
Solid State Communications, Vol. 96, No. 4, p. 245-250, 1995 
Copyrii 0 1995 El!evie.r Science Ltd 

Printed in rest Bntain. All tights reserved 
0038-1098/95 $9.50 + .OO 

0038-1098(95)00268-5 

PREDICTED MODIFICATIONS IN THE 
DIRECT AND INDIRECT GAPS OF Si 

B. Bouhafs and H. Aourag 

Computational Materials Science Laboratory, Physics Department, University of Sidi-Bel-Abbes, 
22000 Algeria 

(Received 29 November 1994; in revised form 16 February 1995 by J. Jofrin) 

We have studied the effects of expansion of the lattice on fundamental 
band gaps in Si, with the use of an adjusted pseudopotential method. 
The results show that Si structure becomes a direct band gap. A 
correlation is given with the properties of tetrahedrally filled semi- 
conductors and those of porous silicon. 
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1. INTRODUCTION 

RECENT observation of photoluminescence in 
porous silicon at room temperature [l] has stimulated 
a great deal of interest in studying the origin of visible 
luminescence in porous silicon. Therefore, there has 
been a revival of interest in ways to create a silicon 
structure with a direct band gap. Bulk silicon has 
indirect band gap, which under normal circumstances 
prevents efficient interband radiative recombination. 
If the optical properties of silicon become as useful as 
the electronic properties, the popular semiconductor 
would play as large a role in the emerging technology 
of optoelectronics as it has in the microelectronics 
revolution. Thus the understanding of the optical 
properties of direct band gap silicon is important 
and the results may be a powerful prediction of the 
properties of porous silicon. Many experimental and 
theoretical investigations have been devoted to this 
goal, and several conjectures of the origin of this 
visible light emission have been proposed. 

The first is the investigation of silicon where the 
cubic symmetry is broken and the zone-edge states are 
folded back to the center of the zone [2-41. The second 
area focuses on predicting the properties of silicon 
with the diamond structure [5, 61. This in effect alters 
the chemical and structural environment of the bulk 
material in a uniform way. Here we consider the latter 
approach and attempt to provide a theoretical base 
for further studies of this material. 

At each stage the introduction of new materials and 

electronic band structure, D. elec- 

growth techniques has allowed new physical effects 
and led to significant advances in semiconductor 
applications. The growth of strained-layer structures 
should have several advantages. Strained layers allow 
for new materials combinations on established sub- 
strates. With the independent variation of band gap 
and lattice constant, it is possible to access new band 
regimes not otherwise achievable with III-V semi- 
conductors. 

Thin strained layer superlattices have recently 
emerged as a possible candidate for the creation of 
direct gap materials from constituents that have in- 
direct gaps. This is of great importance because it 
could lead to new optoelectronic devices based on Si, 
Ge, GaP, AlAs, AlSb, . . . which are indirect gap 
semiconductors, and are also the most technologically 
developed electronic materials. 

In this work we will examine the way to alter the 
direct vs indirect nature of the lowest optical gaps. 
Defining the “degree of indirectness” 6 = 
2(ED - Ei)/‘(ED + E;) in terms of the direct (ED) and 
indirect (Ei, evaluated at the X point in the Brillouin 
zone) band gaps, we will determine whether indirect 
gap Si, can be made direct (6 < 0) by lattice expansion 
effects, rather by conventional substitutional insertion 
(e.g., alloying indirect gap Si with direct gap Sn). 

We will then demonstrate how insights deduced 
from simple and (so far) hypothetical applied negative 
pressure can predict a new class of direct-gap semi- 
conductors. 
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In this study the charge densities and eigenvalues 
are obtained by solving the one-particle Schriidinger 
equation. The empirical pseudopotential method [7] is 
used in order to investigate the effects of cell volume 
on the size of the energy gap. 

2. CALCULATIONS 

Let us define our empirical pseudopotential para- 
meters (EPP) of a semiconductor as a super- 
position of the pseudo-atomic potential of the 
form V(r) = VL(r) + Vhit(r), where VL and V,, are 
local and nonlocal parts, respectively. In this calcula- 
tion we have omitted the nonlocal part. 

We regard the Fourier components of VL(r) as the 
EPP local parameters. 

We determine the EPP parameters by the non- 
linear least squares method, in which all the para- 
meters are simultaneously optimized under a defined 
criterion of minimizing the root-mean square (rms) 
deviation. The experimental electronic band structure 
at normal and under pressure data are used. 

Our nonlinear least squares method requires that 
the r.m.s.-deviation of the calculated level spacings 
(LS) from the experimental ones defined by 

S = [Z;,j)[AE(i,“]2/(m - N)] 1’2 (1) 

should be minimum 

A@) = E exp(i J) _ E (ij) 
talc 

where E exp(iJ) and E 2) are the observed and 
calculated LSs between the i th state at the wave 
vector k = ki and the j th at k = kj, respectively, in 
the m chosen pairs (i,j). N is the number of the EPP 
parameters. The calculated energies given by solving 
the EPP secular equation depend nonlinearly on the 
EPP parameters. The starting values of the para- 
meters are improved step by step by iterations until 
6 is minimized. Let us denote the parameters by P, 
(u = 1,2, . ..) N) and write as PU(n + l)P,(n) + AP,, 
where P,(n) is the value at the nth iteration. These 
corrections AP, are determined simultaneously by 
solving a system of linear equations 

%Y= lP;,j~(Q(e: - QC>(QLt - Q{t)l 

= C ;,j, [E&j) - E,$$(~)](Q~~ - QLr), (2) 

u’ = (1, . . ..N) 

where Ei$( ) ’ h n IS t e va ue at the n th iteration, Q, is 1 
given by 

e’, = Es4 [Cf,(ki)]* [aH(ki)/aPJ,1 C$ (ki). (3) 

H(ki) is the pseudo-Hamiltonian matrix k = ki in the 
plane wave representation, and the i th pseudo-wave 
function k = ki is expanded as 

&i(r) = C,Ci(ki)exp[i(ki + kq)r], (4) 

k, being the reciprocal lattice vector. Equation (2) 
shows that all of the parameters are determined auto- 
matically in an interdependent way. 

In our calculation we have used five pairs of states 
ki and kj: (F-I’), (r-X), (II-L), (X-X), (L-L), 
which corresponds to five LSs. The dimension of 
our eigenvalue problem is a (136, 136) matrix. How- 
ever, 59 plane waves give a good convergence. 

The resulting pseudo-wave-functions \knL(r), 
which are obtained once the pseudopotential form 
factors are adjusted, are used to compute the total 
valence charge density according to the following 
expression (n is the band index and k stands for 
wave vectors): 

p,(r) = e~,%f%&)12 (5) 

Since we are not interested in the total valence charge 
density in the whole Brillouin zone, but at the high 
symmetry points in this zone for specific band. Thus 

p,(r) = cl&&Y2 (6) 

with k = 27r/a(O, 0,O) stands for the I point and 
k = 27r/a( l,O, 0) for the X point (a is the lattice 
constant), and n is equal to 5 or 6 for the first 
conduction band or the second conduction band 
respectively. 

3. RESULTS 

Table 1 gives the adjusted pseudopotential form 
factors of Si which give a reasonable agreement with 
experiment for the principal energy gap (Table 2). 
Figures 1 and 2 display the band structure at different 
pressure and the variation of the different band gaps 
with lattice constant variations for Si respectively. At 
the equilibrium volume, the band gap is indirect from 
r t0 x(6 = 0.90). 

The indirect gap first increases with volume until 
the I state crosses the X state. At around V/ V,, = I.17 
which corresponds to a lattice constant equal 5.728 A 
the gap becomes direct at I. For Si, there exists a 
range of volumes where the gap is direct. The volume 
at which the gap becomes direct, however corresponds 

Table 1. The adjusted local pseudopotential form 
factors VL(lG12) 

Si 

V(3) in Ryd V (8) in Ryd V (11) in Ryd 

-0.236348 0.05583 0.06747 1 
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Table 2. Comparison <f the calculated energy Levels to a negative pressure of about -160 Kbar. One 
spacing (in eVJ of Sr with experiment and other approach to achieving a larger volume is to grow 
calculations several layers of Si on a substrate which forces the 

Si 
crystal to have a iarge iattice constant. A suirabie 
substrate will be AlP (4.77 A) which is large enough. 

EPM (aj CPA ibj Z‘ai Exp TT___.^_.__ :& :_ -l-- 1:1.-l.. rL,+ ^.., n..., ,..I..+,,+, tha nuwcvtx, II 15 ~113” 11h~1v CAIQL ~81 ally JuuDcIoLti Cl.r . , 

r&r”,, 3.40 3.43 3.39 3.4(c),3.37 (d) 
Xf-I?;, 1.17 1.34 1.28 1.3(d) 
Lf-r;s 2.23 2.24 2.01 2.01 (e),2.1 (f) 
A-l?& 1.11 1.142 1.17(c),i.i5(dj 

highly strained lattice would relax via dislocations 
after several iayer a~. grown I&10]. This situation 
could be overcome as it has been shown recently, by a 
misorientation of the substrate [ 11 J. 

Despite the fact that the large volume required to 

Wave vector (k) 

Wave vector ( k ) 
Fig. 1. (a) The siiicon band structure at normai (soiid iinesj and under positive pressure (dashed ihtxj. jbj The 
silicon band structure at normal (solid lines) and under negative pressure (dashed lines). 
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Fig. 2. The calculated values of the Err, Erx and ErL gaps plotted as function of lattice expansion for Si (the 
dashed vertical line corresponds to the equilibrium lattice parameter). 

create direct gap in Si is probably difficult, there is still 
interesting and potentially useful properties of Si from 
this study. For example, there is one noticeable fea- 
ture in the variation of Si levels with pressure. First, at 
high enough volume the gap will close and the system 
will metallize. This corresponds to metallization at a 
large negative pressure, in contrast to the usual pro- 
cess of metallization which occurs at positive pressure 
due to the F-X overlap [12-141. 

Diamond Si is the most loosely packed structures 
consistent with the tetrahedral coordination for both 
types of atoms. Their openness is highlighted by the 
fact that the ratio of the volume of touching atomic 
spheres to that of the unit cell is 0.34, less than half of 
that for the close-packed element structures (0.74). 
These homeoctect structures may be characterized by 
the existence of four vacant (v) lattice sites (holes) at 
the tetrahedral interstitial sites nearest both Si atoms 
(sites V Si), both at the normal nearest-neighbour 
tetrahedral distance. Hence, as we traverse the 
< 1 1 1 > body diagonal in the Si, with the origin, 
say, at the atom site Si (0, 0, 0), we encounter the other 
Si at (l/4, l/4,1/4), the Vsitesat(1/2,1/2,1/2)and(3/4, 
3/4, 3/4), both unoccupied in normal tetrahedral Si. 
We may structurally designate this arrangement as 
VSiSiV. Therefore, it can be affected by diffusion of 
interstitial impurities (e.g. H, He and Li), occupying 
the Vs sites. We refer to the structures with partially or 
completely occupied Vs sites as “filled tetrahedral 
compounds” [ 15-241. 

Recent interest in the modifications of the elec- 

tronic band structures of tetrahedral semiconductors 
by interstitial impurities has renewed effort to obtain 
detailed analyses of the topologies of electron 
charge densities at selected high symmetry k points 
along the conduction band edge of these materials 
[17-291. Such charge distribution has been shown to 
depend strongly on the particular k point under 
consideration. For example, the charge densities at 
the X point of the conduction-band edges (Xc) of Si 
[30], Ge [15], GaAs [25, 261, ZnSe [27] differ consider- 
ably from those at Lc or I”. These charge densities at 
selected k point can then be decomposed into s-, p-, 
and d-orbital contributions, and the information is 
used to analyze the observed differences along the 
charge-density topologies at the I’ and X k points. 

Hence, in our calculations the presence of He 
atoms will be manifest not by where valence electrons 
are found, but rather by where they are not found. 
The problem of finding the changes induced in the 
electronic structure by insertion of He atoms in the 
empty interstitial sites is now mapped into a more 
transparent problem of calculating the response of the 
host electronic structure to electron-repelling poten- 
tial wells at these sites. 

With this formulation of the problem, it is 
straightforward to understand the potential suscept- 
ibility of diamond materials to band modification by 
insertion of closed-shell atoms at the interstitial sites. 
The high tetrahedral symmetry, but different content, 
of the occupied Si sites in the (highly directional-sp3- 
bonded diamond material implies very different, quite 
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spatially inhomogeneous charge distributions for 
Bloch states r,&(r) for different high symmetry 
points in the Brillouin zone, unlike the roughly uni- 
form valence charge density for e.g., s electron in 
metals. Moreover, the vacant interstitial Vs sites 
possess the same high symmetry, and perturbing 
potentials centered on these sites will selectively 
affect band associated primarily with these sites. One 
expects the principal effect of insertion of a closed- 
shell atom on a given state to be simply expulsion 
from the Pauli exclusion volume of its contribution to 
the valence charge density. These circumstances raise 
the possibility that filling the tetrahedral sites will have 
a chemically specific, selective effect on certain bands. 

The emphasis above on sites and excluded volume 
makes it natural to seek an explanation in the charge 
densities for the relevant states. Whereas the charge 
densities of the occupied (bonding) bands at Vs are 
small, even a minor rearrangement can have a major 
effect on their antibonding (i.e. conduction band) 
counterparts. In Fig. 3 we display for Si the pseudo- 
charge density in the (1 10) plane for the lowest 
conduction bands at I’:’ and X(X;). We see that at 
the conduction band Ic [Fig. 3(a)] the electron charge 
is anti-bonding-like with a nodal plane intersecting 
the internuclear axis connecting the Si atoms. This 
charge distribution is predominantly s-like, most of 
the charge is localized on the ion sites. The situation at 
X however, is dramatically different since it contains a 
significantly higher d contribution and thus the elec- 
tronic charge density is more delocalized. Finally, 
there is a buildup of charge density in the interstitial 
region (Fig. 3). 

Therefore, these figures suggest the lowest conduc- 
tion band will show extreme selectivity with respect to 
insertion of closed-shell atoms: the _Xj band density 
has maxima at or near Vs sites, whereas the I’:’ band 

r 

has a much smaller Vs charge-density disparity. 
Therefore, because of the extremely high pseudo 
charge density at the Vs for the X, band, but not for 
the Ie states, if we insert He atom at Vs (yielding what 
we call HeSiSiHe) will selectively shift to higher 
energies the X,, conduction band more than do the 
other bands, exposing the I?: point as the conduction- 
band minimum. 

The system has become a direct-gap material 
thus insertion of He dramatically reduces the indirect- 
ness parameter 6 by a comparable amount for Si 
(changes in S of -0.98) [30], converting Si into a 
slightly direct-gap material (since its theoretical initial 
6 = 0.9). 

The foregoing analyses indicates that the direct- 
ness of the band gaps can be enhanced by placing 
electron repelling objects in the tetrahedral interstitial 
sites where the lowest conduction band has a higher 
electron density than other bands and hence is selec- 
tively shifted upwards. Comparatively, the modelling 
of the lattice expansion effect on the band structure of 
Si (as seen in Fig. 2) shows the same effect as those 
produced by insertion of He. Since, as we observed in 
Fig. 1, the X, state is raised, whereas the Ic state is 
lowered, thus transforming Si to a direct material. 
Therefore, we may then conclude that the effect of 
inserting He will produce a lattice expansion. This 
assumption is supported by the work of Wood et al. 
[30] who found that insertion of He into the two 
interstitial sites in Si dilates the lattice by 3.9%, 
which corresponds to a lattice constant of 5.61 A. 

A comparison of the effect of lattice expansion and 
those of He, shows that for a lattice parameter of Si 
equal 5.61 A, which corresponds to a negative pres- 
sure of 110 Kbar, 6 is equal to -0.23, whereas accord- 
ing to Wood et al. [30] the effect of inserting He 
produces a material with 6 = 0.08, this result has 

Fig. 3. (a) The calculated pseudocharge densities for the first conduction band in Si at the I point in the (1 10) 
plane at normal pressure. (b) The calculated pseudocharge densities for the first conduction band in Si at the X 
point in the (1 10) plane at normal pressure. 
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been obtained by the LDA [3 1,321. We know that the 
LDA produce gaps which are not consistent with the 
experimental results. Therefore, we think that our 
results 6 = 0.23 is within the LDA uncertainty 
(0.15). Therefore a strong correlation is noticed 
between insertion of interstitial impurities at the 
tetrahedral vacant sites and the effect of negative 
pressure. We may then conclude, that in order to 
produce negative pressure, it is possible to insert He. 
The experimental preparation of this new class of 
semiconductors does not appear at the present easy. 
On the above assumptions, we have estimated the 
pressure necessary to force the He stoichiometrically 
into the vacant sites of Si as few hundred Kbar, 
assuming a tixed lattice constant. One can envisage 
an ingenious pressure experiment so as to put a 
substantial amount of He into Si. Ion implantation 
of He, preferably along the channelling directions of 
Si with low kinetic energies, could be explored. Finally 
we may combine the effect of growing Si on substrate 
with a large lattice constant (in order to have large 
unit cells) with the latter method, to improve the way 
for producing HeSiSiHe. 
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