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PREFACE

This book was originally published in Japanese in October 1998 with the
intention of providing a straightforward presentation of the sophisticated
techniques used in optical waveguide analyses. Apparently, we were
successful because the Japanese version has been well accepted by
students in undergraduate, postgraduate, and Ph.D. courses as well as
by researchers at universities and colleges and by researchers and
engineers in the private sector of the optoelectronics field. Since we did
not want to change the fundamental presentation of the original, this
English version is, except for the newly added optical fiber analyses and
problems, essentially a direct translation of the Japanese version.

Optical waveguide devices already play important roles in telecommu-
nications systems, and their importance will certainly grow in the future.
People considering which computer programs to use when designing
optical waveguide devices have two choices: develop their own or use
those available on the market. A thorough understanding of optical
waveguide analysis is, of course, indispensable if we are to develop our
own programs. And computer-aided design (CAD) software for optical
waveguides is available on the market. The CAD software can be used
more effectively by designers who understand the features of each analysis
method. Furthermore, an understanding of the wave equations and how
they are solved helps us understand the optical waveguides themselves.

Since each analysis method has its own features, different methods are
required for different targets. Thus, several kinds of analysis methods have

xi



Xii PREFACE

to be mastered. Writing formal programs based on equations is risky
unless one knows the approximations used in deriving those equations, the
errors due to those approximations, and the stability of the solutions.

Mastering several kinds of analysis techniques in a short time is
difficult not only for beginners but also for busy researchers and
engineers. Indeed, it was when we found ourselves devoting substantial
effort to mastering various analysis techniques while at the same time
designing, fabricating, and measuring optical waveguide devices that we
saw the need for an easy-to-understand presentation of analysis techni-
ques.

This book is intended to guide the reader to a comprehensive under-
standing of optical waveguide analyses through self-study. It is important
to note that the intermediate processes in the mathematical manipulations
have not been omitted. The manipulations presented here are very detailed
so that they can be easily understood by readers who are not familiar with
them. Furthermore, the errors and stabilities of the solutions are discussed
as clearly and concisely as possible. Someone using this book as a
reference should be able to understand the papers in the field, develop
programs, and even improve the conventional optical waveguide theories.

Which optical waveguide analyses should be mastered is also an
important consideration. Methods touted as superior have sometimes
proven to be inadequate with regard to their accuracy, the stability of
their solutions, and central processing unit (CPU) time they require. The
methods discussed in this book are ones widely accepted around the
world. Using them, we have developed programs we use on a daily basis
in our laboratories and confirmed their accuracy, stability, and effective-
ness in terms of CPU time.

This book treats both analytical methods and numerical methods.
Chapter 1 summarizes Maxwell’s equations, vectorial wave equations,
and the boundary conditions for electromagnetic fields. Chapter 2
discusses the analysis of a three-layer slab optical waveguide, the effective
index method, Marcatili’s method, and the analysis of an optical fiber.
Chapter 3 explains the widely utilized scalar finite-element method. It first
discusses its basic theory and then derives the matrix elements in the
eigenvalue equation and explains how their calculation can be
programmed. Chapter 4 discusses the semivectorial finite-difference
method. It derives the fully vectorial and semivectorial wave equations,
discusses their relations, and then derives explicit expressions for the
quasi-TE and quasi-TM modes. It shows formulations of E, and H,
expressions for the quasi-TE (transverse electric) mode and E, and H,
expressions for the quasi-TM (transverse magnetic) mode. The none-
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quidistant discretization scheme used in this chapter is more versatile than
the equidistant discretization reported by Stern. The discretization errors
due to these formulations are also discussed. Chapter 5 discusses beam
propagation methods for the design of two- and three-dimensional (2D,
3D) optical waveguides. Discussed here are the fast Fourier transform
beam propagation method (FFT-BPM), the finite-difference beam propa-
gation method (FD-BPM), the transparent boundary conditions, the wide-
angle FD-BPM using the Padé approximant operators, the 3D semi-
vectorial analysis based on the alternate-direction implicit method, and
the fully vectorial analysis. The concepts of these methods are discussed
in detail and their equations are derived. Also discussed are the error
factors of the FFT-BPM, the physical meaning of the Fresnel equation,
the problems with the wide-angle FFT-BPM, and the stability of the
FD-BPM. Chapter 6 discusses the finite-difference time-domain method
(FD-TDM). The FD-TDM is a little difficult to apply to 3D optical
waveguides from the viewpoint of computer memory and CPU time, but
it is an important analysis method and is applicable to 2D structures.
Covered in this chapter are the Yee lattice, explicit 3D difference
formulation, and absorbing boundary conditions. Quantum wells, which
are indispensable in semiconductor optoelectronic devices, cannot be
designed without solving the Schrodinger equation. Chapter 7 discusses
how to solve the Schrodinger equation with the effective mass approx-
imation. Since the structure of the Schrodinger equation is the same as that
of the optical wave equation, the techniques to solve the optical wave
equation can be used to solve the Schrodinger equation.

Space is saved by including only a few examples in this book. The
quasi-TEM and hybrid-mode analyses for the electrodes of microwave
integrated circuits and optical devices have also been omitted because of
space limitations. Finally, we should mention that readers are able to get
information on the vendors that provide CAD software for the numerical
methods discussed in this book from the Internet.

We hope this book will help people who want to master optical
waveguide analyses and will facilitate optoelectronics research and devel-
opment.

KENJI KAWANO and TsuTOMU KITOH
Kanagawa, Japan
March 2001
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CHAPTER 1

FUNDAMENTAL EQUATIONS

This chapter summarizes Maxwell’s equations, vectorial wave equations,
and the boundary conditions for electromagnetic fields.

1.1 MAXWELL’S EQUATIONS

The electric field E (in volts per meter), the magnetic field H (amperes per
meter), the electric flux density D (coulombs for square meters), and the
magnetic flux density B (amperes per square meter) are related to each
other through the equations

D =¢E, (1.1)

B = uH, (1.2)
where the permittivity ¢ and permeability y are defined as

& = &y, (1.3)

1= UoMhy- (1.4)
Here, ¢, and y, are the permittivity and permeability of a vacuum, and &,

and p, are the relative permittivity and permeability of the material. Since
the relative permeability u. is 1 for materials other than magnetic

1



2 FUNDAMENTAL EQUATIONS

materials, it is assumed throughout this book to be 1. Denoting the
velocity of light in a vacuum as ¢,, we obtain

1 _
gy =——~ 8.854188 x 107" F/m (1.5)
Coly
o =4m x 1077 H/m. (1.6)

The current density J (in amperes per square meter) in a conductive
material is given by

J = oE. (1.7)

The electromagnetic fields satisfy the following well-known Maxwell
equations [1]:

oB
VXE = ——, 1.8
o (1.8)

9D
VXH=""11J. (1.9)

Since the equation V+(VXA) = 0 holds for an arbitrary vector A, from
Egs. (1.8) and (1.9), we can easily derive

V-B=0, (1.10)
VD= (1.11)

The current density J is related to the charge density p (in coulombs per
square meter) as follows:

ap
V-J=——. 1.12
J " (1.12)

Equations (1.10) and (1.11) can be derived from Egs. (1.8), (1.9), and
(1.12).



1.2 WAVE EQUATIONS 3

1.2 WAVE EQUATIONS

Let us assume that an electromagnetic field oscillates at a single angular
frequency w (in radians per meter). Vector A, which designates an
electromagnetic field, is expressed as

A(r, 1) = Re{A(r) exp(jowr)}. (1.13)

Using this form of representation, we can write the following phasor
expressions for the electric field E, the magnetic field H, the electric flux
density D, and the magnetic flux density B:

E(r, 1) = Re{E(r) exp( jor)}, (1.14)
H(r, /) = Re{H(r) exp( jowr)}, (1.15)
D(r, 1) = Re{D(r) exp( jwi)}, (1.16)
B(r, ) = Re{B(r) exp( jwr)}. (1.17)

In what follows, for simplicity we denote E, H, D, and B in the phasor
representation as E, H, D, and B. Using these expressions, we can write
Egs. (1.8) to (1.11) as

VXE = —joB = —jouyH, (1.18)
VXH = joD = jw¢E, (1.19)
V-H=0, (1.20)
V-(E)=0, (1.21)

where it is assumed that 4. = 1 and p = 0.

1.2.1 Wave Equation for Electric Field E

Applying a vectorial rotation operator VX to Eq. (1.18), we get

VX(VXE) = —jou,VxH. (1.22)



4  FUNDAMENTAL EQUATIONS
Using the vectorial formula
VX(VXA) =V(V - A) - V?A,
we can rewrite the left-hand side of Eq. (1.22) as
V(V - E) — V’E.
The symbol V2 is a Laplacian defined as

* ¥ P
V= —+-—+-—.
8x2+8y2+822

Since Eq. (1.21) can be rewritten as

V-(E)=Ve. -E+¢V-E=0,

we obtain

Thus, the left-hand side of Eq. (1.22) becomes

—V(Vg’ : E> — V2E.

&

7

(1.23)

(1.24)

(1.25)

(1.26)

(1.27)

On the other hand, using Eq. (1.19), we get for the right-hand side of

Eq. (1.22)

ke E,

where k is the wave number in a vacuum and is expressed as

)
ky = o /eopg = —-
Co

(1.28)

(1.29)



1.2 WAVE EQUATIONS 5

Thus, for a medium with the relative permittivity ¢,, the vectorial wave
equation for the electric field E is

Ve,

7

V’E + V( . E) + kZe,E = 0. (1.30)

And using the wave number £ in that medium, given by
k == kon = ko\/a = 808,4,{0 = 8#0, (131)

we can rewrite Eq. (1.30) as

V2E + V(E : E) +KPE =0. (1.32)

”

When the relative permittivity ¢, is constant in the medium, this
vectorial wave equation can be reduced to the Helmholtz equation

V’E + k*E = 0. (1.33)

1.2.2 Wave Equation for Magnetic Field H
Applying the vectorial rotation operator VX to Eq. (1.19), we get

VX(VXH) = jweyVX(¢,E).

Thus,
V(V - H) — V?H = jwey(Ve, XE + ¢, VXE)
= jwey(Ve, XE) + jwege,.(—jowu H)
= jwey(Ve, XE) + kie, H. (1.34)
Using
1
E= VxH (1.35)

Joosg,



6 FUNDAMENTAL EQUATIONS

obtained from Egs. (1.19) and (1.20), we get from Eq. (1.30) the following
vectorial wave equation for the magnetic field H:

Ve,

V?H + —- X(VxH) + k2e,H = 0. (1.36)

7

Using Eq. (1.31), we can rewrite Eq. (1.36) as

V2H+%X(VXH)+k2H:0. (1.37)

When the relative permittivity ¢, is constant in the medium, this
vectorial wave equation can be reduced to the Helmholtz equation

V*H + K*H = 0. (1.38)

Now, we discuss an optical waveguide whose structure is uniform in the
z direction. The derivative of an electromagnetic field with respect to the z
coordinate is constant such that

— = —jp, (1.39)

where f is the propagation constant and is the z-directed component of the
wave number k. The ratio of the propagation constant in the medium, f, to
the wave number in a vacuum, k, is called the effective index:

Regr = k%' (1.40)

When 4, is the wavelength in a vacuum,

2n 2 2n
p=—npg=—"""=—, (1.41)
Ao o Ao/ P Aefr

where A = Ag/neg 18 the z-directed component of the wavelength in the
medium. The physical meaning of the propagation constant /3 is the phase
rotation per unit propagation distance. Thus, the effective index 7.4 can be
interpreted as the ratio of a wavelength in the medium to the wavelength in
a vacuum, or as the ratio of a phase rotation in the medium to the phase
rotation in a vacuum.
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We can summarize the Helmholtz equation for the electric field E as

VZE+ (K —HE =0 (1.42)

or
VAE + k2(e, — n25)E = 0. (1.43)
For the magnetic field H, on the other hand, we get the Helmholtz equation
V2 H+ (K —HH =0 (1.44)

or
VAiH + ke, — n2)H = 0, (1.45)

where we used the definition Vzl = ?/x? + 3*/9)”.

1.3 POYNTING VECTORS

In this section, the time-dependent electric and magnetic fields are
expressed as E(r,?) and H(r, ?), and the time-independent electric and
magnetic fields are expressed as E(r) and H(r). Because the voltage is the
integral of an electric field and because the magnetic field is created by a
current, the product of the electric field and the magnetic field is related to
the energy of the electromagnetic fields. Applying a divergence operator
V - to EXH, we get

V- (EXH)=H-VXE+E -VxH.

Substituting Maxwell’s equations (1.8) and (1.9) into this equation, we get

__ 0l 2 2
= 8t(26E+ uH) oE”. (1.46)
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When Eq. (1.46) is integrated over a volume V', we get

JVV - (ExH) dV = L(ExH)n das

P 1 1
=—— | (2eE?>+=-uH? ) av — E> dV,
3fJV<28 +2,u ) JVG

(1.47)

where we make use of Gauss’s law and » designates a component normal
to the surface S of the volume V.

The first two terms of the last equation correspond to the rate of the
reduction of the stored energy in volume V' per unit time, while the third
term corresponds to the rate of reduction of the energy due to Joule
heating in volume V' per unit time. Thus, the term J;(EXH),[ ds is
considered to be the rate of energy loss through the surface.

Thus,

S = ExH (1.48)

is the energy that passes through a unit area per unit time. It is called a
Poynting vector.

For an electromagnetic wave that oscillates at a single angular
frequency , the time-averaged Poynting vector (S) is calculated as
follows:

(S) = (ExXH)
= (Re{E(r) exp( jwr)} X Re{H(r) exp( jor)})
< exp( jwr) —|— E* exp(—jot) Hexp(]wt) + H* exp(—jwt)>
2
= L ((EXH* + E* xﬁ + EXH exp( j2wt) + E* X H* exp(—/2wt))
= 1 Re{(EXH*)}.

(1.49)
Here, we used (exp( j2wt)) = (exp(—j2wt)) = 0.

Thus, for an electromagnetic wave oscillating at a single angular
frequency, the quantity

LTExH* (1.50)
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is defined as a complex Poynting vector and the energy actually propagat-
ing is considered to be the real part of it.

1.4 BOUNDARY CONDITIONS FOR ELECTROMAGNETIC
FIELDS

The boundary conditions required for the electromagnetic fields are
summarized as follows:

(a)

Tangential components of the electric fields are continuous such
that

Elt :E2Z“ (151)

(b) When no current flows on the surface, tangential components of the

(©)

magnetic fields are continuous such that

When a current flows on the surface, the magnetic fields are
discontinuous and are related to the current density Jg as follows:

Hlt_Hzt:JS' (153)

Or, since the magnetic field and the current are perpendicular to
each other, the vectorial representation is

nx(H, — H,) = Jg. (1.54)

When there is no charge on the surface, the normal components of
the electric flux densities are continuous such that

Dln :Dzn. (155)
When there are charges on the surface, the electric flux densities

are discontinuous and are related to the charge density pg as
follows:

Dln - Dzn == pS (156)
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(d) Normal components of the magnetic flux densities are continuous

such that

Bln = B2n'

(1.57)

Here, the vectors n and t in these equations are respectively unit normal

and tangential vectors at the boundary.

PROBLEMS

1. Use Maxwell’s equations to specify the features of a plane wave

propagating in a homogeneous nonconductive medium.

ANSWER
Maxwell’s equations are written as

oL, i,

w o
88E; _ aaiz = —jouyH,,
% _ aa_% = —jouyH,,
o= = ot s
3§-Z]x 3 3;12 = jwege,E,,
% B 8§x = jweys, E..

(P1.1)

(P1.2)

(P1.3)

(P1.4)

(P1.5)

(P1.6)

Since the electric and magnetic fields of the plane wave depend not on
the x and y coordinates but on the z coordinate, the derivatives with respect
to the coordinates for directions other than the propagation direction are

zero. That is, d/dx = d/dy = 0.
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From Egs. (P1.3) and (P1.6), we get
H. =E =0, (P1.7)
The remaining equations are

dE,
T :ja)luOHxv (P18)
dz
E. .

= —JjopyH,, (P1.9)
dH.

d—zy = —jweye,E,, (P1.10)

dH

d—zx = jweye, E,. (P1.11)

Equations (P1.8)—(P1.11) are categorized into two sets:

dE dH
Set 1: d—x = —jouyH, and d—y = —jweye, E,. (P1.12)
Z Z
dE, dH,
Set 2: e = jouyH, and 7 = jwege, E. (P1.13)
Z Z

The equations of set 1 can be reduced to

d’E, d*H,
ﬁ —+ k Ex =0 and d22

+k°H, =0, (P1.14)

where k? = w?egypye, = kie,. And the equations of set 2 can be reduced to

d’E d*H,
?2% FPE,=0 and dzzx + k*H,_ = 0. (P1.15)

Here, we discuss a plane wave propagating in the z direction. Consider-
ing that Eq. (P1.14) implies that both the electric field component £, and
the magnetic field component H, propagate with the wave number £,
where it should be noted that the propagation constant f§ is equal to the
wave number k£ in this case and that the pure imaginary number j
[= exp(% jm)] corresponds to phase rotation by 90°, we can illustrate the
propagation of the electric field component £, and the magnetic field



12 FUNDAMENTAL EQUATIONS

FIGURE P1.1. Propagation of an electromagnetic field.

component #,, as shown in Fig. P1.1. When we substitute £, for £, and
—H, for H,, the equations of set 2 are equivalent to those of set 1. Since
the field components in set 2 can be obtained by rotating the field
components in set 1 by 90°, sets 1 and 2 are basically equivalent to
each other.

The features of the plane wave are summarized as follows: (1) the
electric and magnetic fields are uniform in directions perpendicular to the
propagation direction, that is, d/dx = d/dy = 0; (2) the fields have no
component in the propagation direction, that is, H, = E, = 0; (3) the
electric field and the magnetic field components are perpendicular to each
other; and (4) the propagation direction is the direction in which a screw
being turned to the right, as if the electric field component were being
turned toward the magnetic field component, advances.

2. Under the assumption that the relative permeability in the medium is
equal to 1 and that a plane wave propagates in the +z direction, prove

that \/figH, = /¢E,.
ANSWER
The derivative with respect to the z coordinate can be reduced to
d/dz = —jk = —jo . /e, by using Eq. (P1.14). Thus, the relation follows
from Eq. (P1.12).
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CHAPTER 2

ANALYTICAL METHODS

Before discussing the numerical methods in Chapters 3—7, we first
describe analytical methods: a method for a three-layer slab optical
waveguide, an effective index method, and Marcatili’s method. For
actual optical waveguides, the analytical methods are less accurate than
the numerical methods, but they are easier to use and more transparent.
In this chapter, we also discuss a cylindrical coordinate analysis of the
step-index optical fiber.

2.1 METHOD FOR A THREE-LAYER SLAB OPTICAL
WAVEGUIDE

In this section, we discuss an analysis for a three-layer slab optical
waveguide with a one-dimensional (1D) structure. The reader is referred
to the literature for analyses of other multilayer structures [1, 2].

Figure 2.1 shows a three-layer slab optical waveguide with refractive
indexes n,, n,, and nj. Its structure is uniform in the y and z directions.
Regions 1 and 3 are cladding layers, and region 2 is a core layer that has a
refractive index higher than that of the cladding layers. Since the
tangential field components are connected at the interfaces between
adjacent media, we can start with the Helmholtz equations (1.47) and
(1.49), which are for uniform media. Furthermore, since the structure is

13
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@ | ®
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FIGURE 2.1. Three-layer slab optical waveguide.

uniform in the y direction, we can assume d/dy = 0. Thus, the equation for
the electric field E is

d*E
T2 T k3 (e, — n’p)E = 0. 2.1)

Similarly, we easily get the equation for the magnetic field H:

d’H
ozt kg (e, — n2g)H = 0. (2.2)

Next, we discuss the two modes that propagate in the three-layer slab
optical waveguide: the transverse electric mode (TE mode) and the
transverse magnetic mode (TM mode). For better understanding, we
again derive the wave equation from Maxwell’s equations

VXE = —jou,H, (2.3)
VxH = jweye,E, (2.4)

whose component representations are

OE, OE,
IV~ ouH., 2.5
o JjouyH, (2.5)
0E.  OE
X jougH 2.
e o JWO UL, (2.6)
dE, OE, )
— - = —jouH., (2.7)

ox 9y
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oH, OH,
8)/’ azy :]wgoerx? (28)
OH, oH.
E)zx B Jjoweye, E,, (2.9)
oH, oH,
a—xy_ 5 = Jwege, E,. (2.10)

As mentioned in Chapter 1, we assume here that the relative permeability
u, = 1. That is, u = u,y = yy. Since the structure is uniform in the
propagation direction, the derivative with respect to the z coordinate, 9/0z,
can be replaced by —jf. The effective index can be expressed as
ner = f/ky, where k; is the wave number in a vacuum.

2.1.1 TE Mode

In the TE mode, the electric field is not in the longitudinal direction
(£, = 0) but in the transverse direction (£, # 0). Since the structure is
uniform in the y direction, d/dy = 0. Substitution of these relations into
Eq. (2.10) results in 9H, /dx = 0. Since this means that H, is constant, we
can assume that H, = O Furthermore, substitution of E H, =0 into
Eq. (2.6) results in BEX/ dz = 0, which means that £, = 0. We thus get

E,=E =H,=0. (2.11)

Substituting H, = —(f/wu,)E,, derived from Eq. (2.5), and H, =
(j/wuy) OE,/ox, derived from Eq. (2.7), into Eq. (2.9), we get the
following wave equation for the principal electric field component E;:

d 2
— k(e — n3p)E, =0, (2.12)

where ky = w. /gyl
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Next, we derive the characteristic equation used to calculate the
effective index ngg. The principal electric field component £, in regions
1, 2, and 3 can be expressed as

E (x) = C, exp(y;x) as y, = ko,/ngff —n? (region 1),

(2.13)
= C, cos(},x + ) as 7y, = koy/m3 — n’y  (region 2),
(2.14)
= Cyexp[—y;(x — W)] as y; =ko/nZy —n3 (region 3).
2.15)

Here, C|, C,, and C; are unknown constants. Since the number of
unknowns is 4 (n.p, C,, C,, and Cj), four equations are needed to
determine the effective index n.g. To obtain the four equations, we impose
boundary conditions on the tangential electric field component £, and the
tangential magnetic field component H, at x =0 and x = W. The
tangential magnetic field component H is

-1 0E,
=, (2.16)
Jou, o
which for the three regions is expressed as
H,(x)=— ])_1 C, exp(y,x) (region 1), (2.17)
J Oy
= V_z C, sin(y,x + o) (region 2), (2.18)
JWOHy
= y_3 C; exp[—ys;(x — W)] (region 3). (2.19)
JOU

Since the boundary condition requirement is that the tangential electric
field components as well as the tangential magnetic field components are
equal at the interfaces between adjacent media, the boundary conditions
on these field components at x = 0 are expressed as

Eyl (O) = EyZ(O)a (220)

H,,(0) = H,,(0) (2.21)
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and at x = W are expressed as

EyZ(W) = Ey3(W)’ (222)

The resultant equations are

C, =Cycosa [from Eq. (2.20)], (2.24)
—,C, =7,Cysina [from Eq. (2.21)], (2.25)
C,cos(p, W +a) = Cy [from Eq. (2.22)], (2.26)

—,Cy sin(y, W + o) = —y;,C; [from Eq. (2.23)]. (2.27)

Thus, dividing Eq. (2.25) by Eq. (2.24), we get

o= —tan_1<z—1> tqn (@ =0,1,2,..). (2.28)
2

On the other hand, dividing Eq. (2.27) by Eq. (2.26), we get

7, W =tan™! <z—3> —a+qn (b =0,1,2,...). (2.29)
2

Substitution of a in Eq. (2.28) into Eq. (2.29) results in the following
characteristic equation:

W = tan”! (i—l) + tan~! <z—3) fgr (@=0,1,2,..). (2.30)
2 2

Or, using

tan_1€> :g—tan_le), (2.31)
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we can rewrite this equation as

9, W = —tan™! <$—2> — tan~! (i—z) +(@+ Drn (g=0,1,2,..)).
1 3

(2.32)

2.1.2 TM Mode

In the TM mode, the magnetic field component is not in the longitudinal
direction (H, = 0) but in the transverse direction (H, # 0). Since the
structure is uniform in the y direction, d/dy = 0. Thus, we get JE,/dx = 0
from Eq. (2.7). Since this means that £, is constant, we can assume that
E, = 0. Furthermore, substitution of #, = E|, = 0 into Eq. (2.9) results in
0H,/0z = 0, which means that H. = 0. We thus get

H,=H,=E, =0. (2.33)

Substituting £, = (f/wege,)H,, derived from Eq. (2.8), and
E, = —(j/weye,)0H, /dx, derived from Eq. (2.10), into Eq. (2.6), we get
the following wave equation for the principal magnetic field component

Hy:

d*H

Wj + kg (e, — ngg)H, = 0. (2.34)

The field components on which the boundary conditions should be
imposed are the principal magnetic field component H, and the long-
itudinal electric field component E,. The principal magnetic field compo-
nent H, can be expressed as

H,(x) = C; exp(y,x) as = koy/n2e —n?  (region 1),
(2.35)

= C, cos(y,x + a) as 7, = koy/m3 — ngff (region 2),

(2.36)

= Cyexp[—y;(x — W)] as y; =ko/nZy —n3 (region 3).
(2.37)
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The tangential electric field component £, is

1 oH, 039)
7 jwege, Ox '

which is expressed as

E.(x) = —1— Cy exp(7,) (region 1), (2.39)
WEE,
=—- V2 C, sin(y,x + o) (region 2), (2.40)
JWEYE,
— 3 Ciexpl—y3( — W)] (region 3). (2.41)
JWEYE,.

Imposing the boundary conditions on the tangential fields at x = 0 and
x =W, we get

C, =C,cosa [from H,,;(0) = H,(0)], (2.42)

. Sy—‘ C, = z—‘ Cysina [from E,(0) = EL(0)],  (2.43)
rl r2
C, cos(p, W + o) = Cy [from H,(W) = Hs(W)],  (2.44)

— 8/—2 C, sin(p, W + o) = — gy—z Gy, [from EL(W) = E5(W)].  (2.45)
72 r2

Dividing Eq. (2.43) by Eq. (2.42), we get

o= —tanl(SL2 y_1> +qm (¢, =0,1,2,...). (2.46)
€1 N2

On the other hand, dividing Eq. (2.45) by Eq. (2.44), we get

W = tan”! (i—z 1—3) —ud g (g =0,1,2,..).  (2.47)
r3 12
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Substitution of the variable « in Eq. (2.46) into Eq. (2.47) results in the
following characteristic equation:

yzW:tztn_l(SL2 y—l) —I—tan_1<gL2 V—3> +qn (g=0,1,2,..).
&1 V2 &3 72

(2.48)

Using Eq. (2.31), we also get

YW = —tan1<ng y_2> — tanl(gL3 y_2>
& V1 &0 V3 (2.49)

+(q@+ Dn (g=0,1,2,..)).

Comparing the characteristic equations (2.30) and (2.32) for the TE
mode and Egs. (2.48) and (2.49) for the TM mode, one discovers that the
characteristic equations for the TM mode contain the ratio of the relative
permittivities of adjacent media.

2.2 EFFECTIVE INDEX METHOD

Here, we discuss the effective index method, which allows us to analyze
two-dimensional (2D) optical waveguide structures by simply repeating
the slab optical waveguide analyses.

Figure 2.2 shows an example of a 2D optical waveguide and illustrates
the concept of the effective index method. We consider the scalar wave
equation

Py) | Fo.)

o2 2 + k3 (e, (x, y) — ngp)(x, y) = 0, (2.50)

where n.y is the effective index to be obtained. We separate the wave
function ¢(x, y) into two functions:

P(x,y) =/(x) - (). (2.51)
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FIGURE 2.2. Concept of the effective index method.

This corresponds to the assumption that there is no interaction between the
variables x and y. Substituting Eq. (2.51) into Eq. (2.50) and dividing the
resultant equation by the wave function ¢(x, y), we get

&> d*
J% ;;gx) + g(ly) dé;gy) + kg (e,(x, ) = nggr) = 0. (2.52)
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Setting the sum of the second and third terms of Eq. (2.52) equal to
K2N?(x), we get

1 d’g(y)

20 + ke (x,y) = kN> (x). (2.53)

This means that the sum of the first and fourth terms is equal to —kZN>(x):

1 &)

0 — kyngy = —kgN*(x). (2.54)

Through these procedures we get the two independent equations

a dgi” +k3le. (v, y) = N*(0)]g() = 0 (2.55)
and
d2
;(;C) + kg (N*(x) — nggr) f (x) = 0. (2.56)

The effective index calculation procedure can be summarized as
follows:

(a) As shown in Fig. 2.2, replace the 2D optical waveguide with a
combination of 1D optical waveguides.

(b) For each 1D optical waveguide, calculate the effective index along
the y axis.

(c) Model an optical slab waveguide by placing the effective indexes
calculated in step (b) along the x axis.

(d) Obtain the effective index by solving the model obtained in step (c)
along the x axis.

It should be noted that, for the TE mode of the 2D optical waveguide,
we first do the TE-mode analysis and then the TM-mode analysis. And, for
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the TM-mode analysis of the 2D optical waveguide, we do these analyses
in the opposite order.

2.3 MARCATILI’'S METHOD

Here, we discuss Marcatili’s method for analyzing 2D optical waveguides
[3]. Proposed in 19609, it is still in wide use.

Figure 2.3 shows a cross-sectional view of a buried optical waveguide.
The core has a refractive index n;, width 2a, and height 2b. It is
surrounded by cladding that has a refractive index n,. In Marcatili’s
method, it is assumed that the electric fields and magnetic fields are
confined to the core and do not exist in the four hatched regions shown in
Fig. 2.3. Thus, the continuity conditions for the electric fields and the
magnetic fields are imposed only at the interfaces of regions of 1 and 2, 1
and 3, 1 and 4, and 1 and 5.

We discuss the E; mode, which has E, and H, as principal field
components, and the E), mode, which has E, and H, as principal field
components. Here, p and ¢ and are integers and respectively correspond to
the numbers of peaks of optical power in the x and y directions. Thus,
unlike ordinary mode orders, which begin from 0, they begin from 1.

FIGURE 2.3. Marcatili’s method.
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231 E, Mode

The electric field of the £}, mode is assumed to be polarized in the x
direction, which results in £, = 0. Since the structure of the optical
waveguide is assumed to be invariant in the z direction, the derivative
with respect to z is replaced by —jf. The component representations

shown in Egs. (2.5)—~(2.10) are reduced to

oF, H
W ’
8y —Jjou,
) oF, )
—JBE, — ol —jouH,,
oF, o
—_— — CO ,
8)/ JOULT,
oH
— +JﬁH) :ngogrEx’
dy
oH
—jpH, — —2=0.
JBH, o
Thus, we get
oH, 0H, .
8)6 g :]a)SOSrEz’
where
—1 OF
= - = [from Eq. (2.57)],
Jou dy

H, = — ( —JPE x—aEZ) [from Eq. (2.58)],

Jouy
1 0E,
Jopy dy

[from Eq. (2.59)].

(2.57)

(2.58)

(2.59)

(2.60)

2.61)

(2.62)

(2.63)

(2.64)

(2.65)

On the other hand, the component representation of the divergence

equation

V-(E) =0

(2.66)
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is
0 .
87 (SrEx) + (_]ﬁ)(grEz) = 0.
X

Thus, we get the longitudinal electric field

1
= By
jPe, ox

1 e, 1 9E,
= iBe xR o
1 0E,

TR ox

25

(2.67)

(2.68)

Here, we assumed that 1/¢, - d¢,/ox = 0. That is, we ignored the depen-
dence of the relative permittivity ¢, on the coordinate x in each region.
This assumption will also be used for each element in the finite-element
method discussed in Chapter 3. Eliminating £, by substituting Eq. (2.68)

into Egs. (2.63) and (2.64), we get

-1 0E, 1 ?E,
T jopy dy o ougf ax dy

io— L[ g 2 (L0
» = joue | T ax B o

1 ) PE,
= onof <ﬁ E. — 2 ) [from Eq. (2.64)].

[from Eq. (2.63)]

The above results can be summarized as

1 &E
= o from Eq. (2.69)],
= o F B [from Eq. (2.69)]
1 5 PE
H, = ol (ﬁ E, — (’)xzx) [from Eq. (2.70)],
1 OFE
H =—— [from Eq. (2.65)],
Jouy dy
1 0E,

2= [from Eq. (2.68)].

(2.69)

(2.70)

2.71)

(2.72)

(2.73)

(2.74)
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Substituting Eqgs. (2.72) and (2.73) into Eq. (2.60), we get a wave
equation for a principal field component E| for the £;, mode such that

PE,  E,
2 T2 + k3 (e, — n*4)E, = 0. (2.75)

The electric field and the magnetic field components to be connected
are E, and H, at the boundaries y = £b and are E. and H, at the
boundaries x = +a.

Since the principal field component E, is a solution (i.e., wave function)
of the wave equation (2.75), we get the following field components in
regions 1-5:

E, = C, cos(kx + o) cos(k,y + o) (region 1), (2.76)

= C, cos(kx + o) exp(—7,(y — b))  (region 2), (2.77)

= Cyexp[—y,(x — a)]cos(k,y + ;) (region 3), (2.78)

= Cycos(kx + o) exply, (v + )] (region 4), (2.79)

= Cs exp[y,(x + a)] cos(k,y + o) (region 5). (2.80)
Substituting these wave functions into the wave equation (2.75), we get

(after some mathematical manipulations) the following relations for the
wave numbers:

K+ K+ B =kgni, (2.81)
=7+ B =lgn3, (2.82)
i+ &+ B = kgn3. (2.83)

Subtracting Eq. (2.81) from Eq. (2.83) and Eq. (2.81) from Eq. (2.82), we
get

7= ky(ni —n3) — &, (2.84)

7y =ko(ni —m) — k. (2.85)
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The next step is to impose the boundary conditions specified by Egs.
(1.55) and (1.56) on the electric and magnetic fields.

A. Connection at y = +b: E, and H, Setting the electric field
components £, of regions 1 and 2 equal at y = b, from Egs. (2.76) and
(2.77), we get

Cy cos(k,b + o) = C,. (2.86)

And setting the magnetic field components H, of regions 1 and 2, obtained
by substituting Egs. (2.76) and (2.77) into Eq. (2.73), equal at y = b, we
get

Cik, sin(k,b + o) = Cyy,.. (2.87)

Dividing Eq. (2.87) by Eq. (2.86), we get

tan(k,b + 0,) = 2.

ky
Therefore
17
k,b+ o, = tan ! (k_y> +qm (g =0,1,...). (2.88)
y

On the other hand, setting the electric field components E, of regions 1
and 4 equal at y = —b, from Egs. (2.76) and (2.79), we get

C; cos(—k,b + oy) = C. (2.89)

And setting the magnetic field components H, of regions 1 and 4, obtained
by substituting Eqgs. (2.76) and (2.79) into Eq. (2.73), equal at y = —b, we
get

Cik,sin(k,b — 0y) = Cyy,,. (2.90)
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Dividing Eq. (2.90) by Eq. (2.89), we get

k

kb — o, = tan~! (V—y> + ¢, (b =0,1,...). (2.91)
y

And adding Eq. (2.88) to Eq. (2.91), we get

@b::mn*(%>-+%@-un G=1,2,..). (2.92)
v

B. Connection at x = t+a: E, and H, Setting the electric field
components £, of regions 1 and 3, obtained by substituting Egs. (2.76)
and (2.78) into Eq. (2.74), equal at x = a, we get

Cik,sin(k.a + o) = Cyy,. (2.93)

And setting the magnetic field components H,, of regions 1 and 3, obtained
by substituting Egs. (2.76) and (2.78) into Eq. (2.72), equal at x = a, we
get

(B* + K)Cy cos(ka + ) = (B = 70Cs. (2.94)
Dividing Eq. (2.93) by Eq. (2.94), we get

(B> + K2y,

tan(k.a + o) = .
(B = D)k

(2.95)

Substituting the relations

B+ k2 = kgn? — K2, (2.96)

B =i =koms — k. (2.97)
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which are obtained from Egs. (2.81) and (2.83), into Eq. (2.95), we get

(kgnt — k2)y
tan(k. - Yx
anlka ) = G "oy,

Therefore

(kgnt — &)y,

k =tan' (55—
a+ o an <(k§n§ — kyz)kx

) +pim (p;=0,1,...). (2.98)

On the other hand, setting the electric field components £, of regions 1
and 5, obtained by substituting Egs. (2.76) and (2.78) into Eq. (2.74),
equal at x = —a, we get

Cik,sin(k,a — o) = Csy,. (2.99)

And setting the magnetic field components H,, of regions 1 and 5, obtained
by substituting Eqgs. (2.76) and (2.78) into Eq. (2.72), equal at x = —a, we
get

(B + KD)C, cos(—k.a + o) = (B> — y))Cs. (2.100)

Substituting Egs. (2.96) and (2.97) into the equation derived by dividing
Eq. (2.99) by Eq. (2.100), we get

2412y,
tan(k.a — o) = M

Therefore

(kgnt — k7).

tan(kxa — O(l) = W’
v )x
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and

(kgnt — k7).

ka—oy =tan™' | 55—
T ((kén%—k;)kx

)—I—pzn (p,=0,1,...). (2.101)
Now, adding Eq. (2.98) to Eq. (2.101), we get

— (kzgrl _kZ) Vx
7 y) M

(2.102)

where ¢,; = nt and ¢, = n3. Or, since kon, , > k, for most cases, we get

kxa:tan—l(iﬂz—x)Jr%(p—l)n (p=1,2,..).  (2.103)
2 Mx

The propagation constant f§ (or the effective index n.) can be obtained
as follows:

1. Obtain k, by using a numerical technique such as a successive
bisection method to solve Eq. (2.103) [or Eq. (2.102)]. (It should be
noted that in each process of the successive bisection routine Eq.
(2.84) can be used to obtain the y, corresponding to £,.)

2. Similarly, obtain &, by making use of Eqgs. (2.85) and (2.92).

3. Finally, obtain the propagation constant f§ from Eq. (2.81).

Interesting points are as follows: Equation (2.92) corresponds to the
characteristic equation of the TE mode for a three-layer slab optical
waveguide parallel to the x axis. Equation (2.103), on the other hand,
corresponds to the characteristic equation of the TM mode for a three-
layer slab optical waveguide parallel to the y axis. The correspondence is
the same as that described in the last part of Section 2.2. The x and y axes
are related to each other through Eq. (2.81).
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2.3.2 E,, Mode

The magnetic field of the £, mode is assumed to be polarized in the x
direction, which results in H,, = 0. The component representations shown

in Eqgs. (2.5)—(2.10) are reduced to

oH,
— = JW&HE y
ay JW&YELiy

. oH, |
_jﬁHx - E :waOSVE ’

oH, .
- g = jowege, E,
oE, . .
) +JjBE, = —jouH,,
oFE
_]ﬁEx - == 0’
ox
oE, OE, .
PR = —Jw s
ax ay JWOUyLT,
1 0H,

[from Eq. (2.104)],

7 joege, 0y

1 oH.
E = —jpH, — —= from Eq. (2.105)],
Y ngogr( JBH, ax) [from Eq. ( )]
—1 0H,
E = [from Eq. (2.106)].

7 Jwegs,

(2.104)

(2.105)

(2.106)

(2.107)

(2.108)

(2.109)

(2.110)

@2.11)

(2.112)

On the other hand, the component representation of the magnetic

divergence equation

is expressed as

0H.,
ox

—JjpH, = 0.

(2.113)

(2.114)
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Thus, we get the longitudinal magnetic field component

1 0H,
B

(2.115)

Eliminating H, by substituting Eq. (2.115) into Egs. (2.110) and (2.111),
we get

1 98 /1 0H -1 8*H,
(— ) X [from Eq. (2.110)], (2.116)

* :jweosr oy \jp ox - weye,f ox dy

1 a (1 oH
E, = - —jpH, — — | = —
JEYE, ax \ jp ox

_ 1! (ﬂsz — 82_H> [from Eq. (2.111)]. (2.117)
weye, ff ox?

The above results can be summarized as

1 ®H
_ x from Eq. (2.116)], 2.118
o Es [from Eq. 116, (2.118)
1 5 0*H,
E —— H — 2% [from Eq. (2.117)], 2.119
] wgogrﬁ(ﬁ g 8x2) [fom Eq. 2117, (2.119)
~1 9H
- x [from Eq. 2.112)],  (2.120)
Jjwege, dy
1 oH
L [from Eq. 2.115)].  (2.121)
JB ox

Substituting Eqgs. (2.119) and (2.120) into Eq. (2.107), we get the
following wave equation for a principal field component H, for the E,
mode:

FPH, 0*H,
PRI ™ + k3 (e, — n*¢)H, = 0. (2.122)

The electric field and the magnetic field components to be connected
are H, and E, at the boundaries y = £b and are H, and E|, at the
boundaries x = +a.
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Since the principal field component H, is a solution (i.e., a wave
function) of the wave equation (2.122), we get

H, = C, cos(kx + o) cos(k,y + a,) (region 1), (2.123)
= C, cos(kx + o) exp[—y,(y — b)]  (region 2), (2.124)
= Cyexp[—y(x — a)] cos(k,y + a,) (region 3), (2.125)
= C, cos(kx + o) exply, (v +b)]  (region 4), (2.126)
= Cs exp[y,(x + a)] cos(k,y + o) (region 5), (2.127)

Substituting these wave functions into the wave equation (2.122), we
get (after some mathematical manipulations) for the wave numbers the
same equations specified by Egs. (2.81)+2.85) for the Ej, mode.
Equations (2.96) and (2.97) also hold.

The next step is to impose the boundary conditions on the tangential
electric fields and the magnetic field components at the interfaces between
different media.

A. Connection at y=+b: E, and H, Setting the electric field
components E, of regions 1 and 2, obtained by substituting Egs. (2.123)
and (2.124) into Eq. (2.120), equal at y = b, we get

ky Ty
Cl 8—Sln(kyb + OCz) = Cz g— . (2128)

rl 72

And setting the electric fields H, of regions 1 and 2 equal at y = b, from
Egs. (2.123) and (2.124), we get

C, cos(k,b + o) = C,. (2.129)
Dividing Eq. (2.128) by Eq. (2.129), we get

8r1y
tan(k, b =
ankb +20) = 70
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Therefore

&
kyb+ocz=tanl(”ky>+q1n (g =0,1,...).  (2.130)
€2

On the other hand, setting the electric field components £, of regions 1
and 4, which are obtained by substituting Egs. (2.123) and (2.126) into Eq.
(2.120), equal at y = —b, we get

k
€, sin(—kb -+ 3,) = — Y 2.131)

rl %3

Setting the magnetic field components H, of regions 1 and 4 equal at
y = —b, from Egs. (2.123) and (2.126), we get

Cy cos(—k,b + oy) = Cy. (2.132)

Dividing Eq. (2.131) by Eq. (2.132), we get

&7
tan(k,b — a,) = —2.
an(k,b — o) ok,
Therefore
8 a
kb — oy = tan_l( ”g) +q¢n (g,=0,1,...). (2.133)
%) y

Adding Eq. (2.130) to Eq. (2.133), we get

kb =tan () 11— 1) —1,2 2.134
b= g—Dm (g=12,..) (2.134)
&k,

B. Connection at x = +a: E, and H, Setting the electric field
components H, of regions 1 and 3, obtained by substituting Egs.
(2.123) and (2.125) into Eq. (2.119), equal at x = a, we get

2 2 2
ﬁ th cos(ka+oc1)_ﬁ Ix

C,. (2.135)
& %)
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Setting the electric field components H, of regions 1 and 3, obtained by
substituting Eqs. (2.123) and (2.125) into Eq. (2.121), equal at x = a, we
get

Cik,sin(k.a + o)) = Cyy,. (2.136)

Dividing Eq. (2.136) by Eq. (2.135), we get

8r2(ﬂ2 + k)%)yx
&1 (ﬁz - y)zc)kx

Here, making use of Egs. (2.96) and (2.97), we get

tan(k,a + o) = (2.137)

8,,2(](5}’1% - k)%)yx

) = R Rk,

Therefore

&2 (k(%n% - kyz)yx

k =tan ! o ——2F
a+ o an (8”(](3”% — kyz)kx

>+p17'6 (p1:0,1,)
(2.138)

On the other hand, setting the electric field components £, of regions 1
and 5, obtained by substituting Egs. (2.123) and (2.127) into Eq. (2.119),
equal at x = —a, we get

2 2 2 2
k _

C, bcos(—kxa +oy) = P =
ér 9%)

Cs. (2.139)

And setting the magnetic field components H, of regions 1 and 5, obtained
by substituting Egs. (2.123) and (2.127) into Eq. (2.121), equal at x = —a,
we get

Cik,sin(k.a — o) = Cyy,. (2.140)

Dividing Eq. (2.140) by Eq. (2.139), we get

£2(F° + k),

tan(k,a — o) = .
&1 (ﬁ2 - y)zc)kx
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And substituting Egs. (2.96) and (2.97) into this equation, we get

8r2(k§n% - k)%)yx
tan(ka — o) = 01— 22X
U e (kgnd — Kk,

Therefore

_ 8r2(k§n% - kz)y
ka—o; =tan [ 2% =0,1,...).
< oy an (Srl(k(%n% _ k)%)kx +p27t (Pz )

(2.141)
Here, adding Eq. (2.138) to Eq. (2.141), we get

e (kin? — k2)y
k —t -1 2\ "1 v/ ix
= <s,1(kgng — )k,

(2.142)
Or, since kyn; , > k, for most cases, we get
1 Vx
k.a = tan 1(}(—)4—%(}9—1)7‘5 (p=1,2,..). (2.143)

The propagation constant 5 (or the effective index n.g) is obtained in
Just the same way as for the £, mode.

Equation (2.134) corresponds to the characteristic equation of the TM
mode for a three-layer slab optical waveguide parallel to the x axis.
Equation (2.143), on the other hand, corresponds to the characteristic
equation of the TE mode for a three-layer slab optical waveguide parallel
to the y axis. The correspondence is the same as that described in the last
part of Section 2.2.

2.4 METHOD FOR AN OPTICAL FIBER

In this section, we discuss an analysis of a step-index optical fiber. An
optical fiber consists of a core and a cladding and is axially symmetric.
Since the refractive index of the core is slightly higher than that of the
cladding, the optical field is largely confined to the core. A single-mode
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FIGURE 2.4. Step-index optical fiber.

fiber, which has only one guided mode, plays a key role in telecommu-
nications systems.

Figure 2.4 shows a cross-sectional view of a step-index optical fiber.
The core of a radius a has a uniform refractive index »,, slightly higher
than the refractive index of the cladding, n,. Thus, the relative permittiv-
ities of the core and cladding are respectively ¢,; = n? and ¢,, = n3.

The exact vectorial wave equations for the electric field and the
magnetic field were shown in Chapter 1 as Egs. (1.30) and (1.36).
Since the structure of the optical fiber is uniform in the propagation
direction, we can, as shown in Eq. (1.39), substitute —jf for the
derivatives of the electric and magnetic fields with respect to z.

Thus, we can write

Ve,

V2E + V( . E) + k2 (e, — n’)E =0, (2.144)

7

v
V2 H :’ X(VXH) + k3(e, — nZ)H = 0, (2.145)

r

where E and H are respectively the electric fields and the magnetic fields
and n.g is the effective index to be obtained.

Although the structure shown in Fig. 2.4 can be analyzed exactly by
using the hybrid-mode analysis [4], the analysis procedure is a little
complicated. Fortunately, however, the weakly guiding approximation can
be used because the refractive index difference between the core and the
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cladding is very small, about 1%. This approximation simplifies the
analysis significantly, and the modes obtained are called linearly polarized
modes [5].

2.4.1 Linearly Polarized Modes (LP Modes)

A. Field Expressions Since the derivative of the relative permittivity
¢, is small, neglecting the derivatives in the vectorial wave equations
(2.144) and (2.145) gives a good approximation. Using this approxima-
tion, we can reduce the vectorial wave equations to the scalar Helmholtz
equations for the tangential electric fields and the magnetic fields:

VAE, + ki, — ngg)E; =0, (2.146)

VAH, 4 k3(e, — nPg)H, = 0. (2.147)

Since the optical fiber is axially symmetric, the Laplacian V? is
rewritten for a cylindrical coordinate system as follows:

V:=Vi >
922
1o/ 9\, 1 # @
T (r 5) 290> 022
P 1o 1 PP
T a2 g0t a2

To solve Eq. (2.146), we assume that the tangential electric field
component E (i.e., E, or E)) is given by

E(r,0) = R(rO(0), (2.148)
where the subscript i = x, y.

Substituting the electric field component (2.148) into Eq. (2.146) and
dividing the resultant equation by R(r)®(0), we get

1 <82R(r)+ 1 aR(r))+ 1 1 260

R(r) \ or? roor

r2 @(9) 802 + kg(br - ngff) = 0
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Therefore
r* (*R(r) 1 3R(r) yn 5 1 2e(0)
R(r) ( a2 +; ar ) +rky(e, — ng) = —% YR (2.149)

Since the left-hand side of Eq. (2.149) is a function of only the variable
r and the right-hand side is a function of only the variable 0, both sides
have to be constant. Thus, we get

r* (d*R(r) 1 dR(r) - 5 )
R(r)( dr? r dr )"‘r ko(e, — ngg) =1 (2.150)
and
1 00
N = -l 2.151
O0) a6 ( )

Equations (2.149) and (2.151) are summarized as

R(r) 1 dR(r) , P
e e R (8’ el ﬁ)R(r) =0 (2152)
and
20(0
d;zg )| *@(0) = 0. (2.153)

The solution of Eq. (2.153) is an oscillation with a single frequency and
is expressed as

O(0) = sin(i0 + ¢), (2.154)

where / and ¢ are respectively an integer and an arbitrary constant phase.
The next step is to solve Eq. (2.152). Using the variable transformations

i = ky(e, — nagr) (2.155)
and

& =i, (2.156)
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we write the first and second derivatives with respect to » as

d dé  _d & A dE 4

d
T2 _5= — =i — = . 2.1
oA ar gz M gt g TV ga 15D
Equation (2.152) is then rewritten as
Ld*R(r) 1 _dR(r) (~ I )
2 2( ~2
+= — + k — R(r) = 0.
e gt e T\ )
Therefore
d*R(r) 1 dR(r) , ( 12)
+- + k(1 —— JR(r) =0. 2.158
déz :gr dé 0 62 ( ) ( )

Solutions for Eq. (2.158) are /th-order Bessel functions and are written
as

A, (ﬂ) + BN, (ﬂ) forr < a,
a a

R(r) = (2.159)

wr

CK,< ) +D[,<¥) for r > a.

a
Here, J)(ur/a) and N,(ur/a) are the /th-order Bessel functions of the first
and second kinds, and K;(wr/a) and [;(wr/a) are the /th-order modified

Bessel functions of the first and second kinds. The parameters u> and w?
are defined as

W’ = ka (e, — ngyp), (2.160)

w? = I2d> (i — €,9). (2.161)
Thus, we get the following very important relation between u and w:
w4 w =17 (2.162)
where

v = kya/e, — €. (2.163)
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is the normalized frequency. The parameters u and w are respectively
considered to be the normalized lateral propagation constant in the core
and the normalized lateral decay constant in the cladding. The effective
index n.g has to satisfy the relation

nl Z neff Z nz- (2164)

Since the Bessel function of the second kind, N,(ur/a), diverges at
r =0 and the modified Bessel function of the second kind, /;(wr/a),
diverges at » = oo, the coefficients B and D of those functions have to be
zero. Thus, from Eq. (2.159), we get

AJ; (ﬂ) forr < a,
a

R(r) = (2.165)

CK, <ﬂ> for r > a.
a

B. Characteristic Equation The boundary conditions to be satisfied
by the radial wave function R(r) are

R(a—0)=R(a+0) (2.166)
and
dR(r) __dR(r)
dr |,  dr a+0 (2167

From Egs. (2.166) and (2.167), we get

AJ () — CK/(w) = 0, (2.168)
AuJ/(u) — CwK;(w) = 0. (2.169)

Equations (2.166) and (2.167) can be rewritten as the matrix equation

Jw) =K, (w) A\
(u}/(u) —W]él/(w)>(c> =0. (2.170)
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When the coefficients 4 and C are nontrivial, the determinant of their
coefficient matrix has to be zero such that

Ji(u) —K;,(w)

i) —wkiow)| = 2.171)

Equation (2.171) can be rewritten as

—wJy(W)Kj(w) + uJiK;(w) = 0,

where the prime denotes the derivative with respect to 7.
Thus, we get the well-known characteristic equation

ulj(u)  wKj(w)

T K (2.172)

The effective index n. can be obtained by solving a combination of
Egs. (2.162) and (2.172). In other words, since u and w are functions of
the effective index n.g, the characteristic equation (2.172) is a function of
nge. Solutions of this equation are called linearly polarized modes (LP
modes).

1. Explicit Forms of the Characteristic Equation
LP,,, MODES (I =0 AND m > 1) Equation (2.172) is rewritten for / = 0 as

uo(u) — wKy(w)

= . (2.173)

Jo(u) Ko(w)

Making use of the Bessel function formulas
Jo(2) = —J,(2), (2.174)
Ki(2) = —Ky ), (2.175)

we rewrite Eq. (2.173) as

uly(u)  wki(w)
Jow) — Ko(w)
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Therefore

Jow)  Ko(w)
wli(u)  wK,(w)’

(2.176)

LP,, MODES (! > 1 ANDm > 1) Here, we consider the LP,,, mode. Equation
(2.172) is rewritten for / =1 as

w/i(u) _ wKi(w)

= . (2.177)
Jiw)  Ky(w)
Making use of the Bessel function formulas
Ji(2) = Jy2) — 27, (2), (2.178)
zK(z) = —zK\(z) — K, (2), (2.179)
we rewrite Eq. (2.177) as
u(Jo(u) — u'Jy(w)) _ —wKy(w) — Ki(w)
Ji(u) Ki(w)
Therefore
Ji(u) K (w)
= — . (2.180)
uJo(u) wKo(w)
In general, making use of the Bessel function formulas
J(2) =J,_1(2) — vz U (2), (2.181)
zK(z) = —zK,_,(2) — vK,(2), (2.182)

one can rewrite Eq. (2.177) as

u(J;_y () — ™' Jy(u)) _ —wK;_(w) — IK)(w)
Ji(u) Ki(w)
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Therefore

S K
ud;_y(u) wK;_i(w) .

(2.183)

2. Value Range of u The characteristic equations for LP,,, modes have
solutions only within limited ranges of the parameter u, and we need to
know what these ranges are. These ranges can be determined by
investigating the limits w — 0 and w — 400, where the former corre-
sponds to # — v . Through this process, the single-mode condition and
cutoff conditions for the higher order LP;, modes will also be clarified.

LP,, MODES (/=0 AND m > 1) First, we investigate the limit w — 0 (i.e.,
u — v). Since the zeroth-order and /th-order modified Bessel functions of
the first kind can, for the limit of z — 0, be respectively expressed
asymptotically as

Ky(z) ~ —Inz, (2.184)
K(z) ~iT(Ez)™" forl> 0. (2.185)
The right-hand side of Eq. (2.176) can be rewritten as

Ky(w) Inw

wK; (w) B W(1/2)F(1)[(1/2)W]—1 =—Inw— 400 forw— 0.

The left-hand side of Eq. (2.176) also has to go to +oc0. That is,

Jo(v)
vy (v)

— +00. (2.186)

The possible solutions for Eq. (2.186) are v — 0 and J,(v) — 0. Since
we get Jy(v) — 1 and J;(v) — 40 for v — 0, Eq. (2.186) holds. This
implies that the cutoff value v, for the normalized frequency v is zero. In
other words, the LP;; mode has no cutoff condition. Next, we discuss the
cutoff conditions for higher order modes: LP,,, modes where m > 2. Here,
we assume that j, ,, | is the (m — 1)th zero of the Bessel function of the
first kind. That is, J;( j; ,,_;) = 0. Since the signs of Jy(v) and J;(v) are the
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same for the limit v — j; ,,_; +0, Eq. (2.186) holds. This means the
cutoff value v, of the LP,,, mode is given by

Ve :jl,m—l' (2187)

Thus, we can summarize the cutoff conditions for LP,, modes as
follows:

LP,, mode: v, =0,
. (2.188)
LP,,, mode: Vo = Jim— form=>2.

On the other hand, when w >> 1, the asymptotic expansion of the /th-
order modified Bessel function of the first kind is

T _, X (I,n)
K’“’\[Ee = Qwy’
N \/E (1,0)
27 2w

n -w
~¢ge. (2.189)

Since for w > 1 the right-hand side of Eq. (2.176) can be rewritten as

Ky(w) n/2e™" 1
~ =— =0, 2.190
wK;(w)  wym/2e™ w - ( )

the left-hand side of Eq. (2.176) also has to go to zero. That is,

Jo(u)
() — 0. (2.191)

This implies that the asymptotic value of u is given by

U~ o - (2.192)
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Thus, we can summarize the asymptotic values of « for LP,,, modes as
follows:

LPy; mode: U~ Jjoq
(2.193)
LP,,, mode: u~jo, form=>2.

LP,, MODES (/>1 AND m>1) As in the above discussion, we first
investigate the limit w — 0 (i.e., ¥ — v). For the limit z — 0, the /th-
order modified Bessel functions of the first kind were shown in Egs.
(2.185) and (2.185). The (/ — 1)th-order modified Bessel function of the
first kind for the limit z — 0 is

K2~ 1Tl - 1)dz)™*" forz — 0. (2.194)

Making use of this approximation, we express the right-hand side of Eq.
(2.183) as

kw1 1/2rola/2wl
wK;_(w) w (1/2)C( — D[(1/2)w]~!

1 (= DI/2w™

w (1 = 2)[(1/2)w] !

1 2
=——(U-1—
w w
2(1—1
= — (wz )—>—oo forw — 0. (2.195)

The left-hand side of Eq. (2.183) also has go to —oo. That is,

Ji(v)
v (v)

(2.196)

The possible solutions of Eq. (2.196) are v — 0 and J,_,(v) — 0. Since
the left-hand side of Eq. (2.183) diverges to +oo for the limit v — 0, the
limit ¥ — 0 cannot be a solution. On the other hand, since the signs of
J)(v) and J;_,(v) are opposite for v — j,_ ,, +0, j,_; ,, can be a solution
for Eq. (2.196). Here, j,_;,, is the zero of the (/ — 1)th-order Bessel
function of the first kind, J,_,(v).
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The cutoff condition for LP;,, modes is
LP;,, mode: Ve = Ji_1.m- (2.197)
On the other hand, since, according to the asymptotic expression

(2.189), the right-hand side of Eq. (2.183) is 0 for w > 1, the left-hand
side of Eq. (2.176) also has to go to zero. That is,

Ji(u)
— 0. (2.198)
uy_y(u)
This implies that the asymptotic value of u is given by
U j . (2.199)

We can thus summarize the possible value ranges of the parameter u as

LP,; mode: 0<u<jy,
LP,,, mode: Jimo1 Su<jo, form>2, (2.200)
LP,, mode: Jimim Su<jg, forl>1, m>1.

It should be noted that since the minimum value of the zeros of the
Bessel functions is j,; (2.404826), the single-mode condition for an
optical fiber with a step index is given by the cutoff value for the LP,
mode:

UC :j(),l' (2201)

Figure 2.5 shows examples of u—w curves. The crossing points of the
curve u> + w? = v and the other curves give the effective indexes and
confirm the value ranges of u specified above.

Figure 2.6 shows examples of calculated field distributions. It should be
noted that / and m of LP,,, respectively correspond to the number of dark
lines in the azimuthal direction and the number of bright peaks in the
radial direction.

2.4.2 Hybrid-Mode Analysis

This section discusses a more exact analysis for the step-index optical
fiber. Since the above LP-mode analysis can meet the ordinary demands
for fiber analyses and the hybrid-mode analyses are very specialized, some
readers may wish to skip this section.
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IS
%%

(d)

FIGURE 2.6. Field distributions for the LP mode (v = 20): (a) LP ;; (b) LP, ;;
(¢) LP2; (d) LPs .

A. Field Expressions The cylindrical electric field E and the cylind-
rical magnetic field H are expressed as

E(r, 0,z) = E(r, 0) exp| j(wt — 1], (2.202)
H(r, 0, z) = H(r, 0) exp[ j(wt — )], (2.203)
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where

E)=Er+E)0+E.z, (2.204)

Hy=Hrxr+H,0+H.z (2.205)

Here, r, 0, and z are respectively unit vectors in the radial, azimuthal, and
longitudinal directions. Applying the rotation formula

1 04, 04, 04, 04 19 1 04
VXA =|- —F—— r_ = 2 (rd,)) — = ==
(r a0 8Z>r+< >0+(r Br(r 2 r 89)2

az  or
(2.206)
for a vector A = 4,r 4+ 4,0 + 4.z to the Maxwell equations
VXE = —jou,H, (2.207)
VXH = —jweye, E = —jweE, (2.208)
we get
1 0E, . )
= S IBE) = —jonH,. (2.209)
, oE, )
—JBE, — == = —jopeHy, (2.210)
1 d 1 0E
— —(rEy) —— — = —jouyH, 2.211
C ) — 5 St = o, @211
1 0H.
— —+jpHy = jweE,, 2.212
g T/PHy = jowiE, (2.212)
oH,
r
1 d 1 0H,
- —(rHy)) — - —L = —jweE.. 2.214
r ar(r O 90 08 ( )
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Expressing the tangential field components (E,, E;, H,, and H,) as
functions of the longitudinal field components (£, and H,), we get

1 oF

BE, — ] H =—- —Z, 2.215

JBEy — jouyH, - 30 ( )

oF

—JBE, + jouyHy = 3—;, (2.216)
1 o0H

jweE, — jBH, = — —Z=, 2.217

JwekE, — jBH, ey ( )
0H.

JooeEy +jpH, = ——%. (2.218)
/A

The radial and azimuthal field components are obtained as follows:

Equation (2.216) x 4+ Eq. (2.217) x wpy:

—Jj oL, 1 0H,
E=—"—<S|p— -—. 2.219
" wleu— B <ﬂ or +w‘u0r a0 ( )

Equation (2.215) x 4+ Eq. (2.218) x wpy,:

- | oE, oH.
By —— (pLlOE_,, ), 2.220
’ wzeu—ﬁ2< r a0 My, ( )

Equation (2.215) x we + Eq. (2.218) x f:

- 0H, 1 OE.
H=———"— — we— . 2.221
" wlen— B (ﬁ o %7 a0 ( )

Equation (2.216) x we 4+ Eq. (2.217) x f:

- 1 0H,  OE,
H=——|[|f- . 2.222
’ wzsu—/}2<ﬂr a0 T ( )

Substituting the H, of Eq. (2.221) and the H, of Eq. (2.222) into Eq.
(2.214), we get

PE. 10E, 1 &E,

2 r o rr 9?

+ (w*ep — B*E, = 0. (2.223)
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And substituting the E, of Eq. (2.219) and the £, of Eq. (2.220) into
Eq. (2.211), we get

1 ?E. 5
32 T7 o T2 g T @ FE=0. (2.224)

PE, 1 0E

z

To solve Egs. (2.223), we assume that the longitudinal field compo-
nents £, and H, are given by

E.(r, 0)[or H.(r, 0)] = R.(r)®.(0). (2.225)

Thus, we get the following wave equations for R_(r) and ®_(0):

2R 1 dR 2
d z(r) +- d z(r) + kg g — ngff _ n_ Rz(r) =0 (2226)
dr? r dr r?
and
20.(0
d 5922( ) 4+ 120.(0) = 0. (2.227)

The solution of Eq. (2.227) is an oscillation with a single frequency and
is expressed as

0.(0) = sin(nf + ¢), (2.228)

where n and ¢ are respectively an integer and an arbitrary constant phase.

Through the procedure shown for the LP mode, we obtain the radial
wave function R,(r) in the core as the Bessel function of the first kind,
J,(ur/a), and obtain the radial wave function in the cladding as the
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modified Bessel function of the first kind, K, (ur/a). Thus, we finally get
the following field components:

A, (ﬂ) sin(nd + ¢) forr <a,

a
E = (2.229)
CK, ( ) sin(nd + ¢) forr > a,

BJ, ( > cos(nf + ¢) forr <a,

=
|

(2.230)

DK( )cos(n@—l—qb) for r > a.

Substituting Eqgs. (2.229) and (2.230) into Egs. (2.219)—(2.222), we get
the wave functions as follows:

1. In the core (» < a):

E =A4J, ( )sm(ne +¢), (2.231)
jp , qur jou, n o (u

E = [—Au/—ajn<;> HBL ;) ; (a)} sin(n0 + ¢), (2.232)

JB oy g o
Fo= [ (u/a)’ ”Jn( ) *p u/aOJ ( )} cosnd + ),
(2.233)
H. = BJ, ( ) cos(nf + ), (2.234)
| Jwe n o qur Jﬁ

H = [A o rJ,,(g) S ( )} cos(nd + ¢), (2.235)
jwey , qur jB n_qur\] .

Hy = [ —A u/alJ (a) +B(u/a)2 ;J”<;>] sin(nf + ¢).

(2.236)



2.4 METHOD FOR AN OPTICAL FIBER 53

2. In the cladding (» > a):

E __CKT< >snmn94-¢) (2.237)
|~ JB Oy o wry |
k= i w/aK (a) D(W/a)2 r ”(a):| sin(n0 + ),
(2.238)
A JB n, wr Jjoug ., (wr
E,= _C (v/a) rK"< ) D W/ Kn( p )] cos(nf + ¢),
(2.239)
H, = DK, (ﬂ) cos(nd + ¢), (2.240)
T jwey, n jp wr
H, = i C(u/a) rK”< )—i—DW—/a n(g)i|cos(n9+q§),
(2.241)

iy = [C22 (1) < I (0 s + ),

w/a a (w/a) r
(2.242)

The normalized lateral propagation constant u in the core and the
normalized lateral decay constant w in the cladding were respectively
defined in Egs. (2.160) and (2.161).

B. Characteristic Equation The boundary conditions to be satisfied
are that each of the tangential field components (E., E,, H,, and H)) is
continuous at » = a. They are expressed as

E(a—0,0)=E.(a+0,0), (2.243)
Ey(a—0,0) = Ey(a+0,0), (2.244)
H(a—0,0) = H(a+0,0), (2.245)

Hy(a —0,0) = Hy(a +0, 0), (2.246)
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Substituting the equations for the field components [i.e., Egs. (2.231)-
(2.242)], into the equations for the boundary conditions [i.e., Egs.
(2.243)—(2.246)], we get the matrix equation

( J, 0 -K, 0
B, jeme B o jome, |4
(u/a)2 a” uja " (w/a)2 a " wia " B o
0 J, 0 —K, cl|l
Jwey o, JB n Jwey o, B n D
\ - n 2 _Jn - D 2 _Kn
u/a (u/a)” a w/a (w/a)~ a
(2.247)

When the coefficients A, B, C, and D have nontrivial solutions, the
determinant of the coefficients of Eq. (2.247) has to be zero. After some
mathematical manipulations, we get the characteristic equation

J K\ (¢ J, K, 1  1\[(¢e 1 1
ult — =+ (2 ). (2248
(an + wt, ) \e, u, + wJ, "\ + w? ) \e, u? + w2 ( )

This is the characteristic equation for the hybrid mode (i.e., £, 7% 0 and
H. #£0). Since u and w are functions of the effective index n.g, this
characteristic equation is also a function of 7.

For n = 0, Eq. (2.248) is reduced to

o K
— =0 2.249
(an + wJ, ( )
or
e Ju | K,
— =0. 2.250
(82 ul, + wJ, ( )

It can be shown that Egs. (2.249) and (2.250) respectively correspond
to the TE mode (£, = 0) and the TM mode (H, = 0).
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PROBLEMS

1. Derive the expressions for the power confinement factors (I" factors) in
the core for the TE mode and the TM mode of the three-layer slab
optical waveguide shown in Fig. 2.1.

ANSWER

a. TE mode. The principal electric field component is E, and the other
field components are

E,=E.=H,=0, (P2.1)
H, = —iEy, (P2.2)
Wy
i OE
S T (P2.3)

T opy ox
Since the complex Poynting vector S is defined as
S = 1ExH*, (P2.4)
the power propagating in the z direction, S, is given by
S, =1 (ExH*),
_ 1
=3 JE')}[{;< dx

__b
20p

J |E, | dx. (P2.5)

The power confinement factor in the core is thus

w
(1/20m0) | 1, s
. (P2.6)

+00
(1/200) | B @

FTE =
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b. TM mode. The principal electric field component is H,, is and the other
field components are

H,=H =E,=0, (P2.7)
E = LHy, (P2.8)
WEYE,.
H,
E b o, (P2.9)

7 jwege, Ox

The power propagating in the z direction, S, is given by

S, = %JEXH;‘ dx

1
_ b J—lelzdx. (P2.10)
2wey ) g,

”

The power confinement factor in the core is thus

"1
(l/waO)J — |H,* dx
0 &

—+00 1 .
— |H,* dx
&

—0o0 r

(1/200) |

2. The characteristic equations for the LP,, mode, Eq. (2.176), and for
the LP,,, mode, Eq. (2.183), were derived separately. Show that, when
[ =0, Eq. (2.176) is included in Eq. (2.183).

ANSWER

Substituting / = into Eq. (2.183), we get

S Ko(w)
W)~ WK ()

(P2.12)
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Since the Bessel functions here have the formulas

J_y(@) = (=1)7"J,(2), (P2.13)
K_,(2) = K,(2), (P2.14)
assuming n = 1, we get
J_1(2) = =J(2), (P2.15)
K_(2) = K,(2). (P2.16)

The characteristic equation (2.176) can be derived by substituting Egs.
(P2.15) and (P2.16) into Eq. (P2.12).
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CHAPTER 3

FINITE-ELEMENT METHODS

Like the finite-difference methods (FDMs) that will be discussed in
Chapter 4, the finite-element methods (FEMs) [1-3] are widely utilized
numerical methods. The scalar (SC) FEM has several advantages over the
fully vectorial (V) FEM. The main ones are that the SC-FEM has no
spurious problem and the matrixes in the eigenvalue equation are small
and symmetrical These contribute to numerical efficiency. Here, we
discuss the use of the SC-FEM in the 2D cross-sectional analysis of
optical waveguides.

3.1 VARIATIONAL METHOD

As shown in Fig. 3.1, there are two kinds of ways that can be used to solve
optical waveguide problems [2—4]: the variational method and weighted
residual method, of which the Galerkin method is representative. Both the
variational and the weighted residual methods eventually require that the
same matrix eigenvalue equations be solved. This section will focus on a
variational method; the next section will discuss a weighted residual
method.

In the variational method, the wave equation is not directly solved.
Instead, the analysis region is divided into many segments and the
variational principle is applied to the sum of the discretized functionals
for all segments.

59
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Variational method

Finite-element method Eigenvalue matrix equation
Weighted

residual method

FIGURE 3.1. Analysis based on the finite-element method.

Figure 3.2 shows an analysis region Q surrounded by a boundary I
Here, n is the outward-directed unit vector normal to the surface of the
analysis region Q. A variational method for obtaining the effective index
negr 1s first discussed here by using the scalar wave equation [2,3]

&
ax(f + % ‘f + k3 (e, — n’g)d = 0. (3.1)

Multiplying this equation by variation d¢ of the function ¢ and
integrating the product over the whole analysis region 2, we get

&
J L o (% + a—f) dx dy + ”Q o ki(e, — np)pdx dy = 0. (3.2)

Here, applying the partial integration with respect to variables x and y,
we get

2 .
o0 o [po0y o

1) o
_” (% %ﬁaj 83¢’)d ” +”95¢k(%(s,—niff)wxdy:o,

X

FIGURE 3.2. Analysis region.
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where the terms inside the brackets are those whose integration orders
with respect to x and y were reduced from 2 to 1 because of the partial
integration. Summarizing the second and the third terms, we get

3 3

d9¢p dp 3¢ 0
_JJ.Q{<W¢8_(f+8—yd)8_f>_5¢k§(8r_ngff)¢}dxdy:().

In addition, substituting the relations

809 0 _ 3¢ 00¢ _ (3 (0 _518¢>2
Tax ox ox ax (&) (g) )2 <§> ’
209 ap _ S[1 (¢ 2
ER 5(87) ’
oL
650 =o(30°)
into the above equation, we get
¢ ¢
6“1"(]5836 wre | oy dx}

2
_5%[”0[%) +<af) G eff>¢2}dxdy=0~ (3.3)

Here, we introduce the following function /:

I o) s ]

s oefoe)
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Since the line integral calculus term can be rewritten as

ox
B Gl
_J ar, (3.5)

I can be rewritten as

L)) s a2 ]

(3.6)

where 9/0n is the derivative with respect to the normal vector n. Here, [ is
a function of ¢, which is a function of x and y. A function of a function is
generally called a functional.

Using the functional /, we can rewrite Eq. (3.3) as

81 =0, (3.7)

which means that the stationary condition is imposed on the functional /.
We can instead first define the functional / given by Eq. (3.4) or (3.6).
Then, imposing the stationary condition on the functional /, we get

2 2
o¢p ” i(a 0,29 f) + K, — ngff)¢} dedy=0. (3.8

When Eq. (3.8) holds for an arbitrary variation d¢ of the function ¢, the
wave equation (3.1) has to hold. Thus, the wave equation (3.1) is obtained
by imposing the stationary condition on the functional /.

This means that solving the wave equation (3.1) is equivalent to setting
the variation 81 of the functional I, which can be obtained by Eq. (3.4) or
(3.6), to zero, that is, to imposing the stationary condition on the
functional I. This is called the variational principle, and a method for
solving problems by using the variational principle is called a variational
method. In the Rayleigh—Ritz method, the unknown function is formed by
a linear combination of known basis functions that satisfy the boundary
conditions, and the variational principle is applied to the functional.
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The calculation procedure for the application of the variational method
to the FEMs is summarized as follows: The analysis region is first divided
into segments, which are called elements, and the functional 7, is
calculated for each element e. Then, the total functional / for the whole
analysis region is obtained by summing up the functional /, for all
elements:

=1, (3.9)

e

The final eigenvalue matrix equation is obtained by imposing the
stationary condition on the functional /. It should be noted that
the difference between an ordinary variational method and an FEM is
that the former treats the analysis region as one area and the latter treats
the region as the sum of elements.

Since the total functional is a linear combination of the functionals for
the elements, the variation 7 of the whole system is a sum of variation d1,
of each element e. Thus, Eq. (3.7) can be rewritten as

81 =35I, =0. (3.10)

The functional /, of an element e surrounded by the boundary I', is given

by
2 2
I %U j{(%) +(%) —k(%(sr—niff)di} ds dy}

- Ur 520 dl“}. @10

Next, the wave function ¢, is expanded as

M,
b = ;]Vid)ei = [N (.} (3.12)

by using the basis function [N,] in element e, where M, is the number of
nodes in element e and 7 is the transposing operator for a matrix. Then the
basis function [V,] and the expansion coefficient {¢,} are expressed as

NJ=IN, N, Ny - Nyl (3.13)
=1 ¢ ¢ - oy (3.14)
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In the FEMs, a basis function N, is called a shape function or an
interpolation function. As discussed later, the expansion coefficient ¢,
corresponds to a field component at each node.

Two-dimensional cross-sectional analyses of optical waveguides often
use first-order triangular elements having three nodes or second-order
triangular elements having six nodes.

We make use of the equation

AN AN AN CUARUANE AARTN:

ox | ox x| ox ox
_ KDY INT NI () r IN] O[N]
- ox ox ox ox

={¢.} {o.},  (3.15)

where d¢,/x is a scalar quantity and is rewritten as (d¢,/ ax)". Similarly,
we can rewrite

ap, [ aknAl
(8)/) (g} by (P (3.16)
and
o2 = (¢.) b = {p ) ININ.I" (.}, (3.17)

where we made use of the fact that ¢, is also a scalar quantity.
The functional /, given by Eq. (3.11) can thus be rewritten as

1 JIN,] aIN,]" | Nl N,
le= §{¢Z}TJJ8( ox  Ox + dy Iy

— k(e — ngff)[Ne][Ne]T> dx dy{p,} — |:J b 9, dF:|

T, € on

BN TR )
= S0 (4] - PBDIS) U b dr} (318
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Here, matrixes [4,] and [B,] and the quantity 22 are given by

r T
4] = ” (3[Ne] AN AN ]

dx dy, 3.19
ox ox ay ay ) e ( )

5. = | | awa” av (3.20)

and
2= K(e, — ny). (3.21)
Since the functional /, given by Eq. (3.18) is obtained for only element e,

we have to sum up all the elements to obtain the functional / for the whole
analysis region. According to Eq. (3.9),

1= 356714 - PBDIS) - ZUF 0,20 dr}

¢ on
= 51917141 - 2B)() - ¥ Ur 6. dr], (.22)
where
{¢} = Z (¢} (3.23)
) = S (.29
7= X (5], (.29)

e

Now, consider the second term of Eq. (3.22), which is the line integral
calculus term and can be expressed as follows:

ad)e _ ad)e 1 a¢e
ol o] -p{]_en o] o)

e+l

Here, we assume that the wave function ¢, and its derivative with
respect to the normal to the surface of element e, d¢,/0n, are continuous at
the boundaries with neighboring elements. Since, under this assumption,
the line integral calculus terms inside the analysis region are canceled out,
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the line integral calculus term of the periphery of the whole analysis region
remains, which will be discussed in Section 3.4.
Thus, the second term of Eq. (3.22) can be reduced to

_@r % dr). (3.26)

Finally, the functional / for the whole analysis region given by Eq. (3.22)
is obtained as

1 =LV (4] - 2[B)(g) — (M% dr). (3.27)

Next, we impose on the functional / at the boundaries the Dirichlet
condition

¢=0 (3.28)
or the Neumann condition
0
W _,, (3.29)
on

Using these boundary conditions, we can reduce the functional / to the
simple form

= %;{@}T([Ae] — 2[BDid.)
= 2 19) 141~ 2B, (330)

Now that we have obtained the functional /, the next step is to impose
the variational principle on it. Although having a total of only two nodes is
impossible for 2D cross-sectional optical waveguides, this case will be
used here for ease of understanding.

The wave function vector {¢} and matrixes [S], [4], and [B] for the
eigenvalue A% are expressed as

(4
(¢} = (¢2) (3.31)



3.1 VARIATIONAL METHOD 67

and
_ _ )2 _ S Si
[S]=1[4] — A°[B] = (Slz Sﬂ). (3.32)

Here, we make use of the symmetry for [S]. [The symmetry of the matrix,
[S] = [S]”, will be discussed later.] Thus, we get

1 =3{¢}[S}{¢} (3.33)
Sll S12 ¢1
? e SlZ S22 ¢2
S11¢1 + S0,
=19 )( )
2N 8106, + Sés
=117 + 25120165 + ). (3.34)

The derivatives of Eq. (3.34) with respect to ¢, and ¢, are

al

S, + Sy, (3.35)

o, SuPit S

al

Fr S12¢1 + S, (3.36)
2

And the matrix expression for these derivatives is

ol _ Sll S12 d)l)
8(¢>1> B (Slz Szz)(‘f’z (3.37)

b,

or

I - 2
oy~ Ul = Z1BDIe). (3.38)
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This is the same equation we get for general cases. Since solving the
wave equation by using the FEM with the variational principle is the
imposition of the stationary condition on the functional / as

ol
—— =0, 3.39
Hp} (-39
it is equivalent to solving the eigenvalue matrix equation
(4] = 27[BD{g} = 0. (3.40)

3.2 GALERKIN METHOD

Since the functional is used to solve the problems, we have to find it when
we use the FEM with the variational principle. On the other hand, the
partial differential equations governing almost all the physical phenomena
that we encounter are already known. This is certainly true with regard to
the wave equations for the electromagnetic fields and for the Schrodinger
equation, solutions of which are the targets of this book. The weighted
residual methods, especially the Galerkin method, is quite powerful for
solving them. The Galerkin method is widely used not only in the FEM
but also in methods of microwave analyses, such as the spectral domain
approach (SDA) [5, 6].

Since the wave function ¢ is a true solution for the wave equation (3.1),
the right-hand term of Eq. (3.1) is definitely zero. The true wave function
¢, however, cannot actually be known; we can obtain only an approximate
wave function ¢. When the true wave function ¢ in Eq. (3.1) is replaced
by the approximate one, the right-hand term does not become zero but
generates the error R, which is called the error residual:

2 2

% + % + ki (e, — nZp)p = R. (3.41)
It is natural to think that the difference between ¢ and ¢ can be decreased
by averagely setting the error residual R equal to zero in the whole
analysis region. As is well known, the electromagnetic fields concentrate
mostly in the core where the refractive index is higher than in the cladding.
Thus, some weighting should be used when setting R equal to zero.
Introducing the weight function v, we get

JJIﬁR dx dy =0. (3.42)
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Rewriting the error residual R explicitly, we get

2 2
JJ'!//{M_FM_i_ eff)(rb} d)Cdy:O (343)

The procedure discussed above is the weighted residual method.
Partially integrating Eq. (3.43) with respect to x and y, we get

[t v [u 20 ] [ (30200 2
+jwmaﬂ@mw@=a (3.44)

which can be rewritten as

o0 oy ap Y o¢
[Lw dr} —”(a a5y 5) e dy
+ | [Whie, ~ b v dy=o. (3.45)

Here, the relation given by Eq. (3.5) was used, and J} dIl’ and 0/0n are
respectively the line integral calculus at the boundary I' and the derivative
with respect to the normal vector n. The rank of the integral calculus of the
first term inside the square brackets in Eq. (3.45) is decreased by 1 as a
result of the partial integration. The rank of the derivatives of the second
term is also decreased from 2 to 1, and these derivatives are called the
weak forms.

The weighted residual method, in which both the approximate wave
function ¢ and the weight function \ are expanded by the same basis
functions, is called the Galerkin method. In using the FEM, we first divide
the analysis region into many elements, then apply the Galerkin method to
each element, then sum up the contributions of all the elements. The
expansion coefficients obtained as an eigenvector correspond to the fields
at nodes in the analysis region.



70 FINITE-ELEMENT METHODS

Since the calculation procedure will be discussed in detail later, here we
simply summarize it. The equation for element e in the divided elements is
expressed from Eq. (3.45) as

o, W, 0p, o, o,
|:Jre Ve on dr] _JL< ox o + ay By) dx dy

+ || vk~ nip. ax v =o. (3.46)

Here, it should be noted that <ES€ and ¥/, in element e are expanded by using
the same basis functions:

_ M,

¢e = Z ¢eiM = [Ne]T{¢e}’ (347)
Mé’

Ve =2 dalV; = NI {4}, (3.48)

where M, is the number of nodes in e. The [N,] and {¢,} were defined in

Egs. (3.13) and (3.14). The basis function N, and the expansion coefficient

¢,; correspond to the shape function and the field component.
Substituting Eqgs. (3.47) and (3.48) into Eq. (3.46), we get

r N, aN,]" O[N] aN.I"
(.} JL{ o ax ay ay

+ K, —nsz)[NeuNe]T} dx dy($,) + [ L b 8;; dr} =0

(3.49)

for element e. Applying the definitions for [4,], [B,], and A* shown in Egs.
(3.19) to (3.21), we can rewrite the above equation as

{9} (—[4]+ Z[BDi} + U ¢, af . dF} =0
T, n

or

(67 (4] — 2B ) — U 3.2 dr} 0, (3.50)

T eal’l

e
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Since Eq. (3.50) gives the contribution of only element e, it is necessary to
sum up the contributions of all the elements in the analysis region. Thus,
we get

e
P’ on

i) (4] = ZBDIg.) — Z[L ¢ e dl“} =0

or

¢,

¢ On

{¢}T([A1—AZ[B]){¢}—ZUF<?> dr}o, (3.51)

where the definitions

{py =20}, [Ml=21[4]  [B]=)[B.] (3.52)

in Egs. (3.23)—(3.25) were used.

With respect to the second term in Eq. (3.51), we assume that the wave
function ¢, and its normal derivative d¢,/0n are continuous at the
boundaries between elements. This assumption cancels out the line
integral calculus terms, so the second term in Eq. (3.51) can be reduced to

—G 599 dr>. (3.53)
r 8n

Substituting Eq. (3.53) into (3.51), we get
(617 (14) ~ PIBI(S) - (ﬂl $% dr> =0 (s
T n

When the Dirichlet condition or the Neumann condition is the boundary
condition, the second term in Eq. (3.51) becomes zero and Eq. (3.54) is
simplified to

[} ([4] — 2[B]){¢} = 0. (3.55)
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We finally get the following eigenvalue matrix equation to be solved:

([4] — 2’[B){¢} = 0. (3.56)

Comparing Eq. (3.56) with Eq. (3.40), one can see that the eigenvalue
matrix equation for the Galerkin method is identical to that for a
variational method.

3.3 AREA COORDINATES AND TRIANGULAR ELEMENTS

We have roughly discussed the calculation procedures for the variational
method and Galerkin method. Before describing the detailed formulations
of the global matrixes for the eigenvalue matrix equations, we have to
investigate the elements, which are indispensable when we divide the
analysis region into segments.

In the analysis of 2D cross-sectional structures, triangular elements
using polynomials are generally used to approximate field distributions.
The concept of polynomial approximations is illustrated in Fig. 3.3. In Fig.
3.3a, the true wave function is approximated by a linear function, and, in
Fig. 3.3, it is approximated by a quadratic function.

Although the higher order polynomial approximations can bring about
more accurate results, they result in a larger number of nodes at which
optical fields are defined. In addition, when there are more nodes, we need
to use a more complicated mathematical analysis and more computer
memory. Discussions in this book are therefore limited to two widely
utilized triangular elements: the first-order triangular element, which
requires three nodes, and the second-order triangular element, which
requires six nodes.

y Yy

A 3

Approximated

Approximated

> X > X
(a) ()

FIGURE 3.3. Approximations by polynomial functions: (a) linear function; (b)
quadratic function.
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3 (xaa }’3)

1 2
(xl,)’l) (xza )’z)

FIGURE 3.4. First-order triangular element.

3.3.1 First-Order Triangular Elements

Figure 3.4 shows a first-order triangular element. In this element, the wave
function ¢(x,y) at an arbitrary coordinate (x,y) inside the element is
expanded using shape functions N;, N,, and N5 (with fields ¢,, ¢,, and
¢) at the vertexes on which nodes are placed:

d(x,y) = N1y + Ny, + N3y
=[N (¢}, (3-57)

where [N] =[N, N, N;]" and {¢}=($, ¢, ¢3)T. The shape func-
tions [N] and the field vectors {¢} respectively correspond to the basis
functions and the expansion coefficients. The coordinates of nodes 1, 2,
and 3 are respectively (x;, ), (x,,»,) and (x3,y3).

In determining the explicit forms of shape functions N;, N,, and N, the
use of area coordinates is convenient.

Figure 3.5 shows a triangle we use here for discussing the area
coordinates. An arbitrary coordinate in this triangle is denoted by
p(x,»). Figure 3.6 shows another triangle formed by nodes denoted 1,
2, and 3. As is well known, the area S;,; of the triangle is given by

When we assume that i, j, and k are unit vectors in the x, y, and z

directions, the vector A from node 1 to node 2 and the vector B from node
1 to node 3 are expressed as

A =(x, —x)i+ (0 —»)is B=(x;—x)i+ ;- (3.59)
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3 (x5, )3)
L = Slp3 = ~23p
2
S123 5123
52
1 i 2 (x5 ),)

|
(xl’ yl) P(X,)’) IJ\3= S12p

S123
FIGURE 3.5. Area coordinates.

Using these expressions, we get

i i
AXB = Xo—=X1 Vo — M 0
x3—x y3—=y 0

(2T X 20N ‘k
X3 =X V3 =N

Thus, we can obtain the area S;,; of the triangle 123 as

S :l X=X V2N
B0 —x ;= |
3 (%3, ¥3)
B
S
‘1 0
l >» 2
(x5 y) A (%, ¥)

FIGURE 3.6. Area of a triangle.

(3.60)

3.61)
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We similarly get area S5, of triangle 23p formed by nodes 2 and 3 and
point p; area S),; of triangle 1p3 formed by node 1, point p, and node 3;
and area S),, of triangle 12p formed by nodes 1 and 2 and point p:

Lixa—=x »,—y
Sz, == , 3.62
2y —x -y 02
X3 —x y;—y
Sy == , 3.63
P2y —x -y 09
Lixa—=x »,—y
R . 3.64
P2 —x oy -y o9

Area coordinate L; can be defined as the ratio of the area of the triangle
formed by point p and the side opposite node i to the whole area of the
triangle. In Fig. 3.5, the area coordinate L, which is related to node 1, is
defined as the ratio of the area of triangle 23p to the area of triangle 123.
Similarly, the area coordinate L,, related to node 2, is defined as the ratio
of the area of triangle 1p3 to the area of triangle 123. And area coordinate
L, related to node 3, is defined as the ratio of the area of triangle 12p to

the area of triangle 123. The explicit expressions for L, L,, and L; are

Xo =X ) —J"
S — _
Ll — 23p — X3_ X _y ’ (365)
S123 X=X =N
X3 —X1 V3—0N
X3—X )3 —y'
S — _
L2 1p3 — X X N _y ’ (366)
S123 Xo =X Vo= N
X3 —X1 V3—M
X=X W —y'
S — _
Li=_2-_"A"% NZJ (3.67)
Si23 Xo =X Y2 — N1
X3 =X V3—0

Generally, since the value of the determinant for a matrix is invariant

under transposition, we get the relations

Xy — X Yy — xpo» 1 X X X3
_ _ =|x ¥ 1{=|y » »|(=2S85) ((3.68)
X3 X1 )3 N X3 Vs 1 1 1 1
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We similarly get the following relations for the other determinants:

Y2 -y x y 1 X X, X3

2 2

o —x _y:xz »n =y »n »nl

3T o 1| 111

Y2 yy—y x y 1 X X3 X X X X3
3 37
x_xy_y=X3y31=yy3y1=y1yy3,
! ! x oy 1 11 1 11 1

x y 1 X X, X X X

Xop =X M=V
x_xy_y'=xzyz1=yyz;v1=y1;vzy-
: : x oy 1 11 1 111

Rewriting Egs. (3.65)—(3.67) by using these relations, we get

X X3 X X X3
L=y » » Y1y Y3l (3.69)
1 1 1 1 1 1
Ly=i»w vy »n oy (3.70)
1 1 1 1 1 1
xl XZ X xl XZ X3

Ly=1\yi » » Y Y2 V3 (3.71)
1 1 1 1 1 1

As shown in these equations, area coordinates L;, L,, and L; are linear
functions of x and y. According to Cramer’s formula, Egs. (3.69)—(3.71)
mean that L,, L,, and L; are roots of the following algebraic matrix
equations:

x X Xy X3 L,
Y1=1" n »n L, |. (3.72)
1 1 1 1 Ly

where it can be found from the bottom row that the sum of L, L,, and L,
is 1.
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Now, we return our attention to the shape functions in Eq. (3.57). Since
here we are interested in a first-order triangular element, we approximate
shape functions N;, N,, and N; by the following first-order plane
functions:

Ny =ax+by+cy, (3.73)
N, = ayx + by + ¢, (3.74)
N3y = a3x + b3y + ¢, (3.75)

for which the matrix expression is

Nl a; bl &} X
N; a; by 1

The conditions to be imposed on shape function N, are the following:

When p(x, y) coincides with node 1 (x;,y,): Ny =a;x; +by, +¢; =1,

(3.77)
When p(x, y) coincides with node 2 (x,,y,): Ny =a;x, + by, +¢; =0,
(3.78)
When p(x, y) coincides with node 3 (x3,3): N, =a;x3+by; +¢; =0.
(3.79)
The matrix expression for Egs. (3.77)—3.79) is
x; oy 1 a; 1
Xy W 1 bl = 0]. (380)
X3 V3 1 C1 0
Imposing the same conditions on N, and N;, we get
(xl y 1 a, (0
Xy IV 1 bz = 1 , (381)
x3 y3 1 c3 0
x; oy 1 as 0
Xy IV 1 b3 = 0]. (382)

x3 y3 1 c3 Kl
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Equations (3.80)—(3.82) can be rewritten as

X1 N 1 ay a, a3 1 0 0
Xy W 1 bl b2 b3 = 0 1 0 (383)
x3 yo 1 c 6 . 0 0 1
Using the definitions
X1 N 1 a a, as 1 0 0
Xl=|x » 1), M=|b by by), [U=]0 1 0],
X3 V3 1 C1 Cy C3 0 0 1
(3.84)
we can rewrite Eq. (3.83) as
[X][4] = [1]. (3.85)
Taking the transposition 7" of Eq. (3.85), we get
[ 1x1" =1[1]. (3.86)

Thus, matrix [X]” is found to be an inverse matrix of [4]". Multiplying Eq.
(3.76) by matrix [X]7, we get

N, X X X
N, | =My | =ty ]=|»
N; 1 1 1
This results in
X N] X1 Xy X3 Nl
Yy —[X]T N l=1I» » »n N, |. (3.87)
1 N; 1 1 1 N;

Comparing Eq. (3.72) with Eq. (3.87), we find the following important
relations between shape functions N, N,, and N; and area coordinates L,
L,, and Ls:

Nl :Ll’ Nz :Lz, N3 :L3. (388)
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A
1 Ny
=
G
o
]
=
§ Node 3
Node 1
Node 2

FIGURE 3.7. Shape function N, for the first-order triangular element.

Figure 3.7 shows N, as an example. As shown in this figure, N, is a
plane function whose value is 1 at node 1. Similarly, N, and N; are
respectively plane functions whose values are 1 at nodes 2 and 3.

3.3.2 Second-Order Triangular Elements

Figure 3.8 shows a second-order triangular element. As in the first-order
triangular element shown in Fig. 3.4, nodes 1, 2, and 3 are positioned at
the vertexes of the triangle. The second-order triangular element has three
additional nodes set midway between the pairs of vertexes.

The wave function ¢(x, y) at an arbitrary coordinate (x, y) is expanded
using six shape functions and the values of wave functions ¢, ..., ¢, at
the nodes as

6
d(x,y) = ;Niqﬁi = [N {9}, (3.89)
3
6 5
@
1 4 2

FIGURE 3.8. Second-order triangular element.
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where [NJ=[N; N, N3 N, N5 NgI' and {p}=(¢; ¢, ¢;
b4 b5 ¢6)T. The coordinates of nodes 1-6 are respectively

e 1), - (X5 Ye)-

As mentioned before, the first-order shape function is a linear function
of x and y. The second-order shape functions should be quadratic
polynomial functions of x and y. The area coordinates L,, L,, and L,
are also linear functions of x and y, so the second-order shape functions
must be quadratic functions of the area coordinates.

A. Shape Function N, Shape function N, is 1 at node 1 and is 0 at all
other nodes. Since L; =1 and L, = L; =0 at node 1, N, should be a
quadratic function of only area coordinate L. Thus,

N, =al}+bL, +c. (3.90)
The following relations should hold:

Atnode 1 (L, = 1): Ny=a+b+c=1. (3.91)
Atnode 6 (L, = 0.5): N, =0.25a+40.5b+c = 0. (3.92)

Atnode 3 (L, = 0): N, =c=0. (3.93)
From Egs. (3.91)~(3.93), we obtain
a=2, b=—1, c=0. (3.94)
Thus, we get
Ny =213 — L, =L,2L, — 1). (3.95)
B. Shape Function N, Shape function N, is 1 at node 2 and is 0 at all

other nodes. Since L, =1 and L; = L; =0 at node 2, N, should be a
quadratic function of only area coordinate L,. Thus,

N, = al3 + bL, +c. (3.96)
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The following relations should hold:

Atnode 2 (L, = 1): N,=a+b+c=1. (3.97)
Atnode 4 (L, = 0.5): N, =0.25a+0.5b +c =0. (3.98)

Atnode 1 (L, = 0): N, =c=0. (3.99)
From Egs. (3.97)~3.99), we obtain
a=2, b=-1, c=0. (3.100)
Thus, we get
N, = L,2L, — 1). (3.101)

C. Shape Function N; Shape function N; is 1 at node 3 and is 0 at all
other nodes. Since L; =1 and L; = L, =0 at node 3, N; should be a
quadratic function of only area coordinate L;. Thus,

Ny = al} + bLy +c. (3.102)
The following relations should hold:

Atnode 3 (L; = 1): Ny=a+b+c=1. (3.103)
Atnode 6 (L; = 0.5): N; =0.25a+0.5b4+c=0. (3.104)
Atnode 1 (L; = 0): N;=c=0. (3.105)

From Egs. (3.103)—(3.105), we obtain
a=2, b=-1, c=0. (3.106)
Thus, we get
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D. Shape Function N, Shape function N, is | at node 4 and is 0 at all
other nodes. Since L; = L, = 0.5 and L; = 0 at node 4, N, should be a
quadratic function of area coordinates L, and L,. Thus,

N, =al? +bL3 +cL,L, +dL, +eL, +1. (3.108)
The following relations should hold:
Atnode 4 (L, =L, =0.5): N, =0.25a 4 0.25b + 0.25¢
+0.5d +0.5¢e+f = 1. (3.109)
Atnode 1 (L, =1,L, =0): Ny=a+d+f=0. (3.110)
Atnode2 (L, =0,L, = 1): Ny=b+e+f=0. (3.111)

Atnode 5 (L, =0, L, = 0.5): N, =025b+0.5¢e+f=0. (3.112)
Atnode 6 (L; =0.5,L, = 0): N, =025 +0.5d+f=0. (3.113)

Atnode3 (L, =L, =0): N,=f=0. (3.114)
From Egs. (3.109)—(3.114), we obtain
c=4 and a=b=d=e=f=0. (3.115)
Thus, we get
N, =4LL,. (3.116)

E. Shape Function N5 Shape function Nj is 1 at node 5 and is 0 at all
other nodes. Since L; =0 and L, = L; = 0.5 at node 5, N5 should be a
quadratic function of area coordinates L, and L;. Thus,

Ns = al} + bL3 + cL,Ly + dL, + eL; +f. (3.117)
The following relations should hold:
Atnode 5 (L, = L; = 0.5): N5 = 0.25a + 0.25b + 0.25¢ + 0.5d
+05e+f =1 (3.118)
Atnode 2 (L, =1,L; =0): Ns=a+d+f=0. (3.119)
Atnode 3 (L, =0,Ly, =1): Ny=b+e+f=0. (3.120)

Atnode 4 (L, =0.5,L; =0): N5 =0.25a4+05d+f=0. (3.121)
Atnode 6 (L, =0,L; =0.5): Ny =0.25b4+0.5¢e+f =0. (3.122)
Atnode 1 (L, = Ly = 0): Ns=f=0. (3.123)
From Egs. (3.118)—(3.123), we obtain

c=4 and a=b=c=d=e=f=0. (3.124)
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Thus, we get

N5 - 4L2L3.

(3.125)

F. Shape Function N; The shape function N is 1 at node 6 and is 0 at
all other nodes. Since L; = L; = 0.5 and L, = 0 at node 6, N4 should be a

quadratic function of the area coordinates L, and L;. Thus,

Ny =al? +bL3 +cL|Ly +dL, +eL; +1. (3.126)
The following relations should hold:
Atnode 6 (L, = Ly =0.5): Ng = 0.25a 4 0.25b + 0.25¢ 4+ 0.5d
+0.5e+f=1. (3.127)
Atnode 1 (L, =1,L; =0): Ny=a+d+f=0. (3.128)
Atnode 3 (L, =0,L; = 1): Ne=b+e+f=0. (3.129)
Atnode 4 (L; = 0.5, L; = 0): Ng=0.25a+0.5d +f =0. (3.130)
Atnode 5 (L, =0,L; =0.5): Ng =025+ 0.5¢e+f=0. (3.131)
Atnode 2 (L, = L; = 0): Ng=f=0. (3.132)
From Egs. (3.127)—(3.132), we obtain
c=4 and a=b=d=e=f=0. (3.133)
Thus, we get
The above results can be summarized as
N, =L,2L, - 1), (3.135)
N5 =4L,L5, (3.139)
Ng =414L,. (3.140)
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3.4 DERIVATION OF EIGENVALUE MATRIX EQUATIONS

Next, we move to the derivation of eigenvalue matrix equations for the £y,
and Ej), modes. As shown in Egs. (2.75) and (2.76) in Marcatili’s method,
the wave equations are

PE. PE,

E,, mode: e 52 08 — i )E, =0, (3.141)
*FH 32

B}, mode: ax;‘ 2e, —BHH, =0. (3.142)

Taking into consideration the continuity conditions at neighboring
elements, which will be discussed later, we can rewrite the wave equation
for the E),, mode as

1 (°H, 0*H, , B
;(WJF 8y2)+ (ko—g— H, =0. (3.143)

”

Using Egs. (3.141) and (3.142), we get the scalar wave equations [2, 3]

e 2 8 D) ( 0 ) ( . )
where for the E;q mode

¢ =E, n” =1, & =¢ =n (3.145)

and for the E),, mode
1 2
p=H, f=—=—) 2=l (3.146)
nr

To derive the eigenvalue matrix equation for these modes, we use the
Galerkin method discussed in Section 3.2. After the analysis region is
divided into many elements, the wave function ¢, at the nodes in e is
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expressed by shape functions N, and wave functions ¢,,. In other words,
the wave function is expanded by the shape functions as

ME
¢e = ;Neiqbei = [Ne]T{¢e}’ (3147)

where M, is the number of nodes in e and T is a transposing operator for a
matrix. We also used the following definitions:

[NJ=[N, N, Ny---Nyl, (3.148)
B =(¢1 by 3 by, (3.149)

where the numbers of the nodes M, in the first-order and second-order
triangular elements are respectively 3 and 6.
Substituting Eq. (3.147) into the wave equation (3.144), we get

ha 0
n (ﬁ - W) N (o) + (R E — 2PN (o} = 0.

Multiplying the left-hand side of this equation by the shape function [N,]
and integrating it in element e, we get

2 82 82 T
[ [ (s g )" e
+ ” K& — P PNINT de dvig) =10} (3.150)

Partially integrating the first term of Eq. (3.150) with respect to x and y,
we get

AN, N,
UF NI v+ | vt dx}m}

_ ” z{a[Ne] oNI" N AN,

e

]T
dx d

4 ” RE — 2NN dv dyl,) = (0).
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Making use of Eq. (3.5), we get

Ur g A r dr}{qb |

NENAR A AR A
_” { o oy dy

} dx dy{¢,}

4 ” (RE — 2NN dx dylg,) = (0}, (3.151)

where d/0n is the derivative with respect to the outside normal and fr dar
is the line integration at boundary I,. Since the method we are discussing
is an FEM, it is necessary to sum up the contributions from all the
elements:

Z[L 2N, e [N] dr}{qs}

e

T T
-y J J ng{a[Ne] OINCI” | O] O[N]

x  ax oy oy }dxdy{¢e}

+ Z” K& — 2PININT dedvid) =10} (3.152)

Here, we focus on the first term of the above equation. As mentioned
before, fr dl' is a line integration at the boundary of element e. To
simplify the argument here, we assume that the left-hand side of Eq.
(3.152) is multiplied by the wave function vector {q’)e} Thus, we get the
relation

2 a[Ne]T
Z |:,[l"e ne[Ne] T dl—} {d)e}

Sy J 2oy ]8{‘“ ar |
e r, — A n ,

Wave function L. .
Derivative of wave function
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This means that the first term in Eq. (3.152) can be rewritten as

9P,
o] o]

a¢p o¢
2 e+1 2 e
= ¢ dl’ — ¢ dl’ ).
;(L let1@et1 on Jre e on )

e+1

Here, we assume that the wave function ¢, and its normal derivative
n2d¢,/dn with constant n2 are continuous at the boundaries with
neighboring elements. Through this assumption, the line integral calculus
terms inside the analysis region are canceled out, since, as shown in
Fig. 3.9, the directions of the line integral calculus terms are opposite for
each pair of neighboring elements. As a result, only the line integral
calculus term of the periphery of the whole analysis region remains.
Although this assumption is one of the limitations of the SC-FEM, it is a
relatively good approximation. Thus, the first term in Eq. (3.152) can be
rewritten as

ii; nzqﬁ% dr. (3.153)
r on

Vertical interface
[ /
Horizontal
interface

FIGURE 3.9. Canceling out of line integral calculus terms.
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Substituting the line integral calculus term (3.153) into Eq. (3.152), we
can reduce Eq. (3.152) to

(K- PG+ o5 ar =), (154
T n

When we impose the Dirichlet or Neumann conditions on fields or their
derivatives given by Egs. (3.28) and (3.29), we can neglect the last term on
the left-hand side of Eq. (3.154). Then Eq. (3.154) can be simplified to the
eigenvalue matrix equation

(K] - FIMD{¢} = {0}, (3.155)

where the square of the propagation constant f is an eigenvalue and {¢} is
an eigenvector. Here, we used the definitions

T T

8x ox ay ay

+ k¢ ” T dx dy} (3.156)
M= ” NIV, d d, (3.157)
{6} =2 {o.}. (3.158)

Since the relative permittivity ¢,, is assumed to be constant in an
element, ng and «:ﬁ are also constant in the element.
The variable transformations

X = xky, (3.159)

y = yky, (3.160)

which are useful for suppressing the round-off errors in the calculation,
enable the wave equation (3.155) to be reduced to

(K] — nig[MD){¢} = {0}, (3.161)
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where

T T
K=Y {—ni J J (a[Ne] a[Nf] N a[z\fe] [N,] )d}_c 5

. K o » oy

+ & ” NN, dx d)‘/}, (3.162)
] = Y “ NN, d d. (3.163)
- :kﬁi). (3.164)

3.5 MATRIX ELEMENTS

In this section, we discuss the matrix elements for the first- and second-
order triangular elements. A way to form the global matrixes using matrix
elements will be shown in the next section.

The eigenvalue equation given in Egs. (3.155)—(3.158) are

(K1 - B*[IMD){p} = {0}, (3.165)
where
B ) AR AR AR A
[K]_;{_HEJL< ox ax + ay ady )dxdy
et | [ v as dy}, (3.166)
= Y {—n2([4] + B.)) + K EIC,I,
M) = 3 ” NIV, dx dy (3.167)

=Y nlCl,
o} =2 1.} (3.168)
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As mentioned before, since the parameters 1> and ég are constant in
each element, only the following terms shown in Egs. (3.165)—(3.167)
have to be calculated to obtain explicit expressions for matrixes [K] and

[M]:
N T
4] = a[aNxel a[zav;] dx dy.
T
= | [ M AL g
JJe oy oy
[Cl= || [NJN,]" dx dy.

e

(3.169)

(3.170)

(3.171)

Since the shape function [N,] is expressed by area coordinates L;, L,,
and L, they are useful for performing the integral calculus in Egs.
(3.169)—(3.171). For later convenience, these coordinates are rewritten as

L,
L,
Ly
where
and

S

_ O1x —x) + Ri(y — »,)

28,
_ Or,(x —x3) + Ry(y — y3)
28, ’
_ O3(x —x1) + R3(y —y1)
28, ’
0 =»n—y;,
O, =y3— 1>
O3 =y — ),

Ry =x3 —x,,

e = %[(Va — Y —x1) — (x5 —x)(0, —yI-

(3.172)

(3.173)

(3.174)

(3.175)
(3.176)
(3.177)
(3.178)
(3.179)
(3.180)

(3.181)
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Here, S, is the area of the triangle 123 shown in Fig. 3.4. The derivatives
of area coordinates L,, L,, and L; with respect to coordinates x and y are

M _ G M O O (3.182)
ox 28,7 ox 28,7 ox 28,7 '
o _ Ry Ry 0Ly Ry (3.183)
v 28 oy 28 oy 28, ‘

The following calculations will use the following convenient integration
formula for the area coordinates:

11K
r 25, (i, k=0,1,2,3,...).

LiLijd dy=—"—
” ks = G o) e

(3.184)

The derivation of this formula is shown in Appendix B.

3.5.1 First-Order Triangular Elements
Figure 3.4 shows a first-order triangular element. Since it has three nodes,
its shape function [V,] has three components:

NJ=[N, N, Ni]'. (3.185)

As shown in Eq. (3.88), we have the following important relations
between the shape functions N;, N,, and N; and the area coordinates
Ly, Ly, and L;:

Nl :Ll, N2 :Lz, N3 :L3 (3186)

The next step is to derive the explicit expressions of Egs. (3.169) to
(3.171).

A. ffe(a[Ne] /3x)(3[N,]” /ax) dx dy The component representation of the
matrix is

a4 ap
dx dy = ay ayy dyz |, (3187)

az; 4z dsz3

[4.] =
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and the integrand is

3N1/3x <8N1 BNZ 8N3>
T —1 7273
] — | oy ax ox ox ox
N5 /ox

aN;\*> ON, ON, oN, 8N3\
ox ox Ox ox Ox

(3.188)

aN, aN, (9N,\> 0N, aN,
ox 0x ox ox Ox

aN; AN, ON; N, [N;\’
ox 0x ox ox ox

Using the integration formula shown in Eq. (3.184), we obtain the
following matrix elements:

2
&) JJ dxdy:Q—% (3.189)
ON. oL oL
() aear= ] (5 (52) axr

QZ)TL dx dy = 2 (3.192)
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ON, \ [ ON; oL, (0L,
= — )| =) dxdy= — )|—=—) dxd
o= ) () o= [ (R)(E) e
9\ (Y 9,0;
e(ZSe 25, dx dy as, as, (3.193)
AN aLy\’
ay; = (8—x3> dx dy:JJ (8—;) dx dy
2 2
_ =3 - =3
= e(ZSe) dx dy 48, (3.194)

B. [[(3[N,]/3)(3[N,]" /dy) dx dy The component representation of the
matrix is

by by by
NARIAR
[B.] = JJ y Y dedy=| by by Dby |, (3.195)
by b3y by

and the integrand is

ay ay ady ay ady
AN AN | NG (0N (NG E () (0N
dy ay )\ dy dy dy J\ dy
dy )\ dy dy )\ dy dy

Comparing Eq. (3.187) with Eq. (3.195), we find that the differences
between them are the variables for the derivatives. Thus, the elements for

(3.196)
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the matrix in Eq. (3.195) can be obtained by simply substituting R, for Q;
in Egs. (3.189)—(3.194):

1 R [
o ()0 - [[ ()5

RR
Fj_bﬂ’ (3.198)
dN,\ [N oL\ (oL
1313:” )= dxdy:” V(=) axay
e\ /J\ 9y e\ Oy J\ Oy
R\R
417::1;31, (3.199)
N, \* aL,\’ R?
by = —2) dxdy= —2) dxdy = 2
2 ”( ay) i ”(f?y) T YT s, (3-200)
aN,\ (0N, L, \ (3L,
by = 2V dxdy = V=) dxd
2 ”e(ay><8y) i ”e(ayxay e
R,R
:42?::1732, (3.201)
AN aL;\’ R?
bz ”( 3y> e dy ”<3y) w=7s, (3-202)
C. ff de dy The component representation of the matrix is
. 11 ‘12 €13
Cl=|[ o asar = [ e e e ) G209
¢ €31 €3 €33

and the integrand is

N? NN, N;N;
=| NN, N} N,N; |. (3.204)

N3N, N3N, Nj
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Using the integration formula shown in Eq. (3.184), we obtain the
following matrix elements:

S,
el = ledxdy:JJ L%dxdy:f, (3.205)
Se
012 == NINZ dx dy == L1L2 dx dy == E == 021, (3206)
Se
013 = N1N3 dx dy: L1L3 dx dy:E:C:"l, (3207)
2 2 Se
Cyy = Ny dx dy = JJ Ly dxdy = ra (3.208)
Se
Crz = N2N3 dx dy = L2L3 dx dy = E = Cz3p, (3.209)
2 2 Se
c33 = N; dxdy:JJ L3 dxdyzz. (3.210)

We have so far obtained matrixes [4,], [B,], and [C,] for the first-order
triangular element e. We can form the global matrixes [K] and [M] by
substituting matrixes [4,], [B,], and [C,] into Egs. (3.166) and (3.167) and
summing them up. Because the matrixes [4,], [B,], and [C,] are symme-
trical 3 x 3 matrixes, the global matrixes are also symmetrical.

3.5.2 Second-Order Triangular Elements

Since the second-order triangular element (Fig. 3.8) has six nodes, its
shape function [N,] has six components:

[NJ=[N, N, Ny N; N5 Nyl (3.211)

As shown in Egs. (3.135)—(3.140), the important relations between shape
functions Ny, ..., Ny and area coordinates L, L,, and L; are

N, =L,(2L, — 1), (3.213)

N, =4L,L,, (3.215)

Ny = 4LsL,. (3.217)
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We derive the explicit expressions of Egs. (3.169)—~(3.171) for the
second-order triangular element in a way similar to that in which we
derived the corresponding expressions for the first-order triangular
element.

A. [[.(3[N.]/x)(3[N,]" /ox) dx dy The component representation of the
matrix is

djp dpp a3 adiy di5 dgg

r dy) Ay dyz3 dyg dps  dyg

4,] = JJ INe] ON.] dx dy = d3; d3yp A3z d3q d3s A3
e Ox  0Ox Qg1 Qg Q43 dgq Qg5 Qg

ds; dsp ds3 dsy dss dsg

de1 dey Qg3 dea des  deg

(3.218)

and the integrand is

ox ox ox Jdx Ox ox
oN, 2 oN, oN, 0N, oN; 0N, oN, 0N, ONs 0N, 0Ny
ox ox Oox ox ox ox Ox ox Ox ox ox

dN, 0N, <8N2>2 oN, ON; 0N, oN, 0N, oNs 0N, 0N

B (aN1 N, N, 0N, ON; 8N6>T<8N1 N, dN; N, ONs aNé)

ox Ox ox ox ox odx oJx dx Jx odx ox
ox dx  Ox Ox ox ox dx O Jdx oOx Ox
ox dx o Jdx ox Ox ox ox  Ox ox ox
ox dx ox Ox odx Ox ox Ox ox ox  ox

dNg N, ONs N, ONg ON; ONg ON, 9Ny ONs <8N6)2

ox ax  ox ax  ax ax  ax ox  ax  ox ox
(3.219)
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The derivatives of the shape functions are

aN, aL, O
ax ( 1 ) ax 2Se( 1 ) (l ’ ’ )7

oN, oL oL; 2
= 4<L Sty ) =5 (@l + 0o,

oN. oL oL 2
8—; = 4<Lz o 3+ L, 5 2) = S_e(Q3L2 + O,L5),

oN, oL oL 2
=L+ L2 ) = (0L + OsL)).
ax ax ax S,

(3.220)

(3.221)

(3.222)

(3.223)

Using the integration formula shown in Eq. (3.184) and the relations

[0 (i #))
JJ (4L; — VL; dx dy =
€ %Se (i :])

JJ (4L; — V) dx dy = %Se,

we obtain the following matrix elements for Eq. (3.218):

aN 2 2
(Bx]) dx dy = <2QS‘) JL(4L1 — 1)* dx dy

J(lﬁL% — 8L, + 1) dx dy

()]
:(%)2(16% 8 +21‘>2Se
() (

)

(3.224)

(3.225)

(3.226)
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oN. ON-
o= [ () (52) de>

2QSI> (25) JL(4L1 — 1)(4L, — 1) dx dy

) ” (16L,L, — 4L, — 4L, + 1) dx dy

J
(
(
- (92)as (10 -5 -3+3)
(
J
(

Ql 2)256(%_i+l> — _QIQZ = ay, (3227)

__9%_ (3.228)

= ay, (3.229)

. (3.231)
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2
) (L — 1)? dx dy = %, (3.232)

e

o= [] () o= (5
=] [(G) () e
<Q2Q3( >“(4Lz—1)(4L3—1)dxdy

- - 3.233
125, % (3.233)

ON,\ [ ON.
ays = JJ (8_x2> (8—;) dx dy
(2QS2> (S ) ” (4L, — QoL + O L,) dx dy

_9O
35, (3.234)

0 (aN2> (8N5> sy
0,05

( )( > J (4L, — 1)(OsL, + OQpL3) dx dy = 3S
=a

e

> (3.235)

(f> (S3 J L(4Lz — DQiLs + OsLy) dx dy = 0 = agy, (3.236)
([ (N 05\ %
a33_JL( 8;) dx dy _(2;) ”(4L3—1) dx dy = 4S3 (3.237)
o [ ()
)L ox
:(Q_; (SE)J 4Ly — 1)(OoLy + O Ly) dr dy = 0 = agy, (3.238)
i)
o= [ (5)(5) e
-G)6l]

- Se -9 (3.239)
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ON- oN,
wo= [ (5)(Ge) e

= <&> <£> JJ (4L; — 1)(O)Ls + O5L,) dx dy

28,/ \S,
- Q3SSQ1 = dg3,
AN 2\ 2
Q44 = JJ (8—;> dx dy = (A_) JJ (O,L, + O,L,) dx dy
2\ 2
= (S_) jj (O3L7 +20,0,L L, + OiL3) dx dy
2
- g(Q% +0,0,+ 0)),
ON,\ [ ON.
ys = JL <8_x4) (8—;> dx dy
2\ 2
- (A> ” (O2Ly + O1L,)(OsL; + O,L3) dx dy

1
= g(Q2Q3 + 03+ 20,05 + 0,0,) = asy,

ONy\ [ ON,
o= L) () o

2 2
~(5) || @i+ oo + oty aras

e

1
= 3—SE(Q1Q2 +20,0; + 01 + 0,05) = ag,,

ass = JL <%)2 dx dy = (é)zj L(Q3L2 + Q2L3)2 dx dy

2\2
= (S_) JJ (O3L5 +20,03L,Ls + Q3L3) dx dy

e

2
= 3—SE(Q§ + 0,05 + 03,

(3.240)

(3.241)

(3.242)

(3.243)

(3.244)
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ONs'\ (0N,
As5q = JL (a—xs) <8_xﬁ) dx dy
2 2
- (S_> J J (OsLs + O:L)(O\ Ly + OsLy) dx dy

e

1
= ﬁ(Q1Q3 + 05 +20,0, + 0,0;) = ags. (3.245)
AN 2\?
L5 e (2 00

2 2
~(3) || @t + 200025 + Gt axay

e

2
= 3—S2(Q? + 0,05 + 09). (3.246)

B. ffe(a[Ne] / 8y)(8[Ne]T /dy) dx dy The component representation of the
matrix is

Comparing Eq. (3.219) with Eq. (3.247), we find that the differences
between them are the variables for the derivatives. Thus, the elements for
the matrix in Eq. (3.247) can be obtained by simply substituting R, for Q;
in Egs. (3.226)—(3.246):

N\’ R
bll = e<8—y> dx dy = 4—Se, (3248)
AN, (0N, R\R,
= (5 )52 =-12= 24
b12 ] he( ay)(ay) dxdy 12Se b21, (3 9)
IV AV _ORR,
o= [[ (G5 o=t =t @20
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aN,\ [N, R.R
—VWN=2) dxdy =—2=p,,
e\ 9y S\ dy 38,
AN, \ [dN.
(—1> (—5) dx dy =0 = by,
e\ 9y S\ dy
AN, \ [N, R\R;
LV Z8) dxdy = = b,
e<8y>( y ) C P T 3s, T
8N2>2 R}
—= ) dxdy = ,
JJe\ oy 4S,
N, (9N, RyR;
"2V EB ) axdy = — —b
e(3y>(3y> T T s, T
aN,\ (N, R\R,
"2V 22 ) dxdy = = by,
(5)(5) wrar="5 =0
N, (ON; _ RyR,
e<ay)<ay)d”y_ 35, P
) N,
(ﬁ>(—6) dx dy = 0 = by,
JJe\ oy )4
AN R?
_ 9 d d e
(5) aa=jg.
ANy (N,
y (E)(E) drdy=0="ba
) aN. R, R
SN (D) gy gy = 2B g
Je\ay J\ dy 38,
VAV RyR,
TN ES) dxdy = 22 = b,
e<8y>( y) TR, T
AN, \ > 2
(a—y“) dx dy = 5, (R +RR, + R3),
NG (N5 4y
e\ 9y 0

1
= g(R2R3 + RS+ 2R Ry + R\ Ry) = by,

(3.251)

(3.252)

(3.253)

(3.254)

(3.255)

(3.256)

(3.257)

(3.258)

(3.259)

(3.260)

(3.261)

(3.262)

(3.263)

(3.264)
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e 53

35 —(R\Ry 4+ 2R,R; + R} + R,R3) = by, (3.265)

aNg\ > 2
bss = “ (8—5) dx dy = —(R:+ R,R; + R3),  (3.266)
e\ 38,

ON. oN,
o= [ [ (5) () v
e\ 9 y

1
=35 (RiRs + R3 4 2R\R, + RyR;) = bgs, (3.267)

VAN
by = ”(a_;) dedy = (R4 RR 4B (3268

C. ” T'dx dy The component representation of the matrix is
i1 Ci2 Gz G4 Ci5 Cre
€1 € C3 Cq C5 O
[C)]= JJ INJIN.]T dx dy = €31 € (33 C3q (35 C36
e e e El
e

C41 Cap Ca3 Cy4 Ca5 Cye

C51 Csp Cs3 Cs4 Cs5 Cse

C61 C62 Ce3 Coa Cos Coo
(3.269)

and the integrand is

N} NN, N,N; NN, N,Ns NN
N,N, N;? N,N; N,N, N,Ns N,Ng
N3N, N;N, N} N;N, N3Ns N;N,
NIV, = | 20 e T TR S e (3.270)
NN, NyN, NNy N} NyNs NyNg
NsN, NsN, NsNy NsN, N2 NsNg
NgN, NgN, NgN; NgN, NgNs N?

Using the integration formula shown in Eq. (3.184), we obtain the
following matrix elements:

S,
el :“ N} dxdy=“ L2Q2L, — 1) dx dy ==, (3.271)

Clp = JJ NN, dx dy = JJ 2L, — DL, 2L, — 1)L, dx dy

Se
= _@2621’ (3272)
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C13 =

C14 =

Cis =

Cl6 =

Cyp =

Cr3 =

Cy =

Crs =

Crp =

C33 =

C3q =

Je

45
NIN() dx dy JJ (2L1 - 1)L14L3L1 dx dy == O - C61,

S

e

T80 =
N1N4 dx dy =

e

e
Se

=z — Cs1»

N2N3 dx dy =
e

S

e

1580 =
N2N4 dx dy =

e

NyNs dx dy =

Je

N2N6 dx dy =
e
S,
45~ ‘o

e

Se

T35 Ca35

N|Ns dx dy =

N1N3 dx dy =

J

e

N2 dx dy = JJ(2L2— 1)* L3 dxdy—S

|

e

J Je

e

S
N3 dxdy=”(2L3 — DL dxdy ==%

(2L, — 1)L, 2Ly — 1)Ly dx dy

(2L1 — 1)L14L1L2 dx dy =0= C41,

(2L1 — 1)L14L2L3 dx dy
e

30°

(L, — DLy(2Ly — 1)Ly dx dy

(2L2 — 1)L24L1L2 dx dy =0= Cqp,

(2L2 - 1)L24L2L3 dx dy - O - 652,

(2L, — 1)L,4LsL, dx dy

30°

(3.273)

(3.274)

(3.275)

(3.276)

(3.277)

(3.278)

(3.279)

(3.280)

(3.281)

(3.282)

(3.283)

c36 = JJ N3N6 dx dy = JJ (2L3 — 1)L34L3L1 dx dy = O = 063’

(3.285)
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&S,
cu= || N2dxdy= ” (4L,L,)* dx dy = 4—5@, (3.286)
48,
Cy5 = N4N5 dx dy = 4L1L24L2L3 dx dy = E = Cs4, (3.287)
4S8,
C46 == N4N6 d.x dy - 4L1L24L3Ll dx dy - E == C64’ (3288)
2 8Se
48,
2 2 8Se

We have thus obtained the matrixes [4,], [B,], and [C,] for the second-
order triangular element e. We can form the global matrixes [K] and [M]
by substituting [4,], [B,], and [C,] into Egs. (3.166) and (3.167) and
summing them. Because [4,], [B.], and [C,] are symmetrical 6 x 6
matrixes, the global matrixes are also symmetrical.

3.6 PROGRAMMING

As described above, when using an FEM, we first obtain the matrix
elements for element e. We then obtain the global matrixes for the
eigenvalue matrix equation by summing the contributions of all
the elements. This section discusses how computer programs based on
the first- and second-order triangular elements can be written by using

(K1 - B*[IMD){p} = {0}, (3.292)

which is the eigenvalue matrix equation. Here, [K], [M], and {¢} are
defined as

= Y {124 + [B.)) + KEIC,I), (3.293)
=Y nlC.l (3.294)

{p} =2 1o} (3.295)
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and [4,], [B,], and [C,] as

N, 3N,

[4,] = dx dy, (3.296)
e Ox ox
T
[B,] = ONe] DIN] dx dy, (3.297)
e dy
[CI=| | ININ.I" dx dy. (3.298)

3.6.1 First-Order Triangular Elements

Figure 3.10 shows an example of an optical waveguide whose buried
structure has been divided into 18 first-order triangular elements
ey, ...,es. The core with width W comprises two elements ey and e,
and Fig. 3.11 shows the local coordinates for element e,. In this figure, the
local coordinates of the node numbers 6, 7, and 10—whose coordinates
are (xq, V), (x7, x17), and (x;,, ¥;o)—are respectively 1, 2, and 3. Thus, the
node number can be determined from the element number and the local
coordinate.
The actual programming flow is as follows:

1. Divide the whole analysis region into a number of meshes by using
first-order triangular elements.

MLAN
[ 5 4 13
e € €
€ 6 € €14
2 10 14
e, (A €s
€ €10 €16
T 11
3 15
€s L’“ €7
€s €, €13
4
8 12 16

FIGURE 3.10. Mesh formed by first-order triangular elements.
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Node 6 (x4, y¢) Node 10

(%30 Y10)

€

Node 7 (x4,y7)

FIGURE 3.11. Local coordinates for the nodes of a first-order triangular
element.

2. As shown in Fig. 3.11, any node number can be identified by
specifying the element number and the local coordinate. For
example, from the node number of element e, and the local
coordinate 1, we get the node number 7 and the coordinate (x;, y;).

3. Using Egs. (3.169)—(3.171), calculate the 3 x 3 matrixes [4,], [B.],
and [C,] for each element e.

4. Add the calculated results for matrixes [4,], [B,], and [C,] to the
global matrixes [K] and [M], whose row and column numbers
correspond to the combinations of the element numbers and the
local coordinates. For example, since the local coordinates 1 and 2
respectively correspond to nodes 7 and 10, the matrix elements with
the first row and the second column of [4,], [B,], and [C,] are added
to the matrix elements of the 7th row and the 10th column of both
matrixes [K] and [M]. Since the matrixes used in the scalar FEM are
sparse and symmetrical, the amount of memory required for the
matrixes can be reduced.

5. As shown in Fig. 3.10, node 6 belongs to six triangular elements (e,,
e, €4, €7, eg, and ey). Since each node belongs to more than one
triangular element, obtain the global matrixes [K] and [M] by
summing the calculated matrix elements of [4,], [B,], and [C,] for
all triangular elements.

6. When imposing the boundary conditions, which will be discussed in
Section 3.7, incorporate them into matrixes [K] and [M].

7. Obtain the propagation constant f§ or the effective index n.s by
solving the eigenvalue matrix equation (3.165).
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(M,2) M +1

1 > o (M,-1) M +1
% .............. %
3 : p : : (M, ~1) M,+3
M, o Mx M,2
My‘-l % -------------- % Mx My—l

e MM,

oM, 3M, M,1) M,
FIGURE 3.12. General meshes formed by first-order triangular elements.

Figure 3.12 shows an example of general meshes formed by first-order
triangular elements. The numbers of nodes in the vertical and horizontal
directions are respectively M, and M,, which means that the total number
of nodes is M, - M,.. To discuss sparsity, we consider element e, in which
there are three nodes; the numbers are 1, 2, and M, + 1. Any node whose
number is larger than M, + 1 is not related to node 1.

Figure 3.13 shows matrixes [K] and [M] corresponding to the meshes
shown in Fig. 3.12. The physical meanings of the matrix elements can be
inferred from the wave functions ¢, ¢, ..., ¢,, and in Fig. 3.13. Matrix
element a;; (i #j) is related to the interaction between wave functions ¢;
and ¢;, and matrix element g;; is related to the self-interaction of wave
function ¢;. Thus, as shown in Fig. 3.13, matrixes [K] and [M] have
nonzero elements until the M, + 1 column. The number M, + 1 is called
the bandwidth of the sparse matrix.

3.6.2 Second-Order Triangular Elements

Figure 3.14 shows an example of general meshes formed by the second-
order triangular elements, and Fig. 3.15 illustrates the correspondence
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Bandwidth

— @ T
b Dy it By e Py

®, al,l Qg woee Gy

¢2 e o 0 o a22+Mv

. " \

Symmetry

Ay m

& Ay m
M

FIGURE 3.13. Forms of global matrixes [K] and [M], M = M. M,,.

between the node numbers and the local coordinates for element e;. A
computer program based on second-order triangular elements is basically
the same as one based on the first-order triangular elements, but it should
be noted that each second-order triangular element has six local coordi-
nates and that the corresponding matrixes [K] and [M] have a bandwidth
of 2M, + 1.

When the number of the elements is the same, the total number
of nodes and the bandwidth are larger for second-order triangular
elements than they are for first-order triangular elements. Since the
second-order elements approximate the unknown wave functions by
quadratic curved surface functions, they are more accurate than the
first-order elements, which approximate the unknown wave functions by
plane functions. Thus, the second-order elements are numerically more
efficient.
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.............. (M,-1) M,+1
SETeire

-------------- (M, 1) M,+3
Sries

S S oo (M, 1) M+5

W B LN

M, : : e : M. M, 4
Mﬂ% n’j -
My_z ............ MX My_2
ST A
D 7000 7000 S M. M

Y X y

FIGURE 3.14. General meshes formed by second-order triangular elements.

FIGURE 3.15. Local coordinates for the nodes of a second-order triangular
element.

3.7 BOUNDARY CONDITIONS

In this section, we discuss the boundary conditions that should be applied
to the nodes on the edges of the analysis region. The eigenvalue matrix
equation was shown in Eq. (3.154) as

(K= PO+ § 950 ar =01 (329)
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Here, we discuss the two conditions used most widely.

3.7.1 Neumann Condition

The Neumann condition requires that the derivative of the wave function
be set to zero, which means that the variation of the wave function at the
boundaries would be negligibly small. Thus, we get

o,

=0. 3.300
™ (3.300)

Substituting Eq. (3.300) into (3.299), we get the familiar eigenvalue
matrix equation

(K] - B IMD{¢} = {0}. (3.301)

Here, we mention another important application of boundary condi-
tions. Figure 3.10 shows the whole analysis region. Analyzing the whole
region, we simultaneously obtain even modes including a dominant mode
and odd modes whose fields are zero at the mirror-symmetrical plane of
the structure. On the other hand, we can obtain the solutions for only the
even modes or the odd modes by analyzing the half-plane structure (Fig.
3.16) with the Neumann condition or the Dirichlet condition applied at the
mirror-symmetrical plane at the center. This is convenient when we
analyze the definite modes of optical waveguides.

3.7.2 Dirichlet Condition

The Dirichlet condition requires that the wave functions at the boundaries
be set to zero:

¢, = 0. (3.302)

Thus, we also get the eigenvalue matrix equation (3.301). The Dirichlet
condition requires a further process. Since Eq. (3.302) has to hold for the
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W/2
| ) 29
e]/ e /i
€,
S Tt el e
8
2 10
€, €
€ 4| /60
3 211
€5 é
% |/e,
4 1

Symmetrical plane

FIGURE 3.16. Boundary conditions on a mirror-symmetrical plane.

ith component ¢, of eigenvector {¢}, some matrix elements other than the
diagonal terms for matrixes [K] and [M] have to be set to zero:

[ e

0...0 ¢ | =10).
0 :
\ o\ 0\) Pu

Since the ith-row elements of the matrixes in Eq. (3.303) satisfy the
equation

(3.303)

Ky — B*M;)¢; =0, (3.304)

Eq. (3.302) holds.

Another way to implement the Dirichlet condition is to simply omit the
nodes at the boundaries because under the Dirichlet condition they do not
influence the other nodes. This requires less computer memory than is
required when Eq. (3.303) is used.
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PROBLEMS

113

1. In the derivation of the eigenvalue matrix equations (3.40) and (3.56), it
was assumed that the wave function ¢, and its normal derivative
n? d¢,/dn are each continuous at the boundaries of two neighboring
elements. This was the basis on which the line integral calculus terms

in Eq. (3.51) were canceled out at the boundaries. Discuss the validity
of the assumption.

ANSWER
"X .
a. £, mode:
p At horizontal interfaces E, is continuous.
ﬁ
¢ At vertical interfaces E, is discontinuous.
. . oE . :
5 At horizontal interfaces 8—x (o< H)) is continuous.
(Ormind E [ o
n L o .
At vertical interfaces —= [ «x—2E, | is discontinuous.
ax &1
b. E,, mode:
p At horizontal interfaces H, is continuous.
o % . . . . .
¢ At vertical interfaces H is discontinuous.
. : 1 . .
At horizontal interfaces — — (o E,) is continuous.
2 a(lse &
Ne -
on o 1 0H, 1 o .
At vertical interfaces — o« — H. ) is discontinuous.
g, Ox €

r r

Thus, at the horizontal interfaces the assumption is valid for both the
E;, mode and the E, mode. At the vertical interfaces, on the other hand,
the wave function ¢, and the derivative 2 d¢,/dn for the Ej,, mode are
discontinuous and the derivative 2 3¢,/dn for the E,, mode is discontin-

uous.

From the above discussion, the conclusion is that when the ratio of the
width of the core to the thickness of the core is not large, which implies
that the influences of the vertical boundaries cannot be neglected, the
accuracy of the SC-FEM is degraded. This is especially true for large-
index-difference optical waveguides, such as those made from semicon-
ductor materials.
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Node numbers: 1, 2, 3, ...., 6
Element numbers: e,, e,, €;, €,

Local coordinates: @ @ @

FIGURE P3.1. Simple example of first-order triangular elements.

2. Figure P3.1 shows a simple example of first-order triangular elements,
where the total node number is 6. Show the form of the matrix equation
for this example.

ANSWER

Ky Ky Ky Ky 0 0
Ky Ky Ky Ky Kys 0

Symmetry
My My, My 0 0 0 \ ¢1W
My My, My My 0 0 ¢,
e My My, Myy My Mas 0 ¢s ={0}. (P3.1)
0 My My My Mys My b4
0 0 Msz Ms, Mss Msg b5
0 0 0 My Mg Mg b6
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CHAPTER 4

FINITE-DIFFERENCE METHODS

Since the semivectorial finite-difference methods (SV-FDMs) developed
by Stern [1, 2] are numerically efficient methods taking polarization into
consideration and providing accurate results, they are widely used in the
computer-aided design (CAD) software currently available for 2D cross-
sectional analyses of optical waveguides. Finite-difference schemes are
also used in the finite-difference beam propagation methods (FD-BPMs),
which are of course also widely used in CAD software and which are
discussed in detail in Chapter 5. The present chapter will help readers
understand SV-FDMs and their formulation. It will also help readers
become familiar with how to program them. Furthermore, it will teach
users of CAD software not only how to identify the main causes of errors
but also how to decrease the size of errors.

When the FEMs were discussed in Chapter 3, the wave equations
themselves were not solved, but instead the functional was introduced and
the variational principle was used, or the Galerkin method, which is a
weighted residual method, was used. The FDMs dealt with in this chapter,
in contrast, are more direct approaches to solving the wave equations.
They solve eigenvalue matrix equations for electric fields or magnetic
fields, equations derived from finite-difference approximations for the
wave equations. This chapter briefly describes the finite-difference approx-
imations and then derives the vectorial wave equations. It then obtains the
semivectorial wave equations by ignoring the terms for the interaction
between two polarized field components in the vectorial wave equations.
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This chapter then discusses the formulation of the SV-FDMs, the errors
caused by the finite-difference approximations, and SV-FDM program-
ming. Although Stern’s formulation uses equidistant discretization, this
chapter uses the more versatile nonequidistant discretization.

4.1 FINITE-DIFFERENCE APPROXIMATIONS

In the FDMs discussed in this chapter, eigenvalue matrix equations are
derived by using finite-difference schemes to approximate the wave
equations. Let us first briefly examine the finite-difference approximations
for the derivatives and then examine the accuracy of these approximations.

Assume that a 1D function f(x) is continuous and smooth. As shown in
Fig. 4.1, the function values f, f,, and f; at x = —hy, h,, 0 are expressed as

S =f(=h), 4.1)
S =f(hy), 4.2)
S =1(0). (4.3)

Next, we can write f; and f, as Taylor series expansions around x = 0:
fi = 1) = 1O = f OO + 3 (0)
5 OO + 00, (4.4)
fo =) = F(O) + 3o f VO) + 51 O0)

+ %hg 730 + Oh3), (4.5)

FIGURE 4.1. Difference approximations for derivatives.
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where /" is an nth derivative defined as

410

AOE (4.6)

Subtracting Eq. (4.4) from Eq. (4.5), we get an expression for the first
derivative:

fo i = Oy ) O0) + 3 08 — B)F 2(0) + 007,
Thus,

fr—h

()]
hh 2 (hz h)f @0) + Oh?). 4.7)

100) =

As shown in Eq. (4.7), the error caused by approximating the first
derivative at x = 0 with the differential expression

o=/

W) =
/0 hy + h,

(4.8)

is O(h*) when h; = h, (equidistant discretization) and is O(h) when
hy # h, (nonequidistant discretization).

The error caused by approximating the second derivative with the
expression

2 Ifi—(h+h)f+hf

(2) _
SO = hyh, (hy + 1)

(4.9)

is also O(h*) when h, = h, and is O(h) when h; # h, (see Problem 1).

Thus, when CAD software is used, equidistant discretization is
preferred whenever there is enough computer memory. When discretiza-
tion is nonequidistant, we have to be careful that the ratio of 4, to 4, does
not change drastically, since a drastic change would greatly increase the
size of the errors.
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4.2 WAVE EQUATIONS

4.2.1 Vectorial Wave Equations

In this section, the finite-difference expressions are obtained for the

semivectorial wave equations. The approximations used in the process

are made clear by starting from the fully vectorial forms of the equations.
The vectorial wave equation [Eq. (1.34)] for the electric field E is

V°E + V(Var

r

E) + kZe,E = 0. (4.10)

Let us consider a structure uniform in the z direction. In this case, the
derivative of relative permittivity with respect to z is zero:

0,

Zr —o. 4.11
% (4.11)

Thus, the second term in Eq. (4.10) can be written as

V(VS" E) — V(l o L1 ag’E) 4.12)

g, g Ox g oy

After substituting Eq. (4.12) into Eq. (4.10), we separate Eq. (4.10) into
the x and y components. [The derivative with respect to z is indicated in
Egs. (4.13)—(4.30) in the form of d/0z because that is the formulation used
in the beam propagation methods dealt with in Chapter 5.] Thus, we
obtain the vectorial wave equation using the electric field components £,
and E,. Its x component is

PE, 9 (1 e, YE,  OPE 9 (1 3
- —FE - - E +—|——E, ) =0,
ox? o ox (e ox x) + H? 0 0t + ox (s, y y>

(4.13)

and its y component is

a2Ey+a2Ey+a 19, +82 +k2E+a Lo .\ _
a2 T2 Tapl\e oy ) T e TR TN ) T

(4.14)
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Because
d *E 3 (1 O,
= X —F 4.15
Bx{s Bx(r X)} ox? +8x(8, ox x> @15
and
a1 9 PE, 3 (1 0,
Z - (e E) = -rE 4.16
8y{8r 8y(8’ y)} ay* +3y(r a7 ) (316

Eqgs. (4.13) and (4.14) can be rewritten as

(1 a PE.  E a /1

ox |e, ox 2 0z2 ox \&, oy
and

2

PE, 9

a2E d (1 B,
WJray . ay(’ E)t + +k0 ,Ey—i-a = B ) =0 (4.18)

Let us next derive the corresponding components of the equation for
the magnetic field H. The vectorial wave equation [Eq. (1.40)] for the
magnetic field H is

Ve,
VH + —~ - " X(VxH) + kje, H = 0. (4.19)

”

Here, the second term in Eq. (4.19) is investigated in detail. Recall that
we are considering a structure uniform in the z direction and that Eq.
(4.11) therefore holds. When i, j, and k are respectively assumed to be unit
vectors in the x, y, and z directions, we can obtain

i i k
0, de,
Vgl’ X (V X H) = g 8_y

(VxH), (VxH), (VxH),
= %(VXH)Zi — %(VXH)Zj
dy ax

0, 0,
+ {g(VxH)y - a—y(VxH)x}k (4.20)
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by assuming that de,/dz = 0 and using the expressions

oH, oH
(VXH), = ———=, (4.21)
ay oz
OH, 0H,
VXH), = —* — —= 4.22
( )y oz ox ’ (4.22)
OH, oH
(VXH), = -2 - —*. (4.23)
ax ay

The substitution of Egs. (4.21), (4.22), and (4.23) into Eq. (4.20) results in

OH 0H,
Ve, X(VXH) = %, (—y — 8Hx)i _ o (_y _ 8Hx)j

ay \ ox ay ox \ ox ay
de, (0H, OH, de. (0H, OH,

)% (B ) % (0TI (4.04)
ax \ oz ax ay \ dy 0z

Substituting Eq. (4.24) into Eq. (4.19) and separating the result into the
x and y components, we obtain the vectorial wave equation using the
magnetic field components H, and H,. Its x component is

PH, *H, 1 0, 0H, &H, 1 9, 0H,
o Tx KeH +— —L—2=0, (4.25
ox2 + & dy dy 0z + e X+8r dy ox (4.25)
and its y component is
*H, 1 de, 0H, &H, 0°H 1 d¢,. 0H
S i i e Ly ke, H +— - —X=0. (4.26
a2 & oax ax g2 a2 TRELT S (4.26)
And because
. 9 (1 0H,\ 0°H, 1 03 0H, 427)
"y\e, dy ) W2 e Ay )
and
d (1 0H) °H, 1 3, oH, 4.29)
&eE—|—— )= - — = .
"ax\e, ox ox2 e Ox Ox
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Egs. (4.25) and (4.26) can be rewritten as

*H, d (1 0H,)\ ©o°H, 1 de, 0H,
oz T 8y(r ay) g2 Rt o W =0 29
and
d (1 oH, ¥H, oH, 1 3¢, 0H,
Sa— + ke H X —0. 4.30
’ax<e 8x> dy? +a2 0¢ . ax 0y (4.30)

Furthermore, since what we are concerned with here is a 2D cross-
sectional analysis, the derivatives of the electric and magnetic fields with
respect to z are constant:

9 g, 4.31)

where f3 is a propagation constant. Thus, using Eqgs. (4.13) and (4.14), we
obtain for the x component

aZEera 1o, PE, 52)E+8 L
w2 e ax ) 92 06 =P BT Ne ) T
(4.32)

and for the y component

PE, PE, 9 [1 o a (1 o
— 4+ — (E —’Ey> + (kge, — BE, + <8— —rEx> =0.

oxz  yr  dy\e. Iy y \g, ox
(4.33)
They can be rewritten as
d 2E d (1 0
) Nl E, —E )|=0 (434
ax{g (e E x>} ~ ) +ax( . y) (4.34)
and

FE, 91 9 10
W;Jray{ (aE)}+(k§a — BE, (gr ai ):0. (4.35)
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The last terms in Egs. (4.32)—(4.35) correspond to the interactions
between the x-directed electric field component £, and the y-directed
electric field component E,.

Using Egs. (4.25) and (4.26), on the other hand, we obtain for the x
component

PH, PH, 1 d, 0H,

1 de
2
— == — H, ———_O 4.36
W TR ey g e P (4.36)
and for the y component
PH, 1 3, 0H, O°H, 1 3, 9H,
27 K H, + =0, (4.37
o g ox ox 0P St (e — ) e, ox dy (4-37)
which can be rewritten as
PH, d (1 0H. 1 de, 9H,
e —(— =)+ ke, —PHH, +— — —2L=0  (4.38
8x2 +8r8y(8r 8y>+(08r ﬁ) x+8r ay e ( )
and
d (1 0H)\ 0°H, 1 0, 0H,
— = 2+ +*® =0. (439
E’ax(a, 8x>+ g T (Kot — e, o dy (4.39)

Similar to what we saw in the corresponding equations for the electric field
E, the last terms in Egs. (4.36)—(4.39) correspond to the interactions
between the x-directed magnetic field component A, and the y-directed
magnetic field component H,,.

4.2.2 Semivectorial Wave Equations

In equations for the fields that propagate in optical waveguides, the terms
corresponding to the interaction between the x-directed electric field
component £, and the y-directed electric field component E|,

a (1 e, 0 (1 0,
d in Egs. (4.32)—(4.39),
ox (8, ay ) a 8y( ox x> in Egs. (4.32)~(4.35)



42 WAVE EQUATIONS 125

and the terms corresponding to the interaction between the x-directed
magnetic field component H, and the y-directed magnetic field component

H,

1 9, 0H, 1 9, o0H, .
- — - — Eqgs. (4.36)—(4.39),
g dy ox g ox dy in Egs. ( )-(439)

are usually small. Ignoring these terms for the interaction, we can
decouple the vectorial wave equations for the x- and y-directed field
components and reduce them to semivectorial wave equations, which can
be solved in a way that is numerically efficient. Semivectorial analyses that
neglect the terms for the interaction are therefore widely used when
designing optical waveguide devices for which the coupling between the
x- and y-directed polarizations does not have to be taken into considera-
tion. As shown in Fig. 4.2, these analyses can be divided into the quasi-TE
mode analysis, in which the principal field component is £, or H,, and
the quasi-TM mode analysis, in which the principal field component is E),
or H,.

l—)x Ey >
A 4

Y Principal field: E, Principal field: H,,
(@)
Ey
H, >
Principal field: E, Principal field: H,
(b)

FIGURE 4.2. Principal field components for (¢) quasi-TE and (b) quasi-TM
modes.
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A. Quasi-TE Mode The principal field component in the electric field
representation for the quasi-TE mode, where the y-directed electric
field component E|, is assumed to be zero, is the x-directed electric field
component E,. So according to Eq. (4.32), the semivectorial wave
equation for the quasi-TE mode is

56, — BE, =0, (4.40)

FPE, 9 (1 de,. Ex) PE,

a2 ox \e, Ox )2

7%

which, according to Eq. (4.34), can be rewritten as

0 ZE R
BX{P Bx( " X)} 08r — ﬁ )Ex =0. (441)

The principal field component in the magnetic field representation for
the quasi-TE mode, on the other hand, where the x-directed magnetic field
component H, is assumed to be zero, is the y-directed magnetic field
component H,. So according to Eq. (4.37), the semivectorial wave
equation 18

2 2
PH, 1, O, PH,

w2 e, x x o y2 "+ (ke — B)H, =0, (4.42)

which, according to Eq. (4.39), can be rewritten as

) (1o | OH, ke, — fHH, = 0 4.43)
'axs_ax +82+(Or ﬁ)y_ (

B. Quasi-TM Mode The principal field component in the electric field
representation for the quasi-TM mode, where the x-directed electric
field component E, is assumed to be zero, is the y-directed electric field
component E,. According to Eq. (4.33), the semivectorial wave equation
for the quasi-TM mode is therefore

FE, ®E, (1 3,

Wt s 5 h) PRS0
r
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which, according to Eq. (4.35), can be rewritten as

PE, 9
y 2 N
@ 8y { ( )} + (koi-]r - ﬁ )Ey =0. (4.45)
The principal field component for the quasi-TM mode in the magnetic
field representation, where the y-directed magnetic field component H, is
assumed to be zero, is the x-directed magnetic field component H,. As
before, the semivectorial wave equation based on Eq. (4.36) is

PH, P*H, 1 de, 0H,

2 2
—pH)H,. =0, 4.46
o2 g dy Oy & = POH, (4.46)

which, according to Eq. (4.38), can be rewritten as

FH, ) (1 OH,

2 2
—2 + — H =0. 4.4
o2 & 8)/ ay ) (kogr ﬁ ) X 0 ( 7)

4.2.3 Scalar Wave Equation

In the vectorial and semivectorial wave equations discussed above, the
derivatives of relative permittivity ¢, with respect to the x and y
coordinates are taken into consideration. If we assume these derivatives
to be zero, or that

3 3
%r—0 and Zr—y, (4.48)
ax ay

the wave equations can be reduced to the scalar wave equation

2 2
o (s, = ) =0 (4.49)

where ¢ is a wave function and designates a scalar field.

4.3 FINITE-DIFFERENCE EXPRESSIONS OF WAVE
EQUATIONS

We can derive the finite-difference expressions for the semivectorial wave
equations by using the finite differences discussed in Section 4.1 to
approximate the derivatives of the semivectorial wave equations for the
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electric field or the magnetic field representations for the quasi-TE and
quasi-TM modes. The currently available CAD software for 2D cross-
sectional analyses and 3D beam propagation analyses makes use of the
finite-difference expressions discussed in this section.

Figure 4.3 shows a discretization used in a 2D cross-sectional analysis
of optical waveguides. Here, the pair ( p, g) is assumed to correspond to
the (x, y) coordinates of a node. It should be noted that the interface of two
materials is set midway between two nodes in order to minimize the error
caused by the difference approximation. Although the discretization used
by Stern [1, 2] was an equidistant one, the more versatile scheme
described here is nonequidistant, with discretization widths ¢ and w in
the x direction and » and s in the y direction. The scalar case is also briefly
discussed here. Although the variable transformations x = xk, and y = yk,
are useful for reducing the round-off error in an actual calculation, they
are not used here for simplicity. Reasonable results for the facet reflectiv-
ities of 3D semiconductor optical waveguides [3] have been obtained
by incorporating the semivectorial finite-difference expressions dis-
cussed in this section into the bidirectional method of line BPM
(MoL-BPM) [4].

4.3.1 AQuasi-TE Mode

A. E. Representation The E, representation wave equation derived
for the quasi-TE mode [Eq. (4.40)] is

PE. 3 (1 o PE
4 (=~ ZE —* 4 (ke — BHE. = 0. 4.50

3)(,'2 +8x(8r 8}(? x)+ ayz +(08r ﬁ)x ( )
(p,q1)
4

1.9 ((P"I) (®+1,q)

s
(p.g+1)

FIGURE 4.3. Nonequidistant discretization for the finite-difference method.



4.3 FINITE-DIFFERENCE EXPRESSIONS OF WAVE EQUATIONS 129

What we want to do now is derive the finite-difference expression for
this equation. As shown in Fig. 4.3, the field components and coordinates
at nodes are expressed as

Epi1g=E®pi1,5y), (4.51)

E, , = E(x,,y,), (4.52)

E, 14,= E(xp—l’yq)’ (4.53)

E, 11 = E(X,,y411)s (4.54)

Byt = B0y 1), (4.55)

n=Y; = V41> (4.56)

S =Yar1 — Voo (4.57)

e=X,. —X,, (4.58)

W=X,—X,_|. (4.59)

Using for E,,, ., E,_, ,, E, ,11, and E, .| Taylor series expansions

around ( p, q), we get

1 8 1 8*E

Epirg = Epg 1 o » e+ 2 32 » &+ 0(e), (4.60)
By =Ly _ll! 2—5 P W +2l! %275 » w4 0w), (4.61)
Ey g1 =E,, +ll! 2—? » S +2l! %275 » .57+ O0(s), (4.62)
E,,1=E,, _ll! % » n +2l! ?:75 5 -n? 4+ 0@nd). (4.63)

First, we derive the finite-difference expression for the first term in Eq.
(4.50). Multiplying Eq. (4.60) by w and Eq. (4.61) by e and then adding
them, we find that

PE w4+ wle
WEp+1,q + eEp_l’q = (W + €)Ep,q + @ 72'
p.q :
PE ew—we OE etw + whe
LI s T =3 (T
P.q : p.q :
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Therefore
PE 2!
— =—|{(wF +elk _, —(e+wWE
ax2 » ew(e+w){ pt1q p-1q = VEp.q}
PE 2! ew(e +w)(e — w)
o |, ew(e+w) 3!
PE 2! ew(e +w)(e® — ew + w?)
“ad | et 2 o
it |, ew w !
= 7ew(e ) WE, 1, +eE, |, — (e + w)Ep,q}
PE — *E 2 —ew 4+ w?
_PE| eow PE Joewsw? .64
Y p.g Y pg
and
E 2 2
— = F —F ——F . 4.65
o2 v e(e +w) erl’q—i_w(e+w) p=la gy, TP ( )

As shown in Section 4.1, the error caused by the finite-difference
approximation in Eq. (4.65) is O(e — w) when e # w (nonequidistant
discretization) and is O((Ax)?) when e = w = Ax (equidistant discretiza-
tion).

We use a similar procedure to obtain the finite-difference expression for
the derivative with respect to y [the third term in Eq. (4.50)]. Multiplying
Eq. (4.62) by n and Eq. (4.63) by s and adding them, we get

PE| s*n+n’s
nE, j1 +SE, ;1 =n+9E, ,+-5| ——
p.q+1 p.q—1 P 2
»*,, 2
PE| £n—n’s FPE| s'n+ns
ol 3 e, @
1 ! V" g :
Therefore
PE 2 GE L 4sE (n+9)E, ,}
22| T o Vgl TSEp g1 — T S)E, 4
W l,, ns(n+s)
PE 2! ns(s —n)(s+n)
T 53
dy p’qns(n-l-s) 3!
B 84_E 2! ns(n + s)(n* — ns + 5°) +--- (4.66)
B g 18(n+5) 4!
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and

PE 2 2 2

YE __ 2 § B ~fE.. (467
0y? p.a s(n+s) p’q+l+n(n+s) pa=l g P ( )

According to Eq. (4.66), the error caused by the finite-difference
approximation in Eq. (4.67) is O(s —n) when n # s (nonequidistant
discretization) and is O((Ay)?) when s = n = Ay (equidistant discretiza-
tion).

Now, let us consider the second term in Eq. (4.50), which includes a
derivative of relative permittivity ¢,. For simplicity here, expression (4.6) is
used to represent derivatives such as 9/dx and & /dx>.

The difference center of the equations under discussion is ( p, ).
Here, we introduce ( p + % q) as a hypothetical difference center between
nodes (p,q) and (p+ 1, g) and introduce (p — %, q) as a hypothetical
difference center between nodes (p — 1, g) and ( p, ¢g). Using these two
hypothetical difference centers, we can get the following two Taylor series
expansions:

<1 aer) _(1 aerE) ] <1 as,,E)“><e)
& o ) in, e ox V), U\e ox ) A2
@
1 /1 o e\2
()
+2!(8 ox x) 2

r D9

3)
1 /1 oe e\3
(2 & bl I 4.68
+3!<g o ) <2)+ ’ (4.68)

r p.q

14 14 1/1 8 ()
(), o) e
g, ox —1/2.4 g, ox pg 1\& Ox pg N2
1 /1 8, \? un2
b))
T (8, ox x) 2

p.q

1/1 3 \® w3
_ (L %E Nx 4.
3l (a ox ) (3)+ (4.69)

r p.q
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Subtracting Eq. (4.69) from Eq. (4.68), we get

(1 e, ) (1 e, )
& W g \&r &7 iy

(1 0, (1)(e+w>+ laerE (2)1(e+w)(e—w)
o\ o T 2 g x ), 2! 4

7 P9 r

3 2 2
1 0O, l(e+w)(e" —ew—w
(__Ex) 1 (e+w)( .

e o ), 3! 8

7

Thus, the first derivative is

d (1 a 2 10 I a
il <_ %r Ex) = (— %r Ex) —(— ﬁEx)
dx \&, ox g €TWI\E ox prlj2g  \ér dx p—1/2.q

1 aer @e—_w
g ox 4

p.q

3 2 2
1 a — —
_(_ erx) C—ew—w? 4.70)
g, Ox P 24

Finally, we get

3 /1 a 2 1 a 1 a

_<_ ﬁEx> _ [<_ ﬁEx) _<_ ﬁEx) }
ax \¢, ox pg €Twl\e dx pil/2g  \& OX p—1/2.q

According to Eq. (4.70), the error caused by the finite-difference
approximation in Eq. (4.71) is O(e — w) when e # w (nonequidistant
discretization) and is O((Ax)?) when e = w = Ax (equidistant discretiza-
tion).

The next step is to derive the finite-difference expression for Eq. (4.71),
and this is done by calculating the two terms within the brackets on the
right-hand side.
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Calculating Taylor series expansions of E,,, , and E, , around the
hypothetical difference center ( p + %, q), we get

. L L (e) L1 PE (6)2
+lg = Ept124 T 7 2/ T2 e 2
)4 q P 9 1' 8x p+1/2,9 2 2' axz p+1/2,q9 2
1 &E 3
] @ o
3. ox p+1/2.q
g 1 9E (e>+1 PE (6)2
q=Lp+r124 77 a7 ) T2 a2 2
Pq ptl/2.q 1! ox p+1/2.9 2 2! o p+1/2,9 2
1 8°F 3
300x% |10y N2

Adding Eq. (4.72) to Eq. (4.73), we get

PE 2 PE 1 send
Eppi g+ Eyy=2E, 10, + s <_) LIk ._(_> L
pt+lg T Fpg p+l/2.9 T 5.2 pi12g 2 ot pilag 122
Therefore
Epirpg =Y(E, 1, +E, )+ 0. (4.74)

Using the expression &,( p, q) for ¢,.(x,, y,) and calculating Taylor series
expansions of ¢,( p + 1, ¢) and ¢,( p, ¢) around the hypothetical difference
center (p + 3, q), we get

R R O R N e A N
APT D= LT DTN |, 2 T2 a2, 2
1 e e\3
o (—) O, (4.75)
308 |, 2
1 o ey 1 % e\2
epg)=e(p+3.9) — =- ‘(—)+— ) (—)
2 1ox |, 1, 2/ 20 08|, ,, \2
1 3
— (5) +oteh. (4.76)
3L |y, N2
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And adding Eq. (4.75) to Eq. (4.76), we get

{6

1 e,
e(p+1,9+e(p,g)=2¢| p+=.q9|+

2 Ox2 pt1/2.
N ote, 1 (e)4+
o |1, 122
Therefore
e(p+3.9)=3{e(p+1.9)+e(p. 9} + OC). (4.77)

On the other hand, subtracting Eq. (4.76) from Eq. (4.75), we get

de, Pe, 2 re\3
elp+lg)—elpg=—- et -5@ e
X p+1/2.4 X pr1/24 2F
Thus
de,. 1 5
™ =—{e(p+1,9 —&(p, 9} + O). (4.78)
X pt124 €

Combining Egs. (4.77) and (4.78), we get

-1
1 %, = F lep+ 19 +e(p,q}+ O(ez)]
& N |py1/ng 2
1
X [g {edp+1.9) —¢e(p, g} + 0(62)]
2
= O(é* }
{Sr(ztﬂrl,q)Jrer(p,q)Jr )

x E fe(p+1.9)—e(p. )+ 0(62)]

_2eapt1l,9)—e(p.q)
ee(p+1,9+e(p q

O(e). (4.79)
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Finally, we can derive the following equation by using Eqgs. (4.74) and
(4.79):

_ {% e(p+1.9—e(p.q)
e (p+1,9)+e(pq)

E + E
> < p+1,q2 Pq —I—O(e2)>

+ O(e)}

p+1/2,q9

! 8’(p+1’q)_8r(p’q)
~ e E +E, )+ O(e).
ee(p+1,9) +e(p, q)( prig T Epg) +0)

(4.80)

Now that we have the first term within the brackets on the right-hand
side of Eq. (4.71), we can derive the second term by using the same
procedure. Calculating Taylor series expansions of £, , and E,_; , around
the hypothetical difference center ( p — % ,q), we get

£ E n 1 0E (W) n 1 PE (W)2
.q — Lp—1/2,  an “\5 YR “\5
PaT IR T G|y, N2 20 ey, N2
1 PE 3
= (5) + o), 4.81)
30 0% |y, N2
1 OE wy 1 PE Wy 2
s tna i O e, G)
P T IEPRRG ax |,y N2 20 a2y, N2
1 &E 3
-z (5) + 00, (4.82)
300 |,y ), \2
Adding Eq. (4.81) to Eq. (4.82), we get
E . +E =28 o, +0F (W>2
_]’ . = _1/2’ [— | —
P q P-.q P q 8)62 —1/2.4 2
+84E 1 <W>4+
|,y ,, 12\2

Therefore

Ey ipg=3E, +E, 1)+ O0W). (4.83)
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Similarly, calculating Taylor series expansions of 8 (p 1,q9) and
¢.( p, q) around the hypothetical difference center (p — 5, g), we get

1 1 o¢
e(p— lq)—P,(p 5,q>———’

(W) N 1 &,
2 T ae

p—1/2.9 r—1/2.9
2 18 3
x (lv) o (LV) + o), (4.84)
2 3o [,y py N2
e (p.a) < 1 ) 1 3, w +1 e,
b.q)=¢&\P—5-4 o o ( )
or " 2 1 ox|, ,, \2/ 2! 8x o124
w2 1 e w\ 3
e — o = o). 4.85
x (2) 30|, (2) + 0w (4.85)

Adding Eq. (4.84) to Eq. (4.85) gives

2

w 2
edp—1,9) +e(p.q) =2e(p—1, 82 (5)
X p—1/2.4
348, 1 /w\4
ot 5G)
X 172,

edp—%.9=3ep—1,9) +¢(p, 9} +0W), (4.86)

whereas subtracting Eq. (4.85) from Eq. (4.86) gives

0e,. Pe, 2 /un3
e(pg)—elp—1l.9)=—" W= §<§)+ ,
X p—1/2,4 X7 p—1/2,9
0, 1
8_ :_{Sr(pvq)_gr(p_l’q)}+0(W2)
Y1724 W

(4.87)
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Combining Eqgs. (4.86) and (4.87), we get

1 e,

g, ox 2

7

~1
= [1 ep—1.9)+e(p.g}+ O(WZ)]
p—1/2,9

< [% (6 g)—e(p—1.g) + 0(w2)]

_ 2 2
B {8r(p, q)+e(p— l,q)+0(w )}

x E {e(p.q)—e(p—1.9}+ O(WZ)]

_2&8(p9—e(p—1.49
e e(p,g)+e(p—149

+ O(w). (4.88)

Finally, we can derive the following equation by using Eqs. (4.83) and
(4.88):

1 0e,

e, ox

— {g 8,,([?, q) _Sr(p_ 1? Q)
p—1/2,q w 8r(p’ q) +8r(p - 1’ Q)

E E
X < P.q +2 p—1l4q + O(w2)>

+ O(W)}

7

_1le(pg—e(p— l,q)(
w gr(pv q)+8r(p_ 1’ CI)

E,,+E, 1)+ 0w
(4.89)

Now that we have obtained the two terms within the brackets on the
right-hand side of Eq. (4.71) by using Taylor series expansions, let us
further our understanding by deriving equations for these terms without
using Taylor series expansions. With respect to the first term, the
difference center is (p —I—%, q). To set the difference center at
(p —I—%,q), we need to take the average of (p+ 1, ¢) and ( p, ¢). Thus,
we get the relations

EP‘H/Z"] = %(Ep-‘rl,q + Ep,q)’ (490)

e(p+3.9)=3le(p+1.9) +e(p. 9} (4.91)
de,. 1

™ =—{ep+ 1.9 —&(p. 9} (4.92)
x e

p+1/2,q
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We can immediately derive the equation

l%E _lgr(p+1’Q)_8r(p’Q)
&, ox p+1/2.9 e 8r(p+17q)+8r(p’Q)

(Epirg+Eyy).  (4.93)

With respect to the second term, on the other hand, the hypothetical
difference center is ( p — %, q). To set the difference center at (p — %, 9,
we need to take the average of ( p,¢q) and (p — 1, g). Thus, we get the
relations

Ep—l/Zq 2( p lq) (494)

edp—%.9)=ep, ) +e(p—1,9)} (4.95)
) 1

= slaro—alp - L), (4.96)
X p-1/24 W

Again we can immediately derive the equation

1 0,
g, ox

_lepd—elp—1.49
p—1/2,q9 w Sr(p’Q)+8r(p_laQ)

(B, tE, 1. (497

”

We can see that Egs. (4.93) and (4.97) are equivalent to Egs. (4.80) and
(4.89).

Let us return here to the main topic. Substituting Eqgs. (4.80) and (4.89)
into Eq. (4.71), we get

( p+l.q + Ep,q)

9 1aeE 2 [lLe(ptl,9) —e(p. 9
ox \e, ox e+wlee(p+1,9)+¢(p q)

_lelp.g—elp— l,q)(
w 8r(p7 q)+8r(p_ 1’ )

E,_ lq)}. (4.98)
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Substituting Eqgs. (4.65), (4.67), and (4.98) into Eq. (4.50), we get

2 2
—* E _‘ E ., -ZfE 4+
e(e +w) p+1’q+w(e+w) Pl gy p’q+e+w

{1 e(p+1,9) —&(p.q)
ee(p+1l,9)+elp.q

le(p.g—elp—149)
we(p.g)+elp—1,49)

2 2
——E —c 2B v Relp.q)— PIE
s(s +n) Pt +n(s+n) pa=1 " ¢ vg T ke (p, @) — B7}E, ,

_ 2 {l_ﬁr(p,q)—er(p—l,q)}E
~ wletw) e(p.q)+e(p—1g)f 77

L2 {I_Sr(p,q)—sr(erl,q)}
e(e +w) 6(p.@)+elp+ 1,9 7+

+{_i_ 2 8,(p,q)—8r(p—l,q)
ew wle+w) e(p,q)+e(p—1,9

2 Sr(p,q)—sr(p+1,q)E
ele+w) ep. @) +e(p+1,9) ™

(Eerl,q + Epsq)

(Ep,q + Ep—l,q)}

2 1
—F +——F ——E k2 .q) — BAE
+n(s+n) p.q—1 s(s + n) patl ¢ vg T koe(p, @) — B7YE,

2 2t (p—1.q)
“wetw) elp.g)telp—1lg) "
n 2 2¢6(p+1,9)
ele+w) e(p.q)+e(p+1.q) "
+{_i_ 2 &sp9—elp—1.9
ew wle+w) e(p,q)+elp—1.49)

2 8r(p,q)—8r(p+1,q)}E
ele+w) ep. ) +elp+1,9) 71
2 1

n(s + n) p’q_1+s(s+n) Patl g TP

+ {kggr(p7 CI) - ﬁz}Ep,q =0.
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Thus, we get the following finite difference expression for Eq. (4.50):

OCpr—l,q + OCeEerl,q + O‘nEp,q—l + O‘sEp,qH

+ (o + 0)E, , + {koe,( p. q) — B)E, , =0, (4.99)
where
2 2 -1
o= Ap-sd (4.100)
wle+w) ep,q)+e(p—1,9)
2 2 1
%e = sptla) (4.101)
ele+w) e(p.q)+elp+1.9)
2
R 4.102
%n nn+s)’ ( )
2
T sn+s) 4.103
% s(n+5) ( )
L2 2 &pa-alr-1l9
' ew wle+w) e(p,q+elp—1,9)
2 g(pp—elpt+l9
ele+w) elp.g)+elp+1,q)
4
= T ow e b (4.104)
ew
2
U, = —— = —0, — 0. (4.105)
ns

B. H, Representation The H, representation wave equation derived
for the quasi-TE mode [Eq. (4.43)] is

d (1 0H)\ H, >
8,,&(5 g) +W+(k0£r_ﬁ )Hy =0. (4106)

Now, let us derive the finite-difference expression for this equation. To
do this, we start with the first term of Eq. (4.106). Again using ( p + %, q)
as the hypothetical finite-difference center between nodes ( p,g) and
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(p+1,q) and using (p — %, q) as the hypothetical finite-difference center
between nodes (p — 1, ¢) and ( p, q), we get

1 0H, _ (1 oH, 1 (1 HN\D e
P =G ) TG w) &
& /), 0, e ox /, . 1\e ox /),

”

e\ 3
E) . (4.107)

1
<1 %) :(1 %) _i(i %) ®)
& 0 /), 1p, & ox ), 1\e. ox J, \2

(Y)3+---. (4.108)

Subtracting Eq. (4.107) from Eq. (4.106), we get

<1 8Hy> (1 8Hy)
& ) g \& X/, 1n,

1 0H, W (e—I—W)
g, ox 2

r p.q
(L)1 ke
e o) 2 4
(1 BHy)(s) 1 (e +w)(e* —ew —u?)
6 o), 3 8

Thus,

o (1 aHy) 2 (1 3Hy) (1 3Hy)
w\e. ox /), etw|\e &/, 1, \& X/, 5,
1 aHy Doy 1 8Hy B2 — ey — w?
G, G w), e

p.q r p.q

(4.109)
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Finally, we obtain

d (1 oH 2 1 0H, 1 0H,
_<_ _Y> _ {(_ _Y> _(_ _y) } (4.110)
ax \e, Ox pg €TWI\E ox p+1/2.g  \&r e p=1/2,9

According to Eq. (4.109), the error caused by the finite-difference
approximation in Eq. (4.110) is O(e — w) when e # w (nonequidistant
discretization) and is O((Ax)z) when e = w = Ax (equidistant discretiza-
tion).

The next step is to derive the finite-difference expression for Eq.
(4.110) by calculating the two terms within the brackets on the right-
hand side.

Now, we calculate the first term. Calculating Taylor series expansions of

H,.,, and H, , around the hypothetical difference center ( p + % ,q), We

get
1 0H en 1 PH e\2
S T WAL B
T S N VY A TRr N NP v
1 8°H 3
o (5) + o), @.111)
31 ax p41/2.q 2
1 0H en 1 &PH e\2
=ty 03 5, O
PTG o |y, N2 o e i1y 2
1 *H 3
- : (f) + 0. 4.112)
30 A [0, 2
Subtracting Eq. (4.112) from Eq. (4.111), we get
" i OH N PH e N
l 2’ —_— , - — . e —_— - —_— AR
p+1/2.q D4 ax /2.4 a3 124 24
Therefore
OH 1
bkl =—(H,.,,—H,,) + 0. (4.113)
ox pt12q €
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Recall that the relative permittivity at ( p + %, q) [Eq. (4.77)] is

ep+i.9=He(p+1,9 +¢(p, 9} +0(). (4.114)

Thus, according to Eqgs. (4.113) and (4.114),

| 0H B
4 =R {e(p+1,9) +elp, @)} +O0E)]™!
g, ox p41/2.q

1
x [g (Hyp1y—H,,)+ 0(e2)}

2
— O(&?
{«*Sr(er1,q)+6r(p,q)Jr (e)}

1
) |:; (HPHJJ - Hm) + 0(62)i|

] 2
_ H.. —
ee(p+1,9) +e(p, q)( ptla

H,,) + O(e).

(4.115)

Next, we calculate the second term within the brackets in Eq. (4.110).
Calculating Taylor series expansions of H,, and H, around the
hypothetical difference center ( p — % q), we get

<W) N 1 *H
2 21 9x?

. (g)ﬁ o™, (4.116)

—1,(1

1 oH

Hy g =Hy 104+ T o

p—1/2,9 p—1/2,9

1 H
31 3

p—1/2,q

1
o oH

wy 1 °H
p—1q = Hpo1p2q — T o ’ <_> +

2/ T2

p—1/2,9 p—1/2,9

1 H

3
~3 o : (K) + 0. (4.117)

2

p—1/2,q
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Subtracting Eq. (4.117) from Eq. (4.116), we get

oH FH w3
H —H | =-— W4 — L
P =4 Ox 124 ox3 p1/2. 24
Therefore
oH 1
- =—(H,,—H, ,)+O0W). (4.118)
X lp-124 W

Recalling that the relative permittivity at ( p — % q) [Eq. (4.86)] is

e(p—5.9) =316 p, @) +&(p— 1, 9} + O (4.119)
and using Egs. (4.118) and (4.119), we get

1o,

g, ox

=R{e(p. @) +e(p— 1,9} +O0WH)]™
p—1/2,q9

X [% (Hp,q - Hp—l,q) + O(Wz)i|

_ 2 2
B {8r(p, Dtap—La 0w )}

x [i (H,,—H, )+ O(Wz)j|

1 2
we(p.g)+elp—1,9)

(H,,—H,_, )+ OWw).
(4.120)

We now have the finite-difference expressions for the first and second
terms of Eq. (4.110). Although it is not shown here, these finite-difference
expressions can be derived more easily with the procedures used in
deriving Egs. (4.93) and (4.97) (see Problem 3).
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Substitution of Egs. (4.115) and (4.120) into Eq. (4.110) results in

d (1 oH 2 1 2
e o) = e (Hyy1g—H, )
ax \g, Ox et+wlee(p+1,9+e(p,q 771 P

1 2
w 8r(pv Q) +8r(p -

1, q) (Hp,q - le’q)}'

Thus, we get the finite-difference expression

9 (1 8H)’ 2 1 28,(]9, Q)
8 —_— —_— — —
"ox\e, Ox etwlee(p+1,9+e¢(p.q)

7

(Hp+1,q - Hp,q)

1 2¢.(p. q)
we(p.q+elp—1,9)

2 2¢,(p,q)
ele+w) e(p,q)+elp+1,q) 7

_{ 2 2¢,(p. q)
ele+w) e(p,q)+elp+1,9

2 2¢e.( p,
n AP q) }Hp,,,
W(€+W) gr(P»Q')+5r(P—1,‘])

2 2¢.(p. q)
+ p—1.q°
we+w) e(p,q)+e(p—1,9

(Hp,q - le,q)}

4.121)

On the other hand, the finite-difference expression for the derivative
with respect to y [Eq. (4.67)] is

*H 2 2 2
— | =——_H — - H -=H . 4.122
3)/2 o s(n+s) p.q+1 +n(n +s) p,q—1 sn P ( )

Here, the error caused by the finite-difference approximation in Eq.
(4.122) is O(s —n) when n # s (nonequidistant discretization) and is
O((Ay)*) when s = n = Ay (equidistant discretization).
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Substituting Eqgs. (4.121) and (4.122) into Eq. (4.106), we get the
following finite-difference expressions for Eq. (4.106):

2 {1 2¢.(p.q)

- H — H
e+wle er(p+1,q)+sr(p,q)( prig ~ Hpg)

1 2¢.(p.q)
we(p,q)+e(p—

1,q) (Hp,q - Hp—l,q)}

_ 2 2 ) 2
s(n + s)Hp’qJrl * n(n+s) P nstira ™t ke (p.q) — [71H, 4

2 2e,(p,q)
- Hp+1 q
ele+w) e(p.q+elp+1,q) ’
N { 2 2 2¢,(p, q)
ns ele+w) e(p.q)+e(p+1,9)
2 2¢,(p,q)
- Hp q
we+w) e(p,q)+elp—1,9) 7
2 2¢,(p,q)

+ B
wle+w) e(p,q)+elp—1,4q) 7

2

2 2
+ ml_]p’q“ + me,qfl + {koe,(p, @) — B3H, ,

=0

Thus, we get the following final finite-difference expression for Eq.
(4.106):

OCpr*Lq + O‘erJrl,q + OCnszfl + “sHp,qH

+ (o + 0 )H, , + k36, p. @) — BYH,, =0,  (4.123)
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where
= —— 261 4) (4.124)
Yowlet+w) e(p,g)telp—1,9)°
o = 2 28r(p» Q) (4 125)
¢ elet+w) e(p,gtelpt+l,9)’
2
_ , 4.126
%n n(n + s) ( )
2
[ — 4.127
%s s(n+s)’ ( )
g2 2e.(p.q)
* W(€+W) br(p’q)—i_‘(’r(p_l’q)
2 2¢.(p. q)
elet+w) e(p.g)+e(p+1,q)
. (4.128)
2
oy = ==y (4.129)

It should be noted that since the forms of the derivatives with respect to
x differ slightly between the wave equations of the electric field and
magnetic field representations, the resultant finite-difference expressions
for a,,, o,, and o, also differ between the two representations.

4.3.2 Quasi-TM Mode

A. E, Representation The E, representation wave equation for the
quasi-TM mode [Eq. (4.44)] is

PE, FE, 9 [1 o
e T T e ke — BE. = 0. 4.130
R +ay(s, % y)+(osr BE, (4.130)

Comparing this equation with the E, representation wave equation for
the quasi-TE mode [Eq. (4.50)], we find that we can obtain the finite-
difference expression for the E, representation for the quasi-TM mode
[Eq. (4.130)] by making the following replacements in Egs. (4.100)-
(4.105):

X <y, (4.131)
E, < E, (4.132)
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Thus, we get the following finite-difference expression for Eq. (4.130):
O‘pr—l,q + OceEp-H,q + o‘nEp,q—l + OcsEp,q-ﬁ—l

+ (o + 0,)E, , + k36, p. @) — BYE,, =0,  (4.133)

where
2
= e+ w) 4.134
P wie+w)’ ( )
2
T et w)’ 4.135
e e(e+w) ( )
2 2¢ -1
I = wpd—l) (4.136)
n(n+s) e.(p,q) +ep,q—1)
2 2 1
as — Sr(p’ q + ) , (4137)
s(n+s) e(p.g)+¢e(p.g+1)
2
G = =0 = e — (4.138)
ew
2 2 &sreo-apg-)
' ns nn+s)e(p,q)+e(p.g—1)
2 epe-—elpgt])
s(n+s) e(p.g)+e(p.g+1)
4
= s o (4.139)

ns

B. H, Representation The H, representation wave equation for the
quasi-TM mode [Eq. (4.43)] is

FH, 9 (1 OH,

2 Tyl S ) + (k3e, — pHH, = 0. (4.140)

Comparing this equation with the H, representation for the quasi-TE
mode [Eq. (4.106)], we find that the finite-difference expression for the H,
representation for the quasi-TM mode [Eq. (4.140)] can be obtained by
making the following replacements in Egs. (4.124)—(4.129):

X<y, (4.141)

H, < H,. (4.142)
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Thus, we get the following finite-difference expression for the H,
representation:

ocpr_Lq + ocerJqu + cc,,Hp,q_l + ocSHp’qH
+ (o + 0)H, , + ke, p. q) — BYH,, =0, (4.143)

where
2
- 4.144
= (4.144)
2
_ , 4.145
Y e(w+e) ( )
2 2¢
o, = (. 4) : (4.146)
n(n+s) e(p,q)+e(p,qg—1)
g =2 26,(p: 4) , (4.147)
s(n+s) e(p,q9)+&(p,qg+1)
2
o, = —— = —0a, — 0, (4.148)
ew
. 2¢.(p. q)
g n(n+s) &(p.q)+e(p,.g—1)
2 2¢,(p, q)
s(n+s) e(p.g)+e(p.qg+1)
= o —a, (4.149)
4.3.3 Scalar Mode
The scalar wave equation [Eq. (4.49)] is
Fo &
vo + v + (k3e, — p*)p = 0. (4.150)
o Oy?

Since the derivatives of relative permittivity with respect to x or y in the
semivectorial wave equations are set to zero for the scalar analysis, we can
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easily get the finite-difference expression for the scalar finite-difference
method (SC-FDM):

%y p—1l,q + OCeqsp—&-l,q + o‘n(bp,q—l =+ as(pp,q—i-l

+ (o + a)p, . + ke p.g) — B, , =0, (4.151)

where
2
=, 4.152
P w(e + w) ( )
2
_ , 4.153
¢ e(w+e) ( )
2
=—, 4.154
" n(n+s) ( )
2
=—, 4.155
% s(n+s) ( )
2
o, =——=—0, —0,, (4.156)
ew
2
oy = =y — (4.157)

4.4 PROGRAMMING

Now, we look at how an eigenvalue matrix equation can be solved using
the FDM. The procedure is almost the same as that for the solution using
the FEM, described in detail in Chapter 3, so only important differences
are dealt with here.

The finite-difference expression for the semivectorial wave equation
was obtained by approximating the derivatives with the difference expres-
sions:

%y p—1l,q + OCe(bp+l,q + OCn(ﬁp,qfl + asqbp,qul
(o + o) + ki (o DV — Brbpg =0, (4.158)
where (p, g) corresponds to coordinates (x,y) and where ¢, corre-

sponds, for the quasi-TE mode, to the field component E, or H, and
corresponds, for the quasi-TM mode, to the field component E), or H, .
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(M,2) M,+1

1 & - (M,-1) M,+1
283 .............. BH(MXI)Merz
1o o (M,-1) M,+3
M2 . : EM,My—2
" E -------------- EMI N
M e & M M

¥ x y
! ’ (M) M,

FIGURE 4.4. Meshes for the finite-difference method.

Figure 4.4 shows a mesh model in a finite-difference scheme in which
the whole analysis area is divided into a number of meshes and the nodes
are numbered from top to bottom and from left to right. Calculating Eq.
(4.158) for each node in an M, x M, matrix, we obtain the following
eigenvalue matrix equation:

[A($} = B¢} (4.159)

0. . . .
Here, ° is an eigenvalue and {¢} is an eigenvector expressed as

Pr=(d; b2 ¢35 - i), (4.160)

where M is M, x M. It should be noted that, if the variable transforma-
tions ¥ =xk, and y = yk, mentioned in Section 4.4 are used, the
eigenvalue in Eq. (4.159) is n%;, where nq(B/kg) is the effective index.
Figure 4.5 shows the global matrix [4] corresponding to the meshes shown
in Fig. 4.4.
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¢l ¢2 R @lyﬂ ........ ¢M
¢, iy Gy 00 a4,y
¢2 az’l a2,2 a” Oo 00 a2,2+My

NN

arrMy 0 0 a;,—] a rr+l 0 0 arr+Mv
\\\\ »
dr Aymmy 0°°0 Gyys Qum

FIGURE 4.5. Form of global matrix [4]. Here, M = MM,

We can obtain the propagation constant and field distribution by solving
the eigenvalue matrix equation (4.159). In the SV-FDMs, the global matrix
[4] is a nonsymmetric sparse matrix. In the SC-FDM, on the other hand,
the global matrix is symmetric, so only half of it has to be calculated.
Taking these facts into account and considering the interaction between
nodes shown in Figs. 4.4 and 4.5, we can easily understand that the
bandwidth of the global matrix is 2M,, + 1 in the SV-FDM and is M, + 1
in the SC-FDM. The latter bandwidth is the same as that of the global
matrix in the first-order SC-FEM.

In the actual programming, the node number r is used instead of ( p, g).
When nodes are numbered from top to bottom and from left to right as
shown in Fig. 4.4, the node number » for ( p, q) can be designated as
follows:

r=(p—1M,+q, (4.161)

where |l <p <M_.,and 1 <g < My. The rth row in the eigenvalue matrix
equation can be expressed as

ar,rfl\/[y(prflv[y + ar,rfl ¢r71 + ar,r(pr + ar,r+1 ¢r+1
+ appirt, Orrr, — B2, =0, (4.162)
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where @, ; is an element of the global matrix [4]. The coefficients of Eq.
(4.158) and Eq. (4.162) correspond as follows:

Uy <> Grppg s (4.163)
% <> Gy ripg s (4.164)
Oy <> Ay, 1, (4.165)
Oy <> Appyys (4.166)
o + oy, + ke (p, q) < a,,. (4.167)

The eigenvalue matrix equation is formed in basically the same way as
that used to form the eigenvalue matrix equation for the FEM discussed in
Section 3.6. There is, however, one important difference. In the FEM, the
whole analysis area is divided into a number of elements, and the
variational principle or the Galerkin method is applied to each element.
Therefore, as shown in Egs. (3.293) and (3.294), when the FEM is used,
the formation of the global matrix requires a summation over all the
elements. In the FDM, on the other hand, the derivatives in the wave
equations are approximated with finite differences. The FDM thus does
not require a summation in order to form the global matrix.

4.5 BOUNDARY CONDITIONS

In the actual programming, we have to impose boundary conditions on the
nodes on the edge of the analysis window. In other words, it is necessary
that the effect of nodes outside the analysis window be taken into account
at the edge of the window. Here, the Dirichlet, Neumann, and analytical
boundary conditions will be discussed.

DIRICHLET CONDITION A wave function outside the analysis window is
set to zero. Thus,

¢ =0. (4.168)

NEUMANN CONDITION The normal derivative of a wave function at the
edge of the analysis window is set to zero. Thus,

% _g

4.169
o (4.169)
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In other words, it is assumed that the value of a hypothetical wave function
outside the analysis window is equal to that of an actual wave function at
the edge of the analysis window.

ANALYTICAL BOUNDARY CONDITION When we assume that the wave
number in a vacuum, the effective index, the discretization width at the
edge of the analysis window, and the relative permittivity are respectively
ko, neg, A and ¢,.( p, ¢), the analytical wave function outside the analysis
window to be connected with a wave function at the edge of the analysis
window is assumed to decay exponentially with the decay constant

—kov/ I — &(p. q)I:
exp <—k0, [In2e —&(p, q)| - A). (4.170)

WRITING BOUNDARY CONDITIONS INTO PROGRAMS  Let us consider here
how the boundary conditions can be written into a computer program.
Although Eq. (4.162) has to be used for programming, for simplicity we
will instead consider Eq. (4.158), written here as

OCw(pp—l,c/ + o£e¢p—&—1,q + an¢p,q—l + OCsqbp,cl+l
+{(o + o) + ke p. DY, , — B, , =0.  (4.171)

a. Left-Hand Boundary (p = 1 and except at corners) Consider the
left-hand boundary shown as 1 in Fig. 4.6. Here, the discretization width is
Ax. When we assume that (p,g) is a node on the boundary, the
hypothetical node outside the analysis window is ( p — 1, g) and we get

¢p—1,q = VL(pp,q' (4172)

For the Dirichlet, Neumann, and analytical conditions, the coefficient y;
is expressed as

0 (Dirichlet),
=11 (Neumann), (4.173)

exp(—ko/In%; — &.(p, g)| - Ax) (analytical).
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(p.qg1)
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FIGURE 4.6. Nodes on boundaries and hypothetical nodes outside boundaries.

Substituting Egs. (4.172) and (4.173) into Eq. (4.171), we get

%e p-i—lq"i_OC ¢ q—l+a¢pq+1

+ {a,y + (0 + ) + e PV, — B, =0.  (4.174)

b. Right-Hand Boundary (p = M, and except at corners) Consider the
right-hand boundary shown as 2 in Fig. 4.6. Here, the discretization width
is again Ax. When we assume that ( p, ¢) is a node on the boundary, the
hypothetical node outside the analysis window is ( p + 1, ¢) and we get

¢p+l,q = de)p,q‘ (4175)

For the Dirichlet, Neumann, and analytical conditions, the coefficient
Yg 1s expressed as

0 (Dirichlet),
=11 (Neumann), (4.176)

exp(—ko/In2s — &(p, q)| - Ax) (analytical).
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Substituting Egs. (4.175) and Eq. (4.176) into Eq. (4.171), we get

oy p—1l.q + an¢p,q—l + O(sd)p,q—i-l

+ {ayp + (0 + o) + ke p. Yy, — By, =0.  (4.177)

c. Top Boundary (q =1 and except at corners) Consider the top
boundary shown as 3 in Fig. 4.6. Here, the discretization width is Ay.
When we assume that ( p, ¢) is a node on the boundary, the hypothetical
node outside the analysis window is ( p, ¢ — 1) and we get

qsp,q—l = yUgbp,q' (4178)

For the Dirichlet, Neumann, and analytical conditions, the coefficient
Yy 1s expressed as

0 (Dirichlet),
7o=131 (Neumann), (4.179)

exp(—koy/In%; — &.(p. g)| - Ay) (analytical).
Substituting Eqgs. (4.178) and (4.179) into Eq. (4.171), we get

%y p—1l,q + %e p+1l.q + O(sd)p,q—q—l
+ {0y + @+ ) F ke (P )b, — B, =0, (4.180)
d. Bottom Boundary (q =M, and except at corners) Consider the
bottom boundary shown as 4 in Fig. 4.6. Here, the discretization width is

again Ay. When we assume that ( p, ¢) is a node on the boundary, the
hypothetical node outside the analysis window is ( p, ¢ + 1) and we get

¢p,q+l = ’VD(rbp,q‘ (4181)

For the Dirichlet, Neumann, and analytical conditions, the coefficient
vp is expressed as

0 (Dirichlet),
p=11 (Neumann), (4.182)

exp(—ko/In2y — &(p. @) - Ay) (analytical).
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Substituting Eqs. (4.181) and (4.182) into Eq. (4.171), we get

awgbpfl,q + o, p+l.q +a, P.q—1

+ {7 + (o + %) + koo (P VP = By = 0. (4.183)

e. Left-Top Corner (p = g = 1) Consider the left-top corner shown as
5 in Fig. 4.6. Here, the discretization widths are Ax and Ay. When we
assume that ( p, g) is the node at the corner, the hypothetical nodes outside
the analysis window are ( p — 1, ¢) to the left and ( p, g — 1) to the top.

We thus get

o1y = 11Pp. 4 (4.184)
(:bp,q—l = yUd)p,q' (4185)

For the Dirichlet, Neumann, and analytical, conditions, the coefficients
v, and y;, are expressed as

7L

Yu =

0 (Dirichlet),
1 (Neumann), (4.186)
exp(—koy/InZs — &,(p. q)l - Ax)  (analytical),
0 (Dirichlet),
1 (Neumann), (4.187)

exp(—koy/12y — &,(p. @) - Ay)  (analytical).

Substituting Eqgs. (4.184) to (4.187) into Eq. (4.171), we get

OCed)erl,q + OCsd)p,q+l

+ {O(’WVL + %Vu =+ (fxx =+ o(y) =+ k(%“’;( D, q)}¢p,q - ﬁz(bpﬂ =0.

(4.188)

S Lefi-Bottom Corner (p=1,q=M,) Consider the left- bottom
corner shown as 6 in Fig. 4.6. Here, the discretization widths are again
Ax and Ay. When we assume that ( p, ¢) is the node at the corner, the
hypothetical nodes outside the analysis window are ( p — 1, g) to the left
and ( p, g + 1) to the bottom. We thus get

¢p—1,q = yL(bp,q’ (4189)

¢p,q+1 = VD(rbp,q‘ (4190)
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For the Dirichlet, Neumann, and analytical conditions, the coefficients
y; and vy, are expressed as

0 (Dirichlet),

=131 (Neumann), (4.191)
exp(—ko\/m -Ax) (analytical),
0 (Dirichlet),

yp=141 (Neumann), (4.192)
exp(—ko/In2s — &.(p, q)| - Ay) (analytical).

Substituting Egs. (4.189) to (4.192) into Eq. (4.171), we get

%e p+lg + OCn¢p,q—1
{07+ o7p + (0 )+ kge (P Y, — B, = 0.

(4.193)

g. Right-Top Corner (p = M,,q = 1) Consider the right-top corner
shown as 7 in Fig. 4.6. Here, the discretization widths are again Ax and
Ay. When we assume that ( p, ¢) is the node at the corner, the hypothetical
nodes outside the analysis window are (p+1,¢) to the right and
(p,q — 1) to the top. We thus get

¢p+1,q = yR¢p,q’ (4194)

¢p,q—1 = yU¢p,q' (4195)

For the Dirichlet, Neumann, and analytical conditions, the coefficients
yg and y,; are expressed as

0 (Dirichlet),

=11 (Neumann), (4.196)
exp(—ko\/m - Ax) (analytical),
0 (Dirichlet),

yo=31 (Neumann), (4.197)
exp(—kov/In%; — &.(p, g)| - Ay) (analytical).




4.5 BOUNDARY CONDITIONS 159
Substituting Eqgs. (4.194)—(4.197) into Eq. (4.171), we get

Oy p—1l.q + oCs¢p,q+1
+ {aeyR + %Yu + (ch + O(y) + kger(pv Q)}¢p,q - ﬂz(pp,q =0.
(4.198)

h. Right-Bottom Corner (p = M,,q = M, ) Consider the right-bottom
corner shown as 8 in Fig. 4.6. Here, the discretization widths are again Ax
and Ay. When we assume that (p,q) is the node at the corner, the
hypothetical nodes outside the analysis window are ( p + 1, ¢) to the right
and ( p, g + 1) to the bottom. We thus get

Ppi1.g = TRDp.g» (4.199)

Gpgi1 = V0Pp 4 (4.200)

For the Dirichlet, Neumann, and analytical conditions, the coefficients
yr and y,, are expressed as

0 (Dirichlet),

=11 (Neumann), (4.201)
exp(—ko\/m -Ax) (analytical),
0 (Dirichlet),

vp=131 (Neumann), (4.202)
exp(—kom -Ay) (analytical).

Substituting Egs. (4.199)—(4.202) into Eq. (4.171), we get

%y p—1l.gq + Ocnd)p,q—l
+ {oeyr +ogyp + (0 +0t) + kgg,,(p, q)}qﬁp’q - ﬁzd)p,q =0.
(4.203)

In a way similar to that described in Section 3.7 for the FEM, we can
calculate the even or the odd mode by assuming Neumann or Dirichlet
conditions at the symmetry plane. This increases the numerical efficiency
in terms of central processing unit (CPU) time and computer memory.



160 FINITE-DIFFERENCE METHODS

4.6 NUMERICAL EXAMPLE

The finite-difference expressions in this chapter are used in CAD software
currently available on the market. Readers can also develop software by
themselves. This section briefly discusses a calculation model and results
calculated using SV-FDM software. Figure 4.7 shows a calculation model
that has a 0.4-pum” core. The refractive indexes for a wavelength of
1.55um are 3.5 for the core and 3.1693 for the cladding. The non-
equidistant discretization scheme was used in this example. The number of
nodes M, in the horizontal direction and the number of nodes M, in the
vertical direction were both 96, and the minimum and maximum discre-
tization widths in both directions were respectively 0.025 and 0.05 pm.

The calculated effective index ¢ for both the quasi-TE and quasi-TM
modes was 3.2172, and Fig. 4.8 is a three-dimensional plot of the electric
field component E, calculated for the quasi-TE mode. It should be noted
that since the normal component of the electric flux density D, = ¢,.E, is
continuous at the interface between two media, as shown in Eq. (1.55), the
normal component of the electric field E, is not continuous at the
interface. In Fig. 4.8, we can clearly see the discontinuities of E,.

Since, as pointed out in Sections 4.1 and 4.3, the finite-difference
expressions have the errors of the order of / for nonequidistant discretiza-
tion and of the order of 4?> for equidistant discretization, equidistant
discretization is preferable. But because extremely fine meshes are
necessary for dealing with interfaces at which the refractive index changes
abruptly, as in this calculation model, nonequidistant discretization must

InP 1.5 pm

ot )
[04pm
1.5 um

l——'x
y
FIGURE 4.7. Calculation model.
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E (A.U)

FIGURE 4.8. The x-directed electric field component E,.

be used in order to reduce the amounts of computer memory and CPU
time required. The scalar FEM did not give the degenerated results for the
square core due to inaccurate boundary conditions, as discussed in
Chapter 3. The semivectorial FDMs, on the other hand, can overcome
this difficulty for a small-aspect core structure.

PROBLEMS

1. Show that when the second derivative is approximated by Eq. (4.9),

2 hfi —(h +h)fs +h fi
hyh, (hy + hy) '

the error is O(h?) when h; = h, (equidistant discretization) and is O(/)
when s, # h, (nonequidistant discretization).

120) =

(P4.1)

ANSWER

Multiplying Eq. (4.4) by #, and Eq. (4.5) by /#, and adding them, we get

2 hfzthlsthph 1o 0 2
hyhy (hy + hy) 3 (= )FP(0) + ),

£ =
(P4.2)

from which the answer can easily be obtained.
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2. Derive the finite-difference expression (4.121) without using the Taylor
series expansion.

ANSWER

Since the hypothetical difference center is (p + % ,q) for the first term
within the brackets on the right-hand side of Eq. (4.110), we can derive the
equations

e(p+3.9)=3e(p+1,9+¢(p 9} (P4.3)
and

oH 1

ox 12 €

from which we can immediately derive

1 9H,

g, ox

1 2
p+1/2,q B e Sr(p+ 1’ q) +8r(p’ Q)

(Hyorg— H,,).  (P45)

And since the hypothetical difference center is (p — %, q) for the
second term within the brackets, we can derive the equations

edp—%.9=3ep.q)—elp—1,9) (P4.6)
and
oH. 1
X op-1/24 W

from which we can immediately derive

1 2
p—1/2,q9 a w 8r(p’ Q) +8r(p - 1» Q)

(H,,—H,_,). (P438)

Substituting Egs. (P4.5) and (P4.8) into Eq. (4.110) and using some
mathematical manipulations, we can easily derive Eq. (4.121).



FIGURE P4.1. Simple example of the finite-difference method.
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3. A simple calculation model for the semivectorial FDM is shown in Fig.
P4.1. Show the form of the global matrix [A4] of Eq. (4.159).

ANSWER

The global matrix [4] is shown in Fig. P4.2. It should be noted that the
interactions between nodes 3 and 4, which correspond to a; 4 and ay 3, and
the interactions between nodes 6 and 7, which correspond to a4 ; and a; g,
have to be set to zero. Since the number of nodes in the y direction is 3, the
bandwidth is 7. The reason for this is explained in Section 4.4.

4. Calculate effective indexes ngg for the quasi-TE and quasi-TM modes
of the strip-loaded optical waveguide shown in Fig. P4.3. Assume that
the refractive indexes for a wavelength of 1.55 um are 3.3884 for the
InGaAsP of the 1.3-um band-gap wavelength (1.30) core and 3.1693

for the InP cladding.

0

a4,

[A]=

FIGURE P4.2. Form of global matrix [4].

i &y 0 Ay

Gy1 Gy G335 0 @y

Qi G330 (0 936
0 0 %44da45 0 4y
s, () asy Ass5a56 (0 asy
Q63 0 ags5 g5 0 0 969
G140 0 0 ay7a:50

G5 0 Gg7 G550
Qos 0 Gygagg
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_.2. 0 um §

1. 0 pm

Air t
(1. 5pum
[nP 'E‘U, 1 tm
1. 30 1 0. 4pm
InP [2. 6 pum

FIGURE P4.3. Calculation example of a strip-loaded optical waveguide.

ANSWER

The results you get will slightly depend on the CAD software used to
calculate them, but the effective index for the quasi-TE mode is 3.2576
and that for the quasi-TM mode is 3.2471.
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CHAPTER 5

BEAM PROPAGATION METHODS

The analysis methods discussed in the preceding chapters assumed the
structures of the optical waveguides to be uniform in the propagation
direction. A lot of the waveguides used in actual optical waveguide
devices, however, have nonuniform structures such as bends, tapers, and
crosses in the propagation direction. In this chapter, we discuss the beam
propagation methods (BPMs) that have been developed for the analysis of
such nonuniform structures.

Various kinds of BPMs, such as the fast Fourier transform (FFT-BPM)
[1-4], the finite difference (FD-BPM) [4—11], and the finite element (FE-
BPM) [12], have been developed. For the derivatives with respect to the
coordinates in the lateral directions, they respectively make use of the fast
Fourier transform (FFT), the finite-difference (FD) approximation, and the
finite-element (FE) approximation. The FFT-BPM and the FD-BPM will
be discussed here. Beam propagation CAD software is widely available on
the market.

5.1 FAST FOURIER TRANSFORM BEAM PROPAGATION
METHOD

The FFT-BPM [1] had been widely applied to design optical waveguides
until the FD-BPM [4] was developed. The FFT-BPM has the following
disadvantages due to the nature of the FFT: (1) it requires a long

165
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computation time, (2) the discretization widths in the lateral directions
must be uniform, (3) the simple transparent boundary condition cannot be
used at the analysis boundaries, (4) very small discretization widths cannot
be used in the lateral directions, (5) the polarization cannot be treated, (6)
it is inadequate for large-index-difference optical waveguides, (7) the
number of sampling points must be a power of 2, and (8) the propagation
step has to be small. But it is investigated here because the FFT-BPM is
historically important and the line of thinking it exemplifies is very
interesting and useful.

5.1.1 Wave Equation

The scalar Helmholtz equation is expressed as

VA, y.2) + ko’ (@, y. Y (x. y. 2) = 0, (5.1)
where V? is the Laplacian

, *  * ¥F

=92 + 02 + 2 (5.2)
and k, is the wave number in a vacuum.

Here, the slowly varying envelope approximation (SVEA) is used to
approximate the wave function y(x, y, z) of the light propagating in the +z
direction. In this approximation, (x, y,z) is separated into the slowly
varying envelope function ¢(x,y,z) and the very fast oscillatory phase
term exp(—jfiz) as follows:

Y(x,y,2) = ¢(x, v, z) exp(—jpz). (5.3)
Here,
B = negeko, (5.4

where n.y is the reference index, for which the refractive index of the
substrate or cladding is usually used.

Substituting the second derivative of the wave function V(x, y, z) with
respect to z,

2 2
TV = O expje) — 218 L exp(if) — B exp(—ia). (5.9
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into Eq. (5.1) and dividing both sides by the exponential term exp(—jfz),
we get

Fo .0

g~ 2B+ Vi + (kn’ — )¢ =0, (5.6)
0z 0z

where V3 is a Laplacian in the lateral directions (i.e., the x and y
directions) and is expressed as

F P
2
=—+—. 5.7
VJ_ 8}(?2 + ayz ( )
Or, using the relation
kgn® — B2 = kg (n® — i), (5.8)
we get
0P P
2]55 T2 V3¢ + ky(n* — ngp)o. (5.9)

Since the second derivative of the wave function ¢ with respect to z is
not neglected, Eq. (5.9) is a wide-angle formulation. On the other hand,
when the second derivative is neglected, that is, when we assume

Ra0)
the wave equation (5.9) is reduced to
0 2 202 2
2Jﬁg = Vi + k(" — nggr)d. (5.11)

The assumption that the second derivative of the wave function ¢ with
respect to z can be neglected is called the Fresnel approximation or the
para-axial approximation. The equality of the Fresnel approximation to the
para-axial approximation will be discussed in Section 5.1.5.
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5.1.2 Fresnel Approximation

Let us try to solve the wave equation (5.11), which is based on the Fresnel
approximation. First, we separate the variables of the wave function ¢ of

the Fresnel wave equation into the propagation direction and the lateral
directions:

P(x,y, 2) = A(x, y) exp(yz). (5.12)
Substituting Eq. (5.12) into Eq. (5.11) and dividing both sides by ¢, we get
2By = VA + ky(n” — ng),

and therefore

y= —Zf—ﬁ{vi + I (n? — nZyp)). (5.13)

Substituting y in Eq. (5.13) into Eq (5.12), we get

$(x.3.2) = A(x.y) exp(— T+ 0% - nﬁfa}z). (5.14)

Thus, the wave function ¢(x,y,z+ Az), which advances further than
¢(x, y, z) by Az in the propagation direction, can be written as

ox,y,z+ Az) = exp(—#{Vi + kg(n2 — ngff)} Az) ¢(x,y,2). (5.15)

We separate the exponential term into the following two terms:

Az
d(x.y.z 4+ A2) = exp(—jﬁvi) (b2 (5.16)
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where

1= 25 ko(" ngy) Az

2

2'kO Nefp
= ky An Az. (5.17)

% {(negy + An)* — ng} Az

Here, we used the relation n = n. + An and, assuming that An is
sufficiently small, neglected (An)>.

Since VA in Eq. (5.16) is a derivative operator, the following relation
holds for the general function £

V3 Anf —(AnV3)f = (V3 An)f + An(V2 f) — (An V3) f
= (V3 An)f #0. (5.18)

This relation implies that the first and second operators of Eq. (5.16)
cannot be interchanged (i.e., they are not commutable). However, we
symmetrize the operators in Eq. (5.16) as

Py 2+ Az) = exp( ) exp(—77) eXp(—J

Az
@Vi) $(x.y.2).

(5.19)

4

Although the reasons are not discussed here because of space limita-
tions, Eq. (5.19) results in errors of the order of (Az)’. This is one of the
reasons that the propagation step Az in the FFT-BPM has to be small. It
should also be pointed out that Eq. (5.16), which generates the unsymme-
trical operators, results in larger errors: errors of the order of (Az)2 [2].

Now, let us discuss the physical meaning of each term in Eq. (5.19).
When the refractive index is assumed to be uniform in the analysis region,
 is equal to zero. Thus, the wave equation Eq. (5.19) is reduced to

Az Az
¢(xy,z+Az)—exp< ﬂ ) 1- exp( /3 )cj)(x,y,z)

= exp< ﬁ >q5(x ¥, 2). (5.20)
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This implies that the operator

exp<—j§§vi) (5.21)

corresponds to the propagation over Az in free space. Therefore, the first
and the third terms of Eq. (5.19) correspond to the free-space propagation
of the light over Az/2. Thus, Eq. (5.19) implies that the wave function at
z 4 Az can be obtained by first advancing the wave function at z by Az/2
in free space, then giving a phase shift (—y) due to a phase-shift lens, and
finally advancing the wave function by another Az/2 in free space.

Next, we will obtain the explicit expression of the free-space propaga-
tion operator (5.21) by actually applying it to the wave function.

The discrete Fourier transform (i.e., the spectral domain wave function)
is

le NZI o(x,y,2) exp[ ]27‘C<X —|—n;/>], (5.22)

x=Ax-1i, y=Ay-h, X =Ax-M, Y=Ay-N,

0O<i<M—1  0<h<N-1, (5.23)
M_ M N_ N
g =m=5 0 2 ="=73

Here, X and Y are the widths in the x and y directions. The inverse discrete
Fourier transform, on the other hand, is

M/p2—-1 Nj2—-1 _

b= Y Y du@ew|2e(T+2)] 29

m=—M/2 n=—N/2

where the coefficient 1/MN is omitted for simplicity.

According to the operator (5.21) and the above discussion, when the
wave propagates over Az/2 in free space, we get the following wave
function at z + Az/2:

d)(x,y,z%—%) = exp( ﬁ )d)(x v, 2). (5.25)
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We can get the wave function at z + Az/2 by replacing z by z + Az/2 in
Eq. (5.24):

Az M2-1  Nj2-1 _ Az ny
¢<x,y,z+—) = d)mn(z—l— )exp[ﬂn( + )]
2 m:§4/2 n:;V/Z 2 X Y

(5.26)

On the other hand, substituting the right-hand side of Eq. (5.24) for
¢(x, y, z) on the left-hand side of Eq. (5.25), we get

Az Az M/2—1 N/2—-1 _
¢<xv Yz + 7) = exp(—]@Vi> Z Z d)mn(z)

m=—M/2 n=—N/2

X exp[]ZR(X + n;/)] (5.27)

As the right-hand side of this equation can be rewritten as

M/2—-1 N/2—-1 _
S dw@en(—gv ) ee[ s+ D)

M/p2—1  Nj2-1

S5 S e S 4() ]

<o 25 +5)]

we get another expression for the wave function at z + Az/2:

Az M/2—-1 NJ/2—-1 _
d)(x’yvz'i_?) = Z Z d)mn(z)

m=—M/2 n=—N/2

ol S [+ ] ]

X exp [j277: (% + %)] (5.28)
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Since the wave functions ¢(x,y,z + Az/2) given in Egs. (5.26) and
(5.28) have to be equal to each other, we get the important relation

. (z n %) — ¢, (2) exp{ 1(24’;)2 [(}ﬂ()ﬁ(;)z] Az}. (5.29)

Equation (5.29) shows the relation between the spectral domain wave
function ¢,,,(z 4+ Az/2) at z + Az/2 and the spectral domain wave func-
tion ¢,,,(z) at z. The exponential term on the right-hand side of Eq. (5.29),

ol S [ )] )

corresponds to the propagation over Az/2 in free space. We also find that
Eq. (5.28) is the inverse discrete Fourier transform of the function

duron 57 [+ o

From these discussions, we draw the conclusion that the application of
the operator

Az
exp( j@vi), (5.30)

which corresponds to the propagation over Az/2 in free space, to the
space-domain wave function ¢(x, y, z) at z is equivalent to application of
the mathematical procedure

1

2 2
4ﬁ(kx +ky)Az)z (5.31)

3! exp(j

to the space-domain wave function ¢(x, y, z). Here, the symbols T and
3! respectively represent the discrete Fourier transform and the inverse
discrete Fourier transform. The variables &, and k, are expressed as

2nm 2nn
kx = 7 and ky = 7 . (532)
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@
o @ @ @

Az/2 Az/2
>

z ztAz

FIGURE 5.1. Calculation of one period in the FFT-BPM.

Thus, the FFT-BPM calculation procedures for a period Az can be
summarized as follows, where steps 1-5 correspond to the labels in
Fig. 5.1:

1. At the propagation position z, calculate the spectral domain wave
function <Z>m,,(z) in the Fourier transform domain by taking the
Fourier transform of the space-domain wave function ¢(x, y, z).

2. To get the transformed wave function (Eﬁmn(z + Az/2) at z+ Az/2,
multiply

exp{j(247;)2 [(%)24—(%)2} AZ} (5.33)

by the spectral domain wave function (Eﬁmn (z) obtained in step 1. This
multiplication corresponds to the propagation over the distance Az/2
in free space.

3. Taking the inverse Fourier transform of the spectral domain wave
function ¢,,,(z + Az/2) obtained in step 2, obtain the space-domain
wave function ¢(x, y, z 4+ Az/2) just in front of the phase-shift lens.
Then, multiplying the phase-shift term exp(—jy) due to the phase-
shift lens by the space-domain wave function ¢(x,y,z+ Az/2),
obtain the space-domain wave function just after the phase-shift
lens:

Az
exp(—jx)¢ (x, y,z+ 7). (5.34)
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4. Taking the Fourier transform of the space-domain wave function just
after the phase-shift lens and multiplying it by

exp{j(Tﬁ)z [(?)Z(gﬂ AZ}, (5.35)

corresponding to the propagation over Az/2 in free space, obtain the
spectral domain wave function ¢,,,(z + Az) at z + Az.

5. When the space-domain wave function ¢(x, y,z + Az) at z + Az is
necessary, take the inverse Fourier transform of the spectral domain
wave function ¢, (z + Az) obtained in step 4.

mn

Repeating steps 1-5, we can get the space-domain wave function at the
target propagation position. It should be noted that if the space-domain
wave function at each z + Az is not necessary, one should return directly to
step 2 from step 4 and repeat steps 2—4.

5.1.3 Wide-Angle Formulation

Up to this stage (i.e., in the Fresnel approximation), the second derivative
of the slowly varying envelope function ¢ with respect to z has been
neglected. Now, we return to the wide-angle wave equation (5.9), which
contains the second derivative. Readers who feel they have no need for
such a discussion of the wide-angle formulation for the FFT-BPM can skip
this section.

Substituting the wave function given by Eq. (5.12) into Eq. (5.9) and
dividing both sides by ¢, we get

2iBy —9* = Vi + K (n* — nZy).
Therefore
v — 2By + Vi + kg(n* — ng) =0

and

) =B £ =B = (V2 + B — n2)

= JBE B+ V2 + R — ). (5.36)
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Since the wave is supposed to propagate in the +z direction, the minus
sign in Eq. (5.36) should be used so that

y=j(ﬁ—~¢ﬁ2+{Vi+kﬁﬁ2—né»)- (5.37)

Substituting this y into Eq. (5.12), we get the wave function at z:

o(x,y,z) = A(x,y) exp[j(ﬁ — \/ﬁz +{V2 + k3(n* — ngff)})z] (5.38)

Finally, we get the wave function at z 4+ Az:

¢(x’ Y,z + AZ) = eXp[](ﬁ - \/ﬁz + {Vi_ + k(%(”2 - ngff)}>AZi| (rb(x’ Y, Z)'
(5.39)

Now, we expand the second term inside the exponential function of Eq.
(5.39):

(B> + (VL + K (n* — nZp)h)'?
kg(n2 — ngff)} 12
B+ Vi

1 kK2(n? —n2y)
. 2 p+Vi

. kg(nz - ”esz) < ﬁ2 + Vi)
= (B + V)" 2+ Li2(n% — n2p) (B + V2) 2 (5.40)

— P+ VD21

The Laplacian V2 in the lateral directions corresponds to the square of the
wave numbers in the lateral directions. The wave numbers in the lateral
directions are much smaller than the wave number in the propagation
direction (i.e., the propagation constant). Thus, the assumption V3 < [32
is concluded to be wvalid. In addition, taking (n*—nZ;) =
(n 4 neg)(n — ngge) ~ 2nee(n — ngg) and f = kgnee into consideration,
we can simplify the right-hand side of Eq. (5.40) to

ne
m?+%f”+%7§w—%@=uf+%f”+%m—%@.64D
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Substituting Eq. (5.41) into Eq. (5.39), we get
d(x,y,z 4 Az)
—exp [j(ﬂ P+ B - nzfa}) Ax]¢(x, 3.2

= exp(jiB — (B> + VD)2 — ko(n — negr)} A2)(x, v, 2)

= exp[—jko(n — neg)Azlexp(—{(B> + V)'/* — B} A2)(x, », 2).
(5.42)

Since the propagation constant f§ has the order of the inverse of the
wavelength, it is a large number. Inside the exponential function,
(B* + V%), which is also the large number, is subtracted by f. This
numerical process can therefore cause large round-off errors. To reduce
the errors, we modify the term inside the exponential function:

(B + VD' = BB + VD' + B)
(B +VD)'"Z +
___ Vi
B HVD P+
Symmetrizing the operators as we do in the wave equation (5.19) based on
the Fresnel approximation, we finally get

(B +V)'"? - p=

P(x,y,z+ Az)
_ Vi
= CXp[—]kO(l’l - neff) Az] GXp( (ﬁ I V2 )1/2 I ﬁ)d)(xs »,2)
2
= exp( Az Vi ) exp(—/j)
2 (B +V)P4p
Az %
X exp( —— > (ﬂ s )1/2 n ﬁ)qb(x, v, 2). (5.43)

This is a wide-angle formulation, so the operator for the propagation
over Az/2 in the Fresnel approximation corresponds to that in the wide-
angle formulation as follows:

,szz e Az %1
—_— —_— X —_—
J4ﬁ 1 p J2 ('[), +V2)l/2+ﬁ

Fresnel approximation Wide-angle formulation

exp

(5.44)
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The calculation procedures for the beam propagation based on the
wide-angle formulation are exactly the same as those for the beam
propagation method based on the Fresnel approximation.

5.1.4 Analytical Boundaries

To reduce the reflections at analysis windows, we need some artificial
boundary conditions. Since the simple transparent boundary condition
(TBC) that is normally used in the FD-BPM (and which will be discussed
in a later section) cannot be used in the FFT-BPM, some other artificial
boundary conditions using complex refractive index materials or window
functions have to be used to make the propagating fields decay properly
near the edges of the analysis window. These artificial boundaries in the
FFT-BPM usually require some experiences in optimizing the parameters
to minimize the reflections.

5.1.5 Further Investigation

The free-space propagation operators for the Fresnel approximation and
for the wide-angle formulation that were given in expression (5.44) are
further examined in this section.

According to Egs. (5.12) and (5.24), the slowly varying envelope
function ¢(x, z) in a 2D case is expressed as

$(,2) = Y $,,(x.2), (5.45)
where
b(x.2) = B, exp( jk.x) exp(yz) (5.46)
and
k, = 2”7’" (5.47)

Here, X is the total width of the analysis region and m is an integer.
First, let us verify that the Fresnel approximation is equivalent to the
para-axial approximation by using a 1D case, where we reduce the
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derivative operator V2 in Eq. (5.44) to the square of a wave number in a
lateral direction, k2. The free-space propagation operators for the Fresnel
approximation and the wide-angle formulation are respectively

exr>< ﬁ—;kz) (5.48)
Az k?
exp <]7 m) (5.49)

Thus, the phase term ¢ for the Fresnel approximation and the phase term
@y for the wide-angle formulation are

Az ,
Or =45 ks, (5.50)

Az k2

2B -t 2y

Oy =

Equation (5.4) can be used to express 5 as a function of the reference
index n . Assuming that the reference index n4 is equal to the effective
index, we can, as shown in Fig. 5.2, reduce f to the z-directed component
of the wave number £ of a whole wave (i.e., the propagation constant).

Since k£ and f are generally much larger than the x-directed wave
number k,, the approximation k =~ f§ is valid. Thus, &, can be approxi-
mated as

k. = ksin0 =~ fsin0. (5.52)

et
q‘_\\“"n m .
JX-direcied wave numoer
kL directed wave numbe

L.,

B:z-directed wave number
{propagation constant)

FIGURE 5.2. Relation between £, k,, and . Here, 0 is the propagation angle.
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Substituting Eq. (5.52) into Egs. (5.50) and Eq. (5.51), we can reduce the
phase term ¢ for the Fresnel approximation and the phase term ¢ for
the wide-angle formulation to

Az Az 0 0
= @ﬁz sin® § = E4ﬁ2 sin? Ecos2 X (5.53)
o — Az k2 Az B sin” 0
w=

2P 2 (- i 0)F 1 p
Az B*4 sin?(0/2) cos®(6/2) Az B4 sin*(0/2) cos2(0/2)
- 7 ﬂ(cos 0+1) T2 2B cos2(0/2)

4B s (5.54)

ﬁ

Comparing Eq. (5.53) with Eq. (5.54), we find that the Fresnel
approximation is a good approximation for the wide-angle formulation
only when the propagation angles are so small that cos?(/2) can be
considered to be nearly equal to 1.

Next, we discuss the discretization width in the lateral directions. Since
the free-space propagation operator (5.48) for the Fresnel approximation is
purely imaginary, it satisfies the unitary condition. The free-space propa-
gation operator (5.49) for the wide-angle formulation, on the other hand,
has to satisfy

B =k (5.55)
if the unitary condition is to be satisfied. That is, when

2nm

2
(kOneff)2 = (7> (5.56)

is not satisfied, the denominator of the argument of the operator (5.49)
becomes complex. Thus, the free-space propagation operator (5.49) itself
also becomes complex and does not satisfy the unitary condition. This
causes the power of the propagating optical wave to dissipate. Assuming
the maximum number of m to be M /2, we can rewrite condition (5.56) as

2n M ?
b= (2 ) = (5)

%

(é)z (5.57)
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where Ax = X/M is the discretization width. Since the relation
ky = 271/, holds for the wave number in a vacuum (4, is the wavelength
in the vacuum), Eq. (5.57) implies that the discretization width Ax in the
lateral direction has to satisfy the condition

al < Ax (5.58)
2ngg

if the power of the beam is to be conserved. The condition (5.58) implies
that a very small discretization cannot be used in the wide-angle FFT-
BPM. For 3D cases, the conditions (5.57) and (5.58) are modified to

271 M)2

2
(konegr)” = (7 S ECE (XfM) 2= (L) x2 (559

and

o
< Ax, (5.60)
ﬁneff

where we assume that Ax = Ay.

5.2 FINITE-DIFFERENCE BEAM PROPAGATION METHOD

The FD-BPM is very powerful and has been widely used for optical
waveguide design. Of the various FD-BPMs that have been developed, the
one with the implicit scheme developed by Chung and Dagli [4] is state-
of-the-art from the viewpoints of accuracy, numerical efficiency, and
stability. Its unconditional stability is particularly advantageous not only
because it allows us to use the method in actual design without danger of
diversion but also because it allows us to set the propagation step
relatively large. In addition, the TBC [13], which is simple and requires
no special experience to use, has been developed for the FD-BPM by
Hadley [5]. A wide-angle scheme using Padé approximant operators [5, 6]
has also been developed by him. These contributions greatly advanced the
FD-BPM and have enabled it to be used even in the design of optical
waveguides made of high-contrast-index materials, such as semiconductor
optical waveguides.
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5.2.1 Wave Equation

To clarify the formulation of the FD-BPM, we must first derive the wave
equation. In this section, as in Chapter 2, we assume that the structure of
the optical waveguide is uniform in the y direction. The necessary wave
equations can be derived from the semivectorial wave equations given in
Chapter 4, but let us further our understanding by deriving them from
Maxwell’s equations.

The component representations of Maxwell’s equations

VX E = —jouH, (5.61)
V X H = jweye, E (5.62)

were given in Egs. (2.5)—(2.10), where the relative permeability p, was
assumed to be equal to 1. Since the structure in the y direction is assumed
to be uniform, the derivatives with respect to y can be set to zero. Thus,
Egs. (2.5)—(2.10) are reduced to

JE, .
-2 = —jouyH,, (5.63)
0E, OE, ,
o g = J@HoH, (5.64)
oE, _
P —JjouH:, (5.65)
oH,
e = jweye, E,, (5.66)
oH, 0H.
azx " = jweye, E,, (5.67)
oH,
o = jweye, E.. (5.68)

A. TE Mode Figure 5.3 shows the principal field components for the
TE mode. Since both E, and H, are the principal fields, we need to have
the wave equations for both. In the TE mode, as discussed in Section
2.1.1, the x- and z-directed electric field components and the y-directed
magnetic field component are zero:

E,=E =H,=0. (5.69)



182 BEAM PROPAGATION METHODS

5

E

y

FIGURE 5.3. Principal field components for TE mode are £, and H,.

Substituting Eq. (5.69) into Egs. (5.63)—(5.68), we obtain for the TE
mode the equations

oE,
— 2 = _ja)'uOHx, (570)
oz
oL, iy H, (5.71)
& = —JWUyI,, .
oH, 0H, |
% o = jwee, E),. (5.72)

1. E, Representation First, we derive the wave equation for the y-
directed electric field component E). Substituting the x- and z-directed
magnetic field components

H L% (5.73)
T jopy 32 .
1 OE
H=— " (5.74)
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obtained from Egs. (5.70) and (5.71) into Eq. (5.72) yields the following
wave equation for the principal electric field component E:

YE, OE,
=2 tge Thie k=0, (5.75)

where k3 = w?e L.

2. H, Representation Next, we derive the wave equation for the x-
directed magnetic field component H,. Differentiating Eq. (5.72) with
respect to z, we get

*H, ®H, . JE,
— =jwé
0z2 0z ox

OSFE. (5.76)

In deriving Eq. (5.76), we have assumed the variation of the relative
permittivity ¢, along the propagation axis to be negligibly small. That is,

a
%r 0. (5.77)
0z

This results in the approximation

0 e oF, oE
—(6E)=—"E, +¢&—~g—. 5.78
0z (&Ey) 0z 7 e oz e (5.78)

Thus, it should be noted that the approximation (5.77) is implicitly used in
the BPM.

From a calculation of dEq. (5.70)/dx + 0Eq. (5.70)/0z or the magnetic
divergence equation

V-H=0, (5.79)
we get
oH., N 0H, —o.
ox oz
That is,
oH, o0H

4 X

Z  ox
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Substituting this equation and Eq. (5.70) into Eq. (5.76), we can eliminate
H, in Eq. (5.76). This results in the wave equation for the principal
magnetic field component H.:

PH, 0*H,
8Z;‘ + ?;‘ + k3e,H, = 0. (5.80)

B. TM Mode Figure 5.4 shows the principal field components for the
TM mode. Since both E, and H, are principal fields, we need to have the
wave equations for both. In the TE mode, as discussed in Section 2.1.2,
the x- and z-directed magnetic field components and y-directed electric
field component are zero:
H . =H =E,=0. (5.81)
Substituting Eq. (5.81) into Egs. (5.63)—(5.68), we obtain for the TM
mode the equations

9E, OE

——= = —jouyH, .82

R (5-82)
oH,

— E = jweye, E,, (5.83)
oH,

" = jweye, E. . (5.84)

%x
E,
y

S

FIGURE 5.4. Principal field components for TM mode are E, and H,.
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1. E. Representation First, we derive the wave equation for the
x-directed electric field component E.. Differentiating Eq. (5.82) with
respect to z, we get

PE, &E, oH,
—=— 5.85
02 ozox = 0z (5-:85)
Substituting Eq. (5.83) into Eq. (5.85), we can eliminate H, and obtain
PE, FE, : .
87; - 9z ax = _]wHO(_]wEOSrEx) = _kgSrEx‘ (586)

From a calculation of dEq. (5.83)/0x + 0Eq. (5.84)/0z or the divergence
equation for the electric flux density

V- (eE)=0, (5.87)
we get
(e,Ex>+ (e ) =0.
That is,
aEz
z e a( Ev).

Substituting this equation into Eq. (5.86), we get the wave equation for the
principal electric field component E:
PE. 9
a2 | ox

1
( 0 (s,Ex)> + ke, E, = 0. (5.88)

2. H, Representation Next, we derive the wave equation for the y-
directed magnetic field component H,. Substituting the x- and z-directed
electric field components

1 0H,
E. =—- —, (5.89)
Jjwege, 0z
E, = : @, (5.90)
Jwege, ox

which are obtained from Eqs. (5.83) and (5.84), into Eq. (5.82) yields
d 1 0H 0 1 0H
hdl <_ : _y) — _< . —y) = —jouyH, (5.91)

0z \  jweye, 0z ax \ joeye, Ox
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and therefore

9 (1 0H)\ 9 (1 oH, ) )
S==2)+ 2 (= = H, = —i3H,.
0z (e, 8Z>+8x (8, ax) @ Gobloty 0y

Making use of the approximation

—_ _———— — _—— N —

2 2
3(1 8Hy>_ 1 ds, 0H, 1 PH, 1 &H,

z\e, 0z & 0z 0z ¢ 022 & 0227

which follows from Eq. (5.77), we get the wave equation for the principal
magnetic field component H,;:

O’ H 9 (1 0H,
Yo (= =2} 4 k2e.H, = 0. 92
072 +8’ax(e, 8x>+ 0¢rf1, =0 (5:92)

5.2.2 FD-BPM Formulation

Next, let us discuss the FD-BPM formulation based on the implicit
scheme developed by Chung and Dagli [4]. Since the discussions here
are limited to 2D problems, the amount of memory required is not large.
Thus, the equidistant discretization is used to ensure the second-order
accuracy. Further improvement of accuracy has been achieved by Yamau-
chi et al. [7].

A. TE Mode The wave equation for the y-directed electric field
E(x,y,2) 1s

YE, &E,
y-i-ﬁ-i-koSVEy = 0. (593)

As in the FFT-BPM, using the slowly varying envelope approximation,
we divide the principal field £ (x, y, z) propagating in the z direction into
the slowly varying envelope function ¢(x, y, z) and the very fast oscilla-
tory phase term exp(—jfiz) as follows:

Ey(xv Y Z) = ¢(x, Vs Z) exp(—jﬁz), (594)
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where
B = negky. (5.95)

Here, k, is the wave number in the vacuum and n. is the reference index,
for which the effective index is usually used. Substituting

PE, _#¢

32 02

exp(—/jpz) — 2jp %GXP(—jﬁZ) — B pexp(—if2),  (5.96)

which is obtained from Eq. (5.94), into Eq. (5.93) and dividing both sides
of the resultant equation by the exponential term exp(—jfz), we get

> ¢ ¢

a o Ub ot (k3n* — pHdp =0 (5.97)
or
2 2
255 00T L R, — o, (5.98)

where we used the relation ¢, = n®. As discussed in the section covering
the FFT-BPM, Eq. (5.98) is the wide-angle formulation. When we assume
that

Y o, (5.99)

Eq. (5.98) is reduced to the Fresnel wave equation

2
e (5.100)

First, we discuss the FD expression for the Fresnel approximation. That
for the wide-angle formulation will be covered in Section 5.3.
When we use the discretization of the x and z coordinates
x=p Ax, (5.101)
z=1Az, (5.102)
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where p and ¢ are integers, the following notations are used for the wave
function ¢(x, z) and the relative permittivity ¢,(x, z):

P(x.2) —> ¢, (5.103)

e, (x,z) = £(p). (5.104)

The next step is the discretization of the Fresnel wave equation (5.100).
First, we discretize it in the x direction. The discretization number /, which

corresponds to the z coordinate, will be discussed later. The first and the
second terms on the right-hand side of Eq. (5.100) are expressed as

Po_1 [ b= _ H—d
w2 Ax Ax Ax
N — — N o

Difference center is p+ % Difference center is p— %

Ppi1 =20, + b,

= 5.105
(A (5.105)
Difference center is p
and
ko (e, — ngw)d = kole(p) — ngld, - (5.106)

Difference center is p
Substituting Egs. (5.105) and (5.106) into Eq. (5.100), we get

0 —2¢,+ ¢,
2jp 0 = font ( Ai’); Pl e )~ e,

= aw(bp—l + o(xd)p + O(e(bp—H + kg[gr(p) - ngff](/ﬁp-

Thus, the discretization of the wave equation (5.100) is

27 % — 2 2
]ﬁ %z - aw(:bp—l + {(xx + kO [Sr(p) neff]}(pbp + o‘ed)p—i-l’ (5107)
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where we used the definitions

1

o, :@, (5108)
2, :(Ax%, (5.109)
ax:—(;)z. (5.110)

The next step is the discretization of Eq. (5.107) with respect to z.
Discretizing the left-hand side of Eq. (5.107) with respect to z, we get

AN Y
2jﬁ%. (5.111)

It should be noted that, as shown in expression (5.111), the difference
center of the left-hand side of Eq. (5.107) is the point / +% midway
between / and / + 1. The difference center of the right-hand side of Eq.
(5.107) discretized with respect to z should be / + % Thus, we modify Eq.
(5.107) to

¢l+1 ¢l
Up-L—L =L )|+ (o + R[el(p) — nZgl} @), + bl ]
+ 3l o+ (ol + Kl (p) — n2g
+al g (5.112)

Rewriting this equation so that the terms on the left- and right-hand sides
respectively contain / 4+ 1 and /, we get

O€l+1 I+
5—¢
2 p+1

OCI+1 " l+1
w +
— b, + { +

IR R () - neffl}d“
ok 2jp

L 2
=%¢2_1+{3+E+ kole (p)—”eff]}</> + = ¢p+1
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Multiplying both sides of this equation by 2, we get the FD expression for
the TE mode:

4jp
—air‘¢lt‘1+{—oci+‘+$ [e’“(p)—neff]}w 7 b

4
=a€v¢;_1+{ T IO | R WA CRIE)

Although in Eq. (5.113) we use the wave number in a vacuum, k;,, for
ease of understanding, it is recommended that in actual programming the
coordinates (i.e., x, ¥, and z) be multiplied by k, and the propagation
constant f# be divided by k, in order to reduce the round-off errors. The
resultant formulation corresponds to dividing both sides of Eq. (5.113)
by k2.

B. TM Mode The wave equation (5.92) for the principal magnetic field
component H, is

*H d (1 0H,
- kgeH, = 0. 5.114
0z? 8r8x(8 E)x)+ oert1 ( )
As in Eq. (5.94), the principal field H,(x,y,z) propagating in the z
direction is divided into the slowly varying envelope function ¢(x, y, z)
and the very fast oscillatory phase term exp(—jfz) as follows:

Hy(x’yv Z) = (]S(X,y, Z) exp(—jﬁz). (5115)

Substituting the second derivative of Eq. (5.115), which corresponds to
Eq. (5.96), into Eq. (5.114) and dividing the resultant equation by the
exponential term exp(—jfz), we get for the TM mode the wide-angle wave
equation

P P 1 3¢
2 g—@—grax( 8x>+k0(8 Hegr ) - (5.116)

When we assume that

32
aT(f =0, (5.117)
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we get the Fresnel wave equation

.0 2 (1 3¢ ) )
2p—=¢—|— — k — . 5.118
7l oz & P <£r ax) + O(gr neff)d) ( )

To discretize the wave equation (5.118), we express the x and z
coordinates, the wave function ¢(x,z), and the relative permittivity
&.(x, z) as follows:

x=p Ax, (5.119)
z=1Az (5.120)
b(x,2) = ¢}, (5.121)
60, 2) = & (p). (5.122)

We first discretize the Fresnel wave equation (5.118) in the x direction.
The first term on the right-hand side of Eq. (5.118) is discretized as
follows:

L0 (13
"ox \&, ox

L 1 ¢p+1 - (bp 1 ('bp — d)Pl

B P S e V- R S |
Difference center is p+1/2 Difference center is p—1/2 (5 . 123)
where
1 ; 1 -
gr(p+5) ~ Pt 2)+8’(p), (5.124)

8r<p—%> %sr(p)Jr;r(p— D} (5.125)
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Thus, we get
(1 3¢

8 R _

"ox \e, ox

1 2 Dpi1 — P 2 bp = Ppi
Av|ep+Dtelp) M e+ep—D) A
Difference center is p+1/2 Difference center is p—1/2
_ 2¢,(p) bpi1 — b, B 2¢,(p) b, — Py
Cep+D+e(p) (A e +elp—1)  (Av)?
1 26,(p) ! 26,(p)

= ,(p)

T (A &+ D +elp) Dot (Ax)? &(p) +&.(p — )Pt
_ ( 2¢,(p) 2¢,(p) ) L,
e(p+D+ep) e +ep—1)(Ax)* "7
= O(wd)p—l + o‘x(bp + aed)p—i-l’ (5126)
where
_ 1 26,(p)
BT Ay e () e —1) 127
1 2,(p)
T a D) e+ (129
M. 2¢,(p) 1 2¢,(p)
oA e Fe-1) (A (@) +elp+ 1)
= —0, — O. (5.129)
We also get
ki (e, — ) = ki (e,(p) — nge)p, - (5.130)

Difference center is p
Substituting Egs. (5.126) and (5.130) into Eq. (5.118), we get

0
2jﬂg = aw¢p*1 —+ ax¢p + ae¢p+l + ké[gr(l’) - ngff](i)p

and therefore

]
2jﬁa_f = OCW(l’)p—l + {ax + k(%[gr(p) - ngff]}(ﬁp + Oced)p-l—l‘ (5131)
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The next step is the discretization of Eq. (5.131) with respect to z.
Discretizing the left-hand side of Eq. (5.131) with respect to z, we get

gl
2jﬁ¥. (5.132)

As with expression (5.111), since the difference center of the left-hand
side of Eq. (5.131) is the point / + % midway between / and / 4+ 1 as shown
in Eq. (5.131), the difference center of the right-hand side of Eq. (5.131)
should be / + % Using the same procedure, we used for the TE mode, we
get the FD expression

1+1¢1+1 {_%ljl ],3 ko[ 1+1(p) eff]}¢/+1 1+1¢;:r11

Jﬁ
= o) + { + + klen(p) — )bl + bl } (5.133)

5.2.3 Nonequidistant Discretization Scheme

In the above discussions, we first discretized the Fresnel wave equation in
the x direction as

¢

2]ﬂ¥ = O‘wd)pfl + {ax + kg[(or(p) - ngff]}(:bp + %e p+1° (5134)

Then, discretizing Eq. (5.134) in the z direction, we got the FD expression
for the Fresnel wave equation for a 1D nonequidistant discretization,
which is shown in Fig. 5.5:

— ol {_%ICH 4/p — R () — eff]}¢z+1 gl

= ol ¢),_ 1+{0< + Jﬁ+ko[8 (p)—"eff]}¢ + by,
(5.135)

where the difference centers of both sides of Eq. (5.134) are the same in
the z direction.

(r-lLg) (r.9) (p+lLg)

L 4 L d L
e T T

w e

FIGURE 5.5. One-dimensional nonequidistant discretization.
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a. TE mode—E), representation and H, representation:

2
fw = w(e+w)’
2
e = ele+w)’
2
==
4
=——+0,+0,
ew
= —0a, — 0,.
b. TM mode:
E. representation:
_ 2 2e(p—1)
e w) & (p) e (p— 1)
2 2e(p+1)
e w) o) +ap+ D)
g2 2 ep)-—&lp—-1

T ew wletw e(p)telp—1)

_ 2 8r(p) - 8r(p + 1)
ele+w) e(p)+elp+1)

=——+a,+a,
ew

H, representation:

L2 26,(p)
Yowletw) g(p)telp—1)°
g -2 2¢,(p)
¢ elet+w e(p)telpt+ 1)
2 26,(p)
BT T et w) e (p) Felp— D)
2 2¢.(p)

Cele+w) e(p)+e(p+1)

= —0, + .

(5.136)

(5.137)

(5.138)

(5.139)

(5.140)

(5.141)

(5.142)

(5.143)

(5.144)
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5.2.4 Stability Condition

Up to this stage, in the discretization of Egs. (5.100) and (5.118) in the z
direction, the difference centers were assumed to be the same (i.e., the
point z + Az/2 midway between z and z + Az) for both the left- and the
right-hand sides.

Here, we further discuss the influence of the difference center of the
right-hand side in the z direction on the stability along the beam
propagation by using the procedure discussed in Ref. [11].

The Fresnel equation is

Ip(x.z) _ PPx.2)

0z ax2 + kg(gr - ngff)(ﬁ(xv Z)- (5145)

2jp

For simplicity, uniform media are assumed here. Since the reference index
neg can be set to the refractive index /¢, of the medium, we can assume
n2¢ = ¢,. Thus, the wave equation (5.145) can be simplified to

0p(x.2) _ P, 2

p ) (5.146)

2jp

Introducing the difference parameter o, which determines the difference
center in the z direction, we modify the wave equation (5.146) to get

o(x,z+ Az) — ¢(2) ., FP(x,z + Az) .

- = (1— )22 (5.147)

2jp

FP(x, 2)
o2

Here, it should be noted that & = 0.5 has been assumed in the preceding
discussions and that the scheme with o = 0.5 is called the Crank—
Nicolson scheme.

When for a plane wave the slowly varying envelope function is
expressed as

P(x, 2) = ¢y exp( jk.x) exp(—jfz), (5.148)

the second derivative of the wave function with respect to x is

% = —k2p(x, 2). (5.149)
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Substituting Eqs. (5.148) and (5.149) into (5.147) and dividing the
resultant equation by ¢(x, z), we get

1
2jB 1 lexp(—iB Az) = 1] = =k {o exp(—j A2) + (1 — ).
Therefore

% + Ko | exp(—jp Az) = % — (1 —a)k?
Az Az
and

2jB/Az — (1 — a)k?
2jB/Az + ak?

exp(—jp Az) = (5.150)

Since the exponential term exp(—jf Az) given by Eq. (5.150) is a
propagation term, we can clarify the influence of the parameter o on the
stability of the beam propagation by investigating how the absolute value
of the exponential function changes when the propagation distance Az
changes. The absolute value of the propagation term is expressed as

4= |exp(—jf Az)|

{(M/Azf + (1 — )k } "

QB/Az)* + o2k}

12
C? + (1 — )’k
= W , (5.151)
where
2
C= A_i (5.152)

The absolute value of the propagation term is related to the value of o as
follows:

CASE 0 =0.5

B {CZ +k;‘/4}1/2_

i/ (5.153)
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Since the absolute value of the propagation term is always equal to 1,
the propagating field does not diverge as the beam propagates. There is,
however, the possibility of oscillation.

CASE 05 <a <1
(1 —a) <o,

1/2
_ C2+ (1 — o)k}

Since the absolute value of the propagation term is always less than 1,
the propagating field is unconditionally stable. However, the propagating
field decays as the beam propagates.

CASE0<a<0.5
(1—0) > o,

, C (1 -kt
. )\,—{ Tt ok } > 1. (5.155)
Since the absolute value of the propagation term is always greater than
1, the propagating field grows larger and larger as the beam propagates. It
will finally diverge. A difference parameter o less than 0.5 thus should not
be used, and o = 0.5 is usually used in the calculation.
The Fresnel wave equation with the difference parameter o is expressed
as

. d)l+l _ d)l
2= = by + o5+ KL (P) — el + 0 i)

+ (1 — o) ot + (o™ + Blet (p) — nigliglt!

+al o). (5.156)

Equation (5.156) is solved in exactly the same way that Egs. (5.112) and
(5.133), which are based on the Crank—Nicolson sheme, are solved.

5.2.5 Transparent Boundary Condition

An infinitely wide area would have no analysis boundary and there would
thus be no reflections at boundaries. Because such an area cannot be
assumed in actual design, however, a limited analysis window has to be
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used. In actual structures, radiated waves are reflected at the boundaries
and return to the core area, where they interact with the propagating fields.
This interaction disturbs the propagating fields and greatly degrades the
calculation accuracy. In this section, we discuss the TBC. The TBC was
developed by Hadley [5] as a way to efficiently suppress the reflections at
boundaries, and it is easy to implement into computer programs. Although
the TBC will be applied to 2D problems here, it can easily be extended
and applied to 3D problems.

As shown in Fig. 5.6, the analysis window contains nodes at p = 1 to
p = M. The hypothetical nodes at p = 0 and p = M + 1 are assumed to
be outside the analysis window. Following Hadley’s line of thinking [5],
we incorporate the influences of the nodes at p = 0 and p = M + 1 into
the nodes at p =1 and p = M. In what follows, we consider how the
boundary conditions can be written into a computer program.

A. Left-Hand Boundary Consider the left-hand boundary in Fig. 5.6.
We incorporate the influence of the hypothetical node at p = 0 (outside the
analysis window) into the node at p = 1 (inside the analysis window).

The wave function for the left-traveling wave with the x-directed wave
number £k, is expressed as

P(x, 2) = A(z) exp( jk,x)- (5.157)

We denote the x coordinates and the fields of the nodes atp = 0, 1, 2 as
Xg, X1, X, and as ¢, ¢, ¢,, and we assume that

by = A(z) exp( jk,xo), (5.158)
¢y = A(z) exp(jk,x)), (5.159)
¢, = A(z) exp( jk,x,). (5.160)

The fields ¢, and ¢, are inside the analysis window, and ¢, is a
hypothetical field whose influence should be incorporated into the field
inside the analysis window.

Xy Xy Xy X3 g Xy Xy

FIGURE 5.6. Nodes p = 0 and p = M + 1 are outside the analysis area.
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Dividing Eq. (5.160) by Eq. (5.159) and Eq. (5.159) by Eq. (5.158), we
get

¢,

exp(jk, Ax)=¢ , (5.161)
1
exp(Jjk, Ax) = 2—; (5.162)

where Ax = x, — x; = x; — Xxy. Substituting the ratio of ¢, to ¢,,

_$

m =" (5.163)
g,
which is equal to exp( jk, Ax), into Eq. (5.162), we get
by = ﬂ (5.164)
m

Equation (5.164) can also be derived by substituting the x-directed wave
number

1
ko= o). (5.165)

which is obtained from Eq. (5.161), into
bo = ¢y exp(—jk, Ax), (5.166)

which is obtained from Eq. (5.162).

It should be noted that since the wave travels leftward, the real part of
the x-directed wave number k,, Re(k,), should be negative. When it is
positive, which implies reflection at the left-hand boundary, the sign
should be changed from plus to minus.

B. Right-Hand Boundary Consider the right-hand boundary in Fig.
5.6. We incorporate the influence of the hypothetical node at p = M + 1
(outside the analysis window) into the node at p = M (inside the analysis
window).
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The wave function of the right-traveling wave with the x-directed wave
number k, is expressed as

O(x, z) = A(z) exp(—jk.x). (5.167)

We denote the x coordinates and the fields of the nodesp =M — 1, M,
M + 1 as xy;_ 1, X3, X341 and ¢y, g, gy hpryq, and we assume that

G = A(z) exp(—jkxpy 1), (5.168)
Gy = A(2) exp(—jkxy), (5.169)
¢M+1 = A(2) eXP(—jkxxMH)» (5.170)

where ¢,,_; and ¢,, are the fields inside the analysis window and ¢, is
the hypothetical field whose influence should be incorporated into the field
inside the analysis window.

Dividing Eq. (5.169) by Eq. (5.168) and Eq. (5.170) by Eq. (5.169), we
get

exp(—jk, Ax) = Purst (5.171)
Pu

exp(—jk, Ax) = u , (5.172)
v

where Ax = x,;, — x),_; = X, — X);. Substituting the ratio of ¢;, to

d)Mfl’

My = i (5.173)
Prr
which is equal to exp( jk, Ax), into Eq. (5.172), we get
Prr1 = Puling- (5.174)

Equation (5.174) can also be derived by substituting the x-directed wave
number

1
ky :ijln(nM)’ (5.175)
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which is obtained from Eq. (5.171), into
Prr1 = b exp(—jk, Ax). (5.176)

Similar to what we saw in the case of the left-hand boundary, since the
wave travels rightward, the real part of the x-directed wave number £,
should be negative. When it is positive, which implies reflection occurs at
the right-hand boundary, the sign should be changed from plus to minus.

5.2.6 Programming

We now look at how the TBC is written into the program. For the FD
scheme in the propagation direction, the most widely used Crank—
Nicolson scheme (i.e., o = 0.5) in Eq. (5.147) is used.

The problem is to obtain the unknown field qbl“ at z + Az by using the
known field d)l , where superscripts / and [ + 1 respectively correspond to z
and z + Az. The following equation has to be solved:

C o {_aiJrl L Yb 4ip R (p) — ]}(ﬁéﬂ ol gl

:aa,¢;_1+{ +’—ﬁ+k§[si<p>—niff]}¢5,+aé¢,é+1. (5.177)

The unknown fields to be obtalned atz + Az are d)l H d)lH and d)lH and
the known fields at z are d) 1 ¢p, and ¢/ p41 forp =1 and M. Assummg
the unknown coefficients A( p), B(p), and C( p) and the known value D(p)
to be

A(p) = -, (5.178)
B(p) = { %+ % — kiler" (p) = néff]}, (5.179)
C(p) = —o", (5.180)

D(p) = thypyy + { +J_ﬂ+ko[5 (p) — néff]}¢,’, + oy, (5.181)

we simplify Eq. (5.177) to

A(P)d,Ty + B(p)dy + Cp)eyt = D(p). (5.182)
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In the following, we will discuss Eq. (5.182) with respect to p, which
represents the lateral position of the node.

A. Left-Hand Boundary (p = 1) The field ¢, of the node on the left-
hand boundary is influenced by the field ¢, of the hypothetical node
outside the analysis window. As shown in Eq. (5.164), the field ¢, of the
hypothetical node is expressed as

o = D171 (5.183)
where
1 1
Yy =—=—7. (5.184)
no ¢h/e

Here, since the parameter 7y, is determined by the known fields at z (i.e., /),
v, 18 known. Thus, Eq. (5.182) is reduced to

B ()™ + c()ehtt = D(1), (5.185)

where
B(1) = -y, +{ ot + jﬁ — ke l+1(1)_neff]} (5.186)
c(l) = —a', (5.187)

D(l):ami+{a +’—ﬁ+k3[e£(1> eff]}¢>1+ae¢2. (5.188)

B. Right-Hand Boundary (p = M) The field ¢,, of the node on the
right-hand boundary is influenced by the field ¢,,,, of the hypothetical
node outside the analysis window. As shown in Eq. (5.174), the field ¢,
of the hypothetical node is expressed as

Prrs1 = PrVrs (5.189)
where

1
= E 5.190
TR '/IM d)é/[/(/)g\/[,l ( )
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Here, since the parameter 7y is determined by the known fields at z (i.e., /),
y; is known. Thus, Eq. (5.182) is reduced to

AMYPYL | + B (M) = D(M), (5.191)
where
AM) = —al}!, (5.192)
B (M) = —ol My, + { ot % — Kl (M) — ngff]}, (5.193)

D(M) = ol +{ oy + ot +’—ﬁ+k3[e£<M)—n§ff1}¢>ﬁ4. (5.194)

Summarizing the above discussions, we get the algebraic equations

B'() C(1) 11+1
A2) B(R2) CQ2) I
A(3) B3) C(3) 1
I1+1
cM - 1) M-1
I1+1
AM)  B(M) M
( D)
D(2)
D(3)
- . . (5.195)
DM — 1)
D) )/

Since Eq. (5.195) is a tridiagonal matrix equation, we can obtain the
unknown wave fields qblH, . qSlH by using the Thomas method [14].
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5.3 WIDE-ANGLE ANALYSIS USING PADE APPROXIMANT
OPERATORS

Up to this stage, the discussions have been based on the Fresnel equation
(i.e., the para-axial wave equation). Here, we discuss the wide-angle beam
propagation method based on Padé approximant operators [5] and discuss
the multistep method [6], both of which were developed by Hadley.

5.3.1 Padé Approximant Operators

When the second derivative with respect to z is not neglected, the wave
equation is

ap
2j 9 _79_ = P¢, (5.196)
0z 0z2
where for the TE mode
82
P= 72 —I—ko(e eﬁc) (5.197)
and for the TM mode
(1 d
P = ra <_ _) +k0(8 Cff)‘ (5198)

Solving Eq. (5.196) formally, we get

d __JP
5(1 M)¢ 2

and therefore

% P2
o 1+ GRpem G159
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When the derivative with respect to z is neglected, Eq. (5.199) is
reduced to the Fresnel equation. Here, we regard the derivative with
respect to z in Eq. (5.199) as the recurrence formula

0
0z

—JP/2p

ST G2P ) (5.200)

n—1

Next, we will specify the explicit expressions for the various orders of
the recurrence formula. First, we define the starting equation

0

—0. 201
- 0 (5.201)

-1

The explicit expressions for the corresponding wide-angle (WA) orders
are shown below.

1. WA-Oth order (Fresnel approximation):

3 —jP/2f P

| =S G 5.202
oz |, j 0 728 (5.202)
142 —
2B 0z|_,
2. WA-1st order:
0 —jP/2 —jP/2 P/2
L O i i S N f . S’ 1Y%
0z |, 1+]_2 A _JP 1+ P/4p
2B oz, 26\ 2p
3. WA-2nd order:
| _ —PPB _ —jP)2B
oz |, 1+L 0 J_—JP/2p
2B 0z |, 26 14 P/4p?
P/2B + P?/8p°
— _'M_ (5.204)

1+ P2
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4. WA-3rd order:

0
0z

_ P2B —jP/2p
J —i(P/2B+P*/8B)
2 28 1+ P/2p°

_ —(P2B)(1+P/2p)
1+ P/2B* + P/AR* + P2/164*

0
3 1 L_
+2ﬂ82

. P)2B+ P4
I 3pag? v P2j16pt

(5.205)

5. WA-4th order:

9
0z

_ P28 _ —jP/2B
J —j(P/2B+ P/AB)
3 28 14 3P/4B* + P2/16*

_ —(jP/2P)(1 +3P/AP> + P*/16B")
1+ 3P/4p* + P2/16B* + P/AR> + P2 /8B

)
S| 2
+2ﬁaz

P2+ 3P /88 + P3/32p°
- 1+ P/p* 4 3P2/164

(5.206)

6. WA-5th order:

0

9| —PRp —iP/28
0z N

J —j(P/2B +3P* /88 + P*/328°)

4 28 1+P/f*+3P2/168*

_ —(JP/2B)(1 + P/B* + 3P*/16f")
1+ P/R+3P2/168 + P/AB* 4+ 3P2 /168 + P3/64p°

0
5 J 9
+2ﬁ82

. P)2B+P*2B +3P%/32p°
ap 5P/4p* +3P2/8B + P3/64°"

(5.207)
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7. WA-6th order:

9| __—P2B —jP/2p
zlg S 9 J_=i(P/2B+ P*/2B + 3P /32p°)
2 oz |s 2B 1+ 5P/4B> +3P2/88* + P3/64°

_ —(jP/2B)(1 + 5P/4B> + 3P? /8" + P /645°)
B 145P/4f +3P2/8p* + P? /643
+P/4B* + P2 /A" +3P3 /64f°

_ —j(P/2p +5P* /88> + 3P* /16> + P*/128p7)
B 1 +3P/2p% +5P2 /88" + P3/168°

_P/2B+5P* /8 +3P*/16p° + P*/128p’

= > : - (5.208)
1+3P/28> + 5P2/85* + P3/16f
8. WA-7th order:
o _ —JP/2p
3| - 1 ]_ 2
2B oz|
_ —~jP/2p
|4 IP2E 5P2/88° +3P3/168° + P*/12887)
28 1+3P/2* + 5P2/8f* + P3/16f°

B —(jP/2B)(1 + 3P/2p* + 5P2 /8% + P3/16°)
143P/2p* +5P2 /88" + P3/16p° + P/AR?
+5P2/16f* + 3P2/32° + P*/2568°

B P/2p +3P2 /4> + 5P3 /16> + P* /327
I 7P/af + 15P2 /165" + 5P /32 + P*/256°

(5.209)

Thus, the recurrence formula (5.200) can be reduced to an expression
that includes only the operator P:

% = o, (5.210)
0z

N
D



208 BEAM PROPAGATION METHODS

where N and D are both polynomials of the operator P. The wide-angle
orders correspond to the orders for the Padé orders as follows:

WA —0 < (1,0),
WA —1< (1, 1),
WA —2 < (2,1),
WA —3 < (2,2),
WA —4 < (3,2),
WA —5 < (3,3),
WA — 6 < (4,3),
WA —7 < (4,4).

Differentiating Eq. (5.210) based on the Crank—Nicolson scheme, we
get

d 1
Left-hand side: _¢ — _(¢l+1 _ ¢l)’
oz Az
N N1 (5.211)
Right-hand side: B AR Yas !
ight-hand side:  —j b —> —j 75 5 (@' + ).

where the right-hand side was averaged by / and /41 so that the
difference center of the left-hand side coincides with that of the right-
hand side.

From Eq. (5.211), we get

| QP n_ N1 4 !
E(CZ)JF —4))——]55(¢+ + ).

Therefore
D@ — ¢y = N Az = (@ + ¢
and
(D +j%N>qSl+1 = <D —j%N)d)l, (5.212)

which can be rewritten as

w1 _ D—j(Az/2)N

¢ " D+j(Az/2N T

(5.213)



5.3 WIDE-ANGLE ANALYSIS USING PADE APPROXIMANT OPERATORS 209

Since, as shown in Egs. (5.202)—(5.209), the coefficients of the poly-
nomials D and N in Eq. (5.213) are real, D and N themselves are real.
Thus, Eq. (5.213) can be written as

I+1 D —j(Az/2)N
O =N
e
T

@' (5.214)
In the following, we show the coefficients ¢; for the wide-angle orders
WA-0 to WA-7.

1. WA-Oth order [Padé(1,0): Fresnel approximation]: From Eq.
(5.202), we get

D=1 N = P
=1, =%
and therefore
Az Az P
D—j—N=1—j— —. 5.215
J5 2 2 ( )
Thus, we get
Az
=1, =—j—. 5.216
o ¢ ]4ﬁ ( )
2. WA-I1st order [Padé(1,1)]: From Eq. (5.203), we get
D=1+ P N = P
and therefore
Az P P 1
D—j—N=14+——jA—=14+—(1 -7 A2)P. (5217
J> Py A 4ﬁ2( JBAz)P. ( )
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Thus, we get

1 .
S =1, ¢ = 4—ﬁ2(1 —Jp Az). (5.218)
3. WA-2nd order [Padé(2,1)]: From Eq. (5.204), we get
P P P?
28 2B 8p

and therefore

D 'AZN—1+P = P-i-P2
AP R VT AR Y
1 Az
=14+—Q—jfA2)P —j—P°. 5.219
4/32( JB Az) 11653 ( )
Thus, we get
| Az
=1, =—02—jB Az, =—j——=. (5.220
o ¢y 4[32( JB Az) & Jl6/i’3 ( )

4. WA-3rd order [Padé(2,2)]: From Eq. (5.205), we get

p P? P P
D=l+—5+t—3 N=gp+ 53
46%  16p 2B 4p
and therefore
Az 3p p? Az (P P?
D—j—N=1l4+—4+——j—(—=+—
2 a2 16p" 2 (2ﬂ 4B3>
1 1
=14+—@—jf AP +——(1 —j28 Az)P?.
4ﬁz( JB Az) 16/5’4( J2p Az)
(5.221)
Thus, we get
=1 H=L(GojpA).  H=— (1 j2p A
=1, = — — Z), - - Z).
0 1 4ﬁ2 J 2 16ﬂ4 J

(5.222)
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5. WA-4th order [Padé(3,2)]: From Eq. (5.206), we get
P 3P? P 3P> P3
D=1+—2+—4, N=—+—3+—5
g 168 2B 85 328
and therefore
b _AZN_1+P+3P2 Az( 3P2+P3>
I T T e e 2 28T 8 T 32p8
1
=14+—@4—jp Az)P +——(3 — 3B Az)P*
4[32( JB Az) 16[34( J3p Az)
Az
—j P3. 5.223
164ﬁ5 ( )
Thus, we get
& =1, ¢ =—4—jp Az, & =——50B-j38Az),
ﬁ B
Az
= —j—. 5.224
63 ]64ﬁ5 ( )

6. WA-5th order [Padé(3,3)]: From Eq. (5.207), we get

5P 3pr p3 P P* 3p?
D=14+—"—F+"—+

— N=—+4+—+—s,
4> 8Bt 64p° 26 28 328°
and therefore
) PV YT 28728 T 32
=14+—(5 Az)P + 3 — 28 Az)P?
4[),2( —Jjp Az) /3( —j2p Az)

1 .
+ W(l —j3f Az)P>. (5.225)
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Thus, we get

1 . 1 .
So=1, ¢ = ?(5 —JB Az), &= 8—ﬁ4(3 —J2p Az),

&= 64ﬁ6 (1—/3p Az). (5.226)

7. WA-6th order [Padé(4,3)]: From Eq. (5.208), we get

p 5P P
AR AR
:£+g+£+1)—4
26 8B 16p° 12857

D=1+

and therefore

p_ A _1+3P+5P2+ P
I 2827 88 16f°
_'g(i_{_ﬁ_kﬁ_{_l)
T2 28" 85 T 16 T 1285

] . 1 .
=1 +W(6 —Jjp AZ)P+F[34(1O — j5B Az)P?
1 , i Az
+32—56(2 — B3 AP — L

P*. 5.227
2567 ( )

Thus, we get

=1, ¢ = 4ﬂ2(6 —Jjp Az), &=

__ A
G=pEC BN G=—

16/34(10 —Jj5p Az),

(5.228)
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8. WA-7th order [Padé(4.4)]: From Eq. (5.209), we get

7P 15P* 5pP3 Pt
— Attt g
4> 164 32B° 256
P +3P2+ 5P N P!

2B 4B 16p 3287

D=1+

and therefore

Az 7P 15P* 5P Pt
D—joN=1+"p+—at 5+ g
2 47 16p%  328°  256p
Az ( 3P2 5P3 N P )
IS 2 \2p 43 168° " 3287

1 +4—ﬁ2<7 —jB AP + W(IS —jo A2)P*

1 . 1 .
+ W(S —J5B Az)P3 + o (1 —j4B Az)P*.
(5.229)
Thus, we get
1 .
=1, ¢ :4—ﬁ2(7 —Jjp Az), 6= 16ﬁ4(15 —Jj6p Az),
&= 2 ﬁﬁ (5 —Jj5B Az), &= 256 58( — j4B Az). (5.230)

Since through the above discussions the explicit expressions for

— j(Az/2)N are obtained, those for D + j(Az/2)N can also be obtained.
Both sides of Eq. (5.212) are clarified and the unknown field ¢! can be
calculated.

5.3.2 Multistep Method

The reason the matrix of the Fresnel approximation is tridiagonal is that
the order of the operator P, which contains the second derivative with
respect to the x coordinate and can be approximated by the FD scheme
with three terms as shown in Eq. (4.9), is 1



214 BEAM PROPAGATION METHODS

Since the wide-angle formulations written in Eqs. (5.204)—(5.209) or
Egs. (5.219)—(5.230) include the powers of the operator P higher than 2,
the column width of nonzero matrix elements is greater than 3. Thus, the
numerically efficient Thomas method cannot be used to solve the final
algebraic matrix equation. In this section, we discuss the multistep
method, which was developed by Hadley [6] in order to solve this
problem.

Consider Eq. (5.214). The numerator of the factor on the right-hand
side of Eq. (5.214) is obtained as shown in Egs. (5.215)—(5.230). The
denominator can also be obtained, since it is simply the complex conjugate
of the numerator. Since & is equal to 1, the numerator of the term on the
right-hand side of Eq. (5.214) can be factorized as

n .
P =(1+a,P)---(1+aP)1+aP), (5.231)
i=0

where the coefficients a;,a,,...,a, can be obtained by solving the

algebraic equation

Az nooo
D—j5N= ;) &P = 0. (5.232)

The denominator of the term on the right-hand side of Eq. (5.214) can be
obtained by using the complex conjugates of the coefficients a,
a, ..., 4,
> &P = (1+a,P)* (1 + ,P)*(1 + a,P)*
i=0
=1 +a¥P)---(1 +a¥P)(1+ afP), (5.233)

Thus, the unknown field ¢ at z + Az is related to the known field ¢’ at z
as follows:

w1 (I+a,P)---(1+a,P)(1 +aP)
(14 a*P)---(1 4+ afP)(1 + a¥P)

¢ P (5.234)

Next, we discuss how to solve Eq. (5.234). First, we rewrite it as

(I+a*P)---(1 +a¥P)
(I+a,P)---(14a,P)

i _ L+aP
1 +afP

) ¢} (5.235)
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Then, defining the field ¢'T'/" as

(I +ayP)---(1+a¥P)

d)l-'rl/n_
(I+a,P)---(1+a,P)

o, (5.236)

we rewrite Eq. (5.235) as

B = l+aP

=10 P 0. (5.237)
1

Since ¢’ is known, we can obtain ¢!/ by solving Eq. (5.237). Using

¢/ we rewrite Eq. (5.236) as
(At ayP)- (L +afP) oy 14 aP (5.238)

Then, defining the field ¢'™/" as

2m _ (L+ayfP)---(1 4 afP)

1+1
= Utab) (rap) (5.239)

¢

we rewrite Eq. (5.238) as

14+ a,P
l+2/n — 2 l+1/n' 5240
¢ 1 +a§"P¢ ( )

Since ¢'T!/" is known, we can obtain ¢'">" by solving Eq. (5.240).
Repeating this procedure, we finally get the unknown field ¢’ ™' at z + Az
by solving

l+a,P -
1+1 — n I+(n 1)/n‘ 5241
¢ 1+a;“P¢ ( )

That is, the known field ¢"™' can be obtained from the known field ¢’
by successively solving

i/n 1+ aiP I4+(@i—1)/n
P = 4 (5.242)
1 +atP

wheni=1,2,...,n.

The advantage of the multistep method is that the matrix equation to be
solved in each step is the same size as the Fresnel equation and for 2D
problems is tridiagonal. Thus, the calculation procedure is very easy. The
method can be easily extended to 3D problems, and it has also been used
in the wide-angle FE-BPM [12].
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5.4 THREE-DIMENSIONAL SEMIVECTORIAL ANALYSIS

The preceding discussions were limited to the 2D BPM, which assumes
the 1D cross-sectional structure in the lateral direction. When, however,
the propagating field is widely spread in the 2D cross section, the 3D
beam propagation method is required. Since the formulation for the 2D
BPM in Section 5.2.2 can be straightforwardly extended to the 3D BPM, a
much more numerically efficient 3D BPM formulation based on the
alternate-direction implicit (ADI) method [8—10] will be shown here.

In the ADI-BPM, the calculation for one step, z — z + Az, is divided
into two steps, z — z + Az/2 and z + Az/2 — z + Az, and the two steps
are solved successively in the x and y directions. Since solving a 3D
problem can be reduced to solving a 2D problem twice by using the ADI
method, instead of a large matrix equation we have only to solve
tridiagonal matrix equations twice. Thus, high numerical efficiency is
attained especially for large-size waveguides, such as spotsize-converter-
integrated structures [15—17]. In this section, the semivectorial formula-
tion is used to analyze large-index-difference waveguides and to treat the
polarization. Nonuniform discretization is also assumed for versatility of
analysis.

Neglecting the terms for the interaction between polarizations in the
vectorial wave equations (4.10) and (4.19) in Section 4.2, we get the
semivectorial wave equation

Py

o2 HPU=0. (5.243)

Here, Py and i for the quasi-TE mode are obtained from Eqgs. (4.17) and
(4.30) as

9 2
Py = ™ {— — (& lﬂ)} -t kiep  (electric field representation),
Y =E,, (5.244)
1 B 92
Py =e — ‘P +— 4 + kés Y (magnetic field representation),
8x &, ox )2

Y = H, (5.245)
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And Py and  for the quasi-TM mode are obtained from Egs. (4.18) and
(4.29) as

0
Py = 8—¢ + 8_ {— — (e w)} + ke, (electric field representation),
E,

Y= (5.246)

a2 (10 &
Py = ‘ﬁ &, 8y < a—w) + = lﬁjﬁ—koertﬁ (magnetic field representation),

W =H,. (5.247)

Using the slowly varying envelope approximation—in this case, that the
wave function Y(x, y, z) propagating in the z direction can be separated
into a slowly varying envelope function ¢(x,y,z) and a very fast
oscillating phase term exp(—jfz)—we get

Y(x,y,2) = ¢(x, y, 2) exp(—jfz), (5.248)
where ky, n.r, and f (= nk,) are respectively the wave number in a

vacuum, the reference index, and the propagation constant. Assuming the
Fresnel approximation

ik (5.249)

we reduce Eq. (5.243) to the Fresnel wave equation

3(15

2Jﬁ P¢. (5.250)

It should be noted that Py in Eq. (5.250) differs by —f° from that in
Eqgs. (5.243)—(5.247) and for the quasi-TE mode is expressed as

e o) R (T S S Cety

in the electric field representation and as

P =5 (1 ?,‘f) ‘f’+(k§r—ﬂ>¢> (5.252)
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in the magnetic field representation. For the quasi-TM mode it is
expressed as

2
Po=55+ s (— (e ¢)) + (s, — ) (5.253)

in the electric field representation and as

*P 0 (1 A

Pop=a ey, ——)+(k§,—ﬂ)¢ (5.254)

a

in the magnetic field representation.

The nonequidistant discretization mesh shown in Fig. 4.3 for the 2D
cross-sectional FDM is also used in the lateral directions for the 3D FD-
BPM. Here, the subscripts for the lateral positions x and y are respectively
p and ¢ and the superscript for position z in the propagation direction is /.
Thus, using Egs. (4.51)—(4.59), we can write the fields, the discretization
widths, and the relative permittivity as follows:

! 1
d)pq = (,b(x ayq’Zl)’ ¢p:|:1,q = ¢(xp:|:1’yq?zl)’
¢p g+l — (l)( yq:l:l’zl)’ n :yq —yqu N :qur] _yq,
e:xp+l_xp’ w:xp_xpflv 8([) Q)—S( ’yq’zl)

(5.255)

First, we discuss the discretization with respect to x and y. Discretizing
Egs. (5.251)—(5.253), by deduction from Egs. (4.99), (4.123), (4.133), and
(4.143), we get

P =iy 1 g+ 0ty + 0By + 0D,
+ (@t + )P + K5 (P, @) = )b 4.

where f§ = kyngg.
Thus, discretizing only the right-hand side of Eq. (5.250) with respect
to x and y, we can reduce Eq. (5.250) to

¢
o 0y Pptg T %ebpitg T %Py g1 + %Dy g

+ (o + 2Py + Kole (P, 9) — n)d, (5.256)

2jp
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This equation can be rewritten as

0
2jﬂa—f = Oy y_1 4+ %Ppy1 , + 0P, ,)  (derivative with respect to x)
+ (2,9, g1 + 03P, 411 + 0,0, ) (derivative with respect to y)

+ kile(p, @) — el 4 (5.257)

Now, we move to the discretization of the derivative with respect to z on
the left-hand side of Eq. (5.257). A sensitive problem in discretization is
the difference centers of the right-hand side and the left-hand side of the
equation in the z direction. In the ADI-BPM, the calculation for the step
z—>z+Az is divided into two steps, z— z+Az/2 and
z+4+ Az/2 — z + Az. In the following, we describe the explicit calculation
procedure.

5.4.1 First Step: z — z+ Az/2(l - 1 +)

The derivative with respect to x on the right-hand side of Eq. (5.257) is
written by the implicit FD expression using the unknown fields at / + % as

I1+1/2 1 1+1/2 I+1/2 1 1+1/2 I14+1/2 1 1+1/2
A A S A e A A S A (5.258)

The derivative with respect to y, on the other hand, is written by the
explicit FD expression with the known fields at / as

I / ]
5P g1+ A Dy g1 T BBy g (5.259)

The remaining part on the right-hand side is expressed by using an average
of / and [+ § as

¢l! 4 ¢l—:rl/2
ko (e (p, q) — miy N (5.260)

where &1/? = (el + ¢*1)/2. With respect to the left-hand side of Eq.
(5.257), we get

. 8¢ . ¢IT1/2 _ ¢l,
2%jp—— 2jﬁW

5.261
o (5.261)
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Thus, from expressions (5.258)—(5.261), we get

¢1+1/2_¢l , ;
2. : 172 14172 112 g 11/2 1172 112
2P quZ/Z = ¢p—1/,q+°‘+/ ¢p+1/q+“+/¢pq/)

i / /
+ (ail(bp,q—l + aé¢p,q+1 + Ocl ¢p q)

d) + ¢l+l/2
pqi

+ ko (e (p. @) — i) (5.262)

So that the terms on the left- and right-hand sides respectively contain
[ ~|—% and /, we rewrite Eq. (5.262) as

oI (_a)zc+1/z+4i_'ﬁ kg *12(p, q)—neff)>¢l+”2
Z

1+1/2¢H;1/2
p q

Jﬁ
=ol Iqu 1+< + 0(gl+1/2(p q)_neff)>¢ + o gbqu

(5.263)

5.4.2 Second Step: z+ Az/2 — z+ Az(l —I—% —14+1)

The derivative with respect to y on the right-hand side of Eq. (5.257) is
written by the implicit FD expression using the unknown fields at / 4 1 as

l+1¢l+ql | + al+l¢l+q1+1 + a1+ld)l+1 (5264)

The derivative with respect to x, on the other hand, is written by the
explicit FD expression using the known fields at / —i—% as

;+1/2¢1+1/2 1+1/2¢;J;11/2 1+1/2¢1+1/2. (5.265)

The remaining part in the right-hand side is expressed by using an average
of /+4and /41 as

I+1/2 I+1
g + 9y
2

k3ler ™2 (p, @) — negr] (5.266)
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With respect to the left-hand side of Eq. (5.257), we get

I+1 1+1/2
3¢ Ppg — Pog

2 — 2B o7 (5.267)

Thus, from Egs. (5.264)—(5.267), we get

¢l+l _ ¢l+1/2
. p.q P.q l 1 l+1 141 4 I+1 l 1 I-H

14+1/2 4 1+1/2 14+1/2 4 1+1/2 112l+12
+(+/¢p_/q+a+/¢ /+OC+/¢) /

1+1/2 I+1
o+ b

+ k(e (P, @) — o) = (5.268)

So that the terms on the left- and right-hand sides respectively contain
/4+1and/+ %, we rewrite Eq. (5.268) as

4B K
’+1¢2*;1+{ A+ 5= () - eff>}¢l“
I+1 4 1+1
— o d)p,q—&-l

1+1/2 /2y Loy 4ip kg I+1/2 1+1/2
¢p— q ch + A + ? (8}’ (p’ q) Cff) d)
Z

+ ol (5.269)

As discussed above, since the actual calculation in the two steps of the
ADI-BPM is the 2D BPM, it is very numerically efficient. The mode
mismatch (obtained from the overlap integral) between the propagating
field calculated by the semivectorial ADI-BPM and the initial eigenfield
calculated by the scalar FEM is shown in Fig. 5.7 as a function of the
propagation distance. Since the propagating field and the initial field are
obtained by the semivectorial ADI-BPM and the scalar FEM, the mode
mismatch shown in Fig. 5.7 corresponds to the difference between the
eigenfield shapes of the FD scheme and the FE scheme. As shown in this
figure, the difference between the eigenfields obtained by the FDM and the
FEM is very small even though the concepts of the two methods are
different.
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FIGURE 5.7. Eigenfield mismatch between the FEM and FD-BPM.

5.5 THREE-DIMENSIONAL FULLY VECTORIAL ANALYSIS

Since a full discussion of the 3D fully vectorial beam propagation method
is beyond the scope of this book, we roughly cover the formulation,

emphasizing the relations between the wave equations. For details, refer to
Ref. [11].

5.5.1 Wave Equations

As shown in Egs. (4.17) and (4.18), the 3D vectorial wave equations for
the electric field representation are for the x component

a1 0o PE.  E, ad 1 a
o\ _(SrEx) E + iE =0
ox \&, ox 2 0 ox\e. dy 7

(5.270)

and for the y component

PE, 9 (1 3 P E, (1 3
— E kie E —TE ) =0.
8x2+8y<3 3 (’y)) 92 -+ °’y+ay g, ox "

(5.271)

As shown in Egs. (4.29) and (4.30), the 3D vectorial wave equations for
the magnetic field representation are for the x component

*PH, 0 (1 8Hx) PH,

1
. 0¢ r N
ox? \e. Oy 022 .

H,
=0 (5.272)

de,.
dy ox
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and for the y component

1 0g, 0H,
+ koe H, + =0. (5273
0ty T e oy (5-273)

9 (1 aHy> PH, o°H,

e \e, ox 32 >t t

r v

First, we discuss the electric field representation. Using the SVEA—in
this case the wave functions E,(x, y, z) and E,(x, y, z) propagating in the z
direction can be separated into the slowly varying envelope functions
E.x,y,z) and E/(x,y,z) and the vary fast oscillating phase term

exp(—jfz)—we get

E (x,y,z) = E,(x,y, z) exp(—jp2), (5.274)

Ey(x,y,2) = Ey(x, v, z) exp(—jfz). (5.275)

Substituting the second derivatives with respect to z,

PE, K,

7 =73 (5.276)
¥E, K, _ aEy . - .

322 = = exp(—jfz) — 2P —=exp(—jfz) — °E, exp(—jfz)  (5.277)

into Egs. (5.274) and (5.275) and dividing the results by the phase term
exp(—jpz), we get the wide-angle equations for the electric field repre-
sentation:

0\ 0E, - N
(ZJﬁ - §) 5, = Dubs+ Pyky, (5.278)

. 0 0E, . .
2P~ ) o = Pk + Pk (5.279)

The matrix expression for Eqgs. (5.278) and (5.279) is

(w )88@) (1}; ﬁ)(g) (5.280)
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where
- 3(1 9 PE,
P E =—\|—— I 5.281
WE= g (5 3 0E)) + 5 PE. 628D
- (13 o (18 - PE
PE=2(~%F T (GE)) -, (5.282)
T ax\e, dy 7 s g dy 7 ox dy
8 a2E 3 (1 9 i
y 2 2
PE, @‘i‘@ <3_r B_y(g y)) + (kye, — BO)E,, (5.283)
- 9 (1 B, - 31 8 - PE
P E = — —E )=———EE)| - X, 5.284
P ay( ox x> ay <8, ox & X)) ay ax ( )
Using the SVEAs
H,(x,y.2) = H(x, y,2) exp(—jpz). (5.285)
Hy(xa Y, Z) = Hy(-xa ) Z) exp(—jﬁz), (5286)

we get the wide-angle wave equation for the magnetic field representation:

(-2)a(i) =0 2)() oo

where

. ®H a (1 oH, 3
P H =—F+¢ ( ) + (k3e, — BHH,,  (5.288)

a2 T\ oy

o
5 Lo oM, @H, a<1 8H>

5.289
™ (5.289)

Y 8_,8_)/? dy ox ’ay

r

. o (1 0H)\ &H, -
PyyHy = Sra (8_ g) + W + (kOS,, - ﬂ )H , (5290)

(5.291)

wEY T ox Ay 8x8y_8r$

P 0H, 0°H, 3 (1 0H,
g dy |

Neglecting the interaction terms P,, and P,, in Egs. (5.280) and (5.287),
we get the semivectorial wave equations. Neglecting the second terms on
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the left-hand sides of Egs. (5.280) and (5.287), we get the vectorial wave
equations based on the Fresnel approximation.

5.5.2 Finite-Difference Expressions

Here, we discuss the fully vectorial FD-BPM using as an example the
vectorial wave equations (5.287)—(5.291) for the magnetic field represen-
tation. For simplicity, the equidistant discretizations Ax and Ay are
assumed in the x and y directions.

Since P,, is an operator corresponding to the semivectorial analysis
for H,,

Pxxl:lx = fﬂ:]r(l’ - 17 q) + oCyecxlzlx(p + 1’ q)
+ o H(p.g— 1)+ H(p.qg+1)

where, from Eqs. (4.143)—(4.149), we get

1
o = e (5.293)
XX 1
o = e (5.294)
P 2&,(p. 9) , (5.295)
(Ay)* &dp,q) +e(p,qg—1)
o = 1 i 2¢.(p, q) ’ (5.296)
(Ay)y” &(p, @) +e(p.g+1)
XX 2 XX
o = = o — o, (5.297)
. 1 2¢,(p. q) ! 2¢6,(p. q)

YT A e +epga—1) (A edp @) Felp.gt+ D)

. (5.298)
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On the other hand,

P H,=oVH(p—1,q)+oZH(p+1,9)
+ o H(p.g— 1)+ oH(p.q+1)

+ (@ + EDH(p. @) + ke (p. ) — BYH(p. q).

where, from Eqs (4.123) to (4.129), we get

o 1 2¢.(p, q)

(A e e (p—1,9)

’

o ] 2¢,(p. q)
C (A epg)+e(p+1.9)]

Of)r:y = 1 7

(Ay)
) = : 35

(Ay)
o L 2¢.(p. q)

¥ (AX)2 8r(p? ‘I) + 8r(p - 1’ ‘I)
1 2
gr(p’q) __chx_(xxx

e

A e telptlg

2
o = — — o — o,
g (Ay) S

(5.299)

(5.300)

(5.301)

(5.302)

(5.303)

(5.304)

(5.305)

Although the derivation is not shown here, the FD expressions
for the interaction terms P, H, and P, H, (for the interaction between
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I:Ix and I:Iy) are

~ 1 (P, q)
P.H = ] -2
v 4AxAy( e(p.g+1)

)ﬁy(p+ l,g+1)

(=g o
(-gitg)o-ae
+ <1 —%)F[y(p— l,g—1), (5.306)
Pl = AJIC Ay <1 - Er(ﬁ;(i, f,)q)>H"(p tha+

Sr(p’ 6]) I
(-5 2t A=+
gr(p, q) I
s e CARRER
+ (1 —M>ﬁx(p— 1,g—1). (5.307)
elp—1,9

The final FD beam propagation equations to be solved can be obtained
by applying the FD procedure to the derivative with respect to the z
coordinate.

PROBLEMS

1. Using a plane wave, evaluate the difference error for the FD approx-
imation used in the FD-BPM.

ANSWER

When we use the center difference scheme, the second derivative of the
wave function ¢(x) with respect to x is

d; i —2¢;+ biy
yE + & , (P5.1)
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where Ax is the discretization width and i is the number of the node at the
difference center.
If we assume that wave function ¢(x) is a plane wave

P(x) = g exp(—jkx) = ¢ exp(—jk, Ax i), (P5.2)

the left- and right-hand sides of Eq. (5.1) can be respectively rewritten as

K24, (P5.3)
and
ﬁ $i[exp(—jk, Ax) — 2 + exp(—jk, Av)]
— @ [2 cos(k, Ax) — 2]¢;
= Ai)2 (cos(k, Ax) — 1)¢);

2 (k. Ax
L)

Using these two factors, we get the relative error &:

(K2 = [4/(A) T sin? (k, Ax/2)); 1 2 [ 2 (kA 2
o= o “e i e ()] |

(P5.4)

When the discretization width Ax is very small, sin(k, Ax/2) can be
approximated as k, Ax/2. Thus, the relative error ¢ becomes zero as
Ax — 0.

2. Figure P5.1 shows a simple example of an analysis region for a 1D FD-
BPM. Nodes 14 are inside the analysis window, and nodes 0-5 are
outside the window. Show the form of the matrix equation for this
example.
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p=0 1 2 3 4 5
Qv oo o L T o)

FIGURE P5.1. Simple example of a 1D FD-BPM.

ANSWER
B(1) (1) o D(1)
I+1
A2) BR2) C2) o D(2) ’ (85.5)
AB3) BB) CQB) b D(3)
A(4) B'4) A D)

where B'(1) and B'(4) include the boundary conditions due to nodes 0 and
5. For explicit forms of the coefficients on the left-hand side and of D(1) to
D(4) on the right-hand side, see Eqs. (5.178)—(5.181) and Egs. (5.186) and
(5.193).

3. The 3D semivectorial analysis shown in Section 5.3 was based on the
ADI method. Discuss the procedure for a 3D analysis not using the
ADI method.

ANSWER

The starting equation is Eq. (5.256). Using a procedure similar to the one
specified in Egs. (5.131)—(5.133), we get

I+1 /
. ¢pq — ¢pq
2jp A
1 I+1 1 1+1 I+1 21 J+1 2 I+1
= E(O%J)r byt g+l +K5le (s @) — negll by,
I+1 4 1+1 I+1 1 1+1 +1 4 1+1 1+1 g 1+1
+ & ¢p+1,q + %y d)p,qfl + s ¢p,q+l + o, (i)p,q)

1 l l
5 @by g+ o+ BE(P.@) = il by, + 2
l l !
+ O‘ffd)p,qfl + “éd)p,qﬂ + O‘)[qup,q)’

where the superscripts / + 1 and / respectively correspond to the unknown
and the known quantities.
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Thus, we get the 3D FD-BPM expression

4ip
— o gl + { —o o S = K (pg) — eff]}¢”‘
l+1¢l-:_11 . l+1¢;7+ql— l+1(]5l+q1+1
4ip
=, ;_1,q+{o< + o, + 4 +ko[s (p.q) — eff]}qu,,q
A AR R aé¢§,q+1. (P5.6)
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CHAPTER 6

FINITE-DIFFERENCE TIME-DOMAIN
METHOD

In the preceding chapters, steady-state wave equations were solved in
which the derivative with respect to the time ¢ (i.e., 9/0¢) was replaced by
jo. In this chapter, we discuss the finite-difference time-domain method
(FD-TDM), which was developed by Yee [1] and which directly solves
time-dependent Maxwell equations. The FD-TDM was originally
proposed for electromagnetic waves with long wavelengths, such as
microwaves, because the spatial discretization it requires is small (1—107%
of the wavelength). As the FD-TDM is an explicit scheme, the time step
in the calculation is defined by the spatial discretization width. Thus,
the time step in the optical waveguide analysis is extremely short
when wavelengths are of micrometer order. The amount of required
memory is enormous for 3D structures, but the method is readly
applicable to 2D structures. Finite-difference TDM CAD software
suitable for microwave wavelengths as well as optical wavelengths is
available on the market.

6.1 DISCRETIZATION OF ELECTROMAGNETIC WAVES

The 3D formulation is shown here because it is more versatile than the 2D
formulation, which can be easily obtained from the 3D formulation.

233
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The time-dependent Maxwell equations are

oH
—uy— = VXE, 6.1
Ko Y (6.1)

JE
SOSrE = VXH, (62)

and using Egs. (2.5)(2.10), we can write their component representations
as follows:

— L 8Hx:@_% (6.3)
9 T oz’ ‘
0H, OE. OF
e 6.4
P T T ox ©4)
oH, OE, OE,
O 0By OB, 6.5
oo =% " oy 65)
0E, oH, OH,
o OBx _OH  oft, 6.6
T T e ez 6.6
OE, OH, oH
Oy _ 0% 0 6.7
O T 2 ax ©.7)
9E. OH, 9H
oy —2 = —2> — —=. (6.8)

ot ax dy

When we assume that Ax, Ay, and Az are spatial discretizations and that
At is a time step, the function F(x, y, z, f) is discretized as

F'(i,j, k) = F(iAx, jAy, kAz, nAt) = F(x, y, z, t). (6.9)

Figure 6.1 shows what we call the Yee lattice [1]. Using « to represent a
spatial coordinate such as x, y, and z, we define
spatial coordinate o: half-integer,
E, = { the other spatial ones: integer, (6.10)
time: integer,
spatial coordinate o: integer,

H, = { the other spatial ones: half-integer, (6.11)

time: half-integer,

Difference centers play important roles when Eqgs. (6.3)-(6.8) are
discretized, and here we investigate Eq. (6.3) as an example. Since the
spatial difference centers of the left-hand side of the equation are the same
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FIGURE 6.1. Yee lattice.

as those for H,, the spatial difference centers in the x, y, and z directions
are respectively found to bex =i Ax,y = (j + 1) Ay, and z = (k + 1) Az
Since the time difference center of the right-hand side of the equation is
the same as that for the electric fields £, and E,, we can write / = n At.
Here, i, j, k, and n are integers. In a similar manner, we can also obtain the
following difference centers of the spatial coordinates and the time for
Egs. (6.3)—(6.8).

Eq. (6.3): x=1iAx, y:(j+%)Ay, z:(k+%)Az,

t =n At, (6.12)
Eq. (6.4): x=(i+)Ax, y=jAy, z=(k+1) Az,

t =n At, (6.13)
Eq. (6.5): x=(+H A, y=0U+DA, z=kAz

t =n At (6.14)
Eq. (6.6): x=(i+%)Ax, y=jAy, z=k Az,

t=(n+1) At (6.15)
Eq. (6.7): x=1iAx, y:(j—l—%)Ay, z=k Az,

t=(n+1) At (6.16)
Eq. (6.8): x=1iAx, y=jAy, z=(k+3) Az,

t=(n+1) A (6.17)
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The 3D finite-difference time-domain expressions for Egs. (6.3)—(6.8)
can be obtained by discretizing them on the basis of the difference centers
(6.12)—(6.17). Again, we investigate Eq. (6.3) as an example. The
difference centers x and ¢ are both integers and the difference centers y
and z are both half-integers. Thus, for the left-hand side of Eq. (6.3), we
get

—%[Hf+‘/2(i,j+%, k41— H7V2G 4L k4 D). (6.18)
For the right-hand side, we get
| ! nee 1
A—y[EZ(l’] + 1L, k+3) —EXG,j, k+3)]

1 . ne;
—A—Z[E;(l,]+§,k+1)—Ey(z,]+§,k)]. (6.19)

Using expressions (6.18) and (6.19), we get the following finite-difference
time-domain expression for Eq. (6.3):
HM PG+ gk +3) = HY PG 44,k +3)
A

{ B2+ 1k + 1) — EXG,j, k+ D]
Ko

1 ne: - Nye -
_E[Ey(z,]—f—%,k—}— 1) —Ey(l,]—f-%,k)]}.
(6.20)
Through the same procedure, we get the following finite-difference

time-domain expressions for the y and z components of the magnetic
fields:

HM PG+ 5 k+ ) =H7 P41, k+))
At

[ { [En(l+27J’k+1)_En(l+2’]’k)]
0

1 : . nge s

6.21)
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and

@”WU+%J+%%%:$FWU+§j+;@
Mt . v
p [E (i+1.j+3.0)—Ej+3.k)]
0
—A—y[E)’Z(iJr%,jJr1,k)—E§§(i+%,j,k)]}.
(6.22)

Next, we discretize Eq. (6.6). According to expression (6.15), the
difference centers of x and ¢ are both half-integers and the difference
centers y and z are both integers. Thus, for the left-hand side of Eq. (6.6),
we get

Ené
° [E"+1(+2,j,k) ENi+1,7, k). (6.23)

For the right-hand side, we get

L2, , Y .
Kﬂi+m0+51+5H—Hf”%+%,—5m]

1 n . . n . .
—Zj@ﬁmo+;ﬁk+9—@ﬁma+;ﬁk—%. (6.24)

Using expressions (6.23) and (6.24), we get the following finite-difference
time-domain expression for Eq. (6.6):

EfYi+1,j,k)=ENi+1.j,k)
At
EoE,

— HPG 1, =1 k)

{Ay [HI2 G+ 5. + 5. )

1 1/2/- 1 1

—HM2 G+ L k=] ]}. (6.25)
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Through the same procedure, we get the following finite-difference
time-domain expressions for the y and z components of the electric fields:

EN G +3, 0 =EjG,j+3.k)

At |1
L2 i1 gt
# LG ke )

—H2 G, j 45 k= )]

1 . .
— P+ 5+ 506
—I-IZ”“/Z(i—%,j—i-%,k)]} (6.26)

and

ErN 7,k +3) = EXNij, b+ )

At [ 1 . .
+— {B[H;+1/2(z+§,1,k+§)
0%r

—H V2= )k + )]

| R .
- E[Hx—i_l/z(l,J +%’ k +%)

—HMV(G % k4 %)]}_ (6.27)

Magnetic fields Hy /2 with the half-integer time step (n + 1/2) At are
calculated first from Eqgs. (6.20)—(6.22) by using the electric fields with the
integer time step n At. Then those fields are used to calculate the electric
fields E"*! with the integer time step (n + 1) At by using Egs. (6.25)—
(6.27). Repeating these two steps, we can calculate the time evolution of
the electric and magnetic fields directly.

It should be noted that the relative permittivity at the interface between
two media is approximated better by using (&,; + ¢,;)/2 than by using only
€, O €.
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6.2 STABILITY CONDITION

In an explicit scheme such as the FD-TDM, the time step Af in the
calculation is restricted by the spatial discretization. For simplicity in
discussing the stability condition here, we will use the 1D scalar
Helmholtz equation

R0) *o

y — Sﬂoﬁ = 0, (628)

where ¢ is a 1D wave function that designates the time-dependent field.
Using f, as the x-directed propagation constant, we express this wave
function as

P(x, 1) = exp( jp,x) exp(at)
= exp(jpp Ax)exp(an At)
= exp(jfp Ax)C", (6.29)

where & = exp(a At). Thus, if the field is to be stable, £ has to satisfy the
condition

1<l < 1. (6.30)
Substituting Eq. (6.29) into (6.28), we get

1
(Ax)®

= g (SXPUBD AOE! 2 exp(jfp A" exp(jfp ADE") =0

{expljf(p + 1) Ax|C" = 2 exp(jBp AX)E" + expljf.(p — 1) Ax|C"}

Dividing this equation by exp(jf.p Ax)E", we reduce it to

1
(AX)2 {exp(jﬁx Ax) -2+ eXp(_jﬁx Ax)} - ((Z;())z

E—2+&NH=o0.

(6.31)
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Dividing Eq. (6.31) by &u,/ (A1)*¢ and considering that the first term of
Eq. (6.31) can be rewritten as

{exp(jﬁx A)C) -2+ exp(_jﬁx AX)} = Z(COS(ﬁx A)C) - 1)
= —4sin2( x%)

we get

5 (A1) 4 o, A\,
2+ D=, [_(Ax)zsm (ﬁXT)]‘f‘O

and therefore
E—24+1=0, (6.32)

where the parameter 4 is defined by

2A0 1 L Ax
A= o (A sin”| f3, 5 + 1. (6.33)
The roots of Eq. (6.32) are
G =A+vVA—1, (6.34)
& =A—~A?—1. (6.35)

Because |£] < 1 and 0 < sin® 0, we get the relation

A0 1 L, Ax -
A=— o (Ax) sin (ﬂXT) +1<1 (6.36)

We can thus specify the stability condition in terms of A4:

Case A < —1. Since, according to Eq. (6.35), 1 < |&,][, the field is
unstable.
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Case —1 < 4 < 1. Since &; and &, can be expressed as

L =A+ VA —1=4+4)V1 -4 (6.37)
G=A— VA2 —1=4—jV1- A4 (6.38)

their absolute values can be expressed as
Gl =&l =4+ (1 -4 =1. (6.39)
Thus, the field is stable when
—-1<4<1. (6.40)

Relation (6.40) can be interpreted as imposing the following restriction
on the time step (see Problem 1):

1 -1/2 ﬁ 1 —1/2 1 1 —1/2
vevm(ag) =wlan) ) oo

where Ax is the spatial discretization width and Az is the time step and
where ¢, ¢,, and v = ¢/, /¢, are respectively the velocity of the light in a
vacuum, the relative permittivity of the medium, and the velocity of the
light in the medium. Equation (6.41) is for a 1D structure, and the
corresponding restriction for a 3D structure is

<1<1 SRR 1)4ﬂ (6.42)
Sl e T |

6.3 ABSORBING BOUNDARY CONDITIONS

Since the FD-TDM, like the BPM in Chapter 5, has finite analysis
windows, an artificial boundary condition suppressing reflections at the
analysis windows is required. Mur’s absorbing boundary condition (ABC)
[2] is often used for this purpose, though Berenger’s perfectly matched
layer (PML) scheme [3] has also come into use recently. The PML scheme
suppresses reflections better than Mur’s ABC does, but Mur’s condition is
easier to use. Here, we discuss Mur’s first-order ABC.
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As shown in Fig. 6.2, the analysis window is defined in ranges of
(0, L,) in the x direction, (0, L,) in the y direction, and (0, L) in the z
direction.

1. x = 0: E, and E.. The electric fields £, and E, are on the boundary
x = 0. The wave function W for the left-traveling wave incident perpen-
dicular to the boundary is

W = explj(wt + p,x)] = exp [jw (t + %x)}, (6.43)

X

where v, is the velocity of the wave. Thus, the derivatives of the wave
function with respect to x and ¢ are

ww 1 1 1
oaw
W oW, (6.45)

Substituting Eq. (6.45) into (6.44), we get

oW 1 oW

E_vx ot

FIGURE 6.2. Analysis region.
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and therefore

= 0. (6.46)

Next, we discretize the wave equation (6.46) for the case that the wave
function is that for the y-directed electric field E),. Assuming that the node
number of the node on the boundary is 0, we discretize the derivative of
the electric field £, with respect to the coordinate x as

E, 1(1 ..., . n e
= B0 - B0 +40)]
1
+E[E;’“(l,j+%,k)—E;’“(O,j+%,k)]}, (6.47)

where the time average between n and n 4 1 was taken on the right-hand.
On the other hand, we discretize the derivative of the electric field E, with
respect to time ¢ as

0E, 11 .
R B 1+ - B+ 4.0)

o 2 |At

1
+At[E”+1(0]+ k) —E0,j+5.k)]},  (6.48)

where the spatial average between i = 0 and i = 1 was taken. Substituting
Egs. (6.47) and (6.48) into Eq. (6.46), we can derive the following finite-
difference time-domain expression for the electric field £,

EN0.j+%. k) =E)1.j+3.k)

v, At — Ax

n+1 _mn 1
+v At—i—Ax[E (1.j+3.k) = E}0,j+ 5. k).

(6.49)
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We can similarly derive the finite-difference time-domain expression for
the electric field E.:

EFN0,j, k+D) =EX1,j. k+1)
v, At — Ax

X TUE™NL G k41 — EN0, Kk + D).

+Vx At+Ax[ z ( ’.]’ +2) Z( ’.]’ +2)]

(6.50)
2. x=1L,: E, and E.. The electric fields E, and E are on the boundary

x =L, The wave function W for the right-traveling wave incident
perpendicular to the boundary is

X

W = exp[ j(wt — p,x)] = exp|:jw<t — le)], (6.51)

where v, is a velocity of the wave. Thus, the derivatives of the wave
function with respect to x and ¢ are

oaw

Substituting Eq. (6.53) into (6.52), we get the wave equation

8+1 0 W
ax v, of

Next, we discretize the wave equation (6.46) for the case that the wave
function is the y-directed electric field £,. Assuming that the node number
of the node on the boundary is N,, we discretize the derivative of the
electric field £, with respect to x as

= 0. (6.54)

x=L,

oF 1|1
< ZE{B[E;(Nx,j+%,k) — BN~ 1.j+1.8)]

(B (3.0~ B = 14 LB} (659)

el-

_|_
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where the time average between n and n 4 1 was taken on the right-hand
side. On the other hand, we discretize the derivative of the electric field E,
with respect to time ¢ as

OE, 1(1,. . -
a_tyzz{A—t[Ey+l(Nx,j+%,k)—Ef(Nx’J"‘%’k)]

—i—i[E;H(Nx —1.j+4%.k) —E}(N, — 1,j+%,k)]}, (6.56)

where the spatial average between i = N, and N, — 1 was taken. Substi-
tuting Egs. (6.55) and (6.56) into Eq. (6.54), we can derive the finite-
difference time-domain expression for the electric field E,;:

E;+1(Nx’j+%’ k) = E;(Nx - 1’]+%’k)

v, At — Ax
v, At + Ax

—E}(N.j+1. k). (6.57)

[EjH (N, —1,j+1. k)

We can similarly derive the finite-difference time-domain expression for
the electric field £.:

EM (N j k+5) = EX(N, — 1),k +3)

v. At — Ax
X [EMYN, = 1,), k4L
+vat+Ax[ z (x ’]’ +2)

For the ABCs on y=0 and y=L, and on z=0 and z=L,, see
Problem 2.

PROBLEMS

1. Derive the restriction on the time step At specified in Eq. (6.41) by
using the stability condition —1 < 4 < 1 in relation (6.40).
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ANSWER

Using Eq. (6.33), we can rewrite the stability condition in relation (6.40)
as

2000 1 L,( . Ax
—1<- o (A sin (ﬁxj) +1<1. (P6.1)

Since the relation between the center term and right-hand term is always
satisfied, we have to consider only the left-hand term and center term:

2
—1 5—2(At) ! 2sin2(ﬁxA_x>+l.
ety (Ax) 2

Multiplying both sides by —1 and considering the case in which the right-
hand side reaches its maximum, when sin’(-) = 1, we can rewrite the
above relation as

2
> 2(An° 1 -
ey (Ax)

Thus, we get

2007 1
2> (A1) N
ey (Ax)

and therefore

) _ Ly
(e = e °<(Ax>2> |

And this relation can be rewritten as the restriction on the time step At:

‘ 1 \12 NAR -2 1 \12
A’§m<(Ax)2> " q (@> 25((Ax)2> - o2

2. Derive the ABC fields fory=0andy=L,andz=0andz=L..
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a. y = 0. The wave equation on this boundary is

— 0. (P6.3)
y=0

The finite-difference time-domain expressions for the electric fields £,
and £, on this boundary are

EMNi4+1,0,k)=ENi+1,1,k)

v, At — Ay

L EMY i+ L 1, k) - ENG 4L, 0, k),
+VyAt+Ay[ X (l+2 ) x(l+2 )]

(P6.4)

ENNE,0,k+ 0 =ENG, 1 k+1)

v AL—Ay 1 n: |
—[E 1 k+5) —ENE,0,k+5)]
Vy At+Ay[ z (l +2) (l +2)]
(P6.5)
b. y = L,. The wave equation on this boundary is
a 1 0
—+— =W =0. (P6.6)
dy v, ot V=L,

The finite-difference time-domain expressions for the electric fields £,
and E, on this boundary are

EMYi+1, N k) = ENi+ 1, N, — 1,k)

M n+le. | 1 _ g 1
vyAt+AyEx (i+3.N,—1,k)—El(i+3.N, k),

(P6.7)
EMYG, Ny k+Y) =EIG,N, — 1,k+1)

E'VGQ, N, — 1, k+Y — E"G,N,, k +1)].
+VyAt+Ay[ z (l y +2) Z(l y +2)]

(P6.8)
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c. 7 = 0. The wave equation on this boundary is

The finite-difference time-domain expressions for the electric fields £,
and £, on this boundary are

EfNi+1,j,00=ENi+1.7.1)

R L) = B+, 00
(P6.9)
Efij+1.0)=ElGj+1. 1)
zii—lg [Ep' G+ 1) — ElG,j+5,0)
(P6.10)
d. z = L_. The wave equation on this boundary is

The finite-difference time-domain expressions for the electric fields £,
and E, on this boundary are

EfNi+1,,N)=Ei+1,j,N.— 1)

v, At — Az
2 [EMYGi4+ L N - 1) —E'G+1,7, N,
+VZAZ+AZ[X (l+2.] z ) x(l+2J Z)]

(P6.12)
E;;H_l(i’j + % ’ Nz) = E;,(l?] + % ’ Nz - 1)

v, At — Ay

| 1 .o 1
W[E;+ (j+L N —1)—ENij+1 NI

(P6.13)
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CHAPTER 7

SCHRODINGER EQUATION

In this chapter, we will investigate ways to solve the Schrédinger
equation, which must be solved when quantum wells for semiconductor
optical waveguide devices are designed [1, 2]. The time-dependent
Schrédinger equation resembles the Fresnel wave equation, and the
time-independent Schrodinger equation resembles the wave equation
for the cross-sectional analysis. Thus, the analysis techniques given
earlier for optical waveguides can be applied to the analysis of these
Schrodinger equations. Here, the analysis of the time-dependent Schro-
dinger equation will be based on the 2D FD-BPM and the analysis of the
time-independent Schrodinger equation will be based on the 1D FDM and
the 1D FEM.

7.1 TIME-DEPENDENT STATE

Let us solve the time-dependent Schrodinger equation by using the 2D
FD-BPM. The only major difference between the time-dependent Schro-
dinger equation and the BPM wave equation based on the Fresnel
approximation is that the derivative in the Schrodinger equation is with
respect to time, whereas the derivative in the BPM wave equation is with
respect to position.

251
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Under the effective mass approximation, the time-dependent Schrodin-
ger equation is expressed as

Wx, ) #? a< 1 Wi(x, 1)

o 2

m(x)  Ox

Jh ) + U(x, 1), (7.1)
where U(x), m(x), and / are respectively an arbitrary potential shown in
Fig. 7.1, an effective mass, and the Plank constant [3].

First, the time ¢ and the space x are discretized. The nonequidistant
discretization shown in Fig. 5.5 is assumed, and the wave function y(x, 7),
the potential U(x), and the effective mass m(x) are expressed as

Y(x, 1) = Y(x,, t,) = ¥, (7.2)
U(x) = U(x,) = U(p), (7.3)
m(x) = m(x,) = m(p). (7.4)

The 2D Fresnel wave equation for the TM mode of an optical
waveguide that was derived in Chapter 5 [Eq. (5.118)] is

p(x, z) _. (x)3< 1 9¢(x,z)
oz T \g(x) ax

2jB ) + kole,(x) — maglop(x, 2).  (7.5)

Comparing this with the time-dependent Schrodinger equation (7.1), we
find the following correspondences:

z <, (7.6)
9/ 1 9 2o/ 1 9
5 (s,oo a) C T (m a)’ 7D
2p < jk, (7.8)
k3 [, (x) — ngg] < Ux). (7.9)
y
2

FIGURE 7.1. Potential distribution for a semiconductor quantum well.
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Thus, from Eq. (5.126) and Eqgs. (5.142)—(5.144), we can get the finite-
difference expression for the right-hand side of correspondence (7.7):

K% 9 1 3¢

2 o <Wx) a) - OCW‘MIH + O‘xl//p + (xewpﬂ’ (7.10)
where
#? 2 2

__r , 7.11
P 2 wle+w) mp)+mp—1) 710

2
Lo 2 2 (7.12)

‘ 2 ele+w) mp)+mp+1)°

K 2 2
“X‘7<w(e+w) mp) + m(p — 1)

2 2
_.l_
e(e +w) m(p) + m(p + 1))
= —0, — U, (7.13)
Considering the relations shown in correspondences (7.6)—(7.9) and in

Eq. (5.135), we get the following finite-difference expression for the time-
dependent Schrodinger equation:

n+1 + ( 2_ _ U@))wn-‘rl lﬂ;ﬂ
2jh
=q l//p 1+ <oc + == Ar + U(p))lﬁ + o l//erl (7.14)

It is easily understood that this equation can be solved in the same way
that the 2D FD-BPM is solved and that the transparent boundary condition
can also be used with this equation.

7.2 FINITE-DIFFERENCE ANALYSIS OF TIME-INDEPENDENT
STATE

The wave function Y(x, f) that satisfies the time-dependent Schrodinger
equation (7.1) is divided into the space-dependent term and the time-
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dependent term as follows:

. Lt
V1) = o) exp(—joor) = p)exp(—jEL).  (1.19)
where E is the eigenenergy to be calculated and corresponds to the
effective index in the optical waveguide problems.
Substituting Eq. (7.15) into Eq. (7.1) and dividing the resultant
equation by exp(—jEt/h), we get

i d (L M) UK —Elp@ =0.  (7.16)
m(x) dx

2 dx

This is the time-independent Schrédinger equation. Discretizing it by
using Eqgs. (7.10)—(7.13), we get the following finite-difference expression:

o‘w(r{)p—l + %o p+1 + O‘xd’p + [U(p) - E](;bp =0
and therefore
awd)p—l + [ax + U(p)]¢p + ae¢p+l - E(Pp =0. (717)

The remaining task is to construct a matrix equation for Eq. (7.17).

7.3 FINITE-ELEMENT ANALYSIS OF TIME-INDEPENDENT
STATE

7.3.1 Eigenvalue Equation

To solve the time-independent Schrodinger equation, we first derive the
eigenvalue equation based on the FEM [4, 5]. The following normal-
izations are introduced:

X = % (coordinate), (7.18)
- U
Ulx) = g) (potential), (7.19)
1
- E .
E= 7% (eigenenergy), (7.20)
1
_ m(x) )
m=——= (effective mass), (7.21)
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where ES° = h2n?/(2myW?), m,, and W are respectively the electron
energy of the ground state in an infinitely deep well, the static mass of an
electron, and the width of a quantum well.

When we substitute these normalized parameters into Eq. (7.16), we get
the normalized Schrédinger equation

d ({1 do®X)
dx (m(x) dx

) + 1 [U(%) — E]¢(F) = 0. (7.22)

Next, we use the Galerkin method to solve this equation. For simplicity,
the overbar, denoting normalized quantities in Egs. (7.18) to (7.22), is
omitted. Figure 7.2 shows nodes used in the 1D FEM. Using shape
functions, we expand the wave function ¢(x) for an element e:

(rb = Z d)el - e] {d) } (723)
Substituting Eq. (7.23) into Eq. (7.22), we get
d d
. (i —) VI 16, + IUG) — BN (6} = 0.

Multiplying the left-hand side of this equation by the shape function
and integrating the resultant equation in element e, we get

- [mag o ) axta

. J VUG — BN deid) = (0).  (7.24)

Applying the partial integration to the first term of Eq. (7.24) and denoting
the node numbers of the left- and right-hand nodes in element e as i and
i+ 1, we rewrite Eq. (7.24) as

1 d[N]

i+1 T
dIN,] 1 dIN,
[ m, ] #] S e

e

nzj[Nel(U(x) BN.IT dx{d,) = (0).

FIGURE 7.2. Nodes in the 1D finite-element method.
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Furthermore, assuming that both the effective mass m and the potential
U(x) (=U,) are constant in the element, we can reduce this equation to

1
- |:[Ne] m_

e

dNT 1 1 dvy [ ]
d—{¢e}i| +J dx

e e

U, ~ ) | NIV dst,) = (0) (7.25)

Next, we sum Eq. (7.25) for all elements. The first term of Eq. (7.25)
becomes

"
sy 6|
ANERCTINE R
i ¢>Mm1M dj’xM,

where M is the total number of nodes. It should be noted that the
following continuity conditions for the wave function and its derivative
are assumed at adjacent elements e and e + 1:

19 19
o=l oo =% (1.26)
Thus, after summing Eq. (7.25) for all elements, we get
1 do, 1 doy, dIN,] d[N,])"
((ﬁlm_lg_d)MmM dx>+Xe:m6L dx dx
47 S U, | NN dvtg) — 2B S | NIV dstge) = 101

(7.27)
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This equation can be reduced to

(ﬁl—éﬁ—¢M3—@@)+um¢mwﬂ@wﬂ—ﬁﬂmwu=wh

my dx my, dx
(7.28)
where
L1 [N AN

m_gide o dx, (7.29)
@=Z%mefm, (7.30)
mzzjmmfw (731)
(6) = Xlo.). (7.32)

Assuming the Dirichlet condition or the Neumann condition—that is,
assuming

¢=0 (7.33)
or

dp

=0 (7.34)

at the leftmost node 1 and the rightmost node M—we can obtain from Eq.
(7.28) the simple eigenvalue equation

([P1+ 7*[OD{¢} — E(w’[RD{d} = {0). (7.35)

To solve this equation, we have to transform Eqs. (7.28) and (7.35) into
eigenvalue matrix equations. To this end, in the following, the first- and
second-order shape functions will be obtained and the explicit expressions
for the matrixes will be shown.

7.3.2 Matrix Elements

A. First-Order Line Element The matrixes for the eigenvalue equa-
tion will be calculated by using the first-order line element. Figure 7.3
shows the first-order line element. The node numbers i and j and the
coordinates x; and x; are assumed to correspond to the local coordinates 1
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and 2. An arbitrary coordinate x in element e is defined using the
parameter &, which takes a value between 0 and 1:

x=(1=0x+ & =x+(x; —x)¢ = x; + L.C, (7.36)
where L, is the length of the element (x; — ;). Since the first-order line

element has two nodes, the wave function ¢,(x) in element e is expanded
as

2
b.(x) = ; Ni(&)d; = NI {4} (7.37)

by using the shape function [N]”. The shape functions N, and N, for the
line elements are expressed by the linear functions

Ni(&) =a;+ by, Ny () = ard + by, (7.38)

and the conditions that must be met by the shape functions are
E=0: Ny(0) =1, N,(0) =0, (7.39)
=1 N (1) =0, N,(1) = 1. (7.40)

Thus, the following shape functions can be obtained for the first-order
line element:

N =1-¢, (7.41)
N,(§) =¢. (7.42)

Next, we calculate the matrix elements shown in Egs. (7.29)—(7.32).

N(&) N, (9

Node i Node j

) @
£:0 1
v

Element e
FIGURE 7.3. First-order line element.
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1. |, (d[N,] Jdx)(d[N,]" Jdx) dx From Eq. (7.36), we get

dc _1
dx L,
and therefore,
dx=1L,d¢.
Since the relations
av_ |
dé
dN, .
dé 7’
hold, we get
d[N,] d¢ d[N] 1[-1
dc dx dié L, 1]
Thus, we get
div ANy 1
dx = — -1 1]L,d
L d  dx Lz ), [ L. de
1t 1 =1
S dé
Ledo] -1 1}
11 -1
CL| -1

2. fe [Ne][Ne]T dx Through a similar procedure, we get

o pfa-o-9 aLde
JWJM]ﬁzL

¢
:LJ[O—®260—@}%:&[2
hlea-o &2 61
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(7.43)

(7.44)

(7.45)

(7.46)

(7.47)

}.

(7.48)
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Since Eqs. (7.47) and (7.48) can be used to construct the matrixes [P],
[O], and [R], the eigenenergy can be calculated from the eigenvalue matrix
equation (7.35).

B. Second-Order Line Element Next, we discuss the second-order
line element, which is more accurate than the first-order line element.
Figure 7.4 shows the second-order line element. The node numbers i, j,
and k and the coordinates x;, x;, and x; are assumed to correspond to the
local coordinates 1, 2, and 3. An arbitrary coordinate x in element e is
defined using the parameter £, which takes a value between —1 and 1:

x=ux; + %(xk —x;)¢. (7.49)

Since the second-order line element has three nodes, the wave function
¢.(x) in element e is expanded as

3
Po(x) = ;M(@cb,- =[N {¢.} (7.50)

by using the shape function [N]”. The shape functions N, N,, and N; for
the line elements are expressed by the quadratic polynomials
N =a, & +b¢+c,
Ny(&) = @& + by + ¢y, (7.51)
Ny(&) = a3& + by + ¢,
and the conditions that must be met by the shape functions are
E=0: N,(0) =0, N,(0) =1, N; =0, (7.52)
=1 Ni(1) =0, N,(1) =0, Ny(D)=1, (7.53)
E=-1 Ni(=1) =1, N,(—1) =0, N;(—=1)=0. (7.54)

Thus, the following shape functions can be obtained for the second-
order line element:

Ni(&) = —3¢(1 =9, (7.55)
N> =1 +90 =9, (7.56)
N;(&) =53¢0 +9). (7.57)

Next, we calculate the matrix elements shown in Egs. (7.29)—(7.32).
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N.(©)

N, (&) N3 (D

Element e

FIGURE 7.4. Second-order line element.

1. [, (d[N,]/dx)(dN,]" /dx) dx From Eq. (7.49), we get

and therefore,

Since the relations

hold, we get

d[N,] d¢ d[N,]
dx  dx dé

_Xk_

¢ _ 2
dx L,
dx =1L, d¢.
le_ !
d—é_i 2

dN,
—c=-2
di ¢,
dN3_ {
d—é_é+2
5_1
5 B 2
X

i

26— 1
—4¢
26 +1
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(7.58)

(7.59)

(7.60)

(7.61)

(7.62)
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Thus, we get

[ aiv’
e dx e

—4¢

= 2
(‘xk xi) -1 25 + 1

. 1{251}[261 —4¢ 25+1](xk2;xi)dé

B 1
B 2(x — x;)

| (2¢ — 1) 28— 1)(—48) (- DEE+)
x j dé
-1

—4EQ2¢E— 1) (—4¢)? (—48)(2¢+ 1)
QE—DQRE+FT) (284 1)(—40) Q&+ 1)

| . 14 —16 2
= - =16 32 —16 |.
2(x, —x;) 3

2 —16 14

This equation is summarized as

: 4 16 2
Jdg\fe] d[zfe] dx:6lL ~16 32 —16 |. (7.63)
o dxdy el 2 -16 14

2. fe [Ne][Ne]T dx Through a similar procedure, we get

J NIV, d

[ —3ea-9
= {(Hé)(l&)}[;é(lé) (14+(1-9) $e(1+9)
Lo+
X [%(xk —x;)]d¢
L 1E201-9 1+ 901-¢" —j1+901-9)
=5 ] | -9+ (49107 A+ (1-0) |de
—E1+O1-9 A+ -9 &+’

I 4 2 -1 I 4 2 -1
=——1 21 2 |==| 21 2 . .
> 15 6 30 6 (7.64)
-1 2 4 -1 2 4
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Since Egs. (7.63) and (7.64) can be used to construct the matrixes [P],
[O], and [R], the eigenenergy can be calculated from the eigenvalue matrix
equation (7.35).
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APPENDIX A

VECTORIAL FORMULAS

In the following, i, j and k are respectively unit vectors in the x, y, and z
directions and ¢ and A are respectively a scalar and a vector:

A=Ai+A4j+Ak, (A.1)

3. o, 9
V=—i+—j+—k A2
L 3 +ok (A.2)
V-VXA=0, (A.3)
VX(VxA) =V(V - A) — VA, (A.4)

, ¥ PP

:@+W+@’ (A.5)
2 2

Vi:%Jr%, (A.6)
V(pA) =V - A+ PV - A, (A.7)

i j Kk

vxa= |2 22

ox dy oz

Ax A, A,

(04, A,
L
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If r, 0, and z are respectively unit vectors in the radial, azimuthal, and
longitudinal directions, the rotation formula for a vector A = A4,r +
Ay0 4 A4,z is expressed as

1 04, 94, 04, 04, 19 1 94,
XA = (- -0 - - — — - i
VXA <r a0 Bz>r+<82 8r>0+(r Br(rAH) r 80>Z

(A.9)

A Laplacian V? for a cylindrical coordinate is given as

19/ 9 +1 az+az
__’/‘_ [ — —_—
roor\ or 2 90%  0z2

¥ 19 1 & &
ST AL S Al
8r2+r 8r+r2 392+822 (A-10)
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APPENDIX B

INTEGRATION FORMULA FOR AREA
COORDINATES

The integration formula shown in Eq. (3.184) is derived here by
calculating the following integration for a triangular element e shown in
Fig. 3.4:

L(i,j, k) = ” LiILLE dx dy, (B.1)

where 7, j, and k are integers and the spatial coordinates of nodes 1, 2, and
3 are respectively (x;, v;), (x5, ¥,), and (x3, y3).

As shown in Eq. (3.72), we have the following relation between the
spatial coordinates and the area coordinates:

X X Xy X3 Ly
YI=1r ) r Ly | (B.2)
1 I 1 1 Ly

As shown by the bottom row of Eq. (B.2),
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268 INTEGRATION FORMULA FOR AREA COORDINATES

According to Eq. (B.2), x and y can be expressed using L, and L, as
follows:

x=x1L; +x,L, +x3L5

=x1Ly +xLy +x3(1 =Ly — Ly)

= (1 = x3)L; + (3 — x3)Lo, (B.4)
y=yLy + Ly +y3L;

=Ly +yLy +y3(1 =L — L)

=1 = »)L + 0 — 1)Ly (B.5)
Thus, we get

ox  Ox

ax,y) E 3—]42
8(Ll s LZ) a_y a_y
oL, oL,

X1 —X3 Xp—X3
= =2

e’

(B.6)

Y1—=Vs V2—)3

where S, is the area of element e. Using Eq. (B.6) to transform x and y to
L, and L,, we can rewrite Eq. (B.1) as follows:

1.0 = | | Litht asay

= “ L Lk
e

J L1 dL, dL,
e

a(x, y)

dx dy
a(Ll ’ LZ)

=25

e

1 -1,
=28,| dL, J L1 — Ly — L) dL,
Jo 0

o -1,
=28, | L} dL, J L —L, — L) dL,.  (B.7)
0 0
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The second integral of Eq. (B.7) is calculated as

1-L,

Iy(j. k) = L (1 =Ly — L) dL,

1 j+1 k h
0
koo k—1
+mj -, - L) dL,
k 1-L, )
=0 +?J sz‘H(] - Ll — Lz)k—l sz
_ 1 j+21 L L k—1 =h
=|j2h (1—-Ly =Ly .
k(k — 1) Jl_Ll 42 (2
_— 1 —-L, — L dL
Grog+al, TR
k(k — 1) ,
=0+ ———"—1 2. k=2
MV VR R
k—1)---1 .
=— - - Iy(j+k,0)
G+DG+2)-G+h
kl
= +k)‘[0(]+k 0), (B.8)
where
T 1 ]
I,(j+k,0 :J L"dL, = ——L
0(.] ) 0 2 2 []+k+1 2 ]0
1 .
TS (B.9)

Substituting Eq. (B.9) into Eq. (B.8), we get

. k! .
W0 = oy L (B.10)
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And substituting Eq. (B.10) into Eq. (B.7), we get

. k! b :
Ie(l,], k) = 2Semjo 1(1 — Ll)j+k+1 dLl (Bll)

The remaining calculation is

1
BG4k = | - Ly ar,
0
1

1 . .
= |—— L1 — L)/ !
|:l 1 1 ( ])

0

+k+1 (", :
D wta-nyta
l+1 0
+k+1 .
=0+].711(1+1’]+k)
i+1

_ Fk+DG+E)---2-1

G+ DE+2) -+t k+ D
_ (t+k+ DU
S (+j+tk+ 1)

L(i+j+k+1,0)

LG+j+k+1,0). (B.12)

Substituting (i +j+k+1,0), where [,(i+j+k+1,0) can be
rewitten as

1 1
L 1 L
LG+j+k+1,0) =j L g, = [7L’+/+k+z]

0 i+j+k+27" 0
1
- B.13
i+j+k+2 (B-13)
into Eq. (B.12), we get
i+ k+ D
LG+ k4 1) = SR DY (B.14)

(i+j+k+2)
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Then substituting this equation into Eq. (B.11), we finally get the
formula

il j1k!

[ ', .,k :2S€—
(i-J. 0 (+j+k+2)

(B.15)
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