Chapter IV

EFFECTIVE MASS THEORY

§21. PERTURBATION THEORY. #-THEORY

To determine in detail the spectrum E, (&) throughout the Brillouin zone,
one needs a numerical solution of the Schrodinger equation (17.1). Several
approximate methods are now available to determine the wave functions and
energy spectrum of electrons in the solid state, but a numerical solution of
the Schrodinger equation is fraught with practical difficulties, involved
mainly in determination of the self-consistent potential V(x).

However, in most semiconductors a knowledge of the entire energy spec-
trum is not necessary, and a different approach has proved quite fruitful. In
semiconductors, the number of current carriers — electrons in the conduc-
tion band and holes in the valence band — is usually small compared to the
total number of atoms in the crystal; thus, if the allowed band is sufficiently
wide, in thermodynamic equilibrium the electrons are concentrated near a
minimum of the conduction band, and the holes are concentrated near a
valence band maximum. Therefore, in most problems in the physics of
semiconductors a knowledge of the energy spectrum near the band extrema
is sufficient.

It is significant that the possible shapes of the spectrum near a given point
can be determined by symmetry considerations alone, without numerical
solution of the Schrodinger equation.

Since the shape of the spectrum near an extremum is the essential factor
determining the experimentally observed properties of semiconductors, com-
parison of experimental data with theory indicates what shape the spectrum
may have for a given semiconductor and enables one to find the constants
appearing in the energy.

A necessary condition for a band extremum is that all the derivatives of
the energy with respect to &, vanish:

AE, (ko)
—6~E;—=0. (21.1)

i.e., the band has zero slope at the point &,.

Although in principle there may be a band extremum at any point of k-
space, in almost all semiconductors for which extremum positions are known
they lie at points of the Brillouin zone where the zero slope of the band for
all or some directions &, is due to the symmetry of the point %. Therefore,
it is important to determine which points of the Brillouin zone may be points
of zero slope and are consequently likely candidates for positions of the band
extrema.,

187



188 Ch. IV. EFFECTIVE MASS THEORY

This problem can be solved by group-theoretic methods. Obviously, all
the derivatives dE./dk, may vanish simultaneously only at isolated points of
k-space. The "candidates' are points in k-space at which all the velocity
components vanish because of symmetry or time-reversal conditions, points
on lines of symmetry at which two velocity components vanish identically,
and also points of a plane on which one of the velocity components vanishes
owing to symmetry or time reversal,

An extremum may of course be located at an arbitrary point of the Bril-
louin zone, possessing no symmetry, where all three velocity components
vanish for some specific potential V(x).

Qualitative investigation of the spectrum near a point & is based on
'""kp-theory," which is a variant of perturbation theory essentially similar to
the method used in §17 to investigate the analytical properties of wave func-
tions and energies. In §17 we used the Bloch functions ¥,,, which are exact
solutions of the Schrodinger equation (17.1), (17.2) for an ideal crystal. In
semiconductors, where the significant regions in k-space are those close to
an extremum point &, it is convenient to use instead the Luttinger-Kohn
representation to investigate the energy spectrum of current carriers in an
ideal crystal, especially in regard to the behavior of current carriers in
slowly varying electric and magnetic fields. In this representation the wave
vector k is measured from the extremum point &, i.e., k= K—k&,, where K
is the wave vector of the point in k-space (in §17 the difference K —k, was
denoted by x). Rather than the Bloch functions ¥,k (17.5) the following func-
tions ¢, are taken as basis:

1
Pra = vy wnhe“x' (21.2)

where ¥, is the Bloch function at the extremum point &,,

— alh
‘pnlu = L

which is an eigenfunction of the operator #,=(p%2m)+ V(x) with energy E,(ko).
The function ¢, is normalized with respect to the crystal volume ¥ = NQ,,

where N is the number of primitive cells in the crystal and €, the volume

of a primitive cell. The functions u.., are normalized with respect to the

volume of the primitive cell:

I -
T‘,j‘“u."‘m.d‘oz L. (21.3)
g,

The function ¢,,transforms according to the same representation of the
translation group (i.e., corresponds to the same &) as the exact function LIPS
but differs from it in that the function corresponding to ¢, is the periodic
function wum, rather than u,.

The functions ¢,, are orthogonal:

(Prrar P = O Ope (21.4)

Here, for convenience, we assume that the crystal volume » is finite, and
thus cyclic boundary conditions are imposed on the functions ¢,,. Hence &
may take only discrete values.

The orthogonality of the functions ¢,, with respect to &, like that of the
functions ¥,,, is due to the fact that under translation by a Bravais lattice
vector the matrix element (@, %,) receives a factor ei= (k=% which is not
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equal to unity since the vectors k and &’ are in the Brillouin zone. The
orthogonality with respect to n is a consequence of the orthogonality of the
periodic functions wuns,.

The wave function ¢,, can be expanded in the functions ¢,,, which have
the same period:

o= 2 e (21.5)

The coefficients ¢, define the transformation from the Bloch representation
to the Luttinger-Kohn representation.
We first calculate the spectrum E(k) without spin-orbit coupling.
Substituting the expansion (21.5) into the Schrddinger equation (#— E)$ =
=0, multiplying on the left by ¢;, and integrating over x, we obtain the sys-
tem of equations

hk? hkp, .
2{(53 (ko) + ST E) bnn + “‘:%')} cp =0. (21.6)

We have used the equation
6, (p) e'** == 36, (p + hk). (21.7)

In (21.6) p,, are the momentum matrix elements between the Bloch functions
q’nh:

1 .
P = Ppa,, n't.=? J- ¢nl’p¢n’l. dtﬂ' (2 1'8}
For small values of &, the terms
hi2k? il
% =5—, 93,=_m£ (21.9)

in equation (21.6) can be considered as a perturbation and,as in (15.35) and
(15.45), only the operator 3, has interband matrix elements. To eliminate
them, we apply the transformation (15.33); according to equation (15.47)
this gives, to second order in k,

Y {(En ko) + G — E)bu + 2y, 0, +

n

v Prks, ks Pk, n'h
+ bk, LrenmPrnonn | _
m znzn -] Eﬂ(kﬂ)'*gn'(kg) ]C 0 (21 10)

Nondegenerate bands. For a nondegenerate band, equation (21.10)
implies that the energy E(k,+ k)is, up to &*terms,

En(ky+ k) = Ep (k) + = 3 ko D2y, e, + zi,-f—;;gkuka, (21.11)
a aff
where, by (21.10),
1 1 Pﬁb._ n'ko PE‘&.. 2t P’;n., n'ke p:’h. nky !
Mag | mT E E,,(;,,)—f,‘,(u} + 77 Oep: (21.12)
p n'sn 0

It.is significant that, starting only from symmetry considerations and
using selection rules for the momentum matrix elements, we can determine
the number of nonzero constants p* and 1/m,s and establish the relations
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between them, thus obtaining a qualitative expression(21.11) for the spectrum
E.(ky 4+ k) . Since the momentum operator transforms according to the re-
presentation @, (which in the group Gs, may be reducible), in the general
case the number of nonzero pg, ,, equals the number N, of identity repre-
sentations occurring in the direct product

Di' X Dy X D" =D,
and is given by equation (19.43)

N,=—;v 2 lxu(ﬂ)lzx.(g}=-,:—f 2 % (g) (21.13)

gEGII.‘ geah

since for one-dimensional representations the product @* x @5 is always
the identity representation.

It follows from (21.13) that the only nonzero constants pg, . are those
corresponding to components &, which transform according to the identity
representation of the group G, i.e., are invariant under all transformations
in Ga,.

Since OF, [0k, = p3;. .4,» €Quation (21.13) determines the points of zero slope,
i.e., points k at which certain components of the velocity dE/dk, vanish iden-
tically because of the symmetry conditions.

Thus, if the symmetry group of the point &k, contains inversion, all the
momentum components vanish: dE./dk, = 0 for all directions of the vector k.
But if & lies on a twofold or fourfold symmetry axis, the only component of
k, invariant under all rotations will be that parallel to this axis, so that in
this case the two velocity components normal to the symmetry axis vanish
owing to symmetry. In case the point lies on a plane of symmetry, the com-
ponent normal to the plane of symmetry vanishes, since it changes sign upon
reflection in the plane.

For one-dimensional representations, it follows from (21.13) that these
conditions are independent of the representation @) itself, depending only on
the symmetry of the point k,.

Let us now see how the sum (21.12) transforms under the action of an
element g Gy,.

If one of the bands n’ over which the summation in (21,12) extends is m-
fold degenerate, the sum (21.12) contains m terms, according to the number
of degenerate functions ¥; ., (s=12,..., m) in the band n’, with the same
energy denominator E,(k)— En (k). Under the action of an element g Ga, the
sum of these terms becomes

g(g“"n. [ €P% | 895wy w) (€%; (ny 4, | 8P| €0 p,) =
= .2, D () DI (¢) Ditvs (@) Dilts () DV (0) DY () X
X (B, P[0y 0y 0 (Peury | PP | O s

where @, (g) is the representation according to which the momentum p trans-
forms and 2}’ the representation according to which the functions w,,,,,
transform. Using the unitarity relation (7.11)

; Dies (@) Dilis (g) = bg,
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we obtain
Z(@¥nn, | 87" | 895 a1 0 {8 a2, | 8PP 8000 =

= 2 (027 00 1) Oy ] P [ 9, X
X D (g) 2* (o) D (g) D) (g),
i.e., each term in (21.12) transforms like ($,,,|p°p*+ p°p®|¥.s,), and therefore

the entire sum (21.12) (i.e., the constants 1/m,,) transform according to
the direct product

DD, X D) D =[D, X D). (21.14)
The number N, of independent constants 1/m,, is, by (21.14) and (19.43),
No=5 ¥ | @FE@+1E@)=% ¥ [£@)] (21.15)

Equations (21.14) and (21.15) imply that the quadratic part of the energy
expansion (21.11) contains only combinations k,kp invariant under transfor-
mations from the group Ga. Near an extremum point the energy is a qua-
dratic function of #,, and moreover the form ml_cﬁkckn must be positive
definite for an extremum to exist.

Near an extremum, the energy E,(k+ k) can be written as

En (ko + k) = En (k) + X 37— kuky: (21.16)
ap

The constants 1/ m,p are known as the inverse effective mass tensor,

Thus, near an extremum point, the energy is a parabolic function of 4,
to lowest order in &,, but in contrast to a free electron it is characterized
by anisotropic effective mass.

The symmetric tensor 1/m,s may be reduced to principal axes, and then
(21.18) becomes

En(ko+ &) = En(ko) + Y, 5o £ (21.17)

Therefore, for a nondegenerate band the surfaces of constant energy near an
extremum are always ellipsoidal, determined by six parameters: the six
components of the symmetric tensor 1/m,p, or the three principal values of
1/m, and the three directions of the principal axes of the energy ellipsoid.
The symmetry of the ellipsoid (21.16) depends only on the symmetry of
the point k. Thus, if the extremum point is on a symmetry axis, one of the
axes of the energy ellipsoid coincides with this symmetry axis. If the sym-
metry axis is threefold, fourfold or sixfold, the energy ellipsoid is an ellip-
soid of revolution and the other two axes of the ellipsoid can be chosen arbi-
trarily in a plane perpendicular to the symmetry axis. If k, lies at the
intersection of three mutually perpendicular twofold axes (has symmetry
group D) or on a twofold axis in a reflection plane o, (symmetry group Cs ),
the ellipsoid is characterized by three different effective masses. The prin-
cipal axes of the ellipsoid are then directed along the symmetry elements,



TABLE 21.1

Symmeuy| Vanishing
8;‘::’@ comz:nents Energy near extremum point pr::;ig:lna?cfes
e — o, W o h? 4 Arbitrary
T TR R T
Cy prpY.pr| B, h? o, Arbitrary
o it o, Bt K
Cs p? ﬁzk? h“’kg ﬁ%@g x- and y-axis in
?ﬂ? 2m, mg plane oy, z-axis
normal to plane oy
C, PE P | W% R % x- and y-axis in
+ plane perpendicular
2m, 2m; 2my to axis ¢;; z-axis
along axis ¢,
Can P, o, p? | p2%? B2 722 z-axis along axis ¢,
_f?_]_ 2_2 5 3 x- and g-axis in
my Mz s plane o4
Ca r*, p¥ .ﬁ?k"; hzkg ﬁ?kg z-axis along axis r;,
—_— 4 — x- and y-axis along
2m,
2my 2my : intersection of plane
Oy with planes per-
pendicular to ¢;
Dy, Don | P*, DY P* | W22 B%2 | H%2 %~y §- 20d s-axis
L2+ along three twofold
2m, 21'": 2»“3 axes
S, Do | p* oY, p? 2 (42 9 9 z-axis along axis s,,
) ﬂ_l-l-_kQ) .’.l_k% x- and y-axisarbitrary
2m, 2my in plane perpendicular
Lo 5y
c. C P, p¥ B 9.9 z-axis along axis e,
v —(kf + k:) + Bk x-and y-axisarbitrary
2m, 2my in plane perpendicular
10 &y
Dy Can * pb, p? 2 z-axis along axis ¢,
"D“" P PP ¥ (kf+k§)+ 0’ x-and y-axisarbitrary
2m, 2my in plane perpendicular
to ¢,
Ce Corn p*, p¥ h2 B22 z-axis along axis ¢y,
Cs, Cip o (kf + kgj + ?mi x-and y-axis arbitrary
1 1 in plane perpendicular
1o axis ¢
Can Dan | 5 PY, P* | B 2 e
S:,k'D;:.‘ E"m-]”( T+ k) + Dmy As above
Dg, Dep
0, 04, T, p5 pY% p* h? .
™ hrd P Ph P o (.ki2 + kg -+ kg) Arbitrary
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i.e., along the mutually perpendicular twofold axes or, in the case of G,
along the twofold axis and lines in which the reflection planes ¢, intersect
the plane perpendicular to the twofold axis.

Table 21.11lists the momentum components which vanish owing to the sym-
metry conditions (21.13) for the one-dimensional representations of all the
point groups of &,, anddescribes the position of the axes of energy ellipsoids,

If the extremum lies at the center of the Brillouin zone, k=0, the group
Fa, is the full point group F characterizing the crystal class, andthere is one
ellipsoid whose symmetry coincides with the macrosymmetry of the crystal.

A similar situation may occur when the extremum of a nondegenerate
band is on the boundary of the Brillouin zone, if the symmetry group of &
coincides with the space group.

If the band extremum is not at the center of the Brillouin zone, the sym-
metry of the point & is in general lower than that defined by the crystal
class, and the symmetry of the energy E(k) near the extremum may also be
lower than that of the crystal. In this case, however, the star of k always
contains other points &, the energy at each point of the star is the same,
E(k§) = E (k5), and the form of E(ki+ k) near ki is obtained from the ellipsoid
(21.16) by applying those elements g; of the group G which take the vector
k, into ki: ki=gk,. Thus the energy ellipsoid at g} is obtained from the
energy ellipsoid at k& by the rotation of axes corresponding to the element g,

By (17.10), the energy spectrum as a whole possesses the symmetry of
the crystal.

This type of band is known as multi-ellipsoid or many-valley band struc-
ture. Here one has energy degeneracy at different points of k-space,
although the band at each extremum #; is not degenerate.

_Bands degenerate at k. According to degenerate perturbation
theory for equation (21.10), we must consider all states n’ which have the
same energy at the point &. We shall denote these states by indices i, j=
=1,2,..., m, where m is the degeneracy of the band at &. The system of
equations (21.10) for a degenerate band at k, has the form

gx,,(k.,, k)¢, = Ec,, (21.18)
where, by (21.10),
. (ko, &) =2%knp?s.. wt Eh:?duk! +
a

n? p“"l- ‘e pg"o- ] + pﬂ 1 op:‘ v, [y
+W2k“kﬂ Z et E{k:;— E,:..(io). melte, (21.19)
af n'eki, |
The condition for solvability of system (21.19) is the vanishing of the deter-
minant

Detl| # — IE||=0, (21.20)

which yields an m-th order algebraic equation for the energy E=E(k+ &) —
— E(k) with m solutions E; (j= 1,2,...,m). Once the E; have been found,
equations (21.18) enable one to determine the coefficients ¢y corresponding
to the energies E; which determine the wave function ¢ ,,,,:

V). bt EE‘ ] !‘l"u. - E ka E(s:;" hem(gn) Pors, (21.21)

't
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The coefficients ¢; form a unitary matrix e.

If equation (21.20) has exactly m different solutions, i.e., the degeneracy
is completely removed, then all the minors of the determinant (21.20) differ
from zero. In this case system (21.18) has a unique normalized solution, up
to an arbitrary phase factor in each column. If there is only partial removal
of degeneracy, i.e., equation (21.20) has less than m different solutions,
equations (21.18) naturally yield solutions only up to an arbitrary unitary
transformation of the wave functions belonging to states that remain degen-
erate. The energy E(k + k) and the wave functions ¢ ,,,, near the point &,
obtained by solving equations (21.18) and (21.20), automatically satisfy the
compatibility conditions for representations at &, and at neighboring points
ky+ k: in directions for which group theory tells us that degeneracy is not
completely removed, equation (21.20) will have multiple solutions, and the
wave functions . s+ =V7 ¢ ,,, given by (21.21) transform according to the
representations 2%¥** into which the representation @ decomposes accord-
ing to the compatibility conditions.

For sufficiently small &, the %#* terms in the matrix # are small com-
pared with the linear k terms, and &€ is a linear function of k,. Therefore,
in the vicinity of the point k, the energy correction E.(k+ k) — Eo(k) is a
homogeneous function of first degree in k,. According to (21.18), the coeffi-
cient ¢;;, as a quotient of two homogeneous functions of first degree, is
homogeneous function of degree zero in &,, so that it does not depend on
the magnitude of the vector g but only on its direction.

Thus, in a sufficiently small neighborhood of a band degeneracy point k
the wave functions W, ,,,, depend on the direction of approach to k. This
was established previously in §17. Equation (21.21) enables one to determine
just how 1.in;1 ¥, »+s depends on the direction of the vector k.

>

If there are no linear k, terms, the correction to the energy E;(k) is a
homogeneous quadratic function of &, and 4, , ., depends as before only on
the direction of the vector k.

The explicit form of the matrix 6, (k, k), and therefore also of the matrix
c(k), naturally depends on the specific choice of basis functions ¥, , but the
energy E;(ky+ k), of course, does not depend on the choice of basis.

A necessary condition for an extremum, as in the case of nondegenerate
bands, is the vanishing of all the momentum matrix elements:

Pl 10, =0.

All the previous considerations concerning '"candidates" for the role of
extremum points in the Brillouin zone remain valid for the case of degen-
erate bands,

If the wave functions at k, transform according to the representation 2F,
the number of nonzero components of the momentum operator pj,, ,, is equal
to the number N, of identity representations occurring in the direct product

WX DX Dk,
where 2, is the vector representation according to which the momentum
components transform. The number N, can be determined in terms of the
characters x and y, using (19.43):
1
M=% ¥ |2 @@ (21.22)

xEGln
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Note that, in contrast to the case of a nondegenerate band, ¥; depends on the
representation @' according to which the wave functions transform at &.

Proceeding as in the derivation of equation (21.14) for a nondegenerate
band, one can show that the matrix elements of #® quadratic in &, trans-
form like the matrix element

K ~ (b, | PP+ PP ) (21.23)

Hence it follows that the number of independent constants that determine the
matrix #? and, accordingly, the spectrum near the extremum, equal the
number N: of identity representations occurring in the expansion of the
direct product

@;" [D X D] Db,

=7 X | @[p@) (21.24)

g=a,,

If the star {k} has several points k{, the band is m-fold degenerate at each
of them, and the energy E (k} - k) near kf is derived, as in the nondegenerate
case, from the energy E(k,+ k) Near k, by a transformation g; which takes
k, into kl: E(kb+ k)=FE (k,+ g7 'k) .

Time reversal. Inclusion of time reversal symmetry in calculation
of the energy spectrum has a twofold effect. First, the dimension of the
representation according to which the wave functions at the point &, belong-
ing to the same energy E (k) transform must be doubled when time reversal
dictates combination of representations at k. Second, time reversal may
impose additional requirements on the wave functions, sometimes causing
vanishing of momentum matrix elements which did not vanish from symme-
try considerations alone.

We first consider case 1, in which k and —&, are equivalent. This is the
case if k=0, or if k is on the boundary of the Brillouin zone and ky = —&,.
As shown in §18, this corresponds to three cases: (a;), (b;) and (c,).

In case (a;) the linear relation between the functions Ky, and ¢, results
in additional restrictions on the matrix elements of the operators p* and pipP
entering o¢ (21.19). Since p¢ is odd with respect to time reversal, it follows
from (19.45) that

7 XU u@E@), M=y ¥ (@@ @] (21.25)

= ah Lh Gh

where Ny and N; are thé number of linearly independent matrix elements of
p* and pﬂpﬂ+p5pﬂ for K2=1,

In cases (b,) and (c¢;) the wave functions ¥, and ¢, are linearly indepen-
dent; in case (b;) the representations 2 and g*" of the full space group
are complex and inequivalent, and in case (c,) they are complex and equiv-
alent. Therefore, in case (b;) the representations 2} and Z* of the little
group are inequivalent and have complex conjugate characters, whereas in
case (c;) they are equivalent. In cases (b;) and (c;) the complete representa-
tions @ and D™ of the space group are combined, leading to combination

of the representations .@ 5 and D, % of the little group at each point &j.
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Thus, in cases (b;) and (¢;) the band degeneracy at &, is doubled, and the
basis now consists of 2n, functions %,, and ¥;,.i=1,2,...,n,, where n, is
the dimension of the representation @},

Under the group G, these 2n, functions transform according to the com-
bined representation, which is reducible and has block-diagonal form:

L/l

0 ke

. (21.26)

Calculation of the perturbation matrix M (21.19) (i,j=1,2,..., 2n,) defining
the spectrum and the wave functions near &, involves both diagonal matrix
elements of the operators p® and p°?# between the functions ¥, ¥,, or ¥j,,
¥}, and off-diagonal matrix elements corresponding to states $is, ¥, - The
number of independent diagonal matrix elements of the operators p= and
p°pb 4 pBpe is determined according to (19.43) by equations (21.22) and(21.24),
while the number of off-diagonal matrix elements N, and N, in cases (c¢;) and
(b,) is determined by equations (21.25).

In case 2 — & is not equivalent to &,, but appears in the star {k}. This will
occur when there is an element R in G which takes &, into —&:

Rky= — k. (21.27)

Since the star (&) is irreducible, this implies that the stars {k} and — {k}
coincide. Relation (21.27) can be written for each point k& of the star (k)
with a specific R'=g,Rg;'!, where g; is an element of G which takes &, into ki.

As shown in §18, in case 2 there are again three possibilities: (a;), (bs)
and (cz).

In case (ap) there is a linear relation between the functions Kv,,, =4v;, and
the functions ¥, , and the complete representations D{" and 2, of the
space group are equivalent.

By (12.19), ¥, _,,=R¢,, , and so in case (a,), as shown in §18, there is a
linear relation between functions ¥,, and functions KRy, belonging to the
same star. This results in additional requirements for the momentum

matrix elements, and according to (19.46) Ny and N; are given by
1
Mi=5r X 1@]x @}~ @R 1 (gRY).
e=0y,

Vo= Y [2@)]| 2 (@[ +[x2 (R)] 2 (2R,

geﬂt'

(21.28)

In cases (by) and (c;) the wave functions ¢, and ¥, are linearly indepen-
dent. The complete representations 2™ and 2™ of the space group must
therefore be combined, leading to combination of the representations in the
little group at k.

Since the functions ¥, belong to the point —k,, it follows, as shown in
§18, that at k, the representations according to which functions w,,, and
KRy, belonging to the same point &, transform, i. e., the representations
Di(g) and D*(R™'gR), whose characters are related by (18.35), must be
combined. These representations are equivalent in case (¢;), inequivalent
in case (by). Thus, in cases (bz) and (c;) the composite representation has
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the form

v () 0 (21.29)

0 RTeR)T '
The number of independent diagonal elements of the matrix # for the func-
tions ¥, and KRy, is determined by substituting the characters of the re-
presentations @DF and #M(R™'gR) into (21.22) and (21.24), respectively. By
(19.44), the number of independent off-diagonal elements of the matrix # in
cases (by) and (¢;) is given by

= 2 [ (@ % (@ 1 (R™'gR) — x, (2R % (gR))).

G
=% (21.30)

Ny= Y [ (@)% (@)% (R™'gR) + [ (&R)] %" (gRY):

E'EGQ.

In case 3 the vector — &, is not in the star (&}, i.e., there are no elements
in the space group G which take & into —%&. When this happens, as noted in
§18, only case (bs) is possible. Because of time reversal, the complete re-
presentatmns of the space group @ and @™ must be combined, but since
their stars {kJ} and {—ko} do not coincide, the result is not an increase in the
dimension of the representation at k and — k but coincidence of the energies
at these points, which in case (bg) is not in itself a consequence of the crys-
tal symmetry.

In case (bg) the numbers N, and N, of independent matrix elements of the
operators pe and p*pP+ pfpe are given by equations (21.22) and (21.24).

Spin-orbit coupling. Inclusion of spin-orbit coupling in band theory
may be achieved in two ways.

In the first method, which is valid for spin-orbit coupling of any magni-
tude, the operator #,, (16.9) is incorporated from the start in the self-
consistent potential, so that the new potential V' = V + 3 thereby becomes
spin dependent. This approach classifies the wave functions according to
the irreducible double-valued representations of the space group.

The method presented above to determine the spectrum is applicable in
this case, except that the operator p must be replaced in the appropriate
equations by n(17.15) which, like p, transforms according to the vector re-
presentation &, and is odd with respect to time reversal:

K™'nK =Ko ,70,Ky = —

In the case of double-valued representations, time reversal sometimes leads
to combination of representations of the little group and also imposes addi-
tional conditions on the matrix elements.

Cases 1, 2 and 3, discussed in §18, are also applicable for double-valued
representations, but when using Herring's test (18.32) one should bear in
mind that for spinor representations K2=—1. As noted in §18, this changes
the sign of the corresponding terms in the equations for N, and N:.

Thus, in case (a;), in which there is a linear dependence between the
functions K+, and ¥

sk,

M=% ¥ @[ @)] (21.31)

=0,
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M= ¥ [2(2)] 1k’ (@)- (21.31)

g0y,

In cases (b;) and (c;), the functions K, and ¥, are linearly independent,
and the representations @ and @;* are combined. The complete matrix of
the representation of the little group has the form (21.26). The numbers of
independent diagonal elements of the matrix # are determined by equations
(21.22) and (21.24), the number of off-diagonal elements by equations(21.31).

In case (a;), in which &k and — k are in one star, the functions ¥, and
KRy, are linearly dependent and the numbers W, and N; are given by

M=z 3 1| @ +x (@R 5 (R,
L (21.32)
V=g X [K@]]% @ — 4 @R)] 1 (RD).

fEG‘.

In cases (by) and (c,) the representations D}'(g) and D*(R™'gR) are com-
bined, and the representation matrix at k has the form (21.29). The numbers
Ny and N, for the diagonal elements of # are determined by equations (21.22)
and (21.24) and for the off-diagonal elements by equation (19.44):

M=z N u@n@nReR) +u @Rz (2R,

Lo ] (21.33)
No=g7 % [X@]x @ (R™'eR) — [ (@R)] % (eRY).

.
2=y,

In case (b;) time reversal again makes the points k, and — k equivalent,
and the numbers N, and N, are given by equations (21.22) and (21.24),

We stress that when spin-orbit coupling is introduced, it is the charac-
ters of the double-valued representations of the space groups that appear in
the corresponding equations.

However, spin-orbit coupling is usually of a considerably smaller order
of magnitude than the atomic energy, and therefore it is frequently more
convenient to use a second method, which treats spin-orbit coupling as a
perturbation. This method brings out the properties of the band structure
due specifically to spin-orbit coupling, and relativistically small terms can
be isolated in the band parameters.

Since in many semiconductors the interband spacing is also much less than
the atomic energy, various relations may hold between the spin-orbit split-
ting and the separation to the nearest band, which, in particular, may be the
width of the band gap.

We first consider kp-theory in the case that spin-orbit coupling is sig-
nificantly less than the separation to the nearest band. In this case we can
construct the spectrum with spin-orbit coupling only for the band under
consideration.

Suppose that when spin is neglected the band is m-fold degenerate at &,
and the wave functions ¢, transform according to a certain representation
2* of the little group (which may also be reducible owing to combination
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of irreducible representations). Then, when spin is included, we have 2m
functions ¥,,a and ¢,B, forming a basis for the representation D% X Dp.
This representation is in general reducible and may be expanded in terms

of irreducible double-valued representations of the space group. This means
that in general spin-orbit coupling lifts the m-fold band degeneracy at the
point k&,.

To calculate the spin-orbit splitting and to obtain the correct functions at
the point k,, which in this case are linear combinations of the functions LA
and y_8, it is necessary to diagonalize the matrix # for the functions ¢«
and y,B. This reduces to solving the system of equations (21.20), with &,
in place of #. Solving the characteristic equation of the system, we obtain
p < 2m solutions F;(k)), separated by energy intervals A; which describe the
spin-orbit splitting.

To determine the spectrum near k, for each of the split-off bands E;(k),
we can use the above equations, replacing the operator p everywhere by a.
As opposed to the first method, here one can easily identify the band from
which the new band has split off.

Separate treatment of each split-off band is possible only for quite small
values of g, when

Ei(ky+ k) — E; (k) < A,

If the energy measured from the bottom of the i-th split-off band becomes
comparable with the separation to the nearest split-off bands, it is necessary
to solve the 2m-th order equation (21.20), including the spin-orbit coupling
#5, along with the terms k&,p® and k,kpp*pP in the matrix #. If the spin-orbit
splitting is of the same order as or even exceeds the separation to the near-
est band, in particular, the width of the band gap, then in order to calculate
the wave functions and the energy at the point g, with allowance for #, the
basis must include the 2(m, 4 m;) functions belonging to both bands,

Yoman® Cepn Yoy n® iy ab
wheres(n)=1, 2, ..., m; {t(n)=1, 2, ..., m,

Todetermine the correct wave functions at the point k, which in this case
may include all 2(m; + m,) functions of both bands, it is necessary to solve
system (21.20), with the matrix #,, evaluated relative to this basis, playing
the part of a perturbation, and the energy E;(k) allowing for # is given by
the roots of the corresponding characteristic equation (21.20).

The energy near k, for each of the bands obtained in this way is deter-
mined by the method considered above, It may happen that when 2, is
ignored the band has zero slope at g, but because of the relativistic terms,
the energy expansion near k, may contain nonzero terms linear in &,. In the
linear spin-orbit coupling approximation, such terms arise only in second
order perturbation theory for the operators (#,,), and nkp/m, as cross
products of their matrix elements.

In first order perturbation theory, the contribution of the relativistic
term toxr, i.e., of the operator H‘:.F[ovV], is zero.

Indeed, this contribution is proportional to the matrix elements (nk,| %[ n'ky),

where n’ =n for a nondegenerate band, while for a degenerate band the states
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n and n’ have the same energy. Calculating the matrix element of the
commutator

a av
{a—:%n}=m, (21.34)
we obtain
(ko |- | W'hs) = i (E, (k) — Ey (B0)) P24, s (21.35)

which implies that for all the states n and »’ with the same energy En(k) =
= En'(ko)

v .,
(nko | 55— | n'Ro) = 0.

In cases when the linear k, terms are relativistically small at g, the point
ko is likely to be an extremum point, since small linear terms cause only a
slight displacement from g,. The small linear k, terms should then also be
included in the matrix # along with the quadratic terms. The eigenvalues
of the matrix # give the spectrum near &, and the new positions &; of the
band extrema.

The nature of the linear %, terms can be determined from group-theoretic
considerations., Use of single-valued representations of the space groups
gives selection rules for the matrix elements of the operator p, and the cor-
responding formulas for double-valued representations determine the number
of nonzero components of the terms linear in k that appear in & when spin-
orbit coupling is included. If the selection rules for double-valued represen-
tations dictate that =n®s£0 for some component, but single-valued represen-
tations give p*=0, then the matrix element in question is relativistic.

kp-theory makes it possible to obtain the spectrum E;(k, + k) near the
point &k in higher approximations as well.

In this context, we would like to define some dimensionless parameter of
the energy expansion near the point &, and to know whether the second-order
expansion of the energy near the extremum is sufficient to describe the
various physical phenomena in semiconductors.

As we see from the structure of the perturbation equations (21.10), a
suitable dimensionless parameter is

B *Pnh‘n'lo

CEACE =k (2139
where p,,, ., is the matrix element of the momentum (or of the operator x
if spin-orbit coupling is included) between bands n and n’, and Ea (ko) — Ew (ko)
is the band separation at k.

Using the expression (21.16) for the energy near an extremum, it is easi-
ly seen that the expansion parameter may also be written as V Ey/E, where
Ey is the carrier kinetic energy measured from the bottom of the band, and
E is the separation of the band under consideration from the other bands n’,
averaged in some way. If the extrema of the valence band and the conduction
band are located at the same point & and the matrix element of the momen-
tum p,, ., between the valence band and the conduction band differs from
zero, the major contribution to the energy in the sums (21.10) and’'(21.19)
is the interaction of these two bands, and E~E,. In this case the criterion



§21. PERTURBATION THEORY. kp-THEORY 201

for the applicability of the second-order expansion is

VEJE, < 1. (21.37)

Under conditions of thermodynamic equilibrium, Ex=~kT or p for a nondegen-
erate and degenerate electron gas, respectively, where % is Boltzmann's
constant, T the absolute temperature and p the Fermi level; thus it follows
from (21.37) that in semiconductors with a sufficiently wide band gap, at
relatively low temperatures and current carrier concentrations, the crite-
rion (21.37) may be fulfilled with reasonable accuracy.

Two-band model. In semiconductorswithanarrow band gap, however,
marked deviations from the parabolic dependence of E(k+ k) on k appear
even at comparatively low temperatures and current carrier concentrations.
To describe the spectrum in this case, the so-called two-band approximation
is used. In the two-band approximation, the Hamiltonian #(k, + k) is con-
structed from the start for two close-lying bands, incorporating the &p-
interaction between these bands accurately, and the interaction with other,
more distant bands is treated by perturbation theory.

In this model, the matrix elements 2., are determined by the general
equation (15.46). In the second order in k, the diagonal blocks of the matrix
#, i.e., the matrix elements between states within the conduction band (de-
noted by indices s, s) or states of the valence band (indices {, {’), incorporate
the contributions from the more distant bands:

» P () by, nme P
Heerve =pmr ,..2 kakg (_efc'@% +

] a 2
Psic) by, n'ie Prvig, 57 () bc) Wk ,
+ E: (ku) — Eﬂ( (ko) + 2”‘ 633 + Egbsa *

» p“r.r un'.p?l'a'r.'a
xma.m=m—.§kak,l Y R T

n'wee, v

(21.38)

LS
T S0

[} o
P fu) by ney P, (o) by

TR ) B (R } +
The off-diagonal blocks of 3, between states within the valence band and the
conduction band, contain terms linear in &,:

h
s Er:).t{tr}‘_‘_m‘zka p:m By, (o) b, (21-39}

When necessary, interband terms of higher orders in & can be taken into

account,
According to equation (15.34), a basis for this representation is formed

by the functions

Q’ = + _ﬂ_ 2 &ﬂp:'*l. sic)i q’n’h
slc) by ¢s (c) o m - _E‘ (_."—'—0) —E, (ku) B

nigkec, v, a
orn =V nt o Y Rabn o 0 Yo, (21.40)
1iv) (o) iy m i E, (io}_fn' {l'o) .

For small &, when the energy E, measured from the bottom of the corre-
sponding band E, or E, is small compared to Eg = E (k) — E,(ky), the two-band
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model yields the same results as treatment of each band separately, but if

Ex ~ E; the dependence of the energy on k in each band becomes nonparabolic.
The accuracy of the two-band approximation depends on the parameter

V E,JE, where E is the separation to more distant bands; it is usually quite

adequate for a satisfactory description of the spectrum in semiconductors

with a narrow band gap.

§22., ELECTRON IN A CRYSTAL IN AN
EXTERNAL FIELD

The equation of motion of an electron in a crystal, in the presence of
external fields which perturb the periodic lattice field Vo(x)is

HY = [ (p+ Lo (x. 1)+ U (s, )+ 5 goo(0l)| ¥ =105, (22.1)
where
5 (p) =L+ Vo(x) + ez ([0 VVol p) (22.1a)

is the Schrodinger operator for an ideal lattice, po = e#/2mc the Bohr magneton,
and g, the g-factor for free electrons.

The external fields, electric and magnetic, are represented by a vector
potential o#(x, f) and a scalar potential U(x, 1):

E=—VU++%%, H=roteh
Although the gauge may always be chosen so that U =0, we shall consider
the general case, since in certain problems it is precisely the scalar poten-
tial that is more conveniently specified.

Exact solution of equation (22.1) is even more complicated than determi-
nation of the spectrum and wave functions in an ideal crystal. Let usassume,
however, that the external fields are sufficiently ''gentle'; in other words,
they vary only slightly over distances of the order of the lattice constant,
and the frequency of their time dependence is significantly smaller than AE/s,
where AE is the separation of the nearest bands measured vertically, i.e.,
for the same k. In that case, the motion of electrons near an extremum &,
in a perturbed periodic field is equivalent to the motion of a particle with a
definite effective mass in a slowly varying external field. In the case of
degenerate bands, the motion of this particle is described by a system of
equations with the same operator (k) (21.19) that determines the carrier
spectrum near the extremum according to (21.20). Therefore, this approach
is known as effective mass theory.

Write the wave function ¥ as the product of a slowly varying function
Fn(x, t) and the eigenfunctions 4, (x) of the unperturbed Hamiltonian 2, at
the point & (the'slow' functions are alsoknown as envelope functions):

V=27, (x0V,, (22.2)
In the general case, the band is assumed to be degenerate, i.e., different

functions ¢,,,, including states with different spins, may belong to the same
energy.
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Expand the function Fa(x,{) in Fourier series:

Falx, f)=F;_2c“ et (22.3)
*

where

e ()= [ F, (2 ) e-tre . (22.4)

Here, as in §21, the crystal volume ¥ is assumed finite and so the values of
k are discrete. If the functions F.(x{) are sufficiently smooth, the main
contribution to (22.3) comes from small values of k. Substituting (22.3) into
(22.2), we obtain an expansion of W¥(x,{) in terms of the functions ¢, =

o ey !
=77 =

PUCRTE PR bt
W=§§c",{r)¢ﬂ, (22.5)

To obtain the nk-representation, we substitute (22.5) into (22.1), multiply
the right and left sides of the equation by q::‘.,.—y—.l?—ﬁ.he-‘*" and integrate
over x, noting that according to (21.4), (21.8) and (21.7)

(@u Pun) =B Ouarr  (Pura " Pra) = T Opr

76 (p) e** = e'*= 38 (p + hk).
Therefore,
1 .
(Pua | % | Pna) = 57 (Bun, & 4%, (P) [ ¥,0,) +

+ g F (Bn, € 40 % | 20k + £ (oo + )| 9,,) +

1 2
+ g @ (0 + £ ) [0, + @pae| U (5 D] @,0) +

1
+ 5 &ty (P |9H |0,4)- (22.6)

We next expand the functions of(x), o#*(x), U(x), H(x) in Fourier series:

of (1) = Dokee'rr,  s#7(x) =3 stPelo,
q q

22.7
U (x) = 2 Uge's=, H (%) = ?H'etq;' ( )
]

where

wh=—;.— J- ot (x)e~'erdx, D ='7 f st (x)e~t* dx etc.;

when ¥ is finite, the vectors ¢, like k, take only discrete values.
Equation (22.6) involves the mati ix elements either of these functions
themselves or of the products ##7 or 7. Expanding the product ¥,,%.,..

which is a periodic function of the coordinates, in Fourier series with
respect to the reciprocal lattice vectors by,

Y, bs, =7 D BY"70W,
. L] M
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we find that for any function f(x) = 3} fee'e*
q
(Pun | F ()] 9,0) = 2 foBU" J' R ST TV E P2 2 Funioy Ba
Mg M
If f(x) varies slowlyover distances of the order of the lattice constant, all
the components ,f,_”m, except the component with M= 0 may be neglected,
and since by (21.4) we have ¥B{" = — (%, ¥,,)=3,,, it follows that
{Pun !f(x) [P =l amn Opp (22.8)
In a similar manner we compute the Fourier series of the periodic function
bon b, = ¥ R

Then, after integration over x (assuming that ##(x) is sufficiently smooth),
the only term remaining from the sum

%<¢n_he: ""’”I#(x)"l%.)=”’§wﬁ'+m-akﬁ“
will again be that with M=0. Since
VR" =5 (Bpn, Wua) = Ty and 7e'®” =2 (x + g),
it follows that
7 (b, ¢ A @R[V =ty
7 (bua, & #0276 (£) [ 9,,) =y _, (%, + B — B)S,,). (22.9)
Using (22.7)—(22.9), we can represent the matrix ,, . as the sum of
three matrices: a matrix #,,
(9804, as = Enduadyy, Where En=Ey(ko), (22.10a)
a matrix # containing only intraband terms,

6w, 1o =g | P%00w + (8 + &) o + S s o+

t Uy + 5 @Ol (22.10b)
and a matrix #, containing the interband terms,
(P2 op= (W00 + £ s T (22.10¢)
As a result we obtain the system of equations
¥ Y (98 + 2, + Endundan) cor =it a’;,’*’ . (22.11)
n &

The summation in system (22.11) extends over all the bands, To obtain
an approximate equation involving only functions ¢ , for one band, we must
transform away the interband terms which appear in ,. If equation (22.1)
included only the scalar potential, the operator 3, would be the same as 3,
in (21.9), and we could eliminate the interband terms by the same procedure
as was used there to derive (21.10). But if , also includes the term ofx and
the vector potential depends explicitly on ¢, it follows from (15.40) and
(15.43) that the transformation matrix $(15.33)also depends explicitlyon ¢.
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Thus the transformation (15.33) converts the right side of equation (22.11)
into
ine=3 5 cwr = in( 5 + 5 ) éwr (22.11a)
where ¢=e¢-% by (15.33a).
If the characteristic frequency of the variation of o, and consequently of
S, is v, we see from (15.44) that the first term in (22.11a) is

ho .
) E—E, ®dua, b
5

Consequently, it is a factor of #w/(Es — Ex) smaller than the principal term
(78,),.» . transformed away by (15.33). If o is small compared to the sepa-
ration to the nearest s-band for which the matrix element m.; is nonzero,
this term can be neglected. If this condition is not fulfilled, effective mass
theory is not applicable, at any rate in the single-band model.

After dropping this term, we obtain a system of equations involving only
intraband matrix elements:

= . a = = _ -
N Hrin. mams = b5y Cmws Where  Cmp = Gnp e EM (22.12)

mk

and by (15.47), in second order perturbation theory,

Bor, ma "(xl)m-,:_ A 8w oa § (%a]m'k‘;‘:‘r_(ﬁz)sr. mk_ (22.13)

Here, as against (15.47), each state is characterized by two indices n and
k, and therefore the summation over the intermediate states includes the
summation over k”, but, as is evident from (22.10a), the energies E, and E,
do not depend on k”, According to (22,3), in order to go back to the x-pre-
sentation in (22.12) we multiply the right and left sides by (1/y 7 )ei*= and
sum over k',

It is clear from (22.10) that here there are sums of four types. First we
have sums of the type ‘Z*f.._.e”"cm, where the [, are the Fourier components

of U, Hy, s¢, or $#*, According to (22.3) and (22.7), these sums may be
transformed:

75 Dhaose s = 75 Dfee® Y ome!r =1 (x) Fn (), (22.14a)
113 q ]

where

Fn(®) =5 imets,  g=k —k
k

As mentioned above, it is assumed here that f(x) is a smooth function and
the major contribution to (22.3) and (22.7) comes from the ¢'s, which are
small in comparison with the reciprocal lattice vectors. Under these con-
ditions, the sum over q does not depend on the upper limit or, consequently,
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on g, and the sum of products may be replaced by a product of sums.*
Under the same condition, we may proceed in the same way for sums
of the type

V- Zk" e 6”;""=__V%(*1610) Ee‘”c,..._kaF (x), (22.14b)

where k= —iv. Similarly

E(k + B) s Ty = ~'7 Y, @k + q) ohoe1 97T 1% = (ko + ofk) Fp (). (22.14c)
qk

ll’
The last term in (22.13), containing the interband terms, is transformed in
the same manner to

I ” "-
W .g‘. (ﬁkuﬁt'l' + % J‘:’—r) (ﬂka Saa + % S"E"—j] et Cma == (22.144)

= e e
= (Mg + £ st (Bl + £ ty) Fin ().

Finally, the system of equations (22.11) in the x-presentation becomes
Easm.F (2, ) =it Fu (x, 1), (22.15)

where

BK’
Ko = bt + - T+ op 2 Ea ) Ot 4 1 () b + 1 g (), (22.16)

=—iV+ ok (x, 1). (22.17)

In the presence of a magnetic field, when the components K, do not com-
mute, the product K,Kp in (22.16) is conveniently represented in terms of
the symmetrized and antisymmetrized products:

1
KKyl =5 (KaKy + K4Ka), (22.18)
- dAp
KoK = Kuy = Koo = — 1 5 (e = 52%) = — Eamﬂ,,, (22.19)
where 8,3, is the unit antisymmetric tensor: 6.8y =1 if all three indices are
different and in the natural order, i.e., a cyclic permutation of ¥, y, z; inthe
reverse order &,gy=—1, and if there are equal indices 6,8y =0.

* The true potential f(x) is thereby replaced by a smoothed potential

Faoy= 3 fele
< /e
which coincides "on the average” with f(x) but may oscillate sharply over small distances, of the order of
the lattice constant a,. If [, decreases slowly with ¢, as in the linear case U (x)= — efx or of (x) =/, [Hx]
expressions (22.14) are valid only if F(x) is sufficiently smooth. For example, in the latter case it is required
that the magnetic length L = (hcfeH)" be far greater than ao: the error incurred by substituting f(x) for
f (%) is then of the order of exp (- L’]ag).
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Asaresult, for points of zero slope, where fi,m =0, wemay write (22.16) as
‘&2 1 “.rdn's“gm + “Pn's“:m
Hem =5 § [KaKs] (%g%'m + 2 T) +
l ‘“m s‘“sm
+ U (1) 8+ 516 3 H, (goo}’,,»,,. — 2 Y 6.,5,,) . (22.20)
Y

In the absence of external fields, F,, = exp{i[kx—(Et#/#)]}, and equation (21.19),
which determines the spectrum E(k)near k,, follows from (22.15). If the
band is degenerate owing to time reversal then, as indicated in §18, we can
take as basis two linearly independent functions belonging to the energy E,_ :
¥4, and by, =KRY,, , where K is the time reversal operation and R an oper-
ation which takes g, into —k,. Correspondingly, the smooth functions Fn(x)
may be expressed as a single two-component function with components F;(x)
and F,(x). If the degeneracy is not removed when &=+ 0, it follows from
(21.11) and (21.12) that the matrix J# (k) is diagonal, and these functions

are determined, according to (22.20), by the equation

(g%[fﬁn’(n]ﬁ'b’(:, D+ uo(3 &0 +L, H))F=fa%. (22.21)

The tensor mg' is then given by (21. 12), and by (22.20) the elements of the
matrix L whlch describes the orbital contribution to the effective magnetic
moment of the electron are

"-1:" f .
L"———E%v(e _g‘) (i=1,2 j=I1,2). (22.22)

Thus equation (22.21) differs from the free-electron Schriddinger equation
only in that the mass m is replaced by the effective mass, which is anito-
tropic in the general case, and ¢ by o+ L.

In the above equations, the spin-orbit coupling operator ,, is included
everywhere in 2,. If the spin-orbit splitting is small compared to the sep-
aration to the nearest band, the operator #., may be regarded as a pertur-
bation, as in §21, and we can take as basis the products of the coordinate
functions and spin functions, Vst = Vrua, Y”’ (0= 1/2), When this is done, the
operator & should be replaced by p, and M m», me Should incorporate 3,
= #,,(0), first order terms in 2, and cross terms of first order in x°
= #,(0) and 3, arising in second order perturbation theory. If it is neces-
sary to introduce relativistic corrections to the effective mass and magnetic
moment, we must also include terms from the third approximation: first
order in 5., and second order in #,. According to (15.51) inclusion of these
terms is equivalent to transforming (22.20) from the basis ¥, tO the basis

( !O)s m *8 iy 22.
ﬂ'll"n+2 E:,-—IE, - ) ( 23)

wmnl.
The general equations given above are not specialized to any specific
external fields. In practice, these fields are either created by impurities
or defects in a semiconductor or applied from without. In connection with
the latter, special interest attaches to the properties of a semiconductor in
a constant magnetic field and crossed electric and magnetic fields.
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We pause briefly to discuss the limits of applicability of effective mass
theory. In the above derivation, we assumed that the fields &(x) and H(x)
are sufficiently smooth, so that we could ignore all the terms in (22.7) con-
taining ¢ values that ''spill over' the boundary of the Brillouin zone; in
other words, the significant values of ¢ must be smaller than any of the
reciprocal lattice vectors. In the case of an impurity center, this criterion
is fulfilled only at sufficiently large distances from the impurity, while at
distances of the order of the lattice constant the field of the center is no
longer a Coulomb field and may vary rather sharply. The essential factor here
is therefore the size of the region in which the electron is localized, which
may be estimated from the binding energy. If this region occupies a suffi-
ciently large volume compared with that of the primitive cell, effective mass
theory is applicable. The ionization energy of such centers is small com-
pared to the band gap, and they are therefore known as shallow centers. If
the electron is localized within a primitive cell and the electron levels at the
center lie near the middle of the band gap, effective mass theory is not ap-
plicable. We then speak of deep centers,

As mentioned previously, for an electron in an external magnetic field the
smoothness of the field H is insufficient. The field should not be too strong,
in order that the magnetic length, i.e., the localization region of the electron
L= (nc/eH)'?, substantially exceed the lattice constant. Similarly, the separa-
tion of the Landau levels fo. = eH/m*c must be small compared to the band
gap E;. In an electric field & the ratio e&a,/E; must be small.

In the case of crossed electric and magnetic fields, the condition imposed
on the magnitude of the electric field is more rigid. An electron rotating
about the z-axis, which is directed along the magnetic field, drifts in the x-
direction (normal to & and H) with velocity v, =c&/H. The energy corre-
sponding to this motion is m"}[2=m'c?#%2H*. A similar contribution comes
from the average kinetic energy of the electron rotating while being accel-
erated in the electric field.

Effective mass theory is obviously applicable as long as this energy is
small compared with the band gap, i.e., provided

s g V2 _ s =L
7 < (k) =5, where s=ik. (22.24)

If the separation of two or more nearest bands is small compared to their
separations to the other bands, we can substantially extend the limits of ap-
plicability of the theory, going over from the single-band to the two-band or
multiband approximation. This approximation is applicable when the corre-
sponding energies or frequencies of the external fields are small compared
to the separation to the other, more distant bands, which may significantly
exceed the band gap. Of course, the requirement that the external fields be
smooth remains in force.

Multiband model. As mentioned in §21, in the multiband model, only
interband terms corresponding to the interaction of the bands under discus-
sion with the more distant ones are transformed out of equation (22.11) by
(15.33), while the interaction of the nearest bands is accurately represented.

Here the energy is conveniently measured from an average F betweenthe
bands, and thus we must write E in the exponent in (22.12). The system of
equations in the k-representation will then differ from (22.12) only in that
Hmr, me 15 replaced by Hnw, mk + Emdmmdaw . According to the general equation
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(15.46), in second order perturbation theory equation (22.13) is replaced by

Hwow, ms = Endnmdus + (1) e s + (wz)m'r. T
! 1
+ % 2 2 (xz)m:p. k" (xz)“n_ ma ( E.—E, + E. —F, ) . (22 25)
s A"

Accordingly, in the x-representation we have the following system of
equations instead of (22.15) and (22.20):

aF .
N i + Endt) Fm = it 50, (22.26)

where

m

ki
Hmm =7x“m'm + éﬂ_' EIKGKQIX
ap .

1 1 1
X{ Bagdnm + 7 2 (Wil + “ﬁ.',“?m)(ﬁ + Em,__}g’) } +
+ [ (x)bmm‘ + %Po Z H? { goﬂxl,m — -ﬁjﬁ- z “:u'sﬂgméaﬂv b4
h saff

X(E...LE,"'E,,,,]_E,)}- (22.27)

As noted in §21, when determining the spectrum to the second order in &
one may ignore the interband g* terms in #n», since their contribution to
the energy is of third order in k. However, these terms may exert a signi-
ficant influence on effects in external fields. Thus, these terms are the
source of combined resonance, i.e., spin flip due to a varying electric field
(see §33) rather than a magnetic field as in paramagnetic resonance. These
terms result in the Pockels effect, i.e., birefringence in cubic crystals
without inversion centers in a constant electric field, caused by the linear
variation of the dielectric constant with the field.

Note that when the little group Ga, contains inversion and its representa-
tions have a definite parity, the interband terms in the matrix #.» may be
either linear in &, if the representations belonging to bands m and m’ have
different parity, or only quadratic, if these representations have the same
parity.

We briefly consider some specific problems solved by effective mass
theory.

Shallow impurity centers. One of the most interesting cases in
which the field is induced by impurities or defects is that of a shallow im-
purity center due to an impurity ion replacing one of the lattice atoms and
possessing a positive or negative surplus charge Ze. Sufficiently far away
from the ion, say more than one or two lattice constants, we may assume
that the ion produces a Coulomb field:

Ug)=——2¢ (22.28)

w|x— x| "

where x, is the ion coordinate and x the static dielectric constant. In aniso-
tropic crystals, in which x is a tensor, the quantity x|x— x| must be
repldced by

{xyy"n (x— xl!)2 + Rz (Y — yll)! + KxxPyy (z— zdP]IRv
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where the x-, y- and z-axes are directed along the principal crystal axes.
The problem of a shallow impurity center in cubic crystals will be discussed
in greater detail in §27.

Constant magnetic field. In this case U(x) =0; the gauge for the
vector potential may be chosen in different ways; for example, the potential
ot ='/,[Hx] satisfies rot s#=H. In practice, another gauge is often used: if
the z-axis is in the direction of H, it is convenient to take «, = Hy,

Sy =st.=0.

Constant electric field. Inthis case U=—efxand #f=0. In
connection with various effects caused by a constant electric field &, such
as electro-optical effects, tunnel effect, etc., it is convenient to transform
(22.26) and (22.27) to the k-representation. Then, since

[ xaet F 2 dx=-f3§:_[emf(x) dx = — i Fp (B),
we obtain a system of equations for the functions Fn(k) which differs from
(22.26), (22.27) in that the operators k are replaced by C-numbers £ and
the operator U/ = — e8x by

U =ie&Vs. (22.29)

Thus, instead of a system of second order differential equations we obtain
a system of first order equations, and the order is not increased even when
the higher order & terms appearing in the following approximations are
included.

Crossed electriec and magnetic fields. To solve the motion
of an electron in mutually perpendicular electric and magnetic fields, it is
convenient to direct the y-axis along the field & and choose .= Hy, ;=
= &:;=0, U= —e&y. Then the Hamiltonian (22.20) or (22.27) depends only
on one variable, y. In this case the nature of the electron's motion depends
essentially on the ratio of the electric and magnetic fields. In the simple
two-band model (defined by equation (26.34) below), if & >(s/c)H, where s =
= (Eg/2m*)'"n, the motion is infinite and as if in an electric field alone the
electron moves in an open orbit. On the other hand, if H > (¢/s)& the elec-
tron moves in a closed orbit, as if in a magnetic field alone. For more
complicated bands, the value of the ratio of the fields corresponding to tran-
sition from one case to the other depends on the wave vector of the electron,
i.e., for different electrons the transition from infinite to finite motion
occurs in different fields. However, whenever the orbits in a magnetic field
are closed they remain so in a sufficiently weak electric field. On the other
hand, in a sufficiently strong electric field the orbits of all the electrons
become open.

§23. REPRESENTATIONS OF SPACE GROUPS IN
CUBIC AND HEXAGONAL CRYSTALS. DISTRIBUTION
OF NORMAL MODES ACCORDING TO
IRREDUCIBLE REPRESENTATIONS

In this section we shall use projective representations of the point groups
to construct representations of the little group at different points of the
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Brillouin zone for the space groups 0}, 05, O}, T%, Cé&. In the following sec-
tions we shall determine the energy spectrum at a few representative points
of the Brillouin zone.

The group O} is the symmetry group of such "classical" semiconductors
as Ge and Si, which have a diamond lattice: each primitive cell contains two
like atoms (See Figure 24). The lattice is face-centered cubic I'l. Its basic
vectors .

ay=35-(110),  a,=-3(101), @y=-3(011)

correspond to reciprocal lattice vectors

b=22(11T),  b=22(1T1), b=22(I11), (23.1)

where @ is the edge of the Bravais cube.

Halite Zinc blende

FIGURE 24, Halite and zinc blende lattices.

Place the zero point of the Bravais lattice at one of the atoms. Half of
the elements of 0}, corresponding to the elements of the group 7, do not
have nonprimitive translations; the remaining elements, which are products
of inversion i and the elements of Ty, occur together with a nonprimitive
translation ¥=(ae/4)(111). If we define the group Ox as in §3 by two genera-
tors ¢, and sg=ics, both occur in O} with the nonprimitive translation r. The
group Oj also defines the symmetry of spinel crystals such as Fe;MgO, and
Fe3O4, so that the group-theoretic results obtained below are also applicable
to spinels.

Semiconductors of the PbS, PbSe, PbTe type, whose structure and pro-
perties are now quite well known, have a halite lattice: face-centered
Bravais lattice I, crystal class 0,. The primitive cell has one atom of each
kind, one at a vertex of the Bravais cube and the other at the center (Fig-
ure 24). The space group therefore contains no nonprimitive translations.
Such groups are called symmorphic. The symmorphic group for class 0, of
the lattice I'f is O}.

In this section we shall consider representations of the little group for
the symmorphic group O} with the primitive cubic lattice I (the symmetry
group of crystals of the CsCl type) and also representations of the little
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group for crystals with a zinc blende lattice (this is the type of most com-
pounds of the A3B;s type, such as InSb, GaSb, GaAs). The crystal lattice is
shown in Figure 24; it differs from the diamond lattice in that there are two
unlike atoms in the primitive cell. Therefore, inversion is not an element
of the symmetry group, which is the symmorphic group Tz. The Brillouin
zones for the primitive I and face-centered lattices are shown in Figure 25.

FIGURE 25. Brillouin zone for cubic lattices: a) primitive lattice (halite); b) face-
centered (zinc blende, diamond).

Let us determine the symmetry of the points of Brillouin zone indicated
in Figure 25. In so doing, we shall confine attention to the crystallographic
point group Fi of each point %k, bearing in mind, however, that the symmetry
group G of g will contain different rotational elements with the same non-
primitive translations as they have in the group G.

For crystals of class 0,, the symmetry group of the point I' (the center
of the Brillouin zone) is the crystallographic point group O,.

The point A with coordinates 4, (100) lies on a fourfold axis within the
Brillouin zone; its symmetry group is Ci,. The Brillouin zone contains six
points of this type: =k, (100), =k (010), =k (001), which go into one another
upon inversion and rotation about the threefold axis.

The point A with coordinates k, (111) lies on a threefold axis; its sym-
metry group is Cs,. The Brillouin zone contains eight points of this type:
ko (111), ke(111), ko(111), =k (T11), which go into one another upon in-
version and rotation about the fourfold axis.

The point £ with coordinates &, (110) lies on the twofold axis joining the
midpoints of opposite edges of the cube; its symmetry group is C._There
are twelve points of this type: =k (110), =£ko(101), =£ko(011), =k (110),
ko (101), =k (011).

In the lattice I, the point R with coordinates k= (a/a)(111), where a is
the edge of the cube, lies at a vertex of the cube; it is the limiting position
of the point A in I'. as it approaches the boundary of the Brillouin zone.
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Sincethe vertices of the cube differ by integral multiples of reciprocal lattice
vectors, all vectors k of the type R are equivalent. Since transformations
in the cubic group bring these vertices into coincidence with one another,
the symmetry group of R, like that of T, is the entire group 0,.

The point X with coordinates (nm/a,)(100) lies at the center of a face of the
cube; it is the limiting position of the point A on the surface of the Brillouin
zone. Since points on opposite faces of the cube are equivalent, the symme-
try group of X is obtained by adding inversion i to the elements of C;,, and
the result is the group D, = DX C;. There are three inequivalent points of
this type in the Brillouin zone.

The point M with coordinates (m/a) (110) lies at the center of an edge of
the cube. Since points at the midpoints of parallel edges of the cube differ by
integral multiples of reciprocal lattice vectors, the corresponding vectors
are equivalent. Thus the symmetry group of M must contain, in addition to
the symmetry elements of Z, a fourfold axis and inversion i, and so it is Dy,.
The Brillouin zone contains three inequivalent points M.

In the lattice I, the interior points T, A, £, A of the Brillouin zone have
the same symmetry as in I'.. The point X with coordinates (2n/a,) (100) in I,
as in I, has symmetry group Dy,.

The point L with coordinates (m/a) (111) lies at the center of a hexagonal
face of the Brillouin zone, at its intersection with the threefold axis. Its
symmetry group, in contrast to the point R in I, is D= Cs X C;. There
are four inequivalent points of this type in the Brillouin zone.

The symmetry group of the point K= (3n/2a,) (110), like that of £, is Gy,
and therefore no additional symmetry elements appear in I'f when the point
Z crosses the boundary of the Brillouin zone.

The crystallographic point groups of the above points of the Brillouin
zone, for lattices I, and If of class 0,, are given in the following table.

Group O Dyp Cip Cap Cip Dy

Point LR | X M A Z K a L

Number of points
in star

1 3 8 12 6 4

For crystals of class T4 with lattice I'f, the symmetry group of the center
of the Brillouin zone (the point I') is T4.

The symmetry group of the point A is Ci». As in the case of Oy, the
Brillodin zone contains six points of this type, which go into one another
under the transformations of T4. The point A, as in 0,, has symmetry group
Cs», and the number of such points is four. In contrast to the group 0,, the
points A and — A are not in one star.

The symmetry group of the point 2 is C,.

The point X has, in addition to the elements of the group Ci, of A, trans-
formations s, and s} taking k into —k; hence its symmetry group is Dy; the
number of points of this type is three.

The symmetry group of the point L, like that of A, is C;,. The symmetry
group of the point K, like that of £, is C,.
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The symmetry of the above points of the Brillouin zone for crystal class
Ta and lattice I is given in the following table.

Group T4 Dyy Cap Cip Cs
Point r X LA A I K
Number of points in star 1 3 4 6 12

We now consider the representations of the little group and the possible
band degeneracies at the above points in crystals of class O,.

Class 0,

Point I'. At this point, the Bloch functions coincide with the modulating
Bloch factors u(x); the representations 2*(g) and 2*(r) coincide and are re-
presentations of the point group O, for space groups O, O}, Oh.

The group O, =Ty X C; has ten single-valued representations Af, 4%, E*,
F£, Ff and six double-valued representations E|*, Ei°, G* The literature
on band theory, following Boukaert, Smoluchowski, Wigner /16.1/, desig-
nates representations of little groups by the symbol for the corresponding
point in the Brillouin zone.

The following table shows the connection between the representations of
the point group 0, and the representations of the space group at I'. All the
representations at I' belong to case (a;), since the representations of the
space group have real characters; they coincide with the characters of the
representations of the point group O,.

Representation
N i 1 o o o oy o e S C R PR s P
Op=Tag X Cy

Representati ’ || N
P e AHOM Ty | 1y | Py gl Poef 1 | T | Tyo| Tas| Tys| T | T | T | I | T

At the point T we may have onefold, twofold and threefold band degener-
acy if spin is not included, twofold and fourfold degeneracy counting spin.

In order to describe the band splitting at I' due to spin-orbit coupling, we
must expand the product I'i X @, in terms of double-valued irreducible re-
presentations of 0,, as shown in Table 16.1 (p. 148). The table shows that
the representations Iy, I'f, T, T%, T, Tiz are not split by spin-orbit coupling,
and inclusion of spin for these representations only doubles the band
degeneracy.

As noted in §11, the representation @, of the rotation group with the basis
p-functions x, y, z is also irreducible in the cubic group, becoming the re-
presentation I';;. The direct product @1 X 2= D2+ Dy contains the four-
and two-dimensional representations @3, and 2. These representations
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are also irreducible in the cubic group, becoming respectively the represen-
tations Iz and I's, in accordance with the decomposition I's X Dijp= TI'y +T5 .
We thus take ¢¥2(m = %1/2, £3/2) as basis functions for the representation I's
in the Luttinger-Kohn representation /17.3/:

"n:l_ 1 z—f- i
372 ﬁ(xl+ i¥)a, 13 ﬁ[(X-FlY}ﬁ*QZG], (23.2)
V=5 (X —i)a+228], ¢%,= Y—%{X —iY)B,
and $!2(m = = 1/2) as basis functions for I';:
Wi= g X +i1B+Zal, ¥, = o[~ (X —iV)a + 28] (23.3)

Here X, Y, Z are the Bloch functions u, for &= 0, which transform under
operations of the cubic group as x, y, z,respectively.

All the above results for the point T are valid for all space groups of
class Oy.

Point A. According to (12.26), the representations of the little group
D¢ (g) at A are

DY (@) =e"DI () ="M= D (n), (23.4)

where $9{(r) is a projective representation of the crystallographic point
group of A, and p=a+ 1, where a and v are respectively primitive and non-
primitive translations corresponding to the rotational element reC;,, g =
=(r|p). Since A is inside the Brillouin zone, the 95 (r) are matrices of vec-
tor representations of the point group Ciwx. In Ci, there are five single-valued
representations A, A;, B, B;, £ and two double-valued representations Ej
and E;. Of these, the representations A, 4z B8, B; are one-dimensional,
while £ and Ei, Ei are two-dimensional. By (23.4), each of these represen-
tations of C,, corresponds to a representation of the little group, of the
same dimension; they are labeled by the letter A, as corresponding to the
point A. Their relation to the representations of the group C,, is given in
the following table.

Representation of €,y A As B, B, E E} Ej

Representation at A Ay A | o4, Ay | A5 | g | A

Although the matrices D8 (r) are the same for all space groups of class O,
the representation matrices of the little group 5 (g) are different for differ-
ent space groups, in particular for the groups 0}, 0;, o}

Thus, in the groups O) and 0}, which do not contain nonprimitive transla-
tions, the matrices @V coincide (for elements which do not contain nonprim-
itive translations) with the representation matrices of Ci and do not depend
on the position of A on the fourfold axis.

In O} half the elements of the point group C,,, namely ¢, ¢} o, clo,, occur
in combination with a nonprimitive translation v, and therefore the matrices
Di(g) and D2 (r) for these elements differ by a factor A =e % — WP,
ko

Irjas is the ratio of the length of &, to the distance to the Brillouin

where p=
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zone boundary: p=0at I' and p=1 at X, Therefore, in the group O} the
matrices Dy (g) and the characters of the representations of the little group
differ from the corresponding representations of C,, and depend on the
position of the point on the fourfold axis.

Equation (18.32) implies that both the single-valued and double-valued re-
presentations of a space group with star A belong to case (ap), i.e., there is
a linear relation between the functions ¢,, and RKy,,. As the element R which
takes k into —k we may take inversion.

When A reaches the surface of the Brillouin zone, it becomes the point X,
for which there is an essential difference between the representations of
groups O}, 0} and O},

Point X. According to (23.4) the representations of the little group
Di(g) at X are

.‘D{f (£}=e_‘(""°)ﬂ"$f(r) (for O;I)n (23 5

Di(g)=e' "= DY (r) ( for 0}, 0}), %)
where DY (r) runs through the projective representations of the group Di.
Moreover, in the case of O} and 03, which do not contain nonprimitive trans-
lations, it follows from (12.29) that the factor system is trivial and all pro-
jective representations belong to class K, so they are the usual representa-
tions of Dy,.

The group D = Dys X C; has ten single-valued representations: five even
and five odd (with respect to inversion), and four double-valued two-dimen-
sional representations. By (23.5), each of these representations for Oh and
0j corresponds to a representation of the little group @, denoted by the
letter X; according to the following table.

Representation of At | AF | Bf | Bf | E* | E|* | Ei*
Dyp= D2 X Cy
Representation * * = 3 + F +
X e XP | Xy | X5 | X | X5 | X5 | X7
Repres:fmation ME | M| ME | ME | ME | ME | MF
at

Thus, the band is twofold degenerate counting spin. Since the little group
contains inversion, all the representations belong to case 1, and since in the
absence of nonprimitive translations Herring's test (18.32) reduces to
Schur's test (18.27) for the group Dy, all the representations at X for 0,
and 0} belong to case (a,).

We now consider the representations at X for the group 0}, which contains
nonprimitive translations.

The factor system at X for O} is given in Table 23,1, As shown in §14,
in order to determine to which class of the group D this factor system
belongs, we must find the quotient of its coefficients for pairs of commuting
elements:

_olad) g o) o6
o (ch uy) ! @ (i) ¢4 @ (i, ug) )
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TABLE 23.1

ry

(e219)
[ L))
(4419
(9¢ %)
(%4219)
(9yz10)
(oyz|0)
(g 1%}

(caxl®)
(c2x 10)
(<&l
(C2pz|*)
(c22]0)

4]

(e10) 1
(eax|7) 1
(exl0) | 1
e ®) | 1
(eayz | ®)| 1
(c2210) | 1
{ciyllq 1
(e2y|0) | 1
o 1=
1
1
1
1
1
1
1
1

—_— -
- -

(i 19)
(0x]1)
(54210)
(oyz0)
(oz] 7)
(9,21 0)
(oy| 7)
u

— e e e e e e e e e e e e e
—
— e e e e e e e e e e e e
—
—
- e e o = R e e e e e e e s
- s e g B Gt e b b e mm e mm e e e e
e e T
D

|
_— e e e e e e o = e e o =
|

Consequently, the factor system belongs to class K;, in which there are
four two-dimensional projective representations. Thus, in the group O}
there is a twofold essential degeneracy.

In order to bring the factor system into the standard form (14.42) for its
class, for which the matrices of the projective representations are given in
§14, we must calculate the function u (14.,43). For the factor system under
discussion, we have

b, B)=w(uy, ux)=—1, ol ¢)=a(, )j=—1,
o, =0, c)o(c, cHo(c, =1,

and the quantity o'(see (14.24)) is —1, i.e., m =2 in equation (14.25). Since
in the case at hand o(a* bPc?) = 1, we obtain
PHath

u(a*bPe’) =Ty -

The corresponding values of u are given in Table 23.1.
By (23.5) the representation matrices of the little group at the point X are

ﬂxse"(’”"o}’xﬁ’(r)u(r). (23.6)

where 2'(r) runs through the matrices of the projective representations,
which, if r = gtbree, are the corresponding products of powers of matrices
A B C:

D’ (a*b?c’) = A*B°C". (23.7)

The matrices 4, B, and C are given in Table 14.2 (p. 113).
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According to §16, the double-valued representations of a point group are
projective representations of the point group. Thus the direct product of
projective representations @D (r) X @y, is a projective representation of the
group Dy. In §16 it was shown that the spinor representations of Dy, ‘belong
to class K,. Therefore, the double-valued representations at X belong to
class K\K;= Ks, in which there is one four-dimensional representation. Thus,
with allowance for spin we have a fourfold degeneracy at X in O},

As mentioned in §16, the factor system corresponding to the usual spinor
representations of D differs from our standard factor system (14.42)
for class K,, but may be reduced to it by using equation (13.3) with the func-
tion u of (16.,29)., Thus formulas (23.6) and (23.7) also define a spinor repre-
sentation of the little group, provided u is the product uu;, where u, is the
function defined above and u, is given in (16.29),

The characters of the representations of the little group at X are given
in Table 23.2.

TABLE 23.2, Characters of representations of the little group at X for Ge=

type lattice
Elements NE | Xk | X | xooa) | Xk
(e]0) (el0) 2 2 2 2 4
(eaxl %) (es| ) 0 0 0 0 0
(cxl0) | (cf]0) -2 2 -2 2 0
€&l9 | @]9 0 0 0 0
(cayzl7) | (u2l7) 2 0 —2 0 0
(€2210) (euz | 0) 0 0 0 0 0
(2219 | (clu]7) —2 0 2 0 0
(€210 | (ciuy | 0) 0 0 0 0 0
(i17) (i|%) 0 0 0 0 0
(s3] 0) (i 10) 0 0 0 0 0
(or17) (c¥i]%) 0 0 0 0 0
(six10) | (i ]o0) 0 0 0 0 0
(oy210) (w28 | 0) 0 2 0 -2 0
(oz17) (cqtigi | 7) 0 0 0 0 0
(0z10) | (chuai[0) 0 2 o | —2 0
(oy17) (cduai | %) 0 0 0 0 0

Observe the essential difference between the representations X; (i =1, 2,
3, 4) and X;. In both cases the matrices %‘(r) form projective representations
of the point group D, but the representations X; (i=1,...,4), considered for
all elements of the little group including primitive translations, are vector
representations of the little group, whereas X; is a spinor representation
(i.e., projective representation of class K).

Since k= —k at the point X, the summation in Herring's test (18.32)
should extend over all the elements of D;,, taking into account that the ele-
ment gz may contain a primitive translation or (in case of the representation
Xs) the element Q. All the representations X; belong to case (a;).
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Point A. The representations of the little group at the point A are
given by

91\ (g)ﬁe—lku (ﬂ:+ﬂy+ﬂ¢]$(r) , (23.3)

where @ (r) runs through the usual representations of the group Cw». Since
Cs is a subgroup of Ta, its elements do not occur in combination with non-
primitive translations, and so for elements which do not contain primitive
translations the representations &* are identical for the groups 0}, 0}, and
0;, not depending on the position of the point A on the threefold axis and
coinciding with single-valued or double-valued representations of the
group Cy,.

In C; there are three single-valued representations: two one-dimensional
A;, A; and one two-dimensional E, and double-valued representations: two
one-dimensional Ef, E{ and one two-dimensional Ej. The corresponding re-
presentations of the little group are denoted by Ay, Az A; and Ay, As, As, res-
pectively. It follows from Herring's test (18.32) that the representations
Ay, Az, A; and As belong to case (a;), while the one-dimensional double-valued
representations A, and As with complex conjugate characters belong to case
(bg). In the latter case, combination of complete representations of the
space group results in combination of the representations Ay and A; of the
little group.

Point L. The representations of the little group at the point L are

mf.(g) =e—i (mlay) (ﬂx+ﬂ,+ﬂ,) 9(-"), (239)

where 2 (r) runs through the projective representations of the group Dy =

= C3 X C;. For the group 0}, the representations 2 (r) coincide with the usual
representations of Dy. For each of the six single-valued representations

Af, A7 (one-dimensional), E* (two-dimensional) and the six double-valued
representations 4%, 4;" (one-dimensional), E'* (two-dimensional) of the group
Dw, we have by (23.9) a representation of the little group H* as indicated in
the following table.

Representation

+ - + - + ey e | o4 -
o At AT | A 1Az | EF | E- (A4 4]~ | 45* |43~ | E* |E
Dy = Cagx Ca 2 1 2 2

Representation ’ '’ ’ '
prest Ly|Ly| Ly | Ef | bg| 23| £, 28 | £ | 24| Lo| L&

In the group 0}, the factor system for L is nonidentity. Thegroup Dy is
isomorphic to Ds and so, to determine to which class the factor system
belongs, we must find the ratio w(i, us)/w(u, i), which is in this case unity.
Therefore, the factor system and all the representations of O} at L belong
to class K; and are p-equivalent to vector representations of Dy.

Using (12.29), we easily evaluate the factor system at L and, using
(14.33), (14.34), find a function u which reduces the factor system to the
unit factor system.

The representations of the little group at the point L are

D (g) = e~ (Vo) CetBy+Baly (1) P (1),
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where %7(r) runs through the matrices of the vector representations of the
point group Dw. It is easily proved directly that exp {—i(n/ao) (v + 7 + ) }u(r) =
=1 for all elements of Dy ; therefore the representations D(g) of the little
group at L for elements g not containing primitive translations simply coin-
cide with the matrices of a representation of the point group Dy, as is the
case at points A within the Brillouin zone, This could have been expected,
since in the absence of essential degeneracy at L the representation DA goes
continuously into D' when A approaches L.

Herring's test shows that the representations L{ and Libelong to case (b,),
and time reversal causes the representations L{, L} and L7, L; to combine,
The remaining representations belong to case (a;).

Point 2. The representations of the little group D* at I are

D (g)=e"* <0 P (r), (23.10)

where @ (r) runs through the representations of the group Ci.

For 0O} and 0}, the representations 2 for elements not containing primi-
tive translations do not depend on the position of £ on the twofold axis and
coincide with the representations of the group C. For the elements ¢; and
c:0, of the group 0}, we have a factor e—#@v#r in (23.10), where p=-4k, %%:
p=20 for the point I' and p=1 for the point K. In the group Oh, therefore,
the representations 9 depend on the position of = on the twofold axis.

The group Ci, has four one-dimensional single-valued representations
Ay, A, By, Bz and one two-dimensional double-valued representation £, which
lead via (23.10) to representations of the little group of the same respective
dimensions, I, Z, Z3, Z4 and Is.

According to Herring's test, both the single-valued and the double-valued
representations at £ belong to case (ap); this indicates the presence of a
linear relation between functions ¢ and (i|t)K¢ belonging to the same point
of the star of Z.

As noted above, as X approaches the boundary of the Brillouin zone in the
lattice I'f, its symmetry is not increased, and so all the results for £ in the

groups 0}, and 0} remain valid for the point K=%;’:— (110).
Point M. The representations ®* at M are
gﬂ(g)___'e—‘ ('ﬂfﬂo)(ﬂxi'sy)m(r}- (23.11)

Since the group O} contains no nonprimitive translations, #*(r) coincides
with @ (r), which (at the point M) is a representation of the group D,,. Thus
all results obtained above for the point X in the group @} remain valid for
the point M.

A similar procedure yields the representations of the little group at any
other point of the Brillouin zone,

Note that, in accordance with the remark made in §18, the presence of
inversion in the group O, at any point of the Brillouin zone implies (when
allowance is made for spin) at least twofold degeneracy of the energy
spectrum,
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Group Ta

We now consider the representations of the little group at a few points in
k-space for the group 73. Since T4 contains no nonprimitive translations, all
the representations of the little group coincide (for elements not containing
primitive translations) with the corresponding representations of the erys-
tallographic point group.

At the point I', the representations of the space group coincide with the
representations of the little group, which are representations of the group Tu.
The group T4 has five single-valued representations A, 4, E, F,, F,, denoted
by I, Iy, Iy, I's, Tas respectively, and also three spinor representations Ei, Ej,
G’, denoted by Te, I, Ts.

All the representations at T belong to case (a;).

At the point A the representations of the little group coincide with the
representations of the group Cz. This group is abelian, and so it has only
one-dimensional single-valued representations A4,, A,, B,, B,, denoted by
Ay, As As, Ay, Tespectively.

When spin is included, the band is always twofold degenerate at A, since
C;, has a two-dimensional double-valued representation £, denoted by A;,
such that A; X Dy, =As (i=1,2,3,4). All the representations at A belong to
case (bs): they are complex and inequivalent. In this case time reversal
brings about coincidence of energy at the points k and —&, i.e., E(k) = E(—Fk).

At the point X, the representations X; of the little group, for elementsnot
containing primitive translations, coincide with the representations of Dy.
The latter has five single-valued representations A,, 4,, By, B,, E and two
two-dimensional spinor representations Ef, E;. The single-valued represen-
tations at X are denoted by X; (i=1,2,3,4,5), and the spinor representations
by Xs, X1.

Representation of

Dyg A,|A, B, | B £|£,’|£,

Representation at
X

X, | X, X, X, Xs | Xe | Xq

For the point X, we have k= —k, and all representations belong to
case (a;).

Now for the points L and A. Since these points have the same symmetry
in the group T4, the representations of the corresponding little groups are
the same, coinciding with the representations of the little group at A in the
groups O} and O] (see above). The difference between the points A and L is
revealed only by time reversal.

The representations at A belong to case (bs), since the little group does
not contain elements which transform k& into —%. At the point L we have
k= —k. The representations L, L,, L3, Ly with real characters belong to
case (a;); the two double-valued representations L; and [, (as at the point A
in the group 0,) with complex characters belong to case (b;) so that these
two representations of the little group must be combined.

Thus, in the group T; the band is always twofold degenerate at L when
spin is included, whereas at A the band may split completely even when spin
is introduced.
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In the group T4, the points £ and K have symmetry group C,, This group
has two one-dimensional single-valued representations A+ and A- and two
one-dimensional double-valued representations A+ and A’-, to which corre-
spond four representations of the little group, 2y, 3, Z;, Z: (or K, Kz, Ks, K,
for the point K). At these points, therefore, there may be only onefold de-
degeneracy. All the representations forthe points £ and K belong to case (by).

Compatibility conditions

We now consider compatibility conditions for representations in crystals
of the cubic group; these conditions express the relationships between re-
presentations at different points of the Brillouin zone. The compatibility
conditions for representations at two interior points of the Brillouin zone are
the same for all space groups in one crystal class. If one of the points is on
the boundary of the Brillouin zone, the compatibility conditions may differ
for different space groups.

The compatibility conditions for representations.at the points T' and A for
groups of class 0, are

I =4, I — A, T—Al, =83, Te—A 44,
Ta—>A1+ 82, Tis—=A8 445, Tis—>Al4As, Tis— 824 4s,
i — A5+ 85, TE >0, R

The compatibility conditions for representations at the points X and A
are different for the groups O}, 0 on the one hand, and 0} on the other., For
O, O}:

Xt X7 —>A, X7, XT by, X$, X7 >4
X7, X§ =0 X§ B85 X&—>Be Xi b

and for O}:
X1,3—8s, Xo— A+ A5 Xi—=Al4D8y Xs—As+ A

Compatibility conditions for points moving along the threefold axis in the
groups 0; and Oj:

I, Ti= Ay, Ty, T{— Az, Ty Tla— Ay, Tis, Tis—A A,
Ils Tis— Ay 4 Ay, TF, TE = A, I8 = Acd As+ Ag;

Ly, Ly— Ay, Ly, Li=>As, Ly, Li—A,,

Lo Ls— A, Ly, Li—As, Ls, Li—As.

For the group 0}, the compatibility conditions at T and A are the same
as in 0} and O}; at A and R they are the same as for A and T,

Compatibility conditions at I and Z:

I'—=32Z, M=%, TMe->314+Z, Mg =+ 234 24,
Ms—=>Zi4 Z4+2Z, M-I Mo, o435,
Tis—=>Z+2+3%, Ts—>+4543, TFo, T3,
Iy — 2%,
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In the groups 0} and O}, the representations at = and K transform conti-

nuously into one another; the compatibility conditions for these groups at Z
and K are therefore trivial.

Compatibility conditions at M and £ in the group Ok:

My ME—>3, MF, My =3, Mi—>%+3%, ME Mi -3
Compatibility conditions for the group T3:

Fy=4, Ty—=A8y Tp—=A8+4A, Ty—4A 4444,
Ta—=A+ A+ A, Tg—A, Ty—A;, Ty—24,,

X, = Ay, Xo=Ay Xi—= Ay X,—A, XA+ A,
Xeg—> A X;— A,

Fi— Ay, To=Ay, Tp=A; Tig— A+ A,
Tg—=Ay DAy Ty A+ A+ A,
=3, I=3, =343, T3 423,
Iy — 2+ 2%, Fe—=Z+25, Nh=>Z+Z,

Po— A+ Ay,

rs - 223 + 224.
Group Cie

Let us consider the representations of the little group at a few points of

k-space in crystals with a wurtzite lattice. This lattice is characteristic for
a number of semiconductors such as hexagonal CdS and CdSe,

FIGURE 26. Wurtzite lattice: general view (a) and projection (b). The atoms of the first
layer are indicated by solid dots, the atoms of the second layer by white dots, the position
of the sixfold axes by asterisks, The thick lines indicate the base of the primitive cell.

The wurtzite lattice (the hexagonal form of ZnS) is shown in Figure 286.
The points of the Bravais lattice are at the sites of the sulfur atoms, depict-
ed in Figure 26 by small spheres. In the space group Cs, of the wurtzite
lattice the sixfold axis is a screw axis and half of the reflection planes are
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glide planes. The twelve rotational elements of the group Cj,, together with
nonprimitive translations, are given in the following table.

(e10) (cal ) (] 0) @l | (ct]o) (3]%)

@i | @l | @l | @alo) | ole) | @oilo

Here t=¢/2 is a nonprimitive translation vector directed along the axis ¢,
where ¢ is the edge of the primitive cell along the sixfold axis.

The Brillouin zone for a hexagonal lattice is a six-faced prism (see Fig-
ure 27). The point I' is at the center of the Brillouin zone. The points A and
A lie on the sixfold axis, A within and A on the boundary of the Brillouin
zone, The points H, P and K are on a lateral edge of the prism, A at a ver-
tex of the prism, K at the midpoint of the edge, and P at an arbitrary posi-
tion on the edge.

The point group F, at these points and the number of points in the star are
given in the following table,

Group F, Coo Cyo

Points I, A A H, P, K

Number of points in
star

The representations of the little group at the point I'(k = 0) coincide with
the representations of the point group Cs,. This group has four one-dimen-
sional single-valued representations Ay, A,, B;, B,, and two two-dimensional

ones Ey, E,, denoted by Iy, ..., T's; the
double-valued representations Ef, Ej, Ef,
L H denoted by I', I, I, are two-dimensional,
H S UAY) All the representations at T belong to case
P A\L H (a;). At the point A, k= k,(001), the repre-
tly S e sentations Ai(i =1, ..., 9) of the little group
K ““}*"‘""}kf """"""" for elements not containing primitive trans-
‘? X lations are obtained from the representa-
i tions of Csy by multiplying by e***r, where
A 1, is the nonprimitive translation corre-
L H sponding to the rotational element r. The
representations A; depend on the position of
the point A on the symmetry axis. Since no
additional symmetry elements appear as A
approaches the point A on the boundary of
the Brillouin zone, the representations at A are obtained from those at A by
setting ko = nfc.

The difference between the points A and A is revealed when time rever-
sal is introduced. Since for the point A the group Cs, contains no elements
which transform k into —&, all the representations at A belong to case (bs).

FIGURE 27, Brillouin zone for wurtzite
lattice.
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At the point A we have k= —k; Herring's test indicates that the represen-
tations 4, ..., 4s belong to case (b;), but A; belongs to case (c¢;). According
to the results of §18, time reversal makes the representations combine in
pairs, 4,—A;, A, — A3, As— As, A;— Az, and the representation A; mustbe doubled.

We now consider the representations of the little group for points on an
edge of the prism. The symmetry group of such points is C;, and so, by the
results of §14, all the projective representations are equivalent to vector
representations. All the coefficients of the factor system for these points
equal unity, since the little group contains a nonprimitive translation r
directed along the sixfold axis, and all the vectors b in (12.29) lie in a plane
perpendicular to this axis. Thus the representations of the little group at
P, Kand H (for elements not containing primitive translations) are single-
or double-valued representations of Cs, multiplied by ¢ **:*r, where k. = 0 for
K and k,=n/c for H.

The group Cs» has three single-valued representations A, As, E(one- and two-
dimensional) and three double-valued representations Ej, Ej, Ej(two-dimen-
sional), giving representations K, ..., Ke, P1, ..., Ps and H,, ..., He of corre-
sponding dimensions. The compatibility conditions of these representations
for motion along the edge of the prism are trivial. At the point K, k and —&
occur in the same star, and the representations K, ..., Ksbelong to case (a,).
At the point P, all the representations belong to case (bs). At the point #,
the representations H,, H,, H; and H; belong to case (b;), the representations
H; and Hg to case (ap). In this case the representations H,, H, and H,, Hs are
combined because of time reversal.

Distribution of normal modes according
to irreducible representations

Using equations (15.28), we shall determine the irreducible representa-
tions according to which the normal modes transform at symmetric
points of ¢g-space in diamond, zinc blende, halite and wurtzite lattices.

We first consider the diamond lattice. Table 23.3 presents the characters
of the representations @, according to which the components u}, (¢) transform
in this lattice. As noted above, the primitive cell of this lattice contains two
atoms, at sites (000) and (ao/4)(111).

Since all 24 elements containing the nonprimitive translation r= (ao/4) (111)
take both atoms to inequivalent positions, we have ¥j(g)= 0 for these elements.
The other 24 elements leave the first atom in place and displace the second
by one of the lattice vectors a;. Table 23.3 shows these displacements and
gives the values of %4 (g) for arbitrary ¢, and also for the points r(ooo),

X(—inf(IOO)) and L[;"o— (111)) for all elements in the little group at these points.
By (15.28a),
) =x(r Zexp lig[r™" (X — ) — X,]} &y g
"
where y(r) is the character of a vector representation. At the point I', for

all 24 elements not containing the nonprimitive translation r(i.e., all
elements of group T,), y, (&) =2x,(g); for the other 24 elements y.(g)= 0.
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TABLE 23.3, Characters of representation @y for diamond lattice

_ Characters g
Group Displace-
element % () | ment of arbitrary at zﬂat a
atom . T (000) x(—a-.- (!oo:) L(% um)
(e10) 3 0 6 6 6 6
(Cg, 10) -1 as —_]— e‘Wl -9 - —_
(C!y | U} —1 as —_]= ‘NG: - 0 —-—
(c2210) el R B B 0 -
(s410) il I Bl Bl 0 -
(sy10) ol I el Bl B =
(Saz [0) -1 as — 1 =gl —2 - -
N R e e BRI
EA DI Y B ST ) B -
D L B R e T e
(Oxy 10) 1 0 2 2 - %
(9519 1 a L4l 2 - -
(0x210) 1 0 2 2 = 2
(0:219) T B L B B N
(04210) 1 0 2 2 2 2
(9,319) 1 a I +efem| 2 2 -
s@lo@of of -~ | o | o o | o
24(gi | 7) — | Goes to 0 0 0 0
inequiv-
alent
position

Direct lattice vectors:

a, = (ao/2) (110), ay=(a0/2) (101), @y == (a,/2) (011).

Reciprocal lattice vectors:
by = (2n/a,) (111), By = (2n/a,) (111), by = (2n/a,) (111).

Consequently, @,=F} + F;. For acoustical modes, describing the dis-
placement of the cell as a whole, the components a,, transform like the
components of a polar vector; hence acoustical modes belong to the re-
presentation F; =I5, while optical modes belong to Ff =T. Table 23.4
gives the decomposition of @, into its irreducible constituents for the other
points.

In a similar manner one easily determines the representations according
to which the normal modes transform in the other lattices. The results

are summarized in Table 23.4.

§24. ELECTRON SPECTRUM IN CUBIC
CRYSTALS WITH SPACE GROUP o}, o}, o]

In the present section we shall determine the possible shape of the spec-
trum incrystals with space groups Oh O} and 0} at the points of the Brillouin
zone discussed in §23.
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TABLE 23.4. Distribution of vibrations according to irreducible representations
of @,

Type
of X A L A LK | HPK
crystal| ac. | opt.

Ly, Ly
U PYWRPTH K218 28

Ge, Si| I's r25 X Xa Xa| 27, 24, f-a. L; , T, 3,

ISb | Ty | Tas | X, Xi |28,,28, | 2L, 2Ly | B35 20 4z, 05, | —

’

’ - gy- LyLy 9%, 2%,
PbS | Iy | T [2X7,2X5| 24,24, i 2n,, 28 |70 Por|
ZnS 1‘,. 24,, 21 2H,,
(wurt=| T1. Ts - - - YT - 2H,
zite) Fody B 20e 4H,

The point T' is a point of zero slope for all representations, since the

group O, contains inversion.
For the one-dimensional representations I', I';, I, 4, Table 21.1 (p.192)
shows that the spectrum near k=0 is described by one effective mass m*:

E (k) =42 (24.1)

Since the two-dimensional representations ['2 and I differ only in their
behavior under inversion, the spectrum for both these representations is

the same.

Remembering that the momentum transforms according to the vector
representation I'j;, we see from (21.25) that N, = 2, i.e., the matrix (21.19)
and the spectrum for the representations I'; and I'j, are determined by two

independent constants.
To construct the matrix #, we take as basis functions of the represen-

tation Ty,
b=F—t@ e, w= @ -

Then, by (21.23),
AR+ 5 (¢ —38) Y3 Bk —K)

, (24.2)
Y3 B(k: — &) AR — (e — 382
where
h? I(llpxln)l’+l(2ip:|n)l'
A_H+2m"2 Ey— En
(24.3)

Ey— En

2 B gy (e |n)(n|Ps|2) “){"|P3|2>
AW A T EeE
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The eigenvalues of #, which yield the two branches of the spectrum £, ,, are
Er2(k)= Ak = | B| V&' — 3(kk, + K262+ KD . (24.4)

In the [111]direction, when k; = k, = k,, the band degeneracy is not removed;
E\(k) = E;(k), in accordance with the compatibility conditions, which indicate
that in the [111] direction the representations I';; and TI'f; merge with the
two-dimensional representation As.

Since each of the three-dimensional representations I's, I5, 'y and @i is
obtained by multiplying one of them by any one-dimensional representation
of the cubic group, they are all projectively equivalent and, as will be shown
in §25, the corresponding spectra near k=0 are identical. To construct
the matrix # for the representation I's, we choose basis functions X, ¥, Z.

Using (21.19), we see that relative to this basis the matrix # is

Lk + M (k) + k3) Nkik, Nkyk,
I =| Nkek, Lk, + M(ES 4+ K3) Nkyk, s (24.5)
Nkk, Nkyk, Lk} + M (k} + E3)

where L, M, N are independent constants:

L EI(XID In)l”.
sz'(nﬂP |R)F (24.6)

Ey— En

_r 2 (le [n) (a1 p” |¥) + (X1 p” 1n) {np* Ir)

Ey— Ep

The problem of determining the spectrum reduces to solving the third
order characteristic equation |# —IE|= 0 (see (21.20)). An explicit solution
may be obtained for the three symmetric directions [100], [111], [110]:

El_Lkz EQ E3 ME?, kx=k: ky=k¢=0:
L+2M L+2M =N
E — ( + +2 N) Ez=Ea=+Tk2-
3
kx=kg=kz=7-3—'; (24.7)
LAMIN o g LAM=N o pppe,

E] =
ky=k “Vk:’ k,=0.

It is evident from (24.7) that degeneracy is not completely removed along the
[100] and [111] directions, but a twofold band degeneracy remains. This de-
generacy is maintained along the threefold and fourfold axes, up to the
boundary of the Brillouin zone, because of the compatibility conditions for
these directions: Tis—A; + As, I's— A+ A;, although, of course, at a sufficient
distance from T the spectrum will differ from (24.7).

If spin-orbit coupling is introduced, we have twofold representations I§
and 'Y and fourfold representations I at the point I'; the spectra for the
representations Iy, IT are identical, as they are for I'f and Ty.

Let us consider the spectrum for twofold degenerate bands.

By (21.23), the elements ;; of the matrix # transform like

kot [ @) (08 + 2Pn%) g, d,
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where ¢i, 9, (I, j=1, 2, &, p=1x,y,2) are basis functions of the representation
I or I'f. Since the representations for the point I' belong to case (a;), it
follows from (21.31) that the selection rules for these matrix elements de-
pend on the representation that belongs to the antisymmetrized product of
the functions ¢ip;:

ré xré&)={rFxr#)=r.

Thus the matrix element is nonzero only for invariant combinations n,ng,
i.e., for a*=n}+a}+n}. Moreover, as the representations are orthogonal,

k? J. @’ dv ~ k%,

so that 78;; ~ E(k)8;; and the spectrum E (k) is twofold degenerate, coinciding
with the spectrum (24.1) for a nondegenerate band.

Note that this result was derived independently of any specific choice of
basis functions; it is therefore valid for any spin-orbit coupling.

We now consider the spectrum near T' for the representation I'y. When
electron spin is introduced, the threefold degeneracy at I, corresponding to
the representation I's, is doubled and becomes sixfold, and the basis functions

Xa, Ya, Za, XB, YB, Zp (24.8)

transform according to the representation I's X @,. In (24.8) a and B are

spin functions corresponding to spin projection + 1 /2. If spin-orbit coupling

is disregarded, the matrix # relative to the basis (24.8) is
#, 0 I

z="y =, (24.9)

where #;is the matrix (24.5).

Spin-orbit coupling causes the sixfold degenerate band at TI' to split into
a fourfold degenerate band (representation I';) and a twofold degenerate band
Is. If the spin-orbit splitting A of the bands I'; and I'y at k= 0 is signifi-
cantly less than the separation to other bands, the functions (23.2) and (23.3)
may be taken as basis functions for the representations I’y and 5.

In the new representation defined by functions (23.2) and (23.3) relative to
which the operator %, is diagonal, the matrix # of (24.9) becomes

H =8"'%s, (24.10)

where 8 is a unitary matrix transforming the functions (24.8) into (23.2) and
(23.3). Direct computation of #},, m yields the matrix shown in Table 24.1.
Table 24.1 uses the following abbreviations:

F=Ak2+g(k*~3k§). G=Ak*_§(k=—3k§),
(24.11)
H= -Dk,(k, + fk}.). I=§ B(k}—k})—kaxk,.,
X
where
A=LEM g LM _p_3p D=, (24.12)

3 3! V3
To determine the spectrum with allowance for spin-orbit splitting in the
general case, we must compute the eigenvalues of the matrix in Table 24.1.
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If A islarge compared to the current carrier kinetic energy, mea-
sured from the bottom of each of the split-off bands, the problem is simpli-
fied, for then it is sufficient to determine the eigenvalues of the fourth-order

matrix

F H ! 0
H G 0 I
roo G —H (24.13)

0 I —H F

and of a second-order diagonal matrix; these matrices give the spectrum of
each of the split-off bands separately. Solving the corresponding character-
istic equations, we find the spectrum in the band Ts:

Ero=23% )/ (552) +1Hp+11E, (24.14)
whence
Eia= AR = V B + C* (kiky + kxkz + kykz), (24.14a)
and in the band TI:
E=L1% _a—ar—a. (24.14b)

Each eigenvalue is twofold degenerate, owing to time reversal.

For the degenerate band T4, it follows from the results of §17 that the
second derivative of the energy with respect to the components of the vector
k has a discontinuity at k= 0. The matrix (24.13) and the spectrum(24.14a)
for the representation I's correspond to the weak spin-orbit coupling approx-
imation. It is easily shown that for any spin-orbit coupling the matrix # and
spectrum E (k) have the same form as (24.13) and (24.14); in particular, they
are determined by the three independent constants A, B, D, as may be verifi-
ed from (21.31).

However, the relations (24,12) between the constants A4, B, D for the level
I's and L, M, N for the level I';;, like the relationship of the effective mass in
the band I's to these constants, are valid only for weak spin-orbit coupling

(see (26.15a)).
The surfaces of constant energy (24.14) are warped spheres.
By (21.21), the wave functions of the holes, to lowest order in &, are

vw=e* 3 ke (24.15)

m's=x32, x1/2

where the functions ¢}/ are defined by (23.2).
Itis convenient towrite the wave functions (24.15)as a column matrix of

expansion coefficients ¢!, (k) of ¥, in terms of the functions ¥ of the band
bottom:

¢ (R)
¢l (k)
L]
Ly (R)

Y = el =" F . (24.16)
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The matrix ¢ is determined by solving the system of equations (21.18) with
the matrix # (24.13). Since the eigenvalues of this matrix are doubly degen-
erate owing to time reversal, the coefficients of the matrix ¢ are determined
not uniquely but only up to a unitary transformation of the degenerate func-
tions. Since the representation I's belongs to case (a;), there is a linear
relation (18.7) between the basis functions ¥’ and the functions K¥y’ = o, K4
It is easy to see that for the functions (23.2) this gives

KO =v"%0, Kl =—9"2, KoPp =913 Kp'%e = — ik (24.17)

These relations determine the matrix 7 (18.7).
Relative to the basis Ky, the matrix # becomes*

T'HT =",
and this implies that the eigenvalues of the matrix (24.13) are doubly degen-

erate. The coefficients ¢/ and ¢! of the two degenerate functions Yu and s
may be subjected to a condition similar to (24.17):

="y Clp=Clyy CLp=—Ch CLy=Ccyy (24.18)
The eigenfunctions #a of the matrix # which satisfy condition (24.18) are
H
E,—F
Fy=— |5 .
"TYE-PHE-E| o0 |
f’
—1
g-;l =—'-*-—I 0
V(E,—F)(E,— E3) | — (E, — F)
s
24.19
u ( )
9-Q2=‘__.'“]— EZ_F H
V(E:— F)(E;—E)) 0 !
!0
—1
’ 1 0
PR E— :
2T ViE= F) (B — B | —(E, — F)
e

where E,, I, Fand H are defined by (24.11) and (24.14).

In agreement with the general results of §17 and §21, the functions Fu
and ¥, depend only on the direction of the vector g, and as functions of &
have a discontinuity at &= 0.

In cases where the energy of the holes is comparable with the spin-orbit
splitting of the bands Iy and I's, we must find the eigenvalues of the matrix
of Table 24.1, This reduces to solution of a cubic equation, since each
eigenvalue is doubly degenerate owing to time reversal.

Using the equations (15.49) and (15.49a) of perturbation theory, we easily
find the corrections to the energy E, (k) due to the interaction of the bands I'

* Note that the invariance of # under time reversal and the form of the matrix 7 as determined by (24,17)
uniquely determine the form (24,13) of & for the representation I's.
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and Is. This means introducing suitable corrections to the matrix (24,13);
for the matrix # of Table 24.1, these are

F'=F+ 55 (|HE+411P),

G’ =G+ 55 (F—GP+ 3| HP),

H =H + 5 (H(G — F)—2 V3 H'I),
I'=1—5=(V3H +20(G—F)).

(24.20)

Hence we obtain an energy correction 8E, ;(k)~£k‘A, which shows that the
interaction of the bands I, and I, distorts the parabolicity of the spectrum:

bz 2D
2B% + 9B (——— B?| k0 + 27 (== + B| k3k}K]
3E,, =5 (B +CO = | (T-2) (5 +2)8 O (24.21)

VB%' +C%®
where ©= klk} + kik: + kjk:.

The equations obtained above determine the possible types of spectrum at
I' for all the space groups of the class 0,.

Point A. The representations at A belong to case (a,); thus, to deter-
mine the number of nonzero momentum matrix elements we must use (21,28)
and (21.32), with inversion playing the part of the element R. As noted in
§18, at interior points of the Brillouin zone equations (21.28) and (21.32)
involve the characters of the representations of the crystallographic point
group, and so the results obtained below for A are valid for all the groups
of clagss 0,. In view of the fact that the operator n (or p) is odd with respect
to both space inversion and time reversal, equations (21.28) and (21.32) have
the form

N= 2}, %) (1o (r) P+ K2 (r2)). (24.22)
re &

For all one-dimensional single-valued representations, [A; X A= 4,; for
double-valued representations, [A;%XA,}=4,. For two-dimensional single-
valued representations, [A;X A=A, + A,+ B,.

The representation according to which the components of the vectors = or
p transform is reducible; its irreducible constituents are the identity repre-
sentation A,, according to which n: transforms, and the two-dimensional
representation E, according to which ny and =. transform. It follows from
(24.22) that, for all the representations, the only nonzero component of the
momentum is n:(ps).

According to Table 21.1, the surface of constant energy for the one-
dimensional representations at A near the extremum is an ellipsoid of
revolution:

W2
le

12 (£ + £2)
E(k)=E (k) + +—(-;:,;I——. (24.23)
For the two-dimensional representation A, with basis functions ¥, z, the
matrix # at the extremum point has the form

| A%+ BEy + Ck: Dryk,

o= .
Dkyk, AR, +CRL + B

(24.24)
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where

A N LA T T
A=grtor Z Eo— Eq

p—1t Hp1n)(n|p912>+(zm|n><n[pvn*>

_Tg b (24.25)

B and C are given by formulas like that for A, except that p* is replaced by
pv and p=, respectively.
The spectrum E; ; for the representations As is

Evo(t)=E (k) + AR + ZEC (3 4 ) = )/ (SF2) (6 — 27 + 0%, (24.26)

depending on the four parameters A, B, C, D.

When spin and spin-orbit coupling are introduced, the one-dimensional
representations become two-dimensional representations As and As, while
the four-dimensional representation A;X @y, is split into two two-dimension-
al representations.

Since (A;X4;) = [8;XAg) =4,, the number of independent constants defining
the spectrum at a point of zero slope is equal to the number of identity re-
presentations occurring in the direct products [8:X A =4, and [As X Ag] =
=A;+B:+ Az, i.e., two. These invariant combinations n®nP 4 nfn® are a2 and
a’—i—n’ and therefore for double-valued representations, 3, =
-'(Akz + B(k2 Ny )6” ; in other words, for double-valued representations the
spectrum at A coincides with the spectrum (24.23) in a nondegenerate band.

Point X. Since the point group Dix at X contains inversion, which com-
mutes with all elements of the space groups 0, and 03, the wave functionsat X
possess definite parity and therefore X is a point of zero slope for all re-
presentations of 0} and 03,

Since Dy = Cy, X C;, the spectrum at the point X for 0, and O} must coéin-
cide with the spectrum at a point of zero slope A and is defined by (24.23)
and (24.26). The spectrum at the point M for the group O, must conform to
the various band structures at the point X for this group. The situation is
otherwise at the point X for the group O}, where there is an essential
degeneracy.

In the group Oh inversion i occurs together with a nonprimitive transla-
tion r; thus it does not commute with all the elements of the space group and
the basis functions of the representations of the little group do not possess
definite parity. Therefore, in the group 0} the mere presence of inversion
in the point group does not automatically imply the vanishing of momentum
matrix elements. Since the representations at X belong to case (a,), the
number of linearly independent components of the momentum operator must
be determined via (21.25) and (21.31).

Since Dy = D2 X C:, we shall expand the product X: X X; (i=12,..., 5) in
terms of the representations of the group Du X C;.

Using the character tables we readily verify that

(XIX X)) = (XX X;) = A7, [X; X X,|=[X; X X,]=A +B] +B},

(X2 X X,) = (XiX X ) = B, [X;X X,)=[X; X X J=A}+A] +B,

[XsX X;)=Af + A7 + B + B} +2E* 4+ E~,

(XX Xs) = AF + A7 + By + B} + E~. (24.27)
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Since the momentum components at X transform according to the repre-
sentations By (n,) and E™ (my,, n.), it follows from (24.27) that X is a point of
zero slope for the representations X, and X,;, while for the representations
X, and X; the matrix element p, is nonzero (and hence so is 9dE/dk.). For the
spinor representation X;, all three components =, =, n. are nonzero. The
matrix elements my, n: are relativistically small, but n: is relativistically
small only for the representations Xs which originate from representations
Xl- X_'l.

Let us examine the spectrum at X for the representations X,, X;. Accord-
ing to (21.25), the matrix elements of the quadratic components of the mo-
mentum are determined by the symmetrized products.

We expand the symmetrized product [®]] in terms of irreducible repre-
sentations of Dy, x C;:

(2] =24 + B + B + E*.

Thus, by (24.27), the matrix # and the spectrum E (k) are defined by com-
binations of components: k%, k2 4+ k2, which transform according to the re-
presentation 4,, and k.., which transforms according to B,. The form of the
matrix # depends on the choice of basis functions. The construction of the
matrix # in (24.2), (24.5) and (24.24) utilized the explicit form of the basis
functions. However, we can construct # without knowing the explicit form
of the basis functions, provided the representation matrices are at our disposal.

‘'For the representations X, and X;, we construct # relative to the basis
functions ¢, and 4; defined by the transformation matrices given in Table 14.2
(p. 114) for the generators of the group Da.

For the invariant combinations p2 and P+ i, the matrix elements (21.23)
of %;; are

CALAL DAL AL DI AR AR DA AR AL DL

For the diagonal matrix elements, ({ilpyp:|¥1s = (2|pyp:|¥2) = 0, since Table
14.2 indicates that they change sign under the iransformations s,. The only

off-diagonal element of # relative to this basis is (|p,p:|¥:); therefore, by
(21.23), the matrix # for the representations X, X, is

| Ak + B(Ey + £2) Chy,

= (24.28
C'hyk, Ak + B (&, + &3)|’ )
where A, B, € are constants.
The energy spectrum E, ;(k) for the representations X, and X, is
E, o (k) = E (ko) + AR} + B (k] + £2) = | C | kyks, (24.29)

and the surfaces of constant energy (24.29) are two ellipsoids with principal
axes in the [100], [011] and [011] directions.

Although none of these is invariant under all transformations in the group
D, the spectrum (24.29) as a whole is invariant under D,,.

Point A. At the point A, for the one-dimensional single-valued repre-
sentations A;and A;, the momentum has one nonzero component, parallel to
the threefold axis. At a point of zero slope the surfaces of constant energy
are ellipsoids of revolution with principal axis (z) directed along the three-
fold axis. Relative to these axes,
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R R)

E(k)=E (ko) + 3=+ —o

(24.30)

For the two-dimensional single-valued representation Ay, which belongs to
case (ap), we must use equations (21.28) and (21.32), with inversion taken as
the element R, to determine N,. It follows from (21.28)that the nonzero mo-
mentum components for the representation A; are those which transform
according to [EXE]=A,+E, i.e, all three components. Thus A is not a
point of zero slope for the representation As.

The one-dimensional double-valued representations A: and As; belong to
case (bj) and must be combined. According to (21.22) there is one nonzero
linearly independent constant, corresponding to the diagonal momentum
matrix element n,; the off-diagonal momentum matrix elements vanish.

By (21.23), at a point of zero slope, where the longitudinal momentum
component vanishes, the spectrum is twofold degenerate and is defined by
equation (24.30). The two-dimensional double-valued representation s be-
longs to case (a;), and by (21.32) the numbers N, and N, depend upon the
antisymmetrized product {As; X As} = A,. At the point A, therefore, only the
longitudinal component 7. is nonzero for the representation A;, and at a
point of zero slope the spectrum is defined by equation (24.29).

Thus, at the point A near the extremum the surfaces of constant energy
for all the representations are ellipsoids of revolution (24.30) for all the
groups O}, 0} and Oj.

Point L. Since the little group at L contains inversion, which com-
mutes with all the group elements, L is a point of zero slope for all the
representations.

For the single-valued one-dimensional representations LY and L¥, the
spectrum E(k) at L is defined by equation (24.30). The spectrum is the same
for the two-dimensional single-valued representations Ly. For Ly, the basis
functions may be taken as

y=X+iV, ¢$,=X-—il,

where the x- and y-axes lie in a plane perpendicular to the threefold z-axis.
Relative to this basis, the matrix # has the form

AR+ Bk + K)) Chik-

i S AR + B (K} + £)

(24.31)

giving the spectrum
Ey.o(k)=E (ko) + AR+ B(K + k) = 51 Clksku; (24.32)

in these equations ks =(k, £ ik,)2, ks =V K + k%, and A, B, C are constants.

For the two-dimensional spinor representations L§, we see from (21.31)
that (L& X L&) = A} ; thus the appropriate spectrum is defined by equation
(24.30) and is twofold degenerate.

For the combined representations L}, L and Li, Ly, we must use (21.22)
and (21.24). It follows from these formulas that for these representations
the matrix # contains only the combinations £, 2+ £}, which are invariant
under the group D,. The matrix is therefore a multiple of the identity; its
eigenvalues are twofold degenerate and are defined by (24.30).
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Point . Table 21.1 tells us that for the one-dimensional representa-
tions Z,, Z; E; and Z; only one matrix element of the momentum component
p: does not vanish, where the z -axis lies along the twofold axis.

At a point of zero slope the surfaces of constant energy for the one-
dimensional representations are ellipsoids:

2 252 2,2
B —E k) + x4 2 | 0 (24.33)

where the x- and y-axes are directed along the intersection of a plane per-
pendicular to the twofold axis and the reflection planes o,.

For the two-dimensional spinor representation ¥;, it follows from (21.28)
that only the matrix element of the momentum component =« is nonzero. At
a point of zero slope the spectrum is twofold degenerate and is determined
by equation (24.33).

All the results obtained for the point I are valid for the corresponding
representations at the point K.

The Kane model

In certain semiconductors with the zinc blende lattice, such as InSb, the
conduction and valence band extrema lie at the same point TI' and the band
gap is very narrow. For these crystals, therefore, the k2 approximation
for E(k) often proves inadequate, and # (k) must incorporate both conduction
and valence bands from the start. If we ignore the relativistic linear &
terms, which will be considered in §26, then # (&) for these crystals at I
does not differ from the corresponding Hamiltonian for the Ge and Silattices
as is the case for other cubic crystals. In accordance with (23.2), we take
the odd functions ¢, with j=3/2 and j=1/2 as basis functions for the
valence band, and the even functions y* as basis functions for the conduc-
tion band. By (21.38), the matrix (k) then has the form shown in Table
24.2, where

p=m(SIpalX). ka= (b x k) (24.34)
The constants L’, M’, N’ appearing in F/, G’ H’, I’ differ from the constants
L,M, N in F, G, H, I in Table 24.1 since they incorporate the interaction of
the valence band with all bands other than the conduction band, whereas L,
M, N also include the interaction with the conduction band. In order to go
over from Table 24.2 to Table 24.1, we must eliminate the interband terms
representing this interaction. Similarly, the sum
W {Slpclm 1

2m;, m' 4 E —E, 2m

7 —_—

includes the interaction with all bands n except the valence band.
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§25. THEORY OF INVARIANTS

As demonstrated in the preceding sections, the Hamiltonian of the elec-
tron in the effective mass approximation is an operator # (k) in the form of
an n, X n, matrix, where n, is the dimension of the corresponding represen-
tation @" of the little group Gs,. For free carriers the eigenvalues of the
matrix # (k) determine the spectrum E(k). The construction of # (k) made
use of perturbation theory, so that we were able to establish the general
form of # (k) and to develop explicit expressions for the constants entering
# in terms of matrix elements. However, it is usually sufficient to know
only the general form of #, since the various constants are determined as
a rule from experimental data. To determine the generalform of # (k)there
isnoneed for the cumbersome apparatus of perturbation theory: all we need
is the law of transformation of the basis functions ys,» and of the components
k; under the operations in the little group.

Conditions imposed on # (k) by symmetry

Consider the Hamiltonian # relative to basis functions ¥: (i=12,...,n,)
which transform according to an n,-dimensional representation @(g) of a
group G, g G. We shall assume that # depends not only on the wave vector
k, but also on external fields; a magnetic field H and an electric field &,
allowing # in the latter case to depend explicitly on the coordinate x. In
addition, as we shall show in detail in the next chapter, # may include
terms proportional to the components of the strain tensor. All these quanti-
ties will be denoted by o%; it will be assumed that the components X; trans-
form under an operation g as dictated by the transformation laws of the
corresponding vectors or the tensors. An element g of the group G takes
the functions ¢;(x) into

V@) =b g0 =2 D, (¥

and it follows from (7.12) that # (&) goes into D "' (&) ¥ () D(g).

On the other hand, a transformation g of the coordinate system is equiv-
alent to the inverse transformation g-t of the vectors or tensors &, so that
# (H) goes into #H (g~'#). Consequently, # (#) must satisfy the conditions

DX (HK)D(g)=H (g 'H), ge<G. (25.1a)

These relations are the usual invariance conditions of the Hamiltonian under
the transformation g:

H (K )V=D @)X (g7 K) D (g) = H (K). (25.1b)

Each matrix equation (25.1) represents n? equations for the elements 3, (&)
of 7 ().

Equations (25.1) must hold for all operations ge G. However, it will suf-
fice if they hold for all the generators of the group G, since any element g
may be written as a product of powers of generators.
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If we disregard the additional requirements imposed on # (&) by the time
reversal symmetry of the Hamiltonian, which will be discussed below, the
system of equations (25.1) for all the generators completely determines the
form of #(&). If the representation matrices are known, we can construct
7 () directly from these equations. Though it may seem cumbersome, in
practice this method turns out to be quite simple, However, as we demon-
strate below, in most cases we can construct # (&) knowing only the charac-
ters of the representations. Of course, in this case too # () is constructed
relative to a definite basis, but the basis is not specified.

The ng X n; matrix # (K) may be expressed in terms of products of the
components ¥; and nt linearly independent matrices X,(i=1, 2, ..., n?) which
do not depend on . Let us consider the properties of the basis matrices X,
in greater detail. By (10.9), the effect of applying an operation g to any of
these matrices is

EXi=Xi=D@ X D' (2) (25.2)

and the transformed matrix X; may be expanded in the complete set of
matrices x;:

Xi=3 2} (@ X, (25.3)

The matrices PD¥(g) form a representation of group G (this is easily proved
by the arguments used in §7 to derive equation (7.5)). The dimension of the
representation @ is n;. To determine its characters, we give the matrices
X; a double index, X* (I=1,2,...,n, k=12,...,n,), and choose them so that
each matrix X* has only one nonzero element Xjz=1:

Xihe = by O
By (25.2) and (25.3), in this representation,
Dijir (@) = D1 () D7) (&) = D (8) Dy (8),

i.e., each matrix of D" is a direct product D(g) D'(g). Hence the character
of the representation £, which does not depend on the specific choice of the
matrices X;, is

Xy (@ =2 Dl (@ =x@x @ =1x@)P, (25.4)

where x(g) is the character of the representation D(g).

The representation £¥ is in general reducible and may be expanded in
terms of its irreducible constituents. This means that from the n? linearly
independent matrices X; we can form linear combinations XI which, by
(25.2) and (25.3), transform according to the irreducible representations @D,
of the group G occurring in @ X £*, and so satisfy the relations

g"x:‘=mfg)x}‘$"<g)=§.mﬁe(g)x;. (25.5)

In the same way, the vector or tensor components also yield combinations
X! which transform according to the representations @, of G. Then, by the
rules of §9 for constructing invariants (see (9.27)), the matrices # (&) may
be expressed in terms of products of the matrices X; and the components
x#Y!', which transform according to complex conjugate representations:
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# )= a, 3 XIXT, (25.6)

where a, are arbitrary constants, which may be either complex, real or
pure imaginary, so chosen that # (&) is hermitian. If the components X7
are real and the matrices X hermitian, these constants must be real. The
expansion (25.6) may involve the same components X7 multiplied by several
different sets of matrices X; which transform according to one representa-
tion, and consequently with different constants a,.

Using (25.5), we easily show that the operator J () defined by (25.6)
indeed satisfies condition (25.1). In so doing, we must use the fact that by
(7.3) the components X} transform according to

=W =T D@ =3 DI (9T (25.7)

Consequently, relations (25.4)—(25.6) imply that # (&) may involve only
components X} that transform according to the constituents 2, of the direct
product @ X @*: these constituents are of course the representations for
which formula (19.43) yields a nonzero N,.

The last equation may also be derived by other means. Substituting (25.6)
into (25.1b) and comparing coefficients of like components ¥}, we obtain

X' = ; D (g) D' (@) XED (g)

or, in expanded form,

Xiy=2 i) D1 (8) Dy (@) XF. vy (25.8)
This sum is precisely the expression (19.4) defining the transformation law
of the matrix elements Vi, under an operation g. Therefore, the number of
sets of linearly independent matrices X} which transform according to a
given irreducible representation 2, of the point group F is just the number
of times %y occurs in the product D(g) X D*(g), determined by (19.6).

At no point in the preceding arguments did we assume that the represen-
tation 2 (g) is irreducible; this was because it is frequently necessary to
construct # (&) for several representations simultaneously. Let us consider
the general case, in which the representation 2(g) is reducible and decom-
poses, say, into two representations @, and @y of dimensions n; and ay with
basis y; and ¥y

D 0 H
D= 0 Dl (25.9)
Relative to this basis, the matrix # (&) has the form
”II ”I I
”{x)=l”m ]fuu”' (25.10)

Since P (25.9) is a block-diagonal matrix, invariance of the Hamiltonian
(25.1) yields the following relations for each block of the matrix #(X):

D' @K FH) Die)=%""g"'H). D' (g " (H) Dulg)=#""(¢"'K),
Di' (@ " " ) Du(@)=7"" (g7'K), Di'(e) 7" " (H) Di(g) =F""(g"'K), (25.11)
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note that for the diagonal blocks these relations naturally coincide with (25.1).
In this case each block of # is a linear combination of the corresponding
basis matrices X|', x/'", xI", X!'"'. The basis matrices X''and X"" are
square matrices of orders n; X ny and nj X ny, respectively. X!I has n; rows
and #n; columns; conversely, XU! has n; rows and n; columns. If np=ny, all
the basis matrices are square.

It is easy to see that both the diagonal and the off-diagonal matrices,
taken separately, form a basis for a representation of the group G, with
characters

x“l'g]=|x|(&')|?" X|1||(g]=lx||(g,]|2, (25.123)

@ =x@x @, x5, @=x@x (@ =x,: (25.12b)

Let us specialize these general considerations to construction of the
Hamiltonian s, (%) at the point k,. Here G is the little group Ga, and D=
= @,*. By (25.4), the character xJ of 2X at & is

e =|x% () (25.13)

where y¥(g) is the character of Dj.

It follows from (25.5) that D~ is independent of translations by the Bra-
vais lattice periods and is thus determined only by the rotational elements r
of the point group F.,, i.e., 2% is always a vector representation of Fs and
may be expanded in vector representations of the point group Fs,. Hence the
basis matrices X always transform according to vector representations of
Fi,. Consequently, by equation (19.43), which follows from (19.6), the num-
ber of sets X* which transform according to a representation 2, of the point
group Fa, is equal to the number of times 2, is contained in the product

Wt X D

Ne=5% % @[ (25.14)

s G;.

Here the summation extends over all the fundamental elements of the little
group, which contain no primitive translations. It is easy to see that formu-
las (25.1), (25.4), (25.5), (25.11) and (25.14) remain valid if, using (12.26),
we go over from representations of the little group Dy to projective repre-
sentations of the point group, Dy (r)= D' (g)e’™ . Therefore, the last equation
may be rewritten as

NK=7I; 2 [ (r) [P (0). (25.14a)

refy,

Here the summation extends over all the elements of the crystal point group
Fop and x;n (r) runs through the characters of the corresponding projective
representations.

For the case of two combined representations @, and @, it follows from
(25.12a) that the number N, for the diagonal submatrices X" and X!! is de-
fined by a formula similar to (25.14); by (19.31), the corresponding formula
for the off-diagonal submatrices XII is

”ﬁ=% 2 (@) uyg) x* (8). (25.15)

’
gEGh
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Hitherto we have considered the conditions imposed on # (&)by sym-
metry alone,

Additional conditions imposed on # (&) by time
reversal symmetry of the Hamiltonian

As mentioned in §19, equation (19.43) is applicable when the points k&, and
— ko are in different stars (case (bg)). In all other cases we must take into
account additional conditions on # (), due to time reversal symmetry.

Now the time reversal operation K takes k, into —k,; therefore, whenever
the points k, and —k,are not equivalent (cases (ap), (bz), and (cj)) we shall
first assume that the operator # (&) is constructed simultaneously for both
points g, and —k, so that the basis functions are the functions ¢, i.e., by
¥_,, =RY,, and in cases (by) and (cj) also the functions Ky, i.e., K¢, and
KRy,, where R is any operation taking &, into —&,.

We first consider case (a), when #(#)is constructed relative to basis
functions ¢; such that ; and Ky; obey a linear relation (18.7):

Kb, = ; Tiop.

Upon transformation from the basis ¢ to the basis K¢, the matrix (&)
goes into T™'# (K)T.

As shown in §18, the variables X, may always be classified as even or
odd with respect to time reversal, so that KX\ =¥, f=x1. Thus, for the
components of the wave vector and the magnetic field, which are odd with
respect to time reversal, f= —1, while for the electric field, space coordi-
nates and components of the strain tensor, f=1.

The invariance of # (#%) under time reversal means that time reversal
takes # (&) into #° (HA); thus, in case (a), the matrix # (&) must satisfy the
additional condition:

T™'# (J0)T = #H* (K) — # (). (25.186)
Equation (25.16) shows that the basis matrices X; must satisfy the relations
KX!=T7"X{T=[X{* =[X}. (25.17)

It is assumed here that all the components Jf are real, as are the constants
a,, and so hermiticity of the operator # implies that the matrices X are
also hermitian,

Thus, in case (a) all the basis matrices X/ can be classified as even or
odd with respect to time reversal, in the sense of (25.17), matrices of the
same parity transforming independently according to the representation 2,,.
Any given matrix X[ can be decomposed into even and odd matrices, defining
matrices X[ . by

Xl =5 (X7 = KTXT). (25.18)

Indeed, | - P
KXfa=5 (T XIT = KX =+ & (X = K'T7'X/T) =

=+ ?{X}‘ = KTXIT™") = + K'X}\ 0
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Here we have used the unitarity of the matrix T and the fact that, by (18.26),
Tf=KT. Thus, if K'=1, the matrices X} are even and the X} odd with re-
spect to time reversal (if K'=-—1, conversely, the X|i are odd and the Xp
even). Condition (25.16) implies that # (&) includes rrocucts of matrices X}
and components X! of the same parity with respect to time reversal.

In expanded form, equation (25.17) is

Xiy=j ‘E, ToXerTr (25.19)

This equation coincides with (19.8). As shown in §19, the formula (19.13) for
N, follows from (19.8) and (19.4), which is similar to (25.8). It should be
borne in mind, however, that since we are constructing # () for only one
point of the star, the relations (25.8) are required to hold only for the ele-
ments of the little group G.,, whereas equations (19.4) are valid for all oper-
ations in the space group G. Now it would be possible to construct # (&) for
all points of the star rather than for just one point, i.e., for a complete re-
presentation of the space group. In this representation #(J#) would be in
block-diagonal form with N matrices of order n, X n, along the diagonal,
where N is the number of points in the star and n, the dimension of the re-
presentation Dy'. Conditions (25.1) and the resulting relation (25.8) would
then define the form of # (&) if g = Gs, and of the operator i (#) for another
point of the star if g & G,,. Thus equation (25.8) is entirely equivalent to
(19.4) and, consequently, the number of linearly independent even and odd
sets of matrices X* which transform according to the representation @, is
given by (19.45) in cuse (a;) and by (19.46) in (a,).

Relations (25.16), (25.17), (25.18) are directly applicable to case (a;) when
there is a linear relation between the functions ¥, and Ky, . In case (ap), as
indicated above, they are valid for a matrix & (') constructed simultaneous-
ly for the points &k, and —&,, i.e., relative to the basis functions Py, and,

R$,,, =¥, _4,. Relative to this basis & (JH)is

_H FANC A 0
- 0 7 —x, (H)
In this case we have a linear relation between the functions Kv, and Ry, :

K%, =TRy,,. Under the transformation R, the transformation matrix rela -
tive to this basis is

# (K) . (25.20)

DR)=

g Q:;(Rz)“. (25.21)

Substituting (25.20) and (25.21) into (25.1), we establish a relation between
the blocks # () and # -+ (K) in (25.20) which is a consequence of the crys-
tal symmetry:

F v () = Fx,(R™'FK). (25.22)

Under the transformation K, the set of functions P, RY,, goes into Ky, ,
KRY;,,=TR™,, , so that the transformation matrix is

0 T
T, = . 25.23

' Hr W (RY) OH ( :
Substituting (25.23) and (25.20) into (25.16), we obtain the following relation
between #u (K') and H—», (H):
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T s, ((F) T = Fa, (FK) = Fr (K). (25.24)
Equations (25.24) and (25.22) imply the condition
T %, (R™'H)T = #r. (1) = #u (), (25.25)

which must be satisfied by #(sK) in case (a;). In other words, in this case
the matrices X{ must satisfy the relation

er=r*‘x}‘r=,r‘2_@ﬁ;(m X, (25.26)

where 2,(R) is the transformation matrix of the components X} under the
operation R.

Using (25.26) and (25.8), we can obtain the formula (19.46) for N, which,
as shown above, determines the number of sets of even and odd matrices X»
which transform according to %@,. The actual construction of the even and
the odd matrices for 2" in this case makes use of (25.26).

As noted in §§18 and 19, in cases (b) and (c) time reversal causes the
representations 24 and @," to combine. Relative to the combined basis, the
matrix # (#)has the form (25.10). Time reversal takes the corresponding
basis ¢, K¢; into itself, via the matrix T,

0 K4
I oy
where / is the identity matrix of order n,. Relative to this complete basis,

# () must satisfy condition (25.16) with T = 7,; hence the following relation
for the diagonal and off-diagonal blocks:

E....(Jf)=?€?1(f«7€). (25-233}
Hu1 () =KH 1 (1) = K'Fu (). (25.28b)
In (25.28b) we have used the hermiticity of the Hamiltonian # ().
Thus, conditions (25.28) do not impose additional restrictions on #, (%)
but only establish the relation between # (&) and #,,(#). Therefore,

equation (25.14) defines the numbers N, for the diagonal blocks #:(#) and
Zuu(#). By (25.28b), the off-diagonal blocks X;''' must satisfy the condition

X?”I=,”(:Xr“|- (25.29}

Consequently, as in (25.18), the off-diagonal blocks can be classified as even
and odd, setting

1.2:

(25.27)

Xiih=5 (Xl = K°Xi1l2). (25.30)

In its expanded form, equation (25.29) coincides with (19.10). In other words,
the number of linearly independent even and odd off-diagonal blocks in cases
(by), (bp), and (c) is also given by (19.13), which in cases (b;) and (c;) reduces
to (19.45) and in cases (by) and (c3) to (19.44). As in case (a), the relations
(25.27)—(25.30) apply directly to cases (b;) and (c;). In cases (by) and (cjp)
they are valid for the matrix # (&) relative to the basis v, . KRy, Ry, »
KR*,,. In this basis, the first pair of functions belongs to the point &, and
forms a basis for #4,, the second belongs to —#&, and forms a basis for #-s,,
so that # (&) has the form (25.20) and, as is easily seen, satisfies condition
(25.22).
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Under time reversal K, the above basis goes into itself via the matrix
0 T ﬂ 0 KDy (R)

KT ol I 0

Substituting (25.31) and (25.20) into the invariance condition (25.16), we ob-

tain the following relations for the diagonal and off-diagonal blocks of #&, (oK)

in cases (b;) and (cj):

. (25.31)

T:= where T=

W (H)=H0" FRF) =F"" (RF), (25.32a)
W)= K'He " ([RF) Do (R?) = K°Fh) (IRF) Di* (R). (25.32b)

Since in this case @y (g)=2D;(R™'gR), it follows from (25.11) that the off-
diagonal blocks #'!"' must also satisfy the relation

D () # (H) D (R™'gR)= D' (g7'K). (25.33)

Condition (25.32a) establishes the connection between #i () and i (/)
in cases (by) and (cy). Condition (25.32b) imposes additional requirements
on the off-diagonal blocks X!'!t, which have the form

X" =K X D (RT) D (R, (25.34)

where @y, (R™') is the transformation matrix for the components ¥,(25.7):
RW;=§@:—;(R")J¥’:--

In view of (25.11), these conditions yield the formula (19.44) which, as
shown previously, defines the number N, for the off-diagonal blocks Xf in
cases (by) and (c3).

Thus, the number of linearly independent sets of matrices X! which
transform according to @, is defined in case (b3) by the general equation
(25.14). The same formula defines the number of diagonal submatrices XI!
and X1 in cases (b) and (¢). In these cases the only result of time reversal
is a relation between () and F_s,(K):

H 2, (F) = I u (K. (25.35)
In case (a;) the number N, is given by (19.45),
Me=9r & %[04 @)+ KFxt @) (25.36)
GEG;'
and in case (a3) by (19.46):
Ne=19r % (0] (@) + K, (gR) x[(gR)). (25.37)

‘EG;.
For the off-diagonal components ! = gfu1 the number N, is defined in
cases (by) and (c;) by (25.36) and in cases (b,) and (c;) by (19.44):
1 . S
Ny = b (@) %" (@) 1 (R™'gR) + K, (gR) % [(gRY?)). (25.38)
‘EG;O

where R is any element which transforms &, into —&,. Since the functions &
must transform according to the same representations as X*, equations
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(25.14) and (25.30)—(25.38) tell us which functions f(&) may appear in # (&)
for a given symmetry, i.e., for a specific little group.

The basis matrices X in the expansion of # (#) may be determined, in
principle, from (25.8), (25.19), (25.26), provided, of course, that the re-
presentations 2 (g) or the projective representations 2 (r) are known. In
case conjugate representations are combined, these matrices are deter-
mined by (25.29) and (25.34). When this is done, it is sufficient to use these
relations only for the generators of the point group, subsequently determin-
ing only "generating'' matrices, for example, matrices which transform like
¥, y, z: suitable products of these matrices then yield all the other a! ma-
trices X;. If the matrices which transform as x, y, z vanish for some re-
presentation £, a convenient choice of generating matrices are matrices
which transform like the antisymmetrized products {xixs}, i.e., like the
components of an axial vector J;; if these also vanish, we choose matrices
which transform like the symmetrized products [xix].

As we show in the following section, in most cases the basis matrices
may be constructed without explicit knowledge of the matrices D(g) or D(r);
all we need are the characters of the corresponding representations. Of
course, the form of # (&) depends on the choice of representations, but
when the methods of §26 are used the form of the representation is not
explicitly specified.

§26. METHODS FOR CONSTRUCTION OF BASIS
MATRICES. APPLICATION OF THEORY OF
INVARIANTS TO DETERMINE ELECTRON
SPECTRA IN CUBIC CRYSTALS

In the present section we examine in detail various methods for construct-
ing basis matrices in the theory of invariants, which will then be used to
calculate the spectra of crystals with space groups O; and T;. Other appli-
cations of the theory will be demonstrated in §31, where the spectrum of a
crystal with a wurtzite lattice and its change under the effect of strain will
be discussed.

Twofold degeneracy

It is obvious that if the representation 2(g) is one-dimensional, the only
components of # that may appear in #(#) are those that transform accord-
ing to the identity representation, and to determine the shape of the spectrum
we need only find these components, i.e., determine the components for
which N, + 0, using equation (25.14), (25.36) or (25.37). This conclusion is
naturally in agreement with the results obiaired in §21 by kp-theory,

In the case of a two-dimensional r« presentation, it is again sufficient to
know the characters of the representation in order to construct # (). To
verify this, consider the condition imposed on the determinant | # (&) — IE |
by equation (25.1):

| # () — IE | =| 3 (ga) — IE|. (26.1)
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Using (26.1), we can determine the four components X, which can appear
in J () (or four sums of inherently different but identically transforming
components, such as ki and e.., each of which may have different coeffi-
cients @), Denote the component which transforms according to the identity
representation by ¥, and the other three by X:. The direct product £ X 2*
may contain, apart from the identity representation, either a three-dimen-
sional representation, two- and one-dimensional representations, or three
one-dimensional representations. Since £ X 2£* has a real character, it
follows that in the first two cases all the representations are real, while in
the last, two of the three one-dimensional representations may be complex
conjugates. We therefore assume that in the operator

x(x)=aoxnxo+§axx;‘x;" (26.2)

the functions X% and X, are always real, while X, and X, are either real
or complex conjugates.

The matrices X; are linear combinations of e, g, 0. and do not include the
identity matrix, since if the X; had nonzero trace the determinant (26.1)
would contain a noninvariant term EJX;. Via a suitable unitary transformation
we can always make a hermitian matrix X, with zero trace equal to e: (up to
a constant) and then the matrices X, and X; will not include ¢,, since other-
wise the determinant (26.1) would contain a noninvariant product ¥, or
XX, whereas by (9.27) if ¥, is real an invariant may include only X9,
Next, applying a unitary transformation 8§ = (1 4+ «?)="(I + a0:), which does not
alter X,, we reduce the matrices X, and X, to the form 6. and ¢, if ¥ and

X3 are real, or "+=%(0;+t'0.,) and o_=-é-(a,—:'o,} if #y=X;. Indeed, it

follows from (26.1) that if X, =g, and X: =g¢,, then X; must be proportional
to o,. Consequently, for two-dimensional representations 2 the matrices
X; in (26.2) which transform according to the irreducible constituents of

DX D* may always be taken as

Xo=I, X,=0,, X,=0,, X;=0, if ¥, X, X, ¥, are real,

00 ) .
s X.j=u_=|l Oﬂ if Ho=XHy, (26.3)

X pO 1
?_0+-""|0 0

regardless of the specific form of the representation 2.

As for the constants a, appearing in (26.2), it is evident from the general
equation (25.6) that if @ X 2+ contains one three-dimensional representation
(apart from the identity representation) then # (&) contains only one real
constant other than a,. If 2 X 2* includes two-dimensional and one-dimen-
sional representations the number of constants increases to three, all real.
When all the representations 2£* are one-dimensional, the four constants a,
must be real if the representations are real (and the components ¥; and
matrices X; are chosen as indicated above); but if two of these representa-
tions, say 2, and 2;, are complex conjugates, hermiticity implies that
a,=a,;, and a, and a,; are complex, so that the number of independent real
constants remains equal to four.

As an example let us calculate the spectrum in a diamond lattice for the
two-dimensional representations I'i; and X, X;.
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TABLE 28.1, Basis functions for representations of Dy, = D,y X €,

Representations Odd Even
Group D,, | Group b, (with respect to time reversal)
2. .2 4 .2 .
Af Kok, ke e, +e,,
A
A7 oyky — ozk:
A.:." Ox
Ay
Ay Oykz + 02k,
2 __ g2
B} K —kie, —e,,
B,
By Oyky + 02kz; Oxky
B; kykz: Eyr
B,
By ky oykz — ozky
E* oy 0z keky, kxkzi exz exy
E
E” by k2 Oxky Oxkzi Oyky, Ozky

To construct the spectrum, we first use the basis functions of Table 11.1
(p. 72) to construct functions of the components k; which transform according
to the irreducible representations of the groups 0, and Du = D3y X C; (the
latter is the point group at X ). These functions are given in Tables 26.1 and
26.2, which also list functions which transform according to the correspond
ing representations of Ts¢ and D,4. Since all the representations I'f and X,
belong to case (a;), it follows from (25.36) and from the character table
(Table 11.1) that for the representations TI'j; the matrix #f (k) must contain
even functions of #; which transform according to the representations I and
T, and odd functions which transform according to I'Y. Since the basis func-
tions of I'i; are complex conjugates, we have from (26.3) that

7 (R)=ARB o, (K: + ) + k2 Fo_ (k2 + €283 + eyt (26.4)
Solving the equation |# (k) —IE|=0, we obtain

E(k)= AR £ B (k' — 3(k2&] + K282 + K2ED)) " (26.5)
which is just (24.4). The same equation is valid for the representation Ty, of
7%, since the components #; that transform according to the representations
It and I': in T4 are the same,

For the representations X, and X,, we see from (25.36) and Table 11.1
that # (k) must contain k; which transform according to the representations
|X3 3] = A} + Bi 4 Bf of Du, and odd functions which transform according to
{X1 1) = A7. Letting these functions be real, in accordance with (26.3), we
obtain

T (k)= AR2 + Ay (B2 + kD) + 24,0,k k.. (26.6)
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TABLE 26.2. Basis functions for representations of 0, and T,

Representations]
Odd Even
Group | Group (with respect to time reversal)
Ta | On
Af K% S
A 1 v 2pe
(ry _
A; kxox 4 kyoy + ka0;
AF | 21112
-*l‘E:
(T'2) A
=" tel el L=1I}
: 2 2,2 .
. Et by =k + egk? + e5ks, by =k,
(T2 V=g, + ese,, + ele,,, 2 =)
E™ K=k, + e3k0, + e‘gkiq!‘ Ky =Ky
Oy Oy Oz
Ff : .o
F, T Jyp 15 I Ty 13
(Tys)
FT 1 kxOy + kyox, kyoz + kz0y, k0% + kx03
V,= [fx(ff*_"'gn
FE v, =l 02— ) | el Dlal sl
Fa 2 v Uy ; ; kxky, kykz, kaky, exy, Eyz. Bz
(Tys) Ve= [fz("‘x""u)l
Fy | ko by k2 kyOy — kyOyx, kyoz — ky0y ks0g — kyeoy
oy — 213

Since the two linear independent functions 4% and &k} + &2 transform according

to Af, each of these appears in # (k) with a (possibly) different constant.
Consequently, the electron spectrum for the representations X, ; is

E (k)= Ak + Az (K} + k2) = 2Ask b, = Ak} + (A = Ay) B2 4 (A F Ay k2, (26.7)

where k, = V% (ky + ko), by = 71_; (ke — ky)-

The spectrum (26.7) is of course the same as (24.29), but whereas in §24
a knowledge of the representation matrices was required, in the theory of
invariants all we need to construct # (k) are the characters.

Basis functions transform according to vector or spinor
representations or the p-equivalent projective representations

If D(r) in equation (25.14a) is a vector or spinor representation, the cor-
responding basis functions, as noted in §11 and 16, transform like definite
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combinations of the functions Y} for different m and a certain integer or
half-integer weight j. The functions ¥}, which, as shown in §10, realize
an irreducible representation of the rotation group, are eigenfunctions of
the operator J,. By (10.9) the matrices Ji transform under any transforma-
tion in the rotation group like components of a vector:

D,(rNILD (= ;@f'm(r) I =r1, (26.8)

where D, is the matrix of the representation @, while inversion operations
do not change their sign, since D7(i))==1. Consequently, under any trans-
formation in a finite point group which is a subgroup of the orthogonal group,
the matrices J! transform like components of a pseudovector. In this case,
then, the matrices 1L, 1), Il and their products, relative to the appropriate
basis, may play the part of the matrices X7.

Since the representation 2; may be reducible for the point group, the
matrices J} and their products decompose into smaller "blocks' which
transform under the point group operations according to (26.8), independent-
ly of each other. The orders of these blocks are determined by the dimen-
sions of the constituents of the representation @;. Thus the basis matrices
X for a given representation 2, should be these blocks, relative to a suit-
able basis. Accordingly, of all the possible functions that can be built up
from the components J., J,, J, and their products, we must keep ! functions
X! ‘which transform according to the representations 2, occurring in D X 2
We next construct the invariant operator (25.6) from products of X7 and X{
that transform according to complex conjugate representations, and replace
the operators J; throughout by matrices J; relative to a suitable basis, as
defined by (10.17). Since by (25.5) the matrices X may be agssumed to co-
incide for all projective-equivalent representations, it is sufficient to con-
struct the matrices for one such representation; the most convenient choice
isarepresentation whose basis consists of the functions Y, withthe smallest ;.

Recall (see §13) that two unitarily inequivalent representations 2 and 2’
belonging to one factor system are p-equivalent if one of them is obtained
from the other by multiplying by a one-dimensional representation. Hence
it follows that for all groups which direct products of some group with C,,C,
or C;, vector and spinor representations which are even and odd relative to
the operations i, oy or ¢;, respectively, are always p-equivalent. Thus, the
three-dimensional representations F, and F, of the groups O and T, are p-
equivalent in all point groups which have several three-dimensional repre-
sentations. Therefore, we may assume that the matrices X! are the same
for all three-dimensional representations. This is also true of four-dimen-
sional spinor representations of point groups. Point groups do not have
vector or spinor representations of higher dimensions, while for two-
dimensional representations it is more convenient to use the simpler method
presented above.

Since the functions Y., (m=1,0, —1) form a basgis for one of the three-
dimensional representations of each of these groups, while the functions
y¥ (m=+3/2, +1/2) are a basis for one of the four-dimensional representa-
tions, it is sufficient in practice to construct only the matrices J¥* and J;
and their products (see Table 26.3 at the end of this section).
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In order to allow for the additional requirements imposed on # () by
time reversal symmetry, we must clagsify the matrices X} as even or odd
with respect to time reversal. Using equations (25.36) or (25.37), we can at
once find the representations according to which the even and odd matrices
transform. In case (a;) the classification is immediate. In fact, by (18.46)
the matrices of the operator J;, as they are odd with respect to time rever-
sal, satisfy the condition T™'JT=—1,, i.e., f=—1 in (25.17). Consequently,
in case (a;) all matrices which do not change sign when J; is replaced by — J;
and the order of components in the products Ji/i/;.. is reversed are even,
while the matrices which change sign are odd.

Of course, this simple rule is not valid in the other cases; for example,
it follows from (25.26) that in case (a;) the matrix X} (J) is even or odd ac-
cording as

T'X(NT=fX(R™'J) with f=+1 or f=—1.

In this case construction of even and odd matrices is simpler if equation
(25.37) is used directly.

As an example, we construct the spectrum for the representations I'{i and
I'% in an 0, lattice and the representations I's and Iy in a T, lattice,

For Ty and s, the matrices X; are the nine linearly independent matrices

Lo dy I I 5, I3 ), (1) (0.
in the representation ¥},.
In accordance with (25,36), # (&) must contain the products of even func-
tions of X, and J; which transform according to the representations
I't + I+ 1% and odd functions which transform according to I's. Consequent-
ly, the Hamiltonian # (&) is

7 (k) = AR — B (k] + egkf, + e3k3) (J; + &3] +e,03) +
+ (k2 + e2k2 + e,k?) (2 + &2 + €21%)| — 2)/3D (koo [1.0,]+

+ kek, (T0) 4 kyko[1,0:]) = LR — (L—M) (3T + K31, + B31%)—

—2N {kxky [Jxlv] + kxka [Jx":] + kirkz UU":] ) (26 . 9}

We have used the identities Ji+J) +J2=j(j 4+ 1)1 =21 .

If we now write (26.9) in matrix form using Table 26.3, we obtain the
matrix # (k) of (24,5). For the Ty lattice, the matrix # (k), as is clear from
Table 26.2, is also given by (26.9), since it must include even functions of
k; which transform according to T, I'e, I'»s and odd functions which transform
according to I's. In the presence of a magnetic field, the matrix (26.9) will
also include a term

X (H) = pogo 257 (IH), (26.10)

since the components #; transform according to I's and are odd with respect
to time reversal.
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Projective representations are not equivalent
to vector or spinor representations

In the general case of projective representations with dimension higher
than two, the basis matrices must be sought directly from the relations
(25.5) for the generators. As in the preceding case, it is sufficient to con-
struct basis matrices for one of the p-equivalent projective representations
corresponding to each factor system with projective representations of di-
mension > 2, which are not p-equivalent to spinor representations. As we
see from Tables 14.2 and 14.3, only the groups Du, De and O, have such
representations. The group Dy, has one four-dimensional representation for
each of the classes Ks and Ks of factor systems. Equation (25.14a) at once
shows that for both these representations 2 X @* contains each one-dimen-
sional vector representation of the group Dy, once and each two-dimensional
representation twice. Consequently, one of the matrices X’} transforms ac-
cording to the representation A;, i.e., like 2z, and two transform according
to E£-, i.e., like x and .

The group De has one four-dimensional representation for each of
classes Ki Ki, Ks, Ke.

For all these representations the product 2@ X @* contains every vector
representation once, i.e., one of the matrices X! transforms like z (ac-
cording to A7 ) and one like x and y (according to £r).

The group O, has three four-dimensional and one six-dimensional projec-
tive representations which are not p-equivalent to each other or to spinor
representations. These representations belong to classes K;and K;. For
the four-dimensional representations QY and Qf’, @ X @* contains Al + Af +
4+ E 4+ Ff +F7 +F# +Fs, and for the representation Q” this product includes
Af, AX, FE, Ff, in both cases, then, one matrix transforms like x, y, 2 (ac-
cording to Fi'). For the six-dimensional representation R®, 2 x P* contains
Af and AF once and E*, F{f, Ff twice, so that in the last case there are two
linearly independent matrices which transform like x, y, z (according to Fi’).
These matrices are listed in Table 26.4 at the end of the section. The other
linearly independent matrices Xi are easily obtained as products of these
matrices.

Spinor representations of space groups

For spinor representations of space and point groups, the operator (&)
can be constructed in two ways. One approach is by direct use of the spinor
representations $(g), in which case we can construct the matrices Xi by one
of the methods considered above. It should be noted, though, when determin-
ing N,, that for spinor representations K?=—1, as opposed to K?=1 for
vector representations. This method is equivalent to the construction of
€ () in perturbation theory by direct incorporation of the spin-orbit
coupling operator (¥#s),, in #. A shortcoming of the method isthat one must
ascertain a priori which of the constants a, in # (&) are relativistically
small,
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This problem is automatically solved in the second approach to the con-
struction of # (&). Here we choose basis functions {me = ¥m(x)a which
transform according to the direct product 2 = 2, X Dy, of the representation
@D, according to which the coordinate functions $,(x) transform and the re-
presentation 2y, according to which the spin functions «, ptransform. In
this representation the matrices X in (25.6) may be expressed as direct
products of matrices X; whose elements X} mm depend only on the coordinate
functions $m and the matrices of the operators o, o, 0;, Which act only on
the spin variables. This means that the operator # (&) may be presented
as a product of the matrices X{, the components ¥{ and the matrices o or
the identity matrix. According to (10.9) and (10.26), the matrices o; trans-
form like the components of a pseudovector, i.e.,

g;zl (g) U‘QM (8)= ; gjrﬁ (g")of =ga,

and so condition (25.1) in the representation 2(g) = @(g) Dz (g) becomes

D' () K (go, ¢F) D (g) = (0, K). (26.11)

Formally speaking, the only difference between equation (26.11) and (25.1)
is that, together with the components of & (&, e, x, H etc.), we also have the
components of the pseudovector ¢ with f, =—1 and their products with the
other components of &. All these products can be expanded in terms of
irreducible representations and denoted as before by X¥7. In all other re-
spects, the construction of # (&) remains unchanged. We stress that in this
approach both the form of the basis matrices and the values of N, depend
only on the representation 2 according to which the coordinate functions
transform. Furthermore, in the final equations the products X[o, must be
replaced by direct products of the matrices X} and o,.

Essentially, this second approach means that the basis is made up of
eigenfunctions of operator #, without #s,; the operator #,, and the other
terms in # are all treated as a perturbation. One can thus ascertain at
once which of the coefficients entering # (') are small.

Since without spin-orbit coupling the operator 2 and, consequently, # (&)
do not involve the components oj, all the coefficients of the terms containing
the spin operators must be relativistic. However, we must bear in mind
that, as noted in §21, the relativistic terms in #€ (&) are not always small.
If spin-orbit splitting is comparable with or greater than the band gap E;or
the separation 8E to the nearest bands, the order of magnitude of the coeffi-
cients cannot be correctly determined unless we construct # (&) with all
close-lying terms incorporated.

In the second approach to constructing # (&), all the irreducible consti-
tuents of @ X @Dy, are included "en bloc." If we wish to determine # (&) for
only one of the constituents, it is necessary to diagonalize the resulting
operator; this may be a highly tedious task, and then the first approach is
preferable.

As an example, we consider construction of the spectrum at the points I’
and X for an O} lattice and at the point T for a Ty lattice, including spin-
orbit coupling.

We first consider the point I'. Using the first method, we can construct
7 (k) at once for the fourfold degenerate spinor representations I'¥ and TI%.
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In this case we can take as basis the sixteen linearly independent matrices
1.1, 1,5, 5, 05 Ud) Ud), U1, 15, 15, 15, Ve=[1, (12 =19, v, V., 117 J0.)]
in the representation Y}? (see Table 26.3). For the representations It of 0,,
it follows from (25.36) that J# (k) must contain even functions of & which
transform according to the representations (i) =TI} + '+ T% and odd func-
tions which transform according to [r#']=rf + ort + 14 (for the appropriate
functions, see Table 26.2). Thus the Hamiltonian is

7 (k) = — (y, +3 y?) k2 + 2y, (J22 + T2k 4 J2k2) +
T 4vs ([ ) Ry + T T Rk, + [T 1] kyk,). (26.12)

(We have transformed the product J.k: + J3k,, as in (26.9).)
Substituting the matrices J; from Table 26.3, we obtain the same matrix
7€ (k) as in (24.13), giving the spectrum (24.14):
E,.o(k) = AR = [B%* + (D* — 3B°) (k2K% + K2K2 + K2R

The constants ¥, y2 and v in (26.12), which coincide with the dimensionless
Luttinger constants up to a dimension factor #%2m, are related to the con-
stants of (24.6), (24.12) and (26.9) by

(26.13)

In a magnetic field, the Hamiltonian # (H) will include the products of the
components H; by J; and Ii, since the representation TI'} according to which

the components H; transform occurs twice in [I‘ftl. Therefore,

¥ (H)=pog, (#(JH) + ¢ (BH, +T,H, + I3H ). (26.14)

If y=v;, then F(k)=— ('\"I +—25-v2] B + 2y, (Jk)? ; this Hamiltonian has spher-
ical symmetry. Its eigenfunctions are functions of j=3,: W/*, m=+3, =+1,,

with quantization axis in the % direction. The energies are Eiy,= —y, + 2y,,
E+,=—vy, —2y,. Functions ¥** and ¥!* with different quantization axes are
related by

Wi = 3 Dl (9) Y,

where 2v,(g) are matrices of the representations of the rotation group with
j=3%), for an element g which takes & into %: k =gk'. In particular, a rela-
tion of this kind connects the functions ¥i* for arbitrary & to the functions
(23.2) with the quantization axis in the 2 direction. Therefore, when y,=1vy;
we may take the matrix elements @ to be the coefficients in (26.14).

As indicated above, the representation I's may originate either in splitting
of the representation I{; or I'is due to spin-orbit coupling, or in the repre-
sentation I'j5, which does not split. If we construct the matrix # (&) by the
second method for I'f; and I'z; and include the relativistic terms, it will have
additional terms which are odd with respect to time reversal, transform
according to I'i and contain the components o::
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K (k)= ARI+A (0], + 0], +0])— A (IR 4 Ik + I2k7)—
- 2A3( ["x’vl kxklv + [I;J,] k.tk-t + [Jy’:] kpkz) + a,k’ U") +
+a,(J 0.8+ T 0k + T 0.k +

+ as([J 0] keky + [T ,0:] kyk: + [T 10,] kok2), (26.15)

where Aj=L,A;=L—M, and As=N. The second term in this formula is the
spin-orbit coupling, the last three are relativistic corrections to the con-
stants A, B, D of (24.13)—(24.14a):

1

6A=a|——;-a,, bB=—%a,, D=~ r=a, (26.15a)

For the band Ty in (24.13b), 84=—2q, +%a,. Of all the constants in (26.12)

and (26.14), only ¢ is relativistic and is consequently small compared to #.*

If the representation I'f originates in TI'j;, a comparison of (24.4) and
(24.14a) shows that D=0 and C?*= —3B? in the nonrelativistic approximation.
If we construct # (k) for the representation I, including the relativistic
terms, it follows from (25.15) that we must include products of the compo-
nents o: and kkn which are odd with respect to time reversal and transform
according to the representation I';:

X (k)= Ak? + B(0, b, 4 0_k) + ap,(0,k,k, + 0 kb, 40k k). (26.16)

Here p, are the basis matrices X/ defined by (26.3), and ¢, the spin ma-
trices; pg, denotes the direct product of the corresponding matrices. In
matrix form,

AR+ akk, a(ky~ik)k, Bk, 0
a(k,+ ik, k, Ak® —ak.k, 0 Bk,

% (k) =| pp, 0 AR —akik, —a(k—ik)k, | (26:162)
0 Bk, —a(ky+ika)k, AR+ ak.k,

The equation |# (k)—IE|=0 yields a degeneracy for E(k) in agreement
with (24.14), D?=qa?.

The Hamiltonian # (k) for the representation Ty of the group T, includes
even products of the components k; which transform according to the repre-
sentations I+ 3+ Iy (i. e., the same as for the group 0,), and odd products
which transform according to I+ 2I';;+ Ty, i.e., as opposed to (26.12), # (k)
will have linear & terms, containing products of the components k; and V;
which transform (see Table 26.2) according to the representation Ty

(k) = —,,‘3_; 2o (ke [7: (7 =] + &y [1, (=12 + e [1. (s —12)]). (26.17)
In matrix notation,
0 k, — ik, — 2k, V3(k,+ik,)
b, + ik, 0 — V3(k,—ik,) 2k,
H (k) =4 ¢ 26.17
® =4l o, —V3(k,+ik) O k, — ik (26.17a)
V3(k,—ik) 2k, ky+ik, 0

* For example, for p-Ge, according to the data in /31.4/, #=23.41 1 0,03, ¢ = 0.06 z 0,01,
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For the representation T, of the group T, the linear k matrix #’(k) may
also be constructed by the second approach. For this purpose we must include
in # relativistically small components K,=k,o, e, 0, +elk 0, and K:=Ki,
which are even with respect to time reversal and transform according to the
representation Ij:

¥ (k) =24, (0, K, +0_K,). (26.18)

The matrix (26.18) may be transformed into (26.17a) by a suitable unitary
matrix.

Since the matrix (26.9) constructed for the representations I';; and Ty of
the group Ty does not contain terms linear in k, it is clear that the constants
#, in (26.17) are also relativistically small for the representation Ty, orig-
inating in I'is or Ta.

By (24.12)and (26.17), the secular equation |# (k)+ #’(k)—IE|= 0 becomes

(E — AR — 2(E — AF?Y (B*k* + C'0 + 443k%) +
+ 16 V3 (E — Ak") D£® + (B** + C'6) +
+ (240)' (k" — 36) + 8B°4; (k3 + kj + k2) —
—4(3B* + 2D") 43470 + BAB EikLkLE: =0, (26.19)
where 8= k2k + k2k: + E3RL.

This equation can be solved exactly only for a few special directions.
Thus, if & is in the [100] direction, i.e., k,=k,= 0, or in the [010] or [011]
direction, then

Eio(k) = AR = (B%%' + 4667)". (26.20)
Consequently, in these directions each term remains doubly degenerate.
In the [111] direction and those equivalent to it, one branch (correspond-
ing to heavy holes for A <0 and D << 0) splits completely:
— D
Eiin = (A —ﬁ)k’:tﬂ/-i?#nk. (26.21a)
while the other branch (light holes) remains degenerate and is not changed:

Eﬁl=(r1 +7D—;) K (26.21b)

Because of the presence of linear ¢ terms, the extremum is shifted from
k=0 to points on the threefold axes. It is evident from (26.21) that the ex-

tremum point corresponds to g = A_VED?_V':T" , and the energy at this point is
lower than that at £ =0 by a quantity AE,
247
AE =%
E AoV (26.22)

The surfaces of constant energy near the extrema (|k — k| < k) are ellip-
soids of revolution with axis of revolution in the [111] direction, and for
holes.near the extremum*

* Cyclotron resonance measurements have shown that for p -InSb
AE = (6 + 3)- 107" ev, m} fmqg = 0.15 + 0.02, my/my = 0.57 % 0.10.
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h? D L 1 D
== (A7) sr— (A +). (26.23)
We now consider the spectrum at the point X of an O} lattice for the re-

presentation Xi. Since this fourfold degenerate representation originates in
the representation X, or X;, in order to construct # (k) we must incorporate
relativistic terms in (26.6). These terms include products of ei and 4;, as
given in Table 26.1; terms even with respect to time reversal transform ac-
cording to AV + BT + Bf and odd ones transform according to 4:z. Since the
products ok, transform according to odd representations and ek, accord-
ing to even representations, there remain only components which transform

according to By, i.e., 0.k, and o,k, + ¢,k,, SO that

7 (k) = AR+ B (k2 + k) +2Cp k k0, [a (0 k,)+b (0,k, +0,k )] (26.24)
whence
E (k)= AR: + B (K} + &) £[4C°R2 R a2 + b7 (k3 + £D)] ™. (26.25)

For the representation X;, which originates in Xz or Xi, the spectrum
E(k) naturally has the same form, but now the constant a in the linear k,
term is not relativistically small. Depending on the relations among the
constants, the energy minimum for the spectrum defined by equation (26.25)
is either on the axis k. at the point &k, = a/24, where E = —a?4A4, or on axes
k, and k; forming angles of 45° with the axes &, and &,.

Combination of several representations

Let us consider the construction of basis matrices for the two- and multi-
band models, when # (&) is constructed for several bands simultaneously.
In this case the representation #(g) is reducible and combines representa-
tions D!(g), D1(g),... corresponding to the first, second, ... bands; the
matrix P(g) is block-diagonal, as in the combination of complex conjugate
representations in cases (by), (bz) and (¢). However, as opposed to those
cases, the representations ! and 2" are unrelated. Therefore, for the
off-diagonal parts 1 (K)=4&"*(H), which satisfy the condition

D (g~ )Y FH W (H) DN (g) = H' M (g K), (26.26)
it follows from (25.12) that N, is given by an expression similar to (19.31):
Me=% Y (@)% (@2 (g) (26.27)

‘EG;l

i,e., the off-diagonal parts of # (&) may involve components Xi which
transform according to the constituents 2, of the products @' X 2" and
D" X DU, The additional requirements due to time reversal symmetry need
not be taken into account, because, as noted in §19, they have no effect on
the off-diagonal elements.

The number N, for the diagonal parts #''(H) and H"!" () is defined by
one of the equations (25.36)—(25.38), depending on the behavior of the repre-
sentations P! and P under time reversal. The matrices X/’ canbe classified
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as interband matrices, which contain only off-diagonal nonzero elements and
transform according to the representations occurring in @ X D" and P X
X D", and intraband matrices, which transform according to @!X 2" and
PN X D" and contain only diagonal elements. Since D(g)is in block-diagonal
form, these matrices transform independently under all transformations,
including time reversal. They may be constructed by any of the methods
described above.

If the projective representations @!(r) and @Y(r) are p-equivalent and the
corresponding matrices may be written as

Dr)=D(r) D (r), (26.28)
where ®(r) is some one-dimensional representation, and if the matrices X!
which transform according to the constituents 2, of 2! X @!* are known for

one band, then the intraband matrices for the combined representation .@(g)'
may be defined as

IX] =

Xt 0 X! 0
) X, = \ 26.29a
0 x?l P2 E 0 —x?‘l ( )

which transform according to the same representation as X;. As interband
matrices we then take

0 X/
0 0

which transform according to the representations Pw= D X D, occurring in
D" X P, and Dy =D* X D, occurring in D' X LW, respectively. The represen-
tations @Dy and D.- are p-equivalent to the representation 2,, but may be
unitarily inequivalent if @*(r)5= D(r). If ©2*=2, we may define the interband
matrices as

»

o, X = (26.29b)

0 0
X; ol

0 X7
X 0

0 —ix!

26.29
iX; 0 ( c)

0 X =

l, 0 X; =

Moreover, one of these sets of matrices, say e, X;, may be assumed to be
even with respect to time reversal and the other, pyx;‘, odd. This corre-
sponds to a definite choice of phases for the basis functions.

The basis matrices (26.29) are particularly convenient when the represen-
tations 2! and 2! are combined owing to time reversal. In case (c¢) the
representations @' and 2" coincide, in case (b) they are p-equivalent. This
choice of basis differs from (25.9); it corresponds to a unitary transforma-
tion of D" in (25.9) under which H"!(X) goes into #""(K). By (25.11) and
(25.27), the matrices J?""(JL') and #''(#K) must satisfy the following relations:

cases (by), (c;): FWU(H)=H"(fX),
cases (by), (cp): H""(H)=x"'(FR™'H).

It is clear that in the first case the diagonal matrices can always be
chosen in the form (26.29a), but in the second this is possible only if the
components of J are chosen so that fR™'J =+ . The matrices IX}then
appear in () with functions which do not change sign under the operations
K or RK, and the matrices p,X;' with functions which change sign, i.e., the
former are even with respect to these operations and the latter odd. In case

(26.30)
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the representations 2! and P! are independent and no additional conditions
are imposed on the off-diagonal parts of # (), each function X} appears
in # () with both matrices with independent constants.

If the representations 2! and D" are p-equivalent to a vector represen-
tation and either coincide or differ only in parity, we can define the intra-
band matrices as the matrices IJ;and p,J; constructed by the method
described above, which transform like the components of the pseudovector
J; (or their products), and the interband matrices as the matrices p,J, and
p_J,or pJ and pJ, which transform like the components of a pseudovector
if PTand P"have the same parity, or like the components of a polar vector
otherwise, For one-dimensional representations, which are always p-
equivalent, we can define the intraband matrices as the matrices I and
¢: = 0:, which transform according to the identity representation, and the
interband matrices are p; =¢;, which transforms according to the repre-
sentation PD* X DI, and p_ = ¢_, which transforms according to DU P, If
the representations #! and 9 are real or coincide, we can take p: =o0: and
p, =0, as interband matrices.

For two-dimensional p-equivalent representations, the sixteen basis
matrices may be chosen as

Io o, {]! 0.0 o 0
= 0 ’ 01 = _ »
% 0—0 (26.31)
0 o 0 0
P+%=lo o u *-%=le, of

where o, runs through the Pauli matrices, including the identity matrix. For
real representations, p o, and p_o, must be replaced by the "even' matrices
0.0, and the "odd" matrices p,o,. The matrices I and p, then transform ac-
cording to the identity representation, while fo; and p,s; transform according
to the other constituents 2, of D' X D" =D X D", The matrices p,_and p_
transform according to @(r) and @"(r), the matrices p,0, and p_g, according
to the representations @D, XD and 2, X D" occurring in D! X D" and D" X D.
In this case, # (#&') may be constructed knowing only the characters of the
representations @' and 2.

If the representations £' and 2' are not p-equivalent and at least one of
them has dimension >2, determination of the matrices X} requires knowledge
either of the basis or of the representation matrices D(g) for the generators.

Thus, if P1(r) and D''(r) are p-equivalent to vector or spinor representa-
tions, their basis functions may be chosen as superpositions of the functions
Yh; the values j' and j"of j for the representations @' and 2" are generally
different. Here the interband matrices X; may be defined as matrices Am,
which transform in the general case like components of a tensor of suitable
rank.

The general expressions for the nonzero elements of the corresponding
matrices are given, for example, in /1.7/ (see §29). Thus, if j =1, these
elements are defined by (10.17), up to arbitrary constants Ci'=cC};. If
|j'— j"| =1, the matrices R., which transform like components of an axial
vector if the representations 2'and #!" have the same parity or like com-
ponents of a polar vector otherwise, are defined by
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(R, =R -—c’-l(f — )",

R Aa=|RI O =Cl_ [ —m+ 1) —m)]", (26.32)
(R+);_|.m_|=[(R—-)‘| m_l] “"'_C'i j[)(+m—1)“+m)]lﬂ
For any two sets of matrices R,,, the constants Ci' =C}; or C}_;=(C}™")" must

be chosen so that these matrices are linearly independent; it is sufficient to
stipulate that the matrices of one set be real and those of the other pure
imaginary, setting

A =cl’=1, " =—cl"=—1 (26.33)

As an example, Table 26.5 presents the matrices R,, R,, R; relative to
the basis Y’, ¥!,. These matrices form bases for pairs of representations:

A and F of the group T, A, or A; and F, or F; of the group 7y, and A and
Fi (or the p-equivalent pairs AF and F§) of the groups O and 0,. Suitable
products of these matrices yield all the remaining sixteen matrices, includ-
ing the matrices {R:R,} which transform like J,, etc., and coincide with the
corresponding matrices I, J., J, of Table 26.3 up to constants.

Allowance for spin in the two-band model may be achieved via either of
the two approaches cited above. In the first approach, the irreducible spinor
representations play the role of the representations @' and P!, in the
second — the representations @} X @i, and D' X Dip. The components o; are
then incorporated in & in accordance with the above rules.

As an example, we consider the two-band model for classes O, and Ty
(the point I').

The simplest case is that both representations %' and 2! are two-dimen-
sional: here, when spin is included, # (k) contains interband linear & terms
only for the pair of representations T and I';, and in the O, lattice for the
pairs I'Y, Iy and Is, IY. In this case # (k) will contain interband terms which
transform according to I§ XI7 =TI7 +T';, even intraband terms which trans-
form according to {[3 ={r}}=r{ and odd intraband terms which transform
according to [[§]=[rj|=T%. Since these representations are p-equivalent:
Fe=T,r,, the even intraband matrices are necessarily I and p,, the odd ones
o; and p,0,. The interband matrices p, and ¢, transform according to I,
while p,0; and p,0;, transform according to I's. We shall assume that the
matrices p.0; are even, the matrices po, odd. As noted above, this choice
of basis functions makes the functions X} real. These functions are given
in Table 26.2.

For crystals of class 0,

E,
(k) =p,— ;+ 2,,, 4 o 2,,, "~ Ap, 0k + 0.k, +0.k,). (26.34)

For crystals of class Ty ,the Hamiltonian 4 (k) will include the additional
term
F” (k) =ap. (0.k k. + o,k k, + 0.k k), (26.35)
since in Tq the components k;, and products kk; transform according to the

same representation T'iy. The spectrum defined by (26.34) is

E@) =g+ { (S + ) + 2], (26.36)
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If 1/m,=1/my= 0, the equation #p=ir3¥ coincides in form with the

Dirac equation, with the speed of light replaced by s=A4/f and m by m*=
= E4/2s?, In this case the spectrum near the band edges is

E(k)=.4:(1—52£+-:§)'

The analogy between the two-band equation and the Dirac equation is
frequently useful. For instance, it follows at once from this analogy that
the two-band equation (26.34) for 1/m; = 1/m; = 0 is invariant under the trans-
formation obtained from the Lorentz transformation of relativity theory when
¢ is replaced by s.

The constant A in (26.34) is relativistically small if the representations
I's and Iy originate in nondegenerate representations Iy and I':. If one of
these representations is generated by splitting of the terms I'is X D, =T1+4Ts
or I's X @y, =Ts+ s, and the other from T, or I, respectively, this constant
is not small and in this case, in the nonrelativistic approximation, the inter-
band elements for the pairs I, Iy or I'ss, I'; will also include terms linear
in &.

If it is necessary to construct # (k) for all terms occurring in these pairs
of representations, we can take as basis the matrices Rn in the representa-
tion @, 4 9,, as shown in Table 26.5: six interband matrices Ry, R,, R. (even)
and R., R), R,, and ten intraband matrices I, R}, R}, R, {(R.R,}, (R:R:}, {R,R},
[R:R,), [RyR:], [R:Ry]. If we include only nonrelativistic terms independent of &,
the Hamiltonian # (k) for a T, lattice will be

(k) = AR + 2:'&,;-:, {Ris1 Risa) + ARE + A, ; RE +

+ A, 2 (RiR) kiky + A2 Riki + As 3 Rk ihige. (26.37)
! i

For an Q, lattice the last term is dropped. The matrix (26.37) can be brought
to the form of Table 24.2 (up to constants) by a unitary transformation diag-
onalizing the second term in # (k) (the spin-orbit coupling).

TABLE 26.3. The matrices J; and their products

Representation D,, basis x, y, 2

00 0 001 0—i0
Ie=[00 —f 1= oonﬂ Je=|1 ool
0¢ 0 —i00 0 00
000] 100 100
2 2
IZ=lo10 I=loo00 II=jo010
001 001 000
0—-10 0 0 0 00 —1
2l gyl =] =1 00| 2 )=f0 0—1| 2[J]=| 00 0
0 00 0—1 0 -10 0
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§27. SHALLOW IMPURITY CENTERS AND
EXCITONS IN SEMICONDUCTORS

Shallow impurity centers

As in §22, to determine the wave functions and energy £ of a shallow
impurity center in effective mass theory we must solve the system of
equations f?z,zfj};

........ \E

2 96 (k) e = Ef (27.1)

or, in matrix notation,

Pl
fa
#f=Ef, where f= .

fn
Here m and m’ run from 1 to N, where N is the band degeneracy at the
extremum, and

H (k) =Fo (k)4 U (r) 1. (27.2)

#(k) is the matrix defining the spectrum near the band extremum,ku_—fa—f,
a

= —Ze%lxr is the Coulomb potential, x the dielectric constant,* Z the im-
purity charge **

Each solution f+ of system (27.1), which is a column matrix with compo-
nents fs, determines an impurity center wave function:

N
‘!"=w2_1f:.¢m.- (27.3)

where ¥,, are the Bloch functions at the bottom of the band. Let us consider
how the impurity center wave functions f transform.
By (25.1b),

D7 (@)K (gk) D (g) =X (k), (27.4)

where D (g) is the transformation matrix of the functions ¥, at the bottom
of the band. If the crystallographic point group contains elements g with
nonprimitive translations, then in general U(gr) = U(r). However, at large
distances (compared to the lattice constant), when the effective mass approx-
imation is valid, we may assume that U(gr) = U(r). Therefore, each operator
(27.1) satisfies (27.4).

Suppose there are p linearly independent solutions of equation (27.1),
fe(s=1,2 ..., n). Using (27.4) and the equation

H g 'RF(g~'r)=EF(g7'r),

* With an eye to our subsequent discussion of impurity centers in cubic crystals, we shall assume that x is
a scalar,

** In the theory of excitons discussed in this section, the spin-dependence of ¥ is significant; here, therefore,
as opposed to §22, we shall assume from the start that the basis functions depend also on spin. Therefore, the
space coordinates will be denoted throughout by #, while % will include the spin indices.
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we obtain the equality
H(R)D(F (g7'r)=ED(g)F (g7'r),

which implies that the function D (g)# (g~'r) with components
D @F (7' n=2 Dy (@17 (™) (27.5)

corresponds to the same energy E as the functions F(r) (s=1,2, ..., p.
Hence there is a linear relation between these functions:

D@ '=Z1"@F () (27.6)
whence
Fle'n=2") § () (r),
Fn(g™') = 2,77 (g) Dim (8) fe (1)

'm’

(27.7)

Thus, the transformation of the functions fi(g~'r) involves both a linear
transformation of the columns fs into each other, defined by the matrix T,
and a transformation of the components within each column, defined by the
matrix 2.

A direct check readily shows that the matrices T(g) form representations
of the little group Ga,, defining a transformation of the functions ¥* (27.3):

V(g7 =3T" () ¥" (). (27.8)

Thus, the wave functions ¥ (27.3) of an impurity center near k&, transform
according to a representation of the little group Ga..

It follows from (27.7) that the functions j transform according to a re-
presentation 2; of the point group:

Dy=D"XT, (27.9)

where 2 is the representation of Ga according to which the functions at the
bottom of the band transform, and T the representation according to which
the impurity center wave function transforms. This equation specifies the
representations according to which the envelope functions may transform for
a given symmetry T of the total wave function.

Since the potential energy in equation (27.1) is minimal near the impurity
center, we should expect the ground state of the impurity center to belong
to functions f which are finite at the origin; in other words, the set of func-
tions f of the ground state must contain functions which transform according
to the identity representation of G,. It follows from (27.9) that the represen-
tation @, will contain the identity representation only if @ =T. We may
therefore expect the degeneracy of the ground state of a shallow impurity
center to coincide with the band degeneracy at the extremum point; this has
been confirmed by experiment in all cases investigated to date.

Until now we have considered the state of an impurity center near an ex-
tremum point &. If there are several equivalent extrema k,(=1,2, ..., n, an
additional degeneracy of the shallow impurity level appears, since in effec-
tive mass theory the wave function ¥ of the center isanarbitrary linear com-
bination of functions Y¥: with the same energy E (27.3), corresponding to
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different extrema:

n
W=2C;q"1. (27'10)
Jm=]
Therefore, in effective mass theory the degeneracy of the ground state of a
shallow impurity level equals the band degeneracy at an extremum point
multiplied by the number of equivalent extrema, so that it is simply the
dimension of the irreducible representation of the group with star {&j}.

However, this high degeneracy is rooted in the effective mass approxima-
tion and is not a consequence of symmetry. In fact, the degeneracy of the
impurity center ground state is generally lower, since the possible degener-
acy of a term is determined by the dimension of the irreducible representa-
tions of the local symmetry point group at the site of the impurity atom.
Therefore, the additional degeneracy due to the effective mass approxima-
tion is removed by interactions which are neglected in effective mass theory;
these will be discussed below.

In effective mass theory, different impurity atoms with the same effective
charge have identical energy spectra, since according to (27.1) the spectrum
depends only on the band parameters near the extremum and on the dielec-
tric constant of the crystal. The corrections to effective mass theory, which
alter the ground state energy and lead to a splitting of the degeneracy char-
acteristic for the many valley model (chemical shift*), are different for un-
like impurity atoms.

If the chemical shift is significantly less than the ground state energy
(measured from the bottom of the band), the correct wave functions are cer-
tain linear combinations of the functions (27.10), and the nature of the split-
ting and the functions themselves may be derived by group-theoretic consid-
erations, without a detailed investigation of the chemical shift mechanism.
For this purpose we must expand the representation 2" of the space group
according to which the functions (27.10) transform in terms of irreducible
representations of the local symmetry point group G; at the site of the im-
purity ion. Note that only rotational elements of the space group which do
not occur together with nonprimitive translations may appear in the local
symmetry group.

For any element ge G; the character of the representation 2™ of the
space group is (see (12.24))

x(e) =2 () =Zx(g.ee). (27.11)

Here yx is the character of the representation according to which the wave
functions W, (27.3) of the impurity center at k, transform, and g is an ele-
ment taking & into k, gk, = k. The summation extends over all points of
the star {k)} in the symmetry group Gs, which contain g.

If the wave functions ¥ at the extremum point transform according to the
identity representation, then y,(g) =1, and it follows from (27.10) that in
this case the character of the space group representation is

1(8)=N,, (27.12)
where N, is the number of points of the star which are fixed under g.

* In the Western literature. this splitting, which involves a transition from one valley ro another, is also known
as "valley-orbit splitting.”
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Character theory thus makes it possible to determine the splitting of the
impurity level; on the other hand, using projection operators it is not diffi-
cult directly to determine the linear combinations of the functions (27.10)
which correspond to a state with one energy.

Note that in the effective mass approximation the impurity center wave
function in a crystal possessing a center of inversion is always even or odd.
However, if the local symmetry group does not contain inversion, the total
impurity center wave function does not possess a definite parity when cor-
rections are introduced in the effective mass equations.

We now consider the wave functions of shallow impurity centers at a few
points of the Brillouin zone in cubic crystals.

Spherical band at & =0. Inthis case equation (27.1) has the form

(omr 8 += +E)f=0. (27.13)

Equation (27.13) is simply the Schrodinger equation for the hydrogen atom
with m replaced by m* and ¢ by e?/x. Such centers are said to be hydrogenic.
The ground state of a hydrogenic center is not degenerate; the corresponding

solution is fy= _'.1_ exp(— rfag), where ag=~h"/m'e® is the Bohr radius of the
nag
impurity center. The ground state energy for a hydrogenic center is

m°et

Eo=—3pna -

The energy of the excited states is E,= —E,/n2, where n is the principal
quantum number; n=n,41{41, n, is the radial quantum number and !/ the
azimuthal quantum number. The parity of hydrogenic states is P = (—1)!.

Impurity center in the many-valley model. Suppose that
the band extrema lie at a point %k % 0 on the symmetry axes, so that the
constant energy surfaces are ellipsoids of revolution:

PR R +8)

E(k]=?ﬂ—!+ (27.14)

2m,

with the z-axis directed along the axis of revolution of the ellipsoid. In this
case equation (27.1) has the form
L b2 8% a? e?

(a3 + ny (3 + 37) + S HE) T =0. (27.15)
We introduce a dimensionless parameter y= m,m,, dimensionless coordi-
nates measured in Bohr radii as= #%/m e?, and dimensionless energy in units
of Ep=m e}28%2, Then equation (27.15) is rewritten as

(vom+ o+ ar+ 2+ E)f=0. (27.16)

In the general case the variables in this equation are not separable and we
cannot solve in closed form, except in the case y=1 discussed above, and
in the "adiabatic'' case y <« 1, in which a series solution may be obtained in
powers of the small parameter y /21.2/.

For the ground state energy, one obtains good results by a direct varia-
tional method, using a trial function
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_ —1f2 2 24 12
f=(na%a,) exp{—(%l+:—i) }, (27.17)
where p>=2x*+4% g, and a, are variational parameters defined by the condi-
tion that they minimize the functional

=1 ¥ 2_arcsinh
E=[1ldr =g (24 ) = FUERE g —a (4. (27.18)

1 4+a? a, a

Minimization of this functional with the trial function (27.17) yields the fol-
lowing equations for ¢, and a:

_ ¥ a — 232 V1§ a?arcsinhg — a
0, =52+ )y Y2+ EAEEERECE (a7.19)

Equations (27.18) and (27.19) refer to the case y>1; if y<<1, 1+ a?is re-
placed by 1—e? and arcsinh a by arcsin «.

Comparison of the energies obtained by the variational method with those
given by exact solution at y=0 reveal an error of the order of 7.5% at y=10
and less at other y values; this is comparatively low. When y=1, (27.17)
is an exact solution of equation (27.13). The ground state energy as a func-
tion of y, calculated from (27.18) and (27.19), is shown in Figure 28.

4
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FIGURE 28. Ground state energy Eo/E, of an impurity center vs. anisotropy parameter y = m, m,,:

a) ¥=1/21.10/; b) Y1 /21.2/. Eg=m e'/2h*,

A few words about classification of excited states for equations (27.15),
(27.16). When m,=m,, i.e., y=1, the [ quantum number is degenerate;
this is characteristic of a Coulomb center. But if ys 1, this degeneracy is
removed, The effective mass Hamiltonian (27.15), (27.16) possesses axial
symmetry Cw, X Ci, and therefore its eigenfunctions are characterized by a
magnetic quantum number m,=m and parity P. When spin is neglected,

m = 0 states are onefold degenerate, while m %0 states are twofold degener-
ate in +m. Rotation about the symmetry axis through the angle ¢ multiplies
the degenerate functions by ¢*'™®, while a reflection o, takes them into one
another. The eigenfunctions of the Hamiltonian (27.15) for given m and
parity P are thus superpositions of states of a Coulomb center with different

n but given m value and parity. Thus, the wave function with m= 0 and
positive parity is a superposition of states lIs, 2s, 3s, 3d, 4s, 4d , etc. with m =0,
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If the spacing of the excited levels in the Coulomb spectrum exceeds the
perturbation due to the discrepancy of the masses m, and m,, the states of
the operator (27.15) are built up in the first approximation from excited
states of a Coulomb center with the same n. Thus, states with n=1, 2
transform as follows: 1s—1s(0, +); 2p - 2po(0, —) + 2p+(£1, —); 25— 25(0, +) (the
magnetic quantum number m and parity are indicated in parentheses). The
excited states for a many-valley band, like the ground state, have additional
degeneracies depending on the number of extrema. When the effective mass
equations are corrected this degeneracy is removed, and the nature of the
splitting may be determined by (27.11). However, owing to the large radius
of the wave functions, the corrections to the effective mass equations for the
excited states are small, in fact negligible for states with f(0) =0,

Let us consider in detail the structure of donor impurities in Ge and Si,
whose conduction band has a many-valley structure.

The conduction band of Si has six minima inside the Brillouin zone on the
fourfold axes; m,=098m, m,=0.19m and x=11. Figure 28 shows that the
ground state energy is Eo=0.029 ev. Experimental values of the ionization
energy for various donors are given in Table 27.1.

TABLE 27.1
lonization energy, ev Ionization energy, ev
Donor Donor
Si Ge S Ge
P 0.044 0.013 Li 0.033 -
As 0.049 0.014 Bi -— 0.013
Sb 0.039 0.010

It is evident from equation (27.1) that effective mass theory gives the
ionization energy the correct order of magnitude, but for heavy atoms the
discrepancy between theoretical and experimental values may reach 50%.

In effective mass theory the 1s ground state of the donor in Si is sixfold
degenerate, according to the number of minima in the conduction band. The
donor ions in Si and Ge are substitutional impurities, whose local symmetry
group is Ta. Using (27.12), we easily check that because of chemical shifts
the sixfold degenerate 1s state spiits into a singlet state A,, a twofold degen-
erate state E and a threefold degenerate state F,:

ls=A+E+F,
Indexing the functions (27.3) corresponding to the extrema

ky(100), ko(100), ko(010), ko(0T0), ko (001), ky(00T)

from 1 to 6 in order, we see that the correct wave functions (27.10), deter-
mined by the coefficients ¢, have the form

w,‘,=7'?(111111), w};%(ﬁmom.
Wp = (111100, Wh= A (001T00) (27.20)
\vi=ﬁ',§_—(m|§§). wi.=%(ooom:').
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The corrections to the effective mass equations for the donor ground state
in Si are described in general by three constants: A,, which determines the
downward shift of the singlet A;, and A;, A,, which define the separation of
the singlet A, from the doublet E and triplet F,.

Experimental results, including examination of optical and paramagnetic
spectra of donor impurities in strained crystals, show that for all donors in
Si, except Li, the orbital singlet A, is low and the E and F, states have
practically the same energy A, = A;.

The energy of the excited donor states in Si has been calculated by Luttin-
ger and Kohn /21.2/. They use a variational method, corrected by consider-
ation of the exact values of the energy at y=1 and y=0, which can be
determined analytically., The results for a few neighboring excited states
are given in Table 27.2, along with the form of the trial function.

TABLE 27.2
si
State Trial function
.E“r Ecor
p? 22 \12
Is ¢ exp [— (T"'F) ] 0.029
p? . 22 \I2
20, cz exp [— (F + 3,—) ] 00107 | 00113
2 2 \12
23 (e) + eap® + c32%) exp [— {% + —:—,-—) ] 0.0082 0.0088
AL
2p, cx exp [— (? + b7 ) } 0.0057 0.0059
2 20112
3pg (e) + e30? 4 32 z exp [— (% + -:,-] ] 0.0052 0.0057

In the effective mass approximation, each m = 0 state is sixfold degener-
ate, while each m # 0 excited state is twelvefold degenerate. Using equation
(27.11), we readily see that chemical shifts split the degenerate states as
follows:

m==0: A+ E+ Fy
m+0, even: A4+ A, +2ELF 4 Fy (27.21)
m odd: 2F, 4 2F,.

However, this splitting may be quite small for the excited states, except
possibly the 2s state, so that in practice it may be neglected. According to
the estimates in /21.12/ for the 2s state in Si, the energy difference between
the onefold state A, and the fivefold state E + F, is of the order of 0.14—

0.12 mev.

In Ge, the conduction band minima lie on threefold axes, on the boundary
of the Brillouin zone. The components of the effective mass tensor are
mfmy =14, m [my=0.083 and the dielectric constant » =16, giving E,=
= 0,008 ev for the ground state in the effective mass approximation. Exper-
imental E values are given in Table 27.1. It is clear that effective mass
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theory yields a better agreement with experiment for Ge than for Si, owing
to the fact that the donor centers in Ge are ''shallower." In the effective
mass approximation, the impurity ground state in Ge is fourfold degenerate.

Chemical shifts split the degenerate state into a singlet A, and a threefold
degenerate state f;; relative to the basis functions (27.3), with extrema on
the [111], [111), [111], [I11] axes, the corresponding wave functions are

I -
Wy =5 (1111 (27.22)
Wh =4 (1D, W =1(TI, Wi=LqTi.

The above classification of terms arising from the 1s ground state for Ge
and Si does not allow for spin-orbit coupling, and therefore each of the states
obtained possesses an additional twofold degeneracy due to spin. Counting
spin, these representations become:

A~ Ei(Te)y E—G'(Ty), Fa—E;(I7)+ G'(Ts).

Therefore, as a result of spin-orbit coupling the sixfold degenerate (counting
spin) state F; splits into twofold and fourfold degenerate states £} and G’

Degenerate band. We consider the structure of a shallow impurity
center in a degenerate band such as the valence band of Ge and Si, in which
the wave functions transform according to the representation I'f at an extre-
mum point. Since the spin-orbit splitting of the valence band, which is
0.29ev in Ge, greatly exceeds the acceptor ionization energy, this approxi-
mation is quite good for Ge. The wave functions [ of a shallow acceptor
center are defined by equations (27.1) with the matrix # of (24.13),

System (27.1) cannot be solved explicitly for Ge, and therefore the varia-
tional method is again used to find the wave functions and ground state energy
Ey. The form of the trial functions is not arbitrary but must satisfy certain
conditions dictated by symmetry.

For the ground state functions of a shallow acceptor center in the Iy (or
I's) band, which also transform according to I'y (I's), it follows from (27.9)
that the functions f transform according to the representations

IF X T =2Tf+ 20 + T 4+ T T

Functions | transforming according to these representations may be chosen
as suitable cubic harmonics, built up from harmonic polynomials of degree !/
multiplied by exponential factors e~/"!. When this is done, each cubic har-
monic transforming according to a given representation of the cubic group
may be constructed from harmonic polynomials corresponding to different
values of /. However, harmonics with larger [ give a smaller contribution
to the ground state energy, since the corresponding functions vanish rapidly
at 2= 0, and so the computational work may be reduced by confining atten-
tion to harmonics with small | values. Thus, Schechter /21.4/ restricts
himself to harmonics with /<2, i.e., to s- and d-type functions, which
transform according to the representations I't (I=0), I'h (=2, T% (=2).

Using the selected cubic harmonics and the projection operators, we can
construct trial functions f for the impurity center, which transform accord-
ing to the representation I'y:
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1 0 0
e 0 e 0 tew (/V3) ey + ie)
R [ — %2 8 ie)/ V3
0 0 0
0

+em (2/ V1_5) (e, — iey)
o {l/'/ﬁ] ieg

—(/VB) o1 + ien) (27.23)
0 0 — (e +ien)/ V3
1 — % 0
fa=cio 0 + o2 0 + ¢ 0 +
0 — % 533”/?
0
0
el (1B e — ey |
—iV3be,
where
x|=22—'_;‘(x2+§2) & =yz
Pi‘é‘ By = A2 I‘;‘
h:ga—{xg—y’) ey =1y
(27.24)
1 s-—r."r,r,—?n
W= =y

- - ],a' 2 e ],f"
‘P3=8 ri'raf??.fz E‘ (])“=€ nr,,aﬂ‘) %'

and ¢, ¢, ¢3, ¢ are numerical coefficients satisfying the normalization condi-
tion ¢} +c3+¢}+¢cj=1. The functions f; and f; are Kramers conjugates of f,
and f,, and we should keep in mind the transformations (24.18) of the func-
tions of the bottom of the band under time reversal. The variational param-
eters in these trial functions are i, 1, 73, &1, €3, €3, €.

Schechter /21.4/ uses "truncated" functions (27.23), setting ¢i=0. Varia-
tional calculations for Ge yield Eo,= 0.008 ev for band parameters 4 =
= — 13.2 12/2mo, B = — 8.9 n*/2m,y, C = 12.5 h?/2m,. Table 27.3 presents the varia-
tional parameters.

TABLE 27.3
E ev rn A A & & o
Ge 0.0088 44.0 34.4 0.86 —0.28 0.43
Si 0.031 17.71 13.21 0.92 —0.14 0.32

Experimental ionization energies for acceptors in Ge are given in
Table 27.4.
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TABLE 27.4
lonization energy, ev lonization energy, ev
Acceptor Acceptor
Ge Sl Ge Sl
B 0.104 0.045 Ga 0.0108 0.065
Al 0.0102 0.057 In 0.112 0.16

It is clear that effective mass theory yields good agreement with the
experimental ionization energy in Ge for all acceptors except In.
Similar calculations for Si yield Eo=0.031 using band parameters
= — 4.04 ¥2/2my, B = — 1.24 12{2m,, C = 4.01*/2m,. The variational parameters
and experimental acceptor ionization energies are given in Tables 27.3—27.5.

TABLE 27.5

B8>0 B<0

Eev|rA| mil| o & T:. Eev|ir, A |mh| ¢ o &

0.054] 9.12 | 7.09 | 0.83 | —0.33] 0.42 § 0.035| 1561 | 12.0 | 0.93| 0.10| 0.32

In Si the ionization energy of acceptor impurities is of the order of or
greater than the valence band spin-orbit splitting A= 0.04ev; for Si, there-
fore, the approximation A E, used above is not valid.

Schechter /21.4/ also calculates the ionization energy of an acceptor cen-
ter in the opposite limiting case of zero spin-orbit splitting, i.e., for band
I's. Trial wave functions which transform according to the representation I
are chosen as follows:

1 V3 % —u 0
fi=cpi(r)] 0]+ copy(r) 0 + caga(r) || &4,
0 0 2%
0 0 N
fr=ci@ (] 11+ oo ()| — (i + V3 %) [+eps(n)] 0 |, (27.25)
0 0 g,
0 0 g
fa=ciga ()| O+ copu ()| O |+ caps(r)| e f,
1 2% 0

where

Pl i) e=rin '2_”9

1
.Pl(f)='_/;____e~rfr.rl—?!2| @_‘(r)=—ﬁ—, qnd(r)—_-—W , (27.26)

and the coefficients ¢, ¢;, ¢; satisfy the normalization condition ¢} +¢j+ci=1,
Table 27.5 presents the variational calculations for Si for the case A =0,
with the same band parameters as before.
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The calculations show that in Si, where the impurity centers are deeper,
effective mass theory, though it gives the correct order of magnitude for the
acceptor ionization energy, yields results which deviate from the experi-
mental data.

The excited acceptor states in effective mass theory are also character-
ized by irreducible representations of the group 0,, i.e., they transform
according to the representations I'f, I, I'y. The states Iy, I'¥ are Kramers
doublets, and Ty is fourfold degenerate,

When B=0and D=0, the energy operator (24.12) in the effective mass
approximation would have spherical symmetry, and envelope functions of an
acceptor center in the I's band would correspond to states of a Coulomb cen-
ter with mass m* = %2/24, each state possessing additional fourfold degeneracy
due to valence band degeneracy.

If B=D/V3, i.e., yo =y, the Hamiltonian (27.1) with 6 (k) defined by
(24.2) or (26.12) retains its spherical symmetry and commutes with the oper-
ator F=L+J, where L is the orbital angular momentum operator (4.4). For
given F, the state vf is m-fold degenerate, m= —F —F +1, ..., F, and the
angular part represents the set of spherical harmonics v!,, with /=F 13/,
and F+1}, (when F=1, 1=1, 2) /21.14/.

If B+ D/Y 3, when the symmetry is reduced to cubic, this degeneracy is
partially removed. The nature of this splitting is easily determined by
group-theoretic considerations.

If B and D are not small, each state I'i (i=6, 7, 8) is a mixture of
hydrogenic states with different n and [ for which the product @} XT§ con-
tains I'. Thus, in the general case the slow ground state function can
be considered as a superposition of hydrogenic Is, 3d, 5g, etc. states, and the
neighboring excited states T's, I'7, I's are a mixture of 2p, 4f, etc. states.

Schechter's variational calculations /21.4/ (see equations (27.23) and
Table 27.4) show that the contribution of 4-like functions to the ground state
wave function is considerable.

Schechter carried out a variational calculation for the neighboring excited
states I's and I's, I, using p- and f[-type envelope functions. A shortcoming
of Schechter's trial functions for the excited states is that their radial parts
have no nodes besides r=0, while hydrogenic p-, d- and f-type functions
have such nodes if n.> 1.

Mendelson and James /21.5/ express the angular part of the trial function
as a linear combination of spherical harmonics, guaranteeing the correct
symmetry properties and the prescribed parity of the function; they deter-
mine the radial functions and the coefficients by solving a system of differ-
ential equations. In their approach, the impurity states are classified not
only according to representation index and parity, but also according to the
number of nodes of the radial wave function.

The ground state I'y (0) of Ts, which is nodeless, is a superposition of 1s
and 3d states of a hydrogenic center. The ionization energy is 0.0093 ev.*
One more state I's (1), whose radial function has one node (not considered by
Schechter) is primarily a superposition of 2s and 34 hydrogenic states; the
state I'y (0) is a superposition of 2p and 4/ hydrogenic states. Of the I'7

* Mendelson and James base their calculations on the band parameter data of Levinger and Frankl /27,21/,
They remark that if the data from Dresselhaus, Kip and Kittel /19.1/ are used, the discrepancy in energies
is of the order of 1%, that in the wave functions of the order of 4%,
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states, Mendelson and James considered I7(0) which, like I's (0), is a super-
position of 2p and 4f states, and I'7 (1), whose radial function has one node,
which is a superposition of 3p and 5f states.

Mendelson and James calculated the energy of several I's states. Two of
these, Ts (0, 1) and I's (0, 2), have a nodeless radial function but angular
functions of different types. They may be interpreted as two different super-
positions of 2p and 4f hydrogenic states.
The state I's (1), with one node in the radial
function and an angular part very similar

E,mev
to the function I's (0, 1), is a superposition
-10 fﬁ"ﬂJ ‘-\ of 3p and 5f states.

N 8e2)12= o gP Figure 29 illustrates the pattern of ex-
=2.0 (7'.3?—\'\\ $ cited states for an In shallow acceptor in
-30 (8-0.2F —2p Ge, based on the experimental data of

(8+1) + 25 /41.6/. These data are in good agreement
- 4J) 8-01) ! with the theoretical calculations of /21.5/.
=50 Let us consider the asymptotic behavior
» of the shallow impurity wave functions far

F[ away from the impurity nucleus. We shall

=120 (8+0) Is approximate the wave function asymptoti-

cally by f~ e*, Equation (27.15) for the
ellipsoidal constant energy surfaces then
yields the relationship between & and the
bound state energy £ <0 as a function of the direction of r;

FIGURE 29. Excited acceptorstatesin Ge,

k=Y —2E(m (2 +n)+mp), where nm=r/r. (27.27)

Thus, the wave function is asymptotically anisotropic. According to (27.27),
the wave function extends farthest in the direction of least effective mass,
Note that the asymptotic form of the wave function has the same form as the
asymptotic trial function, except that a;? and a7? are replaced by —2m E[n?
and —2m, E/#?, respectively.

The case of a degenerate band is somewhat more complicated. Here we
consider the asymptotic behavior of the acceptor states in Ge and Si, i.e.,
in the case of the I band. Approximating the solution of the effective mass
equation (27,1) asymptotically by

€y
Cy
f~1 e, (27.28)
C3
€4

we obtain a homogeneous system for the coefficients ¢, :

;xlc (kgnn"ﬂ) ¢y =Ec,, (27.29)

where 3i,(k?ngng) is the matrix (24.13) with k.kg replaced by kn ng. The
solvability condition for the system,

|# — EIl=0 , (27.29a)
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gives a dependence of k? on E similar to (24.14a):
&2 (1Al = VB (nl +n + nf)+ C?(n? §+nin§+u3§';‘)) =—E. (27.30)

Equation (27.29a) has two roots (27.30), corresponding to the two branches
of the hole spectrum. This means that the asymptotic behavior of the wave
function is determined by two terms of type (27.28), with different solutions
k and k, of equation (27.30) and different solutions ¢, and ¢ of equation
(27.29) with k=Fky and k= k;, respectively. Since the Iy levels are fourfold
degenerate, we have four functions of type (27.28), which are pairs of Kra-
mers conjugates. As follows from (27.30), the asymptotic behavior of the
wave function depends essentially on the direction and reproduces the form
of the constant energy surface of the holes in k-space. The coefficients ¢,
and ¢} also depend on n,: they are determined by equations (24.19) with &,
replaced by kn,. At large distances, only one exponent, corresponding to the
light hole band, "survives."

Thus, the asymptotic behavior of the wave functions of a shallow impurity
center in a degenerate band is determined by the light carrier spectrum, de-
spite the fact that this branch of the spectrum may give only an insignificant
contribution to the energy. Since the ratio of the masses of heavy and light
holes may be quite high, allowance for this situation is important for various
effects which depend on the behavior of the impurity center wave functions at
large distances.

Corrections to effective mass theory. We now consider cor-
rections to the Hamiltonian (27.2) due to higher order terms in &k and also to
inclusion of matrix elements of the potential U, with large k=~ by, which
were omitted in (22.8). The former terms yield corrections of the order of
Eé/E,, which may be significant for comparatively deep centers; the latter
terms are responsible for chemical shifts.

To calculate the energy corrections of the order of EifE, in the effective
mass equations (22.15), we must retain the fourth order terms in g, which
are easily obtained by the usual kp-theory or the theory of invariants,* and
also incorporate corrections AU to the Coulomb potential, which appear in
third order perturbation theory when quadratic terms in #: = #(kx)/m and
linear terms in #, = — U(r) are included. Since by (22.10b) and (22.10c) the
operator 2, is diagonal in %k and %, is diagonal in n, we obtain the following
expression for AU from the general equation (15.47):

1 ¥ x“.c,ns
AUM’I’. mEkT B mt ﬁ%z_ Ur—t (k;ka - 2k;ks+ kak8]=
=— [§ (k" — &), (&' — ), G2, — ((#'k] g,,,-m)] Uy (27.31)
where
af __l__hz I“:I'l"gﬂ!] _ 18 "::’:“Em +"’Pn’sn“m
Grim =7 77 2 Eo b~ T NGB (27.32)
1 B x2, b 1 8 altigV+2__ pv+2,v+l
Y —_—— —— —mssm __ __ m’s “"sm m’ m
Enm =7 i LtV B —Eny T 0 \,z E—Ey o (27:39)

* If the group G,, does not contain inversion, the operator # (k) will also include third order & terms.
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3y is the antisymmetric unit tensor. To find AU in the coordinate repre-
sentation, we use (22.14a), multiplying AU by e!®-»r and summing over
g=~F —k for a fixed vector &, which is then replaced by the operator k=—iV
The first term in (27.31) gives

AU, =— § G2, Y 0,05V 2" = § %, (o= -5",-5 v@).
q

In calculating this term we must remember that

4nZe?
x

V2U (r) = a(r)

is singular at r=0, and so the corresponding term must be separated. The
result is

ap 1 a? 1
ﬂU:n,m = [§ (Gm‘m - ?Tr Gm’maﬂﬂ) oraarﬂ + 3 TTG”"“"W] u (r}'

Evaluating V23U and performing the differentiation in the first term, we
finally obtain

Zet drafy 1 in
ﬂu;‘fm=——;- [ga:ﬁ. (T—;rﬂan)—TTer‘mﬂ(!)], (27.34)
where
Tr Gul’m = E G:m-
a
In calculating the second term we use the fact that (#k]=[gk], and so

Ze*
o (V1 2m)-

AU = Y, ((9k] € ) U 84" = — (VU - V] g,p,)) = —
L)

Consequently,

vz, ——iZ (Mg,.). (27.35)

where M= —i[rV] is the angular momentum operator.

The first term AU! represents the effective dipole-dipole and contact
interaction. The matrix G* defining it is similar to the matrix #™ of
(21.19) defining the spectrum and has the same number of linearly indepen-
dent elements. It can be obtained by formal differentiation of the latter:

(27.36)

The second term AU? describes the interaction of the orbital momenta of the
slow and fast functions, causing splitting of terms in cases when the repre-
sentation TIyX @y, is reducible counting spin. The matrix g¥ defining it is
similar to the matrix Lv of (22.22) defining the effective magnetic moment:

in? oLY,.
&m™= """ T3En

(27.37)

In the simplest case, the two-band spherical model, the sums (27.32) and
(27.33) contain one interband term with s =n, and the indices m and n take
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two values m=1, 2 and n=1, 2, corresponding to spin + 1/2. In this model,
by (26.34),

Ep—Ey=Eg=2m's’, Rp,=m"s0p,. (27.38)
Then
a 1 h2s? a _l h2g? ,
Gm’m“"':l f:‘i ~ (Umno'gm 2 Ei ammbaﬂr (2?.398)
y LW 8 st oy 27.39b
gm'm 2 Ei gbuﬂvcfln‘naum i E:, um’m ( )
and so
AU = 2::2:;15’;’_6(’)’ (27.40)
Eq
ethis? |
.502:_25%’ — (oM). (27.41)

In this model, the fourth order & terms in 7, which make contributions
to the energy of the same order as AU, have the form

aafsz——'(”““]”. (27.42)

Eg \ 2m*

The corrections to the energy of the hydrogenic ground state fj= l/l__ e=rla
na

3

due to AU' and A% are respectively 4 Es/E,and —5E3/E,, so that the total
correction is — Ey/E, . *

For the corrections due to the short-range part of the potential U(r), it
is sufficient to retain in (22.8) only the intraband terms

Uit = @pa | U (D] 0p) =T § U&'—-HaM B:‘;m , (27.43)

since the interband terms yield corrections which involve an additional
small parameter E./E;. From the matrix element (27.43) we have kept in
(27.2) only the term with M=0. Consequently, the correction is

Umn.mt =7 2 Ur-ssonBu" =7 3 Up, B™ =¥ 2 Usp, Bi" — Usdwm.  (27.44)
M0 M0 M

Here we have neglected the small quantity # —#& in comparison with the
reciprocal lattice vectors by and used the equation

VB ™Uo = Usbm =5 buim [ U(r)dr.

A glance at (27.43) shows that the first term in (27.44) is Una, na,= Umn,
and so

* For this model, the two-band equation (26.34) coincides with the Dirac equation (up to constants). Therefore,

the problem of an impurity center may be solved accurately in the two-band approximation in the same way
as that of the hydrogen atom spectrum in the Dirac model /21.9/. The exact expression for the ground state

pom o[- (2171}
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Umn,mt = Un'm — Upbym = I? ,[ u {r}"p:n'..‘bml. dx — 8im % _" Ul(r)dr=
=% .[ U(r) [u:n'l'. um!. - am‘m] dx. (27.45)

As in (22.14), in order to transform to the r-representation we must multi-
ply (27.45) by e and sum over g¢. Noting that 8Umu, .. does not depend on g

and & (i.e., on ¢ ), while Xe!% =¥%(r) since I el dr =784, we find that
q

OUmm (r) =" (Un'm — Uobmem) 8(r), (27 .46)
and consequently the matrix element between functions f; (27.1) is

08Uy, =72 (Upm— Ugd pom) o ()2, (0). (27.47)

Obviously, the main contribution to the matrix element (27.45) comes
from integration over the cell near the impurity center. The corrections
(27.47) yield a change of energy and may also cause additional splitting of a
degenerate level at a given extremum k,. The operator §U has symmetry
group G=Gi1Gs,, which is in the general case lower than Gs,. In particular,
it does not contain nonprimitive translations, since Gi does not contain them.
If the representation @} of G, according to which the wave functions v,,
transform is reducible in &, the matrix 8U (27.47) is not a multiple of the
identity matrix, and the perturbation (27.46) causes splitting of terms.

The corrections to the effective mass equations for acceptor centers in
Ge and Si do not split the fourfold degenerate ground state, since for sym-
metries Gy= O, and @ = T4 the levels have the same degeneracies.

When corrections are included in effective mass theory, the impurity
center wave functions no longer have a definite parity, since T, does not
contain inversion; the corrections may therefore lead to observation of
certain effects in the acceptor centers which are not detected in the effective
mass approximation because 0, contains inversion /40.4/.

If the band has several equivalent extrema, at points ky, then besides the
intraband terms (27.43) we must introduce matrix elements between functions
belonging to different extrema:

m'm 1 .
U ning mbop = P"; Byt Uam.—tw-n-bﬂ =¥ _[ Wra, U (1) ’l’mswd" =

= _;‘- I u:n’lo,- {x) U (r) um*o] (x) e‘"ﬂ;‘_.ﬁi) 'dx' (2 7 -48}

Here, as in (27.44), we are neglecting the small deviation of the vectors
ki —k;, measured from extrema k, and k,, from ky— ky + by.
In the r-representation, the operator is similar in form to (27.46):

6Um"m'i (r)= )*’Um-.(;r ""wé(r]' (27.49)
This operator determines chemical shift in many-valley semiconductors and
lifts many-valley degeneracy. The number of linearly independent elements
in this matrix andinthe matrix (27.46) is easily determined, using the gen-
eral equation of §19 and the fact that the potential U(r) transforms according

to the identity representation of the symmetry group G, of the impurity center.
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It follows from equation (27.49) that, in order to describe the splitting of
many-valley degeneracy of an impurity center, we must use the general
equations of §19 to expand the representation of the space group with star
{k)}, according to which the wave functions lb,,,,u transform, in terms of ir-

reducible representations of the group G; (see (27.11) and (27.12)).

Excitons

Shallow excitons, i.e., excitons whose band energy is small compared to
the band gap, may be regarded as bound states of an electron-hole pair.*
The equation defining the wave functions and spectrum of shallow excitons
is similar to the equation for an impurity center. To derive this equation,
we first construct the effective mass Hamiltonian for the interaction of two
electrons, one in a conduction band m near an extremum k., the other in a
valence band n with extremum k,; each of the states may be degenerate and
the energy difference Em(k)— En(ks)=Em— En is significantly greater than
the binding energy of the exciton.

We start from the Schrddinger equation for a system of two electrons in
a medium with dielectric constant x:

(96 (%), %5) — E)Y (2, £2) = [(30(x,) + o (x2) + U (r, —rs) — E] ¥ (x,, %) =0, (27.50)

where #,(x) is defined by (22.1a) and U (r)=e?xr.
We first consider a direct exciton, when k,=#k . =k,. We write the wave
function W(x,, x,) for the two electrons in a form similar to (22.2), (22.5):

V(% %)= § Foi(ris 1) on, (%)) B, (%) = = Can. TR TS (%) P, (%) (27.51)

stk k,
where
Fu(ri 1) =3 ¥, Con,. a, € 40500, (27.51a)
L
Con =3 [ Furlrr, 1) e=10riohr dp, dr, (27.51b)

The wave function W (x,, x,) must be antisymmetric, since the electrons obey
the Pauli principle: W(x.. %)= —W¥(x,, x,). Hence it follows that

C:l.. hy, =— —Cn.. s, or F:t{fl, rg) = — F(s (l‘g, f|). (27.52)
Substituting (27.51) into equation (27.50), multiplying on the left by
P (x,)tp:-,;(x?), integrating over r,, r, and summing over the spin variable a,
we obtain a system of equations similar to (22.11):

3 |(E (ke ko) — E)8y8,8, 48, 4+ Hiwiadesdis + Koy Sy, a,*,;] Cop,.s,=0. (27.53)

stk
{Ld} LA st

* This model of the exciton is due to Wannier and Mott; shallow excitons are therefore known as Wannier-Mott
excitons.
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Here, as opposed to (22.10), we have included the term A%?2m in E°;

Ez (R, k) =E + f: + ff, (27.54)

where
ES = Em+ Eo= Emp, + Ena,

As in (22.8), (22.10b), to calculate the matrix element of the Coulomb poten-
tial to a first approximation, we retain only terms with M =0 in the
expansion

. 55 =1l yr
§ b Pen, = r% By e~
where the sum over g stands for summation over the spin variables:

%4, ,,._r’ZB"B“ N 8, oy = 00U a8 an aga (27.55)

—h N~k Oy kN By
sl thy,

Note that here only states with small & and & need be considered, since we
are concerned with excitons with a large radius near an extremum of the ex-
citon band. The operator 382 in (27.53) is similar inform to (22.8), (22.10¢):

x?:! t !' = (klxs :) bt'! (kznf'f] ba‘a] 6t'll|6l;l.i' (2 1 ‘56)

sl th,

Next, as in §22, we must derive the effective mass equation containing
only the functions Cm .a¢, describing a state in which one electron is in the
m band and the other in the n band; the other interband matrix elements are
dropped. The basis of this "truncated" equation are the 2N,N, functions
¥ (%)) ¥, (%,) and ¥, (%,)$,(x). Here ¢, =4y ,, and N, and N, are the degener-
acies of the m and n bands at k. Droppmg the 1nterband matrix elements,
we obtain a system of equations for the coefficients C,,,., s C,.., ms,, F€SEm-
bling (22.12):
) xm'.'l. n'l;cml..nti+xm'l;.n’!;cnlz.m =EC

roY mk .k,
mnkda mk,. nk, nk, me, ' ! ”

which, in view ot (27.52), we can rewrite

oon (™ i) o = B e
" 2 2 1
Here the energy £ is measured from En,=E%+ E% .

A similar system of equations may be derived for the coefficients Cu, miy
but these equations are not independent, since they follow from (27.57),
(27.52) and the condition

ﬁm’!].n’lgzmnlz. mhk, 4
mh, nh, 'k, mh,

which is a consequence of the symmetry of the Hamiltonian (27.50):
M (x,, %)= (x, x,). It is therefore sufficient to consider the system of
Nm X N, equations (27.57).

Using the general equations (15.47), we can use (27.55), (27.56) to find
explicit expressions for 2 in the required order of perturbation theory, as
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in §22. If we retain only first and second order terms, then

Ema ', [%[kl) '!'n'n"'gg(kz)u," om'mlbl'.llbl;lg-F
mh,, nl
+U R 61'+»' TR OOt (27.58)
where (k) is defined by (21.19) and m. r, =0.
nk, ml

In the third approximation,

AUy ._(AU Oy +*’-\Unu;ﬁ,.*,.)ﬁa:“;..,n,i (27.59)

mbk.nhk mk “nn
m!l nk m-ll nk,

here AUmsy is determined by (27.31), and
mk

— af , ,
Er = 2 Qi Unia, (b = i)y (g = ) 8y s (27.60)
nk,, mk, nm
where
'}
ap _i “m n ®n'm
an - (EO Eo)g (27.603}

To transform to the r-representation, we multiply equation (27.57) with
the Hamiltonian (27.58)—(27.60) by exp [i(kjr, + kjr,)] and sum over & and k.
In so doing, since & and &’ are small we may proceed as in (22.14) to re-
place summation over k,, & and k. kj by summation over the differences
g=~Fk —k =k, — &}, and in the last term, which is (27.60), over g==k{ —ky =
=k — &k}, and then apply the transformation used to derive equation (27.34).
The last term (27.60) will contain the sum

E C=mn'.nt.3XP [¢ (kiry + kor))] = Fan (ra, 1)

as opposed to the other terms, which contain F,,(r, r)). Therefore, in the
r-representation the operator # including (27.60) will be an integral oper-
ator, and the system of equations for the functions F,(r, r;) will be

3 [ar, dr,{ [0, (k)8 + H (k) 8] 8(r, — 7) B (r, — 75) +

+U:':’(rirg)'”efch(r'ri)}Fm(r,,ri) —=EF,,. (7). (27.61)

F\ 1y rry

Here #mm(k) and Hwa(k) are the matrices (21.19) defining the spectrum near
the extremum of each band, and

rﬂ'z
U e ( )=[U(r] — 1) b + AU (P10 7)8, +

rlr m'm-n’'n
80, (1 1) 8| 3(r) = 71)(r, — 17, (27.61a)
excl rirg af U (ry —ry) -
% "’(r.rg) sz”ﬁélrl—r,)b(ru—r{). (27.61b)

The interaction operator (27.61a) includes, besides the Cculomb potential
U(r,—r,), corrections
AU pm (F) = AU b (£) + AU (7) and AU (7).
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defined by (27.34) and (27.35) for each band, and the last term describes the
exchange interaction; Q#%_ = is given in (27.60a).

The operator (27.61) describes the interaction of two electrons. In order
to obtain the Hamiltonian for the interaction of an electron m and hole n, we
must first reverse the sign of the term s (k2) defining the energy of an
electron in the valence band, and the signs of the operators defining the
interaction of electrons in different bands, since the energy of a hole is
minus the energy of the missing electron and the electron-hole interaction
is minus the interaction of the electron with the missing electron,

Furthermore, we must remember that if the wave function of the crystal
with one electron belongs in state ¥a to a representation @, then the wave
function of the crystal with one hole n, i.e., in the state in which all levels
of the valence band except n are filled, belongs to the representation 2£*, so
that it transforms like K$n = $&n. This is because a state which has both an
electron and a hole at level n (the whole band is filled) belongs to the identity
representation, which occurs only in the product @ X #*. Therefore, if the
missing electron has, say, wave vector & and spin +1/2, the hole must have
wave vector k= — ke and spin —1/2. Since the creation of an electron im-
plies the destruction of a hole and vice versa, transition from electron to
hole dictates that we must also reverse the order of the indices of the val-
ence band. This gives the following rules, governing transition from the
electron-electron interaction to the electron-hole interaction:*

(s, 13) =— Hxnknr (P, 1), (
I, ’ 27.62)
en hn)z_ : (ﬂh)
Hnin (r. n)= "% \nn)

Note that, by (18.46), p% = — pi,., and so the elements of the matrices #
(21.29) and G*® (27.32) satisfy the relations M.k, = #anr Gookw =G%, and for
those of the matrix g (27.33), 8w = — &Y, .** Here the term i, (k) =
= — HBxnxn' (— k2) = — Hya (k) in (27.62) is the usual Hamiltonian, defining the
hole spectrum in the effective mass approximation.

Finally, then, the electron-hole interaction operator is

o ( " ") = [%em k) b+ 3 (k) S + U™ (7) S+ AU (1) + DU (11, 1) X

mn \F Ty

Xb(rl—r{)o(r,-—r;)+ﬁb'm,n,('i'§), (27.63)

mn \F Iy
with

Ko (k) = Y, Hrbm kaks,
o (27.63a)
Hren (8) =Y, — HF% kaks,
af

* These rules are easily obtained if we write the Hamiltonian (27.61) in the second-quantized formalism. The
derivation is given in the supplement to this section.

* The symbol My, means that if the wave functions of the holes .@,': are taken as the basis, the matrix ele-
ments of # must be calculated for the functions Ky!.
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Ut(r)=—L-, where r=r—r, (27.63b)
e 3
AU (F) = — — { B (2 — % beo) (G2 +
mn aﬂ
'+' G:Pu 6m'm) - ;—“ L] (f) ITl"Gm'mﬁn'u +T1" Gn’ndm'm]}. (2 1 -GSC)

2
ﬂUE‘;’: (l'| ' r2) = _'if [{ lrvrul gm'm) bu‘n - ( [rvh] gﬂ'n) 6i'n’llt]'

The last operator AU in (27.63) is nonlocalized.
By (27.61b) and (27.62),

i v &
Aum.-(" “)=x:;,°."( ") — Y t;,("aru) 3(r,—r)d(ri—r),  (27.64)
mn " ab n’'m i1a 1

rr rr

where

Qaﬂ. ﬁ_ﬁi “:‘Kn’“g(nm (27 65)
Rem  m (Em—ERf '
Note that if the spatial dispersion of the dielectric constant x is intro-
duced, we get corrections to the energy of the exciton (and to that of an
impurity center), of the same order as AU".
It is convenient to transform from the variables r, and r, to variables

r=r—ry a=¢r,+5r2. (27.66)
The matrices a and & may be chosen arbitrarily, provided they satisfy the
condition a4 b=1I to ensure that the Jacobian is such that —-—%{{:'3; =1, 1In

the new variables,

ko =k+aH, ky=—k+ b, (27.66a)
where
=—I:V|-, =—ivx.
We then have
K=k +ky, h=0>bk —ak, (27.66b)
Therefore,
kiry 4+ koo =FRr + R (27.66¢)
In the new variables (27,66), the operator (27.64) becomes
r ﬂ' 2,
aum‘_( ) ZQ 5o E_H;éf__“)_d(,)(,{,r)' (27.87)

Since the operator (27.63) is translation-invariant with respect to &8, the
effective mass wave function Fi(r, &) of the exciton may be written as a
column matrix;

ﬁ"""\-"l

Fmns
el¥® _5'_'_ . (27.68)

f&mm.

Fi(r, )= 5
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The matrix element of the operator (27.67) between the functions (27.68) is

x"x“ e (0 g (0)- (27.69)

4ne?

6UJ =

afmnm’n’ Knxl:

Note that although the last term originates in the exchange interaction of
electrons in the valence band and the conduction band, it describes the long-
range electron-hole interaction, which may be considered as the result of
virtual recombination and generation of an exciton /22.6, 22.8/. In the
literature it is therefore known variously as the exchange, resonance, or
annihilation interaction.

It is clear from (27.69) that AU depends essentially on the direction of
the vector . If we introduce corrections due to the short-range part of
the potential U(r), the Hamiltonian # will include exchange terms indepen-
dent of the direction of &.

Inclusion of short-range potential. To allow for these terms
we must retain the terms with M0 and L= 0 in (27.55). We first consid-
er the non-exchange terms. Disregarding the dependence of Ug s, on the
small quantity ¢, =Fk{— &, in (27.55) and noting that when ¢, < b, and ¢,=
= kj—k, < b,

60M+4|. -b;—q, = GDM. -bL 6#,. —qy

we obtain
Um'.t' n'E, = Va Z Bﬁ.m B?.'n Ubu G&M. —b;,oﬂ-—ﬂ =
Mw0
mk,. "' Lok
.=(y°2 % BL™ BE™ Usy b,y -0, — U.,a,,‘,,,,b,,,n] 84, —ayr (27.70)

It follows from (27.55) that the first term in this equation is equal to
Uno, o= Umwn» and so

mo.no0 mn
8U ,,'.;=-(Um,,, ug,. MGM] F— (27.71)
ml nl mn
where
1 . .
Upone = 7.7]‘ jl dx dx, U (r, —r))u;, (%)) u,, (%) 1) (%) 1, (%,)- (27.71a)
mn

Going over to the f-representation, i.e., multiplying by exp [i(q,r; +g.r2)] and
summing over ¢, and ¢,, we find

6U:':‘ (rl’ l',}: r(U:‘":' - Uuﬁm’m&n’u)b(fl - rg)- (2772)
Now, using (27.62) to go over from the electron-electron to the electron-

hole interaction, we have
OUE'?;' (r, r)=—> (Uf;':' — anm‘mbu‘n) 3(r, —ry), (27.73)

since Um'xu,m.'(n’ = Um’u’. mn .
Now for the exchange terms:

0750 o= [ ax dre, (1) 92, (0)9, (5)e,, (£) UG —ry)

nl mk,
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The first term Bf'™ in the expansion
3 ¥ (09, (1) =7 T BY" W

vanishes, since the functions u, and u, are orthogonal. If &4+ 0, as above,
we may disregard the dependence of the matrix element on & and #. Then
we obtain an expression similar to (27.71):

h
m::}::‘u'l;m Um'n’ 6.;+l;.l.+k,' (27'74}
n ok, mh R m
where
1 . .
U =35 [ [ U (1= £ (5 0 () 4 (5 05 (2 a5, i, (27.75)
Hence
xch fi r':‘ ’
o\ pory) = VU 8(r, —1)d(r, — 1) 0(r,—r}). (27.76)
mn 2 nm

It is evident from (27.76) and (27.62) that in transition to the electron-hole
interaction the operator §agexh, like 8U, retains its localized nature:

ax&’sil"*(rl. 7)==V Unxad(r)—12). (27.77)

The integral (27.75), which defines the order of magnitude of this exchange
splitting, is close to the exchange interaction value in the corresponding
atoms /22.5/. Thus the exchange splitting of the exciton is a factor of ap-
proximately (ao/an)® lower than the atomic splitting, where ay is the Bohr
radius of the exciton and a, lattice constant.

Indirect excitons. For an indirect exciton, k. &,, the wave func-
tion ¥(x;, x) must be expressed as a linear combination of products of the
functions

! ikr 1 Lk +R)r
¢'.=-—-——|’j.e =_u.e(c .
’/T e V’T e (27.78)
ikr Ik +k
P =5 Vuf =5 uf by,
where ¢,,c and ‘F,,v are eigenfunctions of 3, at the points &, and %,, respec-
tively, for all bands. The function ¥(x,, x;), which satisfies the antisymme-
try condition, has the form

W(x, x) = % E Fo(ry, 1) ¢n‘ (”1) 'pnv (xz) —F, (rs' ri) ‘bnc (x:) ¢n,(x1)' (27.79)

If we now write Fy(r, r,) in the form (27.51a), we obtain, instead of (27.51),

W (x,) %)= :?F‘t, Con,. 1 Pon,, (%10 %20 (27.80)
where
1
Pow o, = 35 [@5n, (%)) Pua, (%2) — P, (%2) Paa, (%))} (27.81)

Substituting (27.81) into (27.50), multiplying on the left by ¢2. . .(%, *,)
N 2

and integrating over # and ¥:, we obtain a system of equations for Csa, m,
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similar to (27.53), in which the diagonal terms #, and the interband terms
#, are defined, as for direct excitons, by (27.54) and (27.56), respectively.

If we disregard the short-range forces, i.e., neglect all components U,
with & containing either reciprocal lattice vectors by or the difference
k. — k,, the expression for #, will coincide with (27.55). However, as op-
posed to the case of direct excitons, where we must keep the coefficients C
with s=m,f=n and s=n, t=m in (27.57), here we have conduction band
functions ¥,, only among the function Vo, and valence band functions Vs,
only among the functions Y, - Therefore, if only the long-range potential is
included, there are no exchange terms for indirect excitons, while the non-
exchange terms are defined by the same equations (27.63a)—(27.63¢c) as for
the direct exciton.

If we include the short-range forces, i.e, retain in U all the components
U, with large k& and disregard their dependence on the small quantities &, &,
k, and k% in (27.74), as in (27.70), the result is the same equation (27.73)
for the non-exchange terms. The expression for Umn, ms is similar to(27.71a)

Since the expansion functions (27.81) represent an antisymmetrized pro-
duct, it follows that if the short-range effect is included a# will also include
terms as defined by (27.77), where, for indirect excitons,

! -
U;(,,"{(; =31 J- dx, dxz um'ac ("2) Kun'lp (xl) X

XU (r = r3) s (%) (Kt (%)) e! (o™ha) (72, (27.82)

Excitons in different band structures. We consider the main
types of band structures, without introducing the correction terms (27.63).

If both bands are degenerate when spin is neglected, the matrices #¢ and
" are diagonal and the system of equations (27.63) reduces to the equation

n!’ b! e?
L —_ - = 27.8
(M i Fiakig 5 kg — E)F[n. ry) =0. (27.83)
If the constant energy ellipsoids of the two bands are coaxial, then, setting

a!'=mj[(mf, + m},) in (27.66), we obtain an equation for [, (r) in terms of the
principal axes of the ellipsoids:

» & Kx?
(2:4 2mg k:_:?+Wu——E)fx(r)=0. (27.84)

Here the orbital kinetic energy does not depend on the translatory motion in
this approximation, and the equation for f,(r) is similar to the corresponding
equation (27.15) for an impurity center, except that 1/m¢ is replaced by

1 1 1

. + m (27.85)
and the energy of the translatory motion is defined by the overall mass of
the electron and the hole:

M, =m + m?. (27.86)

For spherical bands, the binding energy of the exciton has a hydrogen-like

spectrum

4 nxt
En= — g5t + 2 (27.87)
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If the constant energy surfaces are ellipsoids of revolution with the same
principal axes, the trial function fg(r) for the ground state may be taken in
the form (27.17) and its energy can be determined from Figure 28. In this
case, the representation according to which the total wave function of a
direct exciton transforms at the point & =0 is the product of three repre-
sentations: @y, according to which the functions fy(r) transform, and repre-
sentations D, and 9, of the groups Gs, according to which the basis func-
tions ¢, and Ky, transform:

D =Dy X Dpn X D (27.88)

This representation is usually reducible, and then a perturbation due to the
exchange interaction splits it into irreducible representations.

If only one of the bands, say the m band, is nondegenerate when spin is
neglected, while the n band is degenerate, equations (27.63) split into two
identical systems of N, equations. For degenerate bands, the binding energy
itself depends on &, i.e., the orbital motion may cause splitting of the ex-
citon band, as in degenerate electron bands.

For of =0, the corresponding equations for a direct exciton in Ge coin-
cide in form with the analogous equations (27.1)—(27.2) for an impurity center
except that |4| is replaced by |A| 4+ (#/2m*), where me¢ is the effective mass of
an electron in the conduction band at the point #=0. The variational func-
tions for the ground state, which, as in the case of an impurity center, is
fourfold degenerate, may be chosen in the form (27.23). The calculation
/22.4/ yields a value 0.00138 ev for the binding energy, in excellent agree-
ment with the experimental value; r, = 3208, r=220A4.

References /22.12, 21.14/ propose a different approximation method to
solve equation (27.1) for a shallow impurity center or an exciton in the case
of a degenerate valence band of the Ge type. The gist of the method is to
consider a Hamiltonian (27.2) with operator (k) defined by an equation
similar to (26.12), isolate the spherical part

5 () = (g + (v + 5 vo)) B2 — 2007 +V (), (27.88a)
and treat the remaining nonspherical part
' (k)=—2(v,— ¥) ,‘::‘. Ik} —4(v;—7) E} [1i0 ) ki, (27.88b)

as a perturbation. The eigenfunctions of the Hamiltonian (27.88a) are pro-
ducts of the eigenfunctions of the operator F =L +J and radial functions
defined by a system of two differential equations, evaluated by numerical

methods. Ref. [22.12/ takes 3= .é.(zy,+3y3}, and then y, — ’—% (Va—v3) »
¥a— ?5——52—{?2— ys). In calculating the spectrum, it is apparently more con-

venient to choose § in such a way that the corrections to the energy of a
given term from 2’ vanish to a first approximation.

Since the ground state functions transform according to the representation
¥, the total exciton function transforms according to the representation
D*=TJ XTI7 =Iz+ I'; +T's. Thus the exchange interaction splits this eight-
fold degenerate state into two threefold and one twofold degenerate states.
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The total wave function for indirect excitons transforms according to a
representation of the intersection G’ of the little groups Gi and Gi.. Repre-
sentations @, and 2] of the groups Gs, and Gas, become respectively repre-
sentations @, and @, of G, which in principle may be reducible,

If the envelope function ftransforms according to a representation 2y of
the group G’ in the case of simple bands, the total function transforms ac-
cording to the representation @yX @n X @5, and this state splits only as a
result of the exchange interaction.

If one of the bands, say the valence band, is degenerate and the represen-
tation 2 is reducible in the group G’, splitting of the exciton state will also
occur when the exchange interaction is neglected. For example, for indirect
excitons in Ge and Si, the eightfold degenerate ground state splits into two
fourfold degenerate state, since the representation Iy splits in the group
C3X Ci(point L) into Li+ Ls and Ls, and in the group Ci,(point A) into As and
Ar.* The exchange interaction will cause additional splitting of these repre-
sentations.

Transition from electron-electron to electron-hole
representation (Supplement to §27)

In the second-quantized formalism, the operator (27.61) may be written
¢ = 2 mem ('II" 'l) 'P;' (';) b (r1) @ ('; - "2) Spn +
mm’
+ Xyn (’5- '2) ":’ (’;) P, (r2) (’: - 'l) Spem +

rr!
+xw( : ’)¢$- (e 03 (72) m (1) ¥a(r2}  (27.89)
mn \N1 T2
The commutators of the electron creation operator ¢} (r) and destruction
operator ¢,(r) satisfy the relations
{9 (1) b (7)) = 88 (r — 7). (27.90)
(% () 9% (7)) = (b (1) By ()} =0.
The average over the vacuum is
(01 by (r) 97 ()1 0) = 8(r — #') 3, . (27.91)
To derive equation (27.61) in the r-representation, we must apply the oper-
ator # to the function Fpe,.(r, ry) ¥ (r) ® (r;)10), multiply on the left by

(0] ¥y (ri ) ¥ (ry), and average, integrating over r, , r} ; and r{ 5.
We define hole creation and destruction operators ¢} (r) and ¢, (r) by

O (F) =3, (. @F (1) =y, (7). (27.92)

We express ¢ in terms of ¢,, substitute into (27.89) and, using (27.90),
bring # to a form which differs from (27.89) only in that $a is replaced by
¢n. For this purpose we must change the notation, replacing K-'a by a’ and

* According to data for Ge in Kleiner, W, H, and B.Lax, Progress in Semicond., 5, this splitting is 1- 107%ev
for binding energy 3.5 -10"%ev.
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K-'a’ by n, r, by r; and by r,. Omitting terms that describe the interaction
of a conduction electron with all the electrons in a filled band (i.e., those
of these terms actually included in 2%,), we obtain

x" = Z Him (r;- 'l)q’;’ (':) $m (r1) 8 (’; - '2) 8y —
mm’'nn’
- x’fl‘l. Kn’ (r2' ';) @:: (';) Pn ('2} 8 (': - rl) am’m -
rir
~dtys (1) 02 (D0 DV 7.99)
m Kn' 172

Applying these operators to the function Fp...(r}, r3) b5 (ry) @ (r3)10), multi-
plying on the left by (0|¥,(r,)@,~(ry ). and performing the necessary inte-
gration, we obtain the equations in the r-representation, which differ from
(27.61) by the substitution:

Hyn(rp 1))  —> Fyugn (o r3)

rir; rir
%, ( ) — ( )
mn \T172 g A
which implies the rules (27.62).
In similar fashion, one can show that transition from the electron-

electron to the electron-hole interaction in the k-representation obeys
the rules

?‘ll h ee
s, = 93:(,,: "‘3' xfu'a;u'a; = ”m’n:xn, -,
n l, Kn ., -hz m "1" .t’ m l'llcu'. —l'

since Kk=—k.



