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As a generalization of two-level quantum systems (qubits), 
multidimensional quantum systems (qudits) exhibit distinct 
quantum properties and can offer improvements in particu-
lar applications. For example, qudit systems allow higher 
capacity and noise robustness in quantum communications 
(1–3), can be used to strengthen the violations of generalized 
Bell and Einstein-Podolsky-Rosen (EPR) steering inequali-
ties (4–6), provide richer resources for quantum simulation 
(7, 8), and offer higher efficiency and flexibility in quantum 
computing (9, 10). Moreover, encoding and processing 
qudits can represent a more viable route to larger Hilbert 
spaces. These advantages motivate the development of mul-
tidimensional quantum technologies in a variety of systems, 
such as photons (11, 12), superconductors (8, 13), and atomic 
systems (14, 15). While complex interaction engineering and 
control sequences are required to encode and manipulate 
superconducting and atomic qudits, photons represent a 
promising platform able to naturally encode and process 
qudits in various degrees of freedom, e.g., orbital angular 
momentum (OAM) (11, 12), temporal modes (3, 16), and fre-
quency (17, 18). Previous work on qudits includes realiza-
tions of complex entanglement (19), entanglement in ultra-

high dimension (20), and practical applications in quantum 
communication (1–3) and computing (7–9). However, these 
approaches present limitations in terms of controllability, 
precision and universality, which represent bottlenecks for 
further developments of multidimensional technologies. For 
example, the arbitrary generation of high-dimensional en-
tanglement is a key experimental challenge, typically relying 
on complex bulk-optical networks and post-selection 
schemes (12, 16–18). In general, these approaches lack the 
ability to perform arbitrary multidimensional unitary opera-
tions with high fidelity (16, 19), an important factor in quan-
tum information tasks. Integrated microring resonators able 
to emit multidimensional OAM (21) and frequency (18) 
states have been reported, but these present limited fidelity 
and difficulties for on-chip state control and analysis, thus 
not fully exploiting the high precision, scalability and pro-
grammability of integrated optics. 

We report a multidimensional integrated quantum pho-
tonic device that is able to generate, manipulate and meas-
ure multidimensional entanglement fully on-chip with 
unprecedented precision, controllability and universality. 
Path-encoded qudits are obtained having each photon exists 
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The ability to control multidimensional quantum systems is key for the investigation of fundamental 
science and for the development of advanced quantum technologies. We demonstrate a multidimensional 
integrated quantum photonic platform able to generate, control and analyze high-dimensional 
entanglement. A programmable bipartite entangled system is realized with dimension up to 15 × 15 on a 
large-scale silicon-photonics quantum circuit. The device integrates more than 550 photonic components 
on a single chip, including 16 identical photon-pair sources. We verify the high precision, generality and 
controllability of our multidimensional technology, and further exploit these abilities to demonstrate key 
quantum applications experimentally unexplored before, such as quantum randomness expansion and 
self-testing on multidimensional states. Our work provides an experimental platform for the development 
of multidimensional quantum technologies. 
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over d spatial modes simultaneously, and entanglement is 
produced by a coherent and controllable excitation of an 
array of d identical photon-pair sources. Our device allows 
the generation of multidimensional entangled states with an 
arbitrary degree of entanglement. Universal operations on 
path-encoded qudits are possible in linear-optics for any 
dimension (22, 23), and our device performs arbitrary mul-
tidimensional projective measurements with high fidelity. 
The capabilities achieved allow us to demonstrate high-
quality multidimensional quantum correlations, verified by 
generalized Bell and EPR steering violations, and to imple-
ment unexplored multidimensional quantum information 
protocols. 

 
Large-scale integrated quantum photonic circuit 
Entangled path-encoded qubits can be generated by coher-
ently pumping two spontaneous parametric down conver-
sion (24) or spontaneous four-wave mixing (SFWM) photon-
pair sources (25). The approach can be generalized to qudits 
via the generation of photons entangled over d spatial 
modes by coherently pumping d sources (24). However, scal-
ing this approach to high dimensions has been challenging 
due to the need of a stable and scalable technology able to 
coherently embed large arrays of identical photon sources 
and to precisely control qudit states in large optical inter-
ferometers. 

Silicon quantum photonics, offering intrinsic stability 
(26), high precision (27) and dense integration (28), can 
provide a natural solution. We devise a large-scale silicon 
quantum photonic circuit to implement the scheme (Fig. 
1A). A total of 16 SFWM sources are coherently pumped, 
generating a photon-pair in a superposition across the ar-
ray. As both the photons must originate from the same 

source, the bipartite state created is 
1

, ,0
1 1d

k i k s kk
c−

=∑  where 

|1〉i,k (|1〉s,k) indicates the Fock state of the idler (signal) pho-
ton being in its k-th spatial mode and ck represents the 

complex amplitude in each mode (with 
2 1kc =∑ ). The 

mapping between the Fock state of each photon and the 
logical state is the following: we say that the qudit state is 
|k〉 (k = 0, …, d – 1) if the associated photon is in its k-th 
optical mode. This yields a multidimensional entangled 
state of the form: 

 
1

0
ψ d

kd i sk
c k k−

=
=∑      (1) 

 
where the coefficients ck can be arbitrarily chosen by con-
trolling the pump distribution over the d sources and the 
relative phase on each mode. This is achieved using a net-
work of Mach-Zehnder interferometers (MZIs) at the input 
and phase-shifters on each mode. In particular, maximally 

entangled states 
1

0
ψ d

d i sk
k k d−+

=
=∑  can be obtained 

with a uniform excitation of the sources. The two non-
degenerate photons are deterministically separated using 
asymmetric MZI filters and routed by a network of wave-
guide crossings, grouping the signal photon into the top 
modes and the idler photon into the bottom ones (see Fig. 
1A). We can then locally manipulate and measure the state 
of each qudit. Linear-optical circuits enable the implemen-

tation of any local unitary transformation ˆ
dU  in dimension 

d (22, 23). A triangular network of MZIs and phase-shifters 
is used, which allows us to perform arbitrary local projective 
measurements, and two detectors are used to measure the 
outcomes. In this scheme, the measurement outcomes on a 
specific basis are collected one by one by rotating the qudits 
reference frame and using one detector per photon. The 
collection of the d2 outcomes thus requires d2 detections in 
total. For more general implementations, the simultaneous 
collection of all the outcomes can be achieved via universal 
qudit operations (23) and the detection of each photon on 
all the output modes with 2d detectors (inset of Fig. 1A). For 
more details on the device and the experimental setup see 
(29). 

The 16 photon-pair sources are designed to be identical. 
Two-photon reversed Hong-Ou-Mandel (RHOM) interfer-
ence is used to verify their performance, where the fringe 
visibility gives an estimate of the sources’ indistinguishabil-
ity (26). RHOM interference is tested between all the possi-

ble pairs of the 16 sources, performing 16
2

120 
  
 

=  quantum 

interference experiments and evaluating the corresponding 
visibilities. The pair of sources used for each interference 
experiment is selected each time by reconfiguring the inter-
ferometric network. Approximately a rate of 2kHz photon-
pair coincidences was observed in typical measurement 
conditions, from which accidentals were subtracted. For the 
measured visibilities (Fig. 1D), in all cases we obtained a 
visibility > 0.90, and more than 80% cases presented > 0.98 
visibility. These results show a state-of-the-art degree of 
source indistinguishability in all 120 RHOM experiments, 
leading to the generation of high quality entangled qudit 
states. 

Each of the MZIs and phase-shifters can be rapidly recon-
figured (kHz rate) with high precision (26, 28). The quality of 
the qudit projectors is characterized by the classical statistical 
fidelity, which quantifies the output distribution obtained pre-
paring and measuring a qudit on a fixed basis. We measured 
the fidelity of projectors in dimension d = 2 to 16 in both the 

computational basis Ẑ k k= , and in the Fourier-transform 

basis F̂ =  

, where ( )1

0
exp 2πd

k
ik d k d−

=
=∑ 

 and 

k, ℓ = 0, …, d – 1 (Fig. 1E). We observe for d = 8 fidelities of 
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98% in the Ẑ -basis and 97% in the F̂ -basis, while for d = 

16 fidelities of 97% in the Ẑ -basis and 85% in the F̂ -basis 
(29). The residual imperfections are mainly due to thermal 

cross-talk between phase-shifters (higher in the F̂ -basis), 
which can be mitigated using optimized designs for the 
heaters (28) or ad hoc characterization techniques (23). 

Due to a fabrication imperfection in the routing circuit 
one of the modes (triangle label in Fig. 1A) for the idler pho-
ton presents an additional 10 dB loss. For simplicity we ex-
clude this lossy mode in the rest of our experiments, and 
study multidimensional entanglement for dimension up to 
15. 

Figure 1B represents the experiment in the standard 
framework for bipartite correlation. The correlations be-
tween two parties Alice (A) and Bob (B), here identified by 
the signal and idler photon respectively, are quantified by 

joint probabilities p(ab|xy) = ( )ˆ ˆˆTr ρd a x b yM M ⊗ 
, where 

ρ̂d  is the shared d-dimensional state, x, y ∈ {1, …, m} repre-

sent the m measurement settings chosen by Alice and Bob, 
and a, b ∈ {0, …, d – 1} label the possible outcomes with 

associated measurement operators ˆ
a xM  and ˆ

b yM . The joint 

probabilities for each measurement are calculated by nor-
malizing the coincidence counts over all the d2 outcomes in 
a given basis. 

 
Quantum state tomographies 
Quantum state tomography (QST) allows us to estimate the 
full state of a quantum system, providing an important di-
agnostic tool. In general, performing a complete tomogra-
phy is an expensive task both in terms of the number of 
measurements and the computational time to reconstruct 
the density matrix from the data. For these reasons com-
plete QST on entangled qudits states has been achieved only 
up to 8-dimensional systems (30). In order to perform the 
tomographic reconstructions of larger entangled states, we 
use quantum compressed sensing techniques. Inspired by 
advanced classical methods for data analysis, these tech-
niques reduce the experimental cost for state reconstruction 
(31), are general for density matrices of arbitrary dimension 
(32), and have been experimentally demonstrated to charac-
terize complex quantum systems (32, 33). Compressed sens-
ing QST was implemented to reconstruct bipartite 
entangled states with local dimension up to d = 12. Fidelities 

with ideal states ψd
+  are reported in Fig. 2A. For dimen-

sions d = 4, 8 and 12 we plot the reconstructed density ma-
trices, with fidelities of 96%, 87%, and 81%, respectively (Fig. 
2). These results show an improvement of the quality for 
multidimensional entanglement (18, 30). More details are 

reported in (29). 
 

Certification of system dimensionality 
The dimension of a quantum system quantifies its ability to 
store information and represents a key resource for quan-
tum applications. Device-independent (DI) dimension wit-
nesses enable us to lower bound the dimension of a 
quantum system solely from the observed statistics, i.e., cor-
relation probabilities p(ab|xy), making no prior assump-
tions on the experimental apparatus (see e.g., (34, 35)). 
Here, we adopt the approach of (35) to verify the local di-
mension of entangled states in a DI way in the context 
where shared randomness is not a free resource. The lower 

bound on the system dimension is given by ( )p   , where 

(p) is a nonlinear function of the correlations, and ε    

indicates the least integer ≥ ε. While with d we indicate the 

local dimension of the qudit encoded in d modes, ( )p    

represents the certified dimension of the quantum system, 
that is the minimum dimension required to describe the 
observed correlations. We adopt two different DI measure-
ment scenarios, with experimental results shown in Fig. 3A. 
In scenario I, we calculate the bound from the measured 
(partial) correlations for the Magic Square and Pentagram 
games (36) (Fig. 3B). For example, to certify 8 × 8 entangled 
states, locally equivalent to a 3-qubit system, we perform a 

Ẑ -basis measurement on Alice’s system, while on Bob’s sys-

tem we use the Ẑ -basis and the one which simultaneously 
diagonalizes the commuting operators ZZZ, ZXX, XZX, and 
XXZ (see lines L3 and L5 in Fig. 3B respectively). In the ab-

sence of noise we would achieve  = 8. Using the measured 

correlations we obtain ( )I
8 7.22 0.05p ≥ ±  which yields 

the optimal lower bound ( )I
8 8p  =  . In scenario II, we 

compute ( )II
dp  for correlations II

dp  obtained by perform-

ing Ẑ -basis measurements on both sides of the maximally 
entangled state of local dimension d. We expect less experi-
mental noise in this scenario (see Fig. 1D). As shown in Fig. 

3A, the experimentally observed correlations II
dp  yield 

( )II
dp d  =   for all d ≤ 14, certifying the correct dimen-

sions. Further details can be found in (29). 
 

Multidimensional Bell correlations 
and state self-testing 
Bell inequalities enable to experimentally study quantum 
non-locality, which indicates the presence of correlations 
incompatible with local-hidden variables (LHV) theories. 
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Non-locality can be demonstrated by the violation of Bell 
inequalities of the form Sd ≤ Cd, where the expression Sd is a 
linear function of the joint probabilities, and Cd is the classi-
cal bound for LHV models. Although our implementation 
does not represent a rigorous and loophole-free test of non-
locality, Bell inequalities are here used as an experimental 
tool to benchmark the quality of the multidimensional en-
tanglement and to investigate possible future applications. 
We study two types of generalized Bell-type inequalities for 
d-dimensional bipartite systems: the SATWAP inequalities 
(Salavrakos-Augusiak-Tura-Wittek-Acin-Pironio), recently 
introduced in (6), and the standard CGLMP inequalities 
(Collins-Gisin-Linden-Massar-Popescu) (5). In contrast to 
CGLMP inequalities, SATWAP inequalities are explicitly 
tailored to obtain a maximal violation for maximally entan-
gled qudit states. Here we test the 2-input version of the 
SATWAP inequalities by measuring the joint probabilities to 
obtain the quantity 
 

2 1

1 1

d
l l

d i i
i l

I A B
−

= =

=∑∑

                  (2) 
 

where the 2(d – 1) values l l
i iA B  represent generalized Bell 

correlators, whose explicit form is given in (29). The Bell 

inequality here is given by d dI C≤ , where the bound for 

classical LHV models is Cd = [3cot(π/4d) – cot(3π/4d)]/2 – 2. 

The maximum value of I  obtainable with quantum states 
(Tsirelson bound) is known analytically for arbitrary dimen-

sions and is given by 2 2d dI Q d≤ = − . This maximal viola-

tion is achieved with maximally entangled states (6). 
In Fig. 4A we show the experimental values of the gen-

eralized correlators Re l l
i iA B   . The correlation measure-

ments are performed in the Fourier bases provided in (29). 
Figure 4B shows the obtained values of dI  for dimensions 2 

to 8, together with the analytical quantum and classical 
bounds. In all cases the classical bound is violated. In par-
ticular in dimensions 2–4 a strong violation is observed, 
closely approaching the Tsirelson bound Qd. 

We report in Table 1 the experimental values for the 
CGLMP inequalities. Also for CGLMP, strong violations of 
LHV models are observed. As an example, for d = 4 we ob-
serve S4 = 2.867 ± 0.014, which violates the classical bound 
(i.e., Cd = 2 for CGLMP inequalities) by 61.9σ, and is higher 
than the maximal value achievable by 2-dimensional quan-

tum systems ( )2 2 2S =  by 2.8σ, indicating stronger quan-

tumness for higher dimensions. 
The near-optimal Bell violations enable the self-testing 

of multidimensional entangled states. The task of self-
testing represents the DI characterization of quantum de-
vices by a classical user, based solely on the observed Bell 
correlations (37, 38), and thus does not require making any 
assumption about the devices being tested, which is desira-
ble for practical quantum applications. In more details, if 
the maximal violation of a Bell inequality can only be 
achieved by a unique quantum state and set of measure-
ments (up to local isometries), a near-optimal violation ena-
bles to characterize the experimental device. In (6) it was 
shown that the SATWAP inequality can be used to self-test 

the maximally entangled state of two qutrits 3ψ
+ ; in par-

ticular, employing a numerical approach from (39), a lower 
bound on the state fidelity can be obtained from the meas-

ured value of 3I . In (29) we generalize it also for arbitrary 

qutrit states of the form |00〉 + γ|11〉 + |22〉 (up to normaliza-
tion). In Fig. 4C we report the experimental self-tested lower 
bounds on the fidelities for different values of γ = 1, 0.9, and 

( )11 3 2 0.792− ≈ . This is possible by exploiting the ca-

pability of the device to generate multidimensional states 
with tunable entanglement. In particular, γ = 1 indicates 

3ψ
+  and ( )γ 11 3 2= −  represents the state that maxi-

mally violates the CGLMP inequality (39). We experimental-
ly achieve self-tested lower bounds on the fidelities of 79.9%, 
83.2% and 68.0% respectively for the three states. We re-
mark that the certification of high fidelities in a self-testing 
context is only achievable in the presence of near-ideal ex-
perimental correlations. The measured self-tested fidelities 
are comparable with the reported values obtained from full 
tomographies in other experimental approaches (18, 30). 
Although our device provides high violations also for di-
mensions higher than 3, it remains an open problem wheth-
er the approach based upon SATWAP inequalities can be 
generalized to self-test states in arbitrary dimension (6). 

 
Multidimensional randomness expansion 
Randomness is a key resource in many practical applica-
tions. Generating certified randomness is however a notori-
ously difficult problem. Quantum theory, being 
fundamentally nondeterministic, provides a natural solu-
tion. The probabilistic nature of measurements forms the 
basis of quantum random number generators (40). Remark-
ably, quantum theory can go one step further and allows a 
stronger form of certified randomness: measurement statis-
tics which exhibit non-local correlations are necessarily un-
certain and contain randomness. Crucially this remains true 
even if some or all of the experimental apparatuses used to 
generate the non-local correlations are uncharacterized or 
untrusted (41). That is, the measurement statistics are ran-
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dom not only for the user of the devices but also for any 
other party who may have additional knowledge about the 
devices, such as a potential eavesdropper. 

The two scenarios considered here are: (i) Randomness 
certified by Bell inequality violations, where two untrusted 
measuring apparatuses are used to generate randomness, 
providing a fully DI certification (41); (ii) Randomness certi-
fied by EPR steering inequality violations, where one trusted 
and one untrusted measuring apparatuses are used, with 
randomness generated from the untrusted device, providing 
a one-sided DI (1SDI) certification (42). 

The protocol in either case consists of performing n 
runs of a Bell or steering test, using a small seed of ran-
domness to choose the measurement settings in each run. 
The violation of the corresponding Bell or steering inequali-
ty is then estimated from the raw data. The randomness of 
the string s of measurement outcomes of the untrusted ap-
paratuses is then lower bounded as a function of the ob-
served violation. Since an initial seed of randomness is 
necessary, this process achieves randomness expansion as 
new private randomness is generated in the process. The 
randomness of the string s is quantified in terms of min-
entropy Hmin = –log2 Pg, where Pg is the predictability of s, 
i.e., the probability it can be correctly guessed. 

To study DI randomness expansion, we use violations of 
the above SATWAP Bell inequalities, while in the 1SDI case 
we use violations of the EPR steering inequality (29) 

 

( ) ˆ ˆβ Tr ρ 1 1d b y a x
a b
x y

p a x M d
=
=

 = ≤ + ∑                (3) 

 
Here p(a|x) are the probabilities of Alice’s uncharacterized 

measurements; 0
ˆ

kM k k= , 1M̂ = − −


 
 are the char-

acterized measurements of Bob, with |k〉 corresponding to 

the Ẑ -basis and |ℓ〉 to the F̂ -basis, defined above; ρ̂a x
 in-

dicates the reduced state for Bob when the measurement x 
is performed on Alice and outcome a is obtained. Quantum 
states can violate this inequality and maximally achieve βd = 
2. Figure 5A reports the experimentally measured values of 
βd up to dimension 15, which display violations of the local 
bound in all dimensions. We note that this provides a 1SDI 
certification of the presence of bipartite multidimensional 
entanglement between Alice and Bob in all cases (4). 

In the DI setting, the measuring apparatuses of Alice 
and Bob are both untrusted, and the string of outcomes s = 
(a, b), where a (b) is the list of data collected by Alice (Bob). 
In the 1SDI setting the measuring apparatus of Alice is un-
trusted, and the string of outcomes is s = a. Details of how 
randomness is certified, as well as the maximal theoretical 

amount of randomness that can be certified in each case are 
provided in (29). A particularly demanding task is the effi-
cient generation of randomness – to generate more than 1 
bit of randomness per experimental run, i.e., to achieve Hmin 
> n. For qubits, this is only possible using non-projective 
measurements (with more than 2 outcomes) (43) or with 
sequences of measurements (44). In contrast, multidimen-
sional entangled states provide a natural route based upon 
projective measurements. 

In Figs. 4B and 5A the minimum values of dI  and βd 

above which more than one bit of randomness per run is 
certified in the DI or 1SDI setting, are shown as a function 
of dimension (yellow regions). The randomness associated 
with the Bell violations shown in Fig. 4A, are reported in 
Fig. 5C. Efficiency Hmin/n > 1 is achieved for d = 3 and 4. The 
largest amount of randomness per run is obtained for d = 4, 
where Hmin/n = 1.82 ± 0.35 random bits. The experimentally 
measured values of βd are shown in Fig. 5A, and the associ-
ated randomness is reported in Fig. 5B. Here efficiency 
Hmin/n > 1 is preserved for the range 4 ≤ d ≤ 14, indicating, 
as expected, stronger robustness in the 1SDI case. 

 
Conclusion 
We have shown how silicon-photonics quantum technolo-
gies have reached the maturity level which enables fully on-
chip generation, manipulation and analysis of multidimen-
sional quantum systems. The achieved complexity of our 
integrated device represents a significant step forward for 
large-scale quantum photonic technologies. We remark that 
in the experimental tests performed here the detection and 
locality loopholes were not closed, which was not an imme-
diate goal of this work. However, the results demonstrate 
the unprecedented capabilities of multidimensional inte-
grated quantum photonics which will enable a wide range 
of practical applications. For example, high-rate device-
independent randomness generators can be realized har-
nessing the abilities of efficient randomness expansion 
shown here and high-speed on-chip state manipulation. As a 
single chip proof-of-principle demonstration of quantum 
key distribution, we report in (29) that Alice and Bob can 
share high-rate secure keys enabled by the high-fidelity con-
trol and analysis of the entangled qudits. Together with de-
veloped techniques for the phase coherent chip-to-chip 
qudits transmission, e.g., via a multi-core optical fiber (45), 
encoding in other degrees of freedom in free space (46), and 
exploiting reference-frame-independent schemes (47), our 
integrated platform can allow the development of high-
dimensional quantum communications. All these possible 
applications can benefit from the monolithic integration of 
high-performance sources, universal operations and detec-
tors (26). Moreover, the scalability of silicon quantum pho-
tonics can further increase system dimensionality, and allow 
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the coherent control of multiple photons entangled over a 
large number of modes. Our results pave the way for the 
development of advanced multidimensional quantum tech-
nologies.  
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Table 1. Experimental values for multidimensional 
CGLMP Bell correlations. Measured CGLMP values are 
given with experimental errors. Values in (*) refer to the 
LHV classical bound; those in {*} refer to theoretical 
bounds for d-dimensional maximally entangled states. 
Errors are given by photon Possionian noise. 
 

Dim CGLMP Sd 
2 (2) 2.810 ± 0.014 {2.828} 
3 (2) 2.845 ± 0.012 {2.873} 
4 (2) 2.867 ± 0.014 {2.896} 
5 (2) 2.763 ± 0.014 {2.910} 
6 (2) 2.629 ± 0.010 {2.920} 
7 (2) 2.532 ± 0.013 {2.927} 
8 (2) 2.650 ± 0.012 {2.932} 
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Fig. 1. Diagram and characterization of the multidimensional silicon quantum photonic circuit. (A) Circuit diagram. 
The device monolithically integrates 16 SFWM photon-pair sources, 93 thermo-optical phase-shifters, 122 multimode 
interferometers (MMI) beamsplitter, 256 waveguide-crossers and 64 optical grating couplers. A photon pair is 
generated by SFWM in superposition across 16 optical modes, producing a tunable multidimensional bipartite 
entangled state. The two photons, signal and idler, are separated by an array of asymmetric MZI filters and routed by a 
network of crossers, allowing the local manipulation of the state by linear-optical circuits. Using triangular networks of 
MZIs, we perform arbitrary local projective measurements. The photons are coupled off the chip into fibers using 
grating couplers, and detected by two superconducting nanowire detectors. The inset represents a general schematic 
for universal generation and manipulation of bipartite multidimensional entangled states. (B) Framework for correlation 

measurements on a shared d-dimensional state ρ̂d . ˆ
a xM  and ˆ

b yM  represent the operators associated to local 

measurements x on Alice and y on Bob, with outcomes a and b respectively. (C) Photograph of the device. Silicon 
waveguides and 16 SFWM sources can be observed as black lines. Gold wires allow the electronic access of each phase-
shifter. (D) Visibilities for the two-photon RHOM experiments to test sources’ indistinguishability. The inset shows the 
histogram of all 120 measured visibilities, with a mean value of 0.984 ± 0.025. (E) Statistical fidelity for d-dimensional 

projectors, in both the computational Ẑ -basis and the Fourier F̂ -basis. The inset shows the measured distribution for 
the 16-dimensional projector in the Ẑ -basis. 
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Fig. 2. Experimental quantum state tomographies. (A) Measured quantum fidelities ˆψ ρ ψd d d
+ + , where ρ̂d  

represents the reconstructed states and ψd
+  refers to the ideal d-dimensional maximally entangled state. 

Reconstructed density matrices for the entangled states in dimension (B) 4, (C) 8, and (D) 12 using compressed 
sensing techniques. Column heights represent the absolute values |ρ| while colors represent the phases |Arg(ρ)|. 
The phase information for matrix elements with module |ρij| < 0.01 is approximately randomly distributed and not 
displayed for more clarity. 
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Fig. 3. Verification of system dimensionality. (A) Experimental results. Data points refer to the measured 
lower bounds on the local dimension of the generated entangled states; green (red) points represent data 
for the measurement scenario I (II). The yellow line refers to ideal values. Errors are smaller than the 
markers and neglected in the plot for clarity. (B) Correlation measurements associated to optimal strategies 
for Magic Square and Pentagram games. X, Y and Z are Pauli operators and I is the identity. Red lines Ci, Ri 
and Li are associated to different measurement settings. Single Magic Square game, Magic Pentagram 
game, and two copies of the Magic Square game are used in an attempt to certify the dimension for states 
with local dimension d = 4, d = 6, 8, and d = 10, 12, 14, 15, respectively. The correct dimension is certified for 
up to d = 10 when using measurement scenario I and up to d = 14 when using scenario II. 
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Fig. 4. Bell violation and self-testing on multidimensional entangled states. (A) Measured values of the 2(d – 1) 

correlators Re l l
i iA B   . Dashed boxes refer to theoretical values. (B) Violation of the generalized SATWAP Bell-

type inequalities for d-dimensional states. Red points are experimentally measured dI  values. Bell inequalities of 

the form d dI C≤  are here violated, where Cd is the classical LHV bound (dashed line). The Tsirelson bound Qd 

(solid line) represents the maximal violation for quantum systems. The dotted line represents the threshold above 
which more than 1 random bit can be extracted per output symbol from Bell correlations. (C) DI self-testing of 

entangled qutrit states ( ) 200 γ 11 22 2 γ+ + +  for γ = 1, 0.9, 0.792. Self-tested lower bounds on the fidelities 

to ideal states are plotted as a function of the relative violation for more clarity. The significant uncertainty on the 
fidelity value is due to the general limited robustness of self-testing protocols. All errors are estimated from 
photon Poissonian statistics, and those in (B) are smaller than markers. 
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Fig. 5. Certification of multidimensional random-
ness expansion. (A) Multidimensional EPR steering 
is certified by violating the inequality β 1 1d d≤ +  

(dashed line). Red points are experimentally 
measured steering values βd. The dotted line denotes 
the threshold above which more than 1 random bit is 
generated per round from steering correlations. (B) 
Randomness per round certified in a one-sided DI 
scenario by d-dimensional steering correlations. (C) 
Randomness per round certified in a fully DI scenario 
by d-dimensional Bell correlations. Above the 
dashed line in (B) and (C), more than 1 private 
random bits are generated per round. Error bars are 
given by Poissonian statistics, and those in (A) are 
smaller than markers. 
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