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Topological origin of equatorial waves
Pierre Delplace,1* J. B. Marston,2* Antoine Venaille1*

Topology sheds new light on the emergence of unidirectional edge waves in a variety of
physical systems, from condensed matter to artificial lattices. Waves observed in
geophysical flows are also robust to perturbations, which suggests a role for topology. We
show a topological origin for two well-known equatorially trapped waves, the Kelvin and
Yanai modes, owing to the breaking of time-reversal symmetry by Earth’s rotation. The
nontrivial structure of the bulk Poincaré wave modes encoded through the first Chern
number of value 2 guarantees the existence of these waves. This invariant demonstrates
that ocean and atmospheric waves share fundamental properties with topological
insulators and that topology plays an unexpected role in Earth’s climate system.

S
ymmetries and topology are central to an
understanding of physics. In condensed
matter, topology explains the precise quan-
tization of the Hall effect (1), where a mag-
netic field breaks the discrete symmetry

of time reversal. Interest in topological proper-
ties was reinvigorated after the discovery of the
quantum spin Hall effect and the subsequent
classification of different states of matter accord-
ing to discrete symmetries (2). Recently, topo-
logically protected edge excitations have been
found in artificial lattices of various types (3–5).
A correspondence between topological proper-
ties of waves in the bulk and the existence of

unidirectional edge modes along boundaries
exists in all these systems (6, 7). The edge modes
fill frequency or energy gaps found in the bulk
and are immune to various types of disorder.
We show here that topologically protected edge
waves also manifest in atmospheres and oceans.
Equatorial Kelvin and mixed Rossby-gravity

(Yanai) waves are edge modes that propagate
energy along Earth’s equator with eastward group
velocity (8). Remarkably, the dispersion relations
for these waves (Fig. 1A) were derived within the
framework of the rotating-shallow-water model
(9) just before their first observation in the 1960s.
Since then, observations of the atmosphere have

revealed a robust signature of these trappedmodes
in wave number–frequency spectra (10) (Fig. 1B).
Equatorial Kelvin and Yanai waves have been
shown to play a crucial role in several aspects
of climate dynamics. For instance, Kelvin waves
are a key component of the El Niño–Southern
Oscillation, traveling across the waters of the
Pacific Ocean (11). The waves are also part of the
quasi-biennial oscillation in the stratosphere
and are thought to be an important component
of the Madden-Julian Oscillation in the tropo-
sphere (12).
The fact that Yanai and Kelvin waves are equa-

torially trapped unidirectional modes filling a
frequency gap between the low-frequency plan-
etary (Rossby) and high-frequency inertia-gravity
(Poincaré) wave bands (8), as shown in Fig. 1A,
suggests that they can be interpreted as topo-
logical boundary states, similar to those emerg-
ing in various topological insulatingmedia.More
precisely, bulk (Poincaré and/or Rossby) waves
possess a topological property that should be
directly related to the existence of these two
unidirectional boundary waves by virtue of the
bulk-boundary correspondence (6, 7). According
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Fig. 1. Dispersion spectrum of equatorial waves. (A) Dispersion relation for
shallow-water waves on an equatorial b-plane with linear variations of the
Coriolis parameter with the latitude (f = by).The dispersion relation for negative
frequencies is obtained by symmetry with respect to the origin (k = 0, w = 0).
The frequency gap between low-frequency planetary (Rossby) waves and
high-frequency inertia-gravity (Poincaré) waves is filled by two modes with
eastward group velocity: the equatorial Kelvin and mixed Rossby-gravity
(Yanai) waves. Horizontal dotted orange lines indicate the frequencies of the

low- and intermediate-frequency wave packets used in the scattering
simulation of (15). m, meridional index. [Adapted from (8)] (B) Observational
evidence for the appearance of the Kelvin mode in frequency–wave number
spectra of the atmosphere. Colors enclosed by contours indicate the power
spectrum of the equatorially symmetric component of the CLAUS (Cloud
Archive User Services) brightness temperature Tb. WIG, westward inertio-
gravity wave; ER, equatorial Rossby wave; MJO, Madden-Julian Oscillation;
CPD, cycles per day. [Reproduced from (10)]
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to this correspondence, the number of states in-
herited by a bandwhen the zonal (directed along
the equator) wave number kx varies from –∞ to
+∞ is given by an integer-valued topological
number called the first Chern number. The first
Chern number quantifies the number of phase
singularities in a bundle of eigenmodes param-
eterized on a closedmanifold. These singularities
are somewhat analogous to amphidromic points
(±2p phase vortices of tidal modes), but they oc-
cur in parameter space rather than in physical
space. We demonstrate the existence of a non-
trivial global structure in the bulk Poincarémodes
as being encoded through the first Chern number
of value ±2, thus ensuring the existence of two
unidirectional edge modes at the equator that fill
the two frequency gaps, in agreement with the
existence of Kelvin and Yanai waves. The exis-
tence of the frequency gap originates from a
broken time-reversal symmetry of the flowmodel
owing to Earth’s rotation. The structure of tidal
modes (13) and bifurcations in large-scale geo-
physical flow (14) have previously invoked the
effect of breaking time-reversal symmetry. Our
study shows that another far-reaching conse-
quence of this broken symmetry is to confer non-
trivial topological properties to bundles of fluid
waves, giving rise to robust edge states.
The rotating-shallow-water equations (8) that

describe the dynamics of a thin layer of fluid on
a two-dimensional surface of height h(x, t) and
horizontal velocity u(x, t) (where x is the hori-
zontal coordinate and t is time) furnish a mini-
mal model for equatorial waves

@thþ ∇ � ðhuÞ ¼ 0 ð1Þ

@tuþ ðu � ∇Þu ¼ �g∇h� f n̂ � u ð2Þ
The Coriolis parameter f ¼ 2W � n̂ is twice the
projection of the planetary angular rotation vector
W on the local vertical unit vector n̂, and g is the
constant of gravitational acceleration. When lin-
earized about a state of rest (u = 0) and mean
height (h = H), this dynamical system may be
rewritten as i@tY ¼ HY, where Y = (u, h) is a
triplet of fields describing the two components of
the perturbed velocity field and the perturbed
height field h, and whereH is a Hermitian ope-
rator (15). Because the fields (u, h) are real, the
operator H is equal to the negative of its com-
plex conjugate, XHX�1 ¼ �H; where X is the
operator that effects complex conjugation, with
X2 = 1. In the quantum context, the operation is
referred to as a particle-hole transformation be-
cause it inverts the spectrum. Time-reversal sym-
metry t→ –t, x→ x, h → h, u→ –u is broken by
a nonzero Coriolis parameter f ≠ 0 in Eq. 2. The
broken symmetry generates gaps in the shallow-
water spectrum (8).
The f-plane approximation commonly used in

geophysics (8) amounts to the neglect of Earth
sphericity by assuming that the dynamics take
place on a tangent plane with constant f (Fig. 2A).
Translational symmetry ensures that eigenmodes
of the linearized dynamics in this geometry are of
the form Ŷeiwt�ikxx�ikyy; where Ŷ has three com-
ponents. Viewing f/c as an external parameter,

where c ¼ ffiffiffiffiffiffiffi

gH
p

is the speed of gravity waves in
nonrotating shallow water, the eigenmodes
may be easily found at each point in the space
(kx, ky, f/c) (Fig. 2B). There are three bands
with frequencies w± = ±(f 2 + c2k2)1/2 and w0 = 0,
where k2 ≡ k2x þ k2y , with corresponding wave
functions {Y±, Y0}. For f ≠ 0, the bands are
separated by gaps of frequency f (Fig. 3). The
zero-frequency modes are in geostrophic balance;
the other two modes are Poincaré waves with
dispersions w± that are symmetric with respect
to the origin in (kx, ky, w) space.
Eigenmodes depend on the triplet of param-

eters (kx, ky, f/c) that correspond to the set of
waves in all possible f-plane configurations. The
eigenmodes do not vary with the distance from
the origin in (kx, ky, f/c) space and can therefore
be parameterized on the surface of a sphere S
that encloses the singular band-crossing point
at the origin (kx, ky, f/c) = (0, 0, 0) [Fig. 2B and
(15)]. Each of the eigenstates {Y–, Y0, Y+} de-
fines a fiber bundle over S that may possess
topological defects. The singularities reflect
the impossibility of continuously defining the
eigenmodes everywhere on the sphere, particu-
larly over both of Earth’s two hemispheres simul-
taneously. They are quantified by the first Chern
number DC that can be calculated for each bulk
mode n as the flux of the Berry curvature Bn ¼
�i∇p � ðY†

n∇pYnÞ through the sphere S, where
Y†

n is the conjugate transpose of Yn and ∇p ¼
ð@kx ;@ky ;@f=cÞ. In other words, there exists a quan-
tized Berry flux generated by a (Berry) mono-
pole located at the center of S, where the three
bands cross (16, 17). The singularities are analo-
gous to the one exhibited by an electron wave
function that cannot be defined continuously
around a Dirac magnetic monopole (18). We find
fDC�;DC0;DCþg ¼ f�2; 0; 2g (15); that is, only
the Poincaré modes Y± are topologically non-
trivial because the geostrophic modes Y0 have
zero Chern index, in agreement with the bulk-
boundary correspondence (6, 7).
To understand qualitatively the correspon-

dence between these bulk properties and the

emergence of unidirectional edge states in the
presence of an equator, is it worth considering
the case of a planar flow in an unbounded do-
main with f varying in the y direction from
–2W to 2W (Fig. 3). Far from the interface, the
eigenmodes are given by delocalized solutions—
i.e., by those computed in the case of constant f.
If one could continuously deform the whole set
of positive-frequency eigenmodes from one hemi-
sphere to other—for instance, by varying f slowly
with y—then the eigenmodes would be given by
solutions close to those calculated for constant f.
Our previous calculation shows that this contin-
uous deformation is prohibited by the occurrence
of DCþ ¼ 2 phase singularities (positive vorti-
ces) when the plane f = 0 is crossed. To remove
these two singularities, the positive- and negative-
frequency bands must be connected to each other
because the sum of their Chern numbers is zero.
This connection happens through the emergence
of two edge states that fill the frequency gaps.
For any frequency that lies within the bulk gaps,
the number of topological edge states is fixed by
the set of Chern numbers (6). BecauseDCT ¼ T2;
there are two extra unidirectional edge modes in
the frequency gaps (15).
It is instructive to examine the Berry curva-

ture for the Poincaré modes. As shown in Fig. 3,
the curvature is mainly concentrated around
k = 0, where it reaches extremal values, and,
importantly, changes sign with f. It follows
that its flux for each Poincaré mode CT ¼
1
2p ∫

∞
-∞dkxdkyBT ¼ Tsgnðf Þ is an integer that only

depends on the hemisphere. It is thus tempting
to say that the Poincaré eigenmodes on the two
hemispheres are topologically distinct by inter-
preting CT as a Chern number as well, given that
the difference CTð f > 0Þ � CTð f < 0Þ ¼ T2 coin-
cides with the first Chern number DCT . This
would be rigorously true if the two-dimensional
manifold through which this Berry flux is com-
puted at fixed f were closed—for instance, when
the wave numbers (kx, ky) live on a Brillouin zone
that reflects an underlying lattice. For continuous
fluids, only DCT is a well-defined topological
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Fig. 2. Geometry of the
planetary sphere and
parameter space.
(A) Relation between
the spherical geometry
of a rotating planet and
the unbounded f-plane
geometry. At a given lati-
tude, the flow is assumed
to take place in the tangent
plane, and the Coriolis
parameter f is twice the
vertical component of
Earth’s rotation. (B) Parameter space (kx, ky, f) for the eigenmodes on the unbounded f-plane
geometry. The wave bands w+, w–, w0 are well defined everywhere except at the origin, which is a
band-crossing point. We show that the set of eigenmodes Y± parameterized on any closed surface
(here a sphere) enclosing this band-crossing point possesses singularities that are quantified by a
Chern number. This is an integer that can be computed by integrating over this surface a local Berry
curvature that depends on the eigenmodes. The curvature can be viewed as generated by a Berry
monopole located at the band-crossing point.
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number, but this suffices to characterize the topo-
logical property of the bulk modes and, thus,
the existence of the two equatorial unidirectional
modes.
We stress one important point concerning the

role of the spherical geometry of the planet in
our approach.We remove this sphericity with the
f-plane approximation, equivalent to holding the
Coriolis parameter constant in space. However,
through the construction of the sphere S in
parameter space (kx, ky, f/c), we recover the
effect of a varying Coriolis parameter f on the
shallow-water eigenmodes. In this way, sphe-
ricity works its way back into the problem. The
detailed geometry of Earth is no longer needed
because topology itself requires the existence of
Yanai andKelvinwaves. Even amisshapen sphere
would support the waves.
Topology guarantees the existence of equa-

torial Yanai and Kelvin waves, obviating the
need to carry out the classic but more complex
calculation for the equatorial b-plane (8). On the
equatorial b-plane, Rossby and Poincaré waves
can also be equatorially trapped. However, this
trapping depends on the precise longitudinal
variation of f (y), as may be demonstrated nu-
merically. In contrast, the topological origin of
Kelvin and Yanai modes makes them insensitive
to the details of the interface, such as the de-
tailed shape of f(y) (15). We also performed a
numerical scattering experiment showing that
there is no possibility for Kelvin or Yanai waves

excited within the bulk frequency gap, away
from the other bands, to exchange energy with
other modes that propagate energy westward (15).
Consequently, there is no energy backscattering
in the presence of topography (movies S1 and
S2). This robustness against disorder can now
be understood as a consequence of topology.
Other ideas from topology have been applied

to hydrodynamics (19–21). However, the appear-
ance of singularities in the set of eigenmodes
that arises from the breaking of time-reversal
symmetry has so far been overlooked in this con-
text, as has the physical consequence of uni-
directional edge modes filling the frequency
gaps. The general principle of bulk-boundary
correspondence may now be applied to other
fluid systems of interest.
The shallow-water system exhibits particle-

hole symmetry stemming from real-valued veloc-
ity and displacement fields. More generally, any
linearized fluid flowmodel that can be written in
terms of a Hermitian operator that breaks time-
reversal symmetry belongs to the symmetry class
with Cartan label D, whichmeans that nontrivial
topological properties may arise (22, 23). Other
physical systems that may belong to class D are
chiral p-wave superconductors (16, 24) and su-
perfluid 3He-A (25). The linear operator of flow
dynamics can be non-Hermitian in the presence
of mean flows and dissipation, in which case
other topological properties may appear (26).
We expect that topology may ultimately shape

the global structure of a number of astrophysical
and geophysical wave spectra where similar gaps
opened in the presence of symmetry-breaking
fields are known to exist. For instance, Lamb
waves are edge states that fill the gap between
acoustic and gravitywaves because gravity breaks
another discrete symmetry, that of inversion. Hall
magnetohydrodynamics is another possible setting
for topological edge waves (27). It will also be
interesting to study in more detail the resilience
of topological waves against dissipation and non-
linear wave-wave scattering processes.

REFERENCES AND NOTES

1. D. J. Thouless, M. Kohmoto, M. P. Nightingale, M. Dennijs,
Phys. Rev. Lett. 49, 405–408 (1982).

2. M. Z. Hasan, C. L. Kane, Rev. Mod. Phys. 82, 3045–3067
(2010).

3. N. Goldman, J. Budich, P. Zoller, Nat. Phys. 12, 639–645
(2016).

4. L. Lu, J. D. Joannopoulos, M. Soljačić, Nat. Photonics 8,
821–829 (2014).

5. S. D. Huber, Nat. Phys. 12, 621–623 (2016).
6. Y. Hatsugai, Phys. Rev. Lett. 71, 3697–3700 (1993).
7. T. Fukui, K. Shiozaki, T. Fujiwara, S. Fujimoto, J. Phys. Soc. Jpn.

81, 114602 (2012).
8. G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics:

Fundamentals and Large-Scale Circulation (Cambridge Univ.
Press, ed. 2, 2017).

9. T. Matsuno, J. Meteorol. Soc. Jpn. Ser. II 44, 25 (1966).
10. G. N. Kiladis, M. C. Wheeler, P. T. Haertel, K. H. Straub,

P. E. Roundy, Rev. Geophys. 47, RG2003 (2009).
11. L. Miller, R. E. Cheney, B. C. Douglas, Science 239, 52–54

(1988).
12. C. Zhang, Rev. Geophys. 43, 2004RG000158 (2005).
13. M. V. Berry, Proc. R. Soc. London A Math. Phys. Eng. Sci. 413,

183–198 (1987).
14. B. Gallet, J. Herault, C. Laroche, F. Pétrélis, S. Fauve, Geophys.

Astrophys. Fluid Dyn. 106, 468–492 (2012).
15. See the supplementary materials.
16. B. A. Bernevig, T. L. Hughes, Topological Insulators and

Topological Superconductors (Princeton Univ. Press, 2013).
17. M. V. Berry, Proc. R. Soc. London A Math. Phys. Eng. Sci. 392,

45–57 (1984).
18. P. A. M. Dirac, Proc. R. Soc. London A Math. Phys. Eng. Sci.

133, 60–72 (1931).
19. V. I. Arnold, B. A. Khesin, Topological Methods in

Hydrodynamics, vol. 125 (Springer Science & Business
Media, 1999).

20. H. K. Moffatt, in Les Houches Session LXXIV, M. Lesieur,
A. M. Yaglom, F. David, Eds. (Springer, 2001), pp. 319–340.

21. D. Kleckner, W. T. M. Irvine, Nat. Phys. 9, 253–258 (2013).
22. A. Kitaev, AIP Conf. Proc. 1134, 22 (2009).
23. S. Ryu, A. P. Schnyder, A. Furusaki, A. W. Ludwig, New J. Phys.

12, 065010 (2010).
24. C. Kallin, Rep. Prog. Phys. 75, 042501 (2012).
25. H. Ikegami, Y. Tsutsumi, K. Kono, Science 341, 59–62

(2013).
26. J. M. Zeuner et al., Phys. Rev. Lett. 115, 040402 (2015).
27. E. A. Witalis, IEEE Trans. Plasma Sci. 14, 842–848 (1986).

ACKNOWLEDGMENTS

We thank D. Carpentier, B. Fox-Kemper, T. Louvet, L. Maas,
J. Sauls, and S. Tobias for discussions. P.D. was supported by
the French Agence Nationale de la Recherche (ANR) under grant
TopoDyn (ANR-14-ACHN-0031). Additional movies can be viewed
at https://vimeo.com/channels/1209812.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/358/6366/1075/suppl/DC1
Supplementary Text
Figs. S1 to S4
References (28–33)
Movies S1 and S2

1 June 2017; accepted 26 September 2017
Published online 5 October 2017
10.1126/science.aan8819

Delplace et al., Science 358, 1075–1077 (2017) 24 November 2017 3 of 3

Fig. 3. Dispersion relation in unbounded f-plane geometry for the two signs of f.The color

indicates the Berry curvature Bn ≡ � i∇p � ðY†
n∇pYnÞ for each wave band indexed by n ∈ {–, 0, +}.

The Berry curvature of the Poincaré bands is BT ¼ Tfc2½f2 þ c2ðk2x þ k2y Þ��3=2. It is concentrated

around k = 0, with extremal value ±c2/f2, and switches sign with f. The curvature vanishes for the
geostrophic band. When integrated over the whole plane (kx, ky), the Berry fluxes in the three
bands give integers (–1, 0, 1) for f > 0 and (1, 0, –1) for f < 0, consistent with the triplet of Chern
numbers fDC�;DC0;DCþg ¼ f�2;0;2g. This shows that the set of delocalized bulk Poincaré modes
cannot be continuously deformed from one hemisphere to another.
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a wide variety of geophysical and astrophysical flows.
rotation, which allows certain fixed topological constraints on the system. These findings may be useful for understanding
origin (see the Perspective by Biello and Dimofte). The waves exist because of the symmetry-breaking nature of Earth's 
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