit length in air
λ [m] wavelength
λ0 [m] in vacuo wavelength
λg [m] guided wavelength
λB [m] Bragg wavelength
� [m] phonon wavelength

m∗
h [kg] hole effective mass

m∗
hh [kg] heavy hole effective mass

m∗
h,D [kg] density of states hole effective mass

m∗
h,tr [kg] transport hole effective mass

m∗
lh [kg] light hole effective mass

m∗
n,D [kg] density of states electron effective mass

m∗
n [kg] electron effective mass

m∗
n,tr [kg] transport electron effective mass

m∗
r [kg] joint density of states reduced mass

m∗
x [kg] exciton effective mass

m0 [kg] electron mass, m0 = 9.109 3897 × 10−31 kg
m(ω) normalized laser or modulator frequency response m(ω) = |M(ω)/M(0)|
M(ω) [W V−1] modulator frequency response
M(ω) [W A−1] laser modulation frequency response
Mh hole multiplication factor (SAM-APD, hole triggered avalanche)
Mn electron multiplication factor (SAM-APD, electron triggered avalanche)
Mo multiplication factor (APD)
μ [H m−1] magnetic permeability
μh [m2 V−1 s−1] hole mobility
μn [m2 V−1 s−1] electron mobility
μr relative magnetic permeability
μ0 [H m−1] vacuum magnetic permeability, μ0 = 4π × 10−7 H m−1

n [m−3] electron concentration
n(ω) complex refractive index, n = nr − jni ; sometimes n ≡ neff

ne optical extraordinary index
neff effective refractive index
ni [m−3] intrinsic carrier concentration
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nm RF refractive index (modulator)
no optical refractive index (modulator)
n ph photon number
nr refractive index
nr (ω) complex refractive index, nr = n′

r − jn′′
r = nr1 − jnr2; sometimes

nr ≡ neff

ns [C m−2] QW carrier sheet concentration
nsp spontaneous emission factor
nth [m−3] laser carrier concentration at threshold
nth,2D [m−2] QW laser carrier sheet concentration at threshold
NA [m−3] acceptor concentration
Nc [m−3] effective density of states, conduction band
Nc(E) [J−1 m−3] conduction band density of states
ND [m−3] donor concentration
Nv(E) [J−1 m−3] valence band density of states
Nv [m−3] effective density of states, valence band
Ncv(h̄ω) [J−1 m−3] joint density of states
Nk [m−3] photon density in laser mode k
NP photon number in laser mode k
N laser cavity carrier number

ω [rad s−1] angular frequency
ωm [rad s−1] modulation frequency
ωr [rad s−1] small-signal laser resonant angular frequency

p [m−3] hole concentration
p [kg m s−1] momentum

p
cv

[kg m s−1] momentum matrix element in the dipole approximation〈
p2

cv

〉
[kg2 m2 s−2]

〈
p2

cv

〉 = 2
3p2

cv mean value of dipole matrix element squared,
bulk

pin(t) [W] input (optical or electrical) power, time domain
pn( f ) [W Hz−1] noise available power spectral density
P RC parameters of the Cappy noise FET model
Pav [W] generator available power
P̃in [W m−2] input optical power density
Pk [W] laser output power from mode k
Pin [W] input (optical or electrical) power
Pop [W] optical power or [W m−2] optical power density
ψ , φ electron or hole wavefunctions

q [C] electron charge, q = 1.602 177 33 × 10−19 C
q(t) [C] electric charge
qn(t) [C] electron charge
qχ [J] [eV] electron affinity
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Q resonator quality factor
Qch [C m−2] channel mobile charge per unit surface (FETs)
Qn [C] electron charge, DC

ri jk [m V−1] linear electrooptic tensor
rsp

o [m−3 s−1 J−1] spontaneous emission spectrum
rsp

o [s−1] spontaneous emission rate for a specific photon wavevector
rsp

o,D [m−3 s−1 J−1] spontaneous emission spectrum, degenerate semiconductor
rsp

o,ND [m−3 s−1 J−1] spontaneous emission spectrum, nondegenerate semi-
conductor

r(ω) normalized detector frequency response, r(ω) = R(ω)/R(0)
R power reflectivity
Rg [�] generator internal resistance
RG [�] generator internal resistance
RS [�] generator (source) internal resistance
RIN laser relative intensity noise parameter
Rh [m−3 s−1] recombination rate, holes
Ri [�] input resistance, front-end
Rn [m−3 s−1] recombination rate, electrons
Rn [�] noise resistance
Rsp

o [m−3 s−1] total spontaneous emission rate per unit volume
Rsp

o,D [m−3 s−1] total spontaneous emission rate per unit volume, degenerate
Rsp

o,D [m−3 s−1] total spontaneous emission rate per unit volume

R
sp
o [m−3 s−1] spontaneous recombination rate per unit volume, specific photon

state
Rst

o [m−3 s−1] stimulated emission rate per unit volume
Rst

o,D [m−3 s−1] stimulated emission rate per unit volume, degenerate
Rst

o,ND [m−3 s−1] stimulated emission rate per unit volume, nondegenerate
R [� m−1] resistance per unit length
R [A W−1] detector responsivity
R(ω) [A W−1] small-signal detector responsivity, frequency domain
ρ [C m−3] charge density
ρph [m−3] photon density

S [W m−2] Poynting vector
S scattering matrix
SNR signal-to-noise ratio
Si (ω) [A2 Hz−1] current (i) power spectrum
Si1i2(ω) [A2 Hz−1] correlation spectrum between i1 and i2

SP (ω) [W2 Hz−1] power spectrum of laser output power fluctuations
Sv(ω) [V2 Hz−1] voltage (v) power spectrum
Sv1v2(ω) [A2 Hz−1] correlation spectrum between v1 and v2

σ [S m−1] conductivity
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T [K] absolute temperature
T (Vin) modulator transfer curve
τh [s] hole lifetime
τloss [s] external (cladding) loss lifetime
τm [s] mirror (end) loss photon lifetime
τn [s] electron lifetime
τ

sp
n [s] electron spontaneous radiative lifetime
τ

sp
n [s] electron spontaneous radiative lifetime, single photon state
τ

sp
n,D [s] electron spontaneous radiative lifetime, degenerate
τ

sp
n,ND [s] electron spontaneous radiative lifetime, nondegenerate
τn,nr [s] electron nonradiative lifetime, LED
τnr [s] carrier nonradiative lifetime in laser cavity
τn,r [s] electron radiative lifetime, LED
τ

sp
n,th [s] spontaneous carrier lifetime at laser threshold
τ st

n [s] electron stimulated radiative lifetime
τ st

n min [s] limit value of electron stimulated radiative lifetime
τ st

n,th [s] stimulated carrier lifetime at laser threshold
τph [s] photon lifetime
τt [s] transit time (detectors, modulators)
τ0 [s] spontaneous radiative lifetime (limit value)

Uh [m−3 s−1] net recombination rate, holes
Un [m−3 s−1] net recombination rate, electrons
U S R H [m−3 s−1] Shockley–Read–Hall trap-assisted recombination rate
U0 [J] [eV] vacuum level

v f [m s−1] phase velocity
vg [m s−1] group velocity
vh [m s−1] hole drift velocity
vh,sat [m s−1] hole saturation velocity
vm [m s−1] RF velocity (modulators)
vn [m s−1] electron drift velocity
vn,sat [m s−1] electron saturation velocity
vo [m s−1] optical velocity (modulators)
vP D [V] photodetector voltage
V [m3] crystal volume, for normalization
V [m3] laser photon volume
Vac [m3] laser active region volume
Vbr [V] breakdown voltage
VP D [V] total DC photodetector voltage
VSW [V] modulator switching voltage
VT [V] thermal voltage
VT H [V] threshold voltage
Vπ [V] modulator OFF voltage
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wabs [s−1] absorption scattering rate
wem [s−1] emission scattering rate
w

sp
em [s−1] spontaneous emission scattering rate

wst
em [s−1] stimulated emission scattering rate

Wabs [m] absorption region width
Wabs(h̄ω) [m−3 s−1] total absorption scattering rate per unit volume
Wav [m] avalanche region width
Wem(h̄ω) [m−3 s−1] total emission scattering rate per unit volume
W sp

em(h̄ω) [m−3 s−1] total spontaneous emission scattering rate per unit volume
W st

em(h̄ω) [m−3 s−1] total stimulated emission scattering rate per unit volume
Wk [J] energy in laser mode k
Wabs(h̄ω) [s−1] total absorption scattering rate
Wem(h̄ω) [s−1] total emission scattering rate
Wsp

em(h̄ω) [s−1] total spontaneous emission scattering rate
Wst

em(h̄ω) [s−1] total stimulated emission scattering rate

Y [S] admittance matrix

Z [�] impedance matrix
Zg [�] generator internal impedance
ZG [�] generator internal impedance
Zi [�] input impedance, front-end
Zin [�] input impedance
ZL [�] load internal impedance
Zm [�] TIA transimpedance
Zout [�] output impedance
Zs(ω) [�] Zs = Rs + jXs surface impedance (resistance, reactance)
ZS [�] generator (source) internal impedance
Z0 [�] characteristic impedance
ζ normalized impedance
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Absorption, semiconductor
energy behavior

connection with joint density of states, 83
direct-bandgap, 83
Ge, 84
indirect-bandgap, 83

examples, 84
Alloys, 24, 25

AlGaAs, 27, 28
AlGaN, 28
HgCdTe, 28
III-N alloys, 28
InAlAs, 28
InGaAs, 28
InGaAsP, 27, 28
InGaAsSb, 28
InGaN, 28
quaternary, 26
SiGe, 28
ternary, 25
Vegard and Abeles law, 26

APD, see Avalanche photodiode
Attenuation

EM field, 57
transmission line, 108

Available power, see Conjugate matching
Avalanche photodiode

conventional, 212
frequency response, 228
materials, 213
multiplication factors, 216
noise, 220

comparison, 221
conventional APD, 225
SAM-APD, e-triggered, 227
SAM-APD, h-triggered, 228

responsivity, 213
SAM-APD, 212
structures, 211
VI curves, 218

Bias T, 124
design example, 124

Bipolar transistors (BJT)
emitter efficiency, 141
emitter bandgap narrowing, 142

Bloch theorem, 12
Bloch waves, 12
Bragg reflectors

in LEDs, 262
in resonant cavity photodetectors, 201
in vertical cavity lasers, 301

Bragg wavelength, 295

Carrier density, semiconductor
carrier injection and depletion, 22
equilibrium, 17
Fermi–Dirac integrals, 22
intrinsic concentration, 18
Joyce–Dixon approximation, 22
nonequilibrium, 22
temperature behavior, 20

Conjugate matching, 120
Coplanar lines, 115

analysis formulae, 116
frequency dispersion, 116

Crystal defects, 7
Crystal structure, 2

Bravais lattices, 2
cubic and hexagonal, 2
diamond and zinc-blende, 5
wurtzite cell, 5

Density of states, 17
Dielectric losses

loss tangent, 109
Distortion, modulators, 364
Doping, 20

acceptors, 20
donors, 20

DOS, see density of states

EAL, see Electroabsorption modulator, integration
with lasers

EAM, see Electroabsorption modulator
Effective density of states, 18
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Effective mass, 10
anisotropic, 10
density of states

electrons, 11
holes, 11

transport
electrons, 11
holes, 12

Einstein relation, 43
Electrooptic modulator, 356, 364

lithium niobate (LN), 365
charge bleed layers, 369, 397
effective CPW RF index, 371
electrooptic properties, 366
electrooptic tensor, 366
electrooptic tensor values, 367
microwave properties, 365
optical properties, 365
overlap integral, 369
use of dielectric buffers, 369
X- and Z-cut comparison, 369, 397
X-cut, 368
Z-cut, 367

perovskite-based, 357
polymer-based, 374
semiconductor, 357, 372

electrooptic properties, 372
Mach-Zehnder structures, 373

Electroabsorption modulator, 356
chirp, 414
detuning, 411
detuning energy, 414
distributed or traveling-wave, 415

frequency response, 417
examples, 420
integration with lasers (EAL), 423

technology, 423
lumped, 409

dynamic response, 412
modulation bandwidth, 414

operation principle, 402
overlap integral, 410, 411
slow-wave effect, 421
static response, 410

extinction ratio, 411
structures, 409

Electromagnetic spectrum, 52
Electromagnetism

electric and magnetic fields, 53
EM wave absorption, 57
EM wave power, 57
Poynting vector, 57
propagation constant, 57

Electron affinity, 17
EM field–semiconductor interaction, 78

EM wave standpoint, 78

absorption, gain, and net gain, 78, 79
energy conservation, 67
semiconductor standpoint, 78, 93

generation rate, 93
net recombination rate, 93
recombination rate, 93

EOM, see Electrooptic modulator
Excitons, 84

dispersion relation, 87
effect on absorption profile vs. temperature

bulk, 87
quantum well, 88

resonance peaks, 85

Fermi–Dirac integrals, 22
Joyce–Dixon approximation, 22

Ferroelectric materials, 6
Curie temperature, 7
spontaneous polarization, 7

Field-effect transistor (FET), 126
comparison between cutoff frequencies, 136
cutoff frequency, 131
DC characteristics, 127
DC model, channel pinch-off saturation, 128
DC model, velocity saturation, 139
heterojunction-based (HEMTs), 127
maximum oscillation frequency, 131
MESFETs, 126
small-signal model, 130

First Brillouin zone, 8
cubic semiconductors, 8

Franz–Keldysh effect, 357, 403
absorption variation vs. photon energy, 403

Gain, semiconductor, 80
energy behavior, 80

bulk, 81
connection with joint density of states, 80
quantum well, 81

gain compression, 81
gain compression coefficient, 82

Generation and recombination, 21, 43
Auger recombination, 21, 46
avalanche breakdown, 46
impact ionization, 46
ionization coefficients, 48
lifetime, 43
radiative, 21
thermal, 21
trap-assisted, 44

Heterojunction bipolar transistor (HBT), 126, 141
cutoff frequency, 144
GaAs based, 146
Gummel plot, 145
InP based, 146
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model, 143
SiGe, 146
small-signal equivalent circuit, 145

Heterostructures, 24
affinity rule, 30
band alignment, 30
hetero- and homotype, 31
lattice-matched, 24
strained or pseudomorphic, 24

High electron mobility transistor (HEMT), 126, 133
conventional, GaAs-based, 134
DC model (velocity saturation), 140
GaN-based, 135
InP, GaAs, GaN-based, 133
lattice-matched (LMHEMT), 126
metamorphic (MHEMT), 136
modulation-doped heterojunction, 133
PHEMT charge control, 136
pseudomorphic (PHEMT), 126
pseudomorphic, GaAs-based, 135
pseudomorphic, InP-based, 135
supply layer, widegap, 133

Impedance (characteristic)
medium, 57
transmission line, 106

Intermodulation products, 364
Ionization, 17

Joint density of states, 75
reduced mass, 67

Kramers–Kronig relations, 55

Laser
active region optimization, 285
cavity gain, 275
cavity optimization, 290
chirp, 315

adiabatic, 330
effect on signal dispersion, 320

DBR, see Distributed Bragg reflector
DFB, see Distributed feedback
differential gain, 317
Distributed Bragg reflector

principle of operation, 299
tunable, 299

Distributed feedback
grating, 294
grating operating principle, 295
output spectrum, 298
quarter-wavelength shifted grating, 298
threshold condition, 297

Fabry–Perot
cavity modes, 269
conventional structure, 291

emission spectrum, 281
gain-guided stripe structure, 291
index-guided buried structure, 292
index-guided ridge structure, 292
introduction, 266
linewidth, 268
longitudinal and transversal resonances, 272
operation, 268
radiation pattern, 266
TE and TM polarizations, 269
TE mode dispersion relation, 271
threshold condition, 279

GRINSCH, 286
linewidth, 304

analysis, classical approach, 306
cavity linewidth, 305
Schawlow–Townes, 348
system requirements, 305

linewidth enhancement factor, 304
material systems, 290
mirror or end loss, 283
noise

carrier and photon fluctuations from Langevin
approach, 338

Langevin approach, 330
Langevin source analysis, 331
output power fluctuation, 340
phase noise from Langevin approach, 346
relative intensity noise (RIN), 343
RIN frequency behavior, 344

overlap integral, 275
phase noise, 304
photon lifetimes, 283
power–current characteristics, 282
quantum dot, 302

performances, 302
technology, 302

quantum well, 286
polarization sensitivity, 289

small-signal response
analysis, 321
chirp analysis, 329
frequency response, 316
modulation bandwidth, 316

temperature behavior, 303
transient response, 315
transparency condition, 281
vertical cavity, 300

Laser biasing, 426
Laser drivers, 427
LED, 255

edge-emitting, 257
emission spectrum, 262
emission spectrum, QD, 264
emission spectrum, QW, 264
emission spectrum, superradiant, 264
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heterojunction, 256
analysis, 261
efficiency, 262

homojunction, 256
analysis, 257
bandwidth, dependence on bias current, 261
charge control model, 260
external efficiency, 259
injection efficiency, 258
modulation response, 261
radiative efficiency, 259
transmission efficiency, 259

materials, 264
modulation speed, 255
spectrum, 255
spectrum FWHM, 262
superluminescent, see LED, superradiant
superradiant, 257
vertical emission, 256

Lifetime, 21, 43
radiative, 95

spontaneous and stimulated, 97
stimulated, 100
stimulated, effect of gain compression, 100

Shockley–Read–Hall, 45
spontaneous

asymptotic (τ0), 98
degenerate case (high injection), 98

Light modulation
analog, 358
digital, 358
direct or internal, 356
indirect or external, 356
through semiconductor optical amplifiers, 356

Lithium niobate (LN), 7, 365
LN, see lithium niobate

Mach–Zehnder EO modulators, 357, 375
chirp, 391
chirp, Henry parameter, 393, 394
dynamic response, 378
high-speed design, 394
integration with lasers, 399
LN structure evolution, 396
LN structures

advanced design, 397
advanced design, Z-cut, 399
buffered, 396
dual drive, 397
unbuffered, 396
Z-cut, static charge problems, 396

lumped, 376
semiconductor structures: advanced design, 399
static response, 377
traveling-wave, 382

factors influencing the bandwidth, 387

frequency response, 386
phase reversal, 390
resonant, 389

Mass action law, 19
Media

anisotropic, 58
biaxial, 58
isotropic, 58
permittivity tensor or matrix, 58
principal axes, 58
uniaxial

optical axis, 58
ordinary axis, 58
permittivity matrix, 58

Memoriless relation, 53, 158
Microstrip lines, 114

frequency dispersion, 114
Microwave integrated circuit (MIC), 151

coplanar, 151
coplanar example, monolithic, 152
hybrid, 151
microstrip, 151
microstrip example, hybrid, 152
microstrip example, monolithic, 152
microstrip to coaxial connectors, 155
monolithic (MMICs), 151
on-wafer probing, 151
packaging, 153

Miller index notation, 3
Modulator biasing, 425

integrated DC and RF electrodes through bias T,
425

separate DC and RF electrodes, 425
wideband bias T design, 426

Modulator drivers, 427
cascode-cell distributed amplifiers, 434
discrete-cell distributed driver amplifiers, 434
distributed driver amplifiers, 430
driver amplifiers, 430
semiconductor materials, 429
speed and driving voltage requirements, 429

Modulators, system parameters
chirp, 363
electrooptic response, dynamic, 360
electrooptic response, static, 358
extinction ratio, 359
frequency response, small-signal, 360
modulation bandwidth, electrical, 362
modulation bandwidth, optical, 362
on–off voltage, 359
optical bandwidth, 363
optical insertion loss, 359
RF insertion loss, 363

Molecular beam epitaxy, 40
MOSFETs, 133
Multi quantum well (MQW), 25, 40
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MZ, see Mach–Zehnder

Optoelectronic integrated circuit (OEIC), 151

Passive concentrated elements, 121
integrated, 122

capacitors, 122
inductors, 122
inductors, spiral, 122
resistors, 122

lumped, external, 123
capacitors, 123
inductors, 123
inductors, conical, 124
resistors, 123
resistors, wideband, 123

vs. distributed elements, 121
Permeability, magnetic, 54
Permittivity

electric, 54
complex, 54
in vacuo, 54

frequency behavior, 54
Perturbation theory, 60

absorption matrix element in a crystal
momentum matrix element, 74

energy and momentum conservation, 60, 61
matrix element, 69

crystal, 70
perturbation Hamiltonian, 68
QW oscillator strengths of TE and TM modes, 73
relation between spontaneous emission,

absorption and gain spectra, 91
scattering rate, 68, 74

Phonons, 13, 42, 63
acoustic, 65
dispersion relation, 64
energy, 66
energy of the Raman phonon, 66
longitudinal and transverse, 65
momentum, 66
optical, 65

Photodetectors
constitutive relation, 158

dark current, 166
photocurrent, 166
responsivity, 166
saturation input optical power, 166

equivalent circuit, 173
RC cutoff, 174

front-end amplifiers, 233
examples, 247
high and low input impedance, 234
high-speed transimpedance stages, 240
hybrid and monolithic implementations, 250
integrated front-end and photodetector, 248

pin–APD comparison, 244
receiver sensitivity, 244
shot noise limit, 243
SNR analysis, 242
thermal noise limit, 243
transimpedance amplifiers, 236

intrinsic and extrinsic detectors, 165
materials, 163

far infrared (FIR), 164
germanium, 164
long-haul systems, 164
short-haul systems, 164
silicon, 164

noise equivalent circuits, 234
parameters

complex responsivity and frequency response,
172

detectivity, 177
external (device) quantum efficiency, 170
ideal responsivity, 169
internal gain, 174
internal quantum efficiency, 170
modulation bandwidth, 171
noise, 174
noise equivalent power (NEP), 177
responsivity, 167
responsivity vs. photon energy behavior, 168
sensitivity, 177
SNR, 176

photon energy threshold, 161
structures, 159

Photons, 59
absorption, 60
absorption and emission, 59
average number, 74
continuity equation, 78
density, 74
direct processes

absorption, 62
spontaneous and stimulated emission, 62

energy, 59
indirect processes, 63

phonon-assisted absorption, 63
phonon-assisted emission, 64

interaction with semiconductors, 59
momentum, 59, 62
spontaneous emission, 60
stimulated emission, 60

pin photodiodes, 184
bandwidth–efficiency trade-off, 199
frequency response, 189
performance comparison, 232
RC-limited bandwidth, 197
refracting-facet photodetector, 200
resonant-cavity photodetector, 201
responsivity and quantum efficiency, 188
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saturation power, 191
structures, 188
transit-time bandwidth, 193
traveling-wave photodetector, 203
velocity-matched traveling-wave photodetector,

209
waveguide photodetector, 201

pn photodiodes
DC characteristics, 178
frequency response, 180

Population inversion condition, 80
Power matching, see Conjugate matching

QD laser, see Laser, quantum dot
Quantum dot, 32

density of states, 39
Quantum well, 29, 32

carrier confinement, 30
carrier density, 35
carrier wavefunction, 32
density of states, 31, 33
dispersion relation, 33
energy level quantization, 31
photon confinement, 30
reduced dimensionality structures, 32

Quantum wire, 32
carrier density, 39
carrier wavefunction, 33
density of states, 38

Quantum confined Stark effect, 357, 404
absorption variation vs. photon energy, 407
effect of strain, 407
exciton effects, 404
polarization sensitivity, 404

Radiative RG, 21
net recombination rate, relation to gain and

absorption, 94
spontaneous and stimulated recombination rate,

96
spontaneous recombination spectrum, 94

Reflection coefficient, 111
relation to impedance, 111

Refractive index, 54
complex, 54

Scattering parameters, 117
measurement setup, 119
normalization resistance (impedance), 118
power waves, 118
scattering matrix, 118

lossless elements, 119
reciprocal elements, 119
relation to impedance matrix, 118

Scattering rate, 74
absorption, total, 76

dipole matrix element, 74
emission, total, 76
joint density of states, 75
state occupation probability, 76

Selection rules, 61, 68
even–even, odd–odd (QW), 72
even–odd (bulk), 70
polarization sensitivity, 72
quantum well, heavy and light holes, 73

Semiconductor alloys, see Alloys
Semiconductor devices

noise equivalent circuits, 148
field-effect transistors, 149
junction devices, 149
resistors, 149

Semiconductors, 1
bandstructure, 1, 17

AlAs, 15
density of states mass, 11
dispersion relation, 8
effect of strain, 40
elliptic minimum, 10
examples, 23
GaAs, 13
Ge, 14
InAs, 15
InP, 14
parabolic band approximation, 10
Si, 13
spherical minimum, 10

compound families: III-V, IV-IV, II-VI, 16
degenerate and nondegenerate, 18
direct and indirect bandgap, 13
direct bandgap, 9
indirect bandgap, 13
nonequilibrium, 21
substrates, 27

metamorphic, 28
superlattices, 25, 40

SFDR, see Spurious free dynamic range
Shockley–Read–Hall generation and recombination,

45
Skin effect

skin penetration depth, 109
surface impedance, 109

Smith chart, 112
Spontaneous emission factor, 92
Spontaneous emission spectrum, 89
Spontaneous radiative lifetime τ0, 98
Spontaneous recombination spectrum, 94
Spurious free dynamic range, modulators, 364
Statistics, semiconductors

equilibrium
Boltzmann, 17
Fermi level, 18
Fermi–Dirac, 17
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Fermi–Dirac distributions, 18
nonequilibrium, 22

quasi-Fermi levels, 22

Telegraphers’ equations
lossless line, 105
lossy line, 107, 108

TEM, see Transverse electromagnetic mode
Transmission line propagation

quasi-TEM, 105, 113
TEM, 105

Transmission line, loaded
impedance at arbitrary section, 111
input impedance, 112

open line, 112
shorted line, 112

normalized impedance, 111
reflection coefficient, 111

Transmission lines, 104
absorption, 109
attenuation, 108

conductor, 110
dielectric, 110

characteristic impedance, 106
characteristic impedance (complex), 108
effective permittivity, 107
effective refractive index, 107
guided wavelength, 107
high-frequency (LC) regime, 110
losses

dielectric losses, 105
ohmic losses, 105

low-frequency regime, 110

phase velocity, 106
power, 108
propagation constant, 107
propagation constant (complex), 108
RC regime, 110
specific parameters

capacitance p.u.l., 105
conductance p.u.l., 105
inductance p.u.l., 105
inductance, external, 109
inductance, internal, 109
resistance p.u.l., 105

Transport properties
diffusion, 43
drift, 42
Einstein relation, 43
mobility, 42
saturation velocity, 42
velocity overshoot, 42

Transverse electromagnetic mode, 105

Unconditional stability, two-port, see Conjugate
matching

Uni-traveling carrier photodiodes, 210
UTC-PD, see Uni-traveling carrier photodiodes

van Roosbroeck–Shockley relation, 93
VCSEL, see Laser, vertical cavity
Velocity–field curve, 15

Wavefunctions
electron and hole, 12
light and heavy holes, 13
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