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General Preface

The history of crystal growth is long as those of the universe and the earth. Meteorites

contain pyrites and olivine crystals which indicate these crystals were grown when the

planets were born. Crystals naturally produced are used as gems from the early time of

the human history. In Exodus, it is written that breast-piece was decorated by ruby,

emerald, sapphire, amethyst, and other gems.

There are a lot of crystals around us. As examples, we can find snowflakes falling down

from the sky, ice crystals in a lake in winter, salt and sugar crystals in the pots of our

kitchen. But, it was after the invention of point contact and junction transistors,

respectively in 1947 and 1948, that the industry paid a great interest on the crystal growth.

Without the growth of high purity and highly perfect single-crystal semiconductor, at that

time of Ge, the invention of the transistors will never happen.

It is well known that the modern information society will be not realized without

electronic and optical devices. One finds large-scale integrated circuits of Si in every

computer from laptop to super computers. For high speed and mass transmission of

information, compound semiconductor devices are indispensable.

These devices are fabricated almost all by using single crystals of semiconductors and

oxides. When we look into the history of the devices, we always see that an invention of

crystal growth technique makes it possible to bring out new device. As we saw, the

invention of transistor was possible only after the growth of high-quality Ge single crystal.

The growth of large-diameter dislocation-free Si crystal has enabled the production of

large-scale integrated circuit. Due to the invention of liquid-phase epitaxy, it became

possible to realize light-emitting diode (LED) and laser diode (LD) in real use. Drastic

technological improvement in highly lattice mismatch heteroepitaxy made it possible to

realize bluew ultraviolet LED and LD and it can be said that the success in the growth of

high-quality nitride semiconductor gave the blue light all over the world. Hence, we

should understand that new technology of crystal growth has always created new elec-

tronic and optical devices.

It is extremely good news for the community of crystal growth that 2014 Nobel Prize in

Physics was awarded to Professors Isamu Akasaki, Hiroshi Amano and Shuji Nakamura

for the invention of efficient blue light-emitting diodes which has enabled bright and

energy-saving white light sources. This invention is basing on the growth of nitride

semiconductors employing a low-temperature buffer layer on sapphire substrate in

heteroepitaxy. We are happy that Professor Hiroshi Amano, one of the winners, is con-

tributing to this Handbook as an author of Chapter 16 in Vol. IIIA.
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The first edition of the Handbook of Crystal Growth was edited by D.T.J. Hurle. This

Handbook was composed of three volumes and published in 1993–1994. The present

second edition of the Handbook also consists of three volumes. Each volume was edited

by separate editors. Volume I is edited by T. Nishinaga and the volume covers the basic

aspects of crystal growth. In Volume IA, fundamentals and kinetics of crystal growth are

described and in IB, advanced problems of transport and stability are discussed. Volume II

is edited by P. Rudolph and this volume covers bulk crystal growth. Volume IIB

presents basic technologies of bulk growth and IIB does growth mechanism and

dynamics. Volume III was edited by T. F. Kuech and the volume covers thin film growth

and epitaxy. Volume IIIA discusses basic techniques and IIIB does growth mechanisms

and dynamics.

Present Handbook project was created in March, 2011 and six advisors were

appointed. They are T. F. Kuech, G. B. Stringfellow, J. B. Mullin, J. J. Derby, R. Fornari, and

K. H. Ploog. I am very much grateful for their important and valuable suggestions.

Finally, all editors would like to express their sincere thanks to Shannon Stanton,

Elsevier, for her strong and well cared support to this work.

Tatau Nishinaga

(Editor in Chief)
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Preface to Volume I

Crystal growth has three faces. One is the face of science, the second is that of art, and the

final one is of technology. For a long time in the human history, people have wondered

how snowflakes grow in such beautiful shapes and tried to understand the mechanism.

The curiosity is the driving force for the growth science. Crystal growth is an important

tool to obtain useful crystals for human life and industry use. The growth of ruby is one of

the examples. People have developed the art of the growth and the art was improved by

many workers and finally Verneuil has arrived at an elegant growth method called as

Verneuil method.

For a long time, science and art of crystal growth have been developed separately such

as in school and in small factory in town. However, after the crystal growth has been

employed to fabricate advanced electronic and optoelectronic devices, the art based on

science is strongly required. For the control of the accurate structure and dimension of

such devices, the growth should be carried out with deep understandings of growth

science.

A half century ago, nobody thought that the real-time observation of 2D nucleation is

possible in molecular beam epitaxy (MBE) during the growth of quantum well laser by

reflection high-energy electron diffraction (RHEED). It was only in recent years that

growth spirals were found on the surface of GaN grown by metal organic chemical vapor

deposition (MOCVD) to be used for the fabrication of blue light-emitting diode (LED) and

laser diode (LD). It was shown that the relationship between growth rate and surface

supersaturation of GaNMOCVD is explained very well by classical Burton–Cabrera–Frank

(BCF) theory. In this experiment, a mask epitaxy using photolithography was employed.

In the history of crystal growth, there has been no age when the art and the science of

crystal growth are so closely combined like today. However, there is still strong con-

tribution of art required in the crystal growth technology. For instance, to grow the

advanced devises by MBE, one should be very skillful to manipulate the machine, how-

ever, with advanced knowledge of growth science. This is what is different from the old art

of crystal growth.

The purpose of the Volume I is to show the recent advances in the growth science and

to give scientific bases for the technologies to be developed in the following Volumes II

and III, which are devoted to the bulk crystal growth and thin film growth and epitaxy,

respectively.

Volume Ia describes thermodynamics and kinetics and Volume IIb does the transport

and stability. The first chapter of Volume Ia gives a historical introduction of the crystal

growth especially for the beginners. This chapter is followed by those of phase equilibria,
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defect thermodynamics, and stoichiometry. Then, Chapter 5 discusses the equilibrium

shape of crystal and Chapter 6 does rough–smooth transition of step and surface. Both

chapters aim at giving the true picture of the crystal surface. Chapters 7 and 8 will cover

the most fundamental and basic aspects of crystal growth, nucleation and growth

kinetics, respectively. Chapter 9 is devoted to explain the structure of melt and liquid

alloys. To understand the growth from themelt, one should have the knowledge about the

atomistic structure of the melt. Next three chapters discuss the simulation of crystal

growth employing classical and quantum mechanically calculated potentials. The final

chapter presents the colloid crystal growth, which provides the experimental modeling

for the crystal growth.

The first chapter of Volume Ib gives a general introduction to morphological stability

that is followed by Chapter 15, in which themodern theory of morphological stability, i.e.,

phase-field model, is explained and applied to solidification to understand micro-

structure formation processes. The next two chapters describe the experiments related to

the morphological stability. In Chapter 16, the detailed theoretical and experimental

studies of dendritic growth are presented. On the other hand, in Chapter 17, grain growth

in the melt is discussed and it is demonstrated that the dendritic growth is often observed

in grain growth. Nanocrystal growth is one of the rapidly expanding fields. Growth of

nanocrystals from vapor is discussed as an example in Chapters 18. Crystal growth of

protein and other biological molecules are studied very extensively to facilitate the

advancement of life science. Chapters 19 and 20 are devoted to this subject. The following

two chapters discuss the problems which one encounters in producing medicine.

Chapter 21 describes the fundamental growth process of pharmaceutical crystallization,

which is exactly the same as ordinary crystal growth. Chapter 22 discusses the growth of

chiral molecules. Selective growth of one type is especially important for pharmacy

production.

Chapters 23–25 describe in situ observation of crystal growth in vacuum, solution, and

melt. Chapters 24 and 25 are devoted some parts to the growth in space. The final chapter

describes the growth of quasicrystal which shows symmetries forbidden in ordinary

crystallography. It is possible to grow single-grained quasicrystals and their properties

were studied in detail.

The present editor wishes to acknowledge deeply all authors of Volume I for their

excellent articles. The mails of the request were sent in the autumn of 2012 and the

deadline was the end of October 2013. But, the most of authors only could send their

manuscript by March of 2014 and some did in the beginning of July, 2014. I would like to

thank all authors for sacrificing many hours of their important official and private time.

Tatau Nishinaga

Editor of the Volume I

July, 2014
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those who were the means of one’s achievements.”

Trans. H. Rackham
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1.1 Introduction
Most scientists and engineers are aware that the basic tools they use in their daily

research activities were developed by groups of researchers working in series or parallel

over decades, in some cases centuries. It was often in an incremental way, one study

building on another. As time went on, these earlier ideas became more refined and

practical, providing future workers with a more through understanding of the physics

and chemistry involved in different materials systems and leading to innovative new

processes for making materials and devices that have affected everyone’s lives. They

helped define the world we live in and used their newly gained knowledge to stoke the

technological revolution.

The crystal growth field (a branch of materials science, physics, chemistry and

crystallography) has a rich historical background that goes back at least several

millennia. It basically deals with understanding the underlying mechanisms involved in

the crystallization process and the technology to produce a single crystal from some

medium in a controlled fashion. One of the earliest written accounts documenting work

on methods for preparing crystals was given by the Roman Pliny the Elder in 77–79 AD

[1]. His collected work was a summary of knowledge going back to even more ancient

times. It is probable that even prehistoric man engaged in the recrystallization of

materials like salt. Among other topics, Pliny discussed the preparation of Vitriol (iron,
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copper and zinc sulfate hydrates). The process involved evaporating mine or spring

waters obtained from the Mediterranean region. About 1500 years later, in medieval

times, Pliny’s work was referred to by both Biringuccio [3] and Agricola [2]. They

concentrated on preparing crystals of these compounds for medicines, dyes, fluxes and

acids. The various methods employed generally began with the purification of mineral

deposits, followed by recrystallization of the remaining solutions by evaporation.

The field of crystal growth encompasses a wide spectrum of scientific disciplines and

includes (1) experimental and theoretical studies of crystallization processes, (2) the

growth of crystals under controlled conditions for both scientific purposes and industrial

applications and (3) crystal characterization. It also covers almost all classes of materials,

i.e., inorganic and organic compounds, elemental materials as well as biological mac-

romolecules. Many methods have been developed over the years for producing single

crystals, the size range for which varies from the nanometer to meter scale. These crystals

have in common an atomic ordering that persists throughout their bulk and without the

presence of grain boundaries. The two principal scientific pillars upon which the field of

crystal growth depends are thermodynamics and kinetics. The thermodynamic proper-

ties of a system describe how solid, liquid and gaseous phases behave with respect to

state variables such as temperature, pressure and composition. They provide a road map,

so to speak, which crystal growers use to plan growth strategies. For the preparation of

crystals of a size, purity and composition required for a specific application, one needs to

know what material phases will exist under various conditions of temperature, T, and

pressure, P, etc., and how these phases will form under dynamic solidification processing

conditions. Kinetic factors, on the other hand, influence our ability to produce a crystal

at a desired growth rate and with a degree of perfection and uniformity suited to the

intended application. We will explore below how interface stability and segregation

behavior are influenced both by thermodynamic and kinetic factors.

In the beginning, crystal growth was not the well-defined field it is today. Work was

carried out by chemists, physicists, etc., and research results were reported in various

conferences and journals of these societies. The first conference to concentrate on the

topic was at a Faraday Society meeting in 1949, held in Bristol, England. In spite of the

growing importance of crystals for solid-state electronic applications in the early 1950s,

it was almost a decade later before a second meeting concerning issues in crystal growth

arose. That conference, held in Cooperstown, New York in 1958 [4], gathered together

some of the most eminent crystal growth researchers to discuss a wide range of topics of

interest to the crystal growth community. Conferences were also started in the Soviet

Union (Moscow) as early as 1956. However, the major consolidation of the field into a

viable entity was the formation in 1966 of the International Organization of Crystal

Growth (IOCG) and under their aegis, the subsequent International Conferences on

Crystal Growth (ICCG). These conferences have been held every three years since 1966.

The local organizers of the first ICCG conference held in Boston, Massachusetts

immediately founded the American Association for Crystal Growth (AACG) under the

joint chairmanship of Doctor Robert (Bob) Laudise and Doctor Kenneth (Ken) Jackson.
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The AACG held their own national conferences soon afterward and other national groups

formed around the world. The Journal of Crystal was established in 1967 under the

leadership of Professor Michael Schieber, along with Sir Charles Frank and Dr Nicholas

Cabrera as co-editors. Although papers on crystal growth topics are published elsewhere

as well, the Journal of Crystal Growth has remained the major venue for papers on crystal

growth theory, practice and characterization and has published related proceedings of

conferences focused on various aspects of the field.

Many of the topics discussed in this introductory history are covered in much more

detail in various chapters in this comprehensive, updated version of the Handbook of

Crystal Growth. This treatment is designed to focus mainly on their historical context.

1.2 Evolution of Crystal Growth Theories
Although crystals can be grown by purely empirical means, control of their rate of

growth, perfection, dimensions, composition and physical properties is greatly facili-

tated by having a good grasp of the fundamentals underlying crystal growth processes.

Over the past century, a sound theoretical foundation has been built up through the

efforts of many different scientists and engineers working in materials-related fields such

as chemistry, physics and crystallography. The approach is generally two-fold: first to

understand the nature of material systems (crystal structure and morphology, phase

equilibrium, etc.), and second, to determine the factors that affect the crystallization

process (nucleation, growth kinetics, segregation behavior, interface stability, heat and

mass transport, etc.). Although remarkable progress has been made, the complex nature

of the field and its changing emphasis on newer materials and structures keeps providing

a constant source of challenges to our understanding of crystallization processes.

1.2.1 Early Developments (Before the Nineteenth Century)

The earliest scientific studies important to the field of crystal growth were made by

natural scientists trying to understand the morphologies of mineral crystals. One of these

early pioneers was the Swiss naturalist Conrad Gesner (1516–1565) who in 1564, after

studying different crystals, reported that one crystal differs from another by its angles

and form [5]. Later in the sixteenth century, Andreus Caesalpinus (1519–1603) wrote in

“De Metallicis” [6] that the shape of crystals grown from water solution (e.g., salt, sugar

and alum) were a characteristic of the material. Ichiro Sunagawa [7] proposed, however,

that the science of crystal growth started with the treatise of N. Steno. Nicolas Steno, also

known as Niels Stensen, (1638–1686) was a well-known Danish scientist specializing in

the fields of geology and anatomy. He was also one of the founders of crystallography. In

his treatise, published in 1669 [8], he observed that, although quartz crystals differ in

appearance from one to another, the angles between corresponding faces are always the

same. In addition, he noted that they grew by an inorganic hydrothermal process rather

than through the action of bacteria [7]. Years later, Steno’s law of constant interfacial
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angles in crystals was confirmed, first by the Italian Domenico Guglielmini (1665–1710)

[9] who asserted, like Casealpinus, that every salt has it own particular shape. A century

later, the Frenchman Jean Baptiste Romé de l’Isle (1736–1790) [10], concluded from his

study of many hundreds of different crystals that every crystalline substance with a

specific composition had a similar and particular crystal shape (1772) See Figure 1.1(A)).

He found six different fundamental forms from which all others could be derived.

Although the above work, and that of other researchers not mentioned, set the stage for

our improved understanding of the nature of crystals, it was not until much later that

attention turned seriously to the question of how crystals grew and which mechanisms

were involved. Figure 1.1(B) shows the internal structure of a lithium niobate crystal

revealed by partial melting.

1.2.2 The Nineteenth Century

French physicist Auguste Bravais (1811–1853), building on l’Isle’s previous work,

determined in 1848 that there are 14 unique “Bravais” lattices comprising three-

dimensional crystalline systems [11]. This work provided the basis for understanding

symmetry, crystal morphology and crystalline anisotropy. The morphology of a crystal is

influenced by (1) external factors, e.g., the surrounding nutrient phase and (2) internal

features, e.g., cell dimensions, atom sizes, positions, and bond energies.

Contemporary quantitative crystal growth science originated with the thermody-

namic studies of the American scientist J. Willard Gibbs (1839–1903). Gibbs studied

how various phases behaved in heterogeneous systems under the influence of state

variables such as temperature and pressure. His seminal work, On the Equilibrium of

(A) (B)

FIGURE 1.1 (A) Naturally occurring crystals of quartz (SiO2) interspersed with pyrite (FeS2) crystals. Their different
morphologies reflect their internal crystal structures, trigonal and cubic respectfully. (B) The bottom side of a
c-axis Czochralski grown lithium niobate crystal that was rapidly heated to cause it to separate from the melt
surface. The resulting dendritic-like structure reveals the internal three-fold symmetry along the axis of this
rhombohedral crystal.
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Heterogeneous Substances (1876 and 1878) [12], included both the first and second laws

of thermodynamics and thermodynamic reaction tendencies in any thermodynamic

system. His graphical representations, the earliest phase diagrams, have been

expanded through the years to include numerous chemical systems of both academic

and industrial interest. These were derived largely by experimental studies but also in

recent years by numerical simulations. These “phase diagrams” are vital data sources

for the crystal grower, enabling him or her to select the most appropriate growth

method and produce a crystal with the desired composition and properties.

To form a crystal, a nutrient phase (i.e., liquid, gas or solid) must be in a metastable

state. In other words, the free energy (at constant volume) or the Gibbs potential (at

constant pressure) of this phases must exceed that of the crystal. This excess is the

driving force for crystallization. This metastability is accomplished by either super-

cooling a melt or supersaturating a solution or vapor phase. During crystallization, latent

heat is evolved. Among other remarkable contributions made by Gibbs was that

nucleation phenomena resulted from heterophase fluctuations in metastable homoge-

neous phases. Nucleation can be either homogeneous (from within the pure matrix

phase) or heterogeneous (on a foreign substance such as particles or substrates within

the matrix phase or the container walls). The maximal amount of supercooling or su-

persaturation required depends on the thermodynamic properties of the material sys-

tem, various external forces such as mechanical vibrations, and of course, the nature of

the crystal surface, etc. In practice, the initial nucleation stage is often bypassed by using

oriented seed crystals.

1.2.3 The Twentieth Century

In the opinion of K. Jackson [13], our modern understanding of crystal growth processes

began with the research work of Harold Wilson (1874–1964) [14] and Martin Knudsen

(1871–1949) [15]. Wilson’s work in 1900 concerned the velocity of solidification and

viscosity of supercooled liquids, whereas Knudsen’s work involved kinetic molecular

theory that much later played an important role in molecular beam epitaxy. One of the

most important early growth theories was proposed in 1921 by the German physical

chemist Max Volmer (1885–1965) and his student Immanuel Estermann (1900–1973) [16].

Their adsorption-layer theory (i.e., layer-by-layer growth) was deduced from measuring

the tangential growth rate of plate-like mercury crystals from the vapor state at low

temperatures. The proposed adsorption-layer lies between the crystal and nutrient phase,

with the crystallizing species losing only part of their latent heat, while maintaining some

surface mobility in the layer parallel to the crystal surface. The species are incorporated

into the crystal lattice at the edges of the incomplete atomic layers (steps on the growing

crystal face). Volmer was also the first to consider the role of ad-atoms (or molecules) and

holes on the crystal surface under equilibrium and nonequilibrium conditions.

Walther Kossel (1888–1956) [17], a German physicist known for his theory of chemical

bonding, proposed in 1928 an atomistic view of crystal growth (kinetic theory), as
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opposed to a “continuum” thermodynamic interpretation. It was similar to that inde-

pendently proposed by Iwan N. Stranski (1897–1979), [18] a Bulgarian physical chemist,

and was based on earlier diffusion theories concerning mass transport of the crystallizing

species to the growth interface with the distinction that what went on in the interface

region (how the species found an appropriate lattice site) was not a negligible effect.

Their work is often linked together as the Kossel–Stranski model. They both concluded

from early work on the rock salt structure that no other planes but the cubic ones are

possible and that other planes (110, 111, etc.) are not present on the surface as complete

planes but are made up of alternating (001) and (100) faces several atoms thick (kinetic

roughening). This work led to what is commonly referred to as the TLK (terrace-ledge-

kink) model where Kossel [19] suggested that incorporation of an atom required that the

steps spread laterally across the surface. Somewhat later came the work of Stranski’s

younger colleague Rostislav Kaishev (1908–2002) linking the equilibrium crystal shape,

i.e., the facets making this shape, with the average work required to detach a molecule

from that facet, and thereby accounting for different structural positions on that facet

and its edge. Stranski and Kaishev founded the famous Bulgarian school of nucleation

and crystal growth (see Ref. [20]). Much of their work was on low-temperature aqueous

solution growth and the crystallization of metals at room temperature in electrolyte

solutions. An extensive discussion of Kossel and Stranski’s work, together with other

contemporaries, is given in Buckley’s book Crystal Growth [21] and numerous other

more recent publications.

The goal of scientific studies is the development of effective models that can explain

observable physical phenomena and direct practical crystal growing via generalized

predictive relationships. These activities were both based on scientific inquisitiveness

and to provide guidelines for practitioners to produce material for the benefit of

mankind. Basic studies on nucleation and crystal growth have greatly expanded over the

years. Older theories and concepts have been refined and new concepts proposed and

tested. Basic understanding has greatly benefited from important advances in crystal

characterization technologies. They have provided direct evidence of crystal perfection

and growth behavior down to the atomic scale. Two examples are the transmission

electron microscope and in situ atomic force microscopy. The former technology makes

possible the imaging of atomic structures of real crystals, allowing a study of their

perfection and the nature of their imperfection. Atomic force microscopy can be used, to

great effect, both to study the formation and kinetics of growth layers during solution

growth (particularly biological macromolecules) and how they change upon post-growth

heat treatments (surface reconstruction). Reflected beam electron microscopy has also

been very useful.

The discovery of crystalline imperfections such as edge and screw dislocations,

stacking faults, point defects and inclusions in an otherwise uniform crystal lattice, has

had a strong impact on our understanding of crystal properties, on the one hand, and

crystal growth mechanisms on the other. They are also of great technological importance

for the influence they have on the electronic and mechanical properties of a material.
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In 1934, Sir Geoffrey Taylor (1886–1975), a noted British physicist and mathematician,

proposed that the plastic deformation of ductile materials could be explained in terms of

the theory of dislocations developed by Vito Volterra in 1905. Some years later, the

subject of dislocations occupied the thoughts of Sir Charles Frank (1911–1998), an

eminent British crystallographer who spent much of his career at Bristol University. His

fundamental contributions to the field of crystal growth include the laws governing

dislocation branching, the existence and properties of dislocation networks, and in 1950,

the Frank-Read mechanism for the generation of dislocations. In a well-documented

account, the idea for this latter mechanism occurred to both Sir Charles and to W.T.

Read (an American working at the General Electric Co.) independently and at the same

time. Frank had shown the year before [22] that two-dimensional nucleation theory

failed significantly to explain observed high crystal growth rates at low supersaturation.

This discrepancy could, however, be readily reconciled if the growth face contained a

screw dislocation outcrop. That this dislocation should lead to continuous step gener-

ation in the form of a “growth spiral” step on the growth face was immediately validated

by experimentally observed growth spirals formed on actual crystals (i.e., Refs [23,24]).

Some of the important work on crystal symmetry in modern times was done by

Donnay and Harker in 1937 [25] and later by Hartman and Perdok [26]. Hartman and

Perdok’s theory [26] classified different types of faces, with only one type forming crystal

facets. For ionic crystals, they defined the energy released during growth of a layer as

E(hkl) and were able to generate growth forms by assuming that E(hkl) was proportional

to the growth rate. These calculated forms were similar to natural or manmade crystals

such as zircon, garnets, etc. Many researchers before and since have also observed

variations from predicted or expected crystal morphologies due to impurity adsorption

on a growth face. That led to methods to alter the morphologies for a specific applica-

tion, one example being the purposeful poisoning of a fast-growing needle axis to make a

more equiaxed crystal. Other notable contributions to our understanding of growth

shapes include those of Sunagawa (1960) [7] and Bennema (1980) [27].

A major effort to control the purity and dopant uniformity in Si and Ge electronic

devices was begun at Bell Laboratories in the early 1950s. The research team of Burton,

Prim and Slichter came up with a relationship that described how impurities and dop-

ants are distributed along an as-grown boule (the now well-known BPS equation). Their

work was first reported in 1952, but not openly published until 1953 [28]. Measuring

solute concentrations, solid–liquid distribution coefficients, diffusion coefficients and

solute distributions in actual crystals, they derived equations describing what the

concentration of a dopant or impurity would be in an as-grown crystal as a function of its

initial melt concentration and growth rate R.

Ke ¼ Ko=Ki þ ð1� KoÞexpð�RdD=DÞ (1.1)

where Ke is the effective segregation coefficient, Ko is the interface or equilibrium

segregation coefficient, R the growth rate, dD is the diffusion boundary layer thickness and
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D is the solute diffusion coefficient. Figure 1.2 shows a sketch and notes from Burton’s

laboratory notebook illustrating the features of the now famous segregation relationship.

This research was part of a larger effort amongst various semiconductor scientists and

engineers at Bell Laboratories [29,30]. Since then, BPS segregation theory has become a

particularly valuable tool for crystal growth practitioners, allowing them to control the

compositional uniformity in single- and multi-component material systems via control

of growth velocity, melt composition, fluid convection, etc. While BPS theory is useful for

well-behaved systems, it does not work in all cases. A critical analysis of the limitations of

the BPS theory and later modifications by various scientists was given by Carruthers [31]

(from the standpoint of the mother liquor hydrodynamics) and by Chernov [32] (from

the standpoint of equilibrium and nonequilibrium processes at the growing interface).

See also Handbook chapter “Segregation and Component Distribution” for a description

of the limitations of BPS segregation theory.

As mentioned in the introduction, the Faraday Society in 1949 convened one of its

meetings for the sole purpose of presenting and discussing papers on crystal growth.

This was the first scientific conference devoted to this topic as a separate subject.

Subsequently, the proceedings of this conference, entitled Crystal Growth, were pub-

lished in the Discussions of the Faraday Society. During that meeting, Burton and

Cabrera [33] presented their research on the influence of surface structure on the rate of

FIGURE 1.2 One of the diagrams in J.A. Burton’s laboratory notebook (1951) explaining the concept of the
BPS theory. The plot shows the variation of solute concentration in the solid and melt during unidirectional
solification. The x¼ 0 position is the growth interface while x¼ l defines the width of the solute boundary
layer [29].
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growth of a perfect crystal. They considered two types of surface structures, one ordered

(atomically flat) and the other disordered (stepped, containing terraces, ledges and kinks

with ledge heights of atomic dimensions). Burton and Cabrera made use of the analogy

between the existence of these two surface structure types and two possible states in

two-dimensional systems-ordered and disordered phases, transferring from one to

another as the temperature/binding energy ratio changes. This concept followed the

1945 suggestion by Yakov I. Frenkel that the step should be disordered and possess a kink

configuration at nearly each atomic site. As a result, these steps should grow much faster

than a step-free terrace. Indeed, only at the kink configuration can an atom join the

crystal lattice, and thereby reduce its Gibbs potential to that of any of the bulk atoms in

the crystal. In the simple cubic system, for example, only the (110) and (111) faces are

flat, all others are stepped [17]. The growth proceeds by the attachment of atoms at

Kossel–Stranski kinks along the step ledges [34], but not on the terraces, which do not

participate in the growth phenomena. Therefore, on the flat, ordered surface of a perfect

crystal, growth will not proceed until a small island or cluster nucleates on the surface,

thus producing a step loop that is kinked by thermal fluctuations. The stability of such a

cluster is given by the Gibbs–Thomson relationship that describes the cluster’s solubility.

If the cluster reaches the critical size, it may expand, generating a new lattice layer. Thus

the nucleation frequency (very low at low supersaturations) determines the ordered face

propagation rate. If one considers a nonperfect lattice, where the surface contains

defects, such as screw dislocations [22], twins, etc., growth can proceed without the

necessity for surface nucleation due to the defect providing growth steps.

Burton and Cabrera also examined the kinetics of vapor phase growth on these

surfaces, considering the diffusion of the adsorbed atoms across the close-packed crystal

surfaces (terraces), where secondary nucleation is required. This was a refinement of the

earlier two-dimenstional nucleation model proposed by Becker and Döring in which

surface diffusion [35] was not taken into account. Combining their results with Frank’s

theory concerning the presence of spiral dislocations that can act as growth steps on

otherwise atomically flat surfaces, they published together a seminal paper from which

the well-known BCF theory derives [36]. In this theory, developed for vapor growth but

later extended to solution growth, the boundary between the crystal and nutrient phase

was considered to be sharp (interface of zero thickness), i.e., as proposed by Kossel-

Stranski, rather than by Gibbs’s finite layer thickness model. In this case, atoms or

molecules belonged to only one or the other phase. The BCF theory of layer-by-layer

growth of the crystal lattice on smooth surfaces was quantitatively confirmed in

numerous studies of growth from solutions, including electrocrystallization.

In the ensuing years, interface structure and surface kinetics models have been

refined to include more complex interfaces, including material systems such as bio-

logical macromolecules [37]. These and other crystals with large lattice spacings grown

from room-temperature solutions have made it possible for in situ atomic force mi-

croscopy to capture spiral dislocation sources generating new layers during solution

growth, as well as the important phenomena of step bunching, low kink density at steps,
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etc. Nevertheless, this theory provided the crystal growth field with a more sound

theoretical foundation together with a better understanding of experimental results. It

formed an important base from which future studies could be built upon.

The roughening concept was employed in 1958 by Jackson [38] to consider the

problem of why many melt-grown crystals of nonmetals had specific faceted, euhe-

dral shapes, whereas metal crystals did not. He derived an elegantly simple theory for

the solid–liquid interface structure that could successfully explain and predict

experimental results. Jackson used a two-layer Bragg-Williams statistical model

(rather than the BCF Onsager model) taking into account nearest neighbor bonds into

the solid and lateral bonds within the solid–melt interface. The free energy for adding

atoms to a singular (or atomically smooth) interface is calculated until a complete

monolayer is formed. Starting with the change in excess free energy associated with

randomly adding atoms to such a surface, Jackson found the following relationship

for solid–liquid transitions.

a ¼ ðL=KTeÞðh=vÞ (1.2)

where L is the change in internal energy associated with the transfer of one atom from

the bulk liquid to the bulk solid (latent heat), h is the maximum number of adatom

nearest neighbors on the surface, n is the total number of nearest neighbors of an atom

in the crystal, and Te is the equilibrium temperature for the phase change. This so-called

Jackson “a factor” consists of two terms: the first is essentially the entropy of melting

divided by the gas constant and is a materials parameter, and the second depends on the

crystal structure and specific surface under consideration. The crystallographic term is

maximum for close-packed planes, and always <1. It has values of 2/3 for a (100) simple

cubic, structure and 1/2 for (111) fcc and (110) bcc structures. Materials with a< 2 grow

with nonsingular interfaces, whereas materials with a> 2 exhibit facets on the growing

interface. The former are often metals, with simple centro-symmetric crystal structures,

whereas the latter are materials with more complex crystal structures. Using transparent

systems having different values of a, Jackson and Hunt [39] were able to demonstrate

experimentally the efficacy of their model. Figure 1.3 shows the crystalline morphologies

observed for high and low a factor materials. A comparison of the BCF and Jackson

models was given by Woodruff [40]. In 2004, Chernov [37] discussed how interface

growth kinetics has advanced during the past 50 years.

In the years following, interface structure and surface kinetics models were refined to

include more realistic interfaces where each interfacial atom cannot be ascribed to one

or the other phase. Instead, this disordered interface is viewed as a layer several atomic

spacings thick, where all atoms move randomly and, on average over time, realizes

continuous transition between the fully ordered crystal bulk and the disordered melt.

This approach allowed for the prediction of a kinetic coefficient linearly connecting

the supercooling DT at the rough crystal–melt interface to its growth rate V for simple

liquids, like metals.

V ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kT=m

p
DT

�
Te: (1.3)
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Here m is the mass of the atom while the numerical coefficient A is determined by the

structure of the liquid and is close to unity. All in all, the BCF theory and its further

development provided the crystal growth field with a more stable theoretical foundation

together with a better understanding of experimental results. It formed an important

base from which future studies could be built upon.

In 1953, research to elucidate and quantify the nature of interface instabilities

during crystal growth began with the work of Canadian metallurgists Rutter and

Chalmers [41]. They postulated that the cellular (honeycomb-like) substructure that

formed in solidifying metals containing a small concentration of impurities (as

revealed by rapid melt decanting) was due to some type of instability at the growth

interface. This led to the idea that a boundary layer containing rejected impurities

develops at a growing solid–liquid interface, depressing the melting point of the liquid

in that region so that it became supercooled, but at a higher temperature than the

interface. The now well-known term “constitutional supercooling” was derived from

Chalmers studies.1 Shortly thereafter, William Tiller, observed banding in lead crystals

arising from unintentional variations in the translation rate (hence growth rate). The

structural banding was also found to be associated with the boundary layer compo-

sition. Professor Chalmers charged his group to develop a mathematical expression

for what was happening at the interface to cause these interesting interfacial in-

stabilities. Their discovery was published later the same year [42]. Their simple

(A) (B)

FIGURE 1.3 Comparison of crystal morphologies for (A) a transparent metal analog with an a-factor less than 2.
This material grows with a dendritic structure and (B) a benzyl crystal with an a-factor greater than two showing
well-developed facets.

1G.P. Ivantsov working independently in Russia in the late 1940s postulated the same concept, calling it

“concentrational” supercooling (Dokl. Akad.Nauk. SSSR 81 (1951) 179).
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relationship for constitutional supercooling provides one of the most useful tools in

the crystal grower’s arsenal. The relationship, Eqn (1.4) below, shows how the ratio of

temperature gradient in the liquid (G) to the growth velocity (R) must remain above

some critical value to achieve stable growth. That value depends upon the material

properties of the growth system, i.e., the initial melt concentration Co (far away from

the interface), the slope of the liquidus curve (m), the segregation coefficient (ko) and

the diffusion coefficient. To maintain stable growth and avoid constitutional super-

cooling one requires that

G=R > mCoð1=ko � 1Þ=D (1.4)

For the crystal grower this means that to produce a crystal without second phases

and cellular structure one must either decrease the growth rate for a given temper-

ature gradient or increase the temperature gradient. Faster growth rates are typically

very desirable, and so many efforts were undertaken to build special furnaces,

sometimes incorporating baffling, localized cooling, etc., to achieve steep thermal

gradients.

The early roughening transitions models were two-dimensional models based on

the Onsager (BCF) or Bragg-Williams (Jackson) models. It was found that computer

modeling was needed to study the problem in more complex three-dimensional systems.

Leamy and Gilmer [43] were the first to produce simulated computer images both above

and below the surface roughening transition. They also determined the free energy (F) of

a growth step for various values of Jackson’s a-factor [44]. They showed that F for the

step goes to zero at the roughening transition and therefore does not require an energy

barrier for new layer formation.

Molecular dynamic simulations have provided detailed information about the pro-

cess of crystal growth at the atomic level. Its use in morphological stability problems was

taken up by numerous groups over the ensuing years which, coupled with experimental

work, has led to a significantly greater understanding of the crystallization process (see

Figure 1.4).

Modern concepts of interfacial and morphological stability are largely based on the

1963 work of Mullins and Sekerka [45]. Whereas previous researchers knew that various

perturbations during growth such as mechanical vibrations, temperature fluctuations,

etc., could lead to interface instabilities such as cells and dendrites, they were unable to

explain the dynamic mechanisms that were responsible. Mullins and Sekerka developed

a mathematical theory of linear morphological interface stability. This was based on

small perturbations (sinusoidal ripples) on the growth plane in an unstirred melt that

either decay or grow with time. Their analysis led to a more refined relationship that

considered the destabilizing effect of the diffusion field and the influence of surface free

energy on the boundary conditions. Their results extend the constitutional supercooling

criterion described in Eqn (1.3), with several extra terms affecting interface stability [42].

Linear stability theory proves that constitutional supercooling is the correct criterion in

the limit of disturbances with small wavenumbers (long wavelengths). The important
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crystal growth/materials parameters affecting interface stability are the temperature

gradient normal to the growing interface, the slope of the liquidus from the phase dia-

gram, the growth velocity, latent heat, mass and interfacial energy densities and the

thermal conductivities of the liquid and solid. It was also found that stability depends on

whether the thermal conductivity of the melt is greater or less than that of the solid.

Other researchers expanded on this research to include molecular attachment kinetic

effects, interface energy anisotropy, nonlinear effects, etc., among them V. Voronkov [46]

whose independent investigation on mosaic and cellular structures actually predated

that of Mullins & Sekerka. John Cahn [47] was the first to treat anisotropic surface

tension and interface attachment kinetics (for a spherical geometry). Coriell and Serkeka

[48] studied the same types of anisotropies for a planar interface. Chernov [49] treated

the case of strong anisotropies and Hurle [50] analyzed the influence of melt convection.

Historically, understanding crystal morphology has provided much of the impetus

driving theoretical crystal growth studies. Aside from the regular crystalline forms found

in nature (e.g., quartz) or produced during solution or vapor growth in the laboratory,

other more complex crystalline morphologies such as dendrites and multiphase eutectic

systems have stimulated researchers to uncover the underlying mechanisms involved in

their creation.

FIGURE 1.4 Monte Carlo simulations of equilibrium surface structures (microstates) for a simple cubic crystal as
a function of temperature (as KT/ 3) [44]. The surface orientation is the (20,1,0) and at the lowest temperature,
KT/ 3¼ 0.428, the step edge is clearly rough. As the temperature increases, the roughness increases. At a critical
value, the thermal roughening transition, the steps become indistinguishable.
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Dendrites are “tree-like” branched crystal structures that grow in various media

under unstable growth conditions. The earliest humans were sure to have noticed and

pondered the reason behind the large variety and symmetry of the beautiful snowflake.

Snowflakes form when microscopic supercooled cloud droplets freeze and their

morphology is dependent on the ambient conditions during their growth. Dendrites also

can form during the crystallization of metals, inorganic and organic compounds and

even biological macromolecules from melts and solutions. They are common in metals

and alloys grown from the melt in shallow temperature gradients.

Dendrites typically contain a stem terminating in a tip and side branches along the

stem (see Fig 1.3a). Growth proceeds by steady-state propagation of the tip and a time-

dependent crystallization of secondary and tertiary side branches. In 1947, G.P. Ivantsov

[357] was the first to identify these self-reproducing crystal shapes—like paraboloids, the

basis of the dendrite tip. In pure materials, growth is controlled by diffusion of latent

heat away from the advancing growth interface, and in impure systems and alloys it is

driven by solute buildup at the interface and where chemical diffusion dominates over

thermal transport. In 1960, Temkin [51], and shortly afterward Bolling and Tiller [52],

described the role of thermodynamic and kinetic driving forces in the dendritic growth

of pure materials. From that time onward, theoretical and experimental dendritic

growth studies have proceeded, relying on newer mathematical and computational

approaches. Hamilton and Seidensticker [53] examined the role of twin planes in the

rapid dendritic propagation of germanium crystals on the basis of re-entrant corner

nucleation. In 2004, Glicksman and Lupulescu [54] reviewed 40 years of progress toward

understanding the mechanisms involved in the dendritic growth of pure materials

including low gravity experiments. An update on this subject is provided in the

Handbook chapter “Dendritic Growth.”

Growth of polyphase alloys or compounds by unidirectional solidification has also

been the subject of much interest to crystal growth researchers. These structures can be

produced from eutectic (L/ aþ b), monotectic (L1/ aþ L2) and peritectic (Lþ a/ b)

three-phase melt systems. A eutectic crystal can contain four types of structures within a

matrix phase (1) parallel lamellar, (2) parallel rods, (3) globular particles of regular shape

and (4) irregularly shaped particles. Researchers were interested in the relationship

between growth velocity on lamellar spacing and interface undercooling. R. Vogel [55], in

1912, was the first to postulate that growth occurred by both phases growing simulta-

neously. Eutectic growth theory, however, remained largely qualitative until 1957 when

Tiller [56] introduced his diffusion model of eutectic growth. This development was

based on the earlier theory on eutectoid growth by Clarence Zener (1905–1993). Tiller’s

work was used as a basis for Jackson and Hunt’s model of 1966 [57], a well-known model

and one often used as the basis for later papers. Readers interested in this topic are

directed to Glicksman’s book [58] that provides, among other crystal growth topics, an

excellent review on progress in eutectic solidification.

The transport of heat and mass during crystal growth is of great importance in the

design of a growth process and in understanding the resulting features found in the
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crystals produced. In melt growth, the dominant factor is often heat transport, whereas

in solution and vapor growth, mass transport normally dominates. As to which

transport mechanism dominates, it is a matter of degree and an important consider-

ation is what happens in the boundary layer near the interface. As a crystal grows,

latent heat is evolved and the allowable growth speed depends on its removal.

Therefore, the geometry of the system, the thermal properties of the crystal, the

ambient atmosphere and the growth rate all comprise important factors. In addition,

the growing crystal needs fresh nutrient to sustain its growth and the rates at which

various species reach the interface will partly determine the maximum allowable

growth rate and crystal perfection. The concentration of dopant and/or impurity

species are often different in the interface region than in the bulk medium, thus

influencing mass transport. Instabilities in heat and mass flow can lead to defects such

as striations and interface breakdown. The degree and nature of melt convection

will strongly affect both the growth process itself and the crystal produced. Many

processes, for example Czochralski growth, use forced convection (crystal rotation) to

enhance the growth rate and improve thermal and crystal homogeneity, whereas in

other methods, for example, vertical and horizontal Bridgman growth, natural buoyant

convection occurs from thermally and solutally induced density gradients. In

Czochralski growth, the crystal is rotated and sometimes the crucible as well. W. Wilcox

[59] and J. Carruthers and K. Nassau [60] studied the fluid dynamic behavior of such

systems, as did many other researchers. The effect of fluid flow and flow instabilities

are also important in other melt growth processes such as unidirectional solidification,

vapor deposition and solution growth. See also Handbook chapter “Segregation and

Component Distribution.”

Defects, inhomogeneities, segregation, and interface effects during crystal growth

have all been the subject of numerous studies. Some useful reviews have been provided

by D. Hurle and P. Rudolph [61] and C. Wang et al. [62].

1.3 Crystal Growth Methods
Crystal growth technology is mainly an applications-driven field. In the last 60 years or

so, the major applications have been in the fields of electronic and optical materials.

Crystals, however, can be prepared from all types of materials including elements, alloys

and inorganic, organic and biological compounds. The compounds can vary from simple

binary mixtures to multicomponent systems having numerous components and com-

plex molecular or crystal structures. As a result, crystal growth methods vary widely

depending on the thermodynamic and kinetic properties of the system of interest. The

starting point for developing a viable crystal growth process begins with a thorough

knowledge of the phase relations of the system under investigation. For example, we

need to know whether the compound melts congruently, has a phase transformation

below its melting temperature, has a high vapor pressure, etc. The most appropriate

strategy for producing a crystal depends on the size required, purity and an ability to
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control its defect structure (either by elimination, neutralization or incorporation).

Crystal dimension requirements (size and shape) are a very important issue in deter-

mining the methodology. Single crystals can be grown in bulk, thin film, particulate and

fiber form and from the nanometer scale up to meter dimensions. During the last

decade, nanoscale wires, whiskers and quantum dots have been found to have unique

properties, and this has opened up the possibility for new and improved devices for

advanced applications. Classical single crystal growth methods and newer techniques

have been used to create a variety of desired nanostructures.

The number of crystal growth methods available to the crystal grower is quite large

and varied. The simplest approach to categorizing them is by the nutrient phase from

which the crystal is grown. Single crystals can be grown from (1) a liquid phase (melt or

solution), (2) from a vapor phase (condensation, sublimation or reaction) or (3) from

within a strained solid. Each method has certain advantages and disadvantages that

depend on both the properties of the material system involved and the application

requirements. Melt growth methods are generally preferred to other methods wherever

possible, while solid-state growth methods are the least useful from a commercial point

of view.

The growth of a crystal from any nutrient phase requires either a seed crystal or the

creation of a solid interface within the growth medium by homogeneous or hetero-

geneous nucleation. Homogeneous nucleation requires additional energy in the form

of supercooling in melt growth or supersaturation in solution and vapor growth

methods. Wherever possible, however, the use of a seed crystal or a compatible sub-

strate (as in thin film growth) is desirable. We will explore some of the strategies that

have been employed by growers to prepare very high quality, high performance

materials.

The theoretical studies mentioned above range from fundamental questions about

the mechanisms involved in various crystallization environments to computer simula-

tions of actual growth systems. Issues such as growth rate anisotropy, component

segregation, interface faceting, stability and morphology, fluid dynamics, thermal sta-

bility and gradient effects, etc., have been extensively studied. During the last decade in

particular, computer modeling has helped growers design and modify growth systems in

a more systematic way to create thermal and fluid flow environments to enhance

interface shape, stability and growth rates.

1.3.1 Melt Growth

When a material melts under nearly congruent conditions and has no low-temperature

destructive phase transformations, it is usually desirable to prepare a single crystal of it

directly from its melt. Often seed crystals are used to control the orientation and to take

advantage of growth rate and thermal anisotropies (heat and expansion). The most

useful methods include the Czochralski, Bridgman–Stockbarger, Kyropoulos, Verneuil

(flame fusion), and float zone methods. There are innumerable variations to these
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general techniques such as the heat exchanger method (an inverted Kyropoulos

configuration) and the pedestal growth and micro pull-down techniques to name a few.

The discussion of melt growth will begin with the oldest technique for growing large

crystals from a melt: Verneuil’s flame fusion method.

1.3.1.1 The Nineteenth Century and the Verneuil Process
Alchemists were not only trying to transmute base metals into gold, they were also

attempting to grow gemstones in the laboratory. From the beginning of the nineteenth

century, various researchers were attempting to grow crystals of diamond, emerald, ruby

and sapphire by various techniques, particularly by melting various oxide mixtures.

These early methods, however, only produced small crystallites. A really viable com-

mercial process did not appear until the work of Auguste Victor Louis Verneuil

(1856–1913) on the growth of large ruby crystals was made public in 1902. Actually, he

developed the now well-know flame fusion process a decade earlier and spent the next

decade improving the method before making it public knowledge. A very thorough

description of the life and work of Verneuil was given by K. and J. Nassau [63]. Verneuil

(see Figure 1.5(A) below) was a French “renaissance” man and well-beloved teacher,

actively interested in music performance and art and whose accomplishments spanned

many different areas of chemistry. He became interested in chemistry working in his

father’s photography shop (his father changed careers after meeting Mr Deguerre (Louis

Jacques Maude, 1787–1851), the inventor of photography. In 1873, at age 17, Verneuil

went to study in the chemical laboratory of the distinguished Professor Edmund Frémy

(A) (B)

FIGURE 1.5 (A) A photograph of Dr. A.V.L Verneuil, and (B) a schematic diagram of Verneuil’s crystal growth
apparatus [63].
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(1817–1894). He eventually earned his doctoral degree in 1886. In his earlier years in the

Frémy laboratory, he participated in research on ruby crystal growth by a melting

technique using porous alumina crucibles. He also became friends with Henri Moisson

(1852–1902) who worked on diamond crystallization in Frémy’s laboratory.

In 1886, an unknown group from Geneva started selling larger synthetic ruby crystals

than were available elsewhere. It is now believed that these so-called “Geneva Rubies”

were actually grown by an early version of the flame fusion process [63]. Verneuil was

intrigued by these samples, and it stimulated him to develop the method for which he

became famous. The mysterious group from Geneva ceased operation in 1905, not long

after the Verneuil Process had gone into commercial production. Such groups have

appeared from time to time trying to pass off synthetic crystals for natural stones that

garner much greater value.

The flame fusion method was first developed to produce large, high-quality ruby for

the gemstone market and also for watch bearings. The process, which is still in use

today, involves passing a powder of the compound through a vertically aligned oxy-

hydrogen flame. Molten droplets descend by gravity onto a rotating alumina

pedestal containing the growing crystal and the crystal grows upward on the pedestal.

The basic apparatus used by Verneuil is shown in Figure 1.5(B). Temperature gradients

are steep, boules are prone to cracking and the early powder delivery systems were

often unreliable. Important processing refinements were made by Verneuil over his

lifetime to improve the process reliability and crystal quality. The first problem he

solved was the severe cracking problem. He accomplished this by reducing the contact

area of the boule with the pedestal. While preventing cracking, the boules after growth

were still highly strained. This strain was relieved naturally when the boules split in

half or were split by hand. Powder delivery was done by mechanical tapping mecha-

nism mounted on a hopper containing the charge powder. For ruby growth, the

powder Verneuil used was a mixture of ammonium and chrome alums. The chromium

oxide concentration in the boules was w2.5%. The oxygen content in the ambient gas

phase was critical for achieving the appropriate oxidation state in the crystal. A flame

rich in hydrogen and carbon was necessary to prevent introduction of gas bubbles in

the molten ruby melts.

In 1909, Verneuil worked with L. Heller & Son of New York and Paris on developing

his process for making blue sapphire. Instead of chromium additions, the sapphire was

doped with a mixture of iron and titanium oxides, two impurities found in natural

minerals. He suggested that the titanium in the crystal gave the deep blue color by

converting the ferrous ions created by the flame back to ferric ions. Another pioneer of

the flame fusion growth method was Leon Merker (1917–2007). He also worked with the

Heller Co. starting during the early days of World War II, after he escaped fascism in

Europe and came to the U.S. to study at the University of Michigan. Based on a friend’s

recommendation, he met Mr Heller from France. After some fruitful discussions, Heller

assigned Merker the task of setting up the Verneuil Process for ruby and sapphire in New

Jersey. The venture was successful and the General Synthetics Corporation was formed
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in 1941 to provide ruby to the military and for the gem industry [64]. Merker also worked

on barium, calcium and strontium titanates; the latter two with greater success.

Since Verneuil dedicated much of his career to the successful development of a

commercial process for growing sizable crystals with controllable properties, he might

be considered the father of the commercial crystal growth industry.

1.3.1.2 The Twentieth Century
Even while Verneuil was improving on his method, other researchers at the turn of the

century were beginning to produce crystals in the laboratory to study both their solid-

ification behavior and physical properties.

One of the earliest was Gustav Tammann (1861–1938). He was born in Russia of Baltic

and German parents and spent most of his life in Germany. Among other notable

achievements, he established the first Institute of Inorganic Chemistry in Germany at

Göttingen University in 1903. Tammann’s interests led him to study the solidification of

metal alloys and their nucleation behavior. He made important contributions to the fields

of heterogeneous equilibria, crystallization and metallurgy. One of his important contri-

butions to crystal growth involved the solidification of metal alloys in long narrow tubes

tapered to a point to both confine nucleation and supercooling to a small volume and

thereby promoting the propagation of a single crystal along the tube [65]. He was prob-

ably one of the first to understand the relationship between grain selection and growth

rate anisotropy and the concept of confining the melt to control the number of grains that

form. His method would be classified today as the gradient freeze method. He also grew

crystals of a number of organic compounds and studied their crystallization behavior.

Within the same time period, Obreimov and Schubnikov from Saint Petersburg,

Russia, [66] published a paper describing the growth of metal crystals using a modifi-

cation of Tammann’s method, i.e., in a long glass tube with an imposed temperature

gradient along its length. They also briefly discuss the easy to operate Czochralski pro-

cess (to be discussed below) but rejected it in favor of the Tammann’s method because

the free-standing Czochralski crystals were not of uniform shape and some of the low-

melting metals could deform during growth without being supported. In their experi-

ments, they used a vertical cylindrical tube tapered at the bottom like Tammann.

Nucleation was achieved by cooling the tapered tip with cold air and then, after crys-

tallization in this region was accomplished, slowly cooled the furnace to propagate the

crystal up the length of the tube. Both these methods distinguish themselves from the

Bridgman and Stockbarger methods (also to be discussed later) in that growth is not

achieved by moving either the ampoule or furnace to solidify the melt.

1.3.1.3 The Czochralski Crystal Pulling Method

1.3.1.3.1 The Invention

Following Verneuil’s pioneering work, a number of other researchers began to growmetal

and alkali halide crystals for property studies. In 1918, Jan Czochralski, a well-known

young Polish metallurgist (head of AEG’s metals laboratory in Berlin), published a
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paper [67] that would describe a technique that quickly became one of the most powerful

methods for growing crystals in use today. In a story related by Tomaszewski [68],

Czochralski, while working late at night in his laboratory, discovered by accident the

crystal pulling method for which he because famous. His studies concerned the crystal-

lization rate of metals and while working on his experimental notes, instead of dipping his

pen tip into the ink well, dipped it instead into a crucible of molten tin on his desk. When

he pulled it out he found a long filament of solidified tin on the end. He subsequently

found it to be a single crystal. He then realized the value of studying crystallization

rates using such a device. His early apparatus (see Figure 1.6(A)) consisted of a

clock-motor-driven lifting mechanism. Replacing the pen tip, a short tapered glass rod

with a hook on the end was held on a silk thread connected to the pull mechanism. The

rod could be raised or lowered in a continuous fashion. By dipping this rod into the

surface of the melt, he was able to solidify metal onto it and pull out crystals of tin, lead

and zinc in a continuous and controlled fashion. Czochralski later modified the glass rod,

incorporating a capillary at the bottom to draw up the molten metal. This had the effect of

restricting nucleation to the limited volume of melt in the capillary. With this apparatus

he produced 1 mm thick single crystal wires at maximum crystallization velocities of up

to 140 mm/min and in lengths up to 19 cm. Czochralski’s life and research accom-

plishments can be found in Tomaszewski’s monograph [68].

FIGURE 1.6 (A) Czochralski’s original experimental setup [67], and (B) a photograph of a five-inch diameter com-
mercial single crystal silicon boule growing by Czochrakski’s method. (From the front cover of the AACG
Newsletter 13 (1983)—photo courtesy of the Siltec Corp).
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Czochralski’s pulling method was almost immediately put to use by von Wartenberg

[69] to grow zinc single crystal wires onto oriented seed crystals. Somewhat later, Von

Gomperz [70] pulled single crystal fibers of metals through a hole in a mica plate floating

on the surface of the melt. He also used a capillary for seeding. His work was the fore-

runner of the edge-defined film-fed growth (EFG) and the laser heated pedestal fiber

growth methods. In 1928 E.P.T. Tyndall [71] wrote a paper on the Factors Governing the

Growth of Zinc Crystals by the Czochralski-Gomperz Method. In 1937, Henry Walther of

Bell Laboratories published the first paper on the use of Czochralski’s method for the

growth of nonmetals [72]. He rejected other methods such as the Kyropoulos method

because he was intent on growing long, uniform, cylindrical bars of NaCl single crystals

for property measurements. He therefore was attracted to the pulling methods that

Czochralski and von Gomperz used to grow low-melting metals. He used a quartz cru-

cible to hold the melt and dipped a platinum rod or closed tube into its surface,

sometimes with an oriented seed attached. In the beginning, he used Kyropoulos’s

method of pulling the tube up slightly after the first melt solidified on the rod to reduce

melt contact with the crystalline solid that formed. He placed an air-cooled coil con-

taining small holes above the melt to cool the growing crystal and pulled up at rate of

5 cm/hr while rotating the crystal at 10 rpm. He was the first to apply rotation to the

Czochralski method and produced the first bulk crystals of a high melting point com-

pound by this method. Walther successfully produced NaCl boules 2 cm in diameter and

30 cm long. It is rather amazing that this paper, although published in a prominent

journal and referenced twice a few years after its publication, was only found very

recently (by Reinhard Uecker [73]). Strangely, even many Bell Laboratories researchers

from that period to the present time seem to have been unaware of Walther’s work, and

it was not mentioned in the rather extensive review of engineering and science research

in the Bell system during the period 1925–1980 [30]. In 1940 Evans [74] used Walther’s

method to grow single crystals of NaCl, KCl and KBr.

1.3.1.3.2 Semiconductors

Bardeen and Brattain discovered the transistor in 1947 using large-grained Ge samples

produced by unidirectional solidification [30]. Shortly afterward, it was demonstrated

that single crystals were better, and this led to a dramatic expansion of the crystal growth

field in general, and the Czochralski method in particular. This versatile technique has

been applied to a wide variety of materials of commercial importance—particularly

semiconductors and optical materials.

According to [30] (p. 422), “A single crystal growth technique, first used by

J. Czochralski in 1917, was adapted and improved in 1950 by G.K. Teal and J. B. Little for

the growth of single crystals of germanium” [75]. They dipped an oriented Ge seed

crystal into the melt surface and, while rotating, pulled modest sized crystals (by today’s

standards) of 2.5 cm diameter and 10 cm in length. The minority carrier lifetimes were

significantly better than in polycrystalline materials, and therefore the semiconductor

researchers shifted their efforts to producing bigger and better crystals with control of
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the dopant concentrations and uniformity. In addition, the single crystal technique

allowed for the creation, during growth, of n-p-n junctions by perturbing the growth

conditions [76]. While this junction technique was eventually superseded, it was an

important step in transistor technology. The importance of homogeneity in semi-

conductor devices led many researchers to study the thermodynamic and kinetic aspects

of impurity and dopant incorporation. One such seminal study, as mentioned earlier,

was that of Burton, Prim and Slichter [28,29]. Shortly after the germanium research

activities began, the focus shifted to silicon whose properties were deemed to be su-

perior. In 1952, Teal and Buehler [77] reported on the Czochralski growth of silicon

crystals—a much higher melting compound (1414 �C compared with 938 �C for Ge) and

more difficult to grow due to its reactivity. Over the years, crystal sizes have constantly

increased (see Figure 1.6(B) above), and today commercial systems are available to grow

Si boules 12 in in diameter and 6 ft long from which substrates can be cut for the

preparation of integrated circuits. In situ recharging to grow longer crystals and con-

trolling melt flows using magnetic fields were added over the years to boost production

rates and quality. One of the most important factors in producing high quality crystals

was not only to control impurities and other point defects but their complex interactions

with each other, as well as with dislocations. Removal of one defect can lead to the

redistribution of other defects to lower the overall energy of the system.

It was recognized early on that purity of the starting material was critical to

semiconductor performance. In 1951, William Pfann [78] invented the zone refining

method for ultrapurifying Ge. This very important method, in wide use today, has been

successfully adapted to the purification of all classes of materials. Shortly afterward,

Theuerer [30] invented the crucible-free float zone process to grow O2-free silicon.

Oxygen incorporation during Czochralski growth was due to the use of SiO2 crucibles.

Theuerer’s method is still in commercial use today to produce O2-free Si for special

device applications. It also has been used with other materials for which melt-crucible

interactions are problematic. With the use of optical heating systems (such as lasers

or xenon lamps), its simplicity makes it very useful for growing crystals of numerous

materials for physical property studies. Pfann [79] also invented the zone leveling

crystal growth method that is a combination of horizontal Bridgman growth coupled

with zone refining. In this case a seed and a dopant are placed at one end of a hori-

zontal tube and by moving a molten zone along the tube, the dopant could be uni-

formly distributed along the boule. This method was used early on to produce

transistors and diodes.

It became apparent that dislocations were affecting the electrical properties of Si

single crystals and the need for zero-dislocation material arose. In 1959, William Dash

[80] developed a method for doing this during Czochralski growth. Since dislocations

propagate mainly from the seed, he used high-quality seeds together with careful control

of the initial growth conditions. He was able to produce dislocation-free crystals by

“necking” down the growing boule to a very small diameter before widening it back out

to the desired size.
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Important advances in both purification and control of crystalline perfection has led

to the improved performance of Si devices.

When compound semiconductor materials such as GaAs, InP and their alloys became

important to the electro-optic field, special Czochralski techniques had to be developed

because they have high vapor pressures at elevated temperatures. In 1962, Metz et al.

[81] were the first to report the use of molten B2O3 as a melt encapsulant for the

Czochralski growth of PbTe. Both Pb and Te are volatile at the compounds melting

temperature, and they successfully sought to cap the melt to prevent losses. In 1965,

Mullins et al. [82] demonstrated that molten B2O3 was also a useful encapsulant for the

growth of GaAs and InAs. They were able to adapt a commercial low-pressure

Czochralski system for the growth of these compounds. This method is now known as

the liquid encapsulation Czochralski (LEC) method. A few years later, Mullins et al. [83]

extended their work to include the growth of GaP and InP in high-pressure furnace

systems. One problem with group V elements was that when the crystal emerges from

the encapsulating layer, it starts to lose P or As from its surface. In 1983, Azuma [84]

came up with an innovative approach to inhibit these losses. He used a pressure

balancing system to control the partial pressure of P in the InP growth chamber. In the

upper chamber was extra P4, maintained at a pressure such as to prevent evaporative

losses at the crystal surface.

1.3.1.3.3 Oxide Growth

Following the success of the Czochralski method for growing elemental Si and Ge single

crystal boules at Bell Laboratories, they and other laboratories started to use this method

extensively for growing bulk single crystals of oxide compounds for laser, nonlinear

optical, scintillator and numerous other applications.

The laser was predicted by Arthur L. Schawlow and Charles H. Townes in 1958 [30, 358,

359] but not actually demonstrated until the work of Maiman in 1960 [85] with a single

crystal ruby rod prepared at the Union Carbide company. In the same year, Nassau and

Van Uitert [86] were the first to use the Czochralski’s method to grow a high-quality

oxide crystal. They prepared laser crystals of Nd:CaWO4. During the following decade,

the Czochralski method was vigorously pursued in many research and industrial labo-

ratories around the World. A wide variety of important optical materials were grown,

including LiNbO3 [87,88], LiTaO3 [89], Bi12Ge(or Si)O20 and SrxBa1–xNb2O6 [90], YAG

(Y3Al5O12) [91], Nd:YAG [92], Sapphire [93,94], and Gd3Ga5O12 (GGG) [95]. Many of these

materials are still commercially important. A concise history of oxide crystal growth by

the Czochralski method was given by C. D. Brandle [96].

Many improvements to the method were made over the succeeding decades.

Compositional variations along the length and diameter were of major importance and

stimulated the construction and analysis of related phase diagrams. It was found, for

example, that the stoichiometric composition was not always the congruent composi-

tion [97] and to get uniformity one needed to shift the composition to the off-

stoichiometric congruent composition to achieve homogeneity. Another problem often
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encountered was that the shape of the phase field boundary of the compound might be

curved instead of straight leading to precipitation of a second phase.

During the 1960s, very little was known about how the growth interface shape could

influence crystal quality. This was very important in Si growth where zero-dislocation

crystals rely on a particular interface shape. Cockayne et al. [98] were the first to show

that interface shape could be modified and controlled by crystal rotation. Nominally,

crystals growers find that a slightly convex interface toward the melt is most desirable.

Another factor of major importance in melt and solution growth is fluid convection. It

affects mass and heat transport and therefore interface shape, boundary layer and

growth rate instabilities, etc. In Czochralski growth natural convection and crystal

rotation can interact to modify both the interface shape and the composition in the melt

near the growth interface (boundary layer). Various researchers have achieved significant

improvements in crystal quality by controlling these parameters.

The application of computer modeling to help solve crystal growth problems was

begun in the 1980s by Robert Brown and his group at MIT. One example is a paper written

by Derby and Brown [99] on the dynamics of Czochralski growth. One of the major tasks

of computer simulations is to model the flow regimes in a system in which the thermal

configurations are adjustable. In recent years, facilitated by the dramatic increase in

computing power, almost all types of crystal growth processes (Bridgman, float zone, etc.)

have been modeled. Simulations performed have been very successful in helping design

and guide refinements to laboratory and commercial crystal growth process.

During Czochralski growth, the melt level in the crucible drops as the crystal grows.

This changes a number of factors including the thermal gradients and convection pat-

terns. Often the temperature has to be changed during growth or some other parameters

modified. Whiffin and Brice [100] have shown that melt height can affect thermal

oscillations in the melt. These thermal fluctuations can lead to growth rate variations

and crystalline imperfections such as striations. A striation is a compositional variation

parallel to the growth interface, usually caused by poor temperature control and/or melt

oscillations. In the 1960s most growth was carried out manually, i.e., the temperature

was changed or the crucible position altered by analog temperature and motor con-

trollers. With commercialization came the need for automated diameter control systems.

These were based on either crucible or crystal weighing or by controlling the meniscus

position optically.

1.3.1.4 Bridgman–Stockbarger/Gradient Freeze Methods
Little did Percy Bridgman (1882–1961) or Donald Stockbarger (1895–1952) know at the

time of their respective discoveries that their names would become historically inter-

twined in describing one of the most popular techniques for growing crystals. Their

versatile method(s) made possible the growth of many different types of materials

including metals and their alloys, semiconductors, and both inorganic and organic

compounds. It was also a method that allowed the preparation of some of the largest

manmade crystals ever produced.
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Percy Williams Bridgman was a Noble Prize-winning American physicist working at

Harvard University, only a few miles away from MIT where Donald C. Stockbarger

worked as an Associate Professor of Physics. His prize (1946) was for his work in the field

of high pressure physics. The crystal growth method he developed and published in 1925

[101] departed from the work of Tammann [65] and Obreimov and L. Schubnikov [66] in

that the vertical tube containing the melt was not stationary during growth. Growth was

initiated in a capillary tube at the bottom end of a larger cylindrical ampoule and

propagated upward along the tube by lowering it down through a single zone vertical

tube furnace and out the bottom. The capillary was used for seed selection and was

further enhanced by reducing the capillary diameter at the juncture between the

capillary and the larger bore container. His first experiments were done using bismuth

melts. Not long afterward, various other researchers used his method or variants of his

method to grow other metal crystals, such as copper, and zinc.

In the late 1920s Stockbarger started his work on the growth of large, high-optical-

quality crystals of LiF and later CaF. At first, he tried Bridgman’s method [101] for CaF

but it required more careful atmosphere control to prevent hydrolysis, better starting

material purity and temperature stability to produce useful crystals. This led

Stockbarger to modify Bridgman’s method [102,103]. He used a so-called vertical

“elevator furnace” that had two graphite heaters separated by a Mo baffle through

which a covered crucible containing the melt could be passed from the upper higher

temperature region into a lower temperature section by a motorized translation device.

The use of a two-zone furnace led to better control of the thermal gradient at the

growth interface. The crucible, support rod and pedestal were graphite. The V-shaped

crucible bottom rested in the pedestal. There was no capillary region below the tapered

region for seed selectivity, and the included angle was much larger than those used in

the Bridgman and other earlier methods. So it is speculated that seed selection was

controlled by the locally steep gradient at the tip created by the thermally conducting

graphite support rod coupled with the baffle, thereby limiting the volume of super-

cooled melt that can form.

The Bridgman–Stockbarger method (shown in Figure 1.7 below) has been widely

used to grow crystals of varying sizes from its development in the 1920s until the

present day. It has also been used extensively in a horizontal configuration. While

initially used for metals and then shortly afterward for inorganic optical materials, it

has since been used to grow hundreds of other compounds including semiconductors

(GaAs, CdTe, HgCdTe, and chalcopyrite compounds such as CdGeAs2, ZnGeP2), organic

materials, oxides such as Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMNT) and halides such as Tl:CsI

and Tl:NaI, and Eu:SrI2 etc. Process improvements include the use of the accelerated

crucible rotation technique to improve melt homogeneity and interface boundary

conditions [104], vibroconvective mixing [105], baffles in the melt near the interface,

growth under high pressure, etc.

The gradient freeze (GF) method of Tammann [65] differs from the Bridgman–

Stockbarger approach in that there are no moving parts. Neither the ampoule nor furnace
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is translated with respect to the fixed thermal gradient in the furnace. Instead, a tem-

perature gradient is maintained across the melt-containing crucible such that when the

temperature of the furnace is lowered, the cool end of the melt solidifies first, and the rest

of the melt solidifies layer by layer as the freezing point moves across the melt. This

method is simple to implement and was used for the growth of a number of materials. Its

big disadvantage was that as the furnace temperature decreased, so did the gradient across

the remaining melt. Under constant cooling conditions this change in gradient could lead

to changes in growth velocity and thereby variable crystal properties along its length due to

component segregation and perhaps interface breakdown. One method used to solve this

problem was by continuously changing the furnace-cooling rate to maintain constant

freezing rate in themelt. In 1986, Gault et al. [106] successfully applied the vertical gradient

freeze method (VGF) to the growth of large diameter GaP, InP, and GaAs crystals.

Attempts to grow some important III–V compounds by the vertical Bridgman and

gradient freeze methods were complicated by the fact that these compounds expand on

cooling and can aggressively stick to the walls of many crucible materials [107]. These

methods both exist in horizontal versions that are applicable to certain important

commercial crystals. While many different types of crystals have been grown by the

horizontal Bridgman and gradient freeze techniques, their sizes are limited compared

their vertical counterparts, and the boules have noncircular cross-sections.

FIGURE 1.7 (A) Drawing of a Bridgman apparatus showing a tapered crucible being lowered through a stationary
furnace having a steep gradient at the growth interface. In Bridgman’s experiments the crucible is lowered out of
the furnace. (B) A schematic diagram of Stockbarger’s growth apparatus. Note the platinum baffle that separates
the two furnace zones for gradient control and the crucible pedestal.
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1.3.1.5 Nacken–Kyropoulos Methods
During the early decades of the twentieth century, many new developments in crystal

growth technology came out of Germany. During the 1920s in particular, a burst of

activity in the field led to numerous growth techniques being developed, many of which

are being used today in either their original or modified form.

One of the most important crystal growth pioneers of this period was the German

mineralogist Richard Nacken (1884–1971). A few years before Czochralski’s discovery, he

reported on a process for growing crystals from the surface of a melt using a cooled

copper rod with a rounded end and a seed attached [108]. Nacken’s apparatus is illus-

trated in Figure 1.8(B) below. The general idea was to locally supercool the melt adjacent

to the rod and initiate growth under controlled conditions. After growth started, the

furnace temperature could be lowered to keep the seed growing. No pulling was

involved. As the crystal grows, the melt level drops due to the higher density of the

crystal. The method was later used by J. M. Adams and W. Lewis [109] to grow very large

ice crystals. Nacken also developed a viable hydrothermal process for growing quartz

crystals. His unpublished work was found in secret WW II German reports. E. Buehler

and A.C. Walker at Bell Laboratories [110] based their successful hydrothermal quartz

growth technology on Nacken’s process.

About 10 years later, Spyro Kyropoulos (1887–1967), a student of Tammann and pro-

fessor of Applied Physics at the Gottingen University (later he taught at the California

(A) (B)

FIGURE 1.8 (A) A drawing of Nacken’s apparatus illustrating the growth of a faceted crystal using a seeded cold
“finger” inserted into the melt’s surface. (B) A schematic diagram of Kyropoulous’s experimental setup where,
unlike Nacken, a cold rod is place in the melt surface without a seed. The inset shows how seed selection can be
accomplished using a rounded seed rod.
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Institute of Technology) took up Nacken’s melt growth method to grow crack-free alkali

halide crystals for precision optics. The advantage of Nacken’s method is that the crystal is

grown within the melt rather than being confined to a container that can induce strain in

the crystal during cooling. Instead of a using a seed, Kyropoulos [111], using an air-cooled

platinum tube, nucleated a few crystallites on the end of his tube and then lifted it up

slightly so that the melt stayed in contact with only one grain. Kyropoulous’s apparatus is

shown in Figure 1.8(B) above. This seeding method had to be carefully controlled so that

the tube did not break free from the melt surface. After the seeding stage, the furnace is

slowly cooled to allow the crystallite with the fastest growing direction of heat flow to grow

to cm-size crystals before being pulled out of the melt. The thermal gradients in the melt

are generally quite small. As mentioned before, the melt level drops in systems where the

density of the solid is greater than the melt density. Kyropoulos used this process for

growing many alkali halide crystals [112]. The method is attractive because of its general

simplicity, reliability and low operating costs. Two other advantages of the method are

(1) the ability to see what was going on and to make adjustments to enhance the crystal

quality and (2) its use of lower thermal gradients than in the Czochralski method. On the

other hand, the lower gradients lead to faceting at the interface and thus chemical in-

homogeneities in the crystals. Several years later, Korth [113] took up this method but

used a seed attached to the cooled rod as did Nacken many years earlier. He grew crystals

as large as 6� 8 cm. A few years later, Katherine Chamberlain in the United States used

this method to grow very large KBr crystals up to five inches in diameter and weighing up

to seven pounds [114]. Typically Kyropoulos’s method does not involve continuous

pulling or rotation as in the Czochralski method. Growth rates are of the order of mm’s/hr

with cooling rates below 1 �C/hr. The crystal diameters usually are up to 90% of the

crucible diameter. Bliss [115] gave a detailed review of Kyropoulos’s life and method.

The Kyropoulos method has been in commercial use for over 75 years. From its

inception until the present time, the method has been used to grow large alkali halide

crystals for windows, prisms and scintillators (e.g., Tl:NaI and Tl:CsI) compounds. Due to

the development of GaN-based light emitting diodes, there has sprung up a very large

industry around the growth of large sapphire crystals for use as substrates. The

Kyropoulos method is one of the most widely used methods today for this applications.

Up to 12 inch-long crystals have been produced. It is also used in the commercial pro-

duction of Ti:Sapphire laser crystals. A variety of other materials have been grown by the

Kyropoulos method in laboratory settings, including organic materials, semiconductors

such as Si, ZnSe, and InP and other types of laser crystals. For the growth of InP crystals

[116], liquid encapsulation together with magnetic fields has been applied to the

Kyropoulos configuration to improve crystalline perfection. This has been called the

MLEK method. Over the years, furnaces have become much more complex. Heat shields

are now used to control thermal profiles. Numerical analysis has helped to define the

optimal conditions for growth of specific materials through proper baffling and posi-

tioning of the crucible in the heater. Other improved capabilities include the ability to

weigh the crystal or crucible during growth to control the rate of mass increase with time.
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1.3.1.6 Stöber/Heat Exchanger Methods
In 1925, F. Stöber [117] reported on the growth of large crystals of anisotropic materials

such as sodium nitrate, zinc and bismuth by removing the latent heat of crystallization

from the bottom of a stationary bowl-shaped crucible containing a melt (growth from

the bottom upward). A heater plate was placed above the surface of the melt and a water-

cooled plate at the bottom creating an axial temperature gradient. The radial heat flow,

present in most other growth systems, was minimal. Stöber’s method, along with one of

Tammann’s techniques, were perhaps the first gradient freeze methods (i.e., moving the

gradient along the melt rather than by moving the crucible or furnace). Stöber also found

that crystal singularity was enhanced when the thermal conductivity in one crystallo-

graphic orientation was significantly greater than in other directions. One attractive

feature of Stöber’s method was that you could produce very large crystals in near-net

shape, i.e., in the exact shape of the container. In addition the method is very simple

to implement since there are no moving parts, and lower thermal gradients employed

help reduce stresses in the final boule. He grew crystals of NaNO3 up to 10 pounds by his

method. He also grew ice crystals by inverting the cooler and immersing it into the liquid

surface.

In 1970, Frederick Schmid and Dennis Viechnicki [118] from the Army Research

Laboratory at the Watertown Arsenal, reported on a new method to produce large-

diameter sapphire crystals from the melt. This work was stimulated by the need by

the military for very large transparent armor plates. They called their new technique the

heat exchanger method (HEM). The method is similar to the Stöber process in that the

crystal grows upward from the bottom filling the crucible and taking its shape. Neither

the furnace, crucible nor crystal moves during growth. A He-cooled cold finger (similar

to the water-cooled bottom plate used by Stöber) extracts heat from the crucible bottom

in a controlled manner and independent of the heat input. A furnace that surrounds the

crucible replaced the upper pancake heater. In addition, the technique allows for a

small-diameter seed to be centered over the cold spot created by the He heat extraction

tube. Heat can be removed from the crucible bottom by increasing the He flow rate.

Since then (1975), a He recirculation system was developed along with the technology to

grow large-diameter, flat-bottom crystals free of light scatter from the small seed

centered over the heat exchanger. High-quality sapphire crystals have been grown

commercially up to 44 cm in diameter and weighing 160 kg [119]. In situ annealing in

shallow gradients is used to relieve stresses. The crystals produced are competitive with

commercial Kyropoulos sapphire. The method has also being used to produce single

crystal ingots of spinel, ruby, Ti:sapphire, Nd:Y3Al5O12 and silicon. Commercial growth

systems are available.

1.3.1.7 Kapitza’s Method
Pyotr Kaptiza (1894–1984) was an important Russian physicist who spent many years in

England before returning to Stalinist Russia. He was awarded a Nobel Prize for his work

in low-temperature physics. He used the Bridgman method to prepare metal single
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crystals for his experiments, but when it came to preparing Bi rods of a specific orien-

tation, he found that its expansion on cooling was sufficient to cause enough strain to

prevent the seeded orientation from propagating down the rod. To solve this problem,

he developed a method in which the crystal was not completely constrained [120].

He placed a bismuth rod on a copper plate and covered it with loose-fitting glass plates

to reduce drafts and then melted the rod. At one end, an oriented seed was attached and

by unidirectionally solidifying the rod by cooling he was able to produce an oriented

Bi single crystal at rates up to 5 cm per hour. This method was taken up and modified by

others, and today it might be considered the forerunner of the horizontal Bridgman

method which is widely used today for growing materials like GaAs for LED’s [121] and

ZnGeP2 and CdGeAs2 [122] for nonlinear optical applications.

1.3.1.8 Zone Melting
Zone melting methods have played an important part in (1) purification of materials for

crystal growth and other materials processing (zone refining), (2) for producing crystals

with uniform composition (zone leveling) and (3) for growing crystals without crucibles

(the float zone method). There are a number of variants to all these methods including

different methods of heating, horizontal and vertical arrangements, traveling mecha-

nisms, etc. The first reported use of zone melting was by Kapitza in 1928 [120]. In his

experiments, he passed a short resistance heater along a Bi filled tube to produce a single

crystal. In 1937, Andrade and Roscoe [123] used zone melting (also a traveling heater) to

grow lead and cadmium single crystals having low strain. By far the most important and

extensive work on zone melting for purification (zone refining) and zone leveling was

that of William Pfann [78]. In 1952, Pfann conceived of the zone refining method when

asked by the transistor researchers at Bell Labatories (where he had worked since the late

1930s) to develop a method to produce higher purity Si and Ge for use in growing

crystals with better electronic properties. Toward this end, it was used with great success

in the early days of semiconductor processing. This very versatile method was found

applicable to numerous other materials, including inorganic and organic compounds,

metals and semiconductors. Many papers on its adaptation to different materials and

operational improvements have been published since then, and it has become an

important tool for both research laboratories and industry. Pfann’s book on zone melting

[124] is the seminal publication on the method, comprehensively covering both the

theory and practice involved.

The method consists of moving a molten zone through a bar of material. Two solid

interfaces are created. As the zone moves (by moving the heater or furnace), material

from one interface dissolves in the zone and is recrystallized at the other interface.

Purification occurs for those impurities whose solubility in the liquid is different than

that in the solid (segregation coefficients, K, greater or less than one). Materials with

K< 1 will be rejected at the growth interface and will build up in the last to freeze region.

Those with K> 1 will tend to congregate at the start of the ingot. It is also a very useful

method for growing crystals from materials that melt incongruently.
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Various types of heaters have been used with the zone melting method, including

resistance, RF, electron beam, plasmas, lasers and xenon lamps. Refining can be done

with one zone moved through the ingot many times (passes) or by moving multiple

zones simultaneously. The ends of a sample can be removed and the sample zone

refined again as many times as needed. More passes are needed when K for a particularly

detrimental impurity is close to 1. Volatile species can complicate the process but

techniques to control or minimize melt losses have been developed.

Zone leveling is a way to produce material with uniform composition along its length.

It has many of the features of zone refining. Once the zone has reached a steady-state

composition, the species of interest will transfer from one interface to the other. The

composition will be the same on both the melting interface and the solidifying interface.

In both zone methods, crystal growth can be carried out during the purification or

leveling procedures.

The floating zone technique is a very important variant of the zone melting method.

It allows for crucible-free growth and eliminates possible contamination from the

crucible material and also stresses due to differential expansion between the crystal

and container. The method was invented and patented by H. Theuerer [125], a close

colleague of Pfann, to grow ultra pure Si. For better uniformity, the rods can be rotated

during growth. As mentioned before, the method is used commercially today for

growing low or oxygen-free silicon. In recent years, automated commercial optical

lamp heated float zone systems have become available and have permitted researchers

from a variety of disciplines to grow crystals of a wide variety of materials for physical

property studies [126].

The pedestal growth method is essentially a floating zone process. However, because

the pull rate of the crystal (smaller diameter) is different from the push rate of the source

rod (larger diameter) it has some characteristics of the Czochralski method.

Parenthetically, one might classify the Verneuil method as a pedestal growth method

since the crystal is grown on a pedestal and the molten zone is fed by molten powder

rather than a solid rod. The first use of a pedestal growth technique was in 1958 by

F. Horn [127] at the General Electric Corp. His method was a hybrid technique between

the Czochralski and float zone methods. The charge in the crucible was only melted near

the top surface and the crystal, of smaller diameter, pulled from this melt. As the crystal

grew he changed the heater position to melt some more of the solid below. He grew

boules of Sb-doped Ge having a more uniform composition than achievable by the

Czochralski technique where the entire charge was melted. Dash [128], and Poplawski

and Thomas [129] used this method to grow dislocation-free crystals of Si and Ge.

Two techniques that have been found particularly useful for producing small-

diameter crystals for property studies are the laser-heated pedestal fiber growth

(LHPG) [130] and micro pull-down (m-PD) [131,132] methods. The LHPG method is a

zone melting method in which, rather than a zone traversing a bar of material of uniform

diameter, a fiber is grown from a source rod of larger diameter. The pedestal configu-

ration was first used by Horn [127] and Poplawsky [129]. The source rod forms a pedestal
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whose upper surface is melted with a small spatially fixed laser beam. A seed crystal is

lowered into the melt and is withdrawn at a rate faster than the rate at which the source

rod is pushed upward to maintain constant melt volume. It is a crucible-less method,

minimizing contamination; the growth rates are much faster than bulk growth (mm/min)

because the temperature gradients at the interface are very large (>1000
�
C/cm).

These high-growth velocities can lead to greater dopant incorporation and to the growth

of metastable phases. The method is useful for incongruently as well as congruently

melting compounds, although it is limited to systems where the vapor pressures are

modest and dissociation is not a problem. The small diameter fibers were often found to

have better crystalline perfection than bulk materials. The LHPG method has been used

to grow fibers of a vast array of materials including oxides, halides, borides, carbides, and

metals. Haggerty [133] was the first to use the pedestal method with laser heating. He

grew LaB6 single crystal fibers. A few years later, it was used to grow single crystal Nd:YAG

fiber lasers [134]. One of the big advances in LHPG growth was the replacement of in-

dividual laser beams (two or four) with reflaxicon optics [135] giving a circular beam and

a much more uniformly heated molten zone. An interesting discovery came about during

the growth of LiNbO3 fibers. Lithium niobate is a ferroelectric material whose as-grown

bulk crystals contain numerous parallel and antiparallel domains. To be useful in

nonlinear and other device applications, these have to be aligned after growth in an

electric field at elevated temperatures. During the growth of LiNbO3 fibers using a two-

beam laser system, however, the small diameters and steep gradients led to single

domain fibers when grown along the c-axis and a bi-domain fiber of opposing 180�

domains when grown along the a-axis [136]. The axial gradients were responsible for the

single domain c-axis fibers and the radial gradient a-axis fibers. These observations later

led to a method to produce fibers with periodically poled domain structures by period-

ically shuttering one of the laser beams during growth [137]. Later, other periodically

poled structures for quasiphase matching applications were produced by other methods.

In 1980, Mimura et al. [131] published a paper on the growth of KRS-5 fiber crystals

using an inverted pulling system (modified floating zone technique). They had a crucible

filled with melt on the top with a feed rod continuously feeding the melt as the fiber

grew. At the bottom of the crucible was a long heated capillary tube with a shaper at the

end. The growth interface was below the shaper. The growing crystal was pulled

downward. This method was taken up by D. Yoon et al. [132] and called the micro-pull

down method. It has been used successfully for many materials, and growth systems are

available commercially. This method was reviewed by V. Chani [138].

1.3.1.9 Shaped Growth
Shaped growth generally means a method for producing a crystal with a predetermined

cross-sectional configuration. The quest to develop such methods is associated with a

need to reduce product cost and/or improve crystal quality. Notable savings can be

achieved in device fabrication, such as cutting and polishing, reducing the loss of

expensive material and reducing mechanical damage. In addition, the method usually
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allows significantly higher than normal growth velocities, thereby increasing production

rates. In a very real sense, shaped growth is a hybrid method that borrows from other

more established methods. For example, some are simple modifications of the crystal

pulling or directional freezing methods.

One might consider the Bridgman–Stockbarger method to be one of the first shaped

growth processes because the crystal retains the shape of the ampoule used. It is not

quite so obvious since almost all Bridgman crystals are grown from cylindrical ampoules.

One of several recent exceptions being a paper by Feigelson and Route [139] on the

growth of square cross-section crystals of AgGaSe2 in vacuum-formed quartz crucibles.

Using oriented seeds, they grew crystals not only aligned along the c-axis, but also so

that the flat crystal side faces would to be normal to the [110] planes in which light

propagates during type 1 phase-matched nonlinear interactions. A comprehensive re-

view of the various shaped crystal growth methods is given in Ref. [140] and elsewhere.

Perhaps the earliest attempt at shaped crystal growth is attributed to the 1921 work of

von Gomperz [70] at the Institute of Fiber Chemistry in Berlin-Dahlem. He worked in

Michael Polyani’s group. Polyani [141], reminiscing some 40 years later, recalled “Some

metallurgists, interested in my work on the hardening of single crystals, told me of a

method invented by Czochralski for producing metal crystals in the form of wires. It

consisted in pulling out a thread from a pool of molten metal, so that the thread

continued to solidify at the rate at which you were pulling it out. Erwin von Gomperz,

who was doing his thesis with me, was put to growing single crystals of tin and zinc in

this way. Unfortunately, the metal tended to come out in lumps, and the project was

saved only by the intervention of HermannMark who covered the liquid metal by a sheet

of mica with a hole in the middle, through which the thread came out as a smooth

cylindrical wire. But for this ingenious intervention, our subsequent investigations of the

plastic flow of metals might not have come about” [142].

In 1938, Stepanov at the Ioffe Institute in St. Petersberg began his extensive studies on

shaping crystals during growth using wetted and nonwetted dies [143,144]. These dies

have one or more capillaries or slots to transport melt from the crucible to the growth

interface. The shape and height of the melt column is dependent on capillary properties

such as surface tension, density, melt viscosity, impurities and wetting angle. Over many

years, Stepanov’s group produced a wide variety of shaped crystals including single and

multibore tubes, rectangular bars, sheets, discs, etc. Shaped crystals of a number of

different types of materials were grown, including oxides, metals and compound

semiconductors.

Shaped growth in the United States began in the late 1960s with the preparation of

sapphire filaments (later sapphire tubes for Na-vapor lights) by the edge-defined film-

fed growth method (EFG) and single crystal superalloy turbine blades by directional

solidification in complex molds [145,146]. The EFG process is in effect one of Stepanov’s

techniques, but it specifically focused on the advantages of wetted dies. It was discov-

ered independently by LaBelle [147] who made a significant observation during his early

attempts to pull sapphire fibers from a die placed in the melt surface. He noticed that the
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melt wet the die and instead of being the diameter of the capillary within the die was the

shape of the outer rim of the die. This was recognized by Mlavsky [148] as being of

significant benefit and thus began extensive work on the EFG method. A sketch of the

EFG method is shown in Figure 1.9. In a relatively short time after its discovery, it

became a commercially viable technology. This was due to the early recognition that

concurrent with experimental work, theoretical studies were needed to thoroughly un-

derstand the mechanisms involved in the process and ways to maintain better shape

stability and rapid growth rates [149,150]. In 1980, an entire volume of the Journal of

Crystal Growth was devoted to the subject of shaped growth methods. The EFG method

has been successfully used in the commercial production of sapphire single fibers, tubes

and ribbons and other materials. Today, the EFG method has gained an increasingly

greater market share in the production of sapphire ribbons for GaN substrates used in

lighting applications. Automated commercial EFG equipment can now be readily

obtained, permitting companies to produce such wafers themselves.

The Stepanov and EFG methods are a meniscus-controlled process like Czochralski

growth, and like it, growth is driven by crystal pulling. However, instead of pulling

directly off the melt surface, the crystal is pulled from a suitable die face located above

the melt surface. It can either float on the surface, like in von Gomperz’s early experi-

ments [70], held in a fixed position with respect to the crucible or moved during growth.

The die position leaves the growth interface some distance above the hot melt surface

and the thermal gradients are much steeper permitting enhanced growth velocities. The

die material is chosen on the basis of its wettability with the melt and its reactivity. For

sapphire, Mo dies have been used. In commercial systems the die can be moved during

growth to maintain constant conditions and be equipped with an automatic monitoring

system based on crystal weighing.

During the 1970s, the oil energy crisis led to serious efforts to produce silicon solar

cells at a much lower cost than using cut wafers from Czochralski boules. This led to a

robust effort to produce Si sheet at high growth rates. One of the most promising

methods at the time was the EFG process. Extensive efforts went into adapting it to

produce low-cost Si solar cells, but with limited success. Other innovative Si shaped

crystal growth methods were studied during this time period, including the dendritic

web process [151] in which a silicon dendrite is used a seed. It grows out laterally

FIGURE 1.9 Illustration of the EFG shaped growth process. (A) the sequential steps involved in seeding and
growing a crystal from a cylindrical die. (B) a die used to grow a hollow tubular crystal [148].
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forming a thin sheet of silicon bounded by two new dendrites that define the width of the

sheet. Some other methods include the ribbon against drop (RAD) method [152], where

silicon is deposited as aligned grains on a carbon substrate, and the silicon on ceramic

process [153], which is similar to the RAD process except that the substrate is a ceramic

material. Two other methods of note are the ribbon to ribbon (RTR) [154] and horizontal

ribbon (HRG) [155] growth methods. The former is a laser heated float-zone technique

using a poly ribbon as the source and the latter involves pulling a ribbon (cooled from

the top) horizontally from a free melt surface. The growth rates achievable in these

processes are in the 5–10 cm/min range except for the HRG method where controlled

cooling of the upper surface permitted growth rates of 10–40 cm/min. These methods

are reviewed in Ref. [140].

The unidirectional casting method used for making single crystal jet engine turbine

blades, as mentioned above, has had an important influence on aircraft performance.

These blades, made from nickel-based superalloys, were found to have superior creep

resistance if they have aligned grains [140] or better yet be one single crystal [156]. The

method is like a Bridgman technique with the mold having the shape of the blade and

extending down below is a zig-zag-shaped capillary tube mounted on a hollow pedestal

that sits on a chill plate (see Figure 1.10). Growth is upward, initiated first from the melt

in the pedestal by cooling the chill plate. This produces elongated grains along the

mold’s vertical axis, one of which will be in line with the capillary to provide seed se-

lection. If by chance more than one grain makes it into the capillary from the pedestal,

the crooked capillary will aid in seed selection.

FIGURE 1.10 Schematic diagrams showing various methods for making jet engine turbine blades. (A) original
casting method (polycrystalline), (B) single crystal growth by unidirectional solidification and (C) unidirectional
growth with grain selection [146].
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1.3.1.10 Skull Melting
The skull melting method is a quasi-crucible-less crystal growth method that was

developed in the late 1960s in Russia, especially for growing large, high-purity oxide

crystals for laser and gemstone production [157]. Since the 1970s it has become an

important method for manufacturing cubic zirconia gemstones in a variety of colors

(J.F. Wenckus et al. at the Arthur D. Little Company [158]). The method is adaptable to

Czochralski and Bridgman growth methods using seed crystals and also in centrifugal

casting.

In skull melting, a relatively large powder charge is contained within a water-cooled

cylindrical Cu crucible surrounded by an RF heating coil. The RF field generates a

magnetic field that in turn generates eddy currents due to ohmic losses in the material

within the crucible. The process works for materials whose electrical conductivity in-

creases with temperature, even through the melting stage. Due to the cold crucible wall,

a skin (skull) of unmelted materials surrounds the melt and keeps it from coming into

direct contact with the crucible, thus preventing contamination. Temperatures of over

3000
�
C can be achieved and a wide selection of gas atmospheres are possible. Unless

coupled with seeding, it is impossible to grow one single crystal due to the seeding effect

of grains in the skull. For the gem industry, large slabs of crystals are retrieved from

large-grained poly masses. The nature of the heat flow encourages the grains to grow

along the vertical direction.

Cubic zirconia (ZrO2) is used in the gem industry as a substitute for diamond since its

optical properties, hardness, and fracture toughness are similar. Pure zirconia, however,

undergoes a number of destructive phase transformations upon cooling. In order to

grow single crystals from the melt, therefore, its composition has to be modified

(stabilized) by doping to allow the high temperature cubic phase to persist to room

temperature. The most common stabilizer is yttrium (YCZ), but CaO and MgO are also

used. Concentrations of dopants vary from 10 to 40 mol%. These stabilizers work by

creating many vacancies on the oxygen sublattice that prevent the cubic phase from

transforming to phases of lower symmetry. Partially stabilized zirconia (PSZ) can be

produced by reducing the dopant concentrations to less than 6 mol%. In these materials,

part of the material transforms into the tetragonal phase creating a composite structure

with excellent mechanical properties, making them attractive for applications such as

drilling, threading, medical instruments such as scalpels, etc. [157]. The wide range of

colors possible in zirconia gemstones are created using rare earth or transition metal

element dopants.

Recently a Ukrainian group [159] developed a technique for growing large Tl:NaI

scintillator crystals by a method similar to skull melting. Since the melting temperatures

are quite low (w661 �C), they did not need RF heating and reconfigured the system from

horizontal heating to vertical resistance heating. Basically, they hold a heater plate about

1 cm over the charge, which is held in a rectangular aluminum tray sitting on the bottom

of water-cooled vacuum chamber. Since the heater is smaller in area than the container,

only the center part of the charge is melted leaving a skull 5–10 mm thick surrounding

Chapter 1 • Crystal Growth through the Ages: A Historical Perspective 37



the melt and keeping it out of contact with the aluminum. Growth is achieved by slow

cooling from the bottom up by lowering the temperature of the upper heater. It is not

clear what the grain structure of the resulting slab is like, since seeding is not used and

the plates produced are quite large. However, the scintillator properties are in line with

those of single crystals produced by other methods and in a more cost-effective manner.

1.3.2 Solution Growth

1.3.2.1 Introduction
Solution growth methods involve dissolving material in a liquid (or gel) medium and

then recrystallizing it under controlled conditions to produce a crystal of a desired size,

shape and perfection for a specific application. The control of crystal shape and size

can extend from very large crystals for optical applications down to fine powders for

pharmaceutical, agricultural, or specialty chemical uses. The solvent media may be a

low-temperature solvent like water or a high-temperature flux like PbO. Pressure-

enhanced solution growth (the hybrid hydrothermal growth method) has also been a

commercial success for the preparation of large crystals of quartz. The most common

solvent used is water, and an impressive number of inorganic salts have been converted

into single crystals using this technique, some weighing over 50 pounds. Other solvents

include organic liquids (for the growth of organic crystals) and liquid ammonia.

Growing crystals from water solutions was undoubtedly the earliest effort by early

man to replicate what he observed in nature. Natural salt ponds drying up in the

hot summer months and then redissolving during winter rains assuredly piqued his

interest and led him to experiment. Since salt became such an important commercial

product, it is not surprising that this material and method became one of the first

industrial crystal growth activities. Sugar was another material of early commercial

interest. Through trial and error, a rudimentary understanding of saturation and su-

persaturation began to develop and, along with techniques such as seeding and solu-

tion homogenization (via stirring), better control of nucleation, crystal size and purity

was achieved. Later, the role of additives to enhance growth behavior and tailor crystal

properties was incorporated into the growth procedures. The eventual use of solubility

diagrams greatly aided crystal growers in choosing appropriate growth conditions, i.e.,

temperature and composition regions. In these early days, as today, control of purity

and size were of great commercial significance. Several basic methodologies are

employed in solution growth: (1) controlled evaporation, (2) temperature programing,

(3) mass transport in a concentration gradient at constant T and (4) changing the

composition of the solution (salting out method).

1.3.2.2 Aqueous Solution Growth
Like all other crystal growth methods, a variety of modifications have been made over

the years to facilitate the growth of a specific type of material, and to achieve an

appropriate dimension and degree of crystalline perfection (purity, homogeneity, strain,

38 HANDBOOK OF CRYSTAL GROWTH



etc.) required for the application intended. Materials vary so widely in their thermody-

namic and kinetic properties that even the growth of related materials of similar

composition and structure can require changes in growth procedure or even in overall

methodology.

In 1901, G. Wulff [160] published his famous theorem on the influence of surface

energy on equilibrium shape of a crystal (morphology). It established a relationship

between the crystal habit and the structure of crystals. It was derived from studies on the

growth rates on different faces of crystals grown in water solutions. He used a rotating

cylindrical crystallizer, in which a seed crystal was placed along the axis of the cylinder at

its center-point. This allowed the crystal to grow out of contact with the vessel walls and

be exposed to nutrient equally on all faces. Other early pioneers advancing the devel-

opment of water solution methods during the first half of the twentieth century included

Kruger and Finke [161], and Valeton [162]. Kruger and Finke were the first to investigate

growth under constant temperature and supersaturation conditions. Their apparatus,

shown in Figure 1.11, had in common two vertical chambers connected by upper and

lower tubes through which solution passed in a specific way. One chamber contained

source material and the other a stirring paddle (growth chamber) to move nutrient and

depleted solution from one to the other. After equilibration of the growth chamber in a

slightly undersaturated state, a seed crystal was added. Valeton’s apparatus had a more

precise way to control temperature in each bath. These methods utilized mass trans-

ported from the source chamber to the growth chamber to control the growth process.

Crystals of potash alum and potassium sulfate were grown in these early experiments. In

1916, Nacken [163] developed a similar but more sophisticated apparatus using a vertical

configuration for solute transport. Some 30 years later, Walker and Kohman [164] at Bell

Laboratories developed a large-scale commercial crystallizer similar to these earlier

methods known as the constant temperature process. Together with Holden’s contri-

butions on seed mounting [165], this apparatus was capable of growing four large EDP

(ethylene diamine tartrate) piezoelectric crystals at a time. These crystals were used to

replace natural quartz in telephone circuits. Crystals weighing up to 40 pounds could be

FIGURE 1.11 The aqueous solution crystallizer used by Kruger and Finke [161]. The nutrient was contained in a
porous bag in heated beaker G1. The stirrer in beaker G2 recirculates saturated from G1 through a water-cooled
tube K, where is becomes supersaturated, into beaker G2 where the crystals grow. Large potassium sulfate crystals
2 cm in size were produced in this reactor.
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grown by this method. The method involved several large chambers with solution in one

chamber saturated at one temperature being continuously fed the into the crystallizer

chamber being held at a slightly lower temperature, thereby providing the supersatu-

ration conditions necessary for growth.

In 1919, R.W. Moore [166] working at the General Electric Company needed large

Rochelle salt crystals for electrical property studies. Since suitable material was not

available commercially, he was forced to develop his own method. At first he started with

the method of Kruger and Finke [161]. This proved unsuccessful. After thoroughly

studying the available literature he came up with a new and simple approach based on

the temperature lowering method. First, a saturated solution was formed 10–15 �C above

room temperature, the solution decanted to separate it from the excess salt and then

filtered. After heating the saturated solution 7–8� above its saturation point, it was

poured into a vessel containing small seeds suspended on silk threads or metal wires,

covered with a glass plate and then placed in water bath at 0.5
�
C above the saturation

temperature. From that point onward, the temperature was lowered to cause the seeds

to grow. No means of stirring the solution was provided in these early experiments.

Moore’s temperature lowering method was eventually modified to supply some fluid

movement and distribute nutrient more uniformly to all the faces. The so-called rocking

tank method was applied in 1947 by Walker [167] to the growth of large ammonium

dihydrogen phosphate (ADP) crystals needed for submarine detection. The tanks were

large rectangular trays that were gently rocked to replace depleted solution at the growth

interfaces with fresh supersaturated material. Like EDP, crystals as large as 6� 6� 20 in

were produced by this method. Many crystals could be grown in each tray and for

production (Western Electric Co.) rooms were filled with many rocking trays.

Evaporation was inhibited and the room temperature had to be carefully controlled. One

famous name associated with water solution growth was Alan Holden [165]. Aside from

his research at Bell Laboratories, he also wrote a very popular book on the subject [168].

Numerous amateurs have used it to initiate crystal growth experiments. In 1949, he

introduced the “rotary crystallizer” originally to grow EDP and then later for ADP crys-

tals. It consisted of a large, one-foot-diameter cylindrical vessel holding the solution. It

was heated from the bottom by two concentric heaters, an inner one to keep the bottom

center somewhat under saturated. In this way, errant crystallites that have fallen to the

bottom would dissolve. The outer heater controlled the overall solution temperature.

The important feature introduced by Holden was the rotating seed holder (called a

“spider”). The seed crystals were mounted on spokes emanating from the rotation shaft.

Several sets of spokes holding the seeds were used along the vertical axis. The seeds were

rotated first in one direction for a selected period of time and then in the other direction.

The system was sealed and some water condensed on the upper lid forming droplets.

When large enough, the droplets fell to the solution surface keeping it under saturated

and thus preventing the nucleation of spurious grains.

Most of the growth methods mentioned above have inherently slow growth rates

(0.5–1 mm/day) due to low solution supersaturation. The higher supersaturation
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needed to yield increased growth rates were hard to achieve and control. In 1983,

Loiacono et al. [169], using a three-stage crystallizer (modeled after Walker and

Kohman’s growth system from 1948 [164]), and under conditions of constant temper-

ature and supersaturation were able to achieve 5 mm/day growth rates for large po-

tassium dihydrogen phosphate (KDP) crystals. KDP is an important nonlinear optical

material for modulating lasers. It has been grown commercially for many decades using

aqueous methods similar to the ones described above. The need for even larger crystals

of KDP for electro-optic switch and frequency converter plates in inertial confinement

fusion research led to a big advance in solution growth methodology. It started in 1982

in Rashkovich’s group at Moscow University. There they developed a rapid growth

process for KDP from water solutions [170]. Over the next several decades, that work

was taken up by Zaitseva and colleagues at the Lawrence Livermore National

Laboratories in California [171]. They demonstrated that the standard Holden [165]

crystallizer with temperature reduction could be used to grow large high-optical-quality

KDP and deuterated KDP (DKDP) crystals up to 50 cm on a side at rates 10–100 times

faster than older methods and without spontaneous nucleation and macroscopic

defects. From their research on growing large crystals under fast growth conditions,

they were able to develop a more thorough understanding of the mechanisms involved

in solution growth. In addition to the influence of temperature, supersaturation and

dislocations on growth rates, they realized the importance of impurities, mass transport

(via high solution velocities) and in having a highly stable growth system. It was found

imperative to control secondary nucleation. The most important feature of their rapid

growth process was using highly supersaturated solutions (70–76 �C) coupled with

elaborate techniques for preventing spontaneous nucleation. Toward that end a

continuous filtration system and a seed protector were important modifications to the

growth system.

1.3.2.3 Growth of Biological Macromolecules
Determining the crystal structure of complex biological molecules such as DNA, pro-

teins, enzymes, etc., is important to both our understanding of animal and plant biology

and functionality and our ability to develop pharmaceutical products to combat various

illnesses that afflict these species. During the past century, protein crystallographers

have slowly worked out the structures of a myriad of important species using X-ray

diffraction methods. To accomplish this, researchers needed small, high-quality single

crystals of controlled composition.

The first recorded protein crystallization experiments were done by German scientist

F.L. Hunfeld in 1840. He prepared acicular crystals of earthworm hemoglobin by

pressing blood between glass slides and allowing it to slowly evaporate. Since then, many

techniques have been developed to prepare such crystals and the quality and size of the

crystals produced were essential to the success of the structural detail obtained. The

working out of the structures of myoglobin (1950) and hemoglobin (1955) using heavy

metals covalently bonded to the protein led to the Nobel Prize for their researchers.

Chapter 1 • Crystal Growth through the Ages: A Historical Perspective 41



Another Nobel Prize winner who grew crystals in order to study their crystal struc-

tures was crystallographer Dorothy Crowfoot Hodgkin (1910–1994) [172]. As a child,

Hodgkin was influenced by books that described how to grow crystals and on the

interaction of X-rays with crystals. She won her prize in 1962 for her part in unraveling

the crystal structure of the Vitamin B-12 molecule [173]. She also, together with Kathleen

Lonsdale, grew crystals of penicillin and potassium and rubidium benzyl-penicillin. One

of her major accomplishments was deciphering the structure of insulin.

While the crystal growth of biological macromolecules was primarily the domain of

protein crystallographers and biologists during most of the century, in the 1980s the

effort expanded to include experts more familiar with the theoretical and practical

aspects of crystal growth (albeit small molecule materials). This came about in two

ways. First, NASA had received requests from the crystallography community to fund

protein crystal growth experiments in the low gravity environment of outer space. It

was believed that the quality and size might be enhanced under these conditions. At

the same time, NASA had been funding a variety of small molecule crystal growth

experiments in low gravity with some promising results. NASA decided to try to engage

some of the small molecule crystal growth community in the protein growth field.

Several such programs were funded, one of which was my group at Stanford University.

I immediately realized that we did not know enough about biological species to carry

out his program successfully, and so when I found out that protein crystal growers did

not have their own forum to discuss growth problems of mutual interest, I decided to

bring them to Stanford basically to teach us about the field. Together with Alex

McPherson [174], and with support from the American Association of Crystal Growth

and NASA, we organized the first international conference on protein crystal growth at

Stanford University in 1985. It not only brought together protein crystal growers for the

first time, it also included well-known scientists and engineers from the small molecule

crystal community. A total of 140 attendees were present. It was a somewhat conten-

tious meeting at first, but as it proceeded, both sides, who spoke quite a different

scientific language, came to understand more clearly the relevant issues, i.e., the

physics behind the growth process and the influence of various processing parameters

on the size and quality of the crystals produced. This international conference series

has been held regularly every since.

Crystals of proteins and other biological species can be grown by a number of

techniques including dialysis, sequential extraction, interface diffusion, vapor diffusion

(plates, hanging or sitting drops), via pH and temperature changes, evaporation and in

thermal (concentration) gradients. McPherson’s original book, Preparation and Analysis

of Protein Crystals [175], gives a comprehensive review of growth methods (see also

Ref. [176]). Purification of starting materials and the composition of the growth solu-

tions, like in most small molecule systems, are critically important to produce suitable

crystals for X-ray structural analysis. Most of the growths are done in small batches. To

establish the correct crystallizing conditions, a matrix approach is often used. Here,

small samples with a systematically varied concentration of protein, salting agent,
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solvent, etc., are placed within many cells and crystallized under the same conditions.

Regions in the matrix that contain crystals are then regrown on a more refined

compositional scale to enhance the results. In effect, this is the combinatorial chemistry

approach and one that lends itself to automation using robotics to meter out the desired

quantities into each cell. This latter approach was pioneered by Ward et al. [177] during

the mid-1980s and is in wide use today.

One final comment worthy of mentioning again (see Scientific Study section) is that

the large size of the growth units in biological macromolecules gave crystal growth

scientists a unique opportunity to dynamically study the morphology and kinetics of

step and ledge movement (including step bunching) during growth using the relatively

new atomic force microscopy technique. The first such in situ studies were carried out in

1995 by Land et al. [178] and Malkin et al. [179].

1.3.2.4 Growth from Gels
In 1896, the German chemist Raphael E. Liesegang slowly put a drop of silver nitrate-

water solution onto a thin gel layer containing potassium dichromate, and in doing so

discovered the precipitation ring phenomena named after him [180]. This initial dis-

covery stimulated a strong interest in understanding how the process worked. A gel is a

semisolid containing small pores of angstrom dimensions in which a variety of salts can

be dissolved. Early efforts on growing crystals in gels include the work of Hatschek [181]

in 1911 and Dreaper [182] in 1913. The former grew small crystals of gypsum by letting

sulfate ions diffuse in a gelatin containing a dilute solution of calcium chloride and the

latter lead chloride crystals in a test-tube-shaped vessel. The idea for growing crystals in

a gel media was stimulated by the research work of Fisher and Simons [183] in 1926.

They were intrigued by some earlier work with gold and copper crystals produced by the

reduction of their metal salts in a silica gel and the coincident occurrence of gold in

quartz veins. From their early experiments, they predicted that this method would be

“far-reaching” and this enthusiasm caught the attention of later researchers and became

an area of vigorous research, particularly from the early 1960s onward. The work by

Heinz Henisch’s group at Pennsylvania State University stimulated researchers around

the world and was summarized in his book Crystals in Gels [184].

The gel growth method has been used to prepare an impressively wide range of

inorganic and organic crystals, including proteins. Gels provide a medium where mass

transport is by the slow diffusion of suitable ions to a region where they can react during

crystallization. It is a convection-free method and the crystals, when nucleated under

carefully controlled conditions, are suspended from one another. These factors, plus the

near room-temperature growth conditions purportedly result in higher crystal quality.

Crystal dimensions can vary from micron to centimeter sizes depending on the system

under study, but typically they only reach mm sizes. Like other solution growth crystals,

they exhibit growth rate anisotropy and faceting. Typical gels used are silica hydrogel

(sodium metasilicate), agar (derived from seaweed) and gelatin; however, many other gel

compositions have been used as well. Crystals can be grown within gels by a number of
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techniques, including (1) chemical reaction, (2) complex dilution, (3) chemical reduction

and (4) solubility reduction. An extensive list of crystals grown is given in Ref. [185].

During the last decade or so, interest in gel growth has diminished along with the

number of publications.

1.3.2.5 Nonaqueous Solution Growth
Organic crystals are useful for a number of applications including semiconductors and

scintillator devices. Organic materials, like other substances, vary widely with respect to

their thermodynamic and physical properties. Therefore it is not surprising that a suit-

able crystal growth method will depend on the specific properties of the material in

question. They can be grown by a variety of common crystal growth techniques

including vapor, melt and solution methods. Organic materials that melt without

dissociation are prime candidates for melt growth methods. Others have been grown in

solution or by vapor phase techniques. Solution growth methods usually involve organic

solvents such as ethyl alcohol, acetone, hexane, and carbon tetrachloride. The tech-

niques used are similar to water solvent methods and include solvent evaporation, slow

cooling or heating, vapor diffusion and liquid–liquid diffusion and are nicely summa-

rized in Ref. [186]. One of the recent examples of solution growth using organic solvents

is the work at the Lawrence Livermore Laboratories on the growth of large, high-quality

crystals of trans-stilbene (C14H12) for fast neutron detectors [187]. The solvents used

were toluene or anisole, the latter preferred due to its lower evaporation rate. Melt

growth techniques did not yield large, high-quality crystals. Building crystallization

systems to withstand the organic solvents and by using the temperature reduction

method together with rotation, very high-quality crystals in dimensions up to four inches

have been produced.

1.3.2.6 High Temperature Solution (Flux) Growth

1.3.2.6.1 Bulk Crystals

As with other solution growth methods, the high temperature flux growth method also

relies on the careful control of the supersaturation and melt composition. Like the low

temperature processes, there are three general methods for controlling supersaturation:

(1) slow cooling, (2) evaporation and (3) transport in a concentration gradient. In its early

incarnations, the method was unseeded and crystals grew on the surface of the melt

where supersaturation is usually greatest (due to volatility) or on the crucible walls where

heterogeneous nucleation is favored. Later, the use of seeds or cooled probes helps

facilitate growth. Generally solvents are classified as common ion or noncommon ion

fluxes. An example of the former is the growth of (Ba,Sr)TiO3 from excess TiO2 melt [188],

and the latter, the growth of Ye3Fe5O12 from BaO–B2O3 based fluxes [189]. The BaO–B2O3

flux, while used early on, was not nearly as successful as PbO–B2O3 or PbO–PbF2–B2O3

fluxes that form ionic solutions. The 1975 book Crystal Growth from High Temperature

Solutions by Elwell and Scheel [190] still remains the most thorough, encyclopedic

treatment on the history, theory and methodology of flux growth.
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Crystal growth from high-temperature solutions probably began during the nine-

teenth century. One of the earliest documented studies (1823) was by Friedrich Wöhler

(1800–1882), a famous German chemist who used a flux-reaction technique to grow

sodium tungsten bronze (NaxWO3, where x is �1) crystals by passing H2 gas over a

Na2WO4 flux [191]. He is also famous for his synthesis of urea and the codiscovery of Be,

Si and silicon nitride. By mid-century, early experiments were of a similar nature and a

variety of materials were produced including CdS (using a CdCl2 solvent and H2S

reactant), alkaline earth and transition metal oxides, silicates and sapphire [190]. Later in

the century, more traditional flux methods were used to grow a variety of binary, ternary

and higher order compounds using chemically compatible solvents. Some examples

include Doelter [192], who in 1886 grew Ag2S by dissolving and recrystallizing it from

AgCl or SbCl3 melts. AlB12 crystals were grown from B2O3 melts by Wöhler and Deville in

1857 [193], and ruby was grown by Fremy and Feil in 1877 [194] using PbO as the flux

(which from the 1950s onward became a popular flux for growing oxide crystals for

optical applications). The results varied from laboratory to laboratory, and generally the

crystal sizes were on the small side. Over 100 flux-grown compounds and their solvent

phases are listed in Ref. [190]. In this time period this was probably the most important

method used for preparing crystals of non water-soluble materials.

Solvent requirements include (1) a suitable melting temperature and solubility in the

temperature range of interest, (2) a temperature coefficient of solubility, (3) low vola-

tilization (an issue with PbO and halide fluxes), (4) compatibility with available crucible

materials (reactivity and wettability) and (5) a relatively low viscosity. In the 1950s, the

flux growth method again became an important adjunct to other developing crystal

growth methods such as the Czochralski and Bridgman methods. It was particularly

important for compounds that melt incongruently, have high vapor pressures at their

melting temperatures, are refractory with excessive melting temperatures or have

destructive phase transformations, etc.

After World War II, the flux growth method gained interest commensurate with device

researchers’ interests in finding new and better materials for optical, electronic and

magnetic applications. The use of this method was very extensive during the 1950s

through about 1980 and took place in many laboratories around the world. As a result, it

is only possible to cite a few illustrative examples in this brief historical review to give a

sense of what growth activities were like during this period. In 1964, Edward Giess [195]

successfully prepared Cr:Al2O3 (ruby) using a PbF2 flux. Lead fluoride is quite volatile,

and so it was often combined with PbO with some added B2O3 to stabilize it. At about the

same time, Stanley Austerman [196] used the flux growth method to grow BeO crystals.

BeO substrates were of interest because of its very high thermal conductivity and

therefore its ability to remove heat from electronic devices. This would permit higher

power operation. Austerman grew BeO from a Li2MoO4-based flux. Later, Newkirk and

Smith [197] grew BeO from PbO-based fluxes. In Russia, V.A. Timofeeva’s group was very

active during this time period, studying the flux growth of many different oxide com-

pounds including Al2O3, Cr2O3, Fe2O3, rare earth oxides and the garnets Y3Fe5O12, (YIG)
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and Y3Al5O12 (YAG). In the latter case, she investigated how growth defects formed as a

function of the flux growth conditions and solvent composition [198].

Single crystal garnets (A3B5O12) were of great interest for laser, microwave and

ultrasonic applications. In 1958, Nielsen and Dearborn at Bell Laboratories were the first

to report on the flux growth of Y3Fe5O12 (YIG) [199]. Major improvements in size and

quality were achieved by adding impurities such as CaO to a PbF2–PbO–B2O3 flux. Van

Uitert et al. [200] worked on the growth of large, optical-quality Y3Al5O12 (YAG) crystals in

very large platinum crucibles. Remeika, whose extensive crystal growth activities also

included the flux growth of YIG, found that pure YIG crystals contained small amounts of

Fe4þ, which resulted in reduced optical quality [201]. By adding small additions of

tetravalent ions such as Si, Sn and Ge to the flux, the problem was eliminated. Some

examples of flux grown crystals are shown in Figure 1.12.

Flux growth methods vary from simply slow cooling a melt without seeding (self-

nucleation) to more complicated seeded growth techniques. The bottom cooling method

helps control nucleation in unseeded melts. A small supersaturated region is created in

the melt to limit the volume in which nucleation can take place. This can also be used to

prevent a seed from dissolving before it starts to grow (like in the heat exchanger method).

In 1955 and 1956, Reisman and Holtzberg were the first to prepare single crystals of

potassium niobate KNbO3 (KN) and potassium tantalate KTaO3 (KT). These compounds

were of interest for ferroelectric and piezoelectric applications [203]. A K2O flux was found

suitable for this purpose. KN in particular became a very important material for efficient

direct diode doubling and other NLO frequency conversion processes, such as generating

blue light from a Ti:Sapphire laser via critical phase matching. Over the years, large-scale

(A) (B)

FIGURE 1.12 (A) A photograph of a large (3.5� 3� 2.5 cm), flux-grown crystal of GdAlO3. It contained large
inclusion-free regions. A PbO–PbF2–B2O3 flux containing some other minor additives was used. The large size and
quality is attributed to ACRT stirring method [202]. (B) Photograph of some highly facetted acicular crystals of
CdGeAs2 grown from a Bi flux (author). Some are solid, others contain a core of solidified Bi solvent. Strong
growth rate anisotropy is evident.
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crystal growth methods capable of producing 100 gm crystals were developed [204,205].

While the K2O flux was still used, top seeding was added later to control nucleation and

growth conditions. This seeding technique, now known as the top-seeded solution growth

method (TSSG), became a very important flux growth method. The first description of this

method was in a 1958 paper by Miller [206]. He used a seed crystal mounted on a rod that

rotated in a reciprocating fashion. Without pulling, he grew KN crystals up to 15 gm from a

charge containing K2CO3 and Nb2O5. He also used an electrical circuit between the cru-

cible and seed to determine the exact moment when the seed touched the melt. The

method was used later by Linares for YIG growth [207] and at MIT by Belruss et al. [208]

for the growth of SrTiO3 and BaTiO3 crystals frommelts containing excess TiO2 and GeO2.

More recently, the method has been used for growing beta barium borate crystals

(b-BaB2O4, BBO) from melts containing some Na2O [209] or other solvents to lower the hε

viscosity and to permit growth at temperatures below the a–b phase transformation

temperature. BBO and other similar compounds like LiB3O5 (LBO) and CsLiB6O10 (CLBO)

are very useful for optical applications in the visible and ultraviolet regions.

As seen with aqueous solution growth, stirring during growth is very beneficial to the

enhancement of crystal quality and growth rates. In addition to top seeding with rotation

that provides some fluid flow, other methods have been devised. One useful approach is

the accelerated crucible rotation technique (ACRT). It was first used by Nelson and

Remeika [210] in 1964 for pregrowth stirring. Scheel and Schultz-Dubois first demon-

strated its usefulness during growth in 1971 [104]. The method is very helpful with

growth from volatile melts that need to be grown in sealed crucibles. No moving parts,

like stirring rods, need to be placed in the melt. The method relies on acceleration and

deceleration of the crucible, thereby decoupling the fluids movement from the crucible’s

trajectory in a periodic fashion. Two major flow mechanisms, spiral shearing distortion

and Ekman-layer flow, are operative during acceleration and deceleration. It has been

found to limit nucleation and to help produce large, inclusion-free crystals. It was first

applied to the growth of GdAlO3 crystals from a PbO–PbF2–B2O3 flux and yielded the

largest such crystal to date [202].

One other method worth mentioning was that devised by Tolksdorf [211] at the

Phillips Central Laboratories in Hamburg. In the past, one of the problems with growing

YIG crystals from the volatile PbO–PbF2 flux was that it redissolves below 950 �C. To
prevent this, Nielsen [212] poured off the flux at 1040 �C outside the furnace.

Unfortunately, the crystals cracked due to thermal shock. An improvement on this

method was by Grodkiewicz, Dearborn and Van Uitert [213]. They punctured the bottom

of their large platinum crucibles draining off the melt. This was expensive, as the flux

material could not be reused. In Tolksdorf’s method he used a sealed crucible that could

be rotated on it axis. It was half filled with a PbO/PbF2/YIG melt and, after the crystals

were grown by slow cooling, the crucible was spun 180� separating the crystals from the

melt. In a similar way, he could mount a seed on the empty side, and when the melt was

saturated, could rotate the seed into the melt, slow cool to initiate growth onto the seed,

and when done, rotate the crucible back to its original position to remove the flux from
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the crystal. Toldsdorf’s method and apparatus was later used to grow KTiOPO4 (KTP)

crystals (an important nonlinear optical material) using the flux method.

1.3.2.6.2 Thin Film Liquid Phase Epitaxy

In addition to bulk crystal growth, high-temperature solutions have also been used to

grow thin films of semiconductors, oxides (magnetic and electro-optic) and various

other compounds. The method is known as liquid phase epitaxy (LPE). The LPE method

involves the crystallization of a single crystal or crystallographically oriented layer on a

substrate in contact with a liquid phase. The substrate (usually a single crystal wafer)

may be either of the same base composition (homoepitaxy) or a different composition

(heteroepitaxy). The field of epitaxial growth extends well beyond the LPE method to

include numerous vapor phase depositions techniques to be discussed later. While these

other methods are very important, the LPE has certain advantages including (1) greater

crystalline perfection due to the near equilibrium growth conditions and use of a near

perfect substrate template, (2) better stoichiometry control, (3) higher growth rates due

to higher solutes concentrations and (4) lower cost compared to other methods. A

comprehensive review of LPE field is given in Ref. [214].

Epitaxial deposits have been found in various natural mineral formations. One

example is rutile crystals growing on hematite facets [215]. In 1836, Moritz Frankenheim

(1801–1869), a German physicist, was the first of many researchers to observe epitaxial

growth in the laboratory when he produced oriented crystals of sodium nitrate on a

cleaved surface of calcite crystals [216]. In 1906 Baker did some experiments on the

orientation of crystals growing from droplets crystallizing on cleaved surfaces [217]. In

1928, Royer followed this line of research [218] and using X-ray diffraction analysis, was

the first to describe the requirements for lattice matching between the film and substrate

to achieve epitaxy (an orientation relationship between the layer and the substrate).

In the 1960s, attention turned to thin film semiconductor devices. At the RCA

Laboratories, H. Nelson [219] was the first to develop an effective LPEmethod for growing

epilayers of GaAs on GaAs substrates (homoepitaxy). He used a horizontal graphite boat

systemwith a GaAsþ Snmelt at one end.When the substrate, located at the other endwas

at 640 �C, the boat was tilted and the melt flowed over the substrate. After cooling for a

period of time the melt was poured back off, leaving the substrate covered by a single

crystal layer ofGaAs.Other LPE techniques involveddipping substrates (either vertically or

horizontally) into an appropriate solution and then, after deposition, withdrawing them

back out. Substrate rotationhas also beenused to achieve better uniformity. By using these

various methods p-n junctions could be produced using doped layers. These epilayers

were used in a number of important device applications including GaAs [220] and

AlxGa(1–x)As [221] lasers and the extensive commercial production of light emitting diodes

(LED’s). The LPE method has also been used to prepare thin film structures from silicon,

germanium and their solid solutions, II–VI compounds such as ZnSe, CdTe, Hg1–x CdxTe

(MCT), SiC, the III–V nitrides (AlN and GaN) and many other alloy compositions [214]. As

with any flux growth method, the solvents have to be tailored to the specific film
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composition to be grown and the substrate and its orientation carefully chosen. The

requirement for high-quality substrates for both LPE and vapor phase epitaxy have kept

the bulk crystal growth industry very active.

In addition to semiconductor research, various applications for magnetic garnet

crystals (e.g., Y3Fe5O12 and Ca2xBi3–2xFe5–x VxO12) were developing during this same time

period. LPE became an important method for the preparation of various types of mi-

crowave, magneto-optic and bubble memory thin film devices. One of the first attempts

to use the LPE method for YIG film deposition on garnet substrates was in 1965 by

Linares et al. [222]. In 1968 Linares [223] grew high quality YIG films on GGG using the

tilting boat method and a lead borate flux. Magnetic bubble memory thin film devices

became an important research activity during the 1970s [224]. These thin film structures

were once expected to replace Si-based memory chips and various groups extensively

studied both their preparation and properties. Magnetic garnet single crystal LPE films

were typically grown from PbO-B2O3 fluxes. The substrates used were nonmagnetic

Gd3Ga5O12 (GGG). It is a very good lattice match with YIG. Various techniques such as

substrate dipping and rotation during growth were studied. Withdrawal after growth

could be problematic due to cracking and film pealing. The process gave high growth

rates and crystalline perfection, film thickness uniformity, and compositional homoge-

neity. Over time, ever more complex film compositions evolved to enhance their prop-

erties [225,226]. The technology reached its zenith with the growth of bismuth-doped

rare earth iron garnet thick films up to one-half mm thick from Bi2O3–PbO–B2O3 fluxes

onto large lattice parameter-matched Ca–Mg–Zr substituted GGG substrates.

In 1986, Bednorz and Müller discovered Hi–Tc superconductivity while working at the

IBM research laboratories near Zurich [227]. The ceramic material they produced was an

oxygen-deficient Ba-doped Lanthanum cuprate (La2–xBaxCuO4), a perovskite-like com-

pound that exhibited zero electrical resistance at 35 K, twice the highest transition

temperature achieved to date. This set off a whirlwind of research activities to find other

cuprates with even higher Tc’s including YBa2Cu3O7x (92 K) followed by

Bi2Sr2Can�1CunO4þ2nþx (n¼ 1, 2 and 3) with a Tc between 85 and 110 K. Thallium- and

mercury-based cuprates had even high Tc’s, the latter a record at 134 K. At this point a

great effort was made to grow single crystals of these compounds for physical property

studies and to enhance their properties. Due to the complex nature of the phase equi-

libria in these systems, crystal growth was very complicated, making difficult the prep-

aration of large, high-quality single crystals. All manner of bulk and film deposition

methods were tried with varying success. In Scheel et al. [228], the LPE method was used

to prepare very flat, high quality epitaxial layers of YBa2Cu3O7–x on NdGaO3 substrates.

Step heights were between 1.2 and 7.2 nm and did not exhibit the spiral islands found

using vapor phase deposition techniques.

1.3.2.7 Hydrothermal Growth
Hydrothermal growth is a solution growth method operated at modest temperatures and

elevated pressures. Byrappa and Yoshimura [229] authored an exhaustive treatise on the
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history and technology behind the hydrothermal growth process. The subject has also

been discussed to a lesser extent in numerous other books and journal articles, for

example [230]. The process involves the controlled growth of crystals in an autoclave (see

Figure 1.13(A)) onto seeds immersed in a water solution containing the nutrient and

usually a mineralizing agent. The driving force for growth is the solubility difference

generated by a temperature gradient. The method has several advantages. Growth takes

place below the material’s melting temperature and often below a destructive phase

transformation (e.g., a-quartz, the low-temperature polymorph of SiO2). Since the

growth process takes place in a sealed system, the atmosphere can be modified to suit

the material being grown (i.e., maintaining an oxidizing or reducing environment). In

addition, the method generally produces less stress on the crystal and can lead to an

increased crystalline perfection. Another attractive feature of hydrothermal growth is

that the growth rates are relatively fast compared to other solution growth methods.

High-pressure vessels can be made of various materials depending on the temperature

and pressures required.

Hydrothermal growth’s principal use has been for the commercial growth of large,

highly perfect (dislocation-free) a-quartz crystals for piezoelectric applications. A rack of

crystals produced from one large-scale commercial autoclave is shown in Figure 1.13(B).

Piezoelectric materials such as quartz generate an electrical polarization when subjected

(A) (B)
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FIGURE 1.13 (A) A schematic diagram of a hydrothermal quartz autoclave. (B) The commercial harvesting of
quartz crystals at AT&T’s factory in Massachusetts [30].
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to a mechanical stress. The hydrothermal method has also been used to successfully

grow a variety of crystals of many different classes of compounds from simple binary

compounds, such as ZnO, ZnS and GaN, to more complex compounds, such as the

phosphates (AlPO4, and KTiOPO4), calcite, hydroxyapatite, zeolites, silicates, metal bo-

rates, vanadates, tungstates, and rare earth garnets (e.g., YIG and YAG).

Geologists trying to understand how crystals grew in nature (in an aqueous media

under high pressures and temperatures) were the first to carry out hydrothermal phase

equilibria studies. Experiments have been traced back to the twelfth century. Their main

interest was in phase relationships rather than the growth of large crystals. One of the

first published papers on hydrothermal crystallization was by Karl Emil von Schafhäutl

in 1845. He prepared microcrystals of quartz. A short time later, in 1848, Robert Bunsen

prepared some of the alkaline earth carbonates. The first attempt to grow large crystals

hydrothermally was by Henri De Sénarmont in 1851 [231]. He introduced the use of seed

plates. It was one of his many studies on the hydrothermal crystallization of minerals.

Fifty years later, Giorgi Spezia (1905) published one of the seminal papers on the seeded

growth of a-quartz [232]. These early research efforts in Europe eventually formed the

basis of the commercial quartz crystal industry.

The modern synthetic quartz crystal growth industry arose during World War II.

Supplies of natural Brazilian quartz were not getting to the U.S. due to German sub-

marine attacks on allied shipping. Ironically, one of the applications for quartz crystals

was for submarine detection. Piezoelectric materials are needed in single crystal form to

take advantage of their anisotropic properties. In oscillators for example, the frequency

depends on crystal orientation and devices require precisely oriented parts. Quartz is

also used for watches and clocks for precision time management and in signal pro-

cessing applications.

Major developments in the hydrothermal growth technology were centered on the

growth of quartz crystals at the Bell Telephone Laboratories and the Western Electric

Company during the 1950s. Walker and Buehler [233] developed a hydrothermal growth

method capable of producing very large crystals. They used a welded steel autoclave that

was capable of temperatures of 450
�
C and pressures up to 3000 atm. Improvements in

autoclave designs were based on some early high pressure studies by Bridgman. Over the

following years, improvements were made by the Western Electric Company that led to

its successful commercialization. It was in large part due to the efforts of Laudise and

Sullivan [234]. Systematic kinetic studies by Laudise [235] led to significant improve-

ments in crystal growth rates. An effort to improve the resonance of quartz oscillators

was undertaken by Bell Laboratory scientists and other researchers. Lithium and nitrite

ions added to the growth solutions led to improved mechanical Q values [30].

Important hydrothermal growth parameters include (1) operating temperature,

(2) temperature gradient, (3) pressure, (4) percent fill, (5) impurity and mineralizer

concentration, and (6) seed orientation and surface area. Using quartz as an example,

the autoclave is placed in a two-zone furnace with the upper section, containing the

oriented seed plates, being cooler than the bottom in which the nutrient, SiO2, is placed.
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A perforated metal disc serves as a baffle between the two zones. The vessel is then filled

with solvent to a desired level. The nutrient dissolves in the hot region of the furnace and

the upper becomes supersaturated and deposits crystal layers on the seed plates.

Convective currents generated by the temperature gradients help move saturated solu-

tions to the seed chamber. For commercial quartz production (see Figure 1.13(B) above),

a typical set of conditions might include a hot zone temperature of 400 �C, a seed zone

temperature of 360 �C, a fill factor of 80% and a solution containing 1.0 M NaOH, a baffle

opening of 5% and a pressure of 21 kpsi (144 MPa) [230].

An important more recent application of hydrothermal growth has been in the

preparation of ZnO crystals. ZnO is a transparent, wide bandgap semiconductor (n- or

p-type when doped) with a range of useful properties. It is piezoelectric, ferroelectric,

exhibits room temperature ferromagnetism, has a large magneto-optic response, etc. It is

useful for chemical sensors, catalysis and optoelectronic applications. When doped, its

conductivity can vary from insulating to metallic. Bulk crystals, thin films and various

nanostructures can be produced using this method. Nanostructures, in the form of

platelets, rods, columns, and complex bilayer (column-to-rod), have recently been

prepared using hydrothermal methods [236–239].

1.3.2.8 Electrochemical Crystal Growth
Another useful solution growth technology is electrodeposition. It can be carried out in

both aqueous and molten salts solutions, and both bulk and thin film single crystals can

be grown in this way. The process involves introducing an anode and cathode into either

type of solution (of appropriate composition) and applying a suitable voltage across the

cell. The driving force for crystallization is the passage of current between the electrodes.

The electrode can be a single crystal substrate (wafer or seed), a wire or a more complex

structure. Electrodeposition has recently become an attractive method for use in pre-

paring nano-, bio- and micro-structures. It can be used to make functional materials

with the aid of three-dimensional masks and scaled up from the deposition of a few

atoms to thick deposits.

The first use of electrolysis in chemical processing is attributed to the famous English

chemist Sir Humphry Davy (1778–1829). Davy, who was responsible for the discovery of

several alkali and alkaline earth metals, separated K from KOH in 1807, the first metal

isolated by electrolysis. It has been used since then for the synthesis of a variety of

materials. The Hall process, developed in the 1930s for separating Al metal from bauxite

(dissolved in a molten salt), is one of its most important industrial applications of

electrodeposition. It has also been used to produce many refractory compounds such as

borides, phosphides, silicides and carbides. The application of this technology to crystal

growth had a late start, surprising since Kunnmann [240] observed that “materials

electrochemically precipitated from fused melts can almost always be obtained in the

form of reasonably large crystal when sufficiently low current densities are employed.”

The potential advantages of electrocrystallization for crystal growth include

(1) growth can be accurately controlled solely by electrochemical parameters (current
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density and electric potential), (2) the process is isothermal (thermal gradients and

temperature ramps are unnecessary, (3) its insensitivity to temperature fluctuations,

(4) low growth temperatures minimize thermal decomposition and stresses, as well as

vapor losses, (5) purification can be achieved electrochemically and (6) growth features

can be studied quantitatively by varying electrochemical parameters [241]. On the other

hand, the material to be grown and substrate have to be electrically conducting, and the

growth rates are typically slow due to the generally low solute concentrations in the

solution. An interesting hybrid method, developed by DeMattei et al. [242], combined

molten salt electrodeposition with the Czochralski pulling technique. They demon-

strated the method by growing long [110] oriented crystals of sodium tungsten bronze

from [110] oriented seed crystals.

Silicon was first electrodeposited in 1854 by Claire-Deville [243]. He used a NaAlCl4–Si

molten salt solution. This work was followed a decade later by Ullik [244] who used a

K2SiF6–KF flux. Cohen and Huggins [245], using a similar flux, were the first to produce

coherent epitaxial layers of Si on Si substrates. Metal substrates yielded polycrystalline

films. Other semiconductors electrodeposited from molten salt fluxes include the III–V

compounds GaP, GaAs and InP. A review of molten salt electrochemical crystal growth

was given by Feigelson in 1980 [246].

In the 1990s, an active research area developed around the growth of heteroepitaxial

thin films of chalcogenide semiconductors using the low temperature aqueous solution

electrodeposition method [247]. Large-scale solar cells were made from electrodeposited

polycrystalline CdTe films [248]. Epitaxial films of CdTe can be electroplated from so-

lutions containing cadmium sulfate and TeO2 onto an InP substrate [249]. In addition,

epitaxial films of PbS [250], CdS [251], ZnSe [252] and other related compounds have

been electrodeposited. Schlesinger et al. [253] presented a comprehensive review on the

subject of semiconductor electrodeposition.

As mentioned above, ZnO is an important and versatile material of great interest to

the research and industrial communities. The electrodeposition of ZnO was first

demonstrated by Izaki et al. [254] and later Peulon et al. [255]. The growth of oriented

rods and flat, disc-shaped crystals were described in Refs. [256–258]. Xu et al. [259]

electrodeposited well-defined nano- and micro-structures onto to indium-doped tin

oxide substrates using low molecular weight salts in the solutions to control crystal

shape. They produced hexagonally shaped tapered ZnO rods and platelets and rhom-

bohedral rods by using amine and other inorganic ions in their solutions.

1.3.3 Vapor Growth

1.3.3.1 Introduction
Vapor phase crystal growth methods have been used extensively for the preparation of

both bulk crystals and single crystal thin films. The latter, called vapor-phase epitaxy, are

usually deposited on single crystal substrates and have found their greatest utility in the

preparation of films and patterned nanostructures for electronic and electro-optic devices.
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Important film deposition techniques include OMVPE, MBE, sputtering, etc. In most of

these techniques the crystalline lattice of the film needs to be tailored to the substrate

upon which it is deposited. Their properties depend not only on their composition, but

also on lattice matching between the film and substrate and the crystalline defects that

might arise from any misorientation. The substrates are typically thin, crystallographically

oriented wafers cut from bulk crystals usually grown by melt growth techniques. The

process can be homoepitaxial (growth on a substrate of the same material) or hetero-

epitaxial (growth on a different substrate material). Some common examples being Si

integrated circuits, GaAs LED devices and more recently GaN on sapphire for lighting

applications. Artificial epitaxy, to be discussed later, involves the creation of a geometric

pattern (containing some orientational relationship with the film lattice) on a substrate by

etching or deposition. The base substrate can be an amorphous material like glass.

Vapor growth technology does not have as long a history as other crystal growth

methods. Most research and development work began mainly from 1960 onward.

However, it has been traced back a bit further to the German chemist Robert Bunsen

(1811–1899) [260]. In 1852, Bunsen observed that Fe2O3 crystals formed together with

HCl in volcanic gases through a reaction between ferric chloride and water vapor, i.e., a

chemical vapor deposition (CVD) process [261]. Not long afterward, in 1861, French

chemist Henri Claire-Deville (1818–1881) became the first person to put a CVD process

to use preparing artificial oxide minerals of magnesium, titanium and tin [262].

The first commercial CVD process was inaugurated in 1880 for the fabrication of

filaments for the new incandescent lamp industry [263]. In 1914, F.C. Brown, studied the

crystal habits of Se crystals deposited by sublimation of its vapor in a closed tube under

either vacuum or atmospheric pressure [264]. He held the Se at 270
�
C for up to a week

and the crystals formed along the tube where the temperature was lower. The largest

crystals always formed at the higher condensation temperatures (w210 �C). During the

1920s, Fritz Koref and immediately afterward Anton Eduard Van Arkel used WCl4 to

deposit W on single crystal tungsten wires. Koref [265] used a hydrogen reduction

method to dissociate WCl4 gas near the wire, which was heated to between 110 and

1000 �C. This led to a W deposit containing oriented grains. In Van Arkel’s process [266],

H2 was not needed as the process was operated at much higher temperatures

(1600–1700 �C). In 1921, research began on growing metal crystals by sublimation. Gross

[267] and Gross and Volmer [268] grew leaflet crystals of Zn and Cd by directing vapors

onto cool glass plates. This work led Volmer to his adsorption-layer theory discussed

earlier. In 1932 Straumanis [269] grew Mg, Zn, and Cd crystals by a similar technique.

The metals were held at temperatures somewhat below their melting points.

Three basic techniques have been used to grow crystals from the vapor phase:

(1) direct sublimation or evaporation of material followed by condensation, (2) chemical

transport reaction and (3) chemical vapor deposition. Chemical thermodynamics (shifts

in vapor–solid equilibrium) and mass transport are some basic differentiating features

between these methods. The process relies on mass transport of species from the source

through the gas phase to its incorporation onto the crystal surface. The sublimation and

54 HANDBOOK OF CRYSTAL GROWTH



chemical vapor deposition methods have been operated in either an open system, using

an inert carrier gas, or in a closed growth chamber containing vacuum or higher gas

pressures. The chemical vapor deposition method, most often used in thin film epitaxy,

involves the decomposition of molecular species (precursors). The chemical transport

reaction method, a reversible process, converts nonvolatile species into volatile ones

prior to crystallization in closed systems.

Crystals can usually be grown by vapor growth techniques at lower temperatures than

from melts of the same composition. Vapor phase methods are especially useful when a

compound is difficult to grow because of a high vapor pressure, dissociation prior to

melting, etc., or where a thin film is required. While these methods are used more

extensively to grow epitaxial thin films, bulk crystals of a wide variety of elements and

compounds (inorganic and organic) have also been prepared in useful sizes. Seeds are

often used but many studies have involved heterogeneous nucleation on the walls of an

ampoule. Vapor grown bulk crystals have been particularly useful for the preparation of

small crystals for physical property studies, and in a few cases larger crystals, such as SiC

and CdS, have found commercial markets. Crystals prepared by vapor techniques

include halides, chalcogenides, oxides, pnictides and organic compounds. Growth rates

vary for different materials systems and process details, but generally tend to be slower

than melt growth methods. Comprehensive reviews of vapor growth theory and methods

have been given by Kaldis [270], Faktor and Garrett [271], and Wilke [272].

1.3.3.2 Bulk Growth

1.3.3.2.1 Physical Vapor Transport

A volatile compound that congruently sublimes (or evaporates from the liquid state) can

form crystals when it condenses in a cooler region of a furnace. In its simplest form, a

closed glass ampoule containing the source at one end is placed in a temperature

gradient. The source sublimes at a selected temperature and condenses at the cooler end

either as self-nucleated crystallites or on a seed crystal. When no seed is used, many

nuclei usually form and some may outgrow the others due their temperature of depo-

sition or their orientation with respect to the heat flow in the system. In 1954, Pizzarello

[273] made an important modification to the method that helped improve crystal size

and quality. It involved translating the ampoule in the furnace gradient and has some

similarities to zone melting with the source and crystal separated by the gas phase rather

than the melt. The amount of vaporization at the source end is balanced by amount

deposited on the crystal [274]. This “zonal sublimation method” has been used to grow

doped crystals of Cd and Zn chalcogenides (see Ref. [275]). Both vertical and horizontal

methods have evolved. By controlling the nutrient flux toward the growth interface,

seeded growth is possible. This was demonstrated both by Fochs in 1960 with CdS [276]

and by Prior in 1961 with PbSe [277].

Some refractory materials such as SiC and ZnO require high temperatures to

achieve useful vapor pressures. SiC and ZnO are important wide bandgap, high-

temperature/high-voltage semiconductors. Large crystals are sought-after for the
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fabrication of substrates. Since melt growth would require pressures of 100,000 atm

and 3200 �C, other growth methods were sought. Various novel growth chambers

and heating methods were developed for the vapor growth of these crystals. One of

the earliest was by Frisch [278] in 1935. He grew ZnO needles by sublimation of a

ZnO pellet heated to very high temperatures. In 1955, Jan Anthony Lely [279]

developed a sublimation process for growing SiC single crystals that forms the basis

of all commercial processes today. In his method, silicon carbide was placed in a

graphite crucible and heated to 2500
�
C in an argon atmosphere. Large hexagonal

platelets of 6H–SiC formed. The crystals were of different sizes up to 2� 2 cm2 and

were of very high quality. In 1978, Tairov and Tsverkov [280] modified the process

to include seeding. They placed the source at the bottom of the reactor and the seed

at the top. Growth rates of 0.5–1 mm/h were achieved. Further modifications have

been made since then, and now crystals greater than 50 cm in diameter can be

produced. The formation of defects in these crystals, in particular micro-pipes has

been a challenging problem [281]. Much effort has gone into their reduction or

elimination.

Large crystals of organic compounds such as urea have also been grown by subli-

mation techniques [282]. However, the formation of gaseous byproducts such as

ammonia during growth were problematic. To remove these unwanted species, which

either slowed down or stopped the growth process, a vacuum pumped effusion hole was

incorporated into the ampoule. Large cm-size high-optical-quality boules of urea were

grown on [001] seeds at rates of 2.5 mm/day (by comparison growth from methanol

solutions was 0.3 mm/day). The reactor used for the PVT growth of large urea crystals is

shown in Figure 1.14.

1.3.3.2.2 Chemical Transport Reaction

When a material is nonvolatile under convenient processing conditions, it can often be

chemically converted into a volatile species. Crystal growth can then proceed in a

reversible process. This method is called the chemical transport reaction method (CRT).

For example, ZnSe crystals can be grown in a sealed ampoule in the presence of a small

amount of I2 vapor (the transport medium). The ZnSe charge at the hotter end will react

to form ZnI2 (v)þ Se (v). These gaseous species will then be transported to the cooler end

reforming ZnSe on the growing crystal and thereby releasing I2. The freed iodine can

then react with more ZnSe source material and return to the growth zone. In this case,

for deposition at the cold end, the required conditions are that the enthalpy (DH) and

entropy (DS) are <0. For materials where DH and DS are >0 deposition takes place in the

hot zone.

The chemical transport method is based upon the pioneering work of Van Arkel

and de Boer [283]. In 1925, they prepared the refractory metals titanium, hafnium and

thorium using this iodine transport technique with deposition taking place on a heated

wire. By 1963, the field had expanded to encompass many different materials using a

variety of transporting agents. Harold Schafer’s book entitled Chemical Transport

56 HANDBOOK OF CRYSTAL GROWTH



Reactions [284] has been an invaluable reference source for workers in the field

since 1964.

Some important process requirements include (1) a chemical reaction that produces

only one stable phase, (2) a free energy close to zero to facilitate reversibility, (3) a non-

zero DHo and (4) the ability to control nucleation and the growth kinetics via crystalli-

zation zone temperature, temperature gradients, etc. Dopants have been added by

incorporating volatile species of the desired element(s) into the growth ampoule. The

choice of transporting agent is based on the thermodynamic propensity for the volatile

species to form and dissociate in a useful temperature range. Sometimes additional

species such as CO are added to the ampoule to facilitate the desired reaction. Sagal

showed in 1966 that the growth of Y2O3 crystals solely by halogen transport was not

favored due to relatively high values of DGo (near 60 kcal/mol for the Cl2 gas and higher

for Br2 and I2) [285]. However, by adding CO to Br the DGo value could be shifted closer

to zero. The reaction therefore would be:

Y2O3ðsÞ þ 3COðgÞ þ 3Br2ðgÞ#2YBr3ðgÞ þ 3CO2ðgÞ (1.5)

During the 1950s and 1960s, considerable research work was in progress using the

CTR method. Metals such as iron, cobalt, copper and nickel crystals were produced, as

well as classical semiconductors such as silicon, gallium arsenide and gallium phos-

phide. In addition, various oxide crystals such as alumina, beryllia and silica were grown.

Pyrex

Charge

Te
m

pe
ra

tu
re

 (º
C

)

Distance (cm)

Phase angle - fired
controller

Variac power
divider

(A)

(B)

FIGURE 1.14 An example of a physical vapor transport bulk crystal growth apparatus. This growth system was
used for growing urea crystals [282].
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1.3.3.2.3 Chemical Vapor Deposition

The same basic chemical transport process can be use in open systems; however, the

process is not reversible. This method is typically known as chemical vapor deposition

(CVD). Its most important application by far is the growth of epitaxial thin films to be

discussed later. Bulk crystals or thin oriented films are grown by reacting and/or

decomposing one or more volatile precursors in the vapor state and depositing them

onto the crystal or substrate. These sources can be in many forms; gases, liquids, so-

lutions and aerosols. Any unwanted reaction byproducts can exit the system in the gas

stream. Very pure crystals can be produced by this method depending on the type of

precursor used. Perhaps the earliest example of this technique was reported by Lorenz in

1891 [286]. He reacted Cd vapor with H2S gas to form fairly large crystals of CdS. In 1947,

Frerichs [287] modified the technique by using a slow stream of H2 gas to drive the H2S

over Cd metal that was heated to 800–1000 �C. His open tube system produced crystals

up to 2 cm2. An extensive discussion of bulk crystal growth from the vapor phase is given

by Schönherr [288]. He provides many useful and practical details including the various

methods used, ampoule designs and furnace systems, etc. Bulk growths can be grown in

vertical or horizontal configurations or any angle inbetween. Translating the growth

chamber or ampoule in a temperature gradient is an often-used procedure. The reactors

can be operated at pressures ranging from atmospheric to ultra-high vacuum. Materials

produced by the CVD method include refractory metals (such as tungsten), semi-

conductors (such as silicon and III-V compounds), oxides (such as SiO2), silicon carbide,

nitride and oxynitride, and various carbon structures, including diamond as discussed

later. Since the late 1990s, it has found use in the preparation of nanocrystals, one

important example being carbon nanotubes and fibers. The nanotubes can be produced

by a number of methods including the catalytic decomposition method [289], a CVD

technique using metal catalysts together with hydrocarbon precursors. Depending on

the details of the process, i.e., the metal catalysts used, etc., aligned single- or multi-

walled nanotubes can be produced.

1.3.3.3 Vapor Phase Epitaxy

1.3.3.3.1 Organometallic Vapor Phase Epitaxy

Organometallic vapor phase epitaxy (OMVPE aka MOCVD) is a subset of the more

general Chemical Vapor Deposition (CVD) method. It uses at least one organometallic

precursor (OM) but may also be combined with other types of volatile species to produce

films of many different II-VI and III-V semiconductor compounds and their solid solu-

tions. Like other methods, there are lots of variations in technique. One of the earliest

recorded descriptions of the OMVPE process was in Scott et al.’s little known 1957

United Kingdom patent [290]. In it, he describes the deposition of InSb in a cold wall

reactor by the pyrolysis of a Group III alkyl (i.e., triethylindium) and a Group V hydride

(i.e., stibine-SbH3). The second, in a 1965 U.S. patent, described the pyrolysis of a Group

III alkyl (i.e., triethylindium or trimethylgallium) and a Group V reactant such as arsine

to produce a III–V semiconductor [291]. However, the first published work in the
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scientific literature was in 1969 in a paper by Harold Manasevit and W. Simpson [292].

They grew single crystal Ga-group V compounds on insulating, GaAs, GaP or Ge single

crystal substrates. Either trimethylgallium or triethylgalllium in the presence of arsine,

phosphine and arsine-phosphine or arsine-stibine gas phases was used in these exper-

iments. In 2004, Manasevit, now considered one of the founders of OMVPE technology,

published his recollections on how the OMVPE field developed [293]. A schematic

drawing of his apparatus is shown in Figure 1.15. Along with his colleagues at the

Autonetics Division of North American Rockwell, Manasevit published numerous other

papers on this topic. In 1975, Seki et al. [294] produced the first important device quality

(i.e., very high mobility) GaAs layers. This advancement was due to the enhanced purity

and crystalline perfection of the films. Other major technological advancements fol-

lowed soon afterward.

One of the important virtues of the OMVPE method is that it is can be used to grow

epitaxial semiconductor alloy films. In 1977, Dupuis and Dapkus [295] grew low oxygen

and carbon films of AlGaAs by the OMVPE method. This material had excellent minority

carrier lifetimes making them useful for light-emitting diode devices. In 1978, Gerald

Stringfellow, from the Hewlet-Packard Laboratories, both proposed [296] and demon-

strated [297] that with OMVPE one could grow very bright LEDs from AlInP and AlGaInP

epitaxial films.

In the 1960s, Isamu Akasaki’s group at Nagoya University started working on

GaN-based LED’s devices. In 1989, his work culminated in the invention of a bright

gallium nitride p-n junction by using the low temperature OMVPE method with an AlN

buffer layer on sapphire [298]. A major step was in creating p-type GaN using magne-

sium as the dopant and n-type with silicon. In 1994, Nakamura et al. [299] grew the first

very bright InGaN/AlGaN double-heterostructure blue-light-emitting diodes also on

FIGURE 1.15 Schematic drawing of Manasevit’s MOCVD deposition system [293].
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sapphire substrates using a two-flow OMVPE method. The work of Nakamura’s group at

the Nichea Chemical Company, as summarized in Ref. [300], was a pivotal step in the

development of the nowmultibillion dollar industry centered on the fabrication of highly

efficient GaN-based/sapphire epitaxial films for optoelectronic devices. OMVPE devel-

opment since then has been continuous with emphasis not only on improving the

quality and properties of the epilayers, but also the quality and cost of the sapphire

substrates. In an example of a more recent work (2002), Liu et al. [301] grew GaN single

crystal epitaxial layers on sapphire in a three-step process using the low-pressure

OMVPE method together with an AlN buffer layer and via atomic layer epitaxy (to be

discussed later).

Stringfellow reviewed the development and status of the OMVPE method several

times (e.g., Refs [297,302]). In the latter, he commented “One reason that OMVPE is so

widely used today is that it is the most versatile technique for the growth of materials and

structures for a wide range of devices.”

1.3.3.3.2 Molecular Beam Epitaxy (MBE)

Molecular beam epitaxy (MBE) is a process in which a thin single crystal layer is

deposited on a single crystal substrate using atomic or molecular beams generated in

Knudsen cells contained in an ultra-high vacuum chamber. The source beams can be

created in a number of ways, including (1) melting and evaporation of solids or liquids

contained in crucibles (2) solid sublimation from a crucible, (3) ion beam bombardment,

and (4) cracking various chemical species, etc. Its greatest use is for making multilayer

semiconductor device structures. Details of the MBE method, as well as other bulk and

thin film growth techniques used to prepare compound semiconductors, are given in

Ref. [303].

One of the earliest published studies on the use of the MBE method for single crystal

film growth was that of Joyce and Bradley [304]. In the mid-1960s they grew homo-

epitaxial layers of Si from SiH4. The growth rates were very low comparative to other Si

film methods and therefore not competitive in a market that needed 10 um-thick films. A

few years later, J. Davey and T. Pankey [305] from the Naval Research Laboratory, and

J. Arthur [306] and A. Cho et al. [307] from Bell Laboratories expanded the MBE method

for the deposition of GaAs. Arthur focused on surface kinetic studies, Davey and Pankey

grew large-area GaAs epitaxial films on GaAs and Ge substrates using the three tem-

perature technique, while Cho focused on device applications. The MBE technique is a

powerful method both for film deposition and in situ analysis. It has yielded, in addition

to device structures, a wealth of data on the surface atomistic phenomena such as

surface reconstruction. It has also been applied to other semiconductor material systems

such as the nitrides and has facilitated the construction of novel structures such as

periodically poled GaAs for IR nonlinear applications and quantum dots. Today, it is a

very important research tool and is used extensively in commercial optoelectronic device

processing. A historical review of the MBE method was given by Joyce and Joyce in

Ref. [308].
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1.3.3.3.3 Sputtering

In 1852, Sir William Robert Grove (1811–1896), a noted Welsh judge, physical scientist

and inventor of the fuel cell, was the first to discover the deposition process now known

as sputtering [309]. He was able to deposit material from the tip of a wire in a chamber at

a pressure of 0.5 Torr onto a polished silver surface when the latter was the positive

electrode in an electrical circuit. An interesting factoid is that the first commercial

application of the sputtering method may be attributable to Thomas Edison who early in

the development of his wax phonograph cylinders using a sputtering methodology for

plating them.

The sputtering method, as used to prepare thin films, became popular and of com-

mercial importance from the mid-1960s onward. It has the advantage of not requiring

high temperatures to deposit materials, even very refractory ones. The films have

compositions similar to the target material and large areas can be deposited. While this

physical vapor deposition method is more often used to deposit polycrystalline and

amorphous films, single crystal films have been produced by carefully controlling the

processing parameters. The method is used for fabricating integrated circuits, antire-

flection coatings, solar cells and optical waveguides, etc. Typical materials sputtered

include metals, semiconductors, oxides, and nitrides, etc.

The simplest sputtering process involves just a temperature-controlled cathode and

anode, a source of energetic particles, i.e., ions or atoms, and a vacuum chamber. A DC

potential of several thousand volts is usually maintained across the electrodes. Radio

frequency sputtering, where the sign of the electrodes is varied at a high rate, has also

been found beneficial. The material to be deposited is ejected from the target (at the

cathode) by bombarding it with ions or atoms, and the ejected material is transported in

the plasma formed to the substrate (at the anode). In addition to the ions released

from the target, electrons are also produced and they play an important role in main-

taining the plasma. However at the same time they can cause excessive heating of

the substrate. The transport mechanism within the gap between the two electrodes is

complicated and depends to a great extent on the background gas pressure. For efficient

ejection, the sputtering gas should have a similar atomic weight as the target elements.

Nonreactive gases such as argon, krypton and neon are often used to eject atoms

from the target, but reactive sputtering, using oxygen or nitrogen gas, has been employed

to deposit oxide and nitride films (e.g., ZnO and TaN). In the latter process a chemical

reaction takes place between the gas and the sputtered ions near the cathode before

being transported to the substrate. Higher substrate temperatures encourage the

deposition of single crystal films. Williams has given an extensive overview of the

sputtering field and sputtered ion emission [310].

Conventional sputtering has some disadvantages including low deposition rates, low

ionization efficiencies and substrate heating. One major improvement to this technology

was the introduction of magnetron sputtering [311]. In this process a magnetic field is

incorporated into the sputtering apparatus with the magnetic field positioned parallel to

the target and confining the secondary electron movement close to the target. This
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maximizes the probability of electron–atom interactions, increasing ionization effi-

ciency. The result is higher sputtering and deposition rates. It also permits the use of

lower operating pressures and voltages. The magnetron was originally conceived by P.M.

Penning in 1936 [312]. In 1980, Naoe et al. [313] were the first to use it in a sputtering

application. Over the years magnetron sputtering configurations have been modified,

and these developments have led to improved film quality and device performance [311].

1.3.3.3.4 Atomic Layer Deposition

In 1977, Dr Tuomo Suntola from Helsinki University in Finland patented a novel

technique to prepare highly oriented compound thin films [314]. The method was

called atomic layer epitaxy (ALE). More recently, the nomenclature atomic layer

deposition (ALD) has been favored. The ALD technique provides precise control of

the film thickness and composition and with the proper substrate composition,

orientation and temperature, can produce single crystal thin films. It involves the

periodic (alternating) pulse deposition of a film’s components in a vacuum chamber. In

between pulses there is an equilibration period during which the excess components

can desorb from the surface and exit the growth chamber. This leaves just one atomic

layer on the substrate surface. The next atomic species is then deposited, and a

controlled chemical reaction at the surface between these two layers creates the

desired film composition or composite structure. By way of example, to produce an

epitaxial ZnS film by this technique, a single Zn atomic layer is first deposited on the

substrate surface. This layer is then exposed to S2(g) or H2S(g), either of which react

with the Zn layer to form the compound ZnS. Following equilibration, another Zn layer

is deposited and then reacted again with the sulfur-containing gas. The thickness is

determined by the number of cycles employed.

Historically, the idea for a sequential layering film deposition process was first

mentioned in the 1952 thesis of Professor V. B. Aleskovskii as molecular layering. And

years later, (during the 1970s) his group in Russia worked on the developing this concept

further [315]. The efficacy and implementation of the method into a commercially viable

process derived from the work of Suntola’s group during the years prior to their patent

application. For a definitive review of all aspects of the methodology, see Suntola [316].

The ALD technique can produce atomically flat films with almost perfect stoichi-

ometry and surface conformity through the self-limiting reaction mechanism. It can be

used with many of the chemical vapor deposition methods described above that nor-

mally deposit the requisite phases simultaneously. It can be used to produce layered

films with abrupt interfaces (e.g., TiO2/Al2O3 films [317]), and M. Ritala and M. Leskela

[318] reviewed the method’s features and its potential role in nanotechnology. One of the

drawbacks of the ALD method is the slow deposition rates. This has been somewhat

overcome by increasing the substrate areas during deposition. The use of bias sputtering

has given the best stoichiometry to date. Besides oxides and chalcogenides, as

mentioned above, the method has also been used for the preparation of various semi-

conductors, nitrides, and metal films.
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1.3.3.4 The VLS Method
Another interesting and useful growth method is the vapor-liquid-solid (VLS) technique.

This hybrid method combines chemical vapor deposition with solution growth.

Deposition takes place at localized positions on a single crystal substrate to yield a

nanostructure, particularly whiskers, rods and nanowires. It starts with a single crystal

substrate patterned with an array of small dots made from a solid metal solvent phase

(the “catalyst”). The patterning can be done using lithography or by converting a solvent

film deposited on the substrate surface to droplets. The growth procedure is simple.

When the substrate is heated, the solvent phase melts. The liquid phase rapidly super-

saturates by adsorption of nutrient species from the gas phase. Growth subsequently

takes place at the substrate–liquid interface and not on the bare substrate surface. The

solvent region rises up, as a mass is deposited below it, thus propagating the growth

feature. The molten zone remains on the fiber tip during growth. As an example, silicon

nanowires have been produced from a Au–Si alloy droplet and with a gas phase con-

taining SiCl4 and H2 (see Figure 1.16 below). The VLS method has been used in

conjunction with CVD, MBE, laser ablation and carbothermic reduction.

The VLS method was first described in 1964 in the pioneering work of Bell

Laboratories scientists R. Wagner and W. Ellis [319] (see Figure 1.16). The VLS

Vapor

111

Silicon
crystal

Silicon substrate

Au - Si liquid
alloy

Vapor

(A)

(C)

(B)

FIGURE 1.16 Original schematic diagram of the VLS process for Si whisker growth on a silicon substrate, (A) Au–Si
alloy catalyst droplet on substrate surface before growth. (B) A growing whisker. A photograph of an actual Si
whisker (0.5 mm diameter) grown on a {111} Si substrate is shown in (C). It has 12 side facets alternating between
the {211} and {110} [318].
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mechanism they proposed explained the growth of silicon whiskers on silicon substrates

in the absence of the axial screw dislocation growth model described by Frank [22]. Some

advantages to the VLS growth process include a lower reaction energy than with regular

vapor growth techniques, the structures only grow where the solvent is located, and

anisotropic-shaped columns can be produced. Important process parameters include (1)

the wettability of the liquid droplet and its reactivity with the substrate, (2) the substrate

orientation and surface roughness, (3) the processing temperature, etc. It is also very

important and obvious that the solvent phase has to have a low equilibrium vapor

pressure.

Some of the popular semiconductor materials grown by VLS include Si, Ge, GaAs,

GaN, SiC and ZnO. Gold is most often used as the solvent phase, but other materials such

as Ni, Pt have been successfully used. The substrates may be of the same or similar

composition as the growth pillars (homoepitaxy) or on different material (heteroepitaxy).

One example of the latter is the growth of densely aligned GaN wires grown on sapphire,

LiAlO2 or MgO substrates [320]. Schmidt et al. discussed various aspects of the growth of

silicon nanowires and their electrical properties, including use of the VLS method [321].

The VLS method has been easily adapted to the growth of nanostructures. This has

become a very important active area of research and should lead to exciting new com-

mercial applications in the foreseeable future. One of the leading groups in this area is

Lars Samuelson’s group at Lund University. They have reviewed the fundamental

mechanisms involved in the VLS processing of nanowires and the prognosis for further

development of this technology [322]. Many new and unique structures have been

created using the VLS process. One example being a decade old study that showed that

certain material systems can phase separate into cored nanofibers. In a one-step VLS

process, Choi et al. [323] grew GaN cored nanowires with a thick AlGaN skin. Other

techniques have also been used to coat the nanowires. An excellent review of the VLS

method was given by Choi [324].

1.3.3.5 Artificial Epitaxy (Graphoepitaxy)
Up to now, we have discussed the epitaxial growth of single crystal thin films on sub-

strates made from materials of related composition and/or structure. The usefulness of

high-quality single crystal or highly oriented films is well-known and crystalline

perfection of the film depends on various attributes of the substrate and its quality.

However, it would be highly desirable to be able to grow oriented films on inexpensive

amorphous substrates or on substrate layers important to device function. In the early

1970s, Prof. N.N. Sheftal from the Russian Institute of Crystallography first described the

concept of growing films on an artificial lattice. The paper, which described the tech-

nique as “artificial epitaxy,” was translated into English three years later [325]. In 1982,

the technique was renamed “graphoepitaxy” [326], and this more catchy term has gained

favor in much of the subsequent literature.

Graphoepitaxy involves inscribing a micro-relief pattern onto a flat amorphous sub-

strate surface. The surface patterns consist of only four symmetries, two-, three- four- and

64 HANDBOOK OF CRYSTAL GROWTH



six-fold (i.e., arrays of stripes, triangles, squares and hexagons). The walls of the relief

pattern simulate the kinks and ledges associated with a crystal growth surface as described

by the Kossel-Stranski model. Rather than atoms or molecules, however, the growth units

that attach to these relatively large steps are microcrystallites of nanometer or micron

sizes. The pattern chosen is determined by the crystal structure of the material to be

deposited. For example, the three-fold relief would be used for the growth of the diamond

lattices of Si and Ge. The reliefs can be achieved by a number of techniques including

photolithography and etching, etc.

Graphoepitaxy can be accomplished using a variety of gas phase, melt or solution

growth techniques, including the VLS method mentioned above. Like other methods

described in this chapter many different materials have been prepared by graphoepitaxy,

including very large-molecule biological materials [327]. By way of illustration,

Figure 1.17 shows two crystals of catalase (an enzyme) that were deposited from an

aqueous solution onto a silicon substrate that contained a striated micro-relief [327]. The

pattern used here had a 5 mm periodicity and a groove depth of 1–2 mm. The crystals are

clearly aligned with the micro-relief. Deposited on an unpatterned substrate, the crystals

would have no orientational relationship with one another.

Graphoepitaxy has also been used to prepare oriented single crystal nanowires of

semiconductor oxides such as ZnO, SnO2, In2O3. The method has been exhaustively

covered in a book by Givargizov [328]. Since this book was written, the technique has

become very popular, particularly in the semiconductor field. For example, so-called

nano-graphoepitaxy has been used to prepare semiconductors for three-dimensional

integration devices [329].

1.3.4 Synthetic Diamond Crystals

Diamond, while highly sought after as a gemstone, also has a unique combination of

properties that make it very useful in industrial applications. Diamond not only has the

highest known hardness, it also has a very high thermal conductivity and electron

mobility, low thermal expansion coefficient and excellent optical transmission over a

FIGURE 1.17 Two catalase crystals grown from solution onto an oriented Si substrate having an etched micro-
relief pattern. The crystals, which are aligned with the pattern, grew by artificial or graphoepitaxy [327].
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broad spectral range. In addition to its major commercial market, i.e., cutting tools and

polishing powders, diamond has a myriad of other uses. Diamond-based devices include

high-power electronic devices, high-frequency field effect transistors, LED’s, ultraviolet

and high-energy particle detectors, substrates and optical windows. The two principal

methods used to grow synthetic diamonds are (1) crystallization of bulk crystals from

solution at high pressures and temperatures (HPHT) and (2) deposition at low pressures

and relatively low temperatures using the chemical vapor deposition (CVD) method.

Both were developed during the early 1950s within a few years of each other and are still

in use today to manufacture synthetic diamond products.

The earliest known reference to diamond can be found in the Old Testament [330].

It was not until near the end of eighteenth century that it was realized that diamond,

while transparent and colorless, was made up solely of carbon atoms like graphite. The

discovery came from the French chemist Antoine Lavoiser (1743–1794), who shortly

before his death, decomposed a diamond by heating it in oxygen and found CO2 as the

only byproduct. Thereafter, a number of credible researchers tried to synthesize dia-

mond, one of the first being Scottish chemist James Hannay (1855–1931). His attempts

in 1879 [331], later questioned, were followed in 1895 by the French Noble Prize-

winning chemist Henri Moissan (1852–1907). He tried to synthesize diamond in the

laboratory [332] starting with charcoal and iron heated to temperatures as high as

3500
�
C using an electric arc furnace. The heated mixture was then quenched in water

to hopefully create the high pressures under which diamond formed in nature. Other

researchers who tried to duplicate these studies either failed or had their various

claims discredited. Sir Charles Algernon Parsons (1882–1922), the inventor of the

steam turbine, spent considerable time and energy over many years trying to duplicate

the work of Hannay and Moissan. He also tried to develop his own method to produce

diamond. In 1928, as reported by Desch [333], Parsons concluded that synthetic di-

amonds had not been produced. Kathleen Lonsdale used X-ray diffraction methods to

study some of Hannay’s “diamonds” held at the British Museum. She concluded in a

1962 paper [334] that they were natural diamonds and doubted that “. neither

Hannay, Moisson or Parsons ever, in fact, made diamonds by their respective

methods.” Percy Bridgman, who as mentioned before won a Nobel Prize for his high

pressure work, spent the better part of 50 years (from 1905 to 1955) trying to synthesize

diamond. His efforts were apparently unsuccessful as well [330]. In addition to the

researchers mentioned above, the nineteenth century was littered with numerous

unsuccessful attempts to synthesize diamonds by various means. One particularly

engaging and well-researched book on the history and growth of diamond crystals is

The Diamond Makers by Robert Hazen [335].

In 1941, the General Electric Research Laboratories, in conjunction with the

Norton and Carborundum companies, set about to develop a process to synthesize

industrial diamonds. The effort was suspended during WW II but started up again in

1951. While GE put together a large staff charged with designing a furnace that could

go to both high pressures and high temperatures, it was not until H. Tracy Hall, came

66 HANDBOOK OF CRYSTAL GROWTH



up with the “Belt” press (see Figure 1.18(A)) that a breakthrough was imminent. This

device exceeded the original specifications of 35,000 atm and 1000
�
C to achieve

250,000 atm and 1800 �C [336]. The growth chamber consisted of a graphite tube

surrounded by a pyrophyllite container. Inside were placed Ni, Fe, or Co to act as a

solvent-catalyst in which the graphite dissolved. The bottom was in contact with a Ta

disc. However, even with this capability, diamond was not readily produced. It was

FIGURE 1.18 Early diamond crystal growth
(A) Schematic of the belt high-pressure, high-
temperature apparatus built at the General
Electric Corp., and (B) the first synthetic
diamonds produced using this apparatus [330].
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not until the end of 1954, after much experimentation and frustration, that the first

small, micron-sized faceted diamond crystals were produced (see Figure 1.18(B)). The

addition of FeS to the container did the trick. These were not gem-quality stones but

appropriate for abrasive applications. Hall’s personal reminiscences, given in

Ref. [330], describe how the process was invented and the subsequent events that led

to his other important invention—the tetrahedral anvil press shown in Figure 1.19.

Oddly, just before the GE success, the Swedish company ASEA, also managed to

produce small diamonds in a top-secret project that only went public in 1980 [337].

The first successful preparation of gem-quality diamonds by HPHT was in 1970, again

accomplished by GE. The process was similar to that described above with the addition

of thin diamond seeds. The first crystals were 5 mm (1 carat) in size and took a week to

grow. Longer growth times were required to produce larger crystals. These early crystals

were yellow or brown in color due to nitrogen contamination and contained inclusions.

By adding nitrogen getters such as Al and Ti, clear colorless crystals could be produced.

On the other hand, other dopants have been used to modify the color of synthetic di-

amonds (e.g., boron gives it a blue color). A variety of colored stones have been

produced.

The inherent technological difficulty in preparing diamonds or other materials at high

pressures and temperatures and the high cost of equipment led many researchers,

FIGURE 1.19 The original tetrahedral press for
producing synthetic diamond [330].
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particularly in the U.S. and the Soviet Union, to try to find a low-pressure method. Not

many scientists, however, thought this would be possible. Nevertheless, in 1952–1953,

William Eversole, at the Union Carbide Corporation, became the first person ever to

prepare synthetic diamonds [338] by the chemical vapor deposition technique. It

involved slowly depositing carbon atoms on clean diamond particle surfaces (i.e., sub-

strates) in a vacuum at temperatures in the 800
�
C range. Carbon monoxide (CO) or

methane (CH4) was used as the source of carbon. Due to the propensity for graphite

formation under these conditions, the residual graphite had to be removed after a period

of time. This involved removing the crystals from the deposition chamber and cleaning

them in an autoclave at 1000 �C and 50 atm of H2 gas. Numerous such cycles were

required. While he accomplished this feat about two years before General Electric and

just a few months before ASEA in Sweden [337], his work (described in a patent only) was

not published until 1962. In 1968, John Angus [339] independently verified Eversole’s

work, as did Deryagin and Fedoseev in 1970 [340]. While Angus also deposited diamond

on single-crystal diamonds, Deryagin and Fedoseev made epitaxial films on other sub-

strate materials such as Si and metals. From this point onward this very versatile method

was aggressively pursued and refined by a number of groups in the USSR (Russia), the

U.S. and Japan for the growth of both bulk crystals and homoepitaxial films on diamond

substrates and by heteroepitaxial growth on suitably oriented materials like Si. A useful

review of diamond growth by the chemical vapor deposition method was written by

Garcia et al. [341].

One of the initial problems with the commercialization of CVD bulk diamond was

the slow growth rates. In 1969, the former USSR scientists Spitsyn and Dervagin, who

had been working on this problem since 1956, were finally able to increase the growth

rates reported by Eversole by an order of magnitude. The improvement over their

own previous work was due to the use of methane at higher pressures (13–40 Pa),

together with an increased deposition temperature (950–1050 �C). Just a year later, a

significant breakthrough was made independently by J. Angus (USA) and V. Varnin

(USSR) [342]. They found that the use of atomic hydrogen in the growth chamber

would remove the graphite co-deposits that form along with diamond due to a large

difference in etching rates. A decade later, a group of researchers at Japan’s National

Institute for Research in Inorganic Materials made a series of important process

improvements. They developed the microwave plasma, hot filament, and RF-Plasma

CVD methods, new ways to dissociate the carbon-containing gases into reactive

species [343–345]. Growth rates up to several mm/hr were achieved. This in turn led to

the development of a variety of other processes and process refinements by this and

other groups, leading the commercial success of the CVD method for a variety of

diamond products including gemstones and coatings for various types of electronic

and optical devices.

Two other methods have been employed for growing small-size diamonds. One is the

explosive detonation method in which a carbon-based explosive is detonated inside a

metal tube containing graphite [346]. The procedure, an HPHT process, produces
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nanoscale diamonds. The diamonds are prevented from reconverting to the more stable

graphite form due to the quenching effect of a surrounding water-filled chamber.

However, they have to be separated from the remaining carbon by dissolution in acid.

The second method is the ultrasonic cavitation technique [347]. This more recent pro-

cess is carried out at room temperature and atmospheric pressure. It involves the

application of ultrasonic energy to a suspension of graphite particles in an organic liquid

and results in micron-sized diamond crystals.

1.3.5 Solid State Recrystallization

The next to last topic to be covered in this chapter is the growth of sizable single crystals

from the solid phase. This technology has a much smaller impact on the crystal growth

field than the other methods described above. First, it is mainly limited to metals, and

second, there are various processing difficulties associated with controlling nucleation

and growth over extended length scales. The mechanisms involved are related to

ceramic and powder metallurgy processing, where control of crystallite (grain) size and

morphology in polycrystalline structures is a major concern. There are a myriad of

important industrial applications for these polycrystalline materials (piezoelectric ele-

ments, magnets, etc.) and all aspects from theory to sample preparation are covered in

various books on ceramics and powder metallurgy. The use of solid-state methods for

crystal growth is covered in the book by R. Laudise [285].

At the heart of solid-state crystal growth (recrystallization) is grain growth. As

mentioned before, the method is mainly used with metals such as aluminum, tungsten

and iron. The material from which the crystal is grown contains grains of varying sizes

and morphologies, plus grain boundaries and dislocations. Single crystals can be

formed by controlling the growth of preexisting grains or by nucleating new grains with

lower free energies. Wilhelm Ostwald’s pioneering work in 1896–1897 explained how

crystallites behave at elevated temperatures [348]. He showed that smaller particles

adjacent to larger ones would decrease in diameter while the larger grains increased in

size (an effect now known as Ostwald ripening). When the more energetic surface

atoms on the smaller crystallites redeposit on the larger grains, the total energy of the

system decreases. The driving force for grain growth can also be related to orientation

differences between grains.

The principal method used to grow large metal crystals involves strain annealing

techniques. A suitable polycrystalline sample, a bar, rod, plate, etc., is strained by

one of a number of techniques such as rolling, drawing and extrusion. It then may

be fabricated into a suitable shape to facilitate growth. The amount of strain induced

is usually between 1 and 10% and the amount is critical in controlling the nucleation

of strain-free grains. Growth is most often done in a temperature gradient and

nucleation control is similar to other growth methods. In some respects, it is related

to the Bridgman–Stockbarger method where the sample can be a rod with a tapered
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end that is translated through the gradient. The gradients, however, are reversed

from melt growth. The polycrystalline charge is heated until the tapered end reaches

the recrystallization temperature and strain free grains are created in a localized

region at the tip. Further movement propagates the strain-free grain(s) along the

axis of the sample consuming the strained grains. If nucleation creates several

strain-free grains, the sample can be notched somewhere along the length to permit

only one grain to propagate through into the main part of the charge. Seeds can also

be used. Suppressing nucleation ahead of the growth front has been a concern, and

generally slow translation rates and sharp gradients minimize this problem (e.g.,

Ref. [348]).

The concept for strain-annealed crystal growth can be traced to Robert Anderson in

1918 [349]. This led, in 1921, to Carpenter and Elam’s demonstration of the growth of

large aluminum crystals by the strain-anneal method [350]. Over the ensuing years,

various other metals have been grown by this method. One technique used to prevent

random nucleation ahead of the growth interface during the strain-annealed growth of

alpha iron crystals was the incorporation of pulsed heating [351]. Large, 25cm-long

oriented single crystal rods and strips could be produced in a few hours using this

method.

The solid-state recrystallization method has also been applied to semiconductor

fabrication (e.g., Si and Ge). One technique of note is the solid phase epitaxial

growth method. In 1968, L. Kulper at IBM, patented a process for the growth of

aluminum-doped silicon films by the migration of silicon through an aluminum thin

film during a heat treatment process [352]. The solid-state growth process provided

doped layers with a maximum amount of aluminum in silicon. Later Mayer et al.

[353], from the California Institute of Technology, patented a similar but more

general process for doping with other species. In this process, a single crystal sub-

strate is coated with a thin metal film having such properties that it will permit the

migration of material through it to form an epitaxial layer without acting as an active

dopant itself. Upon this film a dopant layer is deposited followed by an amorphous

or polycrystalline layer of the material that will make up the doped epilayer. This

sandwich structure is first heated to a temperature that permits the metal layer to

dissolve some of the dopant, amorphous film and part of the substrate. After a time,

the temperature is raised to allow the transport and epitaxial deposition of the doped

layer onto the substrate. For the solid-state epitaxial growth of silicon, for example,

the substrate and amorphous or polycrystalline layers would be silicon, the dopant

layer might be phosphorous, aluminum, or boron, and the metal film palladium,

vanadium, or nickel. A review of this technology is included in the book by Mayer

and Lau [354].

Another application for solid-state crystal growth was in the preparation of

piezoelectric single crystals, such as lead magnesium niobium-titanate (PMNT) [355].

The principal motivations were its potential cost advantage and enhanced
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manufacturing throughput over conventional crystal growth methodologies. Two

techniques were explored, conventional grain growth and templated growth in which

seed crystals were embedded into a powdered matrix and processed at elevated

temperatures. An example of the templated growth of BiScO3-PbTiO3 is shown in

Figure 1.20.

1.4 Epilogue
Crystal growth is a field that has had a major impact on modern society. The devices

we have come to rely on today were made possible through the contributions of

numerous scientists and engineers from a variety of disciplines. These devices are

based on single crystals prepared in various ways and in forms and compositions

reflecting the application intended. The foundations upon which our understanding

of a crystal’s structure, thermochemistry, growth mechanisms and methods is based

on work from earlier centuries and dramatically expanded on all fronts (theory,

growth and characterization) just after World War II. The book by Buckley in 1950

was the first comprehensive treatment (in English) of the prior art and science of

crystal growth. Today, there are well over 100 books covering the topic, from surveys

of the entire field to various specialized topics. This historical review of the crystal

growth field is not comprehensive but was designed to highlight the major

achievements. While I have tried to be as inclusive as possible, I apologize in

advance if I have left out any major contributors to this field or important theories

and growth methods. As a final comment, I must mention that a selection of some

pioneering crystal growth papers were collected and reprinted in their original lan-

guages by D. Hurle [356].
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FIGURE 1.20 An example of template growth. Shown is a micrograph of a polished and thermally etched (1080 �C
for 30 min) sample of BiScO3–PbTiO3 (BS–PT) that was heat-treated with an embedded barium titanate (BT) seed
crystal (5 mm2� 100 mm thick). A 5% excess of PbO was used in the mixture to enhance diffusion. An overgrowth
of a BS–PT crystal onto the surrounding BT seed can be clearly seen [355].
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[191] Wöhler F. Ann Chim Phys 1823;29(2):43.

[192] Doelter C. Z Krist 1886;11(29):40.
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2.1 Introduction
In this chapter, phase diagrams will be introduced as basic tools for the development and

understanding of crystal growth processes. The focus will be on reading diagrams that can

be found in the literature, or that can be calculatedwith commercial or freeware computer

programs such as described later in Section 2.1.4.3. If nothing else is written explicitly,

equilibrium phase diagrams are presented. The crystal growth process itself, however, is a

nonequilibrium process, where some nutrient phase (e.g., a melt, a solution, or a gas) is

transformed to the desired solid (crystal) phase. The relevance of equilibrium phase dia-

grams for the description of crystal growth is given if the growth process is performed not

too far from equilibrium conditions. This condition is typically fulfilled for most slow

growth processes from the melt or from melt solutions such as Czochralski, Bridgman,

Verneuil, top seeded solution growth (TSSG), micro-pulling-down (m-PD), heat exchanger

method (HEM), or vertical gradient freeze (VGF) technique. Also, growth processes from

hot gas phases with sufficient density (not too far below ambient pressure 1 bar, such as

chemical vapor transport (CVD) or physical vapor transport (PVT) can usually be

described well by equilibrium phase diagrams. For further reading and for refereed col-

lections of phase diagrams, some web sites prove to be helpful, e.g., [1–3].

2.1.1 Basic Terms

2.1.1.1 Components and Concentrations
A component is a substance that, under the given conditions, cannot be further divided

into parts. A chemical element can always be chosen as component; but often it is more

convenient to choose compounds instead, because a smaller number of components

makes the description easier. It must be possible to create all compounds that may be

found in equilibrium by chemical reactions between the components! If two or three

compounds instead of elements are chosen to set up a phase diagram, the system is

sometimes called pseudobinary or pseudoternary, respectively.

It is not always straightforward to decide whether a chemical compound can be used

as component for the description of a specific system. For instance, vanadium(V) oxide

V2O5 and molybdenum(VI) oxide MoO3 are reacting upon heating to an intermediate

phase [4]. This intermediate phase was initially described as V2MoO8, and binary phase

diagrams similar to Figure 2.1 left, with V2O5 and MoO3 as components, were published.
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Further studies showed that 1
9 of the V5þ ions are reduced to V4þ during the reaction, and

the compound should rather be written as V9Mo6O40 ¼ 4 V2O5 $
1
2 V2O4 $ 6MoO3 [5].

Consequently, three components are required to give an appropriate description of the

system, such as shown in the right panel of Figure 2.1. Of course, a description in terms

of the chemical elements V–Mo–O would be valid too.

The share of the i-th component in the system is called its concentration. If not

mentioned explicitly, concentrations xi are given in molar fractions, or atomic fractions,

xi ¼ ni
PC

i¼1ni

(2.1)

where C is the number of components and ni is the number of moles of component i. It

is obvious that
P

ixi ¼ 1, and hence in two-component systems only one concentration x

is necessary. Mol-% or At-% values can be obtained by multiplying xi with 100%.

For a specific chemical composition, the xi depend on the choice of the components

Yi (i ¼ 1.C). In dielectric systems (e.g., oxides, halides) often compounds AmBn

(A: cation, B: anion) are chosen as components. Then it may be useful to scale them in

such a way that all components bear the same number of cations (often one). The

benefit of such scaling is that the resulting phase boundaries are often more symmetrical

around invariant compositions. An example is given in Figure 2.1 for the system

V2O5–MoO3 where the right component is written as VO2.5.

In systems with many intermediate compounds, the choice of components is

ambiguous. Figure 2.2 demonstrates this for a system of the chemical elements (or basic

T
)

C°(

MoO3 ½ V O2 5

Oo
M

V
8

2

½ V O2 5 ½ V O2 4

MoO3

V Mo O
9 406

FIGURE 2.1 Left: Simplified binary phase diagram V2O5–MoO3 under the incorrect assumption that the
intermediate phase is V2MoO8 [6], entry 4467. Right: Correct phase triangle demonstrating that intermediate
V9Mo6O40 is ternary.

BA Am1Bn1 Ao1Bp1

Am 2 Bn2 Ao2Bp2

x

x

FIGURE 2.2 A specific composition x ¼ x0 ¼ x00 can be expressed in terms of basic components (e.g., elements)
A, B. Alternative descriptions are in terms of compounds Am1Bn1, Ao1Bp1 (x0) or Am2Bn2, Ao2Bp2 (x00), respectively.
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compounds such as simple oxides) A and B, with four intermediate compounds; the

stoichiometry is expressed by indices. If a composition x is given in terms of Am1Bn1 and

Ao1Bp1 (below the concentration axis), the amounts of the basic compounds can be

calculated by

½A� ¼ ð1� x0Þ m1

m1þ n1
þ x0 o1

o1þ p1

½B� ¼ ð1� x0Þ n1

m1þ n1
þ x0 p1

o1þ p1

(2.2)

from the concentration x0 and the stoichiometric indices of the components. The con-

centration with respect to the basic components is then easily expressed by

x ¼ ½B�
½A� þ ½B� (2.3)

as a molar fraction. Rescaling of concentration data to Am2Bn2, Ao2Bp2 (x00, above the

concentration axis) is given by

x00 ¼ x � n2
m2þn2

p2

o2þp2
� n2

m2þn2

(2.4)

where the molar fraction x with respect to the basic components is given by Eqn (2.3).

For the general case of component transformation in a multicomponent system (C > 2),

the reader is referred to the literature, e.g., Ref. [7].

2.1.1.2 Phases and Phase Rule
A phase is a homogeneous part of a system, on scales that are large compared to atoms.

This means that all physical quantities, and composition, are no function of the position

r!, except differential fluctuations or gradients. Usually systems contain only one gas

phase. Liquids (melts) of similar substances are often forming one liquid phase (molten

slag, molten alloy, solution in a liquid). Dissimilar, nonmixing liquids form several

phases (water and oil, molten slag and metal). Each solid compound is often forming a

separate phase, with a specific crystal structure. Only if the components of a solid phase

have identical crystal structure and are otherwise similar, they may intermix each other

in arbitrary ratio. Such mixtures are one phase, called mixed crystal, or solid solution

(Ge1�xSix, Ag1�xAux, K1�xRbxCl; 0 � x � 1). More details on phase miscibility will be given

in Section 2.1.4.1.

For a given system with C components, Gibbs phase rule

P þ F ¼ C þ 2 (2.5)

limits the number P of coexisting phases and the number F of degrees of freedom that

the system has in equilibrium. This means that in a one-component system, never more

than three phases may exist at the same time. This is, e.g., demonstrated in Figure 2.3,

where never more than three phase fields are touching each other in one point. Such

triple points “Ti” describe conditions where P ¼ 3 phases are in equilibrium.
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Often, experiments are performed under isobar conditions p ¼ 1 bar, which con-

sumes 1 degree of freedom. Then Eqn (2.5) simplifies to

P þ F ¼ C þ 1 (2.6)

which means that, e.g., in two-component systems, never more than three phases may

coexist under isobar conditions. In the left panel of Figure 2.1, this is the case in the two

“eutectic points” on both sides of V2MoO8 where the liquid phase (stable at high T) is in

equilibrium with solid V2O5 þ V2MoO8 or V2MoO8 þ MoO3, respectively. Both eutectic

points are invariant, because any deviation would result in the disappearance of at least

one phase. In phase fields where only one phase is stable (e.g., within the liquid phase

field of Figure 2.1), one obtains from Eqn (2.6) F ¼ C � P þ 1 ¼ 2 � 1 þ 1 ¼ 2. Indeed, one

can move somewhat up or down (freedom of T) and left or right (freedom of x) without

leaving the phase field.

2.1.1.3 System
If a specific volume V contains a limited amount of matter with mass m, and is char-

acterized by some intensive properties, such as pressure p or temperature T, it may set

up a system. Intensive properties do not change if two identical systems are united.

Often, closed systems are considered, with no exchange of matter or energy with the

surroundings. Then, in equilibrium T is constant for all parts of the system. However, p

may be a function of the position r! as a result of surface tension, e.g., in epitaxial layers.

In contrast V and m are extensive properties. Their value depends on the system size.

Crystal growth is a dynamic process and matter is transported from a reservoir to a

seed, where crystallization takes place as a result of supersaturation. Figure 2.4
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FIGURE 2.3 Phase diagram of sulfur in coordinates T� log[p]. Ti are the invariant triple points where three phases
are in equilibrium.
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demonstrates this for sublimation growth (physical vapor transport (PVT)) from the hot

part of an ampoule (T1) to the cold part (T2). Under such conditions, it is not possible to

define overall intensive conditions p, T for the whole ampoule. It may be useful, how-

ever, to consider separately system S1 where the solid feed is at p, T1 in equilibrium with

the surrounding gas, and system S2 where at p, T2 gas is in equilibrium with the seed.

Then, the growth process can be divided to three parts: (1) equilibration in S1, (2)

transport of gas under cooling, (3) equilibration in S2.

2.1.2 Thermodynamic Functions and Potentials

2.1.2.1 Specific Heat Capacity
The specific heat capacity c is the basic thermodynamic quantity that can be measured.

Typically, lattice vibrations (phonons) are the major contributors to the internal energy

U of a substance, and U is a function of T. If an amount of heat energy Q is transferred to

1 mol of a sample, its temperature increases under isochor (volume V ¼ const.) or isobar

(pressure p ¼ const.) conditions by

DTV ¼ DQ

cV
(2.7)

DTp ¼ DQ

cp
(2.8)

where cV or cp is the specific heat capacity of the material under the given conditions.

Especially for technical purposes, the amount of substance is often given by the mass

m ¼ nM (n, number of mol; M, molar mass). The difference

cp � cV ¼ T

n

�
vV

vT

�

p

�
vp

vT

�

V

(2.9)

T
em

pe
ra

tu
re
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T1

T2
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FIGURE 2.4 Crystal growth by sublimation
in an ampoule. Feedstock is transported
from a hot reservoir (temperature T1) to
the colder end (T2).
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is usually small, (but> 0) for condensed phases with small thermal expansion vV/vT

(solids, liquids). For ideal gases, one has cp � cV ¼ R (gas constant).

Dulong and Petit found that, for many solid chemical elements, the specific heat

capacity approaches 25 J/(mol K) at room temperature (ref. Eqn (2.10) and Figure 2.5).

For very low temperature cp(T) follows a T 3 law (see Figure 2.6) and vanishes at absolute

zero (Eqn (2.11)). Neumann and Kopp found that cp(T) of a chemical compound AmBn is

nearly the sum of the cp(T) of its composing chemical elements (Eqn (2.12)).

lim
T/298K

cpz25 J=mol $K ðDulong�PetitÞ (2.10)

lim
T/0

cp ¼ 0 (2.11)

cðAmBnÞ
p ðT ÞzmcðAÞp ðT Þ þ ncðBÞp ðT Þ ðNeumann�KoppÞ (2.12)

For most substances, the function cp(T) rises monotonously with T; the slope is steep at

low T and becomes flatter near room temperature. Anomalies arise near phase transi-

tions (see Section 2.1.3). Distant from phase transitions, the functions cp(T) are usually

smoothly rising, which can be expressed, e.g., by polynoms

cp ¼ Aþ BT þ CT 2 þDT 3 þ E
�
T 2 (2.13)

and data for many substances are compiled in commercial databases, on the web (e.g.,

http://webbook.nist.gov), or in printed reference books [9].

2.1.2.2 Enthalpy
The internal energy U that was mentioned in Section 2.1.2.1 describes the potential and

vibrational energy that is contained in the material itself. In a real system, the material

has a certain volume V and is exposed to a pressure p. It should be noted that for systems

0050 1000
5
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15

20

25

30

C
(graphite)
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Ni

Dulong–petit

T (°C)

c p
)

Klo
m/J(

FIGURE 2.5 cp(T) functions for three
chemical elements compared to the
Dulong–Petit law (Eqn (2.10)).
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where surface energy can be neglected (phases sufficiently large and phase boundaries

with low curvature), p is constant over the whole system, such as T. The quantity

H ¼ U þ pV (2.14)

is called enthalpy and is the sum of the internal energy and the amount of work

(“volume work”) that must be performed to create the phase volume V against the

system pressure p. Such as U itself, H is a thermodynamic potential (¼state function)

because it depends only on the current status of the system, and not on how this status

was reached.

It is usually difficult, if not impossible, to measure the total amount of bH stored inside

a phase, because the energy balance of all contributions to U is often unknown.

Contrarily, the enthalpy change of a system from an initial state i to a final state f

DH ¼ Hf �Hi ¼ Q (2.15)

can usually be measured because it equals the heat Q added to the system provided that

p ¼ const., and no other work except volume expansion work is done by the system.

To circumvent the problem of absolute H measurements, it is useful to determine

“standard conditions” and a set of basic substances where the H values are determined

at these standard conditions. For this purpose, the U.S. National Bureau of Standards

defined T0 ¼ 25 �C ¼ 298.15 K and p0 ¼ 1 � 105 Pa ¼ 1 bar as “standard ambient

temperature and pressure” [10]. Under these conditions Hi ¼ H0 ¼ 0 (Eqn (2.15)) is

defined for every chemical element in the phase state that is stable under these condi-

tions (Figure 2.7). The function H(T) is usually smooth, except at first-order phase

transitions (cf. Section 2.1.3) where it jumps by an amount that is called heat of fusion

(DHf), heat of vaporization (DHv), or in general heat of transition (DHt). Some first-order
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FIGURE 2.6 Measured cp(T) data for lithium below room temperature [8]. bH ¼ H� Hð0 KÞ is the “real” enthalpy
that starts from 0 at absolute zero. The entropy S(T) was calculated with (Eqn (2.21)).
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transitions for bromine and sulfur are shown in Figure 2.7. In contrast to this, Figure 2.6

shows “absolute” bH ðTÞ data for Li metal below room temperature.

For other temperatures, the enthalpy can be calculated by

HðTÞ ¼ H0 þ
ZT

T0

cpðT ÞdT (2.16)

from experimental cp(T) data. If one starts with bH ð0 KÞ ¼ 0, then Eqn (2.16) represents

the area under the cp(T) curve in Figure 2.6. cp(T) rises with T 3 only for low T(50 K and

quickly approaches the Dulong–Petit value 25 J/(mol K) (Eqn (2.10)) and is slowly

changing then; consequently, H(T) is an almost a linear function for high T.

As mentioned above, H is a thermodynamic potential. Hence, the enthalpy produced

or consumed during a chemical reaction does not depend on the path of the reaction

(Figure 2.8). Hess’s Law can be used also for changes in entropy S and in Gibbs free

energy G, which are state functions, such as H. With Hess’s Law, the dependence of
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FIGURE 2.7 H(T) functions for four chemical elements at 1 bar. Bromine vaporizes at 59 �C. Sulfur undergoes a
monoclinic % orthorhombic phase transition at 95 �C, melts at 115 �C, and vaporizes at 469 �C. Silver and argon
show no transformations in this T range.
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FIGURE 2.8 Hess’s Law: the reaction enthalpy does not depend on the path of the reaction: DrH1 ¼ DrH2 þ DrH3.
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reaction enthalpies on T can be calculated, and also transition enthalpies under

nonequilibrium conditions.

2.1.2.3 Entropy
The term entropy describes another thermodynamic potential that can be defined either

statistically or from a thermodynamic viewpoint. The statistical interpretation is related

to the Shannon entropy [11], which is used in information theory, and corresponds to the

average information density in a system of symbols (or atoms). In the statistical inter-

pretation, entropy S is a measure of “uncertainty” of a given state, that is, a measure of

the number of equivalent arrangements of elements setting up the system. This is shown

in Figure 2.9(A) for the case of a planar lattice where all possible sites are occupied by

atoms. Another equivalent possibility for the atoms does not exist, and the probability for

this state is P ¼ 1. This is not so in Figure 2.9(B) where two atoms are missing. There are

48 options for selecting the first missing atom, and 47 options remain for the second

missing atom, but it is indistinguishable which atom was missing first. This means

48 � 47/2 ¼ 1128 equivalent microstates exist that result in the same macrostate “plane

lattice” with 48 sites. If Pi is the probability of the i-th microstate, then

S ¼ �kB

X

i

PilnPi (2.17)

is the entropy of the corresponding macrostate.

For the arrangement from Figure 2.9, this is demonstrated in Figure 2.10. The system

has N atom sites that are either “faulty” (number f) or occupied (number N � f). The

number of possible arrangements of faulty sites (¼number of microstates) is

1

P
¼ U ¼ N !

ðN � f Þ!f ! (2.18)

and grows drastically with f until a maximum value that is obtained for f ¼ N/2.

In closed systems in equilibrium, P is often identical for all microstates and Eqn (2.17)

simplifies to

S ¼ kB ln U (2.19)

(A) (B)

FIGURE 2.9 Statistical interpretation of entropy. (A) One option is possible to distribute 6 � 8 ¼ 48 ¼ n atoms on
n lattice sites. (B) This figure shows one of 48 � 47/2 ¼ 1128 equivalent options to arrange f ¼ 2 faults (e.g.,
unoccupied sites or vacancies) on 48 lattice sites.
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where S( f ) is shown by the box plot in Figure 2.10. If in a real system with f > 0 and at

T > 0 all faulty sites are initially ordered (U(t ¼ 0) ¼ 1), this ordering will drop with time t.

It will be shown in Section 2.1.2.4 that the growth of S is the driving force for increasing

the “uncertainty” of the system.

The thermodynamic interpretation of S does not depend on the atomistic nature of

matter, but can be related to it. Figure 2.11(A) shows an ideal lattice where the atoms are

connected by chemical bonds. One can assume that this solid is formed because the

creation of every bond reduces the internal energy of the material (compared with sole

atoms) by a certain amount E. In Figure 2.11(B), some vacancies are introduced that

increase the disorder, or the “uncertainty,” of the system, and increase its entropy S. If

for this purpose n bonds had to be broken, the energy Q ¼ n$E was used. Assuming that

this process is performed under equilibrium conditions, it is reversible, and the relation

DS ¼ Qrev

T
(2.20)

describes the entropy change of the system.
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FIGURE 2.10 Derivation of entropy S for the ensemble that is shown in Figure 2.8 with different numbers of
missing atoms. The number U of equivalent microstates is maximum if 50% of the sites are faulty.
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FIGURE 2.11 Thermodynamic interpretation of entropy: In (A) all atoms occupy lattice sites and form ideal bonds.
In (B) faults (here vacancies) are introduced and some bonds are “dangling.” For this process, a certain amount of
energy Q was used.
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In analogy to Eqn (2.16), the entropy can be derived from the specific heat capacity by

SðTÞ ¼ S0 þ
ZT

T0

cp
�
T
�

T
dT (2.21)

and one has S0(0 K) ¼ 0. Figure 2.6 shows, together with H(T), the function S(T) for Li

metal down to absolute zero.

2.1.2.4 Gibbs Free Energy
The enthalpy H introduced in Section 2.1.2.2 is a measure for the amount of energy that

is added (or extracted) from a system. This process is, however, usually not reversible:

Even if lattice vibrations are considered undamped (contribution U in Eqn (2.14)) and if

volume work can be restored (contribution pV), the entropy S of the system is increased

upon heating. Once the disorder of a system became larger, it is in general an irreversible

process.

It is useful to define the “free energy” (or Gibbs energy)

G ¼ H � TS ¼ U þ pV � TS (2.22)

which is the amount of energy that can reversibly be added or extracted from the system.

Such as H and S, G is a thermodynamic potential. This means that for a given state xi, T, p

of a system, G does not depend on how this state was reached.

At elevated T (room temperature or beyond), H changes only weakly (see, e.g.,

Figure 2.7), and the same holds for S. From Eqn (2.22) it is obvious that G(T) is a function

that drops nearly linearly for most phases and systems. Figure 2.12 demonstrates this for

the three aggregation states of zinc metal. The solid phase develops most stable binding

forces between atoms, this way reducing H and resulting in the most negative

Gsol[0 �C] ¼ �11.42 kJ/mol. The energy gain by binding is less significant in the liquid
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FIGURE 2.12 G as a function of T for the
solid, liquid, and gaseous phases of zinc.
Tf, fusion point; Tboil, boiling point.
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(Gliq[0 �C] ¼ �7.38 kJ/mol) or even smaller in the gas with much weaker attractive forces

between atoms (Ggas[0 �C] ¼ þ86.42 kJ/mol). On the other hand, the degree of disorder,

and consequently the slope �S of the G functions becomes larger from solid over liquid

to gas. The result is that, in this order, these phases have the lowest G, and become stable

one after the other with larger T.

For all curves in Figure 2.12, p ¼ 1 bar was assumed. The influence of p on S and H is

usually small for condensed phases (solids, liquids). Contrary gases show high

compressibility, which leads to a high dependency of atomic interactions on pressure.

For lower p, Ggas(T) shifts to bottom left (Eqn (2.14)), leading to an intersection with

Gliq(T) at lower T—this means Tboil drops with p. If for sufficient small p the intersection

is below Tf, the liquid phase is never stable and the substance undergoes sublimation,

which is a first-order phase transition from the solid to the gas, and vice versa.

Many chemical elements can react with each other under the formation of com-

pounds. The stability of compounds depends on the binding forces between compo-

nents, hence on the lattice energy. Typically, compounds with prevalent ionic bonding

consist of electropositive cations (often metals) and electronegative anions, and are

named, for instance,

• pnictides (compounds with negative N, P, As ions)

• oxides (oxygen) or chalcogenides (compounds with negative S, Se, Te ions)

• halides (compounds with negative F, Cl, Br, I ions).

These anion-forming elements are gases or at least volatile already at moderate

temperatures T. The partial molar Gibbs energy (¼ chemical potential) of an ideal gas

can be written as

mi ¼ m0
i þ RT ln pi (2.23)

where m0
i is the Gibbs energy at standard pressure (1 bar) and pi is the partial pressure of

this gas. As a consequence of Eqn (2.23), functions G(logpi) are linear for T ¼ const. For

different phases, the slopes G(logpi) are different, and the resulting intersections are the

limits of stability ranges for these phases. This is demonstrated in Figure 2.13 for the

system Fe–O2.

From Eqn (2.23) it is obvious that for T ¼ const. the mi are linear functions of the

logarithmic vapor pressures pi. Figure 2.14 shows this for equilibria between iron, oxy-

gen, and sulfur. Only if both pi are low, metallic iron is stable. If the oxygen pressure

becomes larger, oxides FeO, Fe3O4, Fe2O3 appear in the same order as in Figure 2.13. If

only the sulfur pressure becomes larger, the sulfides FeS or FeS2 are formed. In an in-

termediate region where oxygen and sulfur have significant pi, iron(II) sulfate FeSO4 or

iron(III) sulfate Fe2(SO4)3 are formed. Phase diagrams of this type are valuable, e.g., for

predictions, whether interfaces between a substrate and an epitaxial layer are stable.

Under the given conditions, FeS2 (“pyrite”) can exist in equilibrium with FeSO4 as well as

Fe2(SO4)3. This means that from the thermodynamic point of view, epitaxial growth of

both sulfates on a pyrite substrate might be feasible. FeS (“pyrrhotite”), in contrast,
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cannot exist in equilibrium with both sulfates. This means that epitaxy of both sulfates

on pyrrhotite, if possible at all, can create only a metastable layer.

2.1.3 Phase Transitions

If water ice is heated under ambient pressure with constant heat flux per time unit

dQ=dt ¼ _Q from low temperatures T � 0 �C it first increases its temperature until the

melting point (fusion point) Tf ¼ 0 �C is reached. Then T remains constant for some

holding time tholdf ¼ DHf= _Q. The heat of fusion DHf ¼ 6 kJ/mol is a thermodynamic

property of the substance water. During tholdf the solid (ice) and the liquid (water) are in
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equilibrium; just their mass ratio drops from unity to zero. Upon further heating, the

water temperature rises again until Tv ¼ 100 �C where water vaporizes. A second holding

time tholdv ¼ DHv= _Q appears where liquid water continuously evaporates, and the heat of

vaporization DHv ¼ 40.87 kJ/mol is another thermodynamic property of water. The

chemical substance water (H2O) remains unchanged during the whole process, but the

physical properties are changing abruptly at Tf and Tv. Melting and vaporization are

phase transitions.

At phase transitions, some structural properties of a substance are changing. Usually,

these are the positions of atoms, but in some cases only minor changes (electric or mag-

netic polarization, electronic spins) undergo variations. For the above-mentioned pro-

cesses of melting and evaporation, the structural changes are very obvious; in other cases,

the changes are smaller. Equation (2.15) showed that the heat Q ¼ _Q $ t increases the

enthalpyH of the system. In Figure 2.7 the chemical elements Ar andAg show smoothH(T)

functions, and the slopes vH/vT ¼ cp are the specific heat capacities. Bromine melts at

�8 �C and is liquid until Tv ¼ 59 �C where a step with height DHv ¼ 29.5 kJ/mol follows.

Sulfur shows steps in theH(T) functionsnot only atTv andTf, but additionally a smaller step

DHt¼ 400 J/mol atTt¼ 95 �C. At this temperature, the crystal structure of the solid changes

from a-S (low T) to b-S (high T). DHt for this transition is small, because structural simi-

larities are significant (see also Section 2.2.1.1).

Phase transitions can be classified from the thermodynamic as well as from the

structural point of view; both schemes are, of course, related to each other. Paul

Ehrenfest proposed a classification of phase transitions based on the discontinuity in

derivatives of the Gibbs free energy. This classification says that a phase transition is of

n-th order if the n-th derivative of G with respect to a system variable such as p or T is

discontinuous. Figure 2.12 shows G(T) for the three phases of zinc. The system will al-

ways minimize G, hence the lowermost curve is valid for the system. This is replotted in

Figure 2.15 for Zn and for Ni (see also Figure 2.5). Only G(T) for Zn shows significant

bends at Tf and especially at Tv, consequently the first derivative G
0(T) has discontinuities

there (arrows from top) and both transitions are of first order. G(T) for Ni is much

smoother, and only G0(T) has a small (but hard to recognize) bend near 354 �C. In the

second derivative G00(T) a discontinuity appears, which resembles the shape of the Greek

letter l—the transition is of second order. The l shape is typical for transitions from a

ferromagnetic or ferroelectric state where the material has low crystal symmetry to a

paramagnetic (paraelectric) state with high symmetry.

Melting and vaporization are always first-order transitions (sometimes called tran-

sitions of the first kind), and like all first-order transitions characterized by a “latent heat”

DHt that must be added to the system at Tt without changing the temperature. Second-

order transitions bear no latent heat, and the introduction of heat into the system always

increases its temperature. Experimentally, the discrimination between first- and second-

order transitions is not straightforward, if DHt is very small (below a few 10 J/mol). The

ferro-/paraelectric transition of BaTiO3 is sometimes described as second order, but

bears nevertheless a small DHt z 200 J/mol [3].
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A thermodynamic approach for second-order transitions was introduced by Lew

Landau [12], where an order parameter Q results in an excess Gibbs energy term

G ¼ H � TS ¼ 1

2
AðT � TcÞQ2 þ 1

4
BQ4 þ 1

6
CQ6 (2.24)

(A, Tc, B, C—constants), which describes the behavior of measurable physical quantities

M such as specific heat capacity, polarization, or atomic positions near second-order

phase transitions by expressions of the type

MfjTc � T j�a
(2.25)

where Tc is the transition (Curie) temperature and az1
2 is the “critical exponent”. For a

comprehensive introduction to Landau theory, the reader is referred to Salje [13].

From the structural point of view, second-order transitions often proceed by smooth,

continuous shifts of atoms (“displacement type”). Typically, the crystal structure in the

high T phase has a high symmetry, and after the shift, at lower T, the crystal symmetry is

lowered. Other second-order transitions are of the “order‒disorder” type. The b/b0 brass
phase in Figure 2.16 is an example. At high T z 800 �C, b-brass has a wide homogeneity

range from ca. 44% to ca. 64% Cu, which includes the 1:1 composition CuZn. Under

these conditions, Cu and Zn atoms form a body-centered cubic structure (structural type

a-Fe, space group Im3m) where both atom types are distributed statistically across the

corners and centers of cube unit cells. It should be noted that corners and centers of the

cubic unit cells are symmetrically equivalent.
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If the temperature becomes lower, it is energetically more favorable if every atom has

more opposite type atoms as neighbors. This is reached by placing one atom type

preferably on the corner positions, and the other type on the center positions. Ordering

does not happen suddenly and is not complete; just the initially fully random distri-

bution gets partially lost if T drops. The totally ordered case with different atom types at

the corners or centers, respectively, is shown in the insert of the phase diagram. It

corresponds to the CsCl structure type with Pm3m space group. The ordered case is

called the b0-brass phase.

The phasewidth of b/b0 brass becomes smaller for lowerT and degenerates to one point

x¼ 0.53 at 530 �C, which implies that ordering cannot be perfect resulting from a slight Cu

excess. The right panel of Figure 2.16 shows the cp(T) function of the Cu0.53Zn0.47 alloy,

which is calculated [3] between 300 and 800 �C. The broad anomaly around 450 �C results

from this “continuous” phase transition [14]. The anomaly results from the change of

ordering mentioned above, and this change of ordering is reflected by a minor change of

slope for the S(T) function, which becomes obvious in the second derivative S00.
Both panels of Figure 2.16 are calculated for equilibrium conditions. It should be

noted that the redistribution of atoms on lattice sites is a diffusion process, and diffusion

is time dependent. Correspondingly, the width of the transition depends not only on

thermodynamic, but also on kinetic parameters. Generally, second-order and higher

order transitions are characterized by a certain transition range from the low T to the

high T phase. Often, only the upper limit is characterized by a critical temperature Tc

(see Figures 2.15 and 2.17). Besides, the transition proceeds in a smooth way, usually

without mechanical disintegration of samples such as crystals during growth.

Ferroelectric lithium niobate LiNbO3 is a good example: This material is grown on

an industrial scale, and it grows from the melt in a paraelectric R3c phase [15]. The Li:Nb

ratio is not fixed, and the formula should rather be written as (1� x) Nb2O5$xLi2O

¼ LixNb1�xO2.5�2x. Figure 2.18 shows the dependence Tc(x) of the Curie temperature
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where the second-order transition to the ferroelectric R3c phase occurs. Similar to the

b/b0 transition of brass (Figure 2.16 right), the para-/ferroelectric transition of lithium

niobate is accompanied by a cp anomaly that can be observed, e.g., by differential

scanning calorimetry (DSC) [16].

Only briefly “glass transitions” shall be mentioned here, because the glass state is

metastable, hence, cannot be found in (equilibrium) phase diagrams. Nevertheless, x � T

regions where glass states are easily formed are sometimes marked. Often, glass for-

mation is connected with immiscibility of two liquid phases below some critical tem-

perature Tm, which usually depends on x. If at least one of these liquids contains a

“network builder” such as SiO2, B2O3, or P2O5, a glass can be formed that initially
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(at high T) has a rubberlike behavior. Upon further cooling, at the glass transition

Tg < Tm, the glass becomes more brittle. Such behavior can be observed, e.g., in binary

systems B2O3–A2O (A ¼ Li, Na, K, Rb, Cs) [19]. The softening of glass if heated above Tg

can be measured by thermomechanical analysis (TMA); in addition, it is connected with

a cp anomaly, shifting a DSC curve to the endothermal direction [20].

2.1.4 Calculation of Phase Diagrams

2.1.4.1 Miscibility
If in one specific phase f several components show miscibility, this mixing increases

disorder hence the entropy S (Eqn (2.19)). Increasing S, however, reduces the Gibbs free

energy G (Eqn (2.22)) and makes the mixed phase thermodynamically more stable,

compared to the unmixed (or “mechanically mixed”) state (Figure 2.19). If mixing does

not occur, one has the simple case of a pure substance with fixed stoichiometry. Then cp
and the derived thermodynamic potentials H, S, G are only functions of T, and data for

many substances can be found in the literature.

f is a mixed phase if it has a variable composition x1, x2,.xC�1 (C—number of

components). Assuming that the mixture is ideal, one has

Gf ¼
XC

i

xim
0
i

|fflfflfflfflffl{zfflfflfflfflffl}
G0

þRT
XC

i

xi ln xi

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Gid

(2.26)

where the first expression G0 results from the weighed contributions of the pure com-

ponents (dashed line in Figure 2.19), and the second expression Gid from the ideal en-

tropy of mixing. Often, especially if T is very high and chemical interaction forces

between components are weak, Eqn (2.26) gives a realistic approximation for real sys-

tems too. If energetic (Hex) or entropic (Sex) excess contributions must be taken into

account, a term (Gex) must be added to Eqn (2.26).
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Often this Gex is described by the subregular solution model (Redlich–Kister [21]),

which is expressed by

Gex ¼ xAxB
XN

j¼0

Lj ðxA � xBÞj (2.27)

where xA and xB are the molar fractions of components A and B, respectively. (Only the

binary case is described here, xA þ xB ¼ 1.) Lj terms represent the interaction coefficients

between the basis compounds, and they are often given as a linear function of tem-

perature, e.g., Lj ¼ L
ð0Þ
j þ L

ð1Þ
j T . Other models, e.g., the “two-sublattice ionic solution”

[22], take into account that anions and cations are intermixing only on separate sub-

lattices, and an anion usually cannot jump to a cation site and vice versa.

The Gex of a specific phase can be determined experimentally, e.g., by measuring phase

diagrams, electrical potential differences, orbyvaporpressuremeasurements. Suchdataare

available not only in the original literature, but also from databases. Often, the theoretical

estimation is possible if interatomic potentials between the constituents (atoms, ions) are

known.Then the total energyof apurephase (e.g., a stoichiometric crystal) canbecompared

to the total energy of the distorted phase (themixed crystal). The difference is the energy of

mixing. It should be noted that the determination of Gex is often elaborate.

The topology of phase diagrams depends substantially on the extent to which the

components can mix in the different phases. The following rules of thumb for gases,

liquids, and solids can be given.

Gases: Unless under extreme conditions [23], gases are mixing in arbitrary ratio.

Moreover, ideal mixing (Gex ¼ 0) can be assumed if the pressure does not

approach the critical pressure and if the temperature is not too low. Both re-

quirements are fulfilled for most crystal growth processes, except hydrothermal

growth or high-pressure synthesis.

Liquids: Liquids (melts) of different components are miscible if chemically similar.

Certainly, this statement is not very definite: It simply means that, if all compo-

nents belong to one group of substances such as metals, oxides, halides, hydrocar-

bons, alcohols, sugars, there is a good chance that mixing is possible for all

compositions. For technical applications, and especially for crystal growth, many

relevant systems fulfill this condition and just one liquid phase is formed.

Nevertheless, exceptions exist, and Figure 2.20 shows that, e.g., below ca. 1900 �C
CaO–SiO2 melts with ca. 85% SiO2 decompose under formation of two liquids with

different SiO2 concentration. In a closer look, phase transition or demixing phe-

nomena in melts seem not uncommon, especially under conditions close to the

crystallization of solid phases: Crystal growth of HgTe was observed from demixed

melts [24], melts of CdTe undergo a structural transition under formation of associ-

ates near Tf [25], and even if CaCO3 crystallizes from aqueous Ca(HCO3)2 solutions,

separation of the liquid was observed in theory and experiment [26,27].

Solids: The condition of chemical similarity for complete miscibility is valid also for

crystalline materials. Yet another precondition makes the formation of mixed crystals
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(¼solid solutions) less probable compared to liquids: If two components A and B form

a solid solution, their atoms must be able to substitute each other in the correspond-

ing crystals in a complete chain of constitutions. This is possible only if A and B

belong to the same crystal structure type. The left panel of Figure 2.21 demonstrates

this for silicon and germanium. Both crystallize in the diamond structure type (space

group Fd3m), and the lattice constants of their cubic unit cells are aSi
0 ¼ 0:543 nm or

aGe
0 ¼ 0:566 nm, respectively. The similarities are so significant that Si and Ge can

replace each other, and a continuous row of solid solutions is formed. The lens-

shaped binary phase diagram shown there is typical for such “mixed crystal” systems

(see Section 2.2.2.1). The right panel of Figure 2.21 shows the binary system lead–tin,

both elements follow immediately after Si and Ge in the fourth group of the periodic

table, and are similar from the chemical point of view. However, at ambient tempera-

ture, Sn crystallizes in a tetragonal structure (space group I41/amd, lattice constants

aSn
0 ¼ 0:582 nm, cSn0 ¼ 0:317 nm). The lead structure instead is a face-centered cubic

lattice (space group Fm3m, aPb
0 ¼ 0:495 nm). The large Pb atoms can replace only ca.

2% of Sn in its structure; on the other side, the small tin atoms can substitute ca. 20%

of Pb. A continuous solubility range cannot exist because continuous transformation

between both structures is impossible. Hence, a eutectic system is formed (see

Section 2.2.2.2).

As a result of the Gid term in Eqn (2.26), the slope of the Gf(x) functions becomes

infinite near the pure components at x ¼ 0 or x ¼ 1. This means that Gf(x) drops
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considerably for every phase if minor amounts of arbitrary impurities are added. In other

words, a minor “rim” solubility always exists. Minor impurity concentrations in the order

of parts per million (ppm) or even less may be important, e.g., for doping semiconductors,

but are irrelevant for many other applications. All solid phases in Figure 2.20 have a

negligible phase width and are represented by vertical lines. Such phases with fixed

stoichiometry are called “line compounds” or “daltonides.” The opposite is either a mixed

crystal spanning all concentrations 0 < x < 1 of a phase diagram (Figure 2.21 left), or a

“berthollide” phase where the composition is a variable within certain limits. Lithium

niobate (Figure 2.18) is an example where the concentrations of Li and Nb can shift by a

few percent, consequently LixNb1�xO2.5�2x shows a finite phase width (¼“homogeneity

range”). In the Cu-Zn system (Figure 2.16(left)), all solid phases are berthollides.

2.1.4.2 Analytical Expressions
Often, for practical purposes, binary phase diagrams with two components A, B are used.

Then one has xB ¼ 1 � xA ¼ x and one concentration value x describes the composition

completely. x and temperature T are often used as coordinates for A–B phase diagrams,

and some types of such diagrams will be presented in Section 2.2.2. It was stated in

Section 2.1.4.1 that the topology of phase diagrams is determined by the mutual

miscibility of A and B in different phases fi. For the three limit cases in Figure 2.22, the

shape of phase boundaries can be given analytically.

There and in the following, fixed chemical compositions will be described by Latin

letters or combinations of them: A, B, AB, AB2, AmBn. Phases will be described by f0,
f00,.. If necessary, the chemical composition of a phase can be denoted in brackets.

A(f0) means pure A in the phase state f0. A1�xBx(f
00) means a mixture with molar con-

centration x of B in the phase state f00.
For all diagrams in Figure 2.22, phase fields are separated by lines. Component A

undergoes a first-order transition f0 4 f00 at TA, and B an analog transition at TB. Often
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f00 is the liquid (melt), and then the lower phase boundary where only melt(s) ap-

pear(s) is named liquidus. The maximum temperature at which all phases remain solid

is marked by the solidus line, and is below the liquidus. The shape of these phase

boundaries, however, depends only on the corresponding transition temperatures TA,

TB and on the enthalpy changes at these temperatures (¼heat of transition) QA, QB.

This means that diagrams such as shown in Figure 2.22 can be valid for melting

transitions (f00 ¼ liquid) as well as for other first-order transitions, e.g., between

liquids and gas, or between different solid phases. The following cases can be

distinguished:

Figure 2.22 Left: No mixing at all, such with water and mercury. Then TA ¼ �39 �C
is the melting point of Hg, and TB ¼ 0 �C is the melting point of H2O. At low T we

have a mixture of pure solid Hg with pure solid H2O. At high T both components

are liquid, but immiscible. Consequently, pure water and pure Hg form separate

phases. At intermediate T, solid pure H2O (ice) floats on pure liquid Hg. For the

liquidus and solidus, one has

T sol ¼ TA (2.28)

T liq ¼ TB (2.29)

if B melts higher, or vice versa.

Figure 2.22 Middle: Mixing only in the high T phase f00, which is often the liquid.

The resulting Gid (Eqn (2.26)) lowers G for this phase, and makes it more stable.

The left panel of Figure 2.1 is an example if one considers only the part between

V2O5 and V2MoO8, or only the part between V2MoO8 and MoO3. Assuming ideal

and unlimited mixing of the components in phase f00 and no solubility of B in A(f0)
or A in B(f000), respectively, the bent phase lines (liquidus of A or B, respectively)

can be described analytically by the expressions

xliq ¼ 1� exp

�
�QA

R

�
1

T
� 1

TA

�	
(2.30)

BA

TA

TB

A(φ ) + B(φ )

A(φ ) + φ B(φ ) + φ

φ

BA

TA

TB

A(φ ) + B(φ )

A(φ ) + B(φ )

A(φ ) + B(φ )

BA

TA

TB

φ

φ +φ

φ

FIGURE 2.22 Three basic topologies of binary phase diagrams where both components undergo a transition from
a low T phase f0 to a high T phase f00. Left: No mixing in f0 and f00. Middle: no mixing in f0, but mixing in f00.
Right: mixing in f0 and f00.
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xliq0 ¼ exp

�
�QB

R

�
1

T
� 1

TB

�	
(2.31)

where Eqn (2.30) describes the A-rich and Eqn (2.31) describes the B-rich side.

Both branches meet at the eutectic point and the third phase boundary (eutectic

line) is a horizontal through that point, representing the solidus. This is a eutectic

system (see Section 2.2.2.2). Figure 2.23 shows a calculated eutectic phase diagram

for two different sets QA, QB. It should be noted that a change of one Qi influences

only the slope on the side of the corresponding component i. Consequently, for

the case QA ¼ 10 kJ/mol, QB ¼ 20 kJ/mol one had to elongate in Figure 2.23 the B

liquidus (solid line) until it meets the dashed A liquidus, resulting in xeut z 0.32

and Teut z 760 K.

Figure 2.22 Right: If complete mixing of A and B is possible in phases f00 and f0,
both phases are stabilized by the Gibbs free energy of mixing. One-phase fields

appear at very low and very high T. Both one-phase fields are separated by a two-

phase field f0 þ f00. Assuming again ideal behavior in both phases, solidus and liq-

uidus can be expressed analytically

xsol ¼
exp

�
� QA

R



1
T
� 1

TA

�	
� 1

exp

�
� QA

R



1
T
� 1

TA

�	
� exp

�
� QB

R



1
T
� 1

TB

�	 (2.32)

xliq ¼ exp

�
�QB

R

�
1

T
� 1

TB

�	
� xsol

ðTA, T, TBÞ (2.33)

if heat Q and temperature T of the phase transformation are known for both pure

substances. The two-phase lens is symmetrical for QA ¼ QB, and it becomes

xA 0.2 0.4 0.6 0.8 B
600

800

1000

1200

T
)

K(

20 kJ/mol
10 kJ/mol

xeut

Teut

FIGURE 2.23 Calculated hypothetical
eutectic phase diagram with TA ¼ 1000 K,
TB ¼ 1200 K. The solid and dashed lines
were calculated with Eqns (2.30) and
(2.31), and QA ¼ QB ¼ 20 or
QA ¼ QB ¼ 10 kJ/mol, respectively.
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broader for large Q values. Even for ideal mixing, the lens can bend upward or

downward if QA and QB are significantly different. However, both liquidus and soli-

dus are for ideal mixtures monotonous rising or falling, respectively. Local minima

may occur only if excess Gibbs free energy of mixing occurs.

2.1.4.3 Minimization of the Gibbs Energy
In Section 2.1.2.4, the Gibbs free energy G was introduced, which has a minimum for

every system in thermodynamic equilibrium. The contributions of several phases

f0(i ¼ 1.P) are additive

G ¼
XP

i¼1

Gfi
(2.34)

and each phase may consist of several constituents. The number Cf of constituents of a

phase f may be unity—then one has a pure phase. For pure phases, Gf is basically a

function of T, and sometimes other intensive quantities such as p, but not on concen-

tration. Instead, G(T) is given by Eqn (2.22), with H(T) from Eqn (2.16) and S(T) from Eqn

(2.21). Alternatively, formation enthalpy DHf, entropy S0 (at standard conditions) and

coefficients for the cp(T) function (2.13) are a sufficient dataset for the description of

pure phases.

Mixed phases bear additional contributions Gid, and possibly Gex, to Gf that depend

on the concentrations of species present in this phase. Usually, the number of species is

much larger than the component number of the system, as already single-phase

chemical elements may form several species: gaseous oxygen exists as O, O2, and O3.

For the whole system, the mass balance for all elementary components must be fulfilled;

this means that the number of atoms of one chemical element that are present in all

phases may not change.

Knowing the G(T, x, p,.) functions for all possible phases that can be formed from

a given starting composition, and taking into account the mass balance for all

chemical elements that are present, numerical minimization of G (Eqn (2.34)) allows to

calculate the equilibrium state of the system for the given conditions T, p,. [28]. The

task of numerical minimization of G is not straightforward, as equation systems

with many unknowns (the concentrations of all species in the stable phases) have to

be solved. For doing this, commercial software packages such as FactSage [3] or

Thermo-Calc [29] as well as some free software, are available. The journal

Calphad (CALculation of PHAse Diagrams) is a forum for work devoted to such

calculation efforts, and an overview of available software can be found there [30].

Commercial software packages are often integrated with databases for

thermodynamic data at least for pure substances, and partially also for mixture phases.

Free data collections can be found in the literature (e.g., [8–10] or on the internet

[31,32]). Many phase diagrams for real systems in this chapter where calculated with

FactSage.
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2.2 Equilibria Between Condensed Phases
2.2.1 One Component

2.2.1.1 Pressure–Temperature Diagrams
For systems with only one component (C ¼ 1), Gibbs phase rule (Eqn (2.5)) gives a sum

F þ P ¼ 3 degrees of freedom þ phases. The concentration is fixed to be unity, and often

pressure and temperature are used for constructing phase diagrams. Figure 2.3 shows

this for sulfur as an example, where the four different phase fields are separated by lines

(phase boundaries). Under ambient conditions, sulfur is a soft but brittle yellow solid,

with orthorhombic crystal structure (a-S). It melts at 115 �C to a dark liquid, but if cooled

quickly (e.g., by pouring into water), an almost rubberlike solid with monoclinic crystal

structure is obtained (b-S), which transforms slowly back to a-S under ambient condi-

tions. A detailed investigation reveals that at 1 bar b-S is stable for 95 � T (
�
C) � 115.

F þ P ¼ 3 can be obtained in three ways, as follows, which can be seen from

Figure 2.3:

F ¼ 0: No degree of freedom means a fixed point with as much as three coexisting

phases. This is the case in the three “triple points” T1 (a þ b þ liq; 117 �C,
283 bar), T2 (b þ liq þ gas; 115 �C, 3.8 � 10�5 bar), T3 (a þ b þ gas; 95 �C,
7.6 � 10�6 bar).

F ¼ 1: One degree of freedom does exist along lines separating phase fields in the

diagram. Along these lines, the neighboring phases are coexisting. The slope of the

lines is given by the Clausius‒Clapeyron equation

dp

dT
¼ DH

DVm $T
(2.35)

where DH is the enthalpy difference between the two neighboring phases. For

melting events this is, e.g., the heat of fusion DHf, and first-order phase trans-

formations (see Section 2.1.3) are characterized by the heat of transition DHt. Both

sulfur structures are characterized by S8 rings and differ mainly in the arrangement

of these rings. The corresponding phase transition does not rearrange too many

bonds, hence DHt ¼ 0.4 kJ/mol is small for the a % b transition of S. In other

cases, where the crystal structure undergoes a complete rearrangement, the

enthalpy of solid-state transitions may approach the heat of fusion. BaCl2 un-

dergoes, at 37 K below its melting point, a strong structural transition from ortho-

rhombic to cubic [33] with DHt ¼ 16.9 kJ/mol, and DHf (at 962
�C) is 16.0 kJ/mol.

Generally, one can assume that a few kJ/mol to several 10 kJ/mol are typical values

for DH to be entered in Eqn (2.35). DVm is the difference between molar volumes

in both phases, which are inverse proportional to the mass density 9. This is for

most solids and liquids in the range 1 � 9 � 20 g/cm3: Under ambient conditions

extreme values are lithium (0.535 g/cm3) and osmium or iridium with 9 z 22.6 g/

cm3. For most transitions between condensed phases, 9 does not change much,
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and DVm is small. Consequently, the slope dp/dT is large, which is shown by the

almost perpendicular phase boundaries a/b and b/liquid in Figure 2.3. For transi-

tions between condensed phases and gases, however, the molar volume changes

remarkably. The large DVm results in significantly smaller slopes of the phase

boundaries. If the volume of the condensed phase is neglected in comparison to

the volume of the gas phase Vg, DVm in (Eqn (2.35)) can be replaced by the volume

of an ideal gas V ¼ RT/p. This gives

d ln p

dT
¼ DH

R $T 2
(2.36)

which corresponds to the parabolic behavior of the gas phase boundary in

Figure 2.3.

F ¼ 2: Two degrees of freedom are available inside the four phase fields of

Figure 2.3, and always only one phase is stable there. Two degrees of freedom

means that two independent parameters (here p and T) can be changed within the

limits of the corresponding phase field independently.

2.2.1.2 Other Fields
T and p are typical intensive parameters that are used as axes, but generally the Gibbs free

energy may depend on other fields requiring more terms to be added to Eqn (2.22), e.g.,

G ¼ H � TS � Vm E
!

$ D
!� Vm

2 s! : 2
ε
! (2.37)

where Wel ¼ E
!

$ D
!

is the electric work density of a polarized crystal (E
!
; D
!
—electric field

or displacement, respectively) and Welast ¼ 2 s! : 2
ε
! is the elastic energy stored in a

deformed solid (2 s!—elastic stress, 2
ε
!—strain). Notations such as 2

ε
! express that the

corresponding physical property is described by a second rank tensor, a construct having

in general 3 � 3 components [34].

Such alternative contributions to G can be significant, especially for epitaxial layers.

Strontium titanate SrTiO3 is an example: The substance crystallizes at high T in a cubic

perovskite paraelectric phase, which has no permanent moments. If cooled below the

Curie temperature TC, it lowers crystal symmetry and becomes in a second-order

transition (see Section 2.1.3) ferroelectric. TC depends on the G(T,ε) functions of the

paraelectric and ferroelectric phases, and ε can be manipulated by growing titanate

layers on substrates that are almost, but not perfectly, lattice matched. Distorted

perovskite substrates such as REScO3 allow “strain engineering” to manipulate the

ferroelectric properties of SrTiO3 layers [35].

Gibbs phase rule (Eqn (2.5)) in its classical form relies on the expression

G ¼ H � TS ¼ U þ pV � TS. This means that pressure p and temperature T are inde-

pendent variables. If under isobar conditions p ¼ const., the number of independent

variables is reduced, the phase rule has to be altered to Eqn (2.6), with 1 instead of 2 as

integer constant. Contrarily, a larger number of independent variables such as shown in

Eqn (2.37) can increase the integer in Eqn (2.5) from two to larger values. This is
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demonstrated in Figure 2.24 for the one-component system SrTiO3, which can be grown

on several substrates, causing strain within the thin single crystalline SrTiO3 layer. Only

for small ε or high T the material remains in its normal paraelectric cubic phase. For

large ε, the material lowers its symmetry completely and becomes ferroelectric. In the

intermediate region, paraelectric and ferroelectric states coexist: a phenomenon that is

not found in typical one-component phase diagrams with p, T as coordinates

(Figure 2.3). For vanadium(IV) oxide VO2 a triple point between two isolating monoclinic

and a metallic rutile type phase was found in coordinates strain ε (or stress s f ε,

respectively) versus temperature at T ¼ (65.0 � 0.1) �C, ε ¼ 0 [36].

2.2.2 Two Components

The pressure dependence of phase transitions can be described by the

Clausius–Clapeyron Eqn (2.35). Many phase transitions are influenced only to a small

extent by the total pressure p of the system. This is the case, e.g., for the melting of solids

and for transitions between different crystal structures of one chemical compound

where jDVj is usually small. Besides, the variation of x and T can, under usual experi-

mental conditions, be more easily performed than variations of p, which require ex-

periments within pressure cells or sealed ampules. For both reasons, the phase

composition of the system depends nearly exclusively on T and on the composition xi of

all components i. As
P

i

xi ¼ 1, one concentration value x is sufficient in the case of bi-

nary systems with only two components.

The topology of the binary phase diagram in the x � T plane (often called A–B

phase diagram) depends on the miscibility of A and B in the different fi. Some typical

(limit) cases will be presented in the next sections. One should note that transients

between these limit cases can be found often, if a limited but non-negligible miscibility

Paraelectric

Ferroelectric

0 0.8-0.8
In-plane strain, (%)

FIGURE 2.24 Phase diagram of SrTiO3 with ε ¼
(ajj � a0)/a0 as abscissa. ajj, a0 is the lattice constant
of SrTiO3 in stressed (¼epitaxially grown) or free-
standing state, respectively. After Ref. [37], reprin-
ted by permission from Macmillan Publishers Ltd.

112 HANDBOOK OF CRYSTAL GROWTH



between A and B occurs in one or more phases. The same syntax that was introduced in

Section 2.1.4.2 will be used for the description of phases with fixed or variable

composition x.

2.2.2.1 Total Miscibility in 2 Phases
This case of total mixing in a high T and low T phase was already described analytically

Eqns (2.32) and (2.33). Pure A undergoes at TA a first-order phase transition, such as

melting, from f0 to f00, and pure B undergoes at TB an analog first-order transition from

f0 to f00. If the necessary but not sufficient conditions

1. identical space symmetry groups (requiring at least identical point symmetry

groups, which again requires at least identical crystal system)

2. similar lattice parameters a, b, c (should not be different by more than z15%)

3. similar nature of chemical bonds (ionic, covalent, van der Waals, or metallic)

are fulfilled for both phases, each of them can adopt any composition 0 � x � 1

(complete miscibility). Accordingly, for low T, only one phase f0 is stable for all x. This

means that this combination of system variables corresponds to a one-phase room (or

one-phase field) in the diagram. For high T, only f00 is stable, resulting in another one-

phase field. For intermediate T both phases f0 and f00 may exist in equilibrium that is

represented by a two-phase field that typically has the shape of a lens. The two-phase

field f0þ f00 spreads from the composition A to the composition B in the binary phase

diagram (Figure 2.25). It should be noted that the first-order transition happening at one

point on the T scale for the pure substances A and B is spread over a T range which is

spanned by the lines limiting the two-phase field for intermediate compositions. This T

range becomes broader for larger heats of transformation (Figure 2.26).

Often, f00 is simply the melt (liquidus). In this case, the first condition for miscibility is

usually fulfilled, as liquids (except “liquid crystals”) are isotrope. Isotropy is described by

the limit point symmetry group (Curie group) NNm, which is the highest symmetry

group at all. Condition 2 does not apply to liquids; hence, only condition 3 decides

Te
m

pe
ra

tu
re
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TA

TB

x

φ

φ

φ + φ

FIGURE 2.25 Binary phase diagram with
ideal mixing both (low T and high T)
phases f0 and f00.
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whether or not the phases f00 of both components A or B can mix. In such cases where f00

is the melt, the lower boundary line of the two-phase field A1�xBx(sol) þ melt is called

solidus and the upper boundary line is called liquidus. Like melting, evaporation is a

first-order transition and liquid–vapor equilibria are similar to solid–liquid equilibria.

This is demonstrated in the left panel of Figure 2.27. Similar topologies with subsequent

one-phase fields can also be observed for systems with first-order transitions between

different solid phases. The zirconium–hafnium system is an example in which both

components undergo transitions (h.c.p)% (b.c.c)%melt. The abbreviations in brackets

stand for the identical hexagonal closed packed or body centered cubic crystal structures

of both metals, respectively. For zirconium and hafnium, the solid-state transition ap-

pears at 865 or 1950 �C and melting at 1860 or 2230 �C, and complete miscibility is

1000

1100

1200

T
)

K(

xA 0.2 0.4 0.6 0.8 B

40–40 kJ/mol
50–10 kJ/mol
20–60 kJ/mol

FIGURE 2.26 Calculated hypothetical mixed crystal phase diagram with TA ¼ 1000 K, TB ¼ 1200 K. The three sets
of solidus and liquidus lines were calculated with Eqns (2.32) and (2.33) for the QA � QB pairs given in the legend.
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FIGURE 2.27 Left: Binary phase diagram Si–Ge for an extended T range (compare to Figure 2.20) where one-phase
fields “mixed crystal,” “melt,” “gas,” are separated by two-phase fields. Right: The binary phase diagram
NaCl–KCl shows an azeotropic point where liquidus and solidus are coincident.
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observed in all phases [38]. Consequently, a narrow two-phase field appears between

h.c.p. and b.c.c., and a broader one (DHf z 5DHtfor both metals) between b.c.c. and

melt.

If Gex is small for both phases with total miscibility, the phase boundaries (e.g., liq-

uidus and solidus; see Figure 2.26) are monotonous rising or falling. The right panel of

Figure 2.27 shows in contrast the case NaCl–KCl, where the melt extends for interme-

diate x below the Tf of the components, forming a local minimum. If such minimum

occurs, both phase boundaries must meet there in one common “azeotropic” point,

where f0 and f00 have identical composition xaz. This is remarkable because xaz is the

only composition, except the pure components, for which crystal growth from the melt is

possible without segregation (cf. Section 2.2.2.3). The system CaF2 (Tf ¼ 1418 �C)–SrF2
(Tf ¼ 1477 �C) has an azeotropic point at xaz z0.418, Taz ¼ 1374 �C, where homogeneous

single crystals with 30 mm diameter and 50 mm length could be grown by the

Czochralski method [39]. Principally azeotropic points could also be common maxima of

liquidus and solidus, but this case is not very realistic: It requires a relative stabilization

of the solid with respect to the liquid (negative Gex). This, however, results rather in the

formation of an intermediate compound. In the system Cu–Au, where both components

have face-centered cubic structures, solid solutions exist for all concentrations with an

azeotrope near 60% gold. Below ca. 400 �C, the interaction between Cu and Au atoms

becomes so strong that their distribution on lattice sites is partially ordered. Depending

on the Cu/Au ratio, compounds with approximate compositions Cu3Au, CuAu, or CuAu3

are formed, and all of them show some flexibility of composition around the ideal values

25, 50, or 75% Au.

Other examples for intermediate compounds are SrxBa1�xNb2O6 (SBN) with a

liquidus/solidus maximum at x ¼ 0.61 [40–42] or CaxBa1�xNb2O6 (CBN) with a liquidus/

solidus maximum at x ¼ 0.281 (see Figure 2.28) [43]. Sometimes, SBN and CBN are called

mixed crystals, but this denomination might cause errors because it suggests mixing

from the end members EANb2O6 (EA ¼ Ca, Sr, Ba), which is wrong. Instead, both systems

are pseudobinary with an intermediate congruently melting compound, and eutectics on

both sides of this compound (see Section 2.2.2.4). It is just remarkable that the homo-

geneity width of these compound is rather large: from ca. 0.2 to 0.8 for SBN, and from ca.

0.15 to 0.4 for CBN.

The Gibbs energy gain from mixing becomes smaller for low T as the second term of

Eqn (2.26) vanishes. Consequently, mixed phases do not exist in equilibrium at very low

T. Of course, demixing of solid solutions (in contrast to liquid solutions) requires

diffusion steps that need time, and are consequently often hindered kinetically. Not

always demixing results in the formation of intermediate compounds, like in the Cu–Au

system above mentioned. No intermediate compounds exist between antimony and

bismuth. Both are crystallizing in identical structures belonging to the rhombohedral R3c

space group with lattice constants aSb0;rh ¼ 0:45067 nm and aBi0;rh ¼ 0:47458 nm [44]. This

difference of ca. 5% is rather small, and allows the formation of solid solutions Sb1�xBix
for 0 � x � 1 at sufficiently high temperature. The binary phase diagram in Figure 2.29
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shows, however, that near x ¼ 0.5, such mixed crystals become unstable at T(170 �C.
Then the initially homogeneous solid solution (one phase) becomes unstable and de-

composes under conservation of the crystal structure to volume elements, which are

enriched in Sb or Bi, respectively (two phases). It should be mentioned that such

FIGURE 2.28 Pseudobinary phase diagram CaNb2O6–BaNb2O6 with congruently melting intermediate (Ca,Ba)Nb2O6

(“CBN”). The CBN phase field is single phase, in contrast to the neighboring fields. Reprinted with permission
from Elsevier [43].
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FIGURE 2.29 Phase diagram bismuth–antimony with complete miscibility at high T in the rhombohedral A7
structure. Below the miscibility gap, decomposition to a Sb-rich and a Bi-rich phase occurs, both with identical A7
crystal structure like that above the gap.
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miscibility gaps, even if theoretically expected for all mixed crystal systems, are practi-

cally not observed very often for kinetic reasons.

2.2.2.2 Eutectics and Eutectoids
A eutectic phase diagram is formed if the components are immiscible in their solid

phases, but exhibit complete miscibility in their molten (liquid) phases. This case was

described analytically by Eqns (2.30) and (2.31). If a melt with composition xeut in the

hypothetical phase diagram Figure 2.23 is cooled, then it crystallizes completely at xeut
under formation of the solid phases A and B. In other words, a eutectic reaction

liquid/ A (sol) þ B (sol) takes place, where one phase decomposes and forms two other

different phases. The crystallization of two phases at the same time close together results

typically in a fine-grained, interpenetrated structure. Such eutectic solids sometimes

show metamaterial properties that might differ considerably from the properties of its

constituents [45]. If in Figure 2.23 the initial composition of the cooling melt deviates

from xeut, the crystallization of a solid phase starts already at another Tliq > Teut and

continues until Teut. The first crystallizing phase left from the eutectic composition is

solid A, and right from xeut solid B. All phase fields are labeled correspondingly in

Figure 2.30.

It is not a requirement that the high T phase is liquid. Figure 2.30 shows the more

general case where, during heating, the component A undergoes at TA the trans-

formation f0 / f000, and B at TB a transformation f00 / f000. This means that at low T, A

and B show a different phase state, and are therefore immiscible, but have identical

phase states f000 with unlimited miscibility at high T. If f000 is a solid phase, then the

composition xeut undergoes at Teut a eutectoid reaction.

Figure 2.31 shows as an example of high technical relevance the iron-rich part of the

Fe–C system. It should be noted that this system is drawn here for true equilibrium.

Under the technical conditions of iron and steel metallurgy, often cementite phase Fe3C

appears [46], which is not an equilibrium phase in the Fe–C system (but see Figure 2.32
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FIGURE 2.30 Binary phase diagram with
ideal mixing in the high T phase f000 only.
Below TA pure component A exists in the
phase f0 and below TB pure component B
exists in the phase f00. f0 and f00 are
immiscible.
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for Fe–Mn–C). Nevertheless, the appearance of Fe3C results only in minor amendments

to the phase diagram part that is shown in Figure 2.31: the rightmost liquidus becomes

flatter—it is then the liquidus of Fe3C instead of C, and the lowest stability limit of g-Fe

drops from 738 �C by ca. 12 K. Pure Fe has below 911 �C a body-centered cubic structure
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FIGURE 2.31 The iron-rich part (xC � 0.2) of the iron–carbon phase diagram. Pure iron undergoes transitions
a-Fe / g-Fe / d-Fe / melt. The maximum solubility of carbon in the solid phases is (in this order) 0.001, 0.09,
0.004. Single-phase g-Fe with xFe ¼ 0.03 is stable down to 738 �C, where it undergoes eutectoid decomposition to
a-Fe and graphite.
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FIGURE 2.32 Left: Isothermal section T ¼ 750 �C through the ternary system Fe–Mn–C near the Fe-rich corner (bot-
tom left) up to 5 mol-% Mn and C. Only for minor concentrations of the additives (xC ( 0.001; xMn ( 0.02) iron
remains single-phase a-Fe; otherwise, a large range of single-phase g-Fe exists. Right: Polythermal projection of
the same concentration range on the g-Fe (f.c.c.) phase field with 10 K isotherms. The four phase invariant point
“1” is at x ¼ 0.032, y ¼ 0.038, T ¼ 693 �C.
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(such as tungsten) and is comparably hard. This structure can dissolve only minor

amounts of carbon. For 911 < T (�C) < 1395, g-Fe is stable, which has a face-centered

cubic structure (such as copper) and can dissolve large amounts (9% C. Dissolved

carbon stabilizes g-Fe down to the eutectoid temperature Teutectoid ¼ 738 �C at

xeutectoid ¼ 0.03. If such Fe0.97C0.03 is cooled from the g phase field below Teutectoid, it

decomposes to the a-Fe phase and graphite. This transformation from one phase to two

phases has analogy with a eutectic, but proceeds only with solid phases. It is therefore

called a eutectoid.

2.2.2.3 Segregation and Lever Rule
Many solidification and crystal growth processes are performed by cooling melts or melt

solutions. Such crystallization is often accompanied by segregation. This means that a

solid (e.g., the just-formed part of the crystal) and a liquid (e.g., the rest of the melt) of

different composition are in equilibrium. During heating, the same observation is often

called incongruent melting, as melting solid and created liquid have no identical

composition. The appearance of segregation is very different in systems with or without

mixed crystals. The left panel of Figure 2.33 shows the case of a simple mixed crystal

system. If a melt with composition x0 is cooled, the first solid is formed at the temper-

ature T 0 where the liquidus touches x0. The system is in equilibrium, and consequently

every part of it is at T 0 now (isothermal conditions). The composition of the solid phase is

shown by the solidus, and this curve gives at T 0 the composition x0solsx0. The dashed

horizontal line at T 0 connecting x0 (liquid) and x0sol, which are in equilibrium, is called the

tie-line. During further slow cooling, the system reaches T 00, and now a melt x00liq is in

equilibrium with a solid x00sol. Reaching such state, however, is an extremely time-

consuming process, as all solid material that was crystallized before with x > x00sol had
to be transformed by solid-state diffusion to the new composition. Practically, this

seldom happens, even during geological times: The mineral olivine is a crystal mixed

between forsterite Mg2SiO4 and fayalite Fe2SiO4, and shows locally different Fe/Mg ratio

in artificial as well as natural crystals [47]. Theoretically, under perfect equilibrium, the
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FIGURE 2.33 Crystallization of a starting composition x0: Left: Crystallization processes in a mixed crystal system
result in a solid concentration xsol(T) that depends on the current temperature. Right: In a eutectic system, the
solid body has a fixed concentration (here B with x ¼ 1).
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crystallization process is finished at T 000 when the two-phase field is left. As material may

not disappear, the resulting crystal had the initial composition x0 then.

Practically, the initially crystallized part will often be too far from the residual melt to

reach equilibration. Depending on the geometrical conditions, the first fraction crys-

tallized with x0sol may then be surrounded by subsequently crystallized material with

smaller B-composition (“gradient crystal”). In crystal-pulling processes, such as

Czochralski, the B-rich material crystallizes first close to the seed, and is closer to the tail

followed by material with lower B concentration. In systems such as shown in

Figure 2.33 left, the higher melting component will always be enriched in the first

crystallized fractions. Often, a segregation coefficient

k0 ¼ xsol
xliq

zconst: (2.38)

is defined that approximates the solidus and liquidus to be linear near the pure com-

ponents. This case was discussed first by Gulliver [48], and results in a dependence on

the position given by

xsol



g
�
¼ keffx0ð1� gÞkeff�1 (2.39)

where 0 < g < 1 is the crystallized part of the melt with initial composition x0. The

effective distribution coefficient keff depends on k0 (for crystallization that is not too

quick, one often has keff z k0) and several parameters of the crystallization process itself

[49].

Segregation appears always in mixed crystal systems, except at azeotropic points (see

Figure 2.27 right) and often significantly impedes crystal growth, because large volumes

with constant composition cannot then be easily grown. If the concentration, hence the

properties of the mixed crystal, depend too strongly on position, even a stable crystal

growth process may become impractical.

Also in systems where the solid phase has a fixed composition, such as the eutectic

system in Figure 2.33 right, segregation can occur. If a melt x0 is cooled, at T 0 the pure

solid B (x ¼ 1) crystallizes. The crystallization of B (sol) continues until Teut is reached

where the whole system becomes solid. Such behavior may be beneficial if for some

reason (too high volatility, phase transition, or another destructive process below TB,

technical restrictions for very high TB) the crystal B (sol) cannot be grown from a pure B

melt. This is the basis for melt solution growth processes, such as TSSG [50].

For one-phase fields, a point (x, T) gives the composition and temperature of this

phase at this specific point. From the tie-line constructions mentioned above, it is clear

that this is not the case for two-phase fields. There, the tie-line crossing this point

connects two phases with different compositions that are in equilibrium at this T. Not

only can both compositions, but also the shares of both phases, be read directly from the

phase diagram, following the lever rule. According to this rule, the quantities of both

equilibrium phases are indirectly proportional to the “levers” that are spanned from the

given composition to the corresponding phase boundaries. For instance, in Figure 2.33
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right, one has at T00 solid B (x ¼ 1) in equilibrium with a melt composition x00liq. The
quantities are

melt :
1� x0
1� x00

liq

(2.40)

BðsolÞ : x0 � x00
liq

1� x00
liq

: (2.41)

With further lowering of T, x00liq finally approaches xeut, and this gives the maximum yield

(expressed as share of the starting material) that can be reached with crystal growth

processes from melt solution with

Ymax ¼ x0 � xeut
xsol � xeut

(2.42)

where xsol is the composition of the phase which has to be grown (in Figure 2.33 right

x ¼ 1), and x0 is the initial composition of the melt.

2.2.2.4 Intermediate Compounds
Sometimes the components of a thermodynamic system can interact so strongly that

intermediate compounds are formed. This is usually the case if one component easily

creates cations (such as most metals), and the other easily creates anions (such as

halogens, oxygen, or sulfur). Then simple salts, oxides, or sulfides are built. Also, how-

ever, systems set up from comparably similar components can form intermediate

compounds if a sufficiently large Gibbs free energy reduction can be reached; see, e.g.,

the CaO–SiO2 system in Figure 2.20.

Figure 2.34 shows two similar pseudobinary systems LiF–AF (A ¼ Cs, Rb), and both of

them contain an intermediate compound LiAF2. It should be noted that for A ¼ K, Na the
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FIGURE 2.34 Both systems LiF–CsF (left) and LiF–RbF (right) contain an intermediate 1:1 compound. LiCsF2 has a larger
formation enthalpy, and melts congruently. This is the precondition for constructing independent partial systems.
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systems form simple eutectics (for Na with some rim solubility on the NaF side), but no

intermediate compounds. Obviously the larger radius difference between the A ions, in

octahedral coordination Li (90), Na (116), K (152), Rb (166) Cs (181 pm), makes the Gibbs

energy gain upon compound formation stronger.

From the lever rule introduced in Section 2.2.2.3, it is obvious that every melt

composition from the left half of the LiF–CsF system (Figure 2.34 left, 0 � xLiF � 0.5)

forms during crystallization only CsF and/or LiCsF2. Otherwise, frommelts 0.5 � xLiF � 1,

only LiCsF2 and/or LiF are crystallizing. This means that both halves of the LiF–CsF

system are independent, and consequently form subsystems. But this is not so for the

LiF–RbF system shown in the right panel of Figure 2.34: The intermediate LiRbF2 at

xLiF ¼ 0.5 undergoes at Tper peritectic decomposition (see Section 2.2.2.5) and the lever

rule shows that from melts xper < x � 1, LiF (sol) crystallizes first. But xper is <0.5, in the

left half of the system! This means that some compositions in the left half of the system

have LiF from the right half as first crystallizing solid. In other words, it is impossible to

define independent partial systems with peritectically melting compounds as (rim)

components. Otherwise, congruently melting intermediate compounds in binary sys-

tems, such as LiCsF2 in the LiF–CsF system, can be used as rim components for partial

systems.

This is sometimes helpful if a complete system is on the one side sophisticated and

difficult to measure, but on the other side in some regions not really interesting for a

specific purpose. The CaO–SiO2 system in Figure 2.20 is a good example: For CaO-rich

compositions, the liquidus goes up beyond 2500 �C, which is considerably higher than

the T limit of typical devices for thermal analysis such as differential thermal analysis

(DTA). The binary phase diagram shows the congruently melting phases C2S ¼ Ca2SiO4

at 33% SiO2 (belite) and CS ¼ CaSiO3 at 50% SiO2 (wollastonite). Consequently, C2S and

CS may be used as end members of a partial system, and it becomes clear that CaO–SiO2

mixtures between 33.33% and 50% SiO2 may contain in equilibrium only C2S, CS, and

the intermediate C3S2 (Ca3Si2O7, rankinite). For some of them, high- and low T phases

(a,a0,b) do exist, but phases with different chemical composition such as “free chalk”

CaO or alite C3S are not permitted in this concentration range.

2.2.2.5 Peritectics and Peritectoids
Every compound AxBy disintegrates at some specific temperature TAxBy. Often, a liquid

phase is the result, and then the composition of this liquid phase is the same as of the

initial solid: AxBy (sol) / (xA þ yB) (liq). This process is called congruent melting and is

shown by LiCsF2 (sol) in Figure 2.34. The behavior of LiRbF2 in the right panel of the

figure is different, because at its disintegration temperature Tper not only a liquid, but

additionally solid LiF is formed. One can formulate the peritectic reaction

LiRbF2 (sol) / [xperLiF þ (1 � xper)RbF] (liq) þ LiF (sol) with xper z 0.47. Peritectic

decomposition (¼ peritectic melting) is one form of incongruent melting, because the

melting compound is not in equilibrium with a liquid of the same composition. But not

every incongruent melting requires a peritectic reaction—instead it was shown in
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Section 2.2.2.3 that already in simple mixed crystal systems the liquid and solid

phase in equilibrium have different composition, hence the solid shows incongruent

melting.

Figure 2.35 shows the typical case where an intermediate compound (here assumed

to have the composition AB2) undergoes peritectic melting and solid B is the higher

melting neighbor phase that is formed. At Tper, three phases are in equilibrium, which is

the maximum for a two-component system (Eqn (2.6)), and there is no degree of

freedom left. The point where B liquidus, AB2 liquidus, and peritectic line meet is called

the peritectic point and has the peritectic composition xper. Solid AB2 crystallizes only

from melts with initial composition xeut < x0 < xper. If one sets for the left diagram in

Figure 2.35 x0 as close as possible to xper (but not beyond it!), one obtains with Eqn (2.42)

the maximum yield Ymax ¼ 54.5% for the growth of AB crystals from the melt

(x0 ¼ xper ¼ 0.5, xeut ¼ 0.3, xsol ¼ 0.6667).

Also, compounds showing peritectic melting may have a finite phase width, and an

example A1�dB2 is given in the right panel of Figure 2.35. The left and right phase

boundaries of A1�dB2 are the solidus of this phase and are limiting a one-phase field. The

upper limit of this field must be a point on the peritectic line; if both phase boundaries

met not in one point, the composition of A1�dB2 would be left as a degree of freedom,

which infringes the phase rule. Not only can intermediate compounds melt peritecti-

cally, but also rim compounds if a solid solution is formed that melts higher compared to

the pure component. The system ZnO–MgO is an example where doping by (7% Mg

increases the melting temperature of ZnO by ca. 45 �K [51].

In a peritectic reaction, a low T solid phase b is in equilibrium with another solid

phase and a liquid: b (sol) % a (sol) þ liq. A peritectoid reaction is an analog with the

difference that a third solid phase replaces the liquid. Examples are MoNi4 (sol), which

decomposes peritectoid to MoNi3 (sol) þ Ni:Mo (f.c.c.), and subsequently MoNi3,

which decomposes to MoNi(d) þ Ni:Mo (f.c.c.), or FeAlO3 in the FeO–Fe2O3–Al2O3

system [52].
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FIGURE 2.35 Two types of A–B phase diagrams with an intermediate compound AB2 showing peritectic
decomposition at Tper. Left: AB2 is a line compound (daltonide, Section 2.1.4.1) with fixed composition
xB ¼ 0.6667. Right: AB2 is a berthollide with finite homogeneity width d.
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2.2.2.6 Syntectics and Monotectics
Both phenomena are related to demixing in the liquid phase. An example was given in

Figure 2.20 where in the CaO–SiO2 system SiO2-rich melts are single phase only above ca.

1900 �C. The maximum of the “two melts” phase field near 89% SiO2 is a critical point,

and below it, more silicatelike melt is in equilibrium with another more oxidelike melt.

Such behavior is called monotectic. The system iodine–lead even has two regions with

immiscibility of liquid phases: For xI(0:1 and T > 368 �C, a monotectic miscibility gap

occurs. Besides the intermediate phase PbI2 (xI ¼ 0.6667) is at 406� in a syntectic

equilibrium with two immiscible melts of slightly different composition (xI z 0.53 or

z0.7, respectively) [53].

2.2.3 Three and More Components

In the previous sections, thermodynamic systems with either one or two components

were considered. With the Gibbs phase rule (Eqn (2.6)), one has in the easiest case of

constant pressure (often p ¼ 1 bar) for fields with only one phase (P ¼ 1) F ¼ C, hence

two degrees of freedom in two-component systems, which can be well represented in 2D

drawings. For systems with three or more components, this is not so straightforward,

and three options remain:

1. 3D diagrams can be constructed for systems with C ¼ 3, and drawn in a suitable

perspective. Although such procedure is instructive, a severe drawback appears,

because quantitative data are hard to read from perspective representations.

2. The number of degrees of freedom is reduced by keeping some quantities constant

(e.g., T, or some xi), or by defining dependencies between several of these parame-

ters (e.g., xi/xj ¼ const.). For quantitative representations, this method is preferred

and will be used almost exclusively in this section.

3. Projections onto the surface of a specific phase (often the liquid) are performed.

2.2.3.1 x – y Diagrams
If xA, xB, xC are the corresponding molar fractions of a ternary system, one has

xA þ xB þ xC ¼ 1 and thus two independent concentrations. It is a reasonable option to

set p ¼ const., T ¼ const. and choose, e.g., xA/xB and xC/xB as coordinates. This type of

plot can be useful if one of the components may be distinguished, e.g., the main

component of an alloy. In Figure 2.32, this is shown for iron and the two important steel

additives carbon and manganese. The left panel shows an isothermal section through the

ternary system near the Fe-rich corner, and the right panel is a projection of the same

concentration range on the boundaries of one specific phase (here: face-centered cubic

iron, g-Fe). This means that the viewer looks from inside the g-Fe phase field, which is

not shown in the diagram, down to the boundaries of neighboring phases, which are

differently shaded. For pure Fe, the f.c.c. phase is stable >912 �C and it transforms to

a-Fe for lower T. By adding C (Figure 2.31) and/or Mn, the transition temperature can be
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lowered. For C concentrations that are too high, free carbon separates as graphite, and

for C þ Mn concentrations that are too high, an iron–manganese carbide, cementite, is

formed. The phase rule (Eqn (2.6)) says for C ¼ 3 (Fe, C, Mn) under isobar conditions

P þ F ¼ 4. Consequently, up to four phases can exist in equilibrium at nonvariant points

(F ¼ 0). “1” in the right panel of Figure 2.32 is such point where g-Fe, a-Fe, graphite, and

cementite are in equilibrium. Analogous diagrams can be constructed for C > 3 if for

every additional component beyond three, one restriction (constant concentration, or

constant concentration ratio) is implemented.

Such x – y diagrams with two concentration ratios (or concentrations) as Cartesian

axes are often appropriate for the presentation of systems where one component is

clearly prevailing, such as alloys with a main component, or semiconductor systems with

their dopants. For other systems with equivalent weighed components, Cartesian dia-

grams are not so well suited. The example LiCl–NaCl–KCl is shown in Figure 2.36. These

substances exhibit unlimited solubility in the liquid phase and form solid solutions

(halite structure). In the solid phase, however, the miscibility is unlimited only for the

partial systems KCl–NaCl and LiCl–NaCl. Both partial systems have an azeotrope point,

whereas KCl–LiCl is eutectic (insert). Along the abscissa of Figure 2.36, right, the

composition shifts from pure NaCl (KCl/NaCl ¼ 0) to KCl/NaCl ¼ 5, which corresponds

to xKCl ¼ 5
6. The isotherms show there is a common minimum near KCl/NaCl ¼ 1, which

corresponds with the azeotrope point in Figure 2.27 right. The liquidus minimum of the

ternary system appears at the composition xLiCl ¼ 0.51, xNaCl ¼ 0.12, xKCl ¼ 0.37, close to

the binary eutectic KCl–LiCl. This composition is located inside the 360 �C isotherm

close to the top rim of the ternary x – y diagram (Figure 2.36). From the construction of

both axes in this diagram, it is obvious that the limit system KCl–LiCl can never be

reached, which is a severe drawback of this diagram type. A concentration triangle of this

system, such as shown in Figure 2.37 can solve this problem.
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FIGURE 2.36 Left: The binary system NaCl–LiCl shows complete miscibility with an azeoptrope, such as NaCl–KCl
(Figure 2.27). In contrast, KCl–LiCl form a eutectic (insert). Right: The system NaCl–LiCl–KCl with a projection onto
the liquidus surface. NaCl at the origin has the highest melting point Tf ¼ 801 �C. The isotherms have 20 K
difference, and three of them are labeled. See also Figure 2.37.
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2.2.3.2 Concentration Triangles
The example Figure 2.36 right demonstrates a disadvantage of Cartesian presentations

for ternary systems: The component on the bottom left corner of the diagram is always

distinguished. This is reasonable if the other components are only minor additives to the

main component, as in Figure 2.32. If, however, all components are be treated similarly,

the “concentration triangle” (Gibbs triangle) is suitable for three-component systems of

components A, B, C.

This construction is shown in Figure 2.37 and consists of a regular triangle where the

pure components “A,” “B,” “C” are represented by the corners. The concentration tri-

angle relies on Viviani’s theorem that in a regular triangle, for every point Q the sum of

the distances of this point from the three sides equals the height of the triangle

hA þ hB þ hC ¼ h (2.43)

and is therefore constant. If h ¼ 1.0 (100%) is chosen, hA, hB, hC can represent the

concentration of one component, that add up to unity. The following holds:

• All compositions where the concentration of one component is constant are repre-

sented by lines parallel to the triangle side opposite to the corner of this compo-

nent. For example, in Figure 2.37, left, a horizontal line through Q represents all

compositions xA ¼ 0.6, xB ¼ 0.0.4, xC ¼ 0.4 � xB.

• All compositions where the ratio between two components is constant are repre-

sented by straight lines that start from the corner of the third component. For

example, in Figure 2.37, left, a line from the top corner “A” through Q to the bot-

tom line represents all compositions xA ¼ 1.0, xB/xC ¼ 3.

For another system in Figure 2.38, right, the four regions of primary crystallization are

distinguished by different shadings. From NaCl-rich compositions, NaCl crystallizes first
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FIGURE 2.37 Left: Gibbs triangle A–B–C with one intermediate composition xA ¼ 0.6, xB ¼ 0.3, xC ¼ 0.1. For every
composition one has xA þ xB þ xB ¼ h (Eqn (2.43)). Right: The system NaCl–LiCl–KCl (see Figure 2.36) right as
Gibbs triangle in polythermal projection. The eutectic point is marked by a circle, 20 K isotherms.
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(top); and from CaCl2-rich compositions, CaCl2 crystallizes (bottom left). Solid SrCl2 un-

dergoes a solid-state phase transition s/s2 atTtz 727 �C.Only frommeltswithT80%SrCl2
does the high Tphase s2 crystallize, because the liquidus temperature is>Tt there (bottom

right corner); for smaller SrCl2 concentrations, the low T “s” phase crystallizes first.

The thick black line between the s2 and s field is the intersection of the Tt-isotherm

with the liquidus surface. Most regions of primary crystallization are separated by three

“eutectic valleys” represented by black lines. The eutectic valleys meet in the ternary

eutectic point, where NaCl(s), CaCl2(s), SrCl2(s), and liq are in equilibrium.

If a molten sample of an arbitrary composition inside one of the primary crystalli-

zation fields is cooled, first the corresponding pure component phase crystallizes. The

melt is depleted from this component, and its composition shifts to the opposite di-

rection until it touches one of the eutectic valleys. There, the parallel crystallization of a

second (pure component) phase starts, together with the previous one. This way, the

melt composition moves downward (to lower T) along the valley, until it reaches the

ternary eutectic point. There, the rest of the melt crystallizes isothermally. The crystal-

lization path for a NaCl-rich melt (blue circle) is shown in the polythermal projection. In

the left panel of Figure 2.38, the same system is shown in an isothermal section ca. 25 K

above the eutectic temperature, where only in a small region around the eutectic

composition a single phase field for the liquid remains.

2.2.3.3 Isopleth Sections
If T is requested as coordinate for systems with three or more components, instructive

sections can be used where either one concentration is kept constant, or where the ratio

of two concentrations is kept constant. Both cases are demonstrated in Figure 2.39 for

the same system that is shown in Figure 2.38.
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FIGURE 2.38 The ternary system NaCl–CaCl2–SrCl2 under the (somewhat simplifying) assumption that no mixing
occurs in the solid phases. The melt shows complete mixing. NaCl: Tf ¼ 801 �C, CaCl2: Tf ¼ 772 �C, SrCl2:
Tf ¼ 874 �C, Tt ¼ 727 �C. Left: isothermal section at 460 �C, “liq” field shaded. Right: Projection on the liquidus
surface with 10 K isotherms and crystallization path for a NaCl-rich melt.
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Figure 2.38, right, was a projection on the liquidus surface of the ternary system. The

left panel of Figure 2.39 is a section through this concentration triangle perpendicular to

the projection plane and parallel to the left side of the triangle, at xSr ¼ 0.4. This section

starts (from bottom) in the CaCl2 field, crosses the SrCl2 field, and terminates in the NaCl

field. If the crystallization starts, e.g., inside the NaCl field, later the eutectic valley with

SrCl2 is reached and this phase crystallizes parallel until the ternary eutectic point.

There, all three component phases are crystallizing.

The right panel of Figure 2.39 is a section through Figure 2.38 perpendicular to the

projection plane and from the SrCl2 corner to a point Na0.6Ca0.4Cl1.4, which is a small

distance above the middle of the NaCl/CaCl2 side of Figure 2.38. Starting from SrCl2,

high T SrCl2 crystallizes first. Subsequently, with lower liquidus temperature, low T SrCl2
crystallizes first, and in the end NaCl crystallizes first.

It is very important to note that horizontal lines (T ¼ const.) in such isopleth sections

through ternary systems are in general not connecting phases which are in equilibrium!

Practically, this means that the composition of all coexisting phases does not remain on

such sections. Hence, the isothermal lines are not tie-lines, and the lever rule (Section

2.2.2.3) cannot be used.

2.2.3.4 Reciprocal Salt Pairs
Pairs of compounds with well-defined and interchangeable cations C1, C2, and anions

A1, A2 are called reciprocal salt pairs. In such systems, C1 and C2 or A1 and A2 can

replace each other in arbitrary ratio, but the relation (C1 þ C2)/(A1 þ A2) must be

constant for maintaining charge neutrality. The presentation is typically done as square

diagrams with the possible compounds C1A1, C1A2, C2A1, and C2A2 at the corners. An

example is given in Figure 2.40 and shows that the mutual substitution

NaClþ LiF%NaFþ LiCl (2.44)

leads to the presence of four compounds in the system if only two are supplied.

Nevertheless, the system can be considered to be ternary, due to the dependency
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Eqn (2.44), and according to the phase rule (Eqn (2.6)) four phases are in equilibrium at the

(invariant) eutectic point.

In Figure 2.40, all rim systems except NaCl–LiCl are eutectic, which somewhat con-

tradicts “Phase Diagrams for Ceramists” No. 3622, [6] where another eutectic and the

compound LiNaCl2 were claimed to exist in the upper rim system. The more recent

Figure 2.36 [54], however, shows that this system forms solid solutions over the whole

concentration range instead. Eutectic valleys connect the eutectic points at the rims and

run to the ternary eutectic. NaCl–LiF (dashed line) can be treated as a pseudobinary

system and the eutectic composition near 59% NaCl (Figure 2.40 right) is a saddle point

in the liquidus projection of the left panel. This is necessary because otherwise

the pseudobinary eutectic composition (NaCl)0.59(LiF)0.41 would, upon crystallization,

leave the pseudobinary dashed line in the reciprocal salt pair diagram. It should be noted

that the other pair NaF and LiCl (dotted line) cannot set up a pseudobinary system,

because the melting point of LiCl is too low compared to the liquidus in the middle of

the system (ca. 695 �C).

2.3 Equilibria Including Gas Phase
The transformations solid–gas (sublimation) as well as liquid–gas (evaporation, boiling)

are first-order transitions, and consequently the gas phase can be shown in phase dia-

grams without further precautions. This is demonstrated in Figure 2.3 for sulfur (one

component) or in Figure 2.27, left, for Si–Ge (two components). But very often the gas

phase is not shown because evaporation plays no role in a specific process. In other

cases, the gas phase must be taken into account, namely if at least one main species in

the system has a significant volatility, if chemical or physical gas phase transport is

performed, or if the gas phase equilibria determine the valency of species in the

condensed phases. These cases will be considered in the following subsections.
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FIGURE 2.40 Left: The reciprocal salt pair (Li,Na)(F,Cl) in polythermal projection with 20 K isotherms. At
Teut ¼ 608 �C (red dot) rocksalt(ss), NaF:Li(ss), LiF(s) and the melt are in equilibrium. Right: The eutectic of the
NaCl–LiF subsystem corresponds with the saddle point in the left panel, on the dashed line.

Chapter 2 • Phase Equilibria 129



2.3.1 Volatile Species

If a chemical element such as iodine, the heavier chalcogens (Figure 2.3), the heavier

pnictogens, or even some metals such as Zn or Hg are heated, their vapor pressure

quickly approaches ambient pressure and volatility becomes significant. Also, some

compounds that are academically or technically interesting (e.g., NH4Cl, AlN, SiC) can be

transferred completely to the gas phase, and recrystallized at a colder seed. This process

is called sublimation or physical vapor transport (PVT). For some other compounds, the

sublimation temperature is so high that PVT is not straightforward (ZnO), or the fu-

gacities of constituents are so different that only the more volatile component evaporates

sufficiently (GaN). Then, transport agents may be added to create an intermediate state

where the desired compound can be transported from the feed to the seed.

Figure 2.41 demonstrates the CVT growth of ZnO crystals where the chemical

transport is described by the equilibrium

ZnOþ C%Znþ CO (2.45)

which is shifted to the product side upon heating. The calculated diagram shows that

mixtures of ZnO and carbon (graphite) are stable only below ca. 900 �C. For intermediate

compositions, a gas phase is formed consisting mainly of Zn(g) þ CO(g), which reacts at

low T back to ZnO(s) (Eqn (2.45)). From the diagram, it is obvious that if thermal gra-

dients are too large, this can lead the process to the “C þ ZnO” phase field, which means

that graphite inclusions may occur [56].

The left panel of Figure 2.42 shows the binary diagram gallium–arsenic with the in-

termediate 1:1 compound gallium arsenide. GaAs forms eutectics with both of its com-

ponents; the eutectic to the Ga side is degenerate, as themelting temperature of gallium is

low (30 �C). Gallium arsenide is a basicmaterial in the semiconductor industry, mainly for

solid-state lighting and high-frequency devices. Unfortunately, this x–T diagram does not
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FIGURE 2.41 Phase diagram for the system ZnO–C for a system pressure p ¼ 1 bar. The arrow shows the
conditions under which chemical vapor transport can be performed. Reprinted with permission from Elsevier [55].
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express the high volatility,mainly of arsenic, which results in the decomposition of GaAs to

arsenic gas and gallium liquid before melting under ambient pressure.

The GaAs liquidus spans almost the complete phase diagram, consequently GaAs(s)

can be grown from a wide range of GaxAs1–x compositions. The liquidus temperature at

which crystallization starts will depend on x. Besides, the chemical composition can be

varied slightly if the melt has an excess of one component [57]. For the control of crystal

growth, it is desirable to know the equilibrium vapor pressure (zfugacity f) of both

components along the GaAs liquidus. The right panel of Figure 2.42 shows this for

several species occurring in the gas phase in a plot log (fugacity) versus 1/T. The curves

there have two branches, and the upper and lower branches for the Asi (i ¼ 1.4) curves

show fAsi(1/T) on the As-rich or Ga-rich side the GaAs liquidus, respectively. Vice versa

for fGa(1/T), where the higher values are reached on the Ga-rich side. All curves have an

apex at the melting point Tf of GaAs.

2.3.2 Ellingham Type Diagrams

Some chemical elements, especially many transition metals, tend to form oxides, sul-

fides, and other compounds in multiple valency states. Then, chemical equilibria of the

kind

2MeOm=2 þ 1

2
O2%2MeOðmþ1Þ=2 (2.46)

describe the transition from valency state m to the higher state m þ 1. The Gibbs free

energy balance DG0 ¼ DH0 � TDS0 of this reaction determines which valency (here,

oxidation) state is stable. If the metal oxides show no significant volatility, the chemical

equilibrium (Eqn (2.46)) is determined by T and the chemical potential of oxygen (Eqn

(2.23)). For the case T ¼ const. and two different volatiles V1, V2 in the system linear

predominance diagrams were already constructed above from plots log pV2 versus

log pV1 (Figure 2.14). Plots RT ln pO2
versus T for redox reactions of the type (Eqn (2.46))
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FIGURE 2.42 Left: The phase diagram Ga–As with the intermediate compound GaAs considering condensed
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are also straight lines. Such Ellingham diagrams can be used as predominance

phase diagrams showing the stability fields of several oxides under the given conditions

T, pO2
[28].

Figure 2.43 shows the system iron–oxygen in two representations. In the right panel

(Ellingham type), the phase boundaries are often almost straight lines. The “slag” phase

covers a wide composition range of iron oxides where the melting temperature depends

on the oxygen partial pressure, hence on the composition of condensed phases. Vertical

lines at the bottom describe the phase transitions of metallic iron up to its melting (cf.

Figure 2.31).

For practical purposes, often the simpler diagram type from the left panel is useful, as

the important experimental parameter pO2
is plotted directly. Then, phase boundaries

between neighboring FeOx are bend lines. Obviously, oxidation states with lower valency

become more stable if T rises and if pO2
drops, and this behavior is typical as oxidation

reactions (Eqn (2.46)) are mainly exothermic. Phase boundaries with negative slope

occur only in scarce cases (e.g., Re2O7, CrO2).

Predominance diagrams such as shown in Figure 2.43 can easily be computed for

systems with more than one metallic component. If mixed oxides

Me0Ox þMe00Oy%Me0Me00Oxþy (2.47)

are formed, these compounds appear with separate phase fields in the diagrams. In cases

where G(T) for Me0Me00Oxþy are unknown, the calculation of stability fields for the simple

oxides Me0Ox, Me00Oy often gives a good approximation, because energetic contributions

of reactions between oxides (Eqn (2.47)) are typically small compared to the formation

enthalpies (Eqn (2.46)).

For narrow phase fields, such as Fe1–xO in the left panel of Figure 2.43, often no

constant pO2
can be found that lies totally inside this predominance field. For every

process where temperature gradients occur—which is always the case for crystal

growth—every specific pO2
¼ const: then crosses several phase fields, which means that

different oxides are stable at different T. Fortunately, several gaseous oxides of
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nonmetals, such as H2O (as humidity in carrier gases), or CO2 and CO, decompose upon

heating, e.g., by

CO2%COþ 1

2
O2%CþO2 (2.48)

similarly to metal oxides, and under suitable conditions may result in a “self-adjusting

oxygen partial pressure” pO2
ðTÞ that runs for all T through the stability field of a desired

oxide. Table 2.1 shows that pO2
changes over several orders of magnitude upon heating,

and often the right choice of such “reactive atmosphere” allows to keep pO2
ðTÞ over the

whole T range of interest inside the stability field of the desired oxide [58].

A similar approach of reactive atmospheres is feasible not only for oxides but also for

other anions where a suitable carrier can be found. For sulfides, e.g., H2S can be used to

adjust the sulfur (S2) partial pressure from 1.4 mbar (500 �C) to 270 mbar (2000 �C) under
ambient total pressure. Then, a predominance diagram for the corresponding Me–S

phases must be created in analogy to Figure 2.43, left, with T and logðpS2Þ as coordinates.
A suitable growth atmosphere should give a pS2ðT Þ that runs completely through the

stability field of the desired sulfide.
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3.1 Introduction
Intrinsic point defects, namely vacancies and self-interstitials, in crystalline silicon have

been the subject of an enormous number of studies over the last several decades. The

driving force for this intense research effort stems from the fact that intrinsic point

defects are responsible for a staggering range of fundamentally interesting phenomena

and play important roles in the formation of almost all known microstructural features

found in dislocation-free, single-crystal silicon. This material, most commonly in the

form of thin wafers sliced from melt-grown ingots, underpins much of the (silicon-

based) microelectronics and photovoltaics industries.

To this day, almost all single-crystal silicon is still grown by the venerable Czochralski

(CZ) technique in which a seed of single-crystal is dipped into a highly pure silicon melt

contained in a rotating, quartz-lined crucible and then slowly pulled away from the melt

under tightly controlled thermal conditions to produce a cylindrical ingot [1]. Currently,

silicon boules 300 mm in diameter are routinely grown weighing well over 250 kg, and

next-generation 450 mm ingots remain under development. While dislocations and grain

boundaries are completely suppressed in the CZ growth process, the formation of a

range of point defect–impurity complexes and intrinsic point defect aggregates remains

technologically relevant in spite of decades of research. With that said, current emphasis

is principally on process optimization because while much of the basic mechanisms are

well understood, established defect microstructure reduction measures usually come at

a cost of reduced throughput and increased process expense.

Unlike impurities and intentionally introduced dopants, intrinsic point defect gen-

eration in growing crystals is a consequence of fundamental thermodynamic forces that

cannot be avoided. Simply put, the minimum free energy state of any crystal at finite

temperature does not correspond to crystalline perfection, but rather is one that includes

a (temperature-dependent) distribution of point defects and small defect clusters.

Fortunately, intrinsic point defects and very small clusters comprised of them are not

directly associated with deleterious effects such as reduced charge carrier lifetimes;

rather, it is how they interact with each other and with other species that ultimately leads

to reduced material quality. The aim for most silicon crystal growers, therefore, is not to

circumvent point defect formation altogether, but rather to cleverly design process

conditions so that point defects do not subsequently lead to undesirable microstructure

in the form of large aggregates. This target is not a static one: the very definition of

“large” is continuously evolving due to improvements in detection techniques and

increased sensitivity to ever-smaller defects as CMOS scaling continues and feature

lengths decrease. Nonetheless, for this endeavor to be successful, a quantitatively ac-

curate mechanistic picture of intrinsic defect thermodynamics must be available.

The goal of this chapter is to provide a (highly selective and necessarily incomplete)

overview of intrinsic point defect and defect cluster thermodynamics that is relevant to

the formation of vacancy and self-interstitial microdefects during silicon crystal growth

and wafer annealing. The present emphasis is on predictions from molecular
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simulations based on empirical interaction potentials. When appropriate, comparisons

are made with results from more accurate quantum mechanical methods. Note that this

chapter does not seek to provide a comprehensive quantitative summary of point defect

and cluster formation energies and entropies, although whenever appropriate, literature

references to such studies will be provided. The remainder of the chapter is structured as

follows. In Section 3.2, the basic theoretical elements for describing point defect and

cluster thermodynamics are briefly described. In Section 3.3, approaches for estimating

ground state point defect formation energies are summarized; these include atomistic

simulations based on quantum mechanical and empirical potential descriptions. In

Section 3.4, analysis of ground-state defect cluster thermodynamics is presented. A more

general theoretical framework for finite temperature defect thermodynamics then is

presented in Section 3.5 and applied to single point defects and clusters in Section 3.6.

Finally, conclusions and outlook are presented in Section 3.7.

3.2 Theoretical Infrastructure for Analysis of Point
Defect and Cluster Thermodynamics

3.2.1 Point Defects

The materially open system equilibrium concentration of a particular point defect

species is one of the most essential properties underlying any quantitative analysis of

defect formation and evolution. This is because the equilibrium concentration directly

dictates the extent of any point defect supersaturation (or undersaturation) present,

which in turn dictates the extent of clustering. Here, “open system” denotes that the

crystal domain is connected to a sink/source for point defects that allows an uncon-

strained equilibrium to be established everywhere in the domain—the crystal surface

typically serves this purpose.

Consider the free energy of a crystal domain with N distinct lattice sites containing

one type of point defect species,

G ¼ G0 þ nG f � kBT ln
N !

ðN � nÞ!n! ; (3.1)

where n is the number of point defects, Gf is the free energy of formation of a single

point defect, and G0 is the perfect crystal (reference) free energy. The last term in

Eqn (3.1) represents the contribution of translational entropy to the total free energy,

where it is assumed that each lattice site can accommodate a single point defect and no

proximity effects are present, i.e., point defects do not interact with each other. The

equilibrium concentration of point defects is obtained by minimizing Eqn (3.1) with

respect to n, i.e.,

CeqðT Þ ¼ gCs exp

�
� G f

kBT

�
¼ gCs exp

�
S f

kB

�
exp

�
� Hf

kBT

�
; (3.2)

Chapter 3 • Atomistic Calculation of Defect Thermodynamics 139



where, Cs is the density of lattice sites (w5� 1022/cm3 for Si), g is a configurational

degeneracy factor, and Hf, Sf represent the formation enthalpy and entropy, respectively,

of a single point defect. The configurational degeneracy factor is usually taken to be the

symmetry of the point defect structure and therefore is a number that is O(1) in

magnitude; it is often ignored in analyses of point defect thermodynamics. We will re-

turn to the issue of defect degeneracy in Section 3.4 and show that the entropy arising

from configurational degeneracy can in fact be quite significant. The remaining entropic

term in Eqn (3.2) then corresponds to the vibrational entropy of formation. The con-

ventional approach for calculating the equilibrium concentration of a point defect

species using atomistic simulations is to first find the lowest energy configuration and

then compute its formation energy and vibrational entropy, usually under the

assumption that these are constants, i.e., that the equilibrium concentration is an

Arrhenius function of temperature.

3.2.2 Point Defect Clusters

The thermodynamics of defect clusters can be formulated in a similar manner as for

point defects. The total free energy of a system containing a distribution of a single point

defect species and its aggregates is given by

GðTÞ ¼ G0 þ
X

i

niG
f
i ðTÞ � kBT ln U; (3.3)

here G
f
i ðTÞ is the formation free energy of a cluster of size i, ni is the number of such

aggregates, and U is the number of ways that a distribution of clusters can be distributed

across lattice sites. For an open system (i.e., one with accessible surfaces) in which each

cluster size can reach equilibrium independently of the others and assuming that the

cluster site density is equal to lattice site density, U is the same as for the point defect

case (Eqn (3.1)) and the cluster equilibrium concentrations are given by

C
eq
i ðT Þ ¼ giCs exp

 

� Gi
f

kT

!

; ci: (3.4)

In many situations the crystal cannot be assumed to be materially open and the cluster

size distribution is established via a constrained free energy minimization subject to a

fixed total number of point defects. Such a situation is typical in crystal growth where the

nearest surface is much further away than the point defect diffusion distance. Now, U is

given by [2]

U ¼
Y

i

ðiÞni ðN=iÞ!
ðN=i � niÞ!ðniÞ! (3.5)

which represents the number of ways of distributing {ni} clusters over the N lattice sites.

The closed system equilibrium cluster concentration at each size is now obtained by

minimizing the augmented free energy function
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bG ¼ G0 þ
X

i

niG
f
i � kBT

X

i

�
ni ln i þN

i
ln

N

i
�
�
N

i
� ni

�
ln

�
N

i
� ni

�
� ni ln ni

�
;

þ l

�
P

i

i $ni � ntot

! (3.6)

with respect to the number of each cluster size [3], i.e.,

v bG
vni

¼ G
f
i � kBT ln

N � i $ni

ni

þ il ¼ 0; ci: (3.7)

The last term in Eqns (3.6) and (3.7) represents the constraint of a fixed total number of

point defects and l is a Lagrange multiplier. An immediate implication of Eqn (3.7) is

that the equilibrium concentrations of all cluster sizes are coupled to each other. Under

the physically reasonable assumption that clusters exist in dilute concentrations,

i $ni � N , the closed system cluster equilibrium concentrations are given by solving Eqn

(3.7) for each size

C
_eq

i ðT Þ ¼ giCs exp

0

@� G
_f

i

kBT

1

A ¼ giCs

�
C

Ceq

�n

exp

 

� G
f
i

kBT

!

; ci (3.8)

where

G
_f

i ðTÞ ¼ �ikBT ln

�
C

CeqðTÞ
�
þ G

f
i ðT Þ; ci (3.9)

and C and C eq represent the actual and equilibrium concentrations of point defects,

respectively. Note that the assumption of diluteness effectively decouples the equilib-

rium concentration of each cluster size from other sizes—the concentration is only a

function of the extent of point defect local supersaturation, C/Ceq. Finally, applying

Eqn (3.7) to the monomer point defect species gives an expression for the equilibrium

monomer point defect concentration in the presence of a cluster of size i, i.e.,

Ceqji ¼ Ceq exp

 
vG

f
i =vi

kBT

!

; ci: (3.10)

The enhancement of the point defect equilibrium concentration in the vicinity of a

cluster as specified in Eqn (3.10) is a statement of the Gibbs–Thompson effect [4]; alter-

natively, this equilibrium concentration can be thought of as the cluster “vapor pressure” in

which the vapor phase consists of a monomer point defect “fluid” surrounding a cluster.

All equilibrium concentrations defined above, whether for point defects or for clus-

ters, require the estimation of free energies of formation. There are two principal ap-

proaches for carrying out this task. The first is to directly compute free energies using

atomistic calculations based either on quantummechanical or empirical descriptions for

the interatomic interactions. The second is to measure experimentally some property or

phenomenon and extract the free energies using a model. Both approaches have
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inherent limitations and advantages. Atomistic scale calculations are the most direct

path for free energy estimation: the system is completely defined and the free energy can

be unambiguously accessed. On the other hand, empirical atomistic calculations, which

are computationally very efficient, are completely dependent on the specification of a

good interatomic potential function. The issue of accuracy is mostly (but not completely)

resolved with quantum mechanical calculations, but the immense computational re-

quirements of these methods limit the system sizes that can be considered and also

largely preclude the use of statistical sampling approaches commonly employed for free

energy estimation. In the following section, we describe the salient features of each

approach for computing point defect thermodynamic properties.

3.3 Theoretical Estimation of Ground State Point
Defect Formation Properties

3.3.1 Empirical Potential Atomistic Simulations

Empirical potentials are constructed beginning with an ansatz for the functional form of

the interaction energy between pair, triplet, and higher-order (many-body) interaction

functions. The resulting potential function is usually characterized by several parameters

that are regressed to a number of material properties that are either experimentally

measured or computed using more accurate quantum mechanical calculations. The

challenge for accurate modeling of covalently bonded materials such as silicon is the

directionality of the bonds, leading to structures (such as the diamond lattice) that

typically require many-body interaction terms to stabilize. Arguably, silicon has served

as the prototypical system for the development of potential models for covalently

bonded materials and there exists a large number of potentials and parameterizations in

the literature.

In an excellent early review, Balamane et al. [5] defined two main types of empirical

formalisms, “cluster potentials” in which pair and triplet interactions terms were

separately defined, and “cluster functionals” or bond-order formulations, in the which

the pair interaction is modified by many-body (usually three) environment terms. The

Stillinger–Weber (SW) potential [6] was the first “comprehensive” model to address both

solid and liquid phases, interfaces and surfaces, and defects. The potential was repre-

sented by separate two- and three-body terms with the tetrahedral angle built explicitly

into the latter. Similar cluster potentials include the Pearson, Takai, Halicioglu, Tiller

(PTHT) [7] and Biswas–Hamann (BH) [8] potentials, although these are less popular than

the SW. The Tersoff model [9,10] followed soon after with similar capabilities as the SW

potential but was based on a bond-order formulation. The SW and Tersoff potentials

have since been applied in countless studies, being reparameterized several times

[11–14] and extended to Group IV alloy systems [10,12,15,16] and continue to be popular

to this day. Another popular class of potentials is the modified embedded-atom model

(MEAM) [17–20], in which the embedded-atom model for metals was extended to
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include directionality for covalent materials such as silicon. The MEAM potential

framework is attractive because parameters have been generated for a wide range of

materials and compounds making it quite versatile. The Lenosky potential (LP) is a

derivative of the MEAM class of potentials that was specifically optimized for silicon [21].

Finally, the so-called environment-dependent interatomic potential (EDIP) [22,23] rep-

resents another formulation in the bond-order class of potentials.

The most common metrics for potential validation include crystal phase stability

order, elastic constants, surface energetics and reconstructions, point defect thermo-

dynamics and structure, dislocation and stacking-fault energetics, and amorphous/

liquid phase structure [14,16] and melting characteristics [11]. Finally, although isolated

clusters have also been considered in potential evaluation, the energetics of such

structures are generally quite poorly reproduced unless the potential parameters are

specifically tuned using these highly undercoordinated structures [20]. There is no single

clear winner among silicon potentials and each has been shown to have strengths and

weaknesses, some of which may be traced to the database that was used to establish the

parameters. Even different parameterizations of the same potential function have been

shown to provide rather different results.

Before proceeding with a comparative analysis of point defect formation energies,

which we focus on here, it is important to note that empirical potentials cannot account

for different point defect charge states. As mentioned previously, the lowest energy

configuration for a given point defect is not necessarily the electrically neutral one,

making a comparison between DFT and empirical potential results somewhat ambig-

uous. Here, we take the point of view that an empirical potential is a coarse-grained

representation of atomic bonding in which the electronic states have been somehow

(not formally) “averaged out.” In this view, comparisons between empirical potential

and DFT predictions for point defect formation energies should be made on the basis of

the lowest energy charge state at zero temperature, and a Boltzmann-weighted average

of the different charge states at finite temperatures. In other words, there is nothing in

the empirical potential formulation to necessarily suggest that the “equivalent” config-

uration in the DFT case is the neutral state.

A representative list of empirical potential predictions for the single vacancy forma-

tion energies at zero temperature is provided in Table 3.1. Apart from some outliers,

there is general consensus in the range of E
f
Vw3� 4 eV, in good agreement with the DFT

range 3.2–3.6 eV (see Section 3.2). In all cases, the basic ground state configuration is a

missing atom with some localized relaxation of the surrounding atoms. Note that few of

these studies report the precise configurational details of the relaxed vacancy such as

inward/outward relaxation, symmetry, and bond angles and lengths of neighboring

atoms. This is largely due to the fact that such high-resolution information is not likely to

be meaningfully reproduced by most empirical potentials. Again, the notion that an

empirical potential function represents some kind of a coarse-grained representation of

the full bonding environment can be invoked to suggest that empirical potentials may be

good at describing certain, but not all, features of a point defect configuration.
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The assessment of self-interstitial formation energies is more nuanced, where several

distinct configurations may exist in a relatively narrow energy range. The most reported

configurations include the tetrahedral, hexagonal bond-centered, and some form of the

<110>-dumbbell configuration. Shown in Table 3.2 are formation energies for the re-

ported lowest-energy configurations found for several empirical potentials. It should be

noted that, unlike the vacancy case, significant “scatter” exists in the reported self-

interstitial formation energy values for a given configuration and with a given poten-

tial model. In addition, the lowest-energy configuration is not always the same across

potentials, with the tetrahedral and <110>-dumbbell geometries most often being

reported as the ground state configurations. These observations are likely to be at

Table 3.1 Zero-Temperature Vacancy Formation Energies
Predicted by Selected Empirical Potentials for Silicon

Potential Model Vacancy Formation Energy (eV) Ref.

SW 2.59, 2.82 [5,24]
SW-Pizzagalli 3.27 [13]
BH 2.12 [5,8]
Tersoff (T3) 3.70 [5]
Tersoff-ARK 3.70 [11]
MEAM-Baskes 3.19 [25]
MEAM-Timonova 3.14 [20]
MEAM-Lenosky 3.30 [21]
EDIP 3.22 [21]
Bond-order 2.76 [26]

Table 3.2 Selected Zero-Temperature Formation Energies
for Ground State Configurations of Self-Interstitials, as
Predicted by Selected Empirical Potentials for Silicon

Potential Model
Self-interstitial
Formation Energy (eV)

Lowest Energy
Configuration Ref.

SW 3.61 <110>-dumbbell [24]
SW-Pizzagalli 5.92 <110>-dumbbell [13]
BH 1.56 Tetrahedral [5,8]
Tersoff (T3) 3.45 Tetrahedral [5,27]
Tersoff-ARK 2.20 Tetrahedral [11]
MEAM-Baskes 4.81 Tetrahedral [25]
MEAM-Timonova 3.84 Tetrahedral [20]
MEAM-Lenosky 3.00 Tetrahedral distorted [21]
EDIP 3.35 <110>-dumbbell [21]
Bond-order 2.64 Tetrahedral [26]
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least partially due to the presence of multiple closely spaced local minima that corre-

spond to different interstitial configurations and even different relaxations of a single

configuration. In fact, as we will show in Section 3.5, the notion of a “rough energy

landscape” with multiple local minima is a generic feature that introduces a significant

amount of configurational entropy at elevated temperature, necessitating a somewhat

different approach for thinking about finite temperature point defect and cluster

thermodynamics.

Comparison of the self-interstitial formation energy predictions in Table 3.2 to the

results of DFT calculations, whose consensus gives a range of about 3.3–3.8 eV for the

<110>-dumbbell, highlights the limitations of using (currently available) empirical

potentials for quantitative estimation of point defect parameters—it is not yet possible to

do this without strict a posteriori validation of the results against more accurate ap-

proaches. More importantly, the potentials that appear to provide the best agreement

with specific DFT calculations were fitted to the DFT results, and the quantitative ac-

curacy of the potential for any other properties therefore is in question (until explicitly

tested). Nonetheless, the most commonly employed potentials such as SW, Tersoff and

EDIP all appear to provide good estimates in the range of 3.3–3.9 eV.

3.3.2 Quantum Mechanical Estimates for Point Defect
Thermodynamics

Atomistic simulations that explicitly consider electronic interactions between ions,

frequently referred to as ab initio or first-principles calculations, are indisputably the

gold standard for theoretically estimating silicon defect thermodynamic and transport

properties. The vast majority of quantummechanical atomistic simulations are based on

the application of density function theory (DFT), in which the many-electron problem is

reduced to that of a single electron moving in an effective potential specified either

through the local density approximation (LDA) or generalized gradient approximation

(GGA) [28]. More accurate treatments of the many-electron problem are available (e.g.,

quantum Monte Carlo and Hartree-Fock), but these are currently very infrequently

applied to defects in silicon because of their extreme computational intensity [29].

Not only are DFT calculations obviously important in their own right, but they are

also crucial for (1) parameterizing empirical potentials for silicon, and (2) validating the

predictions of these empirical potentials by providing reference calculations. On the

other hand, despite the relative efficiency of DFT, such calculations still remain much

more computationally intensive than corresponding empirical potential simulations.

This is particularly true when considering larger defects such as clusters and when free

energies at finite temperature are required. The computational expense of DFT has led to

continued interest in simplified quantum mechanical approximations, such as the tight-

binding method [30], in addition to empirical potential development. Although tight-

binding simulations have in some instances been shown to be demonstrably better

than some empirical potentials [31], it is difficult to unequivocally make the case that
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their added computational expense necessarily improves accuracy relative to empirical

potentials.

A detailed treatise of quantum mechanical models is well beyond the scope of this

chapter. Instead, the aim here is to provide a brief discussion of the principal outcomes

and outstanding issues related to such calculations, specifically in the context of point

defect formation thermodynamics in silicon. The history of silicon point defect forma-

tion energy calculations with electronic DFT dates back over three decades. Arguably,

the formation energy and relaxation structure of the neutral single vacancy have served

as the principal benchmarks during this period [32–43]. The reason for this stems from

the deceptive simplicity of the calculation; indeed, definitive convergence criteria for the

calculation have only recently emerged [41–43]. Remarkably, the numerous reported

DFT calculations of the neutral vacancy formation energy have ranged from over 4 eV to

just below 3 eV. Even the qualitative nature of the surrounding atomic relaxation (inward

vs. outward, symmetry) has been the subject of debate. The reasons for the long-

standing challenge associated with this particular calculation are in fact quite straight-

forward. First, several choices and parameter selections must be made when performing

any DFT simulation, some of which are constrained by computational expense. These

choices include (i) supercell size, (ii) exchange-correlation functional, (iii) basis set type

(plane waves or orbitals) and energy cutoff, and (iv) Brillouin zone integration mesh. As

shown recently in refs. [41,43], the particular combination of these parameters and

functionals can lead to errors that interact in nonlinear ways and make it difficult to

perform convergence tests without a complete (and very expensive) parametric analysis.

For example, it appears that a system size of about 256 atoms is required to sufficiently

isolate the neutral vacancy and allow it to relax into the D2d symmetry via the expected

Jahn-Teller distortion [43]. This is not surprising given the long-ranged elastic relaxation

fields around vacancies found in both DFT and empirical potential simulations [44,45].

In addition, electrostatic and wave–function interactions across the periodic boundaries

are likely to play roles in the slow convergence with respect to system size. One example

of the nonlinear coupling among the various parametric selections was observed in

Ref. [43] in which a sparser sampling of the Brillouin zone was more likely to exhibit the

correct relaxed vacancy symmetry when the system size was small.

The long history of convergence notwithstanding, there is little doubt that the state-

of-the-art DFT calculations have now reached the point where they can be reliably used

to compute a variety of point defect and small cluster thermodynamics. For the neutral

vacancy formation energy, the range between 3.2 and 3.6 eV almost certainly includes

the “correct” value. The neutral self-interstitial is much less well studied but the <110>-

split dumbbell configuration is well established as the ground state with the formation

energy range 3.3–3.8 eV [36,46–48].

Note that the neutral charge state is simply used here as a basis for discussion—it is

not necessarily the charge state with the lowest formation energy. In fact, under extrinsic

conditions corresponding to finite doping levels, charged states are usually lower in

formation energy and may even possess different structures than the neutral
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configuration. This poses some ambiguity in the comparison of defect structures and

energies between DFT and empirical potential calculations. While it is customary to

compare to the neutral defect structure when validating empirical potential predictions,

one may also consider the structures predicted by empirical potentials as coarse-grained

entities that represent some kind of “average” over the various charge states. In other

words, given the complete absence of explicit charge consideration in most empirical

potentials for silicon, the use of the neutral configuration as a reference is not necessarily

meaningful—one could just as well use the lowest energy configuration, irrespective of

its charge, as a basis for validation.

3.4 Ground State Point Defect Cluster
Thermodynamics

There are far fewer atomistic simulation studies of point defect cluster thermodynamics

due to the larger simulation cells and longer relaxation times required. The principal

difficulty in computing cluster thermodynamics is the identification of the ground state

configuration. For quantum mechanical calculations, in particular, a good initial guess

for the cluster structure is required before static relaxation can be applied. Nonetheless,

certain features of small vacancy and self-interstitial clusters are now well established.

For example, both types of clusters exhibit magic sizes that are particularly stable relative

to neighboring sizes [49–51]. In addition, both cluster species are characterized by

overall decreasing trends in their per-point defect formation energies. The latter trend is

a consequence of the ability of larger clusters to achieve reconstructions that are not

possible for very small ones.

3.4.1 Vacancy Clusters

Vacancy cluster ground state configurations are relatively straightforward to derive on

the basis of broken-bond minimization. Using this approach, Chadi and Chang [52] were

able to predict magic sizes for clusters up to size 12. The 6-vacancy hexagonal ring

structure and 10-vacancy “adamantine cage” configuration were found to be the key

building blocks for all cluster sizes, see Figure 3.1. These conclusions were subsequently

supported by quantum mechanical (LDA-DFT) [53], tight-binding [50], and empirical

potential (EDIP) atomistic calculations [51].

FIGURE 3.1 Ground state configurations of
vacancy clusters generated on the basis of
closed ring and adamantine cage
configurations. From left: (A) 6-vacancy ring,
(B) 10-vacancy adamantine cage, and (C)
14-vacancy cluster comprised entirely of closed
rings and cages. All three configurations
correspond to specially stable “magic” sizes.
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Shown in Figure 3.2 are zero-temperature binding energies for vacancy clusters up to

size seven for the three different interaction models. Overall, the agreement between the

three representations is very good, clearly showing the special stability of the 6-vacancy

hexagonal ring configuration. The agreement across calculations also demonstrates the

validity of using empirical potentials such as EDIP for defect thermodynamic property

estimation. More recently, divacancy and hexavacancy formation energies computed

with GGA-DFT and several empirical potentials (SW, EDIP and Tersoff) were compared

and once again shown to be quite consistent across the various potentials [49].

Calculations for larger cluster sizes with tight-binding and EDIP potentials also show

similar special stability for sizes 10, 14, and 18—all sizes that correspond to completed

hexavacancy rings and/or adamantine cages [45,51,54]. Interestingly, the hexavacancy

ring and adamantine cage building blocks naturally lead to octahedral cluster shapes

bounded by (111) planes at larger cluster sizes—the octahedral geometry being the most

common experimentally observed one for large vacancy aggregates present in CZ-grown

silicon crystals [1]. The formation energies for vacancy clusters that follow the octahedral

motif have been calculated using the EDIP potential for sizes as large as 1000 [45,51,54].

The overall vacancy cluster energetics were found to be described very well by a power-

law function that scales as n2/3, where n is the number of vacancies in the cluster. In

other words, vacancy clusters, as expected, are energetically defined by their surfaces.

Deviation from this power-law scaling was only observed for very small clusters, which

are unable to arrange into closed rings and cages. Approximating the cluster surface area

by assuming a spherical shape, the EDIP potential was found to predict a zero-

temperature effective surface energy of 1.24 J/m2. This value is in excellent agreement

with several experimental measurements of the Si(111) surface energy at cryogenic

temperatures [55,56].

FIGURE 3.2 Binding energies as a function of size for vacancy clusters computed using LDA-DFT (squares), tight-
binding (circles), and the empirical EDIP potential (triangles). Binding energies, Eb

n , are defined according to the
relationship Eb

n ¼ Ef
nþ1 � ðEf

n þ Ef
1Þ, where Ef

n is the formation energy of a cluster of size n.
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Finite temperature formation free energies (including vibrational entropy) for va-

cancy clusters computed with the EDIP potential suggest that the overall trends

observed with the zero-temperature calculations are preserved with increasing tem-

perature [57]. Near the melting temperature, the effective surface free energy including

vibrational entropy is reduced to about 0.9 J/m2. Unfortunately, the validity of this es-

timate is more difficult to verify against experimental measurements, although one in-

direct experimental measurement places the melting temperature (111) surface energy

right around 0.89 J/m2 [58]. The issue of effective void surface energies at finite tem-

perature is revisited more comprehensively in Section 3.6, where the influence of

configurational entropy is also included.

3.4.2 Small Compact Self-Interstitial Clusters

The analysis of self-interstitial clusters is complicated by bonding reconstructions

associated with the presence of multiple self-interstitials in close proximity. While va-

cancy clusters are characterized by the octahedral morphology across all sizes, no single

morphological motif describes self-interstitial clusters. Nonetheless, several broad fea-

tures of self-interstitial clusters are now well established both experimentally and by

various types of calculations. Small clusters containing up to about 15 self-interstitials

are compact and three-dimensional and exhibit magic sizes, particularly at sizes that

are integer multiples of four (i.e., 4, 8, and 12) [46,50,59]. Evidence for special stability of

these sizes has been demonstrated not only theoretically but also experimentally.

Cowern et al. [60], in particular, used inverse modeling of boron diffusion profiles to

extract effective formation free energies for interstitial clusters as a function of size and

found that the best agreement was obtained when 4- and 8-interstitial clusters were

assumed to be particularly stable relative to adjacent sizes. Larger interstitial clusters are

observed experimentally in several types of planar structures including {113}-oriented

rod-like defects, {111} partial and perfect dislocation loops, and possibly also

{100}-oriented plate-like structures; example studies include refs. [61–72]. These

structures are most commonly observed in ion-implanted samples. Evidence for the

{100} planar defects is not as well established as for the other types of planar defects. The

transitions between small compact clusters and the various larger planar structures are

still not fully understood, and the dependence of these transitions on temperature and

other variables (e.g., local stress) even less so.

Here, we summarize a selection of theoretical estimates for the ground state for-

mation thermodynamics of self-interstitial clusters and defer discussion of finite tem-

perature thermodynamics to Section 3.5. A large number of computational studies of

interstitial clusters have focused specifically on the 4-interstitial (I4) cluster, which is the

smallest magic cluster size. The ground state structure predicted by most of these studies

consists of 5- and 7-membered bond rings with no dangling bonds; see Figure 3.3 (taken

from Ref. [73]). We henceforth refer to this structure as the Humble/Arai configuration

after refs. [74,75]. Various estimates for the formation energy of this cluster are
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summarized in Table 3.3. With few exceptions, the formation energy estimates are

remarkably consistent across the various studies, and the per-interstitial formation en-

ergy is tightly clustered in the range 1.8–2.4 eV/atom. It is notable, however, that not all

studies show the I4 to be a magic size. For example, the tight-binding calculations in

Ref. [50] and the LDA-DFT results in Ref. [48] both indicate that the per-interstitial

formation energy varies monotonically with size and that I4 is no more stable than

adjacent sizes. Moreover, the tight-binding results generally lead to systematically higher

formation energies than the DFT predictions.

Shown in Figure 3.4 are formation energies per interstitial for a range, 2 � nI � 9, of

small compact self-interstitial clusters computed using the EDIP empirical potential and

two different sets of DFT calculations [46,48,77]. Overall the agreement between the

three sets of calculations is quite good. The EDIP formation energies are higher than

both of the DFT results although the difference in the two sets of DFT predictions is of

similar magnitude as the difference between the EDIP results and those in Ref. [46].

FIGURE 3.3 Schematic representation of the
4-interstitial cluster (right) relative to the perfect
silicon lattice (left). The four [001]
split–interstitial pairs are represented by atoms
labeled “c” and the reconstructed bonds which
link the interstitial pairs are shaded. Taken from
Ref. [73].

Table 3.3 Ground State 4-Interstitial (I4)
Formation Energies Predicted by Various
Interaction Models

Model I4 Formation Energy (eV) Ref.

LDA-DFT 8.7 [73]
LDA-DFT 5.96 [76]
LDA-DFT
GGA-DFT

7.28
7.40

[46]
[46]

Tight-binding 9.41 [50]
Tight-binding 9.84 [75]
Empirical SW 8.40 [75]
Empirical EDIP 8.75 [77]
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While the special stability of the 4-interstitial cluster (Humble/Arai configuration) is

found in all three studies, the picture is somewhat murkier for the 8-interstitial cluster.

The interpretation of the formation energy calculations is complicated by the fact that

two different morphologies for nI � 5 can be identified. The first, which is denoted as

“compact” is based on the Humble/Arai motif; thus a 5-interstitial cluster is a Humble/

Arai 4-mer plus an additional interstitial and so on. The second structural motif,

“elongated”, refers to [110]-aligned configurations that serve as the building blocks for

the {113}-oriented planar configurations (see next section).

The relative stability of compact and elongated configurations in the size range

nI< 12 is not conclusive: Refs [77] and [46] seem to indicate that the elongated structures

are more stable but ref. [48] finds the opposite trend. In either case, the difference is not

large and the 8-interstitial cluster is only weakly favored over neighboring sizes, if at all. A

possible explanation for this apparent discrepancy with the experimental inference in

Ref. [60] is provided in Figure 3.5. Here, cluster formation free energies that include

vibrational entropy are estimated using the EDIP potential. Interestingly, the vibrational

entropies are such that the free energies of compact and elongated configurations

become almost identical. Moreover, for the compact 8-interstitial cluster, which is

comprised of two Humble/Arai 4-interstitial cluster, a rather large configurational en-

tropy for the compact structure also is suggested due to the large number of (almost

degenerate) ways that the two 4-interstitial clusters can be placed [77]. With these

entropic factors included, strong “magicness” at size eight emerges. These results sug-

gest that the consideration of entropic contributions might be necessary to fully un-

derstand cluster thermodynamics and that conclusions based on ground state

configurations may be misleading or at least incomplete. In Sections 3.5 and 3.6, the

calculation of entropic contributions is generalized and further evidence is provided for

the importance of entropy in defect thermodynamic analysis.

FIGURE 3.4 Formation energies per interstitial as a function of cluster size, nI. Squares—EDIP results for compact
(open) and elongated (filled) [77]; circles—DFT [46]; diamonds—DFT [48].
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3.4.3 Large Planar Self-Interstitial Clusters

Formation energy estimates have also been computed for the various types of planar

defects found in ion-implanted silicon wafers. The most intensively studied is the {113}-

oriented family of planar structures, which are characterized according to how densely

interstitial chains are packed along the [332] direction. Briefly, the notation /I/ repre-

sents a sequence of adjacent self-interstitial chains (highest density packing) while /IO/

and /IIO/ represent sequences along the defect (in the [332] direction) in which some

chains are missing—a missing chain is denoted by “O”; see Ref. [62] for more notational

details. A summary of per-interstitial formation energies for the {113} family of planar is

shown in Table 3.4 assuming infinitely long interstitial chains (in the [110] direction). It

is notable that the lowest energy configuration on a per-interstitial basis is not the

densest (/I/) but rather one that consists of about 66–75% occupancy of interstitial

chains along the [332] direction, i.e., /IIO/ or /IIIO/.

It has been suggested that {113}-oriented defects grow and eventually transform into

{111}-oriented dislocation loops, namely Frank partial loops (FDLs) and perfect dislo-

cation loops (PDLs). There is also some direct experimental evidence for such a trans-

formation [66]. The transformation size has been estimated to be approximately 20 nm,

or when clusters contain on the order of 500 self-interstitials [67]. The formation energies

for large {111}-oriented planar defects can be estimated on the basis of continuum

mechanical arguments because of the relatively simple structures. For small loop sizes,

FDLs have lower per-interstitial formation energy than PDLs but the trend is reversed

when the loop radius is greater than about 40 nm [79]. The limiting FDL formation

energy is 0.027 eV/atom (the stacking-fault energy), while PDL formation energies tend

FIGURE 3.5 EDIP-predicted formation free energies as a function of interstitial cluster size at 1100 K (EDIP melting
temperature is 1520 K). Open squares—compact structures; filled squares—elongated structures. Single diamond
symbol shows free energy including estimated configurational entropy for 8-interstitial compact cluster. Adapted
from Ref. [77].
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to zero (on a per-interstitial basis) in the limit of large loop size. These very small en-

ergies suggest that if sufficient self-interstitials are present to allow growth and coars-

ening to produce large cluster sizes, dislocation loops will be the predominant

structures. Claverie et al. [67,70,79–81] have summarized comprehensively self-

interstitial cluster morphologies as a function of annealing history in a series of papers.

3.5 Inherent Structure Theory and Potential
Energy Landscapes

As described in the previous section, the “conventional” strategy for computing point

defect (or cluster) free energies is to locate the ground state (minimum energy)

configuration, compute its formation energy and vibrational entropy, and if possible

estimate a degeneracy factor based on symmetry considerations. These elements are

then combined in Eqn (3.2) or (3.4) to provide the “open-system” equilibrium concen-

tration for that particular defect. The implicit assumption in this picture is that no other

configurations of the defect are energetically close to the ground state and thus do not

contribute in any way to the stability of the defect. In this section, a framework is

described for including the contributions of higher-energy configurations into the defect

free energy. It will be shown that the configurational entropy contribution from higher

formation energy configurations can be significant at the high temperatures associated

with silicon crystal growth and wafer annealing. As a result, defect free energies based on

ground state analyses can overestimate the true free energy and, in some cases, lead to

qualitatively incorrect predictions for defect thermodynamics.

In the following, the notion of the Inherent Structure Landscape (ISL) is used to

develop a quantitative theory for describing high-temperature defect thermodynamics.

While ISL theory has since been applied successfully to a variety of systems, including

Table 3.4 Ground State Formation Energies for {113}-Oriented
Planar Self-Interstitial Clusters

Model Configuration Formation Energy (eV/atom) Ref.

LDA-DFT
SW

/IIO/
/IIO/

0.68
0.88

[75]

LDA-DFT /IO/ 0.49 [76]
LDA-DFT /I/

/IO/
/IIO/
/IIIO/

0.63
0.72
0.46
0.48

[68]

Tight-binding /IO/ 1.35 [78]
LDA-DFT /I/

/IO/
/IIIO/

0.71
0.76
0.55

[48]
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atomic clusters [82–84], glasses [85–87] and polymers [83,88], it has not received much

attention in the arena of crystal defect thermodynamic analysis since the early work of

Stillinger and Weber [89]. Inherent structures, as first introduced by Stillinger and

Weber [89,90], correspond to local minima in the 3N-dimensional potential energy (or

enthalpy) landscape defined by the three-dimensional coordinates of an N-atom sys-

tem [91]. Shown in Figure 3.1 is a schematic one-dimensional projection of a potential

energy landscape for some hypothetical material. On the left is a “superbasin” that

contains all micro-configurations that are macroscopically noncrystalline, including

the liquid phase (higher energy) and amorphous solid phase (lower energies). On the

right is the crystal superbasin that includes the perfect crystal ground state and higher-

energy levels that correspond to configurations that include defects. In all cases,

“inherent structures” correspond to mechanically stable configurations and are rep-

resented by local minima in Figure 3.6. In turn, each local minimum is surrounded by a

basin that defines the region of phase space from which a local minimum is always

reached upon downhill energy minimization (e.g., steepest descent or conjugate-

gradient) [82].

Under certain conditions, the total phase space of the system is well approximated by

the collection of basins surrounding inherent structures, i.e., the system spends most of

its time in the vicinity of one or more of the inherent structures and very little time in

transition between them. Under these conditions, the partition function that describes

the system becomes much simpler to approximate and enables a direct route for esti-

mating various thermodynamic properties. In the following section, a summary of the

FIGURE 3.6 One-dimensional schematic representation of the potential energy landscape for a model atomic
material showing two “superbasins” corresponding to liquid/glass/amorphous solid and crystal macro-states.
Within each superbasin, many local minima correspond to distinct inherent structures—the global minimum corre-
sponds to the perfect crystal configuration. Insets show example configurations in which large red spheres quali-
tatively correspond to disordered (i.e., noncrystalline) atoms and small green ones denote atoms in crystalline
positions. Taken from Ref. [92].
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ISL framework is provided in a form that is appropriate for the analysis of defect ther-

modynamics in crystalline materials.

3.5.1 Inherent Structure Landscape (ISL) Theory for Defects in Crystals

Consider the constant particle-volume-temperature (NVT) statistical ensemble, in which

the Helmholtz free energy is related to the classical canonical partition function, Z, by

the relation

bF ¼ �ln ZðN ; b;V Þ; (3.11)

where b ¼ 1/kT, V is the system volume, and

Z ¼ 1

N !

1

L3N

Z
exp

��bE
�
rN
		
drN : (3.12)

In the above equation, L is the thermal de Broglie wavelength and EðrN Þ represents

the potential energy of the N-atom system. Within the ISL approximation, the partition

function is rewritten in terms of an integral over inherent structure basins so that [90]

Z ¼ 1

L3N

Z
gðEaÞexpð�bEaÞexpð�bFvibðb;EaÞÞdEa; (3.13)

where Ea is the (local ground state) potential energy of inherent structure a and g(Ea) is

the configurational density-of-states (DOS), or degeneracy function, for the distribution

of basins within the landscape. In other words, g(Ea) is the number of basins present that

possess minimum potential energy Ea. Note that the configurational degeneracy func-

tion is a property of the potential energy landscape and is independent of temperature.

The vibrational free energy, Fvib¼�TSvib, of each basin is a measure of the basin size

where the vibrational entropy of a basin, Svibh klnNvib, can be regarded as representing

the number of vibrational states contained in that basin.

We now define a combined vibrational and configurational degeneracy in a single

function, i.e.,

G0ðb;EaÞh gðEaÞexpð�bFvibðb;EaÞÞ: (3.14)

Noting that the perfect crystal has unit configurational degeneracy, i.e., g(EP)¼ 1 where

EP is the perfect crystal energy, the combined DOS function may be expressed in terms of

formation energies, i.e.,

G00ðb;DEaÞh G0ðb;EaÞ
G0ðb;EPÞ ¼ gðEaÞexpð�bDFvibðEaÞÞ; (3.15)

where DEah Ea � EP is the formation energy of basin a and

DFvibðEaÞhFvibðb;EaÞ � Fvib

�
b;EP

	
; (3.16)

is the formation vibrational free energy. Note that all reference perfect crystal properties

are scaled to refer to the same number of atoms as in the defective crystal. Within the
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harmonic approximation [93], the combined DOS function in Eqn (3.15) can be further

simplified into the form [92,94]

G00ðb;DEaÞ ¼ GðDEaÞUPðbÞ; (3.17)

where

UPðbÞ ¼ G0�b;EP
	
exp

��bEP
	
; (3.18)

is a temperature-dependent constant defined only on the perfect crystal configuration.

The DOS distribution, G(DEa), is now independent of temperature and will be used as the

basis for computing defect thermodynamic properties in the following sections. Using

Eqns (3.17) and (3.18), the partition function in Eqn (3.13) can be written entirely in

terms of formation energy as

Z ¼ UPðbÞ
L3N

Z
GðDEaÞexpð�bDEaÞdDEa: (3.19)

Finally, the formation (Helmholz) free energy for a defect is given by

DG ¼ �kBT ln

Z
GðDEaÞexpð�bDEaÞdðDEaÞ: (3.20)

The above formalism readily can be extended to the isobaric-isothermal (NPT) ensemble

which is characterized by an enthalpy landscape [95,96]. The key result is that

the isothermal-isobaric partition function can be written in an analogous form to

Eqn (3.13), i.e.,

Y ðN ;P;T Þf
Z

gðHaÞexpð�bHaÞexp
��b ~Fvibðb;HaÞ

	
dHa (3.21)

where P is the pressure, Ha is the enthalpy of inherent structure a, and ~Fvibðb;HaÞ is the
vibrational free energy of basin a within the NPT ensemble. Similar considerations used

to derive Eqn (3.19) can be applied to give

Yw

Z
GðDHaÞexpð�bDHaÞdDHa: (3.22)

In Eqn (3.22), the formation enthalpy is calculated as DHa¼DEaþ PDVa, where

DVah Va� VP is the formation volume of a particular configuration that corresponds to

basin a relative to the volume of the perfect crystal, VP.

3.5.2 Sampling Inherent Structures with Molecular
Dynamics Simulation

In order to apply ISL theory to defect thermodynamics, the potential energy landscape

(PEL) must be appropriately sampled. Standard molecular dynamics (MD) is used to

perform all PEL sampling described in this chapter, although any suitable variant of the

Monte Carlo method is equally applicable. For example, prior studies have employed a

number of highly efficient methods, notable examples being the basin hopping
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technique [82] and the minima hopping method [97]. Although certainly not the most

efficient approach, the principal advantage of direct MD sampling is that it automatically

accounts for all configurational and vibrational degrees of freedom.

The procedure for locating potential energy basins for the various defect configura-

tions is as follows. First, the defect is inserted into the simulation cell and a short MD

simulation is used to relax the structure before data is collected. Next, the probability

distribution of the inherent structure minimum energies is accumulated by periodically

taking snapshots of the MD trajectory and quenching them using conjugate-gradient

energy minimization (or any other quenching method). Here, minimization was per-

formed every 200 MD time steps. The result from each quench gives the local inherent

structure formation energy, DEa, of the current basin. A formation energy (or enthalpy)

histogram is then collected into energy/enthalpy bins (width is typically 0.1–1.0 eV). The

result of this procedure is a temperature-dependent probability distribution of basin

energies, which is related to the configurational-vibrational density-of-states distribution

by [87,88,98]

PðDE; bsimÞ ¼ GðDEÞexpð�bsimDEÞ (3.23)

where bsim is the temperature at which the simulation is performed. Note that in Eqn

(3.23) and in all subsequent discussion, the subscript “a” is omitted for notational

brevity.

In the following sections, all MD simulations for PEL sampling were carried out in

either the constant atom-volume-temperature (NVT) or the constant atom-pressure-

temperature (NPT) ensembles using the EDIP empirical potential unless otherwise

stated. It should be noted here that there is recent evidence [99] that potential energy

landscapes predicted by empirical potentials such as EDIP tend to be significantly

rougher than landscapes generated by more accurate representations such as DFT and

tight-binding potentials. While such discrepancies, which are not yet fully characterized,

can alter the quantitative estimates of entropic contributions obtained from inherent

structure theory, that the qualitative conclusions generated on the basis of empirical

potentials are useful for understanding the mechanisms of high-temperature micro-

structural evolution.

The LAMMPS software [100] was used for all MD simulations and conjugate-

gradient energy minimizations. In the case of NVT simulations, the system volume

was chosen using short NPT simulations to provide the desired value of the hydrostatic

pressure. MD time steps of 1.0 fs were used to integrate the particle trajectories.

Generally, O(105) inherent structures are needed to produce a converged probability

distribution at a specified temperature. The exact number of inherent state visits

required for convergence depends on the least visited states within the distribution; the

105 estimate is sufficient to converge distributions down to probabilities in the

10–3–10�4 range (with increasing error at lower probabilities). Convergence was

checked by comparing distributions as the number of inherent structure samples

increased.
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3.6 High Temperature Defect Thermodynamics
In this section, the ISL framework outlined in Section 3.5 is used to compute point defect

and cluster thermodynamics at finite temperature. The single vacancy is considered first

to illustrate the key features of the theoretical framework followed by vacancy and self-

interstitial cluster analyses.

3.6.1 The Single Vacancy

The inherent structure probability distribution for the single vacancy near the melting

temperature (1600 K) was computed using the EDIP potential according to the method

outlined in Section 3.5.2. Shown in Figure 3.7(A–F) are example mechanically stable

structures with increasing formation energy. Several configurations (e.g., (a), (b), and (d))

FIGURE 3.7 (A–F) Example inherent structures of the single vacancy including the ground state (A), the split
vacancy (C) and several other higher energy configurations. Red spheres denote silicon atoms that are within a
threshold distance of their perfect lattice positions, while green spheres correspond to atoms that are displaced
by more than 3% of a bond length. (G) Probability density distribution (PDF) for the EDIP vacancy; (H)
Corresponding density-of-states (DOS) distribution.
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are qualitatively similar but, in fact, correspond to completely distinct relaxations of the

atoms surrounding the vacant site. Higher energy configurations (e.g., (e) and (f))

correspond to increasingly disordered structures.

The plots in (g) and (h) show the PDF and DOS for the vacancy. The PDF is

normalized to unit probability, while the DOS, computed from the PDF using Eqn (3.23),

is shifted so that G(DE)¼ 1 for the ground state configuration. While the probability of

observing the ground state is highest, the system quenches to other configurations

approximately 20% of the time at the temperature considered here. Note that there is no

fundamental limit on the formation energies that can be accessed in these simulations;

the range of energies accessed is limited by the extent of sampling. In other words, larger

inherent structure samples would show progressively higher energy (and rarer) config-

urations. More frequent access to even higher energy configurations can be achieved

simply by increasing the simulation temperature. In fact, as with almost all simulations

of crystalline systems with periodic boundary conditions, significant superheating is

possible and much higher energy inherent structures can be found. While such con-

figurations do not play much of a role at temperatures below the melting point, they are

important in the context of melting [88,92,94,101].

Most significantly, application of Eqn (3.20) at the melting temperature of EDIP sil-

icon results in a formation free energy that is about 20% lower than that obtained by only

considering the ground state configuration. In other words, at or near the melting point

of EDIP silicon the (open system) equilibrium concentration of single vacancies is

actually about a factor of two higher than would be expected based only on the ground

state. This result starkly demonstrates the potential impact of configurational entropy at

high temperature and suggests that it must be considered when high-temperature

properties are required. As will be shown in the following sections, this is even more

the case for point defect clusters.

3.6.2 Vacancy Clusters

The extension of the preceding analysis to vacancy clusters is straightforward. In this

case, several vacancies are placed in close proximity, the system allowed to equilibrate at

some temperature, and periodic quenches applied to isolate inherent structures. The

only additional consideration here is that any configurations that correspond to

“broken” clusters, in which not all vacancies are connected to each other in a single

cluster, are discarded because these are not relevant to the PDF or DOS distributions for

the single cluster. Here, the atomic energy is used to identify atoms that are near va-

cancies, and then the Stillinger criterion [102] is used to assess whether or not they are

connected.

Shown in Figure 3.8 are PDFs (A) and DOS distributions (B) for several vacancy

cluster sizes at 1600 K. Most significantly, the PDFs (A) for clusters larger than size three

become peaked at formation energies that are substantially higher than the ground state

configuration. In fact, at the temperature considered here, the ground state
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configurations are never observed. Simply, the enormous configurational and vibrational

degeneracy present at higher energy levels overwhelms the energetic favorability of the

ground state at elevated temperature. This phenomenon becomes progressively more

pronounced for larger clusters, whereby the difference between the energies of the

ground state and the most likely states increases with cluster size.

The PDFs in Figure 3.8, which have been normalized to unit area, are known only to

within a multiplicative constant, which is required for computing cluster free energies of

formation using Eqn (3.20). The process by which these constants are obtained is as

follows. First, the PDFs are converted to the corresponding DOS distributions as shown

in Figure 3.8(B). The DOS curves are formed using simulations at multiple temperatures

in order to properly sample low energy states and in particular the ground states (shown

by the large solid circles). Recall that the ground state configurations for vacancy clusters

are derived from hexagonal rings and adamantine cages as shown in Figure 3.1. Once the
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FIGURE 3.8 (A) Probability distribution function for EDIP vacancy clusters at 1600 K. (B) Selected corresponding
anchored density-of-states functions—thick lines; exponential fits—thin short lines; density-of-states for hexagonal
ring configurations (see Section 3.4) used to anchor the distributions—solid circles. Adapted from Ref. [98].
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DOS distributions are obtained, the degeneracy for the bin containing the ground state

(and only the ground state) is calculated. To do this, the vibrational spectrum for the

ground state configuration is computed using the quasi-harmonic approximation (QHA)

[103,104] or some equivalent approach. The configurational degeneracy of the ground

state then is estimated using symmetry arguments (see configurations in Figure 3.1) and

the product of the two contributions (vibrational and configurational) is used to obtain

G(DEGS), where “GS” represents the ground state. The rest of the DOS is then shifted

accordingly for each cluster size.

The impact of configurational and vibrational entropy on vacancy cluster free en-

ergies is shown as a function of temperature and size in Figure 3.9. Shown in

Figure 3.9(A) are cluster free energies as a function of size and temperature expressed as

effective surface energies, i.e., s¼DG(n,T)/2.224n2/3, where the numeric factor repre-

sents the surface area of a sphere with volume equal to n vacancies. The top surface in

Figure 3.9(A) represents the free energy for the ground state configuration and includes

the vibrational entropy which leads to the linear decrease of the free energy with
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temperature. The lower surface was obtained using Eqn (3.20) and the data shown in

Figure 3.8, i.e., including both vibrational and configurational entropy. While the

agreement between the two curves is excellent at low temperature, they diverge signif-

icantly at higher temperature due to the rapid increase in configurational entropy.

A more transparent view of the difference between the two results is shown in

Figure 3.9(B) in which the normalized difference between the two free energies is plotted

on a line plot. Several important points are highlighted. The largest difference is

apparent in the lower right corner, corresponding to small clusters at high temperature.

These clusters are significantly different in morphology from the expected compact

octahedral structures observed experimentally (which are large and have cooled to low

temperature). Instead of assuming the compact hexagonal ring and adamantine cage

constructs depicted in Figure 3.1, these clusters tend to be in loosely bound, extended

configurations with capture radii that are significantly larger than those of the compact

configurations. Given that this small size-high temperature regime is crucial in the initial

stages of void nucleation during silicon crystal growth, the omission of configurational

entropy in any nucleation-growth model for voids is likely to cause large errors.

In the opposite corner, i.e., larger clusters at low temperature, the agreement between

the ground state and ISL analyses is perfect because configurational entropy does not

play a role. Recall from Section 3.4.1 that in this region, where void formation energies

are well described by the (111) surface energy, the EDIP predictions are in excellent

agreement with experimental measurements. Finally, in the top right corner of

Figure 3.9(B), corresponding to larger clusters at high temperature, a moderate but

persistent error between the ground state and ISL analysis exists. This size–temperature

regime corresponds to surface melting of voids, in which the overall void shape may be

compact, but configurational entropy is sufficient to lead to a melted surface layer at the

void–matrix interface. In fact, this feature is directly connected to the phenomenon of

defect-induced melting, which is beyond the scope of the present discussion.

In summary, the ISL picture for vacancy cluster thermodynamics shows surprisingly

rich behavior. At high temperatures, configurational entropy drives small clusters into

mobile, loosely bound structures that have lower free energy than corresponding

compact configurations. These effects play major roles in the nucleation and early

growth phase of small vacancy clusters. As the crystal cools, the impact of configura-

tional entropy gradually decays, leading to the well-known compact octahedral struc-

tures observed experimentally. The action of configurational entropy is therefore

somewhat insidious—although it materially impacts the final distribution of voids in

silicon crystals, it is hard (or even impossible) to observe it directly in action. However,

there is some indirect evidence for the validity of this overall picture. In ref. [57], the

ISL-based free energy function obtained in Figure 3.9 was employed in a continuum

model for void nucleation and growth during CZ growth of silicon crystals [1,58,105,106].

While these models have been quite successful at predicting void size distributions as a

function of crystal growth conditions, they have relied on some degree of empirical

parameter fitting in order to attain quantitative agreement with experimental
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measurements of void size, void density, and the nucleation temperature at which voids

suddenly nucleate during crystal cooling. A long-standing issue in particular was the fact

that the (111) surface model for octahedral voids, while intuitively appealing, gave free

energies that were too high and resulted in insufficient void formation. The ISL free

energy picture resolves this issue with no empirical parameter fitting. At high temper-

atures where nucleation and growth take place, the free energy is much lower than the

octahedral model would predict, and at low temperatures it naturally becomes consis-

tent with it.

In concluding this section, it should be noted once again that the above results are

strictly only valid for the EDIP potential. As mentioned earlier, there is some evidence

that PEL roughness is somewhat overpredicted by empirical potentials as compared to

DFT calculations [99]. If this is indeed the case, the results presented here are likely to

overestimate the impact of configurational entropy. On the other hand, similar calcu-

lations with multiple empirical potentials (data not shown) seem to show that the

presence of a noisy PEL with many closely spaced, mechanically stable inherent struc-

tures is fairly ubiquitous, with only quantitative deviations across the various potential

models. Clearly, further work aimed at analyzing the nature of empirical potential and

DFT PELs is required before more formal conclusions regarding this issue can be made.

3.6.3 Self-Interstitial Clusters

The ISL-based analysis of self-interstitial clusters is essentially identical to that for va-

cancy clusters. Given the higher degree of morphological complexity associated with

self-interstitial clusters as mentioned earlier in Sections 3.4.2 and 3.4.3, only a few of the

major features are described here and the reader is referred to refs. [92,107,108] for more

details. Shown in Figure 3.10 are PDFs for several interstitial cluster sizes computed
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using the EDIP potential at 1100 K. Most of the distributions are qualitatively similar to

the vacancy cluster PDFs, except for a striking feature in the 4-intersitial case. Here, a

sharp peak is observed in the probability distribution at 8.75 eV formation energy that

corresponds to the Humble/Arai configuration discussed in Section 3.4.2. Note that the

peak does not correspond to the lowest energy configuration, i.e., the EDIP potential

predicts slightly lower formation energy configurations, although these are observed

quite rarely. Thus, while the Humble/Arai configuration, which is the known ground

state configuration for the 4-interstitial cluster, is not predicted to be the absolute EDIP

ground state, it is by far the most favored configuration. Other cluster sizes do not appear

to exhibit similar special configurations.

The special favorability of the Humble/Arai configuration arises from a single unusual

feature—it possesses very high vibrational entropy relative to energetically neighboring

configurations [108]. Shown in Figure 3.11 are vibrational entropies computed using the

QHA for large numbers of inherent structures for two vacancy clusters (left) and two

interstitial clusters (right). Qualitatively, all clusters exhibit the same behavior in which

the vibrational entropy increases roughly linearly with increasing inherent structure

energy, although the dispersion is larger for the interstitial clusters. The vibrational

entropy of formation corresponding to the Humble/Arai configuration is denoted by

the large shaded sphere in Figure 3.11(C) and is notably higher (by about 5–6 kB) than the

surrounding values. This anomalous vibrational entropy readily accounts for the

approximately O(102) increase in probability for the Humble/Arai configuration. Thus,

although some configurations are predicted by the EDIP potential to be slightly more
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energetically favorable than the Humble/Arai structure, it is entropically stabilized at

finite temperature. In the language of potential energy landscapes, the basin that cor-

responds to the Humble/Arai configuration is particularly “wide” rather than being

exceptionally “deep”.

The fact that the source of the stability is entropic leads to fundamentally different

temperature dependence. Recall that for the vacancy cluster case, the ground state and

other low energy/low entropy configurations become progressively less important as the

system temperature rises. This is because as the temperature increases, the higher

configurational entropy associated with higher energy configurations begins to domi-

nate the free energy shifting the system toward sampling higher energy configurations.

Here, however, due to the fact that the Humble/Arai configuration is vibrationally sta-

bilized, it remains important even at elevated temperature.

3.6.3.1 Landscape Roughness and the Effect of Pressure
The prior discussion of small interstitial clusters in Section 3.4.2 suggests that similar

entropic effects should be observed for the 8-interstitial cluster whose ground state is

essentially two interacting Humble/Arai clusters in close proximity. However, no

anomalous peak is obviously apparent in Figure 3.10 in the PDF for 8-interstitial case;

this was also found to be the case at all temperatures at which ISL sampling was per-

formed [108]. While temperature appears to have a simple and predictable influence on

the PDFs shown in Figure 3.10—they shift to the right and become wider with increasing

temperature—the impact of hydrostatic pressure was found to be much more subtle and

provides insight into the complex interplay between energy and configurational and

vibrational entropies in these systems.

PDFs at 1100 K are shown in Figure 3.12 for the 4- and 8-interstitial clusters at

different applied hydrostatic pressures. The base-case zero pressure PDFs are denoted
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by the filled square symbols and correspond to the PDFs shown previously in

Figure 3.10. The open circles show the PDFs computed under 3 GPa of applied tension,

which corresponds to about 1% tensile strain. The 4-interstitial PDF is modified in two

important ways—first the dominance of the Humble/Arai peak increases, and second,

the inherent structures previously found to the left of the peak are no longer me-

chanically stable and disappear so that the Humble/Arai configuration becomes the

lowest energy configuration. The change in 8-interstitial PDF is even more striking.

Whereas the zero pressure distribution was the usual smoothly rounded distribution,

the PDF under tension now exhibits sharp peaks near the minimum energy, much like

the 4-interstitial case. In fact, these spikes correspond to the well-known “compact” and

“elongated” configurations identified in refs. [46,48]. Once again, their probabilities are

enhanced by their high vibrational entropies relative to neighboring configurations.

Finally, the 4-interstitial PDF obtained under compression is shown by the open dia-

mond symbols. Here, the peak corresponding to the Humble/Arai configuration is no

longer visible.

It is tempting to interpret the trends in Figure 3.12 by considering the effect of hy-

drostatic pressure on the Humble/Arai configuration. However, as shown in ref. [108]

applied pressure (compressive or tensile) does not alter the formation energy or vibra-

tional entropy of the Humble/Arai configuration. Instead, the behavior in Figure 3.12

arises from a collective phenomenon across the entire PEL of the system. In Figure 3.13,

the DOS distributions for the 4-interstitial cluster at each of the three applied pressures

are plotted so that they are equal at the energy bin that contains the Humble/Arai

configuration. The effect of hydrostatic pressure is immediately evident. Simply put,

compression tends to increase the density of states while tension reduces it. Given that
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the vibrational entropy of a given configuration is unaltered by hydrostatic pressure (at

least at the levels applied here), the effect on the DOS is largely configurational. Thus,

when compression is applied, the Humble/Arai configuration does not become altered;

it simply loses its dominance over other configurations because the total number of

alternative configurations is now much greater. The opposite effect is present under

tension—as inherent structures are lost, the dominance of the Humble/Arai configura-

tion becomes even stronger. Thus, whether the Humble/Arai configuration is dominant

or not, depends on a competition between its high vibrational entropy and the collective

configurational entropy of all other configurations.

A very simple, yet conceptually appealing, interpretation of the effect of hydrostatic

pressure is that compression acts to roughen the potential energy landscape, while

tension acts to smooth it, much like pushing and pulling on a sheet of paper. Subsequent

analysis with other potentials such as Tersoff has shown that this is not unique to EDIP,

and appears to be a common feature of empirical potentials (or at least bond-order type

potentials). One possible explanation for this behavior is that as the system is com-

pressed, the number of neighbors within interaction range of a given atom increases,

leading to increased landscape roughness.

Finally, it is interesting to note that while the EDIP potential predicted the existence

of apparently spurious stable configurations with formation energies below that of the

Humble/Arai configuration, these minima in the PEL quickly disappear under the

application of tension. Consider a situation in which the EDIP potential is being tested

using the 4-interstitial cluster. Preforming the defect in the Humble/Arai configuration

would show that, indeed, this is a stable structure with a predicted formation energy that

is in good agreement with DFT values. On the other hand, a global minimization over the

PEL, with no initial knowledge of the Humble/Arai configuration, would identify a

ground state that looks nothing like the Humble/Arai configuration with slightly lower

formation energy. In this case, the potential would be considered as invalid when

compared to DFT. The present analysis shows that the potential is largely in excellent

agreement with DFT results but appears to predict some spurious local minima some of

which lie at lower energy than the Humble/Arai configuration. The collective impact of

these spurious minima on the overall configurational entropy predicted by EDIP is an

open question. Answering it may help identify new ways to think about empirical po-

tential design and validation.

3.7 Conclusions
The aim of this chapter was to provide evidence, through several vignettes, for the utility

of atomistic simulations of intrinsic defect physics in silicon. The identification of the

energetic ground state and the subsequent calculation of its structure and formation

thermodynamics has been the subject of many studies, yet the ability to do this with

complete quantitative confidence remains elusive. In the second portion of the chapter,
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an example application of atomistic simulation to the study of entropic effects at

elevated temperature was used to demonstrate the potential for such simulations to

provide mechanistic information that is generally very difficult to come by with exper-

imental measurements.

Overall, it is safe to say that atomistic calculations are, as a collective tool kit,

extremely powerful and versatile tools for studying the thermodynamics of point defect

and defect clusters in crystalline silicon. Indeed, there are now countless examples of

successful studies in the literature and there is little doubt that they have greatly

increased our understanding of defect physics, thermodynamics and transport in silicon.

However, numerous challenges remain and these must be clearly identified when

deciding on how to apply this tool kit to a particular situation. First and foremost, it is

important to state at the outset that the notion of employing atomistic calculations in a

“plug-and-play” fashion to compute defect properties on demand has not yet been

realized. Ironically, the temptation to treat simulations in this manner has been exac-

erbated by the increased availability of sophisticated, user-friendly and very powerful

open-source codes. However, in both empirical potential and electronic structure cal-

culations, there are many parameters that need to be carefully specified (and are

problem specific) and many validation steps that need to be undertaken each time. This

is especially true when the properties being computed are not well studied. In the case of

empirical potential calculations, it is clear that the choice of potential is crucial—while

there is no one single potential that works best for everything, some are clearly better for

particular aspects. Even for so-called ab initio calculations, the proper choice of model

parameters such as sampling points for integration, system size, and exchange-

correlation functional can make surprisingly large impacts on the computed property.

This can lead to an overestimate of the accuracy of the results.

On the whole, and particularly for silicon, it can therefore be argued that much of the

success achieved with atomistic simulation of defect physics in silicon has not been

related to the calculation of quantitative estimates for specific thermophysical prop-

erties. Instead the success has stemmed in large part from an improved mechanistic

understanding of processes that are otherwise extremely difficult to probe experi-

mentally. As mentioned above, part of the reason for this is the large scatter in the

predicted properties with respect to a number of model parameters and choices.

Moreover, coupled with this is the fact that many observable defect-related phenomena

in silicon crystal growth and wafer annealing arise from a highly sensitive balance

between self-interstitials and vacancies requiring tremendous (and presently unat-

tainable) accuracy to predict without some amount of parametric regression. As a

result, the most successful applications of this tool kit have been to establish a semi-

quantitative picture, which is then further refined by detailed comparisons to experi-

mental measurements. Given the tremendous progress in the quality and scope of

atomistic simulations over the last few decades, there is no doubt that the role of such

calculations will only grow.
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4.1 General Overview of Conventional Stoichiometry
and Related Point Defects

4.1.1 Brief Overview of Stoichiometry and Point Defects in Oxide
Compounds

A conventional stoichiometric compound is characterized as one that has an exact and

fixed composition with a small integer ratio among its atomic components. This concept

is related to Dalton’s so-called law of multiple proportions [1]. The atoms in such a

compound are located precisely at the appropriate crystal lattice points, and neither

impurities nor defects are allowed to exist. Nonstoichiometry represents a deviation

from the well-defined stoichiometry, by the introduction of point defects such as

impurities and vacancies, when forming a solid solution. As such, the definition of a

nonstoichiometric oxide material often refers to a structure that may be formed within a

certain range of anion-to-cation ratios. Stoichiometric materials are used in electronic,

optic, and optoelectronic devices [2,3] because of their excellent uniformity and high

efficiency, which are attributed to the perfect ordering of the atoms in the crystal lattice.

For an ideal stoichiometric structure, defects should be avoided. On the other hand,

because their compositional variation enables the optimization of piezoelectric, ferro-

electric, ferromagnetic, and other physical properties, nonstoichiometric materials with

certain ranges of solid solutions often attract more attention than stoichiometric ma-

terials from the viewpoint of potential applications, given their greater ability to meet the

requirements for different devices. Therefore, point defects, such as impurities or

vacancies, are often intentionally added to a host material for such a purpose.

Semiconducting materials, in which only a small amount of dopant in the range of

1014–1018 /cm3 is sufficient to cause drastic changes in the electronic properties, are

typical examples [4–7]. Color change in the oxides [8] is another. However, it is difficult

to experimentally show the exactness of a stoichiometric composition; it is also chal-

lenging to precisely determine the solid solution range in nonstoichiometric materials.

When discussing the characteristics of point defects, it is vital to have an under-

standing of the structure of the host material. Conventionally, the bonding state between

the constituent elements, that is, the major components (the cations and anions) and

any impurities and vacancies, forms the basis for discussing the generation, morphology,

and mode of distribution of defects. Pauling [9] introduced the theoretical concepts of

bond ionicity and bond strength parameters for a stable coordination polyhedron based

on his second principle, the electrostatic valence rule. Since then, many modifications to

the second principle have been suggested, including those of Brown and Shannon [10]

and Brown [11,12]. The result has been the development of a concept proposing a bond-

valence model in which static bond energy is a function of bond length, i.e., the distance

between an oxygen ion and an associated cation. However, this concept is largely

restricted to ionic compounds, and the parameters evaluated to date are not necessarily

effective when applied to oxides, since the bonding state of many oxides represents a
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mixture of ionic and covalent characteristics. As an example, MgO represents a typical

ionic compound while SiO2 is covalent. The degree of ionicity of the oxide is important

and dominates its ionization behavior in the melt, as will be discussed in Section 4.4.3.

The defect structure is uncertain for many oxide compounds, due to an inadequate

understanding of issues related to the crystal structure, including the coordination sites

for metal cations, ionic-covalent bonding states, oxygen-to-oxygen interactions, degree

of oxidation, effect of the size ratio of metal to oxygen on crystal deformation, defect

interactions, population of point defects and their configurations associated with

ordering and disordering, solid solution ranges, and so on. For instance, the balance

between ionic and covalent bonding depends on the individual oxide, which leads to

variable energy states associated with defect generation and makes it difficult to predict

bond length, lattice size, and the mode of deformation associated with defects and

defect interactions. The oxide object of a defect study can vary from simple cubic to

more complex perovskite and other crystal types. Many oxides show significant

deviations from stoichiometry; depending on the oxygen pressure, the transition metals

form numerous nonstoichiometric oxide phases with ions of differing valences,

resulting in varying metal ion-to-oxygen ratios. Among these are the Magnéli phases,

such as VnO2n�1 and TinO2n�1 [13,14]. The general form of two-element cubic com-

pounds can be addressed as Ma/bO crystals, where a/b is the ratio of metal (M) to

oxygen (O) per mole of O atoms. The transition metal monoxides, such as NiO and CoO,

are representative examples of Ma/bO. For these materials, the ratio of metal to oxygen

varies; NbO and VO have ratios both greater and less than one (NbO1.9975 to NbO2.003

and VO0.8 to VO1.27), while CoO and CdO have ratios less than or equal to one (Co0.99O to

Co1.00O) and equal to or greater than one (Cd1.00O to Cd1.0005O) [15]. The a/b ratio

affects the physical properties of oxides, which are dominated by conventional factors,

such as the ionic size, electronegativity, ionic-covalent character, attractive and repul-

sive interactions, and various oxidation states of the metal. The molar volume is one

characteristic of oxide structures that is indicative of their crystalline properties and

changes with the a/b ratio [16].

LiNbO3 is a ferroelectric material with a more complex ilmenite structure belonging

to the perovskite family, and it has a wide compositional range as a solid solution [17].

However, its composition deviates from stoichiometric only toward the Nb-rich side,

since Li does not replace Nb at the Nb site. This behavior cannot be simply explained in

terms of the ionic radius or electronegativity of the elements but is rather related to the

inhibition of oxygen deficiency formation as a means of charge compensation due to the

replacement of Nb5þ by Liþ. In extreme cases, the stoichiometric composition of some

semiconducting materials, such as SnTe, does not belong to its solid solution range [18].

The oxidation of such materials is thought to be governed by the growth atmosphere,

although the ease or difficulty of oxidation may also depend on the structure and the

composition of the oxides. Coloring due to the presence of impurities or oxygen

vacancies that act as color centers is also often observed in oxide crystals when they are

grown or annealed in an insufficient oxygen atmosphere.
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A simple consideration of the presence of interstitial impurities and/or oxygen

vacancies may not be sufficient to confirm defect structures in oxides, since point defects

in nonstoichiometric materials are not necessarily randomly distributed but rather may

be ordered at high concentrations in cases where this ordering reduces the free energy of

the structure. These point defects may also interact with one another [19], and one

consequence of this interaction may be the formation of clusters. As an example, vacancy

clustering has been proposed for Fe vacancies in a Fe1�xO phase [20] (Figure 4.1).

Interactions between defects can also form a superlattice; a 13:4 Koch–Cohn cluster is an

example of one such superlattice [21]. On the other hand, vacancies, interstitials, and

clusters, including their origins and formation mechanisms, have been well studied

during Si crystal growth on both a theoretical and experimental basis [22–26].

Regarding analytical studies of point defects, thermodynamics and statistical ther-

modynamics are useful for understanding the generation and distribution of point

defects from the energetic point of view, not only with regard to the random distribution

of defects at low defect densities but also as a means of understanding the ordering and

clustering of highly populous defects by taking into account the interactions between

defects [27,28].

It is thus important to be aware of and to consider the quantity of impurities or

vacancies. In this chapter, point defects will be discussed in association with the solid

solution. Impurities or vacancies replacing the host elements at lattice points are often

10�4 to 10�2 mol or more in quantity if vacancies are required for charge compensation

due to valence differences between the host element and the impurity. A thermally

(A) 

Basic unit

(B) 

Edge-shared

(C) 

Corner shared

(6 : 2 cluster) (13:4 “Koch-Cohen” cluster)

Cation vacancy

(4 : 1 cluster)

Interstitial Fe3+ O2–

FIGURE 4.1 Vacancy clustering and cluster association of iron-deficient Fe1-xO. (A) The basic unit: a so-called 4:1
cluster consisting of four vacancies and one interstitial Fe3þ ion. (B) Two basic units combined to form an edge-
shared 6:2 cluster complex. (C) Four basic units combined to form a corner-shared 13:4 cluster complex represent-
ing a superlattice known as a Koch–Cohen cluster [21].
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activated vacancy is one of the intrinsic vacancies and can become enriched, depending

on the band gap of the material, near the melting temperature of the material. However,

the amount of vacancies of this type or of color-causing impurity centers is much smaller

than the quantity of defects replacing the host element, by at least two orders of

magnitude at high temperatures. For this reason, intrinsic point defects are disregarded

in the following discussion.

4.1.2 Crystal Sites in Oxide Crystals

An oxide crystal consists of an oxygen framework that provides space for a metal cation

based on its coordination number. For descriptive purposes, the space is often referred

to as a crystal site, as in tetrahedral (4-coordination), octahedral (6-coordination), and

decahedral (8-coordination) sites. Each of the constituent cations of the crystal is located

in its specific site depending on its radius, valence, and electronegativity, such that

attractive and repulsive forces between oxygen atoms and cations are in equilibrium.

Each site in a conventional stoichiometric compound is completely filled with a specific

element without any foreign elements or vacancies, so that a simple atomic ratio may be

used to describe the relative quantities of the constituent elements; this is the law of

multiple proportions [1]. Stoichiometric compositions of this type are readily described

and understood without any uncertainties. The conventional stoichiometric compound

LiNbO3 (s-LN), for example, contains three crystal sites: the Li, Nb, and O sites, each of

which is completely filled with Li, O, and Nb, without any foreign elements or vacancies.

In contrast, conventional congruent-melting LiNbO3 (c-LN) has completely filled Nb and

O sites, while the Li site is occupied not only by Li but also by Nb (antisite Nb) as well as

by vacancies necessary for charge compensation. Therefore, the components of this

material consist of Li, Nb, and vacancies.

There are always issues concerning the extent to which an oxide crystal changes its

oxygen content when it is grown or annealed in a different oxygen atmosphere. In cubic

crystals, such as FeO, NiO, ZnO, and VO5, and tetragonal crystals, such as TiO2, the

metal-to-oxygen ratio varies readily, concomitant with a change in the metal ion

oxidation states. The oxygen quantity varies significantly, and this variation is explicitly

reflected in the chemical formula of the substance. Although many questions remain

unanswered regarding the oxygen deficiency mechanism associated with the defect

structures, the formation energies of metal oxides available in the Ellingham diagram

provide a good indication of whether these oxides easily lose oxygen upon exposure to a

reduction atmosphere. The oxidation states of iron, nickel, and copper change readily

according to the oxygen atmosphere because the transition energies between different

oxidation states are small for these metal oxides. In contrast, once oxidized, lithium,

magnesium, aluminum, and titanium cannot be reduced because they have elevated

oxidation energies. LiNbO3 alone barely loses 0.01–0.1 mol of oxygen when annealed

under reducing atmosphere. However, when doped with Fe3þ ions and annealed under

reducing atmosphere, LiNbO3 easily loses oxygen in an amount equivalent to the oxygen
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loss obtained for the reduction of Fe2O3 to FeO contained in LiNbO3. The reverse

process (oxidation) is also the case. Metal oxides containing elements that evaporate

readily exhibit more complex defect structures because mass conservation rules do not

hold. These materials include PbTiO3, PZNT (Pb(Zn1/3Nb2/3)O3–PbTiO3), PMNT

(Pb(Mg1/3Nb2/3)O3–PbTiO3) [29–31], and La3Ga5SiO14 [32,33].

It is also well known that some of oxides exhibit a color change from colorless

to yellow, orange, or even black when they are grown or annealed in an oxygen-poor

atmosphere. However, the amount of oxygen that must be lost to yield a color center

is often on the order of ppm or less, whereas the quantity of point defects associated

with forming a solid solution will range from 0.01 to 0.1 mol. This chapter focuses

on oxides with relatively complex structures, such as garnet, langasite, and perovskites

involving ilmenite, such as LiNbO3 or LiTaO3, in which oxygen is assumed to form

a rather stable framework and the oxygen sites are fully saturated with oxygen,

although they may still contain a small quantity of oxygen deficiencies that act as color

centers.

4.1.3 Partitioning Behavior of Ionic Solutes in an Oxide Melt

Typically, defect structures have been reviewed and discussed in association only with

the solid state. Many excellent articles and books have been published concerning point

defects in oxides [15,34–38], however, almost all of these regard defects only as a solid

state issue; few publications have discussed defects in relation to crystallization from the

melt, with the exception of some works regarding Si [22–26]. Since impurities or even

vacancies are partitioned from the melt into the crystal during crystallization, it is

imperative to discuss defects by relating their formation, characteristics, and thermo-

dynamic stability to the coexistence of solid and liquid during crystallization.

Solute partitioning behavior is generally investigated using an equilibrium phase

diagram. However, most oxide phase diagrams are pseudo-phase diagrams where the

stoichiometry of oxygen to metal always holds and the oxygen is not considered an

independent component. For this reason, conventional oxide phase diagrams do not

take into account the ionization of neutral species that actually occurs in the oxide melt.

Ionic species, which represent one of the major sources of point defects, are present in

the melt [39] and are partitioned into the solid during crystallization [40–43]. Point

defects, therefore, should be discussed in association with crystallization, and the oxygen

in the melt should be considered as an independent component in the phase diagram.

As will be discussed in detail in Section 4.3.1, the oxygen ions and metal ionic species

behave independently, which has been experimentally demonstrated by the observation

of crystallization electromotive force (c-EMF) generated by the segregation of ionic

species at the solid–liquid interface, even in the case of c-LiNbO3. Therefore, although

the LiNbO3 congruent point in the pseudo-binary diagram of Li2O–Nb2O5 is invariant, it

is not invariant in the ternary diagram of Li–Nb–O, and thus a variety of population ratios

among the ionic species are allowed.
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Ifwe simplyassume thatLiNbO3 isdissociated intoLi2OandNb2O5and then ionized into

further species, such as Liþ, OLi–, Nb5þ, Nb2O
2þ
4 , and O2� [39], in the ternary diagram of

Li-Nb-O, all of these species canbe regardedascomponents rather than just Li2OandNb2O5

that are valid in the pseudo-binary diagram of Li2O–Nb2O5. The number of components

therefore increases from two to five. However, even this is not entirely correct since we also

have ongoing chemical reactions such as those shown in Eqns (4.1) and (4.2) following:

OL�%O2� þ Liþ (4.1)

Nb2O
2þ
4 %2Nb5þ þ 4O2� (4.2)

Accordingly, we can write the chemical potential relationships

mOL� ¼ mO2� þ mLiþ (4.3)

and

mNb2O
2þ
4 ¼ 2mNb5þ þ 4mO2�

: (4.4)

Equations (4.3) and (4.4) represent constraints that reduce the number of independent

components to three species: Liþ, Nb5þ, and O2�. The above chemical species are

hypothetical so that the general forms of the Li-bearing species and Nb-bearing species

may be written as

Lið1Þ; Lið2Þ; . ; LiðkÞ (4.5)

and

Nbð1Þ;Nbð2Þ; . ;NbðlÞ: (4.6)

The oxygen ion, O2�, is also a constituent chemical species. It therefore appears that

the number of components is k þ l þ 1, however, the independent components are only

Liþ, Nb5þ, and O2� since other components are complexes of Li and O or Nb and O

so that constraints are in effect similar to those presented in Eqns (4.3) and (4.4),

meaning that

mLiðiÞ ¼ mmLiþ þ nmO2�
(4.7)

and

mNbðjÞ ¼ smNb5þ þ tmO2�
: (4.8)

Since there are three components instead of two, one more degree of freedom

is available in the melt, which enables the population ratio to vary among the ionic

species even for a congruent-melting composition. This population ratio will in turn

depend on the growth conditions, such as growth velocity and temperature gradient.

Although it initially seems strange that the ratio between ionic species changes

with growth velocity while the congruent melt composition does not, this occurs

because the congruent composition is defined on the basis of the Li2O–Nb2O5 pseudo-

binary associated with LiNbO3, and this is invariant regardless of the growth velocity.

In contrast, the presence of ionic species requires the oxygen ion to be considered as an
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independent component, which adds one more degree of freedom to the ternary

system and enables population change among the ionic species with growth velocity.

However, when these ionic species are partitioned into the solid, this one degree of

freedom in the melt phase must be consumed in such a way that the partition coefficient

for each ionic species is determined. Otherwise, the solid composition cannot be fixed in

the pseudo-phase diagram. It should be noted that the physical phenomenon with a

higher degree of freedom does not surpass the one governed by the lower degree of

freedom. Thus, the same number of constraints as that for the melt species is required to

solve the partition coefficient for each species. The constraint that consumes the one

degree of freedom must then be determined. Because the composition of the solid phase

is determined in the pseudo-phase diagram, a stoichiometric ratio between the metal

and oxygen atoms in the solid is required, which is the last constraint necessary to

achieve zero degrees of freedom.

4.2 Extended Concept of Stoichiometry in Oxide
Crystals

Nonstoichiometric compounds often demonstrate interesting physical properties that

may be induced by tuning their chemical compositions. Examples include variation of

the Curie temperature and dielectric constant of ferroelectric materials used in ceramic

capacitors such as (Ba,Sr)TiO3 with the addition of small amounts of Y, Nd, and Sm

[44,45] and the large piezoelectric constant associated with the Curie temperature of

PZNT or PMNT [29–31] at compositions near the polymorph phase boundary (MPB),

which enable applications in ultrasonic sensors and other piezoelectric applications.

Due to its ordered configuration of constituent elements on the lattice points, the

stoichiometric compound will exhibit certain superior physical properties to the

nonstoichiometric compound. Stoichiometric LiNbO3 (s-LN) or LiTaO3 (s-LT) crystals

[2,3], for instance, show a higher conversion efficiency for secondary harmonic gen-

eration (SHG) in nonlinear optical applications and much lower coercive electric fields

associated with poling compared to c-LN and congruent LiTaO3 (c-LT) crystals.

However, these stoichiometric compositions are rigid, and only a small number of

stoichiometric crystals are available that correspond to the law of multiple proportions

[1]. Thus, it would be beneficial from both scientific and technological perspectives if

stoichiometric compounds could be obtained over a wider compositional range. In this

chapter, by considering the essential concept of stoichiometry, we redefined stoichi-

ometry in such a way that a material in which the activities of all the constituent ele-

ments can be unity is stoichiometric [46,47]. The constituent elements in this definition

include not only the primary constituent atoms but also the impurities and vacancies

that replace these primary atoms. This revised concept of stoichiometry expands the

current definition of stoichiometric composition from a single point to a range

described by a line.
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4.2.1 The Thermodynamic Definition of Stoichiometry Associated with
the Activity of Constituent Elements

The application of thermodynamic principles throughout a broad spectrum of scientific

and engineering disciplines may be considered to fall into two categories. One approach

is related to solving practical problems regarding the conversion efficiency between

different kinds of energy and is concerned with the reaction constant, the activity of

elements during the chemical reaction process and so on. The other involves analytical

considerations and is more conceptual in nature. Our development of an extended

stoichiometry will use the latter approach.

One of the thermodynamic principles used for this purpose is activity, a term that is

associated with the standard-state chemical potential. The chemical potential of

component j (termed mj) in a nonstoichiometric material is given by Eqn (4.9):

mj ¼ m
j
0 þ RT ln aj; (4.9)

where m
j
0 is the standard-state chemical potential and aj is the activity for j that indicates

mixing with another solute. It should be noted that the chemical potential, mj, has a

definite value, while the activity, aj, is variable. Once m
j
0 is chosen, aj is determined

accordingly using the relationship

ln aj ¼ mj � m
j
0

RT
: (4.10)

The value of the standard-state chemical potential, m
j
0, is essentially chosen based on

one’s preference, although in most cases it represents the chemical potential of a pure

substance at 1 atm and 298.15 K. This is because the energy of formation of pure sub-

stances is typically readily available, which is helpful for many thermodynamic calcu-

lations associated with practical applications.

The essence of “stoichiometry” may be elucidated by comparing it with “non-

stoichiometry” from a thermodynamic perspective. A nonstoichiometric composition is

derivative from a stoichiometric composition by the addition of impurities, which im-

plies that the activity of the chemical species or element j is not unity,

ajs1: (4.11)

In contrast, the chemical potential of the stoichiometric composition has no mixing

term, and thus

mj ¼ m
j
0; (4.12)

which is equivalent to saying that the activity of species j is unity,

aj ¼ 1: (4.13)

We should note here that the statement aj ¼ 1 also implies that the mole fraction is unity

(xj ¼ 1), which means that the standard-state composition about j reflects the bulk

composition, j of the material itself regardless of the quantity of j in the material. It

should be noted again that the standard-state composition does not have to be purely j.
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In order for the material to be stoichiometric, Eqn (4.13) must be valid for any

component, j. That is, the activity of all constituent components in the stoichiometric

material is unity. Conversely, if the activity of all constituent components is unity, the

material can be considered to be stoichiometric [46,47]. Following, we will demonstrate

the validity of an extended stoichiometry concept by comparing this concept with the

conventional understanding of stoichiometry.

4.2.2 Conventional Stoichiometric Compositions and the Law
of Multiple Proportions

The composition of a conventional stoichiometric crystal is represented by a small

integer that gives the ratio of constituent elements, representing the so-called law

of multiple proportions [1]. Here we use two kinds of stoichiometric crystals

to demonstrate different types of compositions: (1) Li2B4O7, which is a line-

compound, and (2) s-LN, which belongs to a solid solution with a wide composi-

tional range.

Li2B4O7 has a very limited solid solution range, therefore it can be considered as a line

compound (Figure 4.2(A)). This solid solution range is determined by investigating the

limits of the compositional shift from the stoichiometric composition [48], using XRD or

DTA to determine whether or not the secondary phase is present in the residual melt

after normal freezing under vigorous mixing of the melt. The solid solution was found to

vary around the stoichiometric composition by a margin of �0.3mol% Li2O [48].

However, the observation of zero c-EMF, which will be explained in Section 4.3.1,

revealed that Li2B4O7 is a line compound with almost zero solid solution range. It should

be noted here that there may still be some limited compositional variation in this
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material due to the presence of thermally activated vacancies. However, this small

amount of compositional variation is neglected in the present discussion. The most

important feature of this line-compound stoichiometric crystal is that it is coincident

with the congruent point.

The phase diagram of the pseudo-binary system of Li2O–Nb2O5 is presented [17] in

Figure 4.2(B), in which conventional stoichiometric LiNbO3 (s-LN) and conventional

congruent-melting LiNbO3 (c-LN) are indicated. In contrast to the stoichiometric line-

compound Li2B4O7, s-LN is separate from c-LN and is located at the far end of Li2O

composition in the LiNbO3 solid solution. Although both Li2B4O7 and s-LN are stoi-

chiometric, Li2B4O7 is coincident with the congruent point while s-LN is not, which

reflects the different equilibrium partitioning of their constituent elements. This will be

discussed in detail in Section 4.3.2.

4.2.2.1 Activities of the Constituent Elements in a Conventional Stoichiometric
Crystal

In the following discussion, we will demonstrate that the activities of all constituent

elements in a conventional stoichiometric compound are unity [46]. The composition of

a conventional stoichiometric compound is represented by a small integer ratio between

constituent elements, and as such the line-compound Li2B4O7 may be employed as a

conventional stoichiometric material.

In both the Li2B4O7 melt and the solid at its crystallization temperature, the most

likely possibility would be for Li2B4O7 to dissociate into Li2O and B2O3 [46], as shown by

Eqn (4.14), which is analogous to the dissociation of LiNbO3 [39], since the Li2B4O7

crystal consists of firm B-O frameworks with Li in the pore spaces.

Li2B4O7%Li2Oþ 2B2O3 (4.14)

Subsequently, each species would be expected to ionize. For instance, Li2O may ionize at

high temperature, as shown in Eqn (4.15):

Li2O%Liþ þOLi� (4.15)

In the following discussion, the chemical species j are differentiated in two ways: j is

the net chemical species that normally appears as a component in the pseudo-binary

phase diagram, while j is the actual chemical species existing in the solid or melt and

that forms the net chemical species j. Li2O and B2O3 are thus the net species while

Li2O, Liþ, OLi–, and others represent the proposed real chemical species, j, that form

Li2O. Thus, Li2B4O7 may be decomposed into several chemical species as indicated

by Eqn (4.16):

n Li2B4O7%a Li2Oþ b Liþ þ c OLi� þ d B2O3 (4.16)

At this time, we do not take into account the further decomposition of B2O3. The

chemical potential of Li2B4O7 is written as Eqn (4.17):

n mLi2B4O7 ¼ a mLi2O þ b mLiþ þ c mOLi� þ d mB2O3 ; (4.17)
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and

n mLi2B4O7 ¼ n mLi2O þ 2n mB2O3 : (4.18)

Equation (4.19) then describes B2O3:

2n mB2O3 ¼ d mB2O3 (4.19)

The relationship between the net chemical species and the real chemical species for the

Li2O component can then be written for both the solid and liquid assuming that all

chemical species in the melt are partitioned into the solid so that the discussion can be

made based on the equilibrium partitioning of each chemical species. Equations (4.17),

(4.18), and (4.19) yield Eqn (4.20):

n m
Li2O
b ¼ a m

Li2O
b þ b mLiþ

b þ c mOLi�
b ; (4.20)

where b is either the solid (S) or liquid (L) phase. This describes the relationship in

chemical potential between the net Li2O and Li-bearing species, and a similar rela-

tionship can be made between the net B2O3 and B-bearing species. Thus, hereon we will

deal exclusively with Li2O.

The above chemical species are hypothetical, and it is not clear that they actually

exist. Thus, Eqn (4.21) is hereafter used for the general discussion instead of

Eqn (4.20):

n m
Li2O
b ¼ m1 m

Lið1Þ
b þm2 m

Lið2Þ
b þm3 m

Lið3Þ
b þ/þmk m

LiðkÞ
b ; (4.21)

where Li(i) are the chemical species containing Li and for whichmi � 0. It is important to

note that the Li-bearing species in Eqn (4.21) are assumed to be common to both the

solid and liquid states since all the chemical species in the melt are partitioned into the

solid during growth. Specifically, the chemical potential of the net Li2O in the solid at a

given temperature T may be written as

n m
Li2O
SðT Þ ¼ m1 m

Lið1Þ
SðT Þ þm2 m

Lið2Þ
SðT Þ þm3 m

Lið3Þ
SðT Þ þ/þmk m

LiðkÞ
SðT Þ ; (4.22)

and this equation may be rewritten as Eqn (4.23) by breaking down the chemical po-

tential into the standard-state chemical potential and the mixing term as

n m
Li2O

SðT ;0Þ þ n RT ln a
Li2O

SðT Þ �
�
m1 m

Lið1Þ
SðT ;0Þ þm2 m

Lið2Þ
SðT ;0Þ þm3 m

Lið3Þ
SðT ;0Þ þ/þmk m

LiðkÞ
SðT ;0Þ

�

¼ DmLi�
SðT ;0Þ þ n RT ln a

Li2O

SðT Þ ¼ RT
�
m1 ln a

Lið1Þ
SðT Þ þm2 ln a

Lið2Þ
SðTÞ þm3 ln a

Lið3Þ
SðT Þ þ/þmk ln a

LiðkÞ
SðT Þ

� (4.23)

where m
j
SðT ;0Þ is the standard-state chemical potential of the solid about j at a temperature

T, and DmLi�
SðT ;0Þ is the difference in standard-state chemical potentials between Li2O and

the dissolved species, Li(i), which is written as

DmLi�
SðT ;0Þ ¼ n m

Li2O
SðT ;0Þ �

�
m1 m

Lið1Þ
SðT ;0Þ þm2 m

Lið2Þ
SðT ;0Þ þm3 m

Lið3Þ
SðT ;0Þ þ/þmk m

LiðkÞ
SðT ;0Þ

�
: (4.24)

Here, the standard-state chemical potential is defined for mLi2O
SðT ;0Þ and m

LiðiÞ
SðT ;0Þð1 � i � kÞ,

individually: mLi2O
SðT ;0Þ is defined as the chemical potential of the solid for the exact Li2O
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concentration in the stoichiometric composition of Li2B4O7 at a temperature T. The

activity, aLi2O
SðT Þ, is then written as

ln aLi2O
SðT Þ ¼

�
m
Li2O
SðT Þ � m

Li2O
SðT ;0Þ

�

RT
: (4.25)

The term m
LiðiÞ
SðT ;0Þ can be defined at a given temperature T in such a way that the DmLi�

SðT ;0Þ
term in Eqn (4.24) becomes zero. This is allowed because the Li, B, and O sites are fully

occupied by their own specific elements in stoichiometric Li2B4O7, which provides one

degree of freedom to define m
LiðiÞ
SðT ;0Þ. This freedom associated with the crystal sites and its

usage is discussed in more detail in Section 4.2.3.1. Thus m
LiðiÞ
SðT ;0Þ is defined as in Eqn (4.26):

n m
Li2O
SðT ;0Þ ¼ m1 m

Lið1Þ
SðT ;0Þ þm2 m

Lið2Þ
SðT ;0Þ þm3 m

Lið3Þ
SðT ;0Þ þ/þmk m

LiðkÞ
SðT ;0Þ; (4.26)

where the appropriate value can be assigned to each m
LiðiÞ
SðT ;0Þ term such that the equation

is satisfied at temperature T, even though m
LiðiÞ
SðT ;0Þ is not individually specified. Combining

Eqn (4.26) with Eqn (4.23) gives

n ln aLi2O
SðT Þ ¼ m1 ln a

Lið1Þ
SðTÞ þm2 ln a

Lið2Þ
SðT Þ þm3 ln a

Lið3Þ
SðT Þ þ/þmk ln a

LiðkÞ
SðT Þ ; (4.27)

and thus
�
aLi2O
SðT Þ

�n

¼
�
a
Lið1Þ
SðT Þ

�m1
�
a
Lið2Þ
SðT Þ

�m2
�
a
Lið3Þ
SðT Þ

�m3

/
�
a
LiðkÞ
SðT Þ

�mk

: (4.28)

Li2B4O7 is peculiar in that the solid solution range of Li2B4O7 is sufficiently small such

that the composition of the solid Li2B4O7 coexisting with the liquid can be assumed to be

nearly constant and equal to the stoichiometric composition at any given temperature,

T, which is coincident with the congruent composition. Thus, Eqns (4.29) and (4.30) hold

true at any temperature. As such, the chemical potential for the bulk Li2O, mLi2O
SðT Þ, is

assigned to the standard-state chemical potential, mLi2O
SðTÞ, as in Eqn (4.29):

m
Li2O
SðTÞ ¼ m

Li2O
SðT ;0Þ (4.29)

Combining this equation with Eqn (4.25), Eqn (4.30) is obtained:

aLi2O
SðT Þ ¼ XLi2O

SðT Þ ¼ 1; (4.30)

where XLi2O
SðTÞ is the net concentration of Li2O in the solid Li2B4O7 at a temperature, T.

Combining with Eqn (4.28), the product of a
LiðiÞ
SðTÞ is unity as shown by Eqn (4.31):

�
a
Lið1Þ
SðT Þ

�m1
�
a
Lið2Þ
SðT Þ

�m2
�
a
Lið3Þ
SðT Þ

�m3

/
�
a
LiðkÞ
SðT Þ

�mk ¼ 1: (4.31)

Equation (4.31) holds at any temperature, T, and thus we can write Eqns (4.32)

and (4.33):

a
Lið1Þ
SðT Þ ¼ a

Lið2Þ
SðT Þ ¼ a

Lið3Þ
SðT Þ ¼ / ¼ a

LiðkÞ
SðT Þ ¼ 1 (4.32)
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X
Lið1Þ
SðT Þ ¼ X

Lið2Þ
SðT Þ ¼ X

Lið3Þ
SðT Þ ¼ / ¼ X

LiðkÞ
SðT Þ ¼ 1 (4.33)

As in Eqn (4.25), a
LiðiÞ
SðTÞ is defined as

ln a
LiðiÞ
SðT Þ ¼

�
m
LiðiÞ
SðT Þ � m

LiðiÞ
SðT ;0Þ

�

RT
: (4.34)

The value of m
LiðiÞ
SðT ;0Þ in Eqn (4.34) is determined in order to satisfy Eqn (4.26), and a

LiðiÞ
SðT Þ ¼ 1

leads to m
LiðiÞ
SðTÞ ¼ m

LiðiÞ
SðT ;0Þ for any temperature. This same process also applies to the

B-bearing species. Overall, then, the activity of all constituent elements in the stoi-

chiometric compound Li2B4O7 is unity [46],

aLi
Li site ¼ aB

B site ¼ aO
O site ¼ 1: (4.35)

4.2.3 Extended Stoichiometric Compositions Including Impurities
and Vacancies

In the previous section, we demonstrated that a material in which the activity of each

constituent element can be unity represents a stoichiometric material, by assigning

each chemical potential, mj, to the standard-state chemical potential, m
j
0. In other

words, if we are allowed to assign mj to m
j
0 for any component, j, such that m

j
0 ¼ mj, the

material can be considered stoichiometric. Stoichiometric materials by this definition

may include impurities and vacancies and so may be more stable in terms of entropy

than conventional stoichiometric substances. This raises an important objection—if an

assignment such as this is possible in any material, then every material could poten-

tially be considered stoichiometric, which is certainly not the case. The question is how

we can know whether or not mj can be assigned to m
j
0. To make such an assignment, we

require a degree of freedom, since the standard-state chemical potential, m
j
0, can have

any value if one degree of freedom is present in the crystal site where the element j is

present.

4.2.3.1 Degrees of Freedom in a Crystal Site
It is important to determine the element occupancy of each crystal site. These elements

include constituent cations, impurity ions, antisite defects, and vacancies. The possible

element occupancy at a site is examined by considering the associated degrees of

freedom, and we can explain the degrees of freedom of a crystal site by employing

LiNbO3 as an example. Here the vacancy is a defect that forms in order to compensate

for the charge imbalance due to the difference between the valences of the impurity ions

and that of the host ion present in a site. The quantity of vacancies will be on the order of

10�4 to 10�2 mol or more depending on the population of impurity ions or antisite de-

fects. In the following discussion, we assume that the oxygen sites are saturated with

oxygen and that no oxygen vacancies are present even when LiNbO3 is exposed to an
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oxygen-reduced atmosphere during the growth or annealing processes. Such a reduced

atmosphere is known to generate a color center in the crystal, with a concurrent change

from colorless to yellow or orange, but the accompanying extent of oxygen deficiency is

much less than the degree of oxygen vacancy required for the charge compensation, by

at least two orders of magnitude. Thus, the possible presence of elements at each cation

site will be discussed, assuming that oxygen saturation is maintained.

The degrees of freedom are obtained by subtracting the number of constraints from

the number of parameters. In this case, the number of parameters at a site is the number

of elements, based on the following three constraints:

1. Mass conservation holds at each site. That is, the sum of the mole fractions of each

constituent element, j (where j ¼ 1 to C), is unity, as in Eqn (4.36):

X 1 þ X2 þ/þ XC ¼ 1 (4.36)

2. If an element is present at multiple sites in a crystal, its chemical potentials at

those sites are equal, thus

m
j
site 1 ¼ m

j
site 2 ¼ /: (4.37)

3. The vacancy population is calculated in such a way that overall charge neutrality is

maintained in the bulk crystal.

These three constraints are necessary conditions, although additional restrictions

may be added to decrease the degree of freedom at a given site.

4.2.3.2 Activity of the Constituent Elements in an Extended Stoichiometric Crystal
Based on our newly defined “stoichiometry,” referring to a material in which the activity

of all the constituent elements can be unity, we extend the stoichiometric composition

from a single point to a linear series. Introducing impurities and vacancies is necessary

in this case, which is not allowed in a conventional stoichiometric compound. As an

example, we may consider MgO-doped LiNbO3 in the pseudo-ternary system of

Li2O–Nb2O5–MgO, shown in Figure 4.3. The isoconcentration line at 50mol% Nb2O5 is

termed line A, and the MgO-doped LiNbO3 on line A is termed 50Nb-LN. The conven-

tional stoichiometric compound LiNbO3 (s-LN), the conventional congruent-melting

LiNbO3 (c-LN) on the pseudo-binary line of Li2O–Nb2O5, and c-LN doped with 5mol%

MgO (5MgO:LN) are also indicated.

The site structures of these crystals are presented in Figure 4.3(B). All the sites of

conventional s-LN are filled with Li, Nb, and O, without any excess atoms or de-

ficiencies. Thus, it is readily understood that the activity of each site as well as the

activity of the element at each site is unity. The site structures of c-LN and 50Nb-LN are

similar in that both have fully occupied Nb and O sites, and their Li sites are occupied

with vacancies or cations other than Li, such as antisite Nb in c-LN and Mg in 50Nb-LN.

Although the elements present in their Li sites are much the same, c-LN is not
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stoichiometric while 50Nb-LN is [47], a phenomenon that will be discussed subse-

quently. In 5MgO:LN, the Mg is located at both Li and Nb sites, but no antisite Nb is

present at the Li sites.

Whether a crystal is stoichiometric or not is determined by examining the possibility

of each of the constituent elements in the crystal having an activity of unity. This

question directly applies to the activities of the elements at Li sites in c-LN and

50Nb-LN.

Firstly, we can examine the degrees of freedom associated with the Li sites in c-LN.

These sites have three parameters: Li, Nb, and vacancies. The constraints on the Li site

include conservation of mass, the exchange of equilibrium Nb between Li and Nb sites,

and the vacancy population required for charge compensation. Since the overall number

of constraints is three, zero degrees of freedom are available for assigning mj to the

standard-state chemical potential, m
j
0. Therefore, the activity of the elements at the Li

sites cannot be unity, and it has been proven on a thermodynamic basis that c-LN is not

stoichiometric.

The degrees of freedom of the Li sites in 50Nb-LN can subsequently be examined

using a similar process. Here the number of parameters is three while the number of

constraints is two, since we are only concerned with conservation of mass and the

vacancy population. As a consequence, the Li sites have one degree of freedom, which

allows unrestricted choice of the standard-state chemical potential, m0. It should be

noted that, in the 50Nb-LN crystal, each element, including Mg and vacancies, belongs
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FIGURE 4.3 (A) Composition diagram of various LiNbO3 compositions in the pseudo-ternary system of Li2O–Nb2O5-
MgO. The isoconcentration line of 50mol% Nb2O5 line is termed line A and represents an O-to-Nb ratio of exactly
3.0. Legend: s-LN ¼ stoichiometric LiNbO3 on the Li2O–Nb2O5 line, c-LN ¼ congruent LiNbO3 on the Li2O–Nb2O5

line, 50Nb-LN ¼ MgO-doped LiNbO3 on line A, 5MgO:LN ¼ c-LN doped with 5mol% MgO. (B) Crystal site struc-
tures for each of the various LiNbO3 crystals.
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only to one specific site. However, m
j
0 ¼ mj must be valid for all three of the elements

that may be present at the Li sites (j ¼ Li, Mg, and vacancy) in order for the activities

of these elements to be unity. Thus, it appears that three degrees of freedom are

required, and hence the challenge is to use one degree of freedom to assign m to m0 for

each of the three elements. To address this, one can consider the chemical potentials

and activities of the crystal sites as well as the constituent elements in 50Nb-LN. The

Nb site is fully occupied by Nb and Nb does not enter into any other site, which is also

the case for the O sites and O atoms. Hence, the activity of the Nb and O sites is unity,

and simultaneously the activity of Nb at the Nb sites and O at the O sites is unity.

Since the Li sites preserve the overall charge neutrality with regard to the Nb and O

sites, the Li site must also be neutral and the activity of the Li site must be unity. Thus,

aLi site ¼ aNb site ¼ aO site ¼ 1; (4.38)

and

aNb
Nb site ¼ aO

O site ¼ 1: (4.39)

The chemical potential of the Li sites in 50Nb-LN is calculated by summing that of each

element, as follows:

mLi site ¼ pmLi
Li site þ qm

Mg
Li site þ rmVa

Li site (4.40)

where Va denotes a vacancy and p, q, and r are real numbers. By differentiating the

chemical potential into the standard-state chemical potential and the mixing term, Eqn

(4.40) may be rewritten as:

mLi site
0 þ RT ln aLi site ¼ p

�
mLi
0 þ ln aLi

Li site

�þ q
�
m
Mg
0 þ ln a

Mg
Li site

�
þ r
�
mVa
0 þ ln aVa

Li site

�
(4.41)

One degree of freedom allows the standard-state chemical relationship between the Li

site and its constituent elements, which is shown in Eqn (4.42):

mLi site
0 ¼ pmLi

0 þ qm
Mg
0 þ rmVa

0 (4.42)

Subsequently, the activity relationship between the Li site and its constituent elements is

obtained by combining with Eqn (4.41) to give Eqn (4.43):

aLi site ¼
�
aLi
Li site

�p�
a
Mg
Li site

�q�
aVa
Li site

�r ¼ 1 (4.43)

Equation (4.43) is valid for any combination of p, q, and r that lies on the iso-

concentration line of 50mol% Nb2O5 (line A in Figure 4.3). Therefore, the activity of all

three elements is unity [47], expressed as

aLi
Li site ¼ a

Mg
Li site ¼ aVa

Li site ¼ 1: (4.44)

Combining this equation with Eqn (4.39), the activity of all elements in 50Nb-LN can

be shown to equal unity, and so it is proven on a thermodynamic basis that 50Nb-

LN, a Mg-doped LN on the isoconcentration line of 50mol% Nb2O5, is

stoichiometric.
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4.3 Growth Characteristics of Stoichiometric Crystals
A line-compound stoichiometric crystal is always congruent, but the conventional

stoichiometric oxide crystal accompanying the solid solution is often not congruent.

Although both types of crystals have an activity equal to unity for each of their con-

stituent elements, the partitioning of constituent elements from the liquid to the solid

during growth differs between the two. This indicates that there is a close relationship

between the partitioning behavior of an ionic species, stoichiometry, and the congru-

ency of the growing crystal.

Most oxide melts are electrically conductive [39,49,50], therefore they are considered

to contain ionic constituent species in addition to neutral species, as illustrated in

Figure 4.4. The existence of ionic species in the oxide melt is easily demonstrated when

one considers that molten salts are used as electrolyte solutions in electrochemical

studies. The populations of these ionic species are dependent on the composition and

temperature of the oxide melt. We have seen that pseudo-oxide phase diagrams, in

which the stoichiometry between the metal and oxygen holds, only address the oxide

components of the material and do not provide any information concerning ionic spe-

cies. It is generally believed that the partition coefficients are unity at the congruent

composition since the solidus line coincides with the liquidus line at that point, meaning

that the solid and liquid compositions are the same. However, this is true only for the

oxide components appearing in the pseudo-phase diagram; it is not true when one

considers that oxygen ions represent one of the ionic species present in the melt. As an

example, the pseudo-binary diagram of Li2O–Nb2O5 is not sufficient to explain the

partitioning of ionic species in the LiNbO3 melt. In this case, oxygen should be treated as

an independent component, and the ternary Li-Nb-O diagram should be used instead of

the pseudo-binary Li2O–Nb2O5 diagram. Each of the constituent species, including ionic

species, has its own equilibrium partition coefficient, and it can be shown that the

equilibrium partition coefficient of any element in the exact line-compound melt is

unity, meaning that there is no segregation of ionic species near the interface during

growth. This arises from the fact that the line compound is both stoichiometric and
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congruent. In contrast, even a congruent crystal that is not consistent with the stoi-

chiometric point grows in such a manner that the ionic solutes have nonunity partition

coefficients. Consequently, the ionic species in the solute boundary layer undergo

segregation, resulting in the accumulation or depletion of these species and generating a

c-EMF at the interface, which in turn produces an interface electric field that compli-

cates the growth process.

In this section, c-LN is employed as an example of a congruent crystal that generates a

nonzero c-EMF during growth, which demonstrates that the partition coefficients of the

ionic species present in the congruentmelt are nonunity [51–53], even though the partition

coefficients of the net Li2O or Nb2O5 are unity. However, an extended stoichiometric

crystal including both impurities and vacancies could coincide with the congruent point at

a certain composition, in which case no segregation will occur even if the material is not a

line compound. This process will be discussed further in Section 4.3.2.

4.3.1 Crystallization Electromotive Force

Each ionic species, j, is partitioned based on its own equilibrium partitioning coeffi-

cient, k
j
0, and is accumulated or depleted at the growth interface due to solute segre-

gation depending on the value of k
j
0, the diffusivity, Dj, and the growth rate, which

results in the differential segregation of ions of opposing valences to generate a net

charge in the liquid boundary layer as well as a charge of the opposite sign in the

crystal, thus producing the c-EMF [40,47,51–53], DfEMF. This process is illustrated in

Figure 4.5. D’yakov et al. [54] first measured the c-EMF generated by c-LN, and
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FIGURE 4.5 Schematic illustration of the segregation of ionic species in the liquid boundary layer (above) and the
generation of crystallization electromotive force (c-EMF), DfEMF (below) during the growth of the LiNbO3 crystal.
The horizontal axis shows the distance from the growth interface; the vertical axis shows the net concentrations
of anions and cations (above) and electric potential (below) [47].
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Aleksandrovskii et al. [55] reported similar measurements using the Czochralski

method but did not investigate its origin. The c-EMF is useful not only in terms of

growth equilibrium, as discussed herein, but also since it allows the study of growth

dynamics. DfEMF is easily measured using a micro-pulling down (m-PD) system, as

shown in Figure 4.6 [47]. The furnace in this apparatus consists of a small platinum (Pt)

crucible with a capillary nozzle attached to its base. A sintered material is charged into

the Pt crucible and is melted by sending an electric current through the crucible, such

that the crucible serves as a resistance heater. Two thermocouples (TC1, TC2) are set in

the liquid and solid phases; TC1 is fixed in the liquid, while TC2 is mobile. During the

pulling down (crystal growth stages: 1, 2, and 3), halt and pulling up (crystal melting

stages: 4, 5, and 6) of TC2, T1 and T2 (the temperatures of TC1 and TC2, respectively) and

the potential difference, Df, between TC1 and TC2 are measured. During pulling down

and pulling up, the rate of movement of TC2 is constant. When a c-oriented crystal is

used to seed the crystal nucleation, the resulting crystal has the same (c-) orientation as

the seed crystal. During all stages, T1 is kept nearly constant and only T2 and Df vary.

Figure 4.7 depicts an example of a Df� T2 curve acquired during the crystal growth

process, showing the halt and melting of c-LN [47]. The Df term may be represented by

Eqn (4.45) [47,51,54]:

Df ¼ aLðT1 � TiÞ þ aSðTi � T2Þ þ DfEMF; (4.45)

where aL and aS are the Seebeck coefficients of the liquid and solid phase, and corre-

spond to the slopes of the Df�T2 curve in the liquid (stages 1–2 and 5–6 in Figure 4.6)

and solid regions (stage 2–3 and 4–5 in Figure 4.6), respectively. The value of aL is

0.27mV/K, while aS is �0.85mV/K [47], both of which are nearly constant for all com-

positions. Ti is the temperature at the solid/liquid interface, and DfEMF is the c-EMF that

is obtained from the extent of hysteresis generated in the solid region during the
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FIGURE 4.6 The micro-pulling-down (m-PD) system for the measurement of crystallization electromotive force
(c-EMF). TC1 is fixed, while TC2 is mobile. Df is measured by the difference in electric potentials measured at T1 and
T2 during the pulling down (growth stage 1–3), halt and pulling up (melting stage 4–6) processes. After Ref. [47].
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solidification and melting process. It should be noted that, in Eqn (4.45), both aL and aS

are fixed values specific to the material being examined, whereas DfEMF is completely

growth-system dependent. The value of this term is normally in the range of several mV

and can be measured with reasonable accuracy.

The generation of a c-EMF during the growth of LiNbO3 from melts with various

compositions demonstrates that the EMF has a nonzero value at the conventional

stoichiometric point and even at the congruent point (Figure 4.8) [52]. This EMF arises

during growth as the result of the segregation of ionic solutes in the liquid boundary

layer in a congruent melt in which the equilibrium partition coefficients are not unity,

even though the coefficients of the net Li2O and Nb2O5 are unity, based on interpre-

tation of the conventional pseudo-phase diagram. In contrast, Figure 4.9 shows that the

c-EMF observed during the growth of Li2B4O7 is zero at the stoichiometric-congruent

point but nonzero during growth from the off-stoichiometric melt [52]. The
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FIGURE 4.7 The Df� T2 curve obtained during the
growth, halt and melting processes of c-LN [47].
The slope of the Df� T2 curve may be used to
obtain the Seebeck coefficient of the liquid (aL)
and the solid (aS), while DfEMF is obtained from
the hysteresis potential (Dfhys) in the solid region.
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zero-EMF exhibited by the stoichiometric-congruent composition will always occur

during growth at various growth rates, although different growth rates normally result

in varying degrees of segregation of the ionic species at the interface if their partition

coefficients are not unity. Therefore, no segregation of ionic species occurs at the

stoichiometric-congruent point, leading to the conclusion that every ionic species in

the Li2B4O7 melt has an equilibrium partition coefficient of unity [46]. On this basis, we

may conclude that the value of c-EMF will be zero during growth when the crystal is

simultaneously stoichiometric and congruent. The opposite is equally true; the crystal

is stoichiometric and congruent if no segregation of any constituent species occurs

(c-EMF ¼ 0) or if, in other words, the equilibrium partition coefficient of any constit-

uent species is unity. These statements will be proven on a thermodynamic basis in the

following sections.

4.3.2 Activities of Constituent Elements in the Melt and Solid States
for an Oxide Crystal that is Both Stoichiometric and Congruent

In the previous section, it was demonstrated on an experimental basis that a crystal

presents zero c-EMF when it is simultaneously stoichiometric and congruent. The

thermodynamic requirement for the coincidence of stoichiometry and congruency in

the solid can be analyzed only when one sees that the activities of the constituent species

in both the melt and the solid are unity.

The activity of a chemical species, i, in liquid Li2B4O7, a
LiðiÞ
LðTÞ, coexisting with

the stoichiometric solid has been discussed [46]. It should be noted again that

all the species in the liquid are assumed to be identical to those in the solid since

they are partitioned from the liquid into the solid during growth. The chemical
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potentials of both phases in equilibrium about the net Li2O are therefore equal

and we may write

m
Li2O
LðT Þ ¼ m

Li2O
SðT Þ : (4.46)

Since aLi2O
SðTÞ ¼ 1 at any temperature, T, it is also true that

aLi2O
LðT Þ ¼ exp

2

4
DmLi2O

ðT ;0Þ
RT

3

5; (4.47)

where DmLi2O
ðT ;0Þ ¼ mLi2O

SðT ;0Þ � mLi2O
LðT ;0Þ and mLi2O

LðT ;0Þ is the standard-state chemical potential of the

liquid phase associated with Li2O. Similar to the mLi2O
SðT ;0Þ term, mLi2O

LðT ;0Þ is defined as

the chemical potential of the liquid associated with the exact Li2O concentration in the

stoichiometric composition of Li2B4O7 at a temperature, T. Concerning the equilibrium

at the congruent point, aLi2O
LðT Þ ¼ 1 in Eqn (4.47), and thus DmLi2O

ðT ;0Þ ¼ 0 and mLi2O
SðT ;0Þ ¼ mLi2O

LðT ;0Þ.

Furthermore, mLi2O
LðTÞ is transitioned into a linear coupling of the chemical potential of the

real liquid chemical species, m
LiðiÞ
LðTÞ, in the same manner as Eqn (4.22) regarding mLi2O

SðTÞ and

m
LiðiÞ
SðTÞ, such that the relationship shown in Eqn (4.48) holds.

p m
Li2O
LðT Þ ¼ q1 m

Lið1Þ
LðTÞ þ q2 m

Lið2Þ
LðT Þ þ q3 m

Lið3Þ
LðT Þ þ/þ qk m

LiðkÞ
LðT Þ (4.48)

Based on the above relationship between the chemical potentials, the appropriate

standard-state chemical potential, m
LiðiÞ
LðT ;0Þ, may be chosen to satisfy Eqn (4.49):

n m
Li2O
LðT ;0Þ ¼ m1 m

Lið1Þ
LðT ;0Þ þm2 m

Lið2Þ
LðT ;0Þ þm3 m

Lið3Þ
LðT ;0Þ þ/þmk m

LiðkÞ
LðT ;0Þ: (4.49)

It should be noted that m
LiðiÞ
LðT ;0Þ is represented in the molar free energy diagram by the

intersection of the molar free energy curve of the Li(i) species in the liquid with the

principal axis ðXLiðiÞ
L ¼ 1Þ. The axis in this diagram is the same as that associated with

the Li(i) species in the solid, where X
LiðiÞ
S ¼ 1, and m

LiðiÞ
LðT ;0Þ does not necessarily have to

equal to m
LiðiÞ
SðT ;0Þ. Combining Eqn (4.49) with Eqn (4.26) and taking into account the

equivalency mLi2O
SðT ;0Þ ¼ mLi2O

LðT ;0Þ at the congruent point, Eqn (4.50) is obtained:

m1

�
m
Lið1Þ
SðT ;0Þ � m

Lið1Þ
LðT ;0Þ

�
þm2

�
m
Lið2Þ
SðT ;0Þ � m

Lið2Þ
LðT ;0Þ

�
þm3

�
m
Lið3Þ
SðT ;0Þ � m

Lið3Þ
LðT ;0Þ

�
þ/þmk

�
m
LiðkÞ
SðT ;0Þ � m

LiðkÞ
LðT ;0Þ

�

¼ m1 Dm
Lið1Þ
ðT ;0Þ þm2 Dm

Lið2Þ
ðT ;0Þ þm3 Dm

Lið3Þ
ðT ;0Þ þ/þmk Dm

LiðkÞ
ðT ;0Þ ¼ 0;

(4.50)

where Dm
LiðiÞ
ðT ;0Þ ¼ m

LiðiÞ
SðT ;0Þ � m

LiðiÞ
LðT ;0Þ. At this point, we can discuss the sign of Dm

LiðiÞ
ðT ;0Þ, which

determines whether or not the liquid can coexist with the solid. The molar free energy of

Li(i) in the solid is actually represented by a point on the principal axis (Figure 4.10) [46]
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at which m
LiðiÞ
SðTÞ ¼ m

LiðiÞ
SðT ;0Þ, since Li2B4O7 is a line compound, and, as discussed previously,

the activity of any species in the solid, a
LiðiÞ
SðT Þ, is unity at any temperature. When

drawing a common tangent to the molar free energy curve between the solid and

the liquid, Eqn (4.51) should always hold since the tangent point on the solid molar

free energy curve always lies on the principal axis corresponding to m
LiðiÞ
SðT ;0Þ, while

the tangent point on the liquid molar free energy curve moves away from the axis,

such that

m
LiðiÞ
SðT ;0Þ � m

LiðiÞ
LðT ;0Þ: (4.51)

This is illustrated in Figure 4.10 and leads to Eqn (4.52):

Dm
LiðiÞ
ðT ;0Þ � 0: (4.52)

Combining Eqn (4.50) with mi � 0 and Dm
LiðiÞ
ðT ;0Þ � 0, the value of the Dm

LiðiÞ
ðT ;0Þ term at the

congruent point is zero, as in Eqn (4.53):

Dm
LiðiÞ
ðT ;0Þ ¼ 0: (4.53)

At the liquidus temperature, T, the chemical potentials of all real chemical species, Li(i),

will be identical in either the solid or the liquid, such that

m
LiðiÞ
SðTÞ ¼ m

LiðiÞ
LðT Þ: (4.54)

Then, since a
LiðiÞ
SðTÞ ¼ 1,

X (T )
Li( i) = 1

S (T ,0)
Li ( i)

Li(i)

L(T ,0)
Li( i)

G

μ

μ

FIGURE 4.10 Relationship between the standard-state chemical potentials of the liquid, mLiðiÞ
LðT ;0Þ, and solid, mLiðiÞ

SðT ;0Þ,
about Li-bearing chemical species, Li(i) [46]. Due to the limited solid solution range, the molar free energy of the
solid Li(i) is represented by a dot on the principal axis corresponding to m

LiðiÞ
SðT ;0Þ. m

LiðiÞ
LðT ;0Þ should be greater than or

equal to m
LiðiÞ
SðT ;0Þ in order to draw a common tangent between the molar free energies, G, of the liquid and solid.

Note that both free energy curves have a common principal axis at XLiðiÞ
ðTÞ ¼ 1.
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ln a
LiðiÞ
LðTÞ ¼

Dm
LiðiÞ
ðT ;0Þ

RT
: (4.55)

At the congruent point, Dm
LiðiÞ
ðT ;0Þ ¼ 0 (from Eqn (4.53)), and so

a
LiðiÞ
LðT Þ ¼ X

LiðiÞ
L ¼ 1: (4.56)

Finally, the equilibrium partition coefficient of Li(i), k
LiðiÞ
0 , is given by

k
LiðiÞ
0 ¼ X

LiðiÞ
S

X
LiðiÞ
L

¼ 1

1
¼ 1: (4.57)

The equilibrium partition coefficient, k
LiðiÞ
0 , for each of the Li-bearing species is found to

be unity in the composition associated with a material that is simultaneously stoichio-

metric and congruent, such as Li2B4O7 [46]. The partition coefficients of the B-bearing

chemical species can be discussed in a similar manner, and all of these species can be

shown to also have coefficients of unity at the congruent point. Therefore, no segregation

of any constituent species, including ionic species, takes place and a c-EMF value of zero

will be apparent.

In contrast, in the case of a material for which the stoichiometric composition is

located somewhere other than the congruent point, such as holds true for LiNbO3, the

constituent species do not necessarily have partition coefficients equal to unity.

Although the activity of the bulk liquid in equilibrium with the stoichiometric solid could

be unity, i.e., aLi2O
LðT Þ ¼ 1, the principal axis (X ¼ 1) cannot be common to the solid and the

liquid since the equilibrium compositions are different between these two phases, such

that aLi2O
SðTÞ ¼ 1 and aLi2O

LðT Þ ¼ 1 do not both hold true in the same coordination system. As

a result, Eqns (4.48) to (4.57) cannot be used to analyze a stoichiometric crystal with

a composition that differs from the congruent point. Thus, Eqn (4.53) is not valid,

meaning that

Dm
LiðiÞ
ðT ;0Þs0; (4.58)

and

ln

 
a
LiðiÞ
LðT Þ

a
LiðiÞ
SðT Þ

!

¼ Dm
LiðiÞ
ðT ;0Þ

RT
s0:

Therefore, Eqn (4.59), below, can be written

a
LiðiÞ
LðT Þ

a
LiðiÞ
SðT Þ

¼ a
LiðiÞ
LðTÞs1: (4.59)

The partition coefficients, k
LiðiÞ
0 , for the constituent melt species of a stoichiometric

crystal that is not congruent will not equal unity and so segregation will occur, which in

turn leads to a nonzero value of c-EMF. This is demonstrated on an experimental basis in

Figure 4.8.
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4.4 Oxide Crystals Having a Stoichiometric
Composition Coincident with the Congruent Point

As discussed in the previous section, when a compound has a stoichiometric structure

at the congruent point, the equilibrium partitioning coefficients of all chemical species

become unity and segregation does not occur. With regard to conventional c-LN or

c-LT, the segregation of ionic species is observed during growth because these

materials are not stoichiometric. A unique relationship between the unity of the

partitioning coefficients of ionic species and the coincidence of stoichiometry and

congruency is quite beneficial in terms of developing LN or LT crystals that are superior

to conventional LN and LT. The congruent compositions are found on the

stoichiometric line of 50mol% Nb2O5 (line A in Figure 4.3) in the Li2O–Nb2O5–MgO

system and on the stoichiometric line of 50mol% Ta2O5 (line B in Figure 4.11) in

the Li2O-Ta2O5-MgO system. Using Kröger–Vink notation, these materials may be

written as ðLi�LiÞ0:906ðMg $
LiÞ0:047ðV0

LiÞ0:047ðNb�
NbÞðO�

o Þ3, termed cs-MgO:LN [47], and

ðLi�LiÞ0:816ðMg $
LiÞ0:092ðV0

LiÞ0:092ðTa�TaÞðO�
o Þ3, termed cs-MgO:LT [56], respectively. These

compounds show no segregation of ionic species during growth, which demonstrates

that the equilibrium partition coefficients, k0, are unity for all constituent chemical

species in the melt, and thus cs-MgO:LN and cs-MgO:LT are congruent and stoichio-

metric simultaneously. Therefore, the conventional congruent materials LiNbO3

and LiTaO3, both of which are nonstoichiometric, are converted to congruent,
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FIGURE 4.11 Composition diagram of various LiTaO3 compositions in the pseudo-ternary Li2O-Ta2O5-MgO system.
The isoconcentration line of 50mol% Ta2O5 is termed line B and represents a ratio of O to Ta of exactly 3.0.
Legend: s-LT ¼ stoichiometric LiTaO3 on the Li2O-Ta2O5 line; c-LT ¼ congruent LiTaO3 on the Li2O-Ta2O5 line; 50Ta-
LT ¼ MgO-doped LiTaO3 on line B; 5MgO:LT ¼ c-LT doped with 5mol% MgO.
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stoichiometric crystals based on our extended concept of stoichiometry. Both mate-

rials, however, contain impurities and vacancies that are not allowed under the con-

ventional definition of stoichiometry.

4.4.1 MgO-Doped LiNbO3

In a conventional stoichiometric crystal, each element occupies only its own unique site

in the crystal lattice, and no defects arising from nonstoichiometry are allowed. Thus, a

conventional stoichiometric crystal usually shows good optical properties. However, the

stoichiometric composition often does not coincide with the congruent composition. In

such a case, growth of the stoichiometric compound is difficult due to the compositional

deviation caused by the segregation of constituent species in the melt during growth.

LiNbO3 (LN) is one such compound. As shown in Figure 4.2(B) [17], the stoichiometric

composition (s-LN; Li2O ¼ 50mol%) does not coincide with the congruent composition

(c-LN; Li2O ¼ 48.38mol% [57]). Although it can easily be grown from the melt, the op-

tical properties of c-LN, such as conversion efficiency of SHG, photoconductivity, and

transparency in the short-wavelength region, are inferior to those of s-LN [2], and so

impurity doping of c-LN is performed to improve its optical properties. MgO is

considered to be an effective impurity for LN, because MgO-doped s-LN exhibits high

photoconductivity and has a high threshold for optical damage [2]. However, these

crystals are no longer congruent nor are they stoichiometric. In the following section, the

growth and characterization of cs-MgO:LN, a crystal that is simultaneously congruent

and stoichiometric, is described.

First, the distribution of the melting temperatures of sintered materials with various

compositions was determined for the Li2O–Nb2O5–MgO ternary system via DTA. The

composition possessing the highest melting temperature is the congruent point of the

MgO-doped LN. Next, this composition was confirmed to be the exact ternary

congruent composition by confirming that c-EMF was not generated. Such a compo-

sition is found on the 50mol% Nb2O5 stoichiometric line, where the congruent

point meets the stoichiometric composition. The compound cs-MgO:LN

(Li2O:Nb2O5:MgO ¼ 45.3:50:4.7) is such a compound and is expected to be easily

grown and to exhibit superior optical properties compared to those of conventional

c-LN, MgO-doped c-LN, and s-LN.

4.4.1.1 Distribution of the Melting Temperatures of MgO-Doped LiNbO3
The ternary phase diagram for the MgO-Li2O–Nb2O5 system is illustrated in Figure 4.12.

The isoconcentration line for 50mol% Nb2O5 is also drawn as a stoichiometric line on

this diagram (line A). Every LN crystal on this line (50Nb-LN) could potentially be

stoichiometric. The melting temperatures of sintered versions of this material with

various compositions were measured by high-temperature DTA around line A. The

distribution of melting points is plotted in Figure 4.12, which represents the solidus

surface of the Mg-doped LN in this region. The congruent composition, which
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corresponds to the highest melting point, was found at the composition

Li2O:Nb2O5:MgO ¼ 45.3:50:4.7 on line A [58]. This represents a new LN composition,

termed cs-MgO:LN, equal to the congruent point coincident with the stoichiometric

composition. Although several studies concerning Mg-doped LN have been reported

[59–61], none of these has discussed this unique composition. In the pseudo-binary

system of Li2O–Nb2O5, c-LN does not coincide with s-LN, and the ionic species segre-

gate during growth. Although 5MgO:LN exhibits improved optical properties [62], it is

neither congruent nor stoichiometric, and thus segregation of bulk components as well

as ionic species occurs during growth, yielding an inhomogeneous compositional dis-

tribution in the crystal.

4.4.1.2 Crystallization Electromotive Force
The c-EMF measurement methods are described in detail in Section 4.3.1. The c-EMF is

represented as a hysteresis gap on the potential curve in Figure 4.7 during the melting

and solidification processes and has a magnitude of several mV. The value of c-EMF is

also growth-rate dependent and not specific to the material itself. Furthermore, because

a high temperature gradient is present in the melt near the interface in a m-PD mea-

surement system, an intrinsic interface electric field is generated due to a thermoelectric

process (via the Seebeck effect), and this in turn influences the distribution of ionic

species in the solute boundary layer. Thus, an extrapolation of c-EMF toward the zero

temperature gradient is drawn in Figure 4.13 for the compositions c-LN, s-LN, c-LN

doped with 6mol% MgO (6MgO:LN), and cs-MgO:LN. In the case of each of these

compositions, the amplitude of c-EMF ðDfEMFÞ decreases with decreasing temperature

gradient. The exact value of DfEMF can be obtained at 0 �C/cm where no electric field
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Ref. [58].

202 HANDBOOK OF CRYSTAL GROWTH



exists, and cs-MgO:LN is the only composition that attains zero c-EMF at 0 �C/cm [47].

These data also confirm that no segregation occurs during growth at any growth rate,

demonstrating that the partition coefficients of all the solute components, including the

ionic species, are unity and thus assuring the true congruency of cs-MgO:LN [47]. In the

previous section, it was shown on a thermodynamic basis that partition coefficients

equal to unity of the solute components leads to activity values equal to unity in both the

solid and liquid states, and this in turn results in cs-MgO:LN simultaneously having a

stoichiometric structure. The converse is also true—based on thermodynamic argu-

ments, in a compound that has a stoichiometric structure at the congruent composition,

the equilibrium partition coefficient of all chemical species, including ionic species,

becomes unity. In other words, the activities of all constituent elements both in the melt

and the solid will be unity in the case of a compound that exhibits the simultaneous

occurrence of stoichiometry and congruency, as described in Section 4.3.2.

In contrast, the conventional congruent material LiNbO3 (c-LN) requires the partition

coefficient to equal unity only for the bulk Li2O and Nb2O5 components, and its crys-

tallization EMF has a nonzero value, suggesting that the ionic species in the c-LN melt

have nonunity partition coefficients. The values obtained for activity, aj (j ¼ O, Nb, Li,

Mg, and vacancy) and equilibrium partition coefficient, k
j
0, are summarized in Table 4.1

for the growth of s-LN (stoichiometric), c-LN (congruent), and cs-MgO:LN (stoichio-

metric and congruent) crystals.

4.4.1.3 Bulk Crystal Growth of cs-MgO:LiNbO3 and Its Nonlinear Optical
Characterization

Only cs-MgO:LN has no segregation of ionic species [47] and therefore is truly

congruent, easy to grow, and is expected to have a higher compositional homogeneity

Δφ

Temperature gradient / �/cmTemperature gradient /˚C/cm

s-LN

c-LN

6MgO:LN

cs-MgO:LN

FIGURE 4.13 Temperature gradient dependence of DfEMF for s-LN, c-LN, 6MgO:LN, and cs-MgO:LN. For each
composition, DfEMF decreases as the temperature gradient decreases. The DfEMF value of cs-MgO:LN becomes
0mV at 0 �C/cm, while the values of the other materials become nonzero. Modified from Ref. [47].
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than the conventional crystals of c-LN and MgO-doped c-LN. It is also expected to

exhibit a SHG conversion efficiency as high as that of s-LN because of its stoichiometric

structure. Bulk crystals of cs-MgO:LN were therefore grown, and its superiority in both

compositional homogeneity and nonlinear optical properties were demonstrated by

comparing its SHG properties with those of c-LN, s-LN, and 5MgO:LN.

A bulk single crystal of cs-MgO:LN was grown at a rate of 2mm/h via the Czochralski

method along the Z-axis in an air atmosphere. The resulting crystal was colorless and

inclusion-free, as shown in Figure 4.14 [58]. The crystal was about 22mm in diameter

and 40mm long, and its solidified melt fraction, g, was 0.25 after the completion of

growth. The Czochralski technique was also used to grow c-LN, 5MgO:LN, and s-LN,

Table 4.1 Activity, aj, and Equilibrium Partition Coefficient, kj
0, Crystallization

Electromotive Force (c-EMF), DfEMF, Values Associated with the Growth of s-LN
(Stoichiometric), c-LN (Congruent) and cs-MgO:LN (Stoichiometric and Congruent)
Crystals

Activity, aj ( j[ Li, Nb,
Mg, O, Vacancy)

Equilibrium Partition
Coefficient, kj

0 ( j[ Li, Nb,
Mg, O, Vacancy) c-EMF, DfEMF

s-LN ajS ¼ 1; ajLs1 kj0s1 DfEMFs0
c-LN ajSs1; ajLs1 kj0s1* DfEMFs0
cs-MgO:LN ajS ¼ 1; ajL ¼ 1 kj0 ¼ 1 DfEMF ¼ 0

*kj0 is unity for the bulk component Li2O and Nb2O5 in the pseudo-binary system of Li2O–Nb2O5.

10 mm

FIGURE 4.14 A cs-MgO:LN single bulk crystal grown along the Z-axis by the Czochralski method [58].
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although the s-LN was produced using the double-crucible method [63]. The SHG

properties of these bulk single crystals were measured. In preparation, all crystals were

poled and subsequently sliced into 5 � 5 � 5mm blocks (the solidified melt fraction

value was g ¼ 0.13 in the case of cs-MgO:LN) along the x½1210	; y½1010	; z½0001	 di-

rections and the x-planes were polished to a mirror finish to form the incident plane. An

optical parametric oscillator (OPO) pumped by the third harmonic wave of a Q-switched

Nd:YAG laser (1064 nm) was used to evaluate the SHG properties associated with

noncritical phase matching, using d31 of the LN crystal in the infrared region from 800 to

1200 nm.

Since the phase-matching wavelength is sensitive to the crystal composition [64], its

distribution in a crystal test plate was used to evaluate the compositional homogeneity

of the crystal. Figure 4.15 shows the in-plane distribution of the noncritical phase-

matching wavelength for a 4 � 4mm area on each crystal. It should be noted that the

vertical direction in each test plate in Figure 4.15 was parallel to the growth axis, while

the horizontal direction was parallel to the radial direction. The phase-matching

wavelength of the cs-MgO:LN was almost constant over the whole test plate

(Dg ¼ 0.024 w 0.025) [58]. This homogeneity was surprisingly sustained during growth

even with possible variations in the growth rate due to the changing crystal diameter,
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FIGURE 4.15 The in-plane distribution (4 � 4mm) of the noncritical phase-matching wavelength [58]. Solid circles
indicate the measured points: (A) cs-MgO:LN, (B) c-LN, (C) 5MgO:LN, and (D) s-LN.
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which was attributed to the complete unity of the partition coefficients of all the melt

species. To confirm the compositional homogeneity over the entire length of the cs-

MgO:LN crystal, its Curie temperature was measured via differential scanning calo-

rimetry (DSC) at the top and the base. The Curie temperature difference between the top

and bottom portions was 0.8 �C, which corresponds to a 0.02mol% Li2O variation [65]

when neglecting the effect of MgO incorporation. This variation was sufficiently small as

to demonstrate the congruency of cs-MgO:LN. The c-LN crystal was slightly less ho-

mogeneous than the cs-MgO:LN, but was much more homogeneous than both the s-LN

and 5MgO:LN materials. These results are consistent with the partitioning behavior of

the solute components, since both c-LN and cs-MgO:LN have congruent-melting

crystals and bulk components, such as Li2O, Nb2O5, and/or MgO, which are not

segregated but rather partitioned into the crystal with partition coefficients of unity. In

the case of cs-MgO:LN, neither the bulk components nor the ionic species are segre-

gated, so its composition would be expected to be more homogeneous than that of c-LN.

In contrast, the phase-matching wavelengths of s-LN and 5MgO:LN varied drastically

within the test plate since these compounds were not congruent. The maximum

compositional deviations of s-LN and c-LN within the measured areas were estimated to

be 0.0092mol% Li2O and 0.0042mol% Li2O, respectively. The observed variation in the

phase-matching wavelength in s-LN might reflect the compositional variation along the

growth axis during growth. This indicates the difficultly of growing homogeneous s-LN

using the double-crucible method [63].

The SHG conversion efficiency was measured at the center of each test plate (z: 0 mm,

y: 0 mm in Figure 4.15) at a constant value of the fundamental beam power. As shown in

Figure 4.16, the conversion efficiency of cs-MgO:LN is slightly lower than those obtained

with 5MgO:LN and s-LN [58], however, these values are almost equal in magnitude,

while the value measured for the c-LN sample is considerably lower. These experiments

demonstrated that cs-MgO:LN has been generated, based on our extended concept of

stoichiometry, and that this material, due to its congruent state, is superior to

（Power of the fundamental beam: 30 mW）
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FIGURE 4.16 Plots of the secondary harmonic generation conversion efficiency obtained from cs-MgO:LN, c-LN,
5MgO:LN, and s-LN.
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conventional LiNbO3 crystals having a highly homogeneous composition. This sub-

stance also exhibits a high conversion efficiency of secondary harmonic generation due

to its stoichiometric structure.

4.4.2 MgO-Doped LiTaO3

Lithium tantalate (LT), like lithium niobate (LN), is an oxide material whose congruent

composition differs from its stoichiometric composition in the binary Li2O–Ta2O5 sys-

tem. By employing our extended concept of stoichiometry, a new lithium tantalate

incorporating MgO doping, cs-MgO:LT (Li2O:Ta2O5:MgO ¼ 40.8:50.0:9.2), has been

developed [56]. As in the case of cs-MgO:LN, this material is stoichiometric and

congruent. Because of this coincidence, cs-MgO:LT does not exhibit any c-EMF and does

not show any segregation during growth, even in the case of ionic species. A bulk crystal

was grown from a cs-MgO:LT melt via the Czochralski method and showed excellent

compositional homogeneity, as demonstrated by the constant distribution of the Curie

temperature throughout the crystal.

4.4.2.1 Distribution of Melting Temperatures of MgO-Doped LiTaO3
The ternary phase diagram for the system of MgO–Li2O–Ta2O5 is illustrated in

Figure 4.17. The isoconcentration line of 50mol% Ta2O5 is also drawn as a stoichiometric

line (line B). Every LT crystal on this line (50Ta-LT) could potentially be stoichiometric.

The melting temperatures of sintered materials with various compositions were

measured by high-temperature DTA around line B. The distribution of melting points is
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FIGURE 4.17 Distribution of the melting temperatures of sintered compounds with various compositions around
the isoconcentration line of 50mol% Ta2O5 (line B) in the pseudo-ternary system of Li2O-Ta2O5-MgO. Isothermal
contours showing the solidus plane around cs-MgO:LT are also drawn. The highest melting temperature corre-
sponding to the congruent point is found on line B. This is the cs-MgO:LT composition at which the congruent
point is coincident with the stoichiometric composition: Li2O:Ta2O5:MgO ¼ 40.8:50.0:9.2. After Ref. [56].
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plotted in Figure 4.17, which represents the solidus surface of the Mg-doped LT in this

region. The congruent composition, which corresponds to the highest melting point, was

found at the composition corresponding to Li2O:Ta2O5:MgO ¼ 40.8:50.0:9.2 on line B

[56]. This represents a new LT composition, cs-MgO:LT, that exists at the congruent

point coincident with the stoichiometric composition.

Since cs-MgO:LT has a composition that lies well within the solid solution range in

the Li2O-Ta2O5-MgO ternary system, it can be grown without any compositional con-

straints, similar to the case of cs-MgO:LN. In contrast, conventional s-LT has a

composition located near the solubility limit of Li2O so that the practical upper limit for

the Li2O content in this material is 49.8mol% [66,67]. Thus cs-MgO:LT is more tolerant

than s-LT from a compositional perspective, which offers a significant advantage with

regard to crystal growth.

4.4.2.2 Crystallization Electromotive Force
Measurement of c-EMF was carried out for cs-MgO:LT and for conventional c-LT

using the same m-PD technique as was applied in the case of LN. The furnace

apparatus used during these measurements was composed of Pt containing 20% Rh

rather than pure Pt because of the high melting temperature of LT. Growth via the m-

PD technique is accompanied by a large temperature gradient near the interface that

leads to an intrinsic electric field due to the Seebeck effect, as is observed during LN

growth. An intrinsic electric field such as this significantly affects the segregation of

ionic species at the interface [40,68], and thus the DfEMF values obtained for cs-

MgO:LT and c-LT were corrected by extrapolation to the temperature gradient at

0 �C/cm. Following this correction, it was found that the DfEMF of c-LT was nonzero,

while that of cs-MgO:LT was zero [56]. These results demonstrate experimental veri-

fication that the partition coefficient, k0, of the ionic species in the cs-MgO:LT melt is

unity. Consequently, the activity of all constituent elements both in the melt and in

the solid state of cs-MgO:LT is unity, meaning that cs-MgO:LT is both stoichiometric

and congruent.

4.4.2.3 Bulk Crystal Growth and Curie Temperature of cs-MgO:LiTaO3
A bulk single crystal was grown along the Z-axis from the cs-MgO:LT melt under an

atmosphere composed of 99 vol% Ar/1 vol% O2 via the CZ method. The resulting crystal

is shown in Figure 4.18 [56]. Since the cs-MgO:LT composition is congruent, a homo-

geneous compositional distribution was expected in this material. The Curie tempera-

tures of this crystal were measured via DSC at the top, middle, and bottom of the sample

along its central axis. Figure 4.19 summarizes the distribution of the Curie temperature

over the cs-MgO:LT crystal as well as the temperature of the residual melt. The

maximum difference in Curie temperature over the cs-MgO:LT crystal was 0.4 �C [56],

corresponding to a 0.03mol% Li2O difference [69] when neglecting the effect of MgO

doping. This result demonstrates the superior homogeneity of the cs-MgO:LT crystal and

shows that the cs-MgO:LT is congruent. It should be noted that growth from the melt of
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10 mm

FIGURE 4.18 A cs-MgO:LT single bulk crystal grown along the Z-axis by the Czochralski method [56].

FIGURE 4.19 Distribution of the Curie temperatures of as-grown cs-MgO:LT along the growth axis, the seed crys-
tal, and the residual melt [56].
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the cs-MgO:LT composition does not accompany segregation of any ionic melt species.

This material thus represents a true congruent state, whereas conventional c-LT in the

Li2O–Ta2O5 binary system does not since its DfEMFvalue is not zero, meaning that

segregation of ionic species takes place. Therefore, cs-MgO:LT contains essentially no

uncoupled ionic species in the crystal and is expected to have superior nonlinear optical

properties as compared to conventional LT crystals.

4.4.3 Thermodynamic Requirements for Impurity Doping

MgO is a suitable doping oxide for the preparation of high quality LN and LT crystals

exhibiting the concurrent occurrence of stoichiometry and congruency in the ternary

system. It is natural to inquire as to whether any other oxides produce a similar effect

when added to LN or LT such that the resulting crystals become simultaneously stoi-

chiometric and congruent and whether there are any specific requirements for an oxide

to behave as an effective dopant. Figure 4.20 illustrates the ternary Li2O–Nb2O5–ZnO

diagram, in which the distribution of melting points is drawn around the stoichiometric

line of 50mol% Nb2O5 (line C). The highest melting point that corresponds to the

congruent point does not lie on the stoichiometric line C, and thus it is not possible to

make LN simultaneously congruent and stoichiometric by adding ZnO. We may then ask

ourselves, what is the difference between MgO and ZnO that renders MgO effective but

ZnO ineffective?

In order to develop an LN or LT composition, the crystals must have a zero c-EMF

value. In other words, the activity of every constituent element in both the solid and
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liquid states is required to be unity. Suppose that a divalent oxide, AO, is doped into LN

and subsequently ionized in the melt according to the following equation:

AO%A2þ þO2� (4.60)

The congruent point is assumed to form at a certain composition in the ternary diagram

of Li2O–Nb2O5–AO. At the congruent melt composition, the partition coefficients of the

three bulk components will be unity, such that

kAO
0 ¼ kLi2O

0 ¼ kNb2O5
0 ¼ 1; (4.61)

where the bar over a species indicates a bulk component. Accordingly, the activities of

these three bulk components in both the solid and liquid are unity, meaning that

aAO
b ¼ aLi2O

b ¼ aNb2O5
b ¼ 1; (4.62)

where b indicates solid (S) or liquid (L) phases. Because the value of c-EMF is zero, one

degree of freedom is available to establish the appropriate relationship between the

standard-state chemical potentials of AO, A2þ, and O2� in both the solid and liquid, as

follows:

aAO
b ¼ aA2þ

b aO2�
b ¼ 1 (4.63)

Likewise,

aLi2O
b ¼

�
aLiþ
b

�2
aO2�
b ¼ 1; (4.64)

and

aNb2O5
b ¼

�
aNb5þ
b

�2�
aO2�
b

�5
¼ 1: (4.65)

At this point, we also wish to determine the thermodynamic criteria that produce ac-

tivities of unity for the species A2þ, O2�, Liþ, and Nb5þ. If AO is completely ionized, the

partitioned AO in the solid is attributed only to A2þ in the melt. Thus,

kA2þ
0 ¼ 1; (4.66)

and so

aA2þ
b ¼ 1: (4.67)

Inserting Eqn (4.67) into Eqn (4.63) leads to aO2�
b ¼ 1, and combining this with Eqns

(4.64) and (4.65) gives

aLiþ
b ¼ aNb5þ

b ¼ 1: (4.68)

Thus, the activity of every constituent element in the AO-doped LN is unity in both the

liquid and solid states. This composition is found on the stoichiometric line of 50mol%

Nb2O5 and can be termed cs-AO:LN, since it is both congruent and stoichiometric. This

scenario occurs in the case of MgO doping, which is understandable when one

considers that MgO is an almost completely ionic oxide. In contrast, if AO is only

partially ionized, both AO and A2þ will be partitioned into the crystal. As a result, even
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if aAO
b ¼ 1 (Eqn (4.63)) is true, neither aA2þ

b nor aO2�
b will necessarily equal unity, and

so the congruent point will not lie on the stoichiometric line for this material. In

general, then, a dopant that is only partially ionized in the melt will not generate

a compound LN in which stoichiometry and congruency are coincident. In contrast,

when the oxide dopant AO is completely ionized, the congruent point can appear

on the stoichiometric line.

4.5 Summary
An extended concept of a stoichiometric oxide has been developed. The chemical po-

tential of this new stoichiometric compound has no mixing term, and thus the activities

of all its constituent elements will equal unity. The opposite is equally true—when the

activities of all the constituent elements can be unity, the material is stoichiometric. In

this definition, the term constituent element is expanded to potentially include both

impurities and vacancies, neither of which is allowed in the conventional definition of

stoichiometry. An activity of unity for a species is possible only when one degree of

freedom is available at the crystal site, so as to assign the chemical potential of each

species, j, to the standard-state chemical potential, such that m
j
0 ¼ mj. Based on this

extended understanding of stoichiometry, new LiNbO3 and LiTaO3 crystals have been

developed by doping with MgO. These materials are simultaneously stoichiometric and

congruent and are therefore easy to grow and exhibit excellent nonlinear optical prop-

erties. Thermodynamic arguments demonstrate that the concurrent occurrence of

stoichiometry and congruency requires activity values of unity for all the constituent

elements of the substance, not only in the solid but also in the liquid state at equilibrium.

This means that the partition coefficients of all the chemical species in the melt must

also be unity such that no segregation occurs; this has been demonstrated experimen-

tally by the observation of zero c-EMF. It is very important that the stoichiometry of an

oxide crystal and its relevant point defects are discussed in association with solute

partitioning during crystal growth. This is because the point defects are partitioned with

other elements from the liquid to the solid state as the crystal is formed, and the asso-

ciated partitioning is related to the activity of the constituent elements in terms of their

respective equilibrium partition coefficients, which in turn determines the stoichiometry

or nonstoichiometry of the material.
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5.1 Introduction
The notion of equilibrium crystal shape (ECS) is arguably the platonic ideal of crystal

growth and underpins much of our thinking about crystals. Accordingly, it has been the

subject of several special reviews and tutorials [1–4,215] and is a prominent part of most

volumes and extended review articles and texts about crystals and their growth [5–9]. In

actual situations, there are many complications that thwart observation of such

behavior, including kinetic barriers, impurities, and other bulk defects like dislocations.

Furthermore, the notion of a well-defined equilibrium shape requires that there is no

contact of the crystal with a wall or surface, since that would alter its shape. By the same

token, the crystal cannot then be supported, so gravity is neglected. For discussions of

the effect of gravity or contact with walls, see, e.g., Ref. [7].

Gibbs [10] is generally credited with being the first to recognize that the equilibrium

shape of a substance is that which, for a fixed volume, minimizes the (orientation-

dependent) surface free energy integrated over the entire surface; the bulk free energy is

irrelevant since the volume is conserved, while edge or corner energies are ignored as

being higher order effects that play no role in the thermodynamic limit. Herring [11,12]

Surveys the early history in detail: The formulation of the problem was also carried out

independently by Ref. [13]. The solution of this ECS problem, the celebrated Wulff

construction, was stated by Ref. [14]; but his proof was incorrect. Correct proofs were

subsequently given by Ref. [15–17], who presented a critical review. However, these

proofs, while convincing of the theorem, were not general (and evidently applied only to

T ¼ 0, since they assumed the ECS to be a polyhedron and, compared the sum over the

facets of the surface free energy of each facet times its area with a similar sum over a

similar polyhedron with the same facet planes but slightly different areas (and the same

volume)). Dinghas [18] showed that the Brunn–Minkowski inequality could be used to

prove directly that any shape differing from that resulting from the Wulff construction

has a higher surface free energy. Although Dinghas again considered only a special class

of polyhedral shapes, Herring [11,12] completed the proof by noting that Dinghas’

method is easily extended to arbitrary shapes, since the inequality is true for convex

bodies in general. In their seminal paper on crystal growth, Burton, Cabrera, and Frank

[19] present a novel proof of the theorem in two dimensions (2D).

Since equilibrium implies minimum Helmholtz free energy for a given volume and

number, and since the bulk free energy is ipso facto independent of shape, the goal is to

determine the shape that minimizes the integrated surface free energy of the crystal. The

prescription takes the following form: One begins by creating a polar plot of the surface

free energy as a function of orientation angle (of the surface normal) and draws a

perpendicular plane (or line in 2D) through the tip of each ray. (There are many fine

reviews of this subject in Refs [20–23].) Since the surface free energy in three dimensions

(3D) is frequently denoted by g, this is often called a g plot. The shape is then the formed

by the interior envelope of these planes or lines, often referred to as a pedal. At zero
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temperature, when the free energy is just the energy, this shape is a polyhedron in 3D

and a polygon in 2D, each reflecting the symmetry of the underlying lattice. At finite

temperature, the shapes becomemore complex. In 2D, the sharp corners are rounded. In

3D, the behavior is richer, with two possible modes of evolution with rising temperature.

For what Wortis terms type-A crystals, all sharp boundaries smooth together, while in

type-B, first the corners smooth, then above a temperature denoted T0, the edges also

smooth. The smooth regions correspond to thermodynamic rough phases, with

height–height correlation functions that diverge for large lateral separation l—like la,

with a (typically 0 < a < 1) called the roughening exponent—in contrast to facets, where

they attain some finite value as l / N [5]. The faceted regions in turn correspond to

“frozen” regions. Pursuing the correspondence, sharp and smooth edges correspond to

first-order and second-order phase transitions, respectively.

The aim of this chapter is primarily to explore physical ideas regarding ECS and

the underlying Wulff constructions. This topic has also attracted considerable interest

in the mathematics community. Readers interested in more formal and sophisticated

approaches are referred to two books, Refs [24,25] and to many articles, including

[26–36]. Particular attention is devoted to the origin of sharp edges on the ECS, the

impact of reconstructed or adsorbed surface phases coexisting with unadorned phases,

and the role and nature of possible attractive stepestep interactions.

5.2 From Surface Free Energies to Equilibrium
Crystal Shape

5.2.1 General Considerations

To examine this process more closely, we examine the free energy expansion for a vicinal

surface, that is, a surface misoriented by some angle q from a facet direction. Cf.

Figure 5.1. Unfortunately, this polar angle is denoted by f in much of the literature on

vicinal surfaces, with q used for in-plane misorientation; most reviews of ECS use q for

the polar angle, as we shall here. The term vicinal implies that the surface is in the vi-

cinity of the orientation. It is generally assumed that the surface orientation itself is

rough (while the facet direction is below its roughening temperature and so is smooth).

We consider the projected surface free energy fp(q,T) [37] (with the projection being onto

the low-index reference, facet direction of terraces):

fpðq;T Þ ¼ f0ðT Þ þ bðT Þ jtan qj
h

þ gðTÞ��tan q
��3 þ cðtan qÞ4: (5.1)

The first term is the surface free energy per area of the terrace (facet) orientation; it is

often denoted s. The average density of steps (the inverse of their mean separation h‘i) is
tan q/h, where h is the step height. In the second term, b(T) is the line tension or free

energy per length of step formation. (Since 2D is a dimension smaller than 3D, one uses

b rather than g. Skirting over the difference in units resulting from the dimensional
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difference, many use g in both cases.) While step free energy per length and line tension

are equivalent for these systems, where the surface is at constant (zero) charge, they are

inequivalent in electrochemical systems, where it is the electrode potential conjugate to

the surface charge that is held fixed [39]. The third term is associated with interactions

between steps, in this case assumed to be proportional to ‘�2 (so that this term, which

also includes the ‘�1 density of steps, goes like ‘�3). The final term is the leading

correction.

The ‘�2 interaction is due to a combination (not a simple sum) of two repulsive

potential energies: the entropic repulsion due to the forbidden crossing of steps and the

elastic repulsions due to dipolar strains near each step. An explicit form for g(T) is given

in Eqn (5.27) below. The ‘�2 of the entropic interaction can be understood from viewing

the step as performing a random walk in the direction between steps (the x direction in

“Maryland notation”1 as a function of the y direction (which is timelike in the fermion

transcription to be discussed later), cf. Figure 5.1, so the distance (y) it must go until it

touches a neighboring step satisfies ‘2 f y. To get a crude understanding of the origin of

the elastic repulsion, one can imagine that since a step is unstable relative to a flat

surface, it will try to relax toward a flatter shape, pushing atoms away from the location

of the step by a distance decaying with distance from the step. When two steps are close

FIGURE 5.1 Portion of a (3,2,16) surface, vicinal to an fcc (001), to illustrate a misoriented, vicinal surface. The
vicinal surface and terrace normals are bn ¼ ð3;�2; 16Þ= ffiffiffiffiffiffiffiffi

269
p

and bn ¼ ð0; 0;1Þ, respectively. The polar angle q [with
respect to the (001) direction], denoted f in the original figure (consistent with most of the literature on vicinal
surfaces), is across ð16= ffiffiffiffiffiffiffiffi

269
p Þ, while azimuthal angle 4 (denoted q in most of the literature on vicinal surfaces),

indicating how much bn is rotated around bn0 away from the vertical border on which q0 is marked, is clearly
arctan(1/5); tan q0 ¼ tan q0cos f. Since h is a1=

ffiffiffi
2

p
, where a1 is the nearest-neighbor spacing, the mean distance ‘

(in a terrace plane) between steps is a1=ð
ffiffiffi
2

p
tan qÞ ¼ 8

ffiffiffiffiffiffiffiffiffiffiffi
2=13

p
a1 ¼ 3:138a1. While the average distance from one

step to the next along a principal, (110) direction looks like 3.5a1, it is in fact a1=ð
ffiffiffi
2

p
tan q0Þ ¼ 3:2a1. The “pro-

jected area” of this surface segment, used to compute the surface free energy fp, is the size of a (001) layer:
20a1 � 17a1 ¼ 340a21; the width is 20a1. In “Maryland notation” (see text), z is in the bn0 direction, while the
normal to the vicinal, bn, lies in the x–z plane and y runs along the mean direction of the edges of the steps. In
most discussions, f ¼ 0, so that this direction would be that of the upper and lower edges of the depicted sur-
face. Adapted from Ref. [38].

1This term was coined by a speaker at a workshop in Traverse City in August 1996—see Ref. [43] for the

proceedings—and then used by several other speakers.
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to each other, such relaxation will be frustrated because atoms on the terrace this pair of

steps are pushed in opposite directions, so they relax less than if the steps are widely

separated, leading to a repulsive interaction. Analyzed in more detail [7,40,41], this

repulsion is dipolar and so proportional to ‘�2. However, attempts to reconcile the

prefactor with the elastic constants of the surface have met with limited success. The

quartic term in Eqn (5.1) is due to the leading (‘�3) correction to the elastic repulsion

[42], a dipole-quadrupole repulsion. It generally has no significant consequences but is

included to show the leading correction to the critical behavior near a smooth edge on

the ECS, to be discussed below.

The absence of a quadratic term in Eqn (5.1) reflects that there is no ‘�1 interaction

between steps. In fact, there are some rare geometries, notably vicinals to (110) surfaces

of fcc crystals (Au in particular) that exhibit what amounts to ‘�1 repulsions, which lead

to more subtle behavior [44]. Details about this fascinating idiosyncratic surface are

beyond the scope of this chapter; readers should see the thorough, readable discussion

by van Albada et al. [45].

As temperature increases, b(T) decreases due to increasing entropy associated with

step-edge excitations (via the formation of kinks). Eventually, b(T) vanishes at a tem-

perature TR associated with the roughening transition. At and above this TR of the facet

orientation, there is a profusion of steps, and the idea of a vicinal surface becomes

meaningless. For rough surfaces, the projected surface free energy fp(q,T) is quadratic in

tan q. To avoid the singularity at q ¼ 0 in the free energy expansion that thwarts attempts

to proceed analytically, some treatments, notably Bonzel and Preuss [46], approximate

fp(q,T) as quadratic in a small region near q ¼ 0. It is important to recognize that the

vicinal orientation is thermodynamically rough, even though the underlying facet

orientation is smooth. The two regions correspond to incommensurate and commen-

surate phases, respectively. Thus, in a rough region, the mean spacing h‘i between steps

is not in general simply related to (i.e., an integer multiple plus some simple fraction) the

atomic spacing.

Details of the roughening process have been reviewed by Weeks [216] and by van

Beijeren and Nolden [9]; the chapter by Akutsu in this Handbook provides an up-to-date

account. However, for use later, we note that much of our understanding of this process

is rooted in the mapping between the restricted body-centered (cubic) solid-on-solid

(BCSOS) model and the exactly solvable [47,48] symmetric 6-vertex model [49], which

has a transition in the same universality class as roughening. This BCSOS model is based

on the BCC crystal structure, involving square net layers with ABAB stacking, so that sites

in each layer are lateral displaced to lie over the centers of squares in the preceding (or

following) layer. Being an SOS model means that for each column of sites along the

vertical direction, there is a unique upper occupied site, with no vacancies below it or

floating atoms above it. Viewed from above, the surface is a square network with one pair

of diagonally opposed corners on A layers and the other pair on B layers. The restriction

is that neighboring sites must be on adjacent layers (so that their separation is the

distance from a corner to the center of the BCC lattice). There are then six possible

Chapter 5 • Equilibrium Shape of Crystals 219



configurations: two in which the two B corners are both either above or below the A

corners and four in which one pair of catercorners are on the same layer and the other pair

are on different layers (one above and one below the first pair). In the symmetric model,

there are three energies, �e for the first pair, and �d/2 for the others, the sign depending

on whether the catercorner pair on the same lattice is on A or B [50]. The case d ¼ 0

corresponds to the F-model, which has an infinite-order phase transition and an essential

singularity at the critical point, in the class of the Kosterlitz-Thouless [51] transition [52].

(In the “ice” model, e also is 0.) For the asymmetric 6-vertex model, each of the six

configurations can have a different energy; this model can also be solved exactly [53,54].

5.2.2 More Formal Treatment

To proceed more formally, we largely follow [1]. The shape of a crystal is given by the

length RðbhÞ of a radial vector to the crystal surface for any direction bh. The shape of the

crystal is defined as the thermodynamic limit of this crystal for increasing volume V,

specifically.

r
�
bh;T

�
h lim

V/N

�
R
�
bh
��

aV 1=3

�
; (5.2)

where a is an arbitrary dimensionless variable. This function rðbh;TÞ corresponds to a

free energy. In particular, since both independent variables are fieldlike (and so intrin-

sically intensive), this is a Gibbs-like free energy. Like the Gibbs free energy, rðbh;TÞ is
continuous and convex in bh.

The Wulff construction then amounts to a Legendre transformation2 to rðbh;TÞ from
the orientation cm-dependent interfacial free energy fiðcm;TÞ (or in perhaps the more

common but less explicit notation, gðcm;TÞ, which is fpðq;TÞ=cosðqÞ. For liquids, of

course,fiðcm;TÞ is spherically symmetric, as is the equilibrium shape. Herring [12]

mentions rigorous proofs of this problem by Schwarz in 1884 and by Minkowski in 1901.

For crystals, fiðcm;TÞ is not spherically symmetric but does have the symmetry of the

crystal lattice. For a system with cubic symmetry, one can write

fi

�
cm;T

�
¼ g0ðTÞ

h
1þ aðT Þ

�
m4

x þm4
y þm4

z

�i
; (5.3)

where g0(T) and a(T) are constants. As illustrated in Figure 5.2, for a ¼ 1/4 the

asymmetry leads to minor distortions, which are rather inconsequential. However, for

2As exposited clearly in Ref. [55], one considers a [convex] function y ¼ y(x) and denotes its derivative

as p ¼ vy/vx. If one then tries to consider p instead of x as the independent variable, there is information

lost: one cannot reconstruct y(x) uniquely from y(p). Indeed, y ¼ y(p) is a first-order differential equation,

whose integration gives y ¼ y(x) only to within an undetermined integration constant. Thus, y ¼ y(p)

corresponds to a family of displaced curves, only one of which is the original y ¼ y(x). The key concept is

that the locus of points satisfying y ¼ y(x) can be equally well represented by a family of lines tangent to

y(x) at all x, each with a y-intercept j determined by the slope p at (x,y(x)). That is, j ¼ j(p) contains all

the information of y ¼ y(x). Recognizing that p ¼ (y � j)/(x � 0), one finds the transform j ¼ y � px.

Readers should recall that this is the form of the relationship between thermodynamic functions,

particularly the Helmholtz and the Gibbs free energies.
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FIGURE 5.2 g-plots (plots of fiðcmÞ, 1/g-plots and x-plots for Eqn (5.3) for positive values of a). For a ¼ 1/4, all
orientations appear on the ECS. For a ¼ 1.0, the 1/g-plot has concave regions, and the x-plot has ears and flaps
that must be truncated to give the ECS essentially an octahedron with curved faces. From Ref. [8], which shows in
a subsequent figure that the g- and 1/g-plots for a ¼ �0.2 and �0.5 resemble the 1/g- and g-plots, respectively,
for a ¼ 1/4 and 1.
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a ¼ 1, the enclosed region is no longer convex, leading to an instability to be discussed

shortly.

One considers the change in the interfacial free energy associated with changes in

shape. The constraint of constant volume is incorporated by subtracting from the change

in the integral of fiðcm;TÞ the corresponding change in volume, multiplied by a Lagrange

multiplier l. Herring [11,12] showed that this constrained minimization problem has a

unique and rather simple solution that is physically meaningful in the limit that it is

satisfactory to neglect edge, corner, and kink energies in fiðcm;TÞ, that is, in the limit of

large volume. In this case l f V�1/3; by choosing the proportionality constant as

essentially the inverse of a, we can write the result as

r
�
bh;T

�
¼ min

bm

0

BB@
fi

�
cm;T

�

cm $ bh

1

CCA (5.4)

The Wulff construction is illustrated in Figure 5.3. The interfacial free energy fiðcmÞ, at
some assumed T is displayed as a polar plot. The crystal shape is then the interior en-

velope of the family of perpendicular planes (lines in 2D) passing through the ends of the

radial vectors cmfiðcmÞ. Based on Eqn (5.4) one can, at least in principle, determine cmðbhÞ
or bhðcmÞ, which thus amounts to the equation of state of the equilibrium crystal shape.

One can also write the inverse of Eqn (5.4):

1

fi

�
cm;T

� ¼ min
bm

0

BB@
1=fi

�
bh;T

�

cm $ bh

1

CCA (5.5)

FIGURE 5.3 Schematic of the Wulff construction. The interfacial free energy per unit area ficm is plotted in polar
form (the “Wulff plot” or “g-plot”). One draws a radius vector in each direction cm and constructs a
perpendicular plane where this vector hits the Wulff plot. The interior envelope of the family of “Wulff planes”
thus formed, expressed algebraically in Eqn (5.4), is the crystal shape, up to an arbitrary overall scale factor that
may be chosen as unity. From Ref. [1].
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Thus, a Wulff construction using the inverse of the crystal shape function yields the

inverse free energy.

To be more explicit, consider the ECS in Cartesian coordinates z(x,y), i.e.,
bhfðx; y; zðx; yÞÞ, assuming (without dire consequences [1]) that z(x,y) is single-valued.

Then, for any displacement to be tangent to bh, dz � px dx � py dy ¼ 0

bh ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

x þ p2
y

q
�
� pxz;�pyz; 1

�
; (5.6)

where px is shorthand for vz/vx.

Then the total free energy and volume are

FiðTÞ ¼
ZZ

fp
	
px;py



dx dy

V ¼
ZZ

zðx; yÞdx dy

(5.7)

where fp, which incorporates the line-segment length, is fph½1þ p2
x þ p2

y �1=2 fi.
Minimizing Fi subject to the constraint of fixed V leads to the Euler–Lagrange equation

v

vx

fp
	
vxz;py




px

þ v

vy

fp
	
px;py




py

¼ �2l (5.8)

(Actually, one should work with macroscopic lengths, then divide by the V1/3 times

the proportionality constant. Note that this leaves px and py unchanged [1].) On the

right-hand side, 2l can be identified as the chemical potential m, so that the constancy

of the left-hand side is a reflection of equilibrium. Equation (5.8) is strictly valid only if

the derivatives of fp exist, so one must be careful near high-symmetry orientations

below their roughening temperature, for which facets occur. To show that this highly

nonlinear second-order partial differential equation with unspecified boundary con-

ditions is equivalent to Eqn (5.4), we first note that the first integral of Eqn (5.8) is

simply

z � xpx � ypy ¼ fp
	
px;py



(5.9)

The right-hand side is just a function of derivatives, consistent with this being a Legendre

transformation. Then, differentiating yields

x ¼ �vfp

.
v
	
px



; y ¼ �vfp

.
v
	
py



(5.10)

Hence, one can show that

zðx; yÞ ¼ min
px ;py

	
fp
	
px;py


þ xpx þ ypy



(5.11)
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5.3 Applications of Formal Results
5.3.1 Cusps and Facets

The distinguishing feature of Wulff plots of faceted crystals compared to liquids is the

existence of (pointed) cusps in fiðcm;TÞ, which underpin these facets. The simplest way

to see why the cusp arises is to examine a square lattice with nearest-neighbor bonds

having bond energy e1, often called a 2D Kossel [56,57] crystal; note also [210]. In this

model, the energy to cleave the crystal is the Manhattan distance between the ends of

the cut; i.e., as illustrated in Figure 5.4, the energy of severing the bonds between (0,0)

and (X,Y) is just þe1 ðjX j þ jY jÞ. The interfacial area, i.e., length, is 2(X2 þ Y2) since the

cleavage creates two surfaces. At T ¼ 0, entropy plays no role, so that

fiðqÞ ¼ e1

2
ðjsin qj þ jcosqjÞwe1

2
ð1þ jqj þ.Þ (5.12)

At finite T fluctuations and attendant entropy do contribute, and the argument needs

more care. Recalling Eqn (5.1), we see that if there is a linear cusp at q ¼ 0, then

fi
	
q;T


 ¼ fi
	
0;T


þ B
	
T

jqj; (5.13)

where B ¼ b(T)/h, since the difference between fi(q) and fp(q) only appears at order q2.

Comparing Eqns (5.12) and (5.13), we see that for the Kossel square fi(0,0) ¼ e1/2 and

B(0) ¼ e1/2. Further discussion of the 2D fi(q) is deferred to Section 5.4.3 below.

To see how a cusp in fiðcm;TÞ leads to a facet in the ECS, consider Figure 5.5: the

Wulff plane for q a 0 intersects the horizontal q ¼ 0 plane at a distance fi(0) þ d(q)

from the vertical axis. The crystal will have a horizontal axis if and only if d(q) does not

FIGURE 5.4 Kossel crystal at T ¼ 0. The energy to cleave the crystal along the depicted slanted. Interface
(tan q ¼ Y/Z) is e1 (jXj þ jYj). From Ref. [1].
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vanish as q / 0. From Figure 5.5, it is clear that q z sin q z Bq/d(q) for q near 0, so that

d(0) ¼ B > 0. For a weaker dependence on q, e.g., Bjqjz with z > 1, d(0) ¼ 0, and there is no

facet. Likewise, at the roughening temperature, b vanishes and the facet disappears.

5.3.2 Sharp Edges and Forbidden Regions

When there is a sharp edge (or corner) on the ECS rðbh;T Þ, Wulff planes with a range of

orientations cm will not be part of the inner envelope determining this ECS; they will lie

completely outside it. There is no portion of the ECS whose surface tangent has these

orientations. As in the analogous problems with forbidden values of the “density” vari-

able, the free energy fiðcm;TÞ is actually not properly defined for forbidden values of cm;

those unphysical values should actually be removed from the Wulff plot. Figure 5.6

depicts several possible ECSs and their associated Wulff plots. It is worth emphasizing

that, in the extreme case of the fully faceted ECS at T ¼ 0, the Wulff plot is simply a set of

discrete points in the facet directions.

Now if we denote by cmþ and cm�, the limiting orientations of the tangent planes

approaching the edge from either side, then all intermediate values do not occur as

stable orientations. These missing, not stable, “forbidden” orientations are just like the

forbidden densities at liquid–gas transitions, forbidden magnetizations in ferromagnets

at T < Tc [58], and miscibility gaps in binary alloys. Herring [11,12] first presented an

elegant way to determine these missing orientations using a spherical construction. For

any orientationcm, this tangent sphere (often called a Herring sphere) passes through the

origin and is tangent to the Wulff plot at fiðcmÞ. From geometry, he invoked the theorem

that an angle inscribed in a semicircle is a right angle. Thence, if the orientation cm
appears on the ECS, it appears at an orientation that points outward along the radius of

that sphere. Herring then observes that only if such a sphere lies completely inside the

plot of fiðcmÞ does that orientation appear on the ECS. If some part were inside, its Wulff

FIGURE 5.5 Wulff plot with a linear cusp at q ¼ 0. If d(q) / 0 as q / 0, then there is no facet corresponding to
q ¼ 0, and the q ¼ 0 Wulff plane (dotted line) is tangent to the crystal shape at just a single point. Since d(q) ¼ B,
a cusp in the Wulff plot leads to a facet of the corresponding orientation on the equilibrium crystal shape.
From Ref. [1].
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plane would clip off the orientation of the point of tangency, so that orientation would be

forbidden.

The origin of a hill-and-valley structure from the constituent free energies

[59,221,222] is illustrated schematically in Figure 5.7. It arises when they satisfy the

inequality

fi

�
cm ¼ n1

�
A1 þ fiðn2ÞA2 < fiðnÞA; (5.14)

where A1 and A2 are the areas of strips of orientation n1 and n2, respectively, while A is

the area of the sum of these areas projected onto the plane bounded by the dashed lines

in the figure. This behavior, again, is consistent with the identification of the misori-

entation as a density (or magnetizationlike) variable rather than a fieldlike one.

The details of the lever rule for coexistence regimes were elucidated by Wortis [1]: As

depicted in Figure 5.8, which denotes as P and Q the two orientations bounding the

region that is not stable, the lever rule interpolations lie on segments of a spherical

surface. Let the edge on the ECS be at R. Then an interface created at a forbiddencm will

FIGURE 5.6 Some possible Wulff plots and corresponding equilibrium crystal shapes. Faceted and curved surfaces
may appear, joined at sharp or smooth edges in a variety of combinations. From Ref. [4]; the equilibrium crystal
shape are also in Ref. [12].
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evolve toward a hill-and-valley structure with orientations P and Q with a free energy per

area of

h
fi

�
cm
�i

avr

¼ xfi
	
P

þ yfi

	
Q



d
: (5.15)

It can then be shown that cm½fiðcmÞ�avr lies on the depicted circle, so that the Wulff plane

passes through the edge at R.

5.3.3 Experiments on Lead Going beyond Wulff Plots

To determine the limits of forbidden regions, it is more direct and straightforward to

carry out a polar plot of 1=fiðcmÞ [20] rather than fiðcmÞ, as discussed in Sekerka’s review

chapter [8]. Then a sphere passing through the origin becomes a corresponding plane; in

particular, a Herring sphere for some point becomes a plane tangent to the plot of

1=fiðcmÞ. If the Herring sphere is inside the Wulff plot, then its associated plane lies

outside the plot of 1=fiðcmÞ. If, on the other hand, if some part of the Wulff plot is inside a

FIGURE 5.8 Equilibrium crystal shape (ECS) analogue of the Maxwell double-tangent construction. O is the center
of the crystal. Points P and Q are on the (stable) Wulff plot, but the region between them is unstable; hence, the
ECS follows PRQ and has an edge at R. An interface at the intermediate orientation cm breaks up into the orien-
tations P and Q with relative proportions x:y; thus, the average free energy per unit area is given by Eqn (5.15),
which in turn shows that fiðcmÞavr lies on the circle. From Ref. [1].

FIGURE 5.7 Illustration of how orientational phase separation occurs when a “hill-and-valley” structure has a
lower total surface free energy per area than a flat surface as in Eqn (5.14). The sketch of the free energy versus
r h tan q shows that this situation reflects a region with negative convexity which is accordingly not stable. The
dashed line is the tie bar of a Maxwell or double-tangent construction. The misorientations are the coexisting
slatlike planes, with orientations n1 and n2, in the hill-and-valley structure. From Ref. [59].
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Herring sphere, the corresponding part of the 1=fiðcmÞ plot will be outside the plane.

Thus, if the plot of 1=fiðcmÞ is convex, all its tangent planes will lie outside, and all ori-

entations will appear on the ECS. If it is not convex, it can be made so by adding tangent

planes. The orientations associated with such tangent planes are forbidden, so their

contact curve with the 1=fiðcmÞ plot gives the bounding stable orientations into which

forbidden orientations phase separate.

Summarizing the discussion in Ref. [8], the convexity of 1=fiðcmÞ can indeed be

determined analytically since the curvature 1=fiðcmÞ is proportional (with a positive-

definite proportionality constant) to the stiffness, i.e., in 2D, gþ v2g=vq2 ¼ ~g, or pref-

erably bþ v2b=vq2 ¼ ~b as in Eqn (5.1) to emphasize that the stiffness and (step) free

energy per length have different units in 2D from 3D. Hence, 1=fiðcmÞ is not convex where

the stiffness is negative. The very complicated generalization of this criterion to 3D is

made tractable via the x-vector formalism of Refs [30,61], where x ¼ Vðr fiðcmÞÞ, where r is

the distance from the origin of the g plot. Thus.

fi
	
cm

 ¼ x $cm; cm $dx ¼ 0; (5.16)

which is discussed well by Refs [8,62]. To elucidate the process, we consider just the 2D

case [60].

The solid curve in Figure 5.10 is the x plot and the dashed curve is the 1/g-plot for

fiðcmÞhgf1þ 0:2cos4q. For this case, the 1/g-plot is not convex and the x plot forms

“ears.” The equilibrium shape is given by the interior envelope of the x plot; in this case it

exhibits four corners.

n

FIGURE 5.9 Graphical constructions for an anisotropic fiðcmÞ for various values of an anisotropy parameter a,
where f if 1 þ acos2 qsin2 q. In the left column fi(q) is plotted from top to bottom for a ¼ 1/2,1,2. Anisotropy
increases with positive a, so 1/a corresponds in some sense to a temperature in conventional plots. In the center
panel, n1

2 is cos2 q. The shape resulting from the gradient construction with the ears removed is the Wulff
equilibrium crystal shape. From Ref. [60].

228 HANDBOOK OF CRYSTAL GROWTH



Pursuing this analogy, we see that if one cleaves a crystal at some orientation cm that

is not on the ECS, i.e., between cmþ and cm�, then this orientation will break up into

segments with orientationscmþ andcm� such that the net orientation is stillcm, providing

another example of the lever rule associated with Maxwell double-tangent constructions

for the analogous problems. The time to evolve to this equilibrium state depends

strongly on the size of energy barriers to mass transport in the crystalline material; it

could be exceedingly long. To achieve rapid equilibration, many nice experiments were

performed on solid hcp 4He bathed in superfluid 4He, for which equilibration occurs in

seconds [63–66], and many more (see Ref. [67] for a comprehensive recent review).

Longer but manageable equilibration times are found for Si and for Au, Pb, and other soft

transition metals.

5.4 Some Physical Implications of Wulff Constructions
5.4.1 Thermal Faceting and Reconstruction

A particularly dramatic example is the case of surfaces vicinal to Si (111) by a few de-

grees. In one misorientation direction, the vicinal surface is stable above the recon-

struction temperature of the (111) facet, but below that temperature, fi(111) decreases

significantly so that the original orientation is no longer stable and phase separates into

reconstructed (111) terraces and more highly misoriented segments [68,69]. The

FIGURE 5.10 The solid curve is the x plot, while the dashed curve is the 1/g-plot for fið bmÞhgf1þ 0:2 cos 4 q. For
this case (but not for small values of a), the 1/g-plot is not convex, and the x plot forms “ears.” These ears are
then removed, so that the equilibrium shape is given by the interior envelope of the x plot, in this case having
four corners. From Ref. [62].
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correspondence to other systems with phase separation at first-order transitions is even

more robust. Within the coexistence regime, one can in mean field determine a spinodal

curve. Between it and the coexistence boundary, one observes phase separation by

nucleation and growth, as for metastable systems; inside the spinodal, one observes

much more rapid separation with a characteristic most-unstable length [70]. This system

is discussed further below.

Wortis [1] describes “thermal faceting” experiments in which metal crystals, typically

late-transition or noble metal elements like Cu, Ag, and Fe, are cut at a high Miller index

direction and polished. They are then annealed at high temperatures. If the initial plane

is in a forbidden direction, optical striations, due to hill-and-valley formation, appear

once these structures have reached optical wavelengths. While the characteristic size of

this pattern continues to grow as in spinodal decomposition, the coarsening process is

eventually slowed and halted by kinetic limitations.

There are more recent examples of such phenomena. After sputtering and annealing

above 800 K, Au(4,5,5) at 300 K forms a hill-and-valley structure of two Au(111) vicinal

surfaces, one that is reconstructed and the other not, as seen in Figure 5.11. This seems

to be an equilibrium phenomenon: It is reversible and independent of cooling rate [77].

Furthermore, while it has been long known that adsorbed gases can induce faceting on

bcc (111) metals [72], ultrathin metal films have also been found to produce faceting of

W(111), W(211), and Mo(111) [73,74].

FIGURE 5.11 Morphology of the faceted Au(4,5,5) surface measured at room temperature. (A) 3D plot of a large-
scale (scan area: 1.4 � 1.4 mm) scanning tunneling microscopy (STM) image. Phases A and B form the hill-and-
valley morphology. (B) STM image zoomed in on a boundary between the two phases. All steps single-height, i.e.,
2.35Å high. Phase B has smaller terraces, 13Å wide, while phase A terraces are about 30Å wide. This particular
surface has (2,3,3) orientation. From Ref. [71].
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5.4.2 Types A and B

The above analysis indicates that at T ¼ 0, the ECS of a crystal is a polyhedron having the

point symmetry of the crystal lattice, a result believed to be general for finite-range in-

teractions [75]. All boundaries between facets are sharp edges, with associated forbidden

nonfacet orientation; indeed, the Wulff plot is just a set of discrete points in the sym-

metry directions. At finite temperature, two possibilities have been delineated (with

cautions [1], labeled nonmnemonically) A and B. In type A, there are smooth curves

between facet planes rather than edges and corners. Smooth here means, of course, that

not only is the ECS continuous, but so is its slope, so that there are no forbidden ori-

entations anywhere. This situation corresponds to continuous phase transitions. In type

B, in contrast, corners round at finite T but edges stay sharp until some temperature T0.

For T0 < T < T1, there are some rounded edges and some sharp edges, while above T1 all

edges are rounded.

Rottman and Wortis [4] present a comprehensive catalog of the orientation phase

diagrams, Wulff plots, and ECSs for the cases of nonexistent, weakly attractive, and

weakly repulsive next-nearest-neighbor (NNN) bonds in 3D. Figures 5.12 and 5.13 show

the orientation phase diagrams and the Wulff plots with associated ECSs, respectively,

for weakly attractive NNN bonds. As indicated in the caption, it is easy to describe what

then happens when e2 ¼ 0 and only {100} facets occur. Likewise, Figures 5.14 and 5.15

show the orientation phase diagrams and the Wulff plots with associated ECSs,

respectively, for weakly repulsive NNN bonds.

FIGURE 5.12 Interfacial phase diagrams for simple-cubic nearest-neighbor Kossel crystal with nearest-neighbor as
well as (weak) next nearest-neighbor (NNN) attractions. The angular variables q and f (not to be confused with 4,
cf. Section 5.2.1) interfacial orientation (cm) and equilibrium crystal shape (bh), respectively, in an equatorial sec-
tion of the full 3D phase diagram. (A) The T–q phase diagram (b) shows the locus of cusps in the Wulff plot along
the symmetry directions below the respective roughening temperatures. For no NNN interaction (ε2 ¼ 0), there
are only cusps at vertical lines at 0 and p/2. (B) The T � bh phase diagram gives the faceted areas of the crystal
shape. The NNN attraction leads to additional (111) (not seen in the equatorial plane) and (110) facets at low
enough temperature. Thus, for e2 ¼ 0 the two bases of the (100) and (010) phases meet and touch each other at
(and only at) f ¼ p/4 (at T ¼ 0), with no intervening (110) phase. Each type of facet disappears at its own rough-
ening temperature. Above the phase boundaries enclosing those regions, the crystal surfaces are smoothly curved
(i.e., thermodynamically “rough”). This behavior is consistent with the observed phase diagram of hcp 4He. From
Ref. [4].

Chapter 5 • Equilibrium Shape of Crystals 231



FIGURE 5.13 Representative Wulff plots and equilibrium crystal shapes for the crystal with weak next nearest-
neighbor attractions whose phase diagram is shown in Figure 5.12. At low enough temperature there are (100),
(110), and (111) facets. For weak attraction, the (110) and (111) facets roughen away below the (100) roughening
temperature. For e2 ¼ 0, TR2 ¼ 0, so that the configurations in the second row do not occur; in the first row, the
octagon becomes a square and the perspective shape is a cube. Facets are separated at T > 0 by curved surfaces,
and all transitions are second order. Spherical symmetry obtains as T approaches melting at Tc. From Ref. [4].

FIGURE 5.14 Interfacial phase diagram with (weak) next nearest-neighbor (NNN) repulsion rather than attraction
as in Figure 5.12. The NNN repulsion stabilizes the (100) facets. Curved surfaces first appear at the cube corners
and then reach the equatorial plane at T3. The transition at the equator remains first order until a higher temper-
ature Tt. The dotted boundaries are first order. A forbidden (coexistence) region appears in the T � bh phase dia-
gram. From Ref. [4].
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5.4.3 2D Studies

Exploring the details is far more transparent in 2D than in 3D. The 2D case is physically

relevant in that it describes the shape of islands of atoms of some species at low frac-

tional coverage on an extended flat surface of the same or another material. An entire

book is devoted to 2D crystals [76]. The 2D perspective can also be applied to cylindrical

surfaces in 3D, as shown by Ref. [7]. Formal proof is also more feasible, if still arduous, in

2D: An entire book is devoted to this task [25]; see also Refs [34,35].

For the 2D nearest-neighbor Kossel crystal described above [1] notes that at T ¼ 0 a

whole class of Wulff planes pass through a corner. At finite T, thermal fluctuations lift

this degeneracy and the corner rounds, leading to type A behavior. To gain further

insight, we now include a next nearest-neighbor (NNN) interaction e2, so that

fiðqÞ ¼ e1 þ e2

2
ðjcos qj þ jsin qjÞ þ e2

2
ðjcos qj � jsin qjÞ (5.17)

For favorable NNN bonds, i.e., e2 > 0, one finds new {11} facets but still type A behavior

with sharp edges, while for unfavorable NNN bonds, i.e., e2 < 0, there are no new facets

but for finite T, the edges are no longer degenerate so that type B behavior obtains. Again

recalling that fi(q) ¼ fp(q) jcosqj, we can identify f0 ¼ e2 þ e1/2 and b/h ¼ e1/2, as noted in

other treatments, e.g., Ref. [77]. That work, however, finds that such a model cannot

adequately account for the orientation-dependent stiffness of islands on Cu(001).

FIGURE 5.15 Representative Wulff plots and
equilibrium crystal shapes for the crystal with
weak next nearest-neighbor repulsions whose
phase diagram is shown in Figure 5.14. Curved
surfaces appear first at the cube corners.
Junctions between facets and curved surfaces may
be either first or second order (sharp or smooth),
depending on orientation and temperature. From
Ref. [4].
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Attempts to resolve this quandary using 3-site non-pairwise (trio) interactions [78,79] did

not prove entirely satisfactory. In contrast, on the hexagonal Cu(111) surface, only NN

interactions are needed to account adequately for the experimental data [79,80]. In fact,

for the NN model on a hexagonal grid, [81] found an exact and simple, albeit implicit,

expression for the ECS. However, on such (111) surfaces (and basal planes of hcp

crystals), lateral pair interactions alone cannot break the symmetry to produce a dif-

ference in energies between the two kinds of step edges, viz. {100} and {111} microfacets

(A and B steps, respectively, with no relation to types A and B!). The simplest viable

explanation is an orientation-dependent trio interaction; calculations of such energies

support this idea [79,80].

Strictly speaking, of course, there should be no 2D facet (straight edge) and accom-

panying sharp edges (corners) at T > 0 (see Refs [82–85] and references therein) since

that would imply 1D long-range order, which should not occur for short-range in-

teractions. Measurements of islands at low temperatures show edges that appear to be

facets and satisfy Wulff corollaries such as that the ratio of the distances of two unlike

facets from the center equals the ratio of their fi [86]. Thus, this issue is often just

mentioned in passing [87] or even ignored. On the other hand, sophisticated approxi-

mations for fi(q) for the 2D Ising model, including NNN bonds, have been developed,

e.g., Ref. [88], allowing numerical tests of the degree to which the ECS deviates from a

polygon near corners of the latter. One can also gauge the length scale at which de-

viations from a straight edge come into play by using that the probability per atom along

the edge for a kink to occur is essentially the Boltzmann factor associated with the energy

to create the kink [89].

Especially for heteroepitaxial island systems (when the island consists of a different

species from the substrate), strain plays an important if not dominant role. Such systems

havebeen investigated, e.g., by Liu [90],whopoints out that for suchsystems the shapedoes

not simply scale with l, presumably implying the involvement of some new length scale[s].

A dramatic manifestation of strain effects is the island shape transition of Cu on Ni(001),

which changes from compact to ramified as island size increases [91]. For small islands,

additional quantum-size and other effects lead to favored island sizes (magic numbers).

5.5 Vicinal Surfaces–Entrée to Rough Regions
Near Facets

In the rough regions, the ECS is a vicinal surface of gradually evolving orientation. To the

extent that a local region has a particular orientation, it can be approximated as an

infinite vicinal surface. The direction perpendicular to the terraces (which are densely

packed facets) is typically called bz. In “Maryland notation” (cf. Section 5.2.1) the normal

to the vicinal surface lies in the x–z plane, and the distance ‘ between steps is measured

along bx, while the steps run along the by direction. In the simplest and usual approxi-

mation, the repulsions between adjacent steps arise from two sources: an entropic or
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steric interaction due to the physical condition that the steps cannot cross, since over-

hangs cannot occur in nature. The second comes from elastic dipole moments due to

local atomic relaxation around each step, leading to frustrated lateral relaxation of atoms

on the terrace plane between two steps. Both interactions are f1/‘2.

The details of the distribution P
n ð‘Þ of spacings between steps have been reviewed in

many works [60,92,93,97]. The average step separation h‘i is the only characteristic

length in the bx direction. N.B., h‘i need not be a multiple of, or even simply related to,

the substrate lattice spacing. Therefore, we consider PðsÞ ¼ h‘i�1P
nð‘Þ, where s h ‘/h‘i, a

dimensionless length. For a “perfect” cleaved crystal, P(s) is just a spike d(s � 1). For

straight steps placed randomly at any position with probability 1/h‘i, P(s) is a Poisson

distribution exp(�s). Actual steps do meander, as one can study most simply in a terrace

step kink (TSK) model. In this model, the only excitations are kinks (with energy e) along

the step. (This is a good approximation at low temperature T since adatoms or vacancies

on the terrace cost several e1 (4e1 in the case of a simple-cubic lattice). The entropic

repulsion due to steps meandering dramatically decreases the probability of finding

adjacent steps at ‘ � h‘i. To preserve the mean of one, P(s) must also be smaller than

exp(�s) for large s.

If there is an additional energetic repulsion A/‘2, the magnitude of the step

meandering will decrease, narrowing P(s). As A / N, the width approaches

0 (P(s) / d(s � 1), the result for perfect crystals). We emphasize that the energetic and

entropic interactions do not simply add. In particular, there is no negative (attractive)

value of A at which the two cancel each other (cf. Eqn (5.30) below.) Thus, for strong

repulsions, steps rarely come close, so the entropic interaction plays a smaller role, while

for A < 0, the entropic contribution increases, as illustrated in Figure 5.16 and explicated

below. We emphasize that the potentials of both interactions decay as ‘�2 (cf. Eqn (5.27)

s

FIGURE 5.16 Illustration of how entropic repulsion and energetic interactions combine, plotted versus the
dimensionless energetic interaction strength ~AhA~b=ðkBTÞ2. The dashed straight line is just ~A. The solid curve
above it is the combined entropic and energetic interactions, labeled ~Aeff for reasons explained below. The
difference between the two curves at any value of the abscissa is the dimensionless entropic repulsion for that ~A.
The decreasing curve, scaled on the right ordinate, is the ratio of this entropic repulsion to the total
dimensionless repulsion ~Aeff. It falls monotonically with ~A, passing through unity at ~A ¼ 0. See the discussion
accompanying Eqn (5.26) for more information and explicit expressions for the curves. From Ref. [92].
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below), in contrast to some claims in the literature (in papers analyzing ECS exponents)

that entropic interactions are short range while energetic ones are long range.

Investigation of the interaction between steps has been reviewed well in several

places [60,94–97]. The earliest studies seeking to extract A from terrace-width distribu-

tions (TWDs) used the mean-fieldlike Gruber–Mullins [96] approximation, in which a

single active step fluctuates between two fixed straight steps 2h‘i apart. Then the energy

associating with the fluctuations x(y,t) is

DE ¼ �bð0ÞLy þ
ZLy

0

bðqðyÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�
vx

vy

�2
s

dy; (5.18)

where Ly is the size of the system along the mean step direction (i.e., the step length with

no kinks). We expand b(q) as the Taylor series bð0Þ þ b0ð0Þqþ 1 =

2b00ð0Þq2 and recognize

that the length of the line segment has increased from dy to dy/cos qz dy(1 þ 1/2 q
2). For

close-packed steps, for which b0(0) ¼ 0, it is well known that (using qztan q ¼ vx/vy)

DEz
~b
	
0



2

ZLy

0

�
vx

vy

�2

dy; ~bð0Þhbð0Þ þ b00ð0Þ; (5.19)

where ~b is the step stiffness [97]. N.B., the stiffness ~bðqÞ has the same definition for steps

with arbitrary in-plane orientation—for which b0ðqÞs0—because to create such steps,

one must apply a “torque” [98] which exactly cancels b0ðqÞ. (See Refs [88,99] for a more

formal proof.)

Since x(y) is taken to be a single-valued function that is defined over the whole

domain of y, the 2D configuration of the step can be viewed as the worldline of a particle

in 1D by recognizing y as a timelike variable. Since the steps cannot cross, these particles

can be described as spinless fermions in 1D, as pointed out first by de Gennes [100] in a

study of polymers in 2D [220]. Thus, this problem can be mapped into the Schrödinger

equation in 1D: vx/vy in Eqn (5.19) becomes vx/vt, with the form of a velocity, with the

stiffness playing the role of an inertial mass. This correspondence also applies to domain

walls of adatoms on densely covered crystal surfaces, since these walls have many of the

same properties as steps. Indeed, there is a close correspondence between the phase

transition at smooth edges of the ECS and the commensurate-incommensurate phase

transitions of such overlayer systems, with the rough region of the ECS corresponding to

the incommensurate regions and the local slope related to the incommensurability

[101–105]. Jayaprakash et al. [37] provide the details of the mapping from a TSK model to

the fermion picture, complete with fermion creation and annihilation operators.

In the Gruber–Mullins [96] approximation, a step with no energetic interactions be-

comes a particle in a 1D infinite-barrier well of width 2h‘i, with well-known groundstate

properties:

j0ð‘Þfsin

�
p‘

2h‘i
�
; PðsÞ ¼ sin2

�ps
2

�
; E0 ¼ ðpkBT Þ2

8~bh‘i2 (5.20)
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Thus, it is the kinetic energy of the ground state in the quantum model that corresponds

to the entropic repulsion (per length) of the step. In the exact solution for the free energy

expansion of the ECS [106], the numerical coefficient in the corresponding term is 1/6

rather than 1/8. Note that P(s) peaks at s ¼ 1 and vanishes for s � 2.

Suppose, next, that there is an energetic repulsion U(‘) ¼ A/‘2 between steps. In the

1D Schrödinger equation, the prefactor of �v2j(‘)/v‘2 is ðkBTÞ2=2~b, with the thermal

energy kBT replacing Z. (Like the repulsions, this term has units ‘�2.) Hence, A only

enters the problem in the dimensionless combination ~AhA~b=ðkBTÞ2 [107]. In the

Gruber–Mullins picture, the potential (per length) experienced by the single active par-

ticle is ðwith ‘
n

h‘� h‘iÞ

~U
�
‘
n
�
¼

~A
�
‘
n � h‘i

�2 þ
~A

�
‘
n þ h‘i

�2 ¼
2 ~A

h‘i2 þ
6 ~A‘

n2

h‘i4 þO

 
~A‘

n4

h‘i6
!

(5.21)

The first term is just a constant shift in the energy. For ~A sufficiently large, the particle

is confined to a region
���‘
n
���� h‘i, so that we can neglect the fixed walls and the quartic

term, reducing the problem to the familiar simple harmonic oscillator, with the solution:

j0ð‘Þfe�‘
n2


4w2

; PGðsÞh 1

sG

ffiffiffiffiffiffi
2p

p exp

"

� ðs � 1Þ2
2s2

G

#

(5.22)

where sG ¼ ð48 ~AÞ�1=4 and w ¼ sGh‘i.
For ~A of 0 or 2, the TWD can be computed exactly (See below). For these cases, Eqns

(5.20) and (5.22), respectively, provide serviceable approximations. It is Eqn (5.22) that is

prescribed for analyzing TWDs in the most-cited resource on vicinal surfaces [58].

Indeed, it formed the basis of initial successful analyses of experimental scanning

tunneling microscopy (STM) data [108]. However, it has some notable shortcomings.

Perhaps most obviously, it is useless for small but not vanishing ~A, for which the TWD is

highly skewed, not resembling a Gaussian, and the peak, correspondingly, is significantly

below the mean spacing. For large values of ~A, it significantly underestimates the vari-

ance or, equivalently, the value of ~A one extracts from the experimental TWD width

[109]: in the Gruber–Mullins approximation the TWD variance is the same as that of the

active step, since the neighboring step is straight. For large ~A, the fluctuations of

the individual steps on an actual vicinal surface become relatively independent, so the

variance of the TWD is the sum of the variance of each, i.e., twice the step variance.

Given the great (quartic) sensitivity of ~A to the TWD width, this is problematic. As ex-

perimentalists acquired more high-quality TWD data, other approximation schemes

were proposed, all producing Gaussian distributions with widths f ~A
�1=4

, but with pro-

portionality constants notably larger than 48�1/4 ¼ 0.38.

For the “free-fermion” ð ~A ¼ 0Þ case, [110] developed a sequence of analytic approx-

imants to the exact but formidable expression [111,112] for P(s). They, as well as a

slightly earlier paper [113], draw the analogy between the TWD of vicinal surfaces and
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the distribution of spacings between interacting (spinless) fermions on a ring, the

Calogero–Sutherland model [113,114], which, in turn for three particular values of the

interaction—in one case repulsive ð ~A ¼ 2Þ, in another attractive ð ~A ¼ �1=4Þ, and lastly

the free-fermion case ð ~A ¼ 0Þ—could be solved exactly by connecting to random matrix

theory [92,111,115]; Figure 5.5 of Ref. [117] depicts the three resulting TWDs.

These three cases can be well described by the Wigner surmise, for which there are

many excellent reviews [111,117,118]. Explicitly, for 9 ¼ 1, 2, and 4:

P9

	
s

 ¼ a9s

9exp
	�b9s

2


; (5.23)

where the subscript of P refers to the exponent of s. In random matrix literature, the

exponent of s, viz. 1, 2, or 4, is called b, due to an analogy with inverse temperature in one

justification. However, to avoid possible confusion with the step free energy per length b

or the stiffness ~b for vicinal surfaces, I have sometimes named it instead by the Greek

symbol that looked most similar, 9, and do so in this chapter. The constants b9, which

fixes its mean at unity, and a9, which normalizes P(s), are

b9 ¼

2

664

G

�
9þ2
2

�

G

�
9þ1
2

�

3

775

2

a9 ¼
2

�
G

�
9þ2
2

��9þ1

�
G

�
9þ1
2

��9þ2
¼ 2bð9þ1Þ=2

9

G

�
9þ1
2

� (5.24)

Specifically, b9 ¼ p/4, 4/p, and 64/9p, respectively, while a9 ¼ p/2, 32/p2, and (64/9p)3,

respectively.

As seen most clearly by explicit plots, e.g., Figure 4.2(a) of Haake’s text [118], P1(s),

P2(s), and P4(s) are excellent approximations of the exact results for orthogonal, unitary,

and symplectic ensembles, respectively, and these simple expressions are routinely used

when confronting experimental data in a broad range of physical problems [118,119].

(The agreement is particularly outstanding for P2(s) and P4(s), which are the germane

cases for vicinal surfaces, significantly better than any other approximation [120].)

Thus, the Calogero–Sutherland model provides a connection between random matrix

theory, notably the Wigner surmise, and the distribution of spacings between fermions

in 1D interacting with dimensionless strength ~A. Specifically:

~A ¼ 9

2

�9
2
� 1
�

5 9 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 ~A

p
: (5.25)

For an arbitrary system, there is no reason that ~A should take on one of the three special

values. Therefore, we have used Eqn (5.28) for arbitrary 9 or ~A, even though there is no

symmetry-based justification of distribution based on the Wigner surmise of Eqn (5.26),

and refer hereafter to this formula, Eqns (5.26, 7.27), as the generalized Wigner distri-

bution (GWD). Arguably the most convincing argument is a comparison of the predicted

variance with numerical data generated from Monte Carlo simulations. See Ref. [92] for

further discussion.

There are several alternative approximations that lead to a description of the TWD as

a Gaussian [109]; in particular, focus on the limit of large 9, neglecting the entropic
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interaction in that limit. The variance s2f ~A
�1=2

, the proportionality constant is 1.8 times

that in the Gruber–Mullins case. This approximation is improved, especially for re-

pulsions that are not extremely strong, by including the entropic interaction in an

average way. This is done by replacing ~A by

~Aeff ¼
�9
2

�2
¼ ~Aþ 9

2
: (5.26)

Physically, ~Aeff gives the full strength of the inverse-square repulsion between steps, i.e.,

the modification due to the inclusion of entropic interactions. Thus, in Eqn (5.1)

gðTÞ ¼ ðpkBT Þ2
6h3~b

~Aeff ¼ ðpkBT Þ2
24h3~b

h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 ~A

p i2
: (5.27)

From Eqn (5.29) it is obvious that the contribution of the entropic interaction, viz. the

difference between the total and the energetic interaction, as discussed in conjunction

with Figure 5.16, is 9/2. Remarkably, the ratio of the entropic interaction to the total

interaction is (9/2)/(9/2)2 ¼ 2/9; this is the fractional contribution that is plotted in

Figure 5.16.

5.6 Critical Behavior of Rough Regions Near Facets
5.6.1 Theory

Assuming (cf. Figure 5.17) bz the direction normal to the facet and (x0,z0) denote the facet

edge, zw z0 � (x� x0)
w for x� x0. We show that the critical exponent w3 has the value 3/2

for the generic smooth edge described by Eqn (5.1) (with the notation of Eqn (5.13)):

fpðpÞ ¼ f0 þ Bpþ gp3 þ cp4: (5.28)

FIGURE 5.17 Critical behavior of the crystal shape near a smooth (second-order) edge, represented by the dot at
(x0,z0). The temperature is lower than the roughening temperature of the facet orientation, so that the region to
the left of the dot is flat. The curved region to the right of the dot correspond to a broad range of rough
orientations. In the thermodynamic limit, the shape of the smoothly curved region near the edge is described by
the power law z w z0 � (x � x0)

w. Away from the edge there are “corrections to scaling”, i.e., higher order terms
(cf. Eqn (5.33)). For an actual crystal of any finite size, there is “finite-size rounding” near the edge, which
smooths the singular behavior. Adapted from Ref. [120].

3The conventional designation of this exponent is l or q. However, these Greek letters are the Lagrange

multiplier of the ECS and the polar angle, respectively. Hence, we choose w for this exponent.
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Then we perform a Legendre transformation [55] as in Refs [125,126]; explicitly:

fpðpÞ � ~f ðhÞ
p

¼
�
dfp
dp

hh

�
¼ Bþ 3gp2 þ 4cp3 (5.29)

Hence:

~f ðhÞ ¼ f0 � 2gp3ðhÞ � 3cp4ðhÞ (5.30)

But from Eqn (5.29):

p ¼
�
h� B

3g

�1=2
"

1� 2c

3g

�
h� B

3g

�1=2

þ.

#

(5.31)

Inserting this into Eqn (5.30) gives

~f ðhÞ ¼ f0 � 2g

�
h� B

3g

�3=2

þ c

�
h� B

3g

�2

þO

�
h� B

3g

�5=2

(5.32)

for h � B and ~f ðhÞ ¼ f0 for h � B. (See Refs [9,120,122].) Note that this result is true not

just for the free-fermion case but even when steps interact. Jayaprakash et al. [37] further

show that the same w obtains when the step–step interaction decreases with a power law

in ‘ that is greater than 2. We identify ~f ðhÞ with rðbhÞ, i.e., the magnetic-fieldlike variable

discussed corresponds to the so-called Andreev field h. Writing z0 ¼ f0/l and x0 ¼ B/l, we

find the shape profile

zðxÞ
z0

¼ 1� 2

�
f0
g

�1=2�
x � x0
z0

�3=2

þ cf0

g2

�
x � x0
z0

�2

þO

�
x � x0
z0

�5=2
(5.33)

Note that the edge position depends only on the step free energy B, not on the step

repulsion strength; conversely, the coefficient of the leading (x � x0)
3/2 term is inde-

pendent of the step free energy but varies as the inverse root of the total step repulsion

strength, i.e., as g�1/2.

If, instead of Eqn (5.31), one adopts the phenomenological Landau theory of

continuous phase transitions [121] and performs an analytic expansion of fp(p) in p [123,

124] (and truncate after a quadratic term f2p
2), then a similar procedure leads w ¼ 2,

which is often referred to as the “mean-field” value. This same value can be produced by

quenched impurities, as shown explicitly for the equivalent commensurate-

incommensurate transition by [125].

There are some other noteworthy results for the smooth edge. As the facet roughening

temperature is approached from below, the facet radius shrinks like exp[�p2TR/4

{2ln2(TR � T)}1/2] [122], in striking contrast to predictions by mean field theory. The

previous discussion implicitly assumes that the path along x for which w ¼ 3/2 in Eqn

(5.36) is normal to the facet edge. By mapping the crystal surface onto the asymmetric

6-vertex model, using its exact solution [53,54], and employing the Bethe ansatz to
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expand the free energy close to the facet edge [127], find that w ¼ 3/2 holds for any

direction of approach along the rounded surface toward the edge, except along the

tangential direction (the contour that is tangent to the facet edge at the point of contact

x0). In that special direction, they find the new critical exponent wy ¼ 3 (where the

subscript y indicates the direction perpendicular to the edge normal, x [128]). Also,

Akutsu and Akutsu [128] confirmed that this exact result was universally true for the

Gruber–Mullins–Prokrovsky–Talapov free-energy expansion. (The Prokrovsky-Talapov

argument was for the equivalent commensurate-incommensurate transition.) They

also present numerical confirmation using their transfer-matrix method based on the

product-wave-function renormalization group (PWFRG) [129,130]. Observing wy exper-

imentally will clearly be difficult, perhaps impossible; the nature and breadth of cross-

over to this unique behavior has not, to the best of my knowledge, been published. A

third result is that there is a jump (for T < TR) in the curvature of the rounded part near

the facet edge that has a universal value [106,131], distinct from the universal curvature

jump of the ECS at TR [122].

5.6.2 Experiment on Leads

Noteworthy initial experimental tests of w ¼ 3/2 include direct measurements of the

shape of equilibrated crystals of 4He [132] and Pb [133]. As in most measurements of

critical phenomena, but even harder here, is the identification of the critical point, in this

case the value of x0 at which rounding begins. Furthermore, as is evident from Eqn

(5.36), there are corrections to scaling, so that the “pure” exponent 3/2 is seen only near

the edge and a larger effective exponent will be found farther from the edge. For crystals

as large as a few mm at temperatures in the range 0.7–1.1 K, 4He w ¼ 1.55 � 0.06 was

found, agreeing excellently with the Prokrovsky–Talapov exponent. The early measure-

ments near the close-packed (111) facets of Pb crystallites, at least two orders of

magnitude smaller, were at least consistent with 3/2, stated conservatively as

w ¼ 1.60 � 0.15 after extensive analysis. Sáenz and Garcı́a [134] proposed that in Eqn

(5.31) there can be a quadratic term, say f2p
2 (but neglect the possibility of a quartic

term). Carrying out the Legendre transformation then yields an expression with both

x � B and ðx � Bþ f 22 =3gÞ3=2 terms, which they claim will lead to effective values of w

between 3/2 and 2. This approach provided a competing model for experimentalists to

consider but in the end seems to have produced little fruit.

As seen in Figure 5.18, STM allows detailed measurement of micron-size crystal

height contours and profiles at fixed azimuthal angles. By using STM to locate the initial

step down from the facet, first done by Surnev et al. [135] for supported Pb crystallites, x0
can be located independently and precisely. However, from the 1984 Heyraud–Métois

experiment [133] it took almost two decades until the Bonzel group could fully confirm

the w ¼ 3/2 behavior for the smooth edges of Pb(111) in a painstaking study [137]. There

were a number of noteworthy challenges. While the close-packed 2D network of spheres

has six-fold symmetry, the top layer of a (111) facet of an fcc crystal (or of an (0001) facet
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of an hcp crystal) has only three-fold symmetry due to the symmetry-breaking role of the

second layer. There are two dense straight step edges, called A and B, with {100} and

{111} microfacets, respectively. In contrast to noble metals, for Pb there is a sizable (of

order 10%) difference between their energies. Even more significant—when a large range

of polar angles is used in the fitting—is the presence of small (compared to {111}) {112}

facets for equilibration below 325 K. Due to the high atomic mobility of Pb that can lead

to the formation of surface irregularities, Bonzel’s group [135] worked close to room

temperature. One then finds strong (three-fold) variation of w with azimuthal angle, with

w oscillating between 1.4 and 1.7. With a higher annealing temperature of 383 K, [137]

report the azimuthal averaged value w ¼ 1.487 (but still with sizable oscillations of about

�0.1); in a slightly earlier short report [137], they give a value w ¼ 1.47 for annealing at

FIGURE 5.18 (A) Micron-size lead crystal (supported on Ru) imaged with a variable-temperature scanning
tunneling microscopy at T ¼ 95 	C. Annealing at T ¼ 95 	C for 20 h allowed it to obtain its stable, regular shape.
Lines marked A and B indicate location of profiles. Profile A crosses a (0 0 1)-side facet, while profile B a (1 1 1)-
side facet. (B) 770 � 770 nm section of the top part of a Pb crystal. The insert shows a 5.3 � 5.3 nm area of the
top facet, confirming its ð11 �1Þ-orientation. Both the main image and the insert were obtained at T ¼ 110 	C.
From Ref. [141].
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room temperature. Their attention shifted to deducing the strength of step–step re-

pulsions by measuring g [138,139]. In the most recent review of the ECS of Pb [140], the

authors rather tersely report that the Prokrovsky–Talapov value of 3/2 for w characterizes

the shape near the (111) facet and that imaging at elevated temperature is essential to get

this result; most of their article relates to comparison of measured and theoretically

calculated strengths of the step–step interactions.

Few other systems have been investigated in such detail. Using scanning electron

microscopy (SEM) [142] the researchers considered In, which has a tetragonal structure,

near a (111) facet. They analyzed the resulting photographs from two different crystals,

viewed along two directions. For polar angles 0	 � q < w5	 they find w z 2 while for

5	 � q � 15	 determine wz 1.61, concluding that in this window w ¼ 1.60 � 0.10; the two

ranges have notably different values of x0. This group [143] also studied Si, equilibrated at

900	 C, near a (111) facet. Many profiles weremeasured along a high-symmetry h111i zone
of samples with various diameters of the order a few mm, over the range 3	 � q � 17	. The
results are consistent with w ¼ 3/2, with an uncertainty estimated at 6%. Finally, [144]

studied large (several mm) spherical cuprous selenide (Cu2�x Se) single crystals near a

(111) facet. Study in this context ofmetal chalcogenide superionic conductors began some

dozen years ago because, other than 4He, they are the only materials having sub-cm size

crystals with an ECS form that can be grown on a practical time scale (viz. over several

days) because their high ionic and electronic conductivity enable fast bulk atomic trans-

port. For 14.0	 � q� 17.1	 [144] find w¼ 1.499� 0.003. (They also report that farther from

the facet w z 2.5, consistent with the Andreev mean field scenario.)

5.6.3 Summary of Highlights of Novel Approach to Behavior Near
Smooth Edges

Digressing somewhat, we note that Ferrari, Prähofer, and Spohn [145] found novel static

scaling behavior of the equilibrium fluctuations of an atomic ledge bordering a crys-

talline facet surrounded by rough regions of the ECS in their examination of a 3D Ising

corner (Figure 5.19). This boundary edge might be viewed as a “shoreline” since it is the

edge of an islandlike region—the crystal facet—surrounded by a “sea” of steps [146].

Spohn and coworkers assume that there are no interactions between steps other than

entropic, and accordingly the step configurations can be mapped to the worldlines of

free spinless fermions, as in treatments of vicinal surfaces [37]. However, there is a key

new feature that the step number operator is weighted by the step number, along with a

Lagrange multiplier l�1 associated with volume conservation of the crystallite. The

asymmetry of this term leads to the novel behavior found by the researchers. They then

derive an exact result for the step density and find that, near the shoreline:

lim
l/N

l1=3rl
	
l1=3x


 ¼ �xðAiðxÞÞ2 þ ðAi0ðxÞÞ2; (5.34)

where rl is the step density (for the particular value of l).
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The presence of the Airy function Ai results from the asymmetric potential implicit in

HF and preordains exponents involving 1/3. The variance of the wandering of the

shoreline, the top fermionic worldline in Figure 5.20 and denoted by b, is given by

Var
�
bl

	
t

� bl

	
0

�
yl2=3g

	
l�2=3t



(5.35)

where t is the fermionic “time” along the step; g(s)w 2jsj for small s (diffusivemeandering)

andw1.6264� 2/s2 for large s. 1.202. is Apery’s constant andN is the number of atoms in

the crystal. They find:

Var ½b‘ð‘sþ xÞ � b‘ð‘sÞ�yðA‘Þ2=3g
�
A1=3‘�2=3x

�
; (5.36)

where A ¼ ð1=2Þb00N. This leads to their central result that the width w w ‘1/3, in contrast

to the ‘1/2 scaling of an isolated step or the boundary of a single-layer island and to the

ln ‘ scaling of a step on a vicinal surface, i.e., in a step train. Furthermore, the

FIGURE 5.20 Snapshot of computed configurations of the top steps (those near a facet at the flattened side
portion of a cylinder) for a terrace-step-kink (TSK) model with volume constraint. From Ref. [145].

FIGURE 5.19 Simple-cubic crystal corner viewed from the {111} direction. From Ref. [145].
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fluctuations are non-Gaussian. The authors also show that near the shoreline, the de-

viation of the equilibrium crystal shape from the facet plane takes on the

Pokrovsky–Talapov [101,104] form with w ¼ 3/2.

From this seminal work, we could derive the dynamic exponents associated with this

novel scaling and measure them with STM, as reviewed in Ref. [150].

5.7 Sharp Edges and First-Order Transitions—
Examples and Issues

5.7.1 Sharp Edges Induced by Facet Reconstruction

Si near the (111) plane offers an easily understood entry into sharp edges [68,69]. As Si is

cooled from high temperatures, the (111) plane in the “(1 � 1)” phase reconstructs into a

(7 � 7) pattern [150] around 850 	C, to be denoted T7 to distinguish it clearly from the

other subscripted temperatures. (The notation “(1 � 1)” is intended to convey the idea

that this phase differs considerably from a perfect (111) cleavage plane but has no

superlattice periodicity.) For comparison, the melting temperature of Si isw1420 	C, and
the TR is estimated to be somewhat higher. As shown in Figure 5.21, above T7, surfaces of

FIGURE 5.21 Summary of experimental results for vicinal Si (111) surface: B denotes the temperature at which
faceting begins for surfaces misoriented toward the (110) direction, � the faceting temperatures for surfaces
misoriented toward the [112], and , the temperatures at which the step structure of surfaces misoriented
toward the [112] direction change. The dashed line displays a fit of the [110] data to Eqn (5.43). The dotted lines
show how a four sample phase separates into the states denoted by C as it is further cooled. From Ref. [69].
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all orientations are allowed and are unreconstructed. At T7, a surface in the (111) di-

rection reconstructs but all other orientations are allowed and are unreconstructed.

Below T7, surfaces misoriented toward [1 12] remain stable during cooling (although the

step structure changes). On the other hand, on surfaces misoriented toward [110] and

[112], the temperature at which the (7 � 7) occurs decreases with increasing misorien-

tation angle cm. Furthermore, just as the (7 � 7) appears, the surface begins to separate

into two phases, one a perfectly oriented (7 � 7) plane cm ¼ 0 and the second an un-

reconstructed phase with a misorientation greater than that at higher temperature. As

the temperature further decreases, the misorientation of the unreconstructed phase

increases. Figure 5.21 depicts this scenario with solid circles and dotted lines for a 4	

misoriented sample at 840 	C. This behavior translates into the formation of a sharp edge

on the ECS between a flat (7 � 7) line and a rounded “(1 � 1)” curve.

To explain this behavior, one coplots the ECS for the two phases, as in Figure 5.22

[69]. The free energy to create a step is greater in the (7 � 7) than in the “(1 � 1)” phase.

In the top panels (A), the step energy for the (7 � 7) is taken as infinite, i.e., much larger

than that of the “(1 � 1)” phase, so its ECS never rounds. At T7 (Tc in the figure), the free

energies per area f0 of the two facets are equal, call them f7 and f1, with associated

FIGURE 5.22 Wulff plots illustrating the effect of a reconstructive transition on the equilibrium crystal shape
(ECS), and corresponding temperature-[mis]orientation phase diagrams. The solid curves represent the ECS with
an unreconstructed [“(1 � 1)”] facet, while the dashed curves give the ECS with a reconstructed facet. As temper-
ature decreases, the free energy of the reconstructed facet, relative to that of the unreconstructed facet, de-
creases. Below the transition temperature Tc (called T7 in the text), the two shapes intersect, giving a “net” ECS
that is the inner envelope of the two. The phase diagram shows regions where all orientations tan q (or cm) are
allowed for the unreconstructed crystal [“(1 � 1)”], regions of phase separation (labeled “coex.”), and regions
where the reconstruction (labeled “rec.”) is allowed for ranges of orientation. The relative size of the recon-
structed and unreconstructed facets depends on the free energy to create a step on the reconstructed (111) face,
compared to its unreconstructed counterpart: (A) the behavior for extremely large energy to create steps on the
(7 � 7) terrace and (A) a smaller such energy. Solid circles mark the sharp edge at the temperature at which the
crystal shapes cross. Crosses show the intersection of the facet and the curved part (i.e., the smooth edge) of
the crystal shape for the reconstructed phase. From Ref. [69].
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energies u7 and u1 and entropies s7 and s1 for the (7 � 7) and “(1 � 1)” phases,

respectively, near T7. Then T7 ¼ (u1 � u7)/(s1 � s7) and, assuming the internal energies

and entropies are insensitive to temperature:

f1 � f7 ¼
	
T7 � T


	
s1 � s7



: (5.37)

Since s1 > s7 because the (7 � 7) phase is so highly ordered, we find that f1 � f7 > 0 below

T7, as illustrated in Figure 5.22. Making connection to thermodynamics, we identify

L

T7

¼ ðs1 � s7ÞT7 ¼
�
vf7
vT

�

T7

�
�
vf1
vT

�

T7

(5.38)

where L is the latent heat of the first-order reconstruction transition.

Corresponding to the minimum of a free energy as discussed earlier, the ECS of the

system will be the inner envelope of the dashed and solid traces: a flat (7 � 7) facet along

the dashed line out to the point of intersection, the sharp edge, beyond which it is

“(1 � 1)” with continuously varying orientation. If one tries to construct a surface with a

smaller misorientation, it will phase separate into flat (7 � 7) regions and vicinal unre-

constructed regions with the orientation at the curved (rough) side of the sharp edge. Cf.

Figure 5.23.

Using the leading term in Eqn (5.35) or (5.36), we can estimate the slope of the

coexisting vicinal region and its dependence on temperature4: First we locate the sharp

edge (recognizing f0 as f1 and z0 as z1) by noting

z7 ¼ z1 � 2ðl=gÞ1=2ðx � x0Þ3=2
ðT7 � T ÞDsz	f1 � f7



T
¼ l3=2g�1=2ðx � x0Þ3=2

(5.39)

Since the slope m there is �3l(l/g)1/2(x � x0)
1/2, the temperature dependence of the

slope is

m ¼ �3

�
L

2g

�1=3�
1� T

T7

�1=3

(5.40)

If the step free energy of the reconstructed phase were only modestly greater than that of

the “(1 � 1)”, then, as shown in the second panel in Figure 5.22, the previous high-T

behavior obtains only down to the temperature T1 at which the “(1 � 1)” curve intersects

the (7 � 7) curve at its [smooth] edge. For T < T1 the sharp edge associated with the

interior of the curves is between a misoriented “(1 � 1)” phase and a differently

misoriented (7 � 7) phase, so that it is these two which coexist. All orientations with

smaller misorientation angles than this (7 � 7) plane are also allowed, so that the

forbidden or coexistence regime has the depicted slivered crescent shape. Some other,

but physically improbable, scenarios are also discussed by Bartelt et al. [69]. Phaneuf and

Williams [68] show (their Figure 3) the LEED-beam splitting for a surface misoriented

by 6.4	 is f(T7 � T)1/3 once the surface is cooled below the temperature (which is <T7)

when this orientation becomes unstable to phase separation; however, by changing the

4There are some minor differences in prefactors from Ref. [69].
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range of fitting, they could also obtain agreement with (T7 � T )1/2, i.e., w ¼ 2. With high-

resolution LEED, [151] conclude that the exponent bhðw� 1Þ=w ¼ 0:33� 0:05 (i.e., that

w ¼ 3/2. The result does depend somewhat on what thermal range is used in the fit, but

they can decisively rule out the mean-field value w ¼ 2. Williams et al. [152] give a more

general discussion of vicinal Si, with treatment of azimuthal in addition to polar mis-

orientations. In contrast, synchrotron X-ray scattering experiments by Noh et al.

[153,154] report the much larger w ¼ 2:3þ0:8
�0:3. However, subsequent synchrotron X-ray

scattering experiments by [155] obtain a decent fit of data with w ¼ 3/2 and a best fit

with w ¼ 1.75 (i.e., b ¼ 0:43� 0:07). (They also report that above 1159 K, the surface exists

as a single, logarithmically rough phase.) The origin of the curious value of w in the Noh

et al. experiments is not clear. It would be possible to attribute the behavior to impu-

rities, but there is no evidence to support this excuse, and indeed for the analogous

behavior near the reconstructing (331) facet of Si (but perhaps a different sample), Noh

FIGURE 5.23 Microscopic view of what happens to a misoriented surface in Figure 5.22 as temperature decreases.
(A) At high temperature, the Si(lll) vicinal surface is a single, uniform phase. Initial terrace widths t are typically a
few nm, as determined by the net angle of miscut a0 (i.e., q0), and the step-height h, which is one interplanar
spacing (w0.31 nm). (B) Below the (7 � 7) reconstruction temperature (w850

	
C), the steps cluster to form a new

surface of misorientation angle a(T) (i.e., q). A facet of (111) orientation with (7 � 7) reconstruction forms simulta-
neously. The width of the (111) facet, ‘, is larger than the experimentally resolvable width of 500 Å. (C) Well
below the transition, the step separation reaches a minimum distance, tmin w 1 nm. No further narrowing occurs,
perhaps because surface diffusion is too slow T � 600

	
C. From Ref. [3].
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et al. [156] found w ¼ 1.47 � 0.1. It is worth noting that extracting information from X-ray

scattering from vicinal surfaces requires great sophistication (cf. the extensive discussion

in Ref. [157]) and attention to the size of the coherence length relative to the size of the

scattering region [158], as for other diffraction experiments.

Similar effects to reconstruction (viz. the change in f0) could be caused by adsorption

of impurities on the facet [159]. Some examples are given in a review by Somorjai and

Van Hove [160]. In small crystals of dilute Pb-Bi-Ni alloys, cosegregation of Bi-Ni to the

surface has a similar effect of reversibly changing the crystal structure to form {112} and

{110} facets [161]. There is no attempt to scrutinize the ECS to extract an estimate of w.

Meltzman et al. [162] considered the ECS of Ni on a sapphire support, noting that, unlike

most fcc crystals, it exhibits a faceted shape even with few or no impurities, viz. with

{111}, {100}, and {110} facets; {135} and {138} emerged at low oxygen pressure and

additionally {012} and {013} at higher pressure.

The phase diagram of Pt(001), shown in Figure 5.24 and studied [163] using syn-

chrotron X-ray scattering, at first seems similar to that of Si near (111) [223,224,225],

albeit with more intricate magic phases with azimuthal rotations at lower temperatures,

stabilized by near commensurability of the period of their reconstruction and the sep-

aration of their constituent steps. In the temperature-misorientation (surface slope)

phase diagram, shown in Figure 5.24, the (001) facet undergoes a hexagonal recon-

struction at T6 ¼ 1820 K (well below the bulk melting temperature of 2045 K). For

samples misoriented from the (100) direction (which are stable at high temperature),

there is coexistence between flat reconstructed Pt(001) and a rough phase more highly

FIGURE 5.24 Orientational phase diagram of vicinal Pt (001) misoriented toward the [110] direction. Single-phase
regions are hatched, and two-phase coexistence regions are unhatched. Solid lines are boundaries between two
phases. Dashed lines mark triple points. Open circles show misorientation angles measured for a sample miscut by
1.4	 toward the [110] direction, while solid circles show tilt angles measured for a sample miscut by 3.0	. From
Ref. [163].
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misoriented than it was at high temperature, with a misorientation that increases as

temperature decreases. However, they find b ¼ 0:49� 0:05, or w ¼ 1.96, consistent with

mean field and inconsistent with b ¼ 1=3 or w ¼ 3/2 of Prokrovsky–Talapov. The source

of this mean-field exponent is that in this case the (001) orientation is rough above T6.

Hence, in Eqn (5.31) B vanishes, leaving the expansion appropriate to rough orientations.

Proceeding as before, Eqn (5.35) becomes

fpðpÞ ¼ f0 þDp20~f ðhÞ ¼ f0 � h2
.
4D; (5.41)

where the result for ~f ðhÞ is reached by proceeding as before to reach the modification of

Eqn (5.35). Thus, there is no smooth edge take-off point (no shoreline) in the equivalent

of Figure 5.22, and one finds the reported exponent w near 2.

The effect of reactive and nonreactive gases metal catalysts has long been of interest

[211]. Various groups investigated adsorbate-induced faceting. Walko and Robinson

[164] considered the oxygen-induced faceting of Cu(115) into O/Cu(104) facets, using

Wulff constructions to explain their observations. The researchers found three temper-

ature regimes with qualitatively different faceting processes. Szczepkowicz et al. [165]

studied the formation of {211} facets by depositing oxygen and paladium on tungsten,

both on (111) facets and on soherical crystals. While the shape of the facets is different

for flat and curved surfaces, the distance between parallel facet edges is comparable,

although the area of a typical facet on a curved surface is an order of magnitude greater.

There is considerable information about facet sizes, width of the facet-size distribution,

and surface rms roughness.

For 2D structures on surfaces, edge decoration can change the shape of the islands. A

well-documented example is Pt on Pt(111). As little as 10�3ml of COproduces a 60	 rotation
of the triangular islandsby changing thebalanceof the edge free energies of the twodifferent

kinds of steps forming the island periphery [166]. Stasevich et al. [167] showed how deco-

ration of single-layer Ag islands onAg(111) by a single-strand “necklace” of C60 dramatically

changes the shape from hexagonal to circular. With lattice-gas modeling combined with

STM measurements, they could estimate the strength of C60-Ag and C60-C60 attractions.

Generalizations to decoration on systems with other symmetries is also discussed [167].

5.8 Gold–Prototype or Anomaly of Attractive
Step–Step Interaction?

Much as 4He and Pb are the prototypical materials with smooth edges, Au is perhaps the

prime example of a surface with sharp edges, around (1111) and (100) facets (cf. e.g.,

Ref. [1]). Care must be taken to ensure that the surface is not contaminated by atoms

(typically C) from the supporting substrate [168]. (See similar comments by Handwerker

et al. [169] for ceramics, which have a rich set of ECS possibilities.) To describe these

systems phenomenologically, the projected free energy expansion in Eqn (5.1) requires a

negative term to generate a region with negative curvature, as in Figure 5.7, so that the
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two orientations joined by the Maxwell double-tangent construction correspond to the

two sides of the sharp edge. Thus, for sharp edges around facets, the more-left minimum

must be in the high-symmetry facet direction.

In a mean field-based approach, Wang and Wynblatt [168] included a negative

quadratic term, with questionable physical basis. Emundts et al. [170] instead took the

step–step interaction to be attractive (g < 0) in Eqn (5.1). Then, proceeding as above,

they find

x0 ¼ 1

l

�
B� 4

27
jg j
�g
c

�2�
; pc ¼ 2jg j

3c
; (5.42)

where pc is the tangent of the facet contact angle. Note that both the shift in the facet

edge from B and the contact slope increase with jgj/c. Emundts et al. [170] obtain esti-

mates of the key energy parameters in the expansion for the sharp edges of both the

(111) and (100) facets. They also investigate whether it is the lowering of the facet free

energy f0 that brings about the sharp edges, in the manner of the case of Si(111) dis-

cussed above. After reporting the presence of standard step–step repulsions (leading to

narrowing of the TWD) in experiments on flame-annealed gold, Shimoni et al. [171] then

attribute to some effective long-range attraction—with undetermined dependence on

‘—the (nonequilibrium) movement of single steps toward step bunches whose steps are

oriented along the high-symmetry h110i.
Is it possible to find a generic long-range attractive A‘�2 step–step interaction (A < 0)

for metals and elemental semiconductors (where there is no electrostatic attraction

between oppositely charged atoms)? Several theoretical attempts have only been able to

find such attractions when there is significant alternation between “even” and “odd”

layered steps. Redfield and Zangwill consider whether surface relaxation can produce

such an attraction, pointing out a flaw in an earlier analysis assuming a rigid relaxation

by noting that for large step separations, the relaxation must return to its value for the

terrace orientation. Since atomic displacements fall off inversely with distance from a

step, the contribution to the step interaction can at most go like ‘�2 and tend to mitigate

the combined entropic and elastic repulsion. They argue that this nonlinear effect is

likely to be small, at least for metals. It is conceivable that on an elastically highly

anisotropic surface, the elastic interaction might not be repulsive in special directions,

although I am not aware of any concrete examples.

By observing that the elastic field mediating the interaction between steps is that of a

dipole applied on a stepped rather than on a flat surface, Kukta et al. [172] deduce a

correction to the ‘�2 behavior of the Marchenko–Parshin [41] formula that scales as

‘�3 ln ‘. Using what was then a state-of-the-art semiempirical potential, the embedded

atom method (EAM) [228], the authors find that this can lead to attractive interactions at

intermediate values of ‘. However, their “roughness correction” term exists only when

the two steps have unlike orientations (i.e., one up and one down, such as on opposite

ends of a monolayer island or pit). For the like-oriented steps of a vicinal surface or near

a facet edge, the correction term vanishes. The oft-cited paper then invokes three-step
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interactions, which are said to have the same size as the correction term, as a way to

achieve attractive interactions. Although the authors discuss how this idea relates to the

interaction between an isolated step and a step bunch, they do not provide the explicit

form of the threefold interaction; their promise that it will be “presented elsewhere” has

not, to the best of my searching, ever been fulfilled. Prévot and Croset [173] revisited

elastic interactions between steps on vicinals and found that with a buried-dipole model

(rather than the surface-dipole picture of Marchenko and Parshin), they could achieve

“remarkable agreement” with molecular dynamics simulations for vicinals to Cu and Pt

(001) and (111), for which data is fit by EMD
2 ‘�2 þ EMD

3 ‘�3. The tabulated values of EMD
2

indeed agree well with their computed results for their improved elastic model, which

includes the strong dependence of the interaction energy on the force direction. While

there is barely any discussion of E3, plots of the interaction are always repulsive. Hecquet

[174] finds that surface stress modifies the step–step interaction compared to the

Marchenko–Parshin result, enhancing the prefactor of ‘�2 nearly threefold for Au(001);

again, there is no mention of attractive interactions over any range of step separations.

In pursuit of a strictly attractive ‘�2 step interaction to explain the results of Shimoni

et al. [171], Wang et al. [175] developed a model based on the SSH model [176] of pol-

yacetylene (the original model extended to include electron–electron interaction),

focusing on the dimerized atom rows of the (2 � 1) reconstruction of Si(001). The model

produces an attractive correction term to the formula derived by Alerhand et al. [177] for

interactions between steps on Si(001), where there is ABAB alternation of (2 � 1 and

1 � 2) reconstructions on neighboring terraces joined at single-height steps. For this type

of surface, the correction has little significance, being dwarfed by the logarithmic

repulsion. It also does not occur for vicinals to high-symmetry facets of metals. However,

for surfaces such as Au(110) with its missing row morphology [178] or adsorbed systems

with atomic rows, the row can undergo a Peierls [179] distortion that leads to an anal-

ogous dimerization and an ‘�2 attraction. There have been no tests of these unsung

predictions by electronic structure computation.

Returning to gold, applications of the glue potential (a semiempirical potential rather

similar to EAM), Ercolessi et al. [180] were able to account for reconstructions of various

gold facets, supporting that the sharp edges on the ECS are due to the model used for

Si(111) rather than attractive step interactions. Studies by this group found no real ev-

idence for attractive step interactions [181].

In an authoritative review a decade ago, Bonzel [2]— the expert in the field who has

devoted the most sustained interest in ECS experiments on elemental systems—

concluded that it was not possible to decide whether the surface reconstruction model or

attractive interactions was more likely to prove correct. In my view, mindful of Ockham’s

razor, the former seems far more plausible, particularly if the assumed attractive inter-

action has the ‘�2 form.

The phase diagram of surfaces vicinal to Si(113) presents an intriguing variant of that

vicinal to Si(111). There is again a coexistence regime between the (113) orientation and

progressively more highly misoriented vicinals as temperature is reduced below a
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threshold temperature Tt, associated with a first-order transition. However, for higher

temperatures T > Tt there is a continuous transition, in contrast to the behavior on (111)

surfaces for T > T7. Thus, Song and Mochrie [182] identify the point along (113) at which

coexistence vanishes, i.e., Tt, as a tricritical point, the first such point seen in a misori-

entation phase diagram. To explain this behavior, Song and Mochrie invoke a mean-field

Landau theory argument in which the cubic term in p is proportional to (T � Tt), so

negative for T < Tt, with a positive quartic term. Of course, this produces the observed

generic behavior, but the exponent b is measured as 0.42 � 0.10 rather than the mean-

field value 1. Furthermore, the shape of the phase diagram differs from the mean-field

prediction and the amplitude of the surface stiffness below Tt is larger than above it,

the opposite of what happens in mean field. Thus, it is not clear in detail what the in-

teractions actually are, let alone how an attractive interaction might arise physically.

5.9 Well-Established Attractive Step–Step Interactions
Other Than ‘�2

For neutral crystals, there are two ways to easily obtain interactions that are attractive for

some values of ‘. In neither case are the interactions monotonic long range. The first is

short-range local effects due to chemical properties of proximate steps, while the other is

the indirect Friedel-like interaction.

5.9.1 Atomic-Range Attractions

At very small step separations, the long-range ‘�2 monotonic behavior is expected to break

down and depend strongly on the local geometry and chemistry. Interactions between

atoms near step edges are typically direct, thus stronger than interactions mediated by

substrate elastic fields or indirect electronic effects (see below). We saw earlier that a ‘�3

higher order term arises at intermediate separations [42], and further such terms should

also appear with decreasing ‘. On TaC(910) [vicinal to (001) and miscut toward the [010]

direction], Zuo et al. [183] explained step bunching using a weak ‘�3[�0.5] attraction in

addition to the ‘�2 repulsion. (The double-height steps are electrically neutral.) Density-

functional theory (DFT) studies were subsequently performed for this system by Shenoy

and Ciobanu [184]. Similarly, Yamamoto et al. [185] used an attractive ‘�3 dipole-

quadrupole interaction to explain anomalous decay of multilayer holes on SrTiO3(001).

More interesting than such generic effects are attractions that occur at very short step

separations for special situations. A good example is Ciobanu et al. [186], who find an

attraction at the shortest separation due to the cancellation of force monopoles of two

adjacent steps on vicinal Si(113) at that value of ‘.

As alluded to above, most of our understanding of the role of ‘�2 step interactions

comes from the mapping of classical step configurations in 2D to the worldlines of

spinless fermions in 1D. Unlike fermions, however, steps can touch (thereby forming

double-height steps), just not cross. Such behavior is even more likely for vicinal fcc or
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bcc (001) surfaces, where the shortest possible “terrace,” some fraction of a lateral

nearest-neighbor spacing, amounts to touching fermions when successive layers of the

crystal are described with simple-cubic rather than layer-by-layer laterally offset co-

ordinates. Sathiyanarayanan et al. [187] investigated some systematics of step touching,

adopting a model in which touching steps on a vicinal cost an energy et. Note that et ¼N

recoups the standard fermion model. For simplicity, the short study concentrates on the

“free-fermion” case ~A ¼ 0, i.e., 9 ¼ 2 (cf. Eqn (5.28)). Even for et ¼ 0, there is an effective

attraction, i.e., 9 < 2, since the possibility of touching broadens the TWD. This broad-

ening is even more pronounced for et < 0. In other words, such short-range effects can

appear, for a particular system, to contribute a long-range attraction. Closer examination

shows that this attraction is a finite-size effect that fades away for large values of h‘i. In
our limited study, we found that fits of simulated data to the GWD expression could be

well described by the following finite-size scaling form, with the indicated three fitting

parameters:

9eff ¼ 2� ð0:9� 0:1Þh‘i�0:29�0:07
exp

h
� ð3:3� 0:2Þet

.
kBT

i
: (5.43)

While Eqn (5.43) suggests that making the step touching more attractive (decreasing et)

could decrease beff without limit, instabilities begin to develop, as expected since Lässig

[188] showed that for ~A < �1=4, i.e., A < �ðkBTÞ2=4~b, a vicinal surface becomes unstable

(to collapse to step bunches). Correspondingly, the lowest value tabulated in

Sathiyanarayanan et al. [187] is et/kBT ¼ �0.2.

To distinguish true long-range (‘�2) attractions on vicinal surfaces requires mea-

surements of several different vicinalities (i.e., values of h‘i). Likewise, in analyses of ECS

data, consideration of crystallites of different sizes would seem necessary. Wortis [1]

noted the importance of size dependence in other contexts.

Along this theme, an instructive specific case is the “sticky-step” or, more formally,

the p-RSOS (restricted solid-on-solid with point-contact attractions between steps)

model explored in detail by Akutsu [189] using the product wavefunction renormaliza-

tion group (PWFRG) method, calculating essentially the ECS (see Figure 5.25) and related

properties. Steps are zig-zag rather than straight as in the preceding Sathiyanarayanan

model, so her “stickiness” parameter eint is similar but not identical to et. She finds that in

some temperature regimes, nonuniversal non-Prokrovsky–Talapov values of w occur.

Specifically, let Tf,111(eint/e,f0) and Tf,001(eint/e,f0) be the highest temperature at which a

first-order phase transition (sharp edge) occurs for the (111) and (001) facets,

respectively, where f0 indicates the position along the ECS. Note Tf,111(et/

e,f0) ¼ (0.3610 � 0.0005)e/kB > Tf,111(eint/e,f0) ¼ (0.3585 � 0.0007)e/kB. For kBT/e ¼ 0.37,

so T > Tf,111(�0.5,p/4), Akutsu recovers Prokrovsky–Talapov values for w and wt, but for

kBT/e ¼ 0.36 (shown in Figure 5.26), so Tf,111(�0.5,p/4) > T > Tf,001(�0.5,p/4), the values

are very different: w ¼ 1.98 � 0.03 and wt ¼ 3.96 � 0.08, more like mean field. For f0 ¼ 0

(tilting toward the h100i direction), only standard Prokrovsky–Talapov exponents are

found. Upon closer examination with Monte Carlo simulations, Akutsu finds large step

bunches for T < Tf,100 but step droplets for Tf,001 < T < Tf,111. The details are beyond the
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scope of this review, but eventually Akutsu deduces an expansion of the projected free

energy that includes either a quadratic term or a term after the linear term that has the

form jpjz, with z > 1.

5.9.2 Attractions at Periodic Ranges of Separation via Oscillatory
Friedel-Type Interactions

Oscillatory (in sign) interactions, mediated by substrate conduction electrons, between

steps ipso facto lead to attractive interactions between steps. As reviewed by Einstein

[94], such interactions have been known for many decades to account for the ordered

patterns of adsorbates on metal surfaces [190]. While at short range, all electrons

FIGURE 5.25 Perspective views of essentially the equilibrium crystal shape (actually the Andreev surface free
energy divided by kBT) around the (001) facet calculated by the transfer-matrix method with the product-wave-
function renormalization group algorithm at kBT/e1 ¼ 0.3. (A) Restricted solid-on-solid with point-contact attrac-
tions between steps (p-RSOS) model (eint/e1 ¼ �0.5). (B) For comparison, the original unsticky RSOS model
(eint ¼ 0). From Ref. [189].

FIGURE 5.26 Profiles in the diagonal direction of the surface in Figure 5.25, still at kBT/e1 ¼ 0.3. Broken lines
represent metastable lines. (A) kBT/e1 ¼ 0.36, eint/e1 ¼ �0.5, on a very fine length scale. The edge of the (111)
facet is denoted by Xq. (B) The original RSOS model (eint ¼ 0) on a much coarser scale. On this scale (and on an
intermediate scale not included here), the profiles are flat until the edge. On the intermediate scale, the region
beyond Xq is starts deviating rather smoothly for kBT/e1 ¼ 0.35 but looks straight for kBT/e1 ¼ 0.36 and 0.37. See
text and source. From Ref. [189].
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contribute, asymptotically the interaction is dominated by the electron(s) at the Fermi

surface or, from another perspective, the nonanalyticity in the response function at the

nesting vector. The interaction energy has the form

E
asymp
pair f‘�ncos

�
2kF‘þ F

�
(5.47)

This, or its analogue for interacting local magnetic species, is called the RKKY [191,192]

interaction. (The community studying magnetism now labels as RKKY any interaction

mediated by substrate electrons, not just the asymptotic limit written down in the

RKKY papers.) The phase factor F is the nonperturbative result is the scattering phase

shifts at the two atoms that are interacting; it is absent in the perturbational approach

to this problem used in the RKKY papers. The exponent n indicates the decay envelope.

For interacting bulk entities, n ¼ 3, the standard RKKY results. On metal surfaces, the

leading term in the propagator is canceled by the image charge, leading to n ¼ 5, with

very rapid decay [94,190]. Such effects are insignificant for adatom interactions but can

be more potent when a whole step participates. Redfield and Zangwill [193] show that a

line of localized perturbations will generate an interaction with n reduced by subtracting

1/2 and F augmented by p/4. They used this result, with n ¼ 9/2, to account for Frohn

et al.’s [194] remarkable experimental results on vicinal Cu(001): from their observed

bimodal TWD, Frohn et al. deduced that the step–step interaction is attractive for inter-

mediate distances three to five atoms. Indeed, it was their striking observation that led to

several of the previously discussed theory papers that claimed to find long-range step

attractions.

When there are metallic surface states (i.e., surface states for which their 2D band

dispersion relation crosses the Fermi energy EF) of Shockley nature (lying in a 2D band gap

containing EF), the indirect interaction has a much slower decay, with n¼ 2 [94,195–199].

Furthermore, the Fermi wavevector typically is much smaller than that of bulk states, so

the period of the oscillation in real space ismuch larger. Perhaps themost familiarmetallic

surface onmetals is that at the center of the surface Brillouin zone (G) of the (111) surfaces

of noble metals, which exist inside the necks of the Fermi surface, discussed in textbooks,

e.g. [200]. This is the state that produces the famous wave structure in Eigler’s group’s

dramatic STM images [201] of atoms on metal surfaces. However, there is a less well-

known metallic surface state on Cu(001), discovered relatively late (compared to other

surface states) by Kevan [202]; it is centered at the zone-edge center X rather than G, and

may provide a better explanation of the Frohn et al. results in the Redfield–Zangwill

framework. For surface-statemediated interactions between steps, their formula indicates

n ¼ 3/2, comparable to the entropic and elastic repulsions.

The effect of surface-state mediated interactions on TWDs was elucidated by Pai et al.

[203] in combined experimental and theoretical examination of vicinal Ag(110), which

has a metallic surface state centered at Y , the middle of the shorter edge of the rectan-

gular surface Brillouin zone [204]. In essence, the surface state introduces a second length

scale, the Fermi wavelength lF, in addition to h‘i, with the major consequence that the

TWD is no longer a function of the single scaled dimensionless variable s but depends
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also on h‘i. With a suitable model potential, Pai et al. [203] could then account for the

different TWDs at a few different misorientations (i.e., mean step spacings). Indeed, to

establish convincingly that this Friedel-like effect is significant, one must measure several

different values of h‘i. While this paper has been cited with regard to other modifications

of TWDs (cf. e.g., Refs [205,206]), I have found no other investigations of Friedel-like

effects on TWDs for several misorientations of the same substance.

Patrone and Einstein [207] discuss other issues related to possible anisotropic surface

state dispersion as well as showing the insensitivity to the point in the surface Brillouin

zone about which the state is centered.

5.10 Conclusions
An aspect of ECS studies on which there has been substantial progress since the 1980s,

but which has received little attention in this chapter, is comparing and reconciling the

values of the characteristic energies (surface free energy per area, step free energy per

length, and step–step repulsion strength) that are extracted from experimental mea-

surements with ever-improving calculations (using density functional theory) of these

energies. Bonzel’s review [2], as well as Nowicki and Bonzel [140], Bonzel et al. [139],

Barreteau et al. [226], Yu et al. [227], contain extensive coverage of this issue for the soft

metals to which his group has devoted exhaustive attention. Williams [59] review most

results for silicon. Such efforts to find absolute energies has also taken place in studies of

island shapes, e.g., of TiN(001) [208] and (111) [209].

There are several significant advances in generic understanding of ECS since the

1980s. The Prokrovsky–Talapov (w ¼ 3/2) critical phenomena near the edge of the

smoothly curved region near a facet has proved to be far more robust and general than

originally realized, while novel behavior is predicted in a very special direction. Even

though invoked in many accounts of sharp edges, long-range attractive ‘�2 do not have

an apparent physical basis, except perhaps in idiosyncratic cases. The likely cause is a

reconstruction or adsorption that changes the surface free energy of the facet orienta-

tion. On the other hand, hill-and-valley structures are widely seen, and the possibility of

azimuthal in addition to polar misorientation can lead to astonishingly rich phase dia-

grams. Of course, nonequilibrium considerations open up a whole new universe of

behavior. Furthermore, at the nanoscale, cluster shape is very sensitive to the particulars

of a system, with the addition or removal of a single atom leading to a substantial change

in shape, rather like biological systems, in contrast to the macroscale phenomena that

have been treated in this chapter.
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[188] Lässig M. Phys Rev Lett 1996;77:526.

[189] Akutsu N. J Phys Condens Matter 2011;23:485004.

[190] Einstein TL, Schrieffer JR. Phys Rev B 1973;7:3629.

[191] Ruderman MA, Kittel C. Phys Rev 1954;96:99.

[192] Yosida K. Phys Rev 1957;106:893.

[193] Redfield AC, Zangwill A. Phys Rev B 1992;46:4289.

[194] Frohn J, Giesen M, Poensgen M, Wolf JF, Ibach H. Phys Rev Lett 1991;67:3543.

Chapter 5 • Equilibrium Shape of Crystals 263

http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0670
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0670
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0675
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0680
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0685
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0690
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0695
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0700
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0705
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0710
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0715
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0720
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0725
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref1075
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0730
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0735
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0740
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0745
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0750
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0755
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0760
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0765
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0765
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0770
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0775
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0780
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0785
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0790
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0795
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0800
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0805
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0810
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0815
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0820
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0825
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0830
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0835


[195] Lau KH, Kohn W. Surf Sci 1978;75:69.

[196] Repp J, Moresco F, Meyer G, Rieder K-H, Hyldgaard P, Persson M. Phys Rev Lett 2000;85:2981.

[197] Hyldgaard P, Persson M. J Phys Condens Matter 2000;12:L13.

[198] Knorr N, Brune H, Epple M, Hirstein A, Schneider MA, Kern K. Phys Rev B 2002;65:115420.

[199] Hyldgaard P, Einstein TL. J Cryst Growth 2005;275:e1637 [cond-mat/0408645].

[200] Ashcroft NW, Mermin ND. Solid state physics. Cengage Learning; 1976.

[201] Crommie MF, Lutz CP, Eigler DM. Nature 1993;363:524. Science 1993;262:218.

[202] Kevan SD. Phys Rev B 1983;28:2268(R).

[203] Pai WW, Ozcomert JS, Bartelt NC, Einstein TL, Reutt-Robey JE. Surf Sci 1994;309:747.

[204] Liu SH, Hinnen C, van Huong CN, de Tacconi NR, Ho K-M. J Electroanal Chem 1984;176:325.

[205] Mugarza A, Schiller F, Kuntze J, Cordón J, Ruiz-Osés M, Ortega JE. J Phys Condens Matter 2006;18:
S27.

[206] Li F, Allegretti F, Surnev S, Netzer FP. Surf Sci 2010;604:L43.

[207] Patrone PN, Einstein TL. Phys Rev B 2012;85:045429.

[208] Kodambaka S, Khare SV, Petrova V, Vailionis A, Petrov I, Greene JE. Surf Sci 2002;513:468474.

[209] Kodambaka S, Khare SV, Petrova V, Johnson DD, Petrov I, Greene JE. Phys Rev B 2003;67:035409.

[210] Stranski I. Z. Phys Chem Leipz 1928;136:259.

[211] Flytzani-Stephanopoulos M, Schmidt LD. Prog Surf Sci 1979;9:83.

[212] Rottman C, Wortis M. Phys Rep 1984;103:5979.

[214] Gibbs JW. Trans Conn Acad 1877;3:108–248. see Collected Works 1928, p. 343–524.

[215] Zia RKP. Anisotropic surface tension and equilibrium crystal shapes. In: Hu CK, editor. Progress in
Statistical Mechanics. Singapore: World Scientific; 1988. p. 303–57.

[216] Weeks JD. In: Riste T, editor. Ordering in strongly fluctuating condensed matter systems. New
York: Plenum; 1980. p. 293.

[217] Rottman C, Wortis M. Phys Rev B 1984;29:328.

[218] von Laue M. Z. Krist Min 1944;105:124.

[219] Andreev AF. Sov Phys-JETP 1982;53:1063.

[220] For a review of fermionic methods, see den Nijs M. In: Domb C, Lebowitz JL, editors. Phase
transitions and critical phenomena, vol. 12. London: Academic; 1989.

[221] Williams ED, Bartelt NC. Thermodynamics and statistical mechanics of surfaces. In: Unertl WN,
editor. Physical structure of solid surfaces. Holloway S, Richardson NV, editors. Handbook of
surface science, vol. 1. Amsterdam: Elsevier; 1996. p. 51–99.

[222] Einstein TL, Pimpinelli A. Dynamical scaling implications of Ferrari, Prähofer, and Spohn’s
remarkable spatial scaling results for facet-edge fluctuations, arXiv 1312.4910.

[223] Song S, Mochrie SGJ. Phys Rev Lett 1994;73:995.

[224] Song S, Mochrie SGJ. Phys Rev B 1995;51:10068.

[225] Shimoni N, Ayal S, Millo O. Phys Rev B 2000;62:13147.

[226] Barreteau C, Raouafi F, Desjonquères MC, Spanjaard D. J Phys Condens Matter 2003;15:3171.

[227] Yu DK, Bonzel HP, Scheffler M. The stability of vicinal surfaces and the equilibrium crystal shape
of Pb by first principles theory. New J Phys 2006;8:65.

[228] Daw MS, Foiles SM, Baskes MI. Mater Sci Rep 1993;9:251.

264 HANDBOOK OF CRYSTAL GROWTH

http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0840
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0845
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0850
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0855
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0860
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0865
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0870
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0875
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0880
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0885
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0890
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0890
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0895
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0900
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0905
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0910
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0925
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0930
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref9345
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0945
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0960
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0960
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0980
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0980
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0990
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref1025
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref1030
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref1045
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref1045
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref1050
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref1050
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref1050
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref1065
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref1070
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref9310
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref1085
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref1090
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref1090
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref9305


6
Rough–Smooth Transition

of Step and Surface

Noriko Akutsu1, Takao Yamamoto2

1FACULTY OF ENGINEERING, OSAKA ELECTRO-COMMUNICATION UNIVERSITY, NEYAGAWA,
OSAKA, JAPAN; 2DIVISION OF PURE AND APPLIED SCIENCE, FACULTY OF SCIENCE AND

TECHNOLOGY, GUNMA UNIVERSITY, KIRYU, GUNMA, JAPAN

CHAPTER OUTLINE

6.1 Introduction: Universal Features ............................................................................................... 266

6.2 Background.................................................................................................................................. 270

6.2.1 Rough Surface in Crystal Growth—Viewpoint of BCF .................................................. 270

6.2.2 Entropy Effect—Jackson’s Argument.............................................................................. 271

6.2.3 “Drumhead Wandering” due to Capillary Waves......................................................... 272

6.3 Rough Surface ............................................................................................................................. 275

6.3.1 Definition of an Interface ................................................................................................ 275

6.3.1.1 Existence of a Roughening Transition Temperature.................................................275

6.3.1.2 Ising Model and the Equivalent Lattice Gas Model .................................................276

6.3.1.3 Definition of Interface Tension ................................................................................ 277

6.3.2 Definition of Surface Roughness..................................................................................... 279

6.3.2.1 Surface Width—Variance of Surface Height............................................................ 279

6.3.2.2 Height–Height Correlation Function of a Surface .................................................... 280

6.3.2.3 Thin Film-Like Surface in the Macroscopic Scale...................................................... 281

6.3.3 Relationship between Energy and Shape....................................................................... 281

6.3.4 Roughness of a Single Step.............................................................................................. 282

6.4 Roughening Transition and Faceting Transition as Critical Phenomena.............................. 284

6.4.1 Microscopic Models for Studying Surface Roughness ................................................... 284

6.4.1.1 BCSOS Model ..........................................................................................................285

6.4.1.2 ASOS Model and RSOS Model ................................................................................ 286

6.4.2 Summary of KT-Type Critical Phenomena of Surfaces.................................................. 286

6.4.3 Diffuseness for Atomically Rough Surfaces.................................................................... 290

6.4.3.1 New Picture of Roughening..................................................................................... 290

6.4.3.2 Intrinsic Width of a Step.......................................................................................... 291

6.4.3.3 Preroughening Phenomena ..................................................................................... 291

Handbook of Crystal Growth. http://dx.doi.org/10.1016/B978-0-444-56369-9.00006-X 265
Copyright © 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/B978-0-444-56369-9.00006-X


6.4.4 Changes in the Roughening Temperature on Complex Surfaces ................................ 292

6.4.4.1 Inverse Roughening .................................................................................................292

6.4.4.2 Surface Modified by Langmuir Adsorption .............................................................. 292

6.5 Vicinal Surface ............................................................................................................................. 294

6.5.1 Rough or Smooth? The Terrace-Step-Kink Picture ........................................................ 294

6.5.2 1D Free-Fermion Universal Features—Gruber-Mullins-Pokrovsky-Talapov Behavior. 295

6.5.3 Logarithmic Behavior on the Width of a Single Step................................................... 296

6.5.3.1 Height–Height Correlation Function of a Single Step ..............................................296

6.5.3.2 Elastic Step–Step Repulsion ..................................................................................... 297

6.6 Step Faceting ............................................................................................................................... 298

6.6.1 Stability of a Macrostep ................................................................................................... 298

6.6.2 Discontinuous Surface Tension ........................................................................................ 300

6.6.2.1 p-RSOS Model .........................................................................................................300

6.6.2.2 Discontinuity in Surface Tension.............................................................................. 300

6.7 Summary ...................................................................................................................................... 302

Appendix A. Transfer Matrix Method ...................................................................................... 303

Appendix B. Driving Force for Crystal Growth ....................................................................... 304

Appendix C. Example of the Anisotropy of the Entropy of a Step...................................... 304

Appendix D. IPW Method .......................................................................................................... 304

Appendix E. Calculation of Surface Width............................................................................... 306

Appendix F. Derivation of the Capillary Wave Hamiltonian ................................................. 307

Appendix G. Other Microscopic Models................................................................................... 308

Appendix G.1. Discrete Gaussian Model......................................................................... 308

Appendix G.2. RSOS-I Model............................................................................................ 308

Acknowledgment ............................................................................................................................... 309

References........................................................................................................................................... 309

6.1 Introduction: Universal Features
During the years 1970–2000, much progress was made in understanding roughening and

faceting transitions [1–39]. Roughening transitions are particularly notable because they

are a typical example of the Kosterlitz–Thouless (KT) transition [40–43]. The KT transi-

tion was first presented as a magnetic phase transition of the two-dimensional (2D) XY

model [40]. Later, 2D crystals [40,41], a 2D Coulomb gas [42], and a superfluid film [43] of

helium (4He) were also shown to exhibit KT transitions.

Van Beijeren provided the correct understanding of the roughening transition by his

exact calculation of the body-centered cubic solid-on-solid (BCSOS) model [1]. The
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solid-on-solid (SOS) model, Figure 6.1(A), is a model for studying surface roughness

when it is inhibited by an overhanging structure (the overhang structure is shown in

the dotted square of Figure 6.1(B)).1 Van Beijeren showed by exact calculations that the

step internal energy estep reduces to zero at the roughening transition temperature TR as

estepfexpð�C=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TR � T

p Þ. This also means that the step tension decreases to zero at TR

as gstepfexpð�C 0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TR � T

p Þ. It had not been known previously if the step tension

became zero at TR. His exact calculation showed us, for the first time, the close

connection between surface roughening and the KT transition. Soon after, Knops [10]

and Jose et al. [11] showed that any 2D SOS models in 3D can be mapped to the XY

model. In Figure 6.2, we show this observed singular property of the step tension on

Si(001) [32].

Without the long-range order in 2D, the KT phase transition has special character-

istics. When the number of dimensions is less than or equal to two, thermal fluctuations

destroy the long-range order [47]. In the XY model, the KT transition occurs at the

temperature TKT, where the entropy of forming a special spin configuration called a

“vortex” exceeds the excitation energy of the vortex [43]. For T< TKT, the 2D XY model

forms a quasi-long-range order for the pairs of þ1 and �1 vortices; for T> TKT, the

proliferation of the vortex monomers destroys the quasi-long-range order. The corre-

lation length xKT, which characterizes the size of the coherent domain, is infinite for

T< TKT, and xKTfexpðA= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � TKT

p Þ for T> TKT. Thus, the critical exponents are infinite,

and xKT depends on temperature differently than does a typical phase transition, such as

that in the 2D Ising model.2

The KT transition, however, is such a subtle phase transition that it is difficult to

directly detect the singularity. Fortunately, in the roughening transition, the universal

quantities specific to the KT transition are measurable as geometrical quantities on an

equilibrium crystal shape (ECS) [48–58], which is the shape of a crystal droplet with the

least surface free energy. The shape change accompanied by the roughening transition is

(A) (B)
h

x
y

y

x

FIGURE 6.1 Microscopic diagram of a crystal
surface. (A) Perspective view of a solid-on-solid
model; (B) top view of a step. The pattern
inside the broken rectangle shows the
overhanging structure.

1From several numerical studies of a 2D interface in the 3D Ising model, the roughening transition

temperature TR is estimated to be almost half of the transition temperature Tc of the 3D Ising model.

Hence, up to around TR, the frequency at which the overhang structure forms is thought to be sufficiently

low. As a step, however, an overhang such as the one shown within the broken line in Figure 6.1(B)

frequently appears near Tc in the 2D Ising model.
2The correlation lengths of the 2D and 3D Ising models diverge only at the temperature of the phase

transition.
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called the faceting transition [18] (Figure 6.3). A facet is a plane with a low Miller index

that appears on the ECS (Figure 6.3(A)). The facet appears at T< TR, where TR represents

that of the facet plane. The shape of the facet represents the 2D ECS with respect to the

step tension [24,33]. The area of the facet shrinks as the temperature increases. At TR, the

area of the facet becomes zero (Figure 6.3(B)). For T> TR, the facet disappears

(Figure 6.3(C)).

The exact study of the vicinal surface in the BCSOS model [18] again leads to correct

understanding of the faceting transition. When the temperature rises to just above TR,

the Gaussian curvature3 KG [59] at the topmost point in Figure 6.3(B) jumps from 0 to

DKG ¼ ½la2
z=ðkBTRÞ�2K 2

R , where az represents the height of a single step, l represents the

Lagrange multiplier relating to the volume of the crystal droplet, T represents the tem-

perature, and kB represents the Boltzmann constant. It is surprising that the universal

quantity KR¼ 2/p appears in the expression of the Gaussian curvature jump, where

KR is proportional to the inverse of the KT transition temperature of the XY

FIGURE 6.2 Step tension g and step stiffness ~g of an Si(001) surface [32]. (A) Step tension; (B) step stiffness. Open
squares: values of the SA step calculated by the PWFRG method [44] (see Appendix A). Open circles: values of the
SB step calculated by the PWFRG method. Thick and thin solid curves: one-dimensional (1D) interface in a two-
dimensional (2D) next-nearest-neighbor Ising model for the SB step and SA steps, respectively [31]. Solid circles:
low-energy electron microscopy (LEEM) [45] results for the SA step. Solid squares: LEEM results for the SB step [46].
From Ref. [32].

T < TR T = TR T > TR

(A) (B) (C)

FIGURE 6.3 Faceting transition on an equilibrium crystal shape.

3The Gaussian curvature is defined as KG¼ k1k2, where k1 and k2 are the principal values of the

curvature.
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model: KR¼ J/(kBTKT), where J is the coupling constant of the XY model [18]. This

relation is a result of the duality relationship between the XY model and the SOS model,

which Knops [10] and Jose et al. [11] pointed out.

The vicinal surface for T< TR, where TR represents the roughening transition tem-

perature of the terrace plane, is also interesting because the system can be mapped to a

1D system of free fermions [13–33]. For T< TR, the vicinal surface is described by a

regular train of steps with a zigzag structure (Figure 6.4). This image of the vicinal surface

is called the terrace-step-kink (TSK) or the terrace-ledge-kink (TLK) picture [60–63]. The

free energy of the vicinal surface f (r) can be obtained by the ground-state energy of the

1D free fermion (FF), as follows [13–33]:

f
�
r
� ¼ f

�
0
�þ grþ Br3 þ/ (6.1)

where r represents the step density, g represents the step tension, and B represents the

step interaction coefficient. This correspondence of the surface steps to quantum par-

ticles provides another universal type of surface; in the field of surface studies, a surface

for which the energy is described in Eqn (6.1) is said to be of the Gruber-Mullins-

Pokrovsky-Talapov (GMPT) type [13]. In addition, for T< TR, the vicinal surface near a

facet edge has another universal quantity reminiscent of the KT transition: the universal

Gaussian curvature jump at the facet edge [25,26]. The Gaussian curvature jump can be

expressed exactly in the 1D FF system, independent of the orientation of the vicinal

surface: DK 0
G ¼ ½la2

z=ðkBTÞ�2ðKR=2Þ2. We will discuss this in detail in Section5. We add

here that these singularities on the ECS are observed in systems of 4He [64–72], Pb

[73–76], Ag2S [77], Si [78–82], and other materials [83–85].

This chapter gives an overview of the universal features of the roughening and

smoothing phenomena of surfaces and steps. As background, we mention the treatment

of a surface by Burton, Cabrera, and Frank (BCF) [87] for vapor growth, the treatment of

the surface for melt growth by Jackson [88,89], and the “drumhead wandering” [90–92]

that is caused by capillary waves. We begin with surfaces at temperatures higher than TR

and then consider those at lower temperatures. This also means that we begin with

models at macroscopic scales and proceed to those at microscopic scales. We do this

~ 4 nm~20 nm~ 100 nm~ 1 μm

Equilibrium 
crystal shape
(ECS)

Vicinal surface A step STM image

Thermodynamics Terrace-step-kink
(TSK) picture

Solid-on-solid  (SOS) models FIGURE 6.4 Models in various scales.
From Ref. [86].
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because surfaces and their interfaces are so complex that many models in various scales

need to be considered (Figure 6.4). We begin with an explanation of the surface ther-

modynamic quantities, including definitions of surface, interface, and surface roughness

(Section 3). Next, we show the critical phenomena when the surface is near the tem-

perature TR (Section 4), after which we mention several topics concerning roughening

transitions. We then discuss the vicinal surface when T< TR (Section 5). Finally, we

mention the smoothing of steps and the formation of macrosteps, which is due to an

anomalous polar-angle dependence of the surface tension (Section 6).

6.2 Background
6.2.1 Rough Surface in Crystal Growth—Viewpoint of BCF

Before we proceed further, we briefly review the classical but important work of Burton,

Cabrera and Frank [87], and Jackson [88].

BCF discussed the importance of the roughening transition of a surface4 [87], and

they showed that the growth mechanisms are very different on a rough surface than they

are on a smooth surface.

The growth rate of a rough surface is proportional to the driving force Dm of the

crystal growth (Dm is the difference between the chemical potentials of the bulk crystal

phase and the ambient phase5). A smooth surface, however, does not grow linearly

with Dm. Hence, BCF had to introduce the 2D nucleation process, a surface with a

regular train of steps (a vicinal surface), and a surface with screw dislocations [87,93] in

order to explain a realistic growth rate of a crystal (for example, see Figure 6.5). To see

this, let us consider a curved step on a surface that is near equilibrium. As mentioned in

Appendix D.12 in BCF [87], the normal velocity of a step vn on a surface is described as

follows:

vn ¼ n

�
Dm

U
� ~g

R

�
; ~g ¼ gþ v2g

vf2
; (6.2)

where n represents a kinetic coefficient, Dm represents the driving force,6 U represents a

unit volume, R represents the radius of curvature, ~g represents the step stiffness, g

represents the step tension, and f represents the tilt angle of the mean tangential line of

a step, relative to the y-axis (Figure 6.5(B)). Equation (6.2) is known as the Gibbs-

Thomson equation for a curved step.

4BCF studied the roughening transition by adopting a two-dimensional (2D) Ising model by means of

the Bethe approximation. The limits of this approximation method misled them to thinking that the step

tension had a finite value at the temperature of the roughening transition.
5For vapor growth, Dm¼ kBTln a¼ kBTln P/P0, in the BCF notation, where kB represents the Boltzmann

constant, T represents the temperature, P represents the pressure in the ambient phase, and P0 represents

the equilibrium pressure at some temperature T0. For other cases, please see Appendix B [94].
6Dm/U¼ kTln a in equation D.12 of BCF, and it expresses the case of vn¼ 0.
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As a natural extension of Eqn (6.2), the normal velocity of a surface vn is described as

follows [95,96]:

vn ¼ n

"
Dm

U
� f1
R1

� f2
R2

#

; (6.3)

where R1 and R2 represent the radii of curvature in the principal direction, and f1 and f2
represent the surface stiffness tensors in the principal direction. It should be noted that

the surface of the crystal whose growth behavior is expressed by Eqn (6.3) is implicitly

assumed to be rough. For a smooth surface, the value of f1� f2 diverges [23], so Eqn (6.3)

cannot be applied to describe the growth velocity. On a smooth surface, crystal growth

occurs under conditions that are far from equilibrium. Hence, the growth process of a

smooth surface depends on the microscopic details of the surface.

6.2.2 Entropy Effect—Jackson’s Argument

In 1958, Jackson [88] pointed out the relationship between the surface roughness and the

entropy of melting, and introduced the parameter a, which is called Jackson’s parameter.

Jackson’s parameter indicates the relative degree to which the surface energy contributes

to the free energy, compared to the contribution of the surface entropy. In this sub-

section, we discuss the surface entropy of roughness.

According to the calculations on the two-level (Jackson) model [55,88,94], in which

the interface is considered in the “atomic” scale,7 the interface between the liquid and

the crystal is described by a 2D lattice. The free energy of the interface between the liquid

and the crystal G(C,T) is given by a mean-field approximation, as follows:

GðC;TmÞ=ðNkBTmÞzaCð1� CÞ þ C ln C þ ð1� CÞlnð1� CÞ; (6.4)
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(A) (B)

FIGURE 6.5 (A) Example of crystal growth at a surface at a normal velocity vn. Solid line: a rough surface. Broken
line: a smooth surface with a screw dislocation. (B) Schematic illustration of a screw step on a surface (perspective
view) [87].

7What was meant by the “atomic” scale in 1958 is equivalent to a scale that is more than a unit cell of

a crystal.
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where Tm represents the melting temperature, N represents the total number of lattice

points in the 2D lattice, kB represents the Boltzmann constant, C represents the con-

centration of the “solid-like atom,” and a¼ z0feff/(2kBTm) represents Jackson’s a. Here, z0

represents the number of nearest-neighbor (nn) sites for a 2D lattice on a surface, feff

represents the effective bond energy. Since the bond energy is approximately measured

by the heat of melting per molecule Dh, Jackson’s a can be rewritten using the entropy of

melting, as follows:

a ¼ z0

z

Dh

kBTm

¼ z0

z

Ds

kB

; (6.5)

where z represents the number of nn sites in a 3D lattice and Ds represents the entropy of

melting per molecule. Using the roughening transition temperature TR, Jackson’s a can

be rewritten as follows: az2TR=Tm [97]. Therefore, a can be used to estimate the

roughening transition temperature of a specific surface.

The original idea of introducing a in Eqn (6.4) was to consider the relative contri-

butions of the energy and the entropy to the interface free energy (Figure 6.6). The first

term on the right-hand side (r.h.s.) of Eqn (6.4) represents the energy cost due to

interface roughness, and the second and the third terms on the r.h.s. represent the

contributions of the interface entropy. Hence, for large a, energy wins and the interface

is smooth, while for small a, entropy wins and the interface becomes rough. Usually, the

entropy does not depend on the substance,8 but the bond energy strongly depends on

the substance. Therefore, for each substance, Jackson’s a parameter gives us information

about whether the roughening transition will be observable.9

The anisotropy of interface entropy due to the interface roughness is sometimes

ignored, and we note that there is also anisotropy due to the structure of the crystal

lattice. As shown in C, the ground-state structure of the interface is generally degen-

erated except for the several interfaces that have a low Miller index. When there is an in-

plane bond network that connects all of the atoms, the interface will have a unique

structure [51].

6.2.3 “Drumhead Wandering” due to Capillary Waves

In Figure 6.7, we show an intuitive picture of phase coexistence for a bulk crystal and

a bulk ambient phase. The two phases are separated by a narrow interface region of

width w.

8We recall Trouton’s rule for the vaporization of a liquid. This rule states that the entropy of

vaporization is almost constant, irrespective of the substance.
9If the loss of the long-range periodicity of a crystal has a dominant contribution to the increase of

entropy, as in metals, the melting of entropy will be small and so a is small (2–3). The interface is rough

near the melting temperature. On the other hand, in the case of orientational molecules, for example, the

entropy of melting is large because disordering of the molecular orientation occurs together with the

disordering of the periodicity of the crystal. In this case, a becomes large (w10). Then, the surfaces at

several azimuths become facets at the melting temperature.
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If we try to consider the interface/surface precisely, we find that the definition of an

interface (surface) is not trivial. At a crystal-melt interface, for example, the location of

the interface is rather ambiguous when we consider the model at a microscopic scale.

The liquid phase is generally distinguished from the crystal phase by the lack of a

2w

ρa

ρc

h

(A) (B)

2w

x

y

h

L

L

FIGURE 6.7 Schematic illustration of crystal-vapor coexistence, showing the diffuse interfacial region. (A) Shaded
area: crystal; w: width of interface. (B) Density profile. rc: density of crystal; ra: density of the ambient phase
(vapor phase).

FIGURE 6.6 Snapshots of a computer simulation of the roughening transition on a solid-on-solid model [89]. From
Ref. [55].
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long-range periodic structure. This means that we cannot tell the difference between

“liquid” and “crystal” by observing only a single atom. The same situation occurs in the

magnetic domain walls of the XY model and the Heisenberg model. The microscopic

parameters at the interface or in the domain wall change continuously, as shown in

Figure 6.7. In this case, the interface (or the crystal surface) is unstable against the long-

wavelength distortions that are excited by thermal fluctuations with infinitesimal energy

costs [90–92]. That is, the interface is rough.

In this subsection, using the drumhead model (Figure 6.8), we explain how the long-

wavelength distortions called “capillary wave” destabilize the continuous interface/

surface.

The work functional against the surface tension for the instantaneous distortion of

the surface dividing phase 1 from phase 2 is given by Buff, Lovett, and Stillinger in the

following equation [90–92]:

HDH ¼
Z

g0

ffiffiffi
g

p
dxdy þ 1

2
m2

0

Z
zðx; yÞ2dxdy; (6.6)

where z(x,y) represents the instantaneous “dividing surface” between phases 1 and 2

(the surface of the drumhead),
ffiffiffi
g

p
dxdy represents a small surface area dA, g0 repre-

sents the surface tension, and m0 represents the force necessary to stabilize the surface

(e.g., gravity for a liquid–gas interface). Here, g represents a geometrical factor and is

defined by g ¼ 1þ p2
x þ p2

y , where px¼ vz/vx and py¼ vz/vy. This work functional is also

called the “drumhead” Hamiltonian [92]. The thermodynamic equations and the cor-

relations follow from ZDH ¼ R Dz½expf � bHDHg� with b¼ 1/kBT, where
R
Dz describes

the integral of all possible surface distortions. The surface area term in Eqn (6.6) can be

expanded as

ffiffiffi
g

p ¼ 1þ 1

2

�
p2
x þ p2

y

�
þO

��
p2
x þ p2

y

�2�
þ/: (6.7)

The Hamiltonian of Eqn (6.6) is usually approximated by the term that has lowest

order with respect to
ffiffiffi
g

p
: 1þ ð1=2Þðp2

x þ p2
yÞ.

(A) (B)

z(x,y)
L0

z

x y

FIGURE 6.8 (A) A drum with a drumhead. (B) Surface height of the drumhead.
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The local strength of the fluctuations from the mean shape of the surface hzðx; yÞi ¼ 0

is measured by the variance, where <$> represents the thermal average. This becomes

D
zðx; yÞ2

E
¼ kBT

ð2pÞ2
Z

dqxdqy

g0

�
q2
x þ q2

y

�
þm2

0

; (6.8)

where qx and qy are the wave numbers introduced by the Fourier decomposition (similar

to the argument in Appendix E). In the thermodynamic limit (L/N), this integral

becomes

D
zðx; yÞ2

E
¼ kBT

4pg0

ln
g0L

2 þm2
0

g0k
2
0 þm2

0

; (6.9)

where L ¼ 2p=a represents the upper cutoff, a is the lattice spacing, and k0¼ 2p/L

represents the low-wavenumber (infrared) cutoff for the integral. Therefore, for m2
0 ¼ 0,

the variance diverges logarithmically in the thermodynamic limit L/N, as follows:

D
zðx; yÞ2

E
¼ kBT

4pg0

ln L: (6.10)

The long-wavelength fluctuations, the capillary waves, destabilize the surface. This

surface instability is referred to as “drumhead wandering” [92].

It is important to note that the drumhead wandering depends on the dimensionality of

the space. Extending the above argument to a general (d� 1)-dimensional interface in a d-

dimensional space, the variance of the interface fluctuations Eqn (6.8) becomes as follows:

	
z2

 ¼ kBT

ð2pÞd�1

Z
dd�1q

g0q
2 þm2

0

f

ZL

k0

qd�2dq

g0q
2 þm2

0

: (6.11)

In the thermodynamic limit (L/N), hz2i becomes ðm2
0Þ

1
2 ðd�3Þ. Hence, for d< 3, hz2i

obeys a power law, and for d¼ 3, hz2i becomes w� lnm2
0. While for d> 3, there is no

divergence around k0¼ 0. As for the surface with m0/ 0,10 for d¼ 2, the 1D surface

(a step) is always rough; for d¼ 3, the surface is marginal; and for d> 3 (if it exists), the

surface is always smooth [4,5].

6.3 Rough Surface
6.3.1 Definition of an Interface

6.3.1.1 Existence of a Roughening Transition Temperature
Rigorously speaking, at equilibrium, the crystal surface is an interface between the

crystal phase and the ambient phase. However, we will use the terms surface and

interface interchangeably. We begin this section with the definition of an interface.

10As a candidate of m0 on a surface, we may consider the potential to form a lattice structure. Such an

effect can be taken into consideration by the discrete Gaussian model [98]. In the case of metals, a

quantum effect with respect to the electrons may be a candidate for the case of m0.
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When a crystal is surrounded by a vapor phase, the microscopic separation between

the crystal phase and the vapor phase is relatively clear.11 The discrete order parameter,

therefore, can be used to describe the configuration of the interface.12 In this case, the

surface of the crystal can be described as the interface in a 3D Ising model. For the

interface in a 3D Ising model, it has been rigorously proven that the interface causes a

roughening transition at a temperature less than the transition temperature of the bulk

3D Ising model Tc,3D [4,5]. In addition, the roughening transition temperature TR is near

the transition temperature of the 2D Ising model Tc,2D, but has been rigorously proven

to be higher than Tc,2D [4]. Since the existence of the roughening transition is guar-

anteed by these rigorous results for the interface in a 3D Ising model, several solid-on-

solid (SOS) models, which are specialized for surfaces, will be used to study surface

roughness.

A coarse-grained rough surface of a crystal is diffuse, and it will have a surface profile

that appears similar to that shown in Figure 6.7. In the following subsubsections, we will

give a brief overview of how to assign tension to a coarse-grained interface when using

the Ising model. To simplify this, we will use the 2D Ising model.

6.3.1.2 Ising Model and the Equivalent Lattice Gas Model
The 2D and the 3D Ising models are often adopted for the microscopic study of surface

roughness. The Hamiltonian of the Ising model is written as follows13:

HIsing ¼ �J
X

hi;ji
sisj �H

XN

i¼1

si; (6.12)

where s¼ {�1} represents the Ising spin, J represents the coupling constant between

spins, H represents an external magnetic field, and N represents the total number of

lattice points. The summation of hi; ji is taken over all the nearest-neighbor (nn) pairs.

The equivalent Hamiltonian of the lattice gas model is written as follows:

HLG ¼ �bf
X

hi;ji
CiCj � ðm2D � mambientÞ

XN

i¼1

Ci; (6.13)

where bf represents the bond energy between nn atoms, C¼ {0,1} indicates the presence

of lattice gas (C¼ 1 when it is present and C¼ 0 otherwise), m2D represents the chemical

potential of the atoms in the 2D lattice, and mambient represents the chemical potential of

the atoms in the ambient phase. m2D is approximately written by m2D ¼ �bf=2þ mcrystal,

where mcrystal represents the chemical potential of the atoms in the bulk crystal. The Ising

11Even in the case of a crystal-vapor interface, the location of the phase separation sometimes becomes

ambiguous for multicomponent crystals, such as can be seen in stones.
12The crystal-melt interface can be described by the discrete order parameter when another parameter,

such as one for dielectric polarization, accompanies the crystal-melt transition. It is possible to identify

melt or crystal at the microscopic scale by observing the dielectric polarization parameter.
13Figure 6.13(A) shows a side view of a 2D lattice gas model that is equivalent to the 2D Ising model.
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Hamiltonian (6.12) is translated into the lattice gas Hamiltonian by substituting

s¼ 2C� 1, as follows:

HIsing ¼ HLG þ DE

DE ¼
�
2H � zJ

�
N =2; 4J ¼ bf; 2H ¼ mcrystal � mambient;

(6.14)

where z represents the number of nn sites.14

In the case of J¼ 0, the Ising model (the lattice gas model) reduces to a two-level

model with independent elements (Jackson’s model).

6.3.1.3 Definition of Interface Tension
The partition function of the Ising system is obtained as ZIsing ¼

P
si
exp½�bHIsing�,

where b¼ 1/kBT. The summation {si} is taken over all possible spin configurations. The

free energy (density) of the system is obtained as f ðT Þ ¼ �ðkBT=N Þln ZIsing. The exact

form of f(T) was given by Onsager for the 2D Ising model with H¼ 0 [99].

The free energy of an interface is generally defined as the excess free energy due to the

coexistence of the two phases. We will consider an example of this for a 1D interface in a

2D Ising model. For a temperature T< Tc,2D, where Tc,2D represents the Curie temper-

ature of the 2D Ising model, a finite magnetized spin configuration will be self-organized.

A phase separation line, such as the one between end points O and P in Figure 6.9, can be

formed by applying a special boundary condition called an antiphase boundary condi-

tion (Figure 6.9). We denote the partition function of the Ising model system with a

uniform boundary condition by Zþþ, and the partition function with the antiphase

boundary condition by Zþ�(q). The 1D interface free energy per length (in the horizontal

direction) is defined as follows [4]:

f1DðqÞ ¼ lim
Nx/N

�kBT

Nxa
ln

Zþ�ðqÞ
Zþþ

; (6.15)

FIGURE 6.9 A 1D interface as a phase separation
line under an antiphase boundary condition in the
2D Ising model [4,6–8,38,39]. In the lattice gas
model that is equivalent to this 2D Ising model,
the phase separation line corresponds to a step on
the surface. From Ref. [39].

14This zJð¼ zbf=4Þ relates to the “half crystal site.”
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where Nx is the number of lattice points in the horizontal direction. The interface tension

of a 1D interface is given by

g1DðqÞ ¼ f1DðqÞjcos qj ¼ f1DðqÞ
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2
x

q
; (6.16)

where px¼ tan q [6,94].

In the case of the 1D interface, we can go further by using the imaginary-path-weight

random walk (IPW) method (Appendix D) [100]. In Figure 6.2, the calculated step

quantities for Si(001) are shown [31]. The Ising values were calculated by the IPW

method. As seen from Figure 6.2, the Ising model provides good approximations for the

step tensions and step stiffness at low temperatures. Figure 6.10 shows the step tension

and step stiffness for the Si(111) surface, as calculated by using the honeycomb Ising

model with a staggered magnetic field [39]. The calculated values were obtained by the

IPW method.

The random walk picture of the interface that connects O and P locates the 1D

interface at the line connecting O and P in the limit of L/N. The existence of the limit

is guaranteed by the central limit theorem. Similarly, a 2D interface in the 3D Ising

model can be introduced under the antiphase boundary condition. The idea of the phase

separation line can be easily extended to that of a phase separation surface in the 3D

(A)

(B) (D)

(C)

FIGURE 6.10 Step quantities for a double layer of a (111) surface of a diamond structure [39]. The microscopic
coupling constants were chosen to reproduce the experimental observations [81,101] on Si(111), which are
denoted by open squares and an open circle. (A) The equilibrium shape of an island at 900 �C; (B) a polar graph
of the step stiffness at 900 �C; (C) temperature dependence of the step tension; (D) temperature dependence of
the step stiffness. In (C) and (D), the thick lines correspond to the f211g step and the thin lines to the f101g step.
From Ref. [39].
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Ising model. Therefore, the location of the interface as a mathematical plane h(x,y) is

determined by the boundary condition in the Ising model.15

6.3.2 Definition of Surface Roughness

6.3.2.1 Surface Width—Variance of Surface Height
The variance of the surface height is defined as the squared surface width, as follows:

W 2
surf ¼

D
½hðxÞ � hhðxÞi�2

E
; (6.17)

where h$i represents the thermal average. Examples of the squared surface width in the

limit as L/N are listed in Table 6.1, where az represents the unit height of a step and

d is the number of space dimensions.16 When T< TR, the squared surface width becomes

a certain finite value in the limit of L/N. Let the finite value be denoted by w2. Hence,

we have

w2 ¼ lim
L/N

D
½hðxÞ � hhðxÞi�2

E
: (6.18)

Table 6.1 Surface Width and Surface Roughness (d¼ 3)

Squared Surface
Width W2

surf

Squared Surface
Roughness w2

surf Remarks

kBT

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ijÞ

p ln L
kBT

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ijÞ

p
T> TR (Section 3.2.1, Section 3.3, Appendix E)

a2z
2p

KR ln L
a2z
2p

KR T¼ TR, KR ¼ 2
p
ðSection 3:2:1; Section 4:2Þ

w2 0 T< TR smooth surface (Section 3.2.1) w2: a finite value of the
variance of the surface height

a2z
2p

�
KR

2

�
ln L

a2z
2p

�
KR

2

�
T< TR for vicinal surface with small slope limit (Section 5.2)

kBT

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ijÞ

p ln L
kBT

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ijÞ

p T< TR for vicinal surface with large slope (Section 3.3)

a2z
2p~lðgÞ

�
KR

2

�
ln L

a2z
2p~lðgÞ

�
KR

2

�
T< TR for vicinal surface with small slope and with elastic
step–step repulsion (Section 5.3)

15For more general cases, the location of the interface within the area w in Figure 6.7 is ambiguous. For

simplicity, however, we will consider that the interface is located at the Gibbs’ dividing surface, and we

will denote it by h(x,y). In the case of multicomponent materials, the interface may have multiple dividing

surfaces.
16This is done in accordance with the customary notation of the statistical mechanics of an

interface [92].
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When T� TR, the surface width diverges logarithmically as the limit of L/N, as follows

(Appendix E, Eqn (E.6)) [23]:

W 2
surf ¼

kBT

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ijÞp ln L; (6.19)

where (fij) (i,j¼ x,y) represents the surface stiffness tensor, which will be explained

in the following subsection (Section 3.3). This divergence is caused by the “drumhead

wandering” explained in Section 2.3. Though the surface is well defined in the micro-

scopic scale, a rough surface behaves like the liquid–vapor interface in macroscopic

scale. That is, long-wavelength distortions of the surface, called capillary waves, desta-

bilize the surface.

Keeping in mind Eqn (6.19), a nondivergent measure of the surface roughness wsurf

can be defined as follows:

wsurf ¼
h
W 2

surf

.
ln L

i1=2
ðL/NÞ; (6.20)

which we call a scaled surface width. The scaled surface width is suitable for defining the

“surface roughness.” Hence, the squared surface roughness is expressed as follows:

w2
surf ¼

8
>>>><

>>>>:

kBT

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ij�

q T > TR

a2
zKR



2p T ¼ TR

0 T < TR

; ðd ¼ 3Þ; (6.21)

where we use the universal relationship
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ijÞ

p
¼ kBT=ðKRa

2
zÞ at TR (Section 4.2) with

the universal value KR¼ 2/p.

6.3.2.2 Height–Height Correlation Function of a Surface
There is another quantity that may be suitable for defining the surface roughness. The

height–height correlation function is defined as follows:

GðrÞ ¼
D
½hðx þ rÞ � hðxÞ�2

E
: (6.22)

Similarly, after some calculations, in the limit of r¼ jrj/N, we obtain [22]

GðrÞ ¼

8
>>>><

>>>>:

kBT

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ij�

q ln r T > TR

�
a2
zKR



p
�
ln r T ¼ TR

2w2 T < TR

; ðd ¼ 3Þ: (6.23)

where w2 represents a finite value calculated by Eqn (6.18). Hence, we can also define the

surface roughness as [G(r)/ln r]1/2, which is the value multiplied by
ffiffiffi
2

p
of the value

defined by Eqn (6.20).
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6.3.2.3 Thin Film-Like Surface in the Macroscopic Scale
It should be noted that the macroscopic appearance of a rough surface looks like a

continuous thin surface. The surface width Wsurf, the square root of the variance of the

surface height, diverges at the rough surface. The ratio of the volume of the surface

region (wL2�Wsurf) and the bulk (wL3) becomes Wsurf/L and converges to zero in the

limit as L/N. Therefore, in the thermodynamic limit, a rough surface looks like a thin

elastic film.

6.3.3 Relationship between Energy and Shape

In this subsection, we show how the thermodynamic quantities on the surface relate to

the geometry of the equilibrium crystal shape, which is the shape of a crystal droplet that

has the least surface free energy (Figure 6.11(A)). The final relationship we would like to

present in this subsection is the following [23]:

w2
surf ¼

1

2p

kBTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ijÞp ¼ 1

2p

kBT

l
g

ffiffiffiffiffiffi
KG

p
; g ¼ 1þ jp��2; (6.24)

where g is the geometrical constant17 and KG is the Gaussian curvature [59] of the

surface.

The quantities defined on crystal surfaces are anisotropic; this is because of the

structure of the crystal lattice. The ECS can be obtained by using the polar graph of the

surface tension and the Wulff construction method [49–55]. Andreev and Landau [56,57]

proposed another method in which the ECS may be obtained analytically [56,57]; in their

method, the ECS and the surface gradient p are described by z(x,y) and p¼(vz(x,y)/

vx,vz(x,y)/vy), respectively. Andreev introduced the Andreev free energy f(h) [57] as the

Legendre transformed thermodynamic potential of a surface with respect to the surface

gradient p, as follows: f(h)¼ f(p)� p,h, where f ðpÞ ¼ gsurfðnÞ ffiffiffi
g

p
represents the surface

free energy per projected xy area, gsurf (n) represents the surface tension, n represents

the surface normal unit vector (see Eqn (F.1)). Hereafter, we will call f(p) the vicinal

surface free energy. Here, h is the Andreev field, the thermodynamic force conjugate to

the surface gradient, which causes the surface to tilt.

z = z (x, y)

z

x

y

f  (     ,      )~ ηx ηy

ηx

ηy

f~

pe

F
~

p

(A) (B) (C)

FIGURE 6.11 (A) An equilibrium crystal shape; (B) Andreev free energy [57]; (C) Extended free energy for the
Hamiltonian of the capillary wave.

17More precisely, g¼ det(gmn), where gab¼ dabþ papb (a, b¼ {x,y}), px¼ vz(x)/vx, and py¼ vz(x)/vy [59].
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For the least free energy condition on the crystal droplet, the thermodynamic

equations for the ECS [57] are obtained as follows:

~f
�
hx; hy

� ¼ lzðx; yÞ; hx ¼ �lx; hy ¼ �ly

pe;a ¼ �v~f
�
hx; hy

�

vha

; ha ¼
vf
�
px;py

�

vpa

; ða ¼ x; yÞ;
(6.25)

where pe (pe,x, pe,y) is the surface gradient in equilibrium

It is interesting that the shape of the Andreev free energy as a function of h is similar

to the ECS (Figure 6.11(A) and (B)). Therefore, determining a thermodynamic quantity

on a surface can be transformed to the problem of determining the geometry of the ECS.

Next, let us consider the fluctuations around the ECS. The Gaussian-type capillary-

wave Hamiltonian is obtained from the extended free energy with respect to the slope

fluctuations around the equilibrium surface slope (Appendix F) [23,102]:

HCW ¼ 1

2

ZL

0

dx

ZL

0

dy
h
f xx
�
pe

�
Dp2

x þ f yy
�
pe

�
Dp2

y þ
�
f xy
�
pe

�þ f yx
�
pe

��
DpxDpy

i
; (6.26)

where (fij) represents the surface stiffness tensor and is defined as follows:

�
f ij
� ¼

�
f xx
�
pe

�
f xy
�
pe

�

f yx
�
pe

�
f yy
�
pe

�

!

¼

0

BBBB@

v2f
�
p
�

vp2
x

v2f
�
p
�

vpyvpx

v2f
�
p
�

vpxvpy

v2f
�
p
�

vp2
y

1

CCCCA

�������
p¼pe

: (6.27)

Using this capillary-wave Hamiltonian, we can determine the thermal average

explicitly (Appendix E), and then we obtain

W 2
surf ¼

kBT

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ijÞp ln L: (6.28)

Further, from the definition of the Gaussian curvature and Eqn (6.25), we can obtain

an expression for the Gaussian curvature KG, as follows:

KG ¼ 1

g2
det

�
v2z

vxmvxn

�
¼ l2

g2

1

detðf ij�;

ðm; n ¼ 1 or 2; x1 ¼ x; x2 ¼ y
�
:

(6.29)

From Eqns (6.20), (6.28), and (6.29), we obtain the final equation, Eqn (6.24).

Equation (6.24) connects the quantities of the surface roughness (the scaled surface

width), the surface stiffness tensor, and the Gaussian curvature of the surface.

6.3.4 Roughness of a Single Step

In this subsection, we consider the roughness of a single step on a surface when T< TR.

As shown in Figure 6.9 [6] for the Ising model, we will consider a step for which the

mean running direction is OP. We assign the height of the step h(x) in the vertical
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direction. Similar to Eqn (6.17), we define the width of the step as the variance of the

height of the step, as follows:

W 2
step ¼

D
½hðxÞ � hhðxÞi�2

E
: (6.30)

We can then obtain, for T< TR:

W 2
step ¼ ðkBT=~gÞL; ~g ¼ gþ v2g

vf2
(6.31)

for an isolated step, where ~g represents the step stiffness, and f represents tilt angle

of the step. Hence, it is natural to define the step roughness as wstep ¼ Wstep=
ffiffiffi
L

p
. In

Figure 6.12, examples are shown of wstep for a 1D interface in the 2D Ising model [6].

The 1D interface in the 2D Ising model is considered to be an approximate model of a

step on a (001) surface of a cubic Kossel crystal (Figure 6.2). As seen from Figure 6.12,

the roughness of a step is strongly anisotropic at low temperatures. This is because of

the degeneracy of the ground states with respect to the configuration of a step.

We can obtain a relationship similar to Eqn (6.24) between the step stiffness, the step

roughness, and the curvature of the 2D ECS [6,7]:

w2
step ¼ kBT

~g
¼ kBT

l
k; (6.32)

where k represents the curvature at a point of the 2D ECS.

(A) (B) (C)

0 1
[10]

0 1
[10]

0 1
[10]

(D) (E)

0 1
[10]

2 0 1 2
[10]

3

FIGURE 6.12 Polar graphs of wstepðfÞ
ffiffiffiffiffiffiffiffiffiffi
cosf

p ¼ WstepðfÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosf=L

p
for the 2D square-lattice Ising model. The

temperatures are chosen as (A) T/Tc¼ 0.1; (B) T/Tc¼ 0.3; (C) T/Tc¼ 0.5; (D) T/Tc¼ 0.7; and (E) T/Tc¼ 0.9. From
Ref. [6].
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It should be noted that the variance of a step in the vicinal surface is different from

Eqn (6.31) but becomes as follows [103–105]:

W 2
step;vicinal ¼

8
>>><

>>>:

kBT

2pa2
zr

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ij�

q ln L ðL/NÞ

1

2p2r2
ln L ðr/0;L/NÞ

; (6.33)

where r represents the step density on a vicinal surface. Since a single step collides with

the adjacent steps, the step width here diverges more weakly than for an isolated step. In

this case, the squared “roughness of a step” w2
step;vicinal should be defined as

w2
step;vicinal ¼ W 2

step;vicinal=ln L. We will return to this below in Section 5.3.

6.4 Roughening Transition and Faceting Transition as
Critical Phenomena

6.4.1 Microscopic Models for Studying Surface Roughness

In this subsection, we will demonstrate some typical microscopic models for studying

the surface roughness of the (001) surface of a crystal (Figure 6.13). The known rough-

ening transition temperatures TR are listed in Table 6.2. Since the transition temperature

Tc of the 2D Ising model gives a lower bound for TR, Tc for several lattice structures are

also given in Table 6.2.

(A)

(C) (D)

(B)

FIGURE 6.13 Side view of surfaces. (A) 2D lattice gas model equivalent to the 2D Ising model, (B) BCSOS model,
(C) ASOS model, (D) RSOS model.
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6.4.1.1 BCSOS Model
In Figure 6.13(B), the BCSOS model [1] is shown. The BCSOS model is a microscopic

model of the (001) surface of the body-centered cubic crystal. This model is usually

described by the 6-vertex model (Figure 6.14). The Hamiltonian is as follows:

HBCSOS ¼ 31=2
X

ðn;mÞ

X

d

½jhAðn;mÞ � hBfðn;mÞ þ dgj� þ 32

X

hi;ji

���hA;i � hA;jj þ jhB;i � hB;j

���; (6.34)

where ε1 represents half of the nn bond energy, and ε2 represents half of next nn (nnn)

bond energy. Since the crystal structure of the model is body-centered cubic (BCC), the

lattice points can be divided into two cubic lattices, the A-sublattice and B-sublattice. We

will distinguish the sites in the A- and B-sublattices by adding an A or B to the variables.

The summation (n,m) is taken over all A-sublattice points, and the summation hi; ji is

taken over all pairs of the nn sublattice points.

FIGURE 6.14 Mapping of the body-centered cubic solid-on-solid model to a 6-vertex model [1]. From Ref. [1].

Table 6.2 Phase Transition Temperatures

Model TR or Tc Hamiltonian Remarks

2D Ising model kBTc=J ¼ 2=lnð1þ
ffiffiffi
2

p
Þ

z2:269
Equation (6.12) Exact. Square lattice.

kBTc/J¼ 2/cos h�1(2)
z1:519

Equation (6.12) Exact. Honeycomb lattice [106].

kBTc/J¼ 4/ln(3)
z3:641

Equation (6.12) Exact. Triangular lattice [106].

kBTc=J ¼ 4=lnð3þ 2
ffiffiffi
3

p
Þ

z2:143
Equation (6.12) Exact. Kagome lattice [106].

kBTc /J¼ 4/ln(3)
z2:405

Equation (6.12) Exact. Diced lattice [106].

3D Ising model TR> Tc,2D Equation (6.12)
BCSOS model kBTR= 3¼ 1=ln 2

z1:443
Equation (6.34) Exact [1].

ASOS model kBTR=εz1:21 Equation (6.37) Square lattice [2].
RSOS model kBTR=εz1:580 Equation (6.38) Square lattice [3,107].
Discrete Gaussian model kBT=Jz1:44 Equation (G.1) Square lattice [2].
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In the BCSOS model, ε1 is set to infinity in order to avoid the overhang structure.

Hence, the height difference between the nn sites, jDhj ¼ jhA,i� hB,jj, is fixed to be 1/2.

The partition function of the BCSOS model ZBCSOS is defined as

ZBCSOS ¼
X

fhAðm;nÞg

X

fhBðm;nÞg
exp½ � bHBCSOS�; (6.35)

where b¼ 1/kBT, and the summation with respect to {hA(m,n)} and {hB(m,n)} means the

summation over all possible surface configurations. This partition function is usually

calculated for the equivalent 6-vertex model (Figure 6.14), and it was obtained exactly by

van Beijeren [1]. The surface tension gsurf(0) and the surface free energy per area fsurf(0)

for the (001) surface are calculated as follows:

gsurfð0Þ ¼ fsurfð0Þ ¼ lim
N/N

kBT

N a2
ln ZBCSOS; (6.36)

where a represents the lattice constant of a cubic lattice. As mentioned in Section 1, the

exact calculations for the BCSOS model greatly contributed to the understanding of

roughening and faceting transitions.

6.4.1.2 ASOS Model and RSOS Model
Figure 6.13(C) shows a side view of the absolute SOS (ASOS) model [89]. A perspective

view of the ASOS model was already shown in Figure 6.1(A). This ASOS model is a natural

model and is based on the Kossel crystal [108]. The height variable h(x,y) takes an

integer. The Hamiltonian of the ASOS model is given by

HASOS ¼ 3
X

m;n

½jhðmþ 1;nÞ � hðm;nÞj þ jhðm;nþ 1Þ � hðm;nÞj�; (6.37)

where 3represents the microscopic energy cost required to make the nearest-neighbor

(nn) height difference Dh. The summation of (m,n) covers all lattice points on the

square lattice. Since 3is half of the lateral bond energy, 3corresponds to 2J in the 2D

Ising model.

Figure 6.13(D) shows a side view of the restricted SOS (RSOS) model [109], where

“restricted” means that the nn height difference is restricted to {0,�1}. The Hamiltonian

of the RSOS model is similar to that of the ASOS model, as follows:

HRSOS ¼ 3
X

m;n

½jhðmþ 1;nÞ � hðm;nÞj þ jhðm;nþ 1Þ � hðm;nÞj�: (6.38)

The RSOS restriction is implicitly assumed.

The partition function of the ASOS model ZASOS and the RSOS model ZRSOS are

defined in a way similar to Eqn (6.35). The exact solutions for these models, however,

have not yet been obtained.

6.4.2 Summary of KT-Type Critical Phenomena of Surfaces

According to Knops’ correspondence [10,11] that was based on the duality arguments,

T �
KT is related to the roughening transition temperature TR; the quasi-long-range ordered
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phase for T � < T �
KT in the XY model corresponds to the rough phase for T> TR in

the surface model, and the phase for T � > T �
KT in the XY model corresponds to

the smooth phase for T< TR. The transition temperature of the XY model is given

by the zero of the free energy for a single vortex creation as follows:

kBT
�
KT=J ¼ 1=KR ¼ p=2 [11,40].18 The surface structure corresponding to the vortex in the

XY model is not easily seen.

The features of the roughening transition are listed below [18,22,25,26]:

1. Correlation length

xðT Þ ¼

8
><

>:

N T � TR

x0 exp

�
A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TR � T

p
�

T < TR

; (6.39)

where TR (Table 6.2), x0, and A are nonuniversal constants.

2. Surface tension: The singular part of the surface tension becomes

gsurf;singzB exp

 

� C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijT � TRj

p

!

; (6.40)

where B and C are nonuniversal constants. In Figure 6.15(A), we show the surface

tension of the (001) surface for the RSOS model. We also show the surface entropy

and the surface internal energy in Figure 6.15(B) and (C), respectively. The sin-

gularity around TR, however, is too subtle to be discerned. The steep increase of

the surface entropy occurs near at Tc,Ising
19 of the 2D Ising model. This increase of

the surface entropy results from the increase of the kink density on the surface.

0 0.5 1 1.5 2
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0.6

0

u 
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)/ 
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k  T/ εB
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0

s (
0)
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-0.4

k  T/ εB
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(001)

γ 
   

  (
0)

/ε
su

rf

(A) (B) (C)

FIGURE 6.15 Thermodynamic quantities of the (001) surface of a cubic lattice: RSOS model and PWFRG
calculations (Appendix A). kBTR=ε ¼ 1:580: (A) Surface free energy per unit cell area. (B) Surface entropy per unit
cell area. (C) Surface internal energy per unit cell area [110]. From Ref. [110].

18J represents the coupling constant of the XY model.
19kBTc;Ising= 3¼ 1=lnð1þ ffiffiffi

2
p Þw1:135.
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3. Height–height correlation function:

GðrÞ ¼

8
>>>><

>>>>:

kBT

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ij�

q ln r T > TR

�
a2
zKR



p
�
ln r T ¼ TR

2w2 T < TR

ðd ¼ 3Þ; (6.41)

where w2 represents a finite value calculated by Eqn (6.18).

4. Step free energies: Near TR, the step free energy behaves as follows:

fstepðT Þ ¼

8
><

>:

0 T � TR

fstep;0 exp

�
� A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TR � T

p
�

T < TR

(6.42)

where fstep,0 and A are nonuniversal constants. For the BCSOS model,

A ¼ p2=ð4 ffiffiffi
2

p
ln 2Þz2:52 [18]. Since the 2D ECS obtained by the step tension coincides

with the facet shape of the ECS [24], a decrease in the step tension leads to a faceting

transition (Figure 6.3).

In Figure 6.16, we show the step tension gstep and the step stiffness ~gstep. As ex-

pected, the behavior of step tension at high temperature is well described by Eqn

(6.42). Unexpectedly the value of A for the BCSOS model could fit the data for the

RSOS model, though the value of A is thought to be nonuniversal.

We also show the step entropy and the step internal energy for the RSOS model

in Figure 6.17. Both the step internal energy and the step entropy reduce to zero in

the manner of Eqn (6.42). Here, a step entropy of zero does not mean a smooth

surface. From Eqn (6.32), a step stiffness of zero causes a divergence in the step
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k  T / εB
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  /
ε
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k  T / εB
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(A) (B)

FIGURE 6.16 Thermodynamic quantities of a step on a (001) surface [110]. (A) Step tension. (B) Step stiffness.
Open squares: f¼ 0,(01) step. Open triangles: f¼ p/4,(11) step. Dotted line: 1D interface for the 2D nn
Ising model f¼ 0,Broken line: 1D interface for the 2D nn Ising model f¼ p/4. Solid line: (A) gstep= 3¼ 6 �
expð�2:52=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:580� kBT= 3

p Þ; (B) ~gstep= 3¼ 8 expð�2:52=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:580� kBT= 3

p Þ. kBTR=ε is assumed to be 1.580. From
Ref. [110].
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roughness (the scaled step width) wstep at TR. Hence, the steps dissolve into the

bulk, as will be discussed in the following Section 4.3.2 for the 2D Ising model.

Since the step free energy is defined as the excess part of the free energy from

the bulk (Section 3.1.3), the step free energy decreases to zero as the temperature

increases to TR.

5. Surface free energy: Just above TR, the vicinal surface free energy density and the

Andreev free energy become as follows (Figure 6.18(A)) [18]:

f ðpÞ ¼ f ð0Þ þ kBTR

2KRa2
z

jpj2 þO

�
jpj3

�
; (6.43)

~f ðhÞ ¼ f ð0Þ � a2
zKR

2kBTR

jhj2 þO

�
jhj3
�
; (6.44)

where KR¼ 2/p and f(0)¼ gsurf(0). Hence, we have,
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FIGURE 6.18 Profile of surface tension: RSOS model and PWFRG calculations (A) kBT=ε ¼ 1:7 (T> TR).
(B) kBT=ε ¼ 0:6 (T< TR).
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FIGURE 6.17 Thermodynamic quantities of a step on the (001) surface [110]. (A) Step entropy. (B) Internal energy
of a step. Open squares: f¼ 0 ((01) step). Open triangles: f¼ p/4 ((11) step). Dotted line: 1D interface for the 2D
nn Ising model f¼ 0. Broken line: 1D interface for the 2D nn Ising model f¼ p/4. Solid line: (A)
sstep=kB ¼ 38 expð�2:52=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:580� kBT= 3

p Þ; (B) ustep= 3¼ 52 expð�2:52=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:580� kBT= 3

p Þ. kBTR=ε is assumed to be
1.580. From Ref. [110].
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jhj ¼ kBT

KRa2
z

jpj: (6.45)

Using this equation, we can determine TR numerically [3].

6. Universal curvature jump: The faceting transition on the ECS (Figure 6.3) accom-

panies a jump in the Gaussian curvature at the faceted surface as follows:

KG ¼

8
><

>:

�
la2

z

kBTR

�2

K 2
R T ¼ TR

0 T < TR

: (6.46)

The Gaussian curvature is expressed as KG¼ k1k2, where k1 and k2 are the prin-

cipal values of the curvature at that point on the surface.

7. Universal jump in the surface stiffness tensor: The faceting transition also accom-

panies a jump in the determinant of the surface stiffness tensor at the faceted sur-

face as follows:

det
�
f ij
� ¼

8
><

>:

�
kBTR

a2
z

�2�
1

KR

�2

T ¼ TR

N T < TR

: (6.47)

6.4.3 Diffuseness for Atomically Rough Surfaces

6.4.3.1 New Picture of Roughening
Since the step tension becomes zero at T� TR(Eqn (6.42)), surface roughening is said to

occur as a result of the step proliferation without any excess cost of free energy

(Figure 6.19). According to this picture, some finite structures of the excited states, such

as the adatoms and islands that form on the surface, do not significantly contribute to

the free energy of the surface (i.e., they are irrelevant).

As shown in Figure 6.6, however, a surface simulated by Monte Carlo calculations

with an ASOS model at high temperature is slightly different from the picture in

Figure 6.19. The surface appears rough in the small scale. Hence, the terms surface

diffuseness or atomically rough surface have been used in order to describe the roughness

in the small scale. This difference is considered to be important in dynamic phenomena

such as crystal growth, but it seems that the problem has not yet been clarified

(A) (B)

FIGURE 6.19 Proliferation of steps. (A) T< TR. (B) T> TR.
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sufficiently. However, the following two approaches may help us to connect an atomi-

cally rough structure and the rough phase with drumhead wandering.

One approach is to study the intrinsic interface width [4,111,112], and the other

approach is to study the preroughening phenomena [113]. We will discuss them briefly

in the following subsubsections.

6.4.3.2 Intrinsic Width of a Step
To understand the microscopic structure of a phase separation line (1D interface) in the

2D Ising model, Bricmont, Lebowitz, and Pfister [111] presented the notion of “de-

formations.” They decomposed a 1D interface into a bone-line and “blobs.” In

Figure 6.20(A), the blobs are shown. The blobs are replaced by kinks of size D

(Figure 6.20(B)). The kinks are deformations in the phase separation line. Then, dn,

which is n-th moment of jDj, is defined as follows [112]:

dn ¼ lim
Nx/N

1

Nx

X

i

< jDijn > ; (6.48)

where Nx represents the number of lattice points in the direction of the bone-line. Based

on the results of a Monte Carlo study [112], d1 is kept finite for T	 Tc and d2 coincides

with w2
step ¼ kBT=~g. Since ~gfTc � T , d2 and w2

step diverge as [(Tc� T)/Tc]
�1. Therefore,

due to the effect of the local structures of the small domains of flipped spins (Figure 6.9),

both Wstep and wstep diverge at Tc.

For a surface step, we expect a similar divergence. In this case, however,

~gfexp½�A=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TR � T

p �, and then from Eqn (6.32), w2
step diverges as exp½A= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TR � T
p �.

Therefore, when T¼ TR, steps roughen the surface, and, at the same time, the steps

dissolve into the surface. The excited structures such as adatoms and islands contribute

to the values of the step tension and step stiffness.

6.4.3.3 Preroughening Phenomena
Den Neijs and Rommels [113] predicted preroughening phenomena on surfaces where a

short-range step–step repulsion exists.

When the temperature is near Tc for the 2D Ising model, the relatively large blobs are

excited. Due to repulsion, the steps are kept apart from other steps. As a result, when the

temperature is in the region Tc< T< TR, the surface seems to be rough, but the steps are

confined to two levels on the surface. This phase was named the “disordered flat phase”

i

Di

i

Di

(A) (B) FIGURE 6.20 Schematic diagram of
deformations. (A) An example of a
1D interface (phase separation line)
in a 2D Ising model. The
configurations in the dotted squares
are “blobs” [4,111,112]. A blob at the
site i is replaced by a kink, which is
called a deformation with size Di. (B)
1D converted interface with kinks.
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(DFP) by den Neijs and Rommels. The DFP seems to be a candidate for the atomically

rough phase.20

6.4.4 Changes in the Roughening Temperature on Complex Surfaces

6.4.4.1 Inverse Roughening
In 1994, Luijten et al. [114] predicted the “inverse roughening” phenomena on the (001)

surface of a CsCl-type crystal structure. The model that Luijten et al. adopted is the

staggered BCSOS model, which has a uniform field (stoichiometric chemical potential)

that favors the Cs component on the surface of the BCSOS model. In the inverse

roughening phenomena, the surface is rough when the temperature is zero; as the

temperature increases, it becomes smooth; with further increases, the step tension be-

gins to decrease; finally, at sufficiently high temperature, a second transition occurs and

the surface again becomes rough [33,114].

Using this type of model with different statistical weights for the vertices, the disor-

dered flat phase [115–117] and the reconstructed rough phase [116,117] can also be

studied. Details of these models are not discussed in this article.

6.4.4.2 Surface Modified by Langmuir Adsorption
Adsorbed materials on a surface are empirically known to change the thermodynamic

behavior of that surface [94]. Using a lattice model named the “decorated” RSOS model

(Figure 6.21), Akutsu et al. [107] showed the change of surface tension in a case of

Langmuir adsorption. They also showed that Langmuir-type adsorbed materials with

coverage less than one changes the roughening transition temperature. In this subsec-

tion, we explain how the roughening transition temperature is changed by a small

amount of adsorbed materials.

x

y

h

x

y

h(m,n)

h(m,n+1)

h(m+1,n)

σ  (m,n)xσ  (m,n)
y

(A) (B)

FIGURE 6.21 A “decorated” RSOS model for the Langmuir adsorption; the coverage is less than 1 [107].
(A) Perspective view. (B) Adsorption site. From Ref. [107].

20The DFP can be translated to an S¼ 1/2 quantum spin system as the resonating valence bond (RVB)

state relating to the Haldane gap.
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The Hamiltonian of the decorated RSOS model consists of an RSOS model (HRSOS), a

lattice gas model for adsorption (HL), and their coupling parts, as follows:

H ¼ HRSOS þHL þHint; (6.49)

where

HRSOS þHint ¼
X

m;n

f 3
�
1� asyðm;nÞ�$ jhðmþ 1;nÞ � hðm;nÞj

þ 3½1� asxðm;nÞ� $ jhðm;nþ 1Þ � hðm;nÞjg
HL ¼ �H

X

m;n

�
sxðm;nÞ þ syðm;nÞ�:

(6.50)

HL is expressed by the Ising spin variables s¼�1.21 The spin variables are put on the

bridge site, as shown in Figure 6.21(B), because we consider that an adsorbed material

on the RSOS ledge changes the microscopic ledge energy. The parameter a in Hint de-

scribes the coupling between the RSOS model and the lattice gas model of the adsorbed

materials. For a> 0, the adsorbed materials favor the edge of the step, while for a< 0, the

adsorbed materials favor the terrace sites.

The partition function is calculated as Z ¼Pfhig
P

fsigexp½�bH�, where b¼ 1/kBT.

After taking the partial sum with respect to {si}, we obtain the exact RSOS Hamiltonian

with the effective ledge energy ε
eff , as follows:

3
effðT ;HÞ ¼ 3� kBT ln

�
coshðba 3þ bHÞ

cosh bH

�
: (6.51)

The mean coverage of the materials of adsorption at the step ledge Cy is given by the

following equation:

My ¼ 2Cy � 1ztanh bH þ �tanh b
�
H þ 3a

�� tanh bH
�
px; (6.52)

where My represents the mean magnetization of hsyi. Equation (6.51) says that the

effective ledge energy depends on the temperature and the chemical potential of the

adsorbed materials in the ambient phase.

Since the roughening temperature is given by kBTR=ε
eff ¼ 1=zRz1:580 for the RSOS

model, where zR¼ 0.6330, we have

H

kBTR

¼ 1

2
ln

exp½zR � ð1þ aÞ 3=ðkBTRÞ� � 1

1� exp½zR � ð1� aÞ 3=ðkBTRÞ� ; (6.53)

which allows us to draw the critical line in the H� T plane, as shown in Figure 6.22. In

the case of az1, there is a region of H where the inverse roughening occurs. We can see

the region of H where the inverse roughening occurs in Figure 6.22(B) and (C).

21To obtain the expression for the lattice gas variables, replace s with 2C� 1 as in section 3.1.2. H¼ m/

2¼ (kBT/2)ln(P/Pe) where P represents the vapor pressure of the adsorbed materials and Pe represents the

vapor pressure of the adsorbed materials with the coverage being 50%.
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6.5 Vicinal Surface
6.5.1 Rough or Smooth? The Terrace-Step-Kink Picture

As mentioned in Section 1, studying the vicinal surface by using the BCSOS model [18]

gave us a correct understanding of the faceting transition. In addition, the vicinal surface

for T< TR is itself interesting because the system can be mapped to a 1D free fermion

(FF) system by using a terrace-step-kink (TSK) picture of the vicinal surface. This

characteristic of the 1D FF, as in Eqn (6.1), is the GMPT [13] type of universal character.

A vicinal surface is a slightly tilted surface from a plane with a low Miller index.

Figure 6.23 shows a typical vicinal surface for which the temperature T is lower than TR

of the terrace surface. As mentioned in the previous section, the excited structures such

as adatoms and islands contribute to changes in the step tension and the step interaction

coefficients of the step.22 Hence, in the mesoscopic scale, a vicinal surface is well

described by terraces, steps, and kinks in a step. This is called the TSK picture.

Since the terrace is smooth, a vicinal surface seems to be a smooth surface. In fact, as

mentioned in the work of BCF [87], the growth rate of a surface that has a regular train of

steps is different from that of a surface with T> TR. The linear dependence on the driving

force Dm concerning the growth rate, however, is similar to a rough surface. The vicinal

surface grows in the “step flow growth” mode, and the growth rate of a vicinal surface is

proportional to Dm. According to the definition of the surface roughness in Section 3.2.1,

FIGURE 6.22 Change of the roughening transition temperature. (A) a¼ 0.1. (B) a¼ 1.0. (C) a¼ 1.1. (D) a¼ 2.0.
From Ref. [107].

22Recall that islands and negative islands on a terrace are irrelevant.
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the vicinal surface is rough, because the variance of the surface height diverges loga-

rithmically as the area L2 increases (Eqn (6.28)).

Therefore, we can say that a vicinal surface has characteristics of both a rough surface

and a smooth surface. Statically, a vicinal surface has the characteristics of a rough

surface; dynamically, it has the characteristics of a smooth surface.

6.5.2 1D Free-Fermion Universal Features—Gruber-Mullins-Pokrovsky-
Talapov Behavior

In the TSK picture (Figures 6.4 and 6.23), the steps can be regarded as linear excitations

buried in a 2D planar lattice. Since overhang structures are inhibited in SOS models, the

linear excitations are impenetrable by adjacent excitations. Due to the impenetrability,

the vicinal surface can be exactly described by a 1D spinless free fermion (FF) at tem-

perature T¼ 0 [26]. The zigzag structure of a step corresponds to the quantum zero-point

oscillations. Hence, as previously shown in Eqn (6.1), the free energy of the vicinal

surface f(r) can be obtained by the ground-state energy of the 1D FF, as follows:

f
�
r
� ¼ f

�
0
�þ gsteprþ Br3 þ/; (6.54)

where r represents the step density, f(0)¼ gsurf(0) represents the surface tension of the

terrace plane, gstep represents the step tension, and B represents the step interaction

coefficient. In the case of the 1D FF [25,26],

B ¼ p2

6
kBTw

2
step: (6.55)

Recalling Eqn (6.32), we have the following relationship:

bB ¼ p2

6b~g
; (6.56)

where b¼ 1/kBT and ~g ¼ gstep þ v2gstep=vf
2 represents the step stiffness. Substituting

Eqn (6.56) into Eqn (6.54) with jpj ¼ raz, we have

f ðpÞ ¼ gsurfð0Þ þ gstep

jpj
az

þ p2

6

ðkBT Þ2
~g

�jpj
az

�3

þ/: (6.57)

h

x
y

y
x

Tim
e

(A) (B)

FIGURE 6.23 (A) A perspective view of a vicinal surface. (B) A terrace-step-kink picture of a vicinal surface. Solid
line: steps on the vicinal surface shown in (A) (top view). Dotted rectangles: islands or negative islands on the
surface.
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The surface tension for the RSOS model is calculated from f(p) as

gsurfðpÞ ¼ f ðpÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jpj2

q
at kBT=ε ¼ 0:6, and it is shown in Figure 6.18(B).

In addition, applying Eqn (6.57) to the stiffness tensor (Eqn (6.27)), we have another

universal jump of det(f ij) at the facet edge, as follows [25,26]:

det
�
f ij
� ¼

8
>><

>>:

�
2

KR

�2�
kBT

a2
z

�2

¼ p2

�
kBT

a2
z

�2

; ðjpj/0Þ

N; ðjpj ¼ 0Þ
(6.58)

for small jpj, where KR¼ 2/p. Similarly, for the surface roughness and the Gaussian

curvature on the ECS, we have a jump, as follows:

wsurf ¼
8
<

:

ffiffiffiffiffiffiffiffiffiffi
KRa

2
z

4p

r

¼ azffiffiffi
2

p
p
; ðjpj/0Þ

0; ðjpj ¼ 0Þ
(6.59)

KG ¼

8
><

>:

�
la2

z

kBT

�2�
KR

2

�2

; ðjpj/0Þ

0; ðjpj ¼ 0Þ
(6.60)

Therefore, det(f ij), the Gaussian curvature, and the surface roughness are constant

near a facet edge.

6.5.3 Logarithmic Behavior on the Width of a Single Step

6.5.3.1 Height–Height Correlation Function of a Single Step
As mentioned in Section 3.4, we have shown that the variance W 2

step of the “height” of a

step on a surface is proportional to L, where L is the linear size of the system. In this

subsubsection, we will show that the variance of the “height” of a single step on a vicinal

surface is not proportional to L because the step collides with adjacent steps on the

vicinal surface.

We now consider the height–height correlation function D2(r) for a single step on a

vicinal surface, as follows [103–105]:

D2ðrÞ ¼
D
ðxðy þ rÞ � xðyÞÞ2

E
; (6.61)

where, without loss of generality, the y-axis can be chosen to lie along the mean running

direction of the steps. Here we introduce the probability Q(x,y) that two points (0,0) and

(x,y) lie in the same terrace:

Qðx; yÞ ¼ Chdðhð0; 0Þ � hðx; yÞÞi; (6.62)

where C is a normalization factor. Using the capillary wave Hamiltonian (Eqn (6.26)), we

obtain

Qðx; yÞfexp

� �p2x2

2Gðx; yÞ
�
; (6.63)
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where G(x,y) represents the height–height correlation function of the surface (Eqn

(6.22)). Equation (6.63) shows that Q(x,y) is identical to the probability that a step passes

the two points (0,0) and (x,y). Using the probability in Eqn (6.63), Eqn (6.61) then be-

comes the following:

D2ðrÞ ¼
Z

Qðx; yÞx2dx ¼ 1

p2
Gð0; rÞ ðr/NÞ: (6.64)

Since Gð0; yÞ ¼ ½kBT=ðp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ijÞ

p
Þ�ln r (Eqn (6.23)), we have the relation

D2ðrÞ ¼
h
kBT

.�
pr2a2

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ijÞ

q �i
ln r

¼ 1

pr2
ln r ðr/0Þ:

(6.65)

The Eqn (6.65) on D2(r) is also derived exactly in the limit r/ 0 for the TSK model on

a lattice [103,104]. The variance of the height of a single step on the vicinal surface

W 2
step;vicinal becomes exactly [104].

W 2
step;vicinal ¼

h
kBT

.�
2pr2a2

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ijÞ

q �i
ln L

¼ 1

2pr2
ln L ðr/0Þ:

(6.66)

6.5.3.2 Elastic Step–Step Repulsion
On a crystal surface, elastic repulsion such as g0/(xi� xi þ 1)

2 [118,119] sometimes exists.

Here, g0 represents the coupling constant, and xi represents the location of the i-th step

(Figure 6.23(B)). By adding this term to the capillary wave Hamiltonian, we have the

surface free energy for this system, as follows [103,120]:

felasticðpÞ ¼ f ð0Þ þ gðfÞ p
az

þ p2

6

ðkBTÞ2
~gðfÞ

~l
2ðgÞp

3

a3
z

; (6.67)

where

g ¼ 2b2~gðfÞg0; ~lðgÞ ¼
h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2g

p i.
2: (6.68)

Here, we used the exact result of Sutherland [121]. Therefore, we have this new

relationship around the facet edge:

det
�
f ij
� ¼ �kBTp~l

�
g
��2

; Gð0; rÞ ¼ 1

p2~l
�
g
� ln r; D2ðrÞ ¼ 1

p2r2~l
�
g
� ln r: (6.69)

The jump of the Gaussian curvature at the facet edge DKG(g) becomes

DKGðgÞ ¼ DKGð0Þ=~l2ðgÞ ¼ 1

~l
2�
g
�

�
la2

z

kBT

�2�
KR

2

�2

: (6.70)
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6.6 Step Faceting
6.6.1 Stability of a Macrostep

In this section, we discuss the faceting of a macrostep.

Since faceted steps [122] are often observed on real surfaces, it seems natural to

consider the roughening transition of an isolated step. Empirically, some impurities or

materials of adsorption are known to induce faceted steps, and surface reconstructions

are also known to do so [94,123]. As mentioned in Section 2.3, however, the drumhead

wandering of a 1D surface (a step) activated by thermal fluctuations destabilizes a

smooth surface. Hence, a step on a 2D surface is always rough when T< TR, due to

drumhead wandering. This seems to be contradicted by the observation of faceted steps

in equilibrium.

Cabrera [62,63] presented the special polar angular dependence of the surface tension

and its profile for the ECS23 (Figure 6.24). Cabrera and Coleman [62] discussed the

stability of a macrostep by assuming the surface free energy shown in Figure 6.24. If the

surface free energy has the Type-II slope dependence, as shown on the left-hand side of

Figure 6.24, a macrostep stabilizes as the two surfaces coexist under equilibrium.

The profile of the Type-II ECS, Figure 6.24, is called a first-order shape transition

[20,34–36]. Rottman and Wortis [34] showed the first-order shape transition on the ECS

for the 3D cubic Ising models with the negative second nearest-neighbor interaction

using mean field approximation. Jayaprakash and Saam [20] showed the first-order

shape transition on the ECS for the fcc lattice models with the negative second-

nearest-neighbor interaction, using the mean-field approximation. Jayaprakash et al.

[35] studied the vicinal surface between the (100) surface and the (110) surface by using a

TSK model. Assuming an attractive step–step interaction, such as g0/(xi� xj)
2, they ob-

tained the first-order shape transition between the (100) surface and the (110) surface

using the mean-field approximation. In the 1980s, the phase transition on the ECS

attracted attention, but not much attention was paid to the stability of macrosteps.

Recently, various microscopic models that show an ECS similar to Type II in

Figure 6.24 have been presented; these include the p-RSOS model [86,96,124,125], the

RSOS-I model [126–128], and a modified RSOS-I model [129]. The p-RSOS model

(Figure 6.25), explained in the following subsection, is the RSOS model with a point-

contact type of step–step attraction. This type of step–step attraction works at the

meeting point of adjacent steps. It was introduced to describe the energy gain that arises

from the formation of a bonding state between steps due to the overlapping of orbitals.

The RSOS-I model (the RSOS model coupled with the Ising system; see Appendix G.2) is

used to study the effects of adsorption on the surface thermodynamic quantities. The

23In Figure 6.24, b(p) represents a vicinal surface free energy f(p) of this article. Later, the shape shown

as type II in Figure 6.24 was called a “first-order shape transition” [22,36,57] because the surface slope

jumps at the facet edge. The surface slope is given by the first derivative of the vicinal surface free energy

with respect to h (Eqn (6.25)), and at the facet edge, it converges to p1 from the left but converges to

0 from the right.
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modified RSOS-I model is the RSOS-I model in which a relaxation of stress at the step

edge is taken into consideration.

The faceted steps are obtained in these models at low temperatures, where the two

surfaces coexist at equilibrium. The key quantity for these phenomena was found to be

the microscopic step–step attraction [86,96,124–128]. This attractive step–step interac-

tion causes a discontinuity in the surface tension [96] at low temperatures. The tem-

perature dependence of the phenomena is understood to be due to the competition

II

P0 0

II

r0=2β'1/∆P r0=2β1/∆P 

Z

0 r

I

P

I

β

β1

β'1
β1

FIGURE 6.24 Top figure: the vicinal surface free energy denoted by b as a function of p¼ px. Type I (right-hand
side of the figure): the case of v2b/vp2> 0. Type II (left-hand side of the figure): the case of v2b/vp2< 0. Bottom
figure: The profile of the ECS. Type I (right-hand side) and Type II (left-hand side). From Ref. [63].

FIGURE 6.25 An example of a vicinal surface on the p-RSOS model. (A) Perspective view. (B) Top view. From
Ref. [86].
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between the attractive energy between the steps and the entropy of the step wandering.

These phenomena can also be understood as 1D Bose gas condensation at T¼ 0 [86].

6.6.2 Discontinuous Surface Tension

6.6.2.1 p-RSOS Model
One of the microscopic models showing step faceting is the RSOS model with the point-

contact type of step–step attraction (p-RSOS model) [86,96,124,125]. The Hamiltonian of

the p-RSOS model is written as follows:

Hp�RSOS ¼
X

i;j

3½jhði þ 1; jÞ � hði; jÞj þ jhði; j þ 1Þ � hði; jÞj�

þP
i;j

3int½dðjhði þ 1; j þ 1Þ � hði; jÞj; 2Þ

þdðjhði þ 1; j � 1Þ � hði; jÞj; 2Þ�;

(6.71)

where 3 is the microscopic ledge energy, εint is the microscopic step–step interaction

energy, and d(a,b) is the Kronecker delta. The summation with respect to (i,j) is per-

formed over all of the sites on the square lattice. The RSOS restriction is required

implicitly. In the case of εint < 0, the interaction between the steps becomes attractive.

For a vicinal surface, we add the terms of the Andreev field [57] h¼(hx,hy) to the

Hamiltonian in Eqn (6.71) as an external field. The model Hamiltonian given in Eqn

(6.71) for the vicinal surface then becomes

Hvicinal ¼ Hp�RSOS � hx

X

i;j

½hði þ 1; jÞ � hði; jÞ� � hy

X

i;j

½hði; j þ 1Þ � hði; jÞ�: (6.72)

The partition function Z for the p-RSOS model is given by Z ¼Pfhði;jÞgexp½�bHvicinal�:
The Andreev surface free energy ~f ðhÞ is the thermodynamic potential calculated from the

partition function Z by using the expression b~f ðhÞ ¼ �limN/Nð1=N ÞlnZ; where N is

the number of points on the square lattice.

6.6.2.2 Discontinuity in Surface Tension
In Figure 6.26, we show the Andreev free energy calculated by the PWFRG method

(Appendix A) [86,96,124,125]. The model is found to have two transition temperatures

Tf,1 and Tf,2,
24 where for T< Tf,1, the surface tension of the (111) surface becomes

discontinuous, and when T< Tf,2, the surface tension of the (001) surface becomes

discontinuous. The shape of the equilibrium (001) facet is shown in Figure 6.27. As seen

from this figure, the (001) facet directly contacts the (111) facet at T< Tf,2.

From the Legendre transformation of f ðpÞ ¼ ~f ðhÞ þ p $h, we obtain the vicinal sur-

face free energy and the surface tension gsurfðpÞ ¼ f ðpÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
���p
���
2

r

. In Figure 6.28, we

show the vicinal surface free energy and the surface tension calculated by the PWFRG

24kBTf ;1=ε ¼ 0:3610� 0:0005 and kBTf ;2=ε ¼ 0:3585� 0:0007.
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method. For Tf,2< T< Tf,1, we have obtained a non-GMPT form for the vicinal surface

free energy, as follows [86]:

feff ðpÞ ¼ f ð0Þ þ gstepðfÞ
����
p

az

����þ Aeff ðfÞ
����
p

az

����

2

þ Beff ðfÞ
����
p

az

����

3

þO

�����
p

az

����

4�
: (6.73)

Here, the quadratic term with respect to jpj has reappeared.

It should be noted that the metastable lines in Figure 6.26 converge to points when

T< Tf,2. This means that there are no Gaussian-type capillary wave fluctuations

(Figure 6.11(C)) with respect to the surface slope. This lack of slope fluctuations

FIGURE 6.26 Profile of the reduced equilibrium crystal shape calculated by the PWFRG method. X¼ hx/kBT¼�lx/
kBT, Y¼ hy/kBT¼�ly/kBT, and Z ¼ ~fðhÞ=kBT ¼ lzðx; yÞ=kBT . εint=ε ¼ �0:5. Broken lines represent metastable lines.
(A) From right to left, kBT=ε ¼ 0:35, 0.36, and 0.37. (B) kBT=ε ¼ 0:36. The edge of the (111) facet is denoted by Xq.
(C) Original RSOS model ð 3int ¼ 0Þ; kBT=ε ¼ 0:3. From Ref. [96].

FIGURE 6.27 Equilibrium facet shape (EFS) for X> 0 and Y> 0. Filled circles: (Xc,Yc) values calculated by the
PWFRG method [44] (Appendix A) for kBT=ε ¼ 0:3. Open squares: (Yc,Xc) values. Solid lines: EFS of the 2D square
nn Ising model for kBT=ε ¼ 0:3. Dash-dotted lines: EFS of the 2D Ising model for kBT=ε ¼ 0:361. EFS of 2D Ising
model is calculated by coshðXcÞ þ coshðYcÞ ¼ ½cosh2ð 3=ðkBTÞÞ�=½sinhð 3=ðkBTÞÞ�. Dashed lines: Y¼�Xþ 5.0. Dotted
lines: Y¼�Xþ 4.1551 ðY ¼ �X þ ð2 3þ 3intÞ=kBTÞ. (A) εint=ε ¼ �0:5; (B) εint ¼ 0. From Ref. [86].
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stabilizes the flat plane of the side surface of the macrostep. This faceted macrostep

formation was confirmed by a Monte Carlo calculation [86].

In addition to the above properties, the movements of a macrostep are inhibited near

equilibrium [96]. When a macrostep is faceted (T< Tf,2), the kink density at the side

surface of the macrostep is extremely small because the side surface is flat and smooth.

The macrostep moves by way of 2D nucleation, and thus there is intermittent motion of

the macrostep near equilibrium. When the driving force is large enough to frequently

create new 2D nuclei, kinetic roughening occurs on the side surfaces of the macrosteps.

Hence, the macrostep dissolves into a homogeneous vicinal surface.

In the temperature region Tf,2< T<Tf,1, the steps merge locally, forming “step

droplets” with a finite lifetime [86,96]. Due to the discontinuity in the surface tension

around the (111) surface, the kink density decreases on the merged steps. The move-

ments of the vicinal surface with step droplets, therefore, become smaller than what

would be expected for the vicinal surface with regular train of steps.

6.7 Summary
Roughening and faceting transitions of surfaces and steps have been reviewed from the

point of view of statistical mechanics. We paid attention to the crystal surfaces expressed

by the distinct border in the microscopic scale between the crystal phase and the

ambient phase such as in the case of vapor growth or solution growth. The definition of

the surface free energy (or the interface free energy) was introduced. We have also shown

how to define and calculate the surface free energy and step tension.

FIGURE 6.28 The surface tilted toward the (110) direction, as calculated by the PWFRG (DMRG) method. (A)–(D)
Slope dependence of the vicinal surface free energy ½fðpx ;pyÞ � fð0;0Þ�= 3; and (E)–(H) surface tension gsurfðp;pÞ= 3.
For (A)–(C) and (E)–(G), εint=ε ¼ �0:5; and for (D) and (H), εint ¼ 0, the original RSOS model. Temperatures: kBT=ε ¼
0:35 for (A), (D), (E), and (H); kBT=ε ¼ 0:36 for (B) and (F); kBT=ε ¼ 0:37 for (C) and (G). Closed squares: (A) and
(B), (0,0) and ½fð1; 1Þ � fð0; 0Þ�= 3; (E) and (F), gsurfð0; 0Þ= 3and gsurfð1;1Þ= 3. Broken lines: (B) and (F), the curves for
the metastable states. From Ref. [96].
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The microscopic surface shape is well described by the SOS model. Analysis of the

statistical mechanics of the SOS model shows that the roughening transition is the

Kosterlitz–Thouless type phase transition. In the rough phase, the variance of the surface

heights becomes large and diverges logarithmically with the linear size of the surface due

to the drumhead wandering. The surface size dependence of the variance is attributed to

the lower cutoff of the wave number of the drumhead wandering. The universal features

associated with the KT transition were reviewed concerning the roughening and faceting

transitions. We have presented a brief description of other systems that have complex

phase diagrams for the roughening transition temperature.

Universal features on the vicinal surface have been also discussed for temperatures

lower than the roughening temperature of the terrace surface. The logarithmic behavior

with respect to the length of the step has been explained for the variance of a single step

height.

Finally, we discussed the faceting of a macrostep and its stability.

Appendix A. Transfer Matrix Method
PWFRG is an acronym for the product wave-function renormalization group method

[44]. The PWFRG method is a transfer matrix [130] version of the White’s density matrix

renormalization group (DMRG) method [131,132] for 1D quantum spin systems. The 1D

quantum system can be mapped to a 2D classical system through the transfer matrix

with the Suzuki–Trotter formula [133].

In order to apply the PWFRG method to the RSOS systems, we construct the transfer

matrix bT ðt1; t2;/; tN ; s
0
1; s

0
2;/; s0N Þ (Figure A.29(C)) by using the 19-vertex model [32,113]

(Figure A.29(B)). The partition function Z is then rewritten by bT as follows:

Z ¼ Tr

�
bT
�
t1; t2;/; tN ; s

0
1; s

0
2/; s0N

�M
�
; (A.1)

where N is the number of the linked vertices, and M is the linear size of the system in the

vertical-direction in Figure A.29(D). Then the transfer matrix is expressed by use of the

statistical weight denoted by V(s,t;s0,t0) as follows:

bT
�
t1; t2;/; tN ; s

0
1; s

0
2;/; s0N

� ¼
X

fq1g;fq2g;/
V
�
s1; t1; s

0
1;q1

�
V
�
q1; t2; s

0
2;q2

�
/V

�
qN�1; tN ; s

0
N ; t

0
N

�
: (A.2)

In the limit of M,N/N, only the largest eigenvalue of the transfer matrix LðNÞ
contributes to the partition function. The Andreev surface free energy, therefore, is

obtained from the partition function (Eqn (A.1)) as

b~f ðhÞ ¼ � lim
M ;N/N

1

NM
ln LðNÞM ; (A.3)

The transfer matrix is diagonalized efficiently by the PWFRG method. In the PWFRG

calculation, the number of the so-called “retained bases” m are set from 7 to 37. The

iteration number for the diagonalization is set to be 1500 – 1� 105.
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Appendix B. Driving Force for Crystal Growth
The driving force for crystal growth Dm is defined as the difference of the bulk chemical

potential between the crystal phase and the ambient phase. Examples of the driving

force are shown in Table B.3 [94].

Appendix C. Example of the Anisotropy of the
Entropy of a Step
Let us consider a step on the (001) surface of cubic lattice (Figure C.30). The ground-state

structure of a (010) step is uniquely determined. In Figure C.30(A), the step has six

broken bonds, and eight in (B). Hence, the structure in (A) is the ground state, and the

structure in (B) is in an excited state. On the other hand, (C), (D), and (E) also have eight

broken bonds. There are 67 other structures with the same number of broken bonds.

These 70 structures are all in the ground state, but they are degenerated. Hence, the

ground-state structure of the (110) step cannot be determined uniquely. Since the en-

tropy S is given by S¼ kBln W, where W represents the degeneracy, the entropy of a step

depends on the azimuth of the step.

Appendix D. IPW Method
In this section, we explain how to derive the 1D interface tension from a rough phase

separation line in the 2D Ising model [100]. The 1D interface as the phase separation line

is made by an antiphase boundary condition, as shown in Figure 6.9. We regard the

s'1

t1 t2 t3 t4 tN

s'2 s'3 s'4 s'N

s1 t'N

(A)

(C)

(B) (D)

x

y

N

M

1
2

1 2 ...

...h1

h2 h3

h4

s

s’

t

t’

FIGURE A.29 (A) Top view of the (001) surface of a cubic lattice. (B) Quadruplet of squares surrounding a vertex.
In the figure, s¼ h2� h1, t¼ h3� h2, s0 ¼ h4� h1, t0 ¼ h2� h1 with s, s0, t, and T0 being {0,�1}. (C) The transfer
matrix assembled by the vertices. (D) Products of the transfer matrices.
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phase separation line as a random walk connecting the ends O and P. The main idea for

obtaining g1D(q,T) is to use the “duality” between the interface tension and the corre-

lation length [134]. The asymptotic form of the correlation function becomes

GðRÞwexp½ � jRj=xðq;T �Þ�; ðjRj/NÞ; (D.1)

where T* represents the temperature in the world of x(q,T*). From the duality relation, we

have g1D(q,T)/kBT¼ 1/x(q,T*), and

GðR þ r; bjR;aÞwexp½ � g1Dðq;T Þjrj=kBT �; ðjrj/NÞ; (D.2)

We will only give a brief review of the derivation of the final equations, Eqns

(D.6)–(D.8) [100].

Let us label each elementary path by a pair (R,a), where R represents the starting

position of the path and a represents its direction, such as {/,),[,Y}. We denote the

weighted sum over all possible N-step walks by GN ðR;ajR0;a0Þ, where the random walk

Table B.3 Equation of Driving Force

Vapor growth Dm¼ kBTln P/P0
a

Solution growth Dm¼ kBTln C/C0
b

Melt growth Dm ¼ mliquid � mcrystalz ¼ DsmeltingðTm � TÞc
Electrocrystallization of metals Dm¼ zehd

akB represents the Boltzmann constant, T represents the temperature, P represents the pressure in the ambient phase, and P0 rep-

resents the equilibrium pressure at some temperature T0.
bC and C0 are the real and the equilibrium concentrations of the solute,

respectively.cTm represents the melting temperature, and Dsmelting represents the entropy of melting.dz represents the valence of

the neutralizing ions, e represents the elementary electric charge, and h¼ E� E0 represents the over-voltage given by the differ-

ence of the equilibrium potential E0.

(B) (D)

(010)

(A)
(110)

(C) (E)

FIGURE C.30 Microscopic configuration of a step on a cubic lattice with both ends being fixed. Black solid line:
the edge of a step. Gray line: a broken bond. (A) and (B): (010) steps. (C), (D), and (E): (110) steps.

Chapter 6 • Rough–Smooth Transition of Step and Surface 305



starts at R0 with direction a0 and ends at R with direction a. Using the connectivity

matrix A(R,ajR0,b), GN satisfies the following recursion relation:

GNþ1ðR;ajR0;a0Þ ¼
X

R0 ;b
AðR;ajR0; bÞGN ðR0; bjR0;a0Þ: (D.3)

Writing in matrix form, Eqn (D.3) becomes GNþ1 ¼ AGN . Let us introduce G as

G ¼PN
N¼0GN . Then with initial condition G0 ¼ 1, we have G ¼ ½1� A��1. Then, evaluating

Zþþ and Zþ�(q) by Vdovichenko’s method [135], we have

Zþ�ðqÞ
Zþþ fGðR þ r; bjR;aÞ: (D.4)

From Eqns (D.2)–(D.4),

g1Dðq;TÞ ¼ �kBT lim
jrj/N

1

jrj ln
2

4
Zp

�p

Zp

�p

dk2 eikr

DðkÞ

3

5; (D.5)

where D(k) represents D(k)¼ det[1�A(k)] and A(k) represents the matrix of the Fourier

components of A(R,ajR0,b).
We estimate the right-hand side of Eqn (D.5) by the saddle-point method, and

denote the saddle-point k*¼ (iu1,iu2). Then, we have a set of equations as follows

[39,86,100]:

g1Dðq;T Þ ¼ kBT ðu1 cos qþ u2 sin qÞ (D.6)

DðuÞ ¼ 0 (D.7)

½vDðuÞ=vu2�=½vDðuÞ=vu1� ¼ tan q: (D.8)

From the thermodynamics of ECS, we have –h¼ lx¼ kBTu2 and ~f ðhÞ ¼ ly ¼ kBTu1.

It should be noted that D(k) also appears in the bulk free energy of the 2D Ising

model.

Appendix E. Calculation of Surface Width
In this section, we derive an explicit equation for the variance of the surface height,

Eqn (E.6) [23].

The variance of the surface height,

W 2 ¼
D
½hðxÞ � hhðxÞi�2

E
; (E.1)

can also be written as

W 2 ¼
X

k

hhðkÞhð � kÞi (E.2)
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where

hðxÞ ¼P
k

hðkÞexpðikxÞ; k ¼ ðk1; k2Þ;
k1 ¼ ð2pmÞ=L; k2 ¼ ð2pm0Þ=L: ðm;m0 ¼ �1;�2;�3;/Þ

(E.3)

Using Eqn (6.26) for the thermal average, we obtain the following equation:

W 2 ¼ kBT

L2

X

k

"
X

a;b

f abkakb

#�1

; (E.4)

where fab represents fxx(pe), f
yy(pe), f

xy(pe), and fyx(pe), and they are the components of the

surface stiffness tensor defined by Eqn (6.27). Applying a continuous approximation to

the r.h.s. of the above summation with respect to k, we have

W 2 ¼ kBT

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf abÞp

ZL

k0

dq
1

q
; (E.5)

where L ¼ 2p=a represents the upper cutoff, and k0¼ 2p/L represents the lower cutoff.

In this way, we have in the limit of L/N,

W 2 ¼ kBT

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf abÞp ln L: (E.6)

Appendix F. Derivation of the Capillary Wave
Hamiltonian
In this section, we derive Eqn (6.26).

The total surface free energy F of a crystal droplet surrounded by rough surfaces is

described as follows:

F ¼
Z

gsurfðnÞdA ¼
Z

f ðpÞdxdy; f ðpÞ ¼ gsurfðnÞ
ffiffiffi
g

p
(F.1)

where gsurf(n) represents the surface tension, n represents the surface normal unit

vector, dA represents a small surface area, and f(p) represents the surface free energy per

projected xy area. For an inclined surface of area L2, a generalized free energy ~Fðp;hÞ [23]
is considered from Eqn (F.1) as follows:

~F
�
p;h

� ¼ L2
�
f
�
p
�� p ,h

�
; (F.2)

where h and p are assumed to be independent variables. The equilibrium orientation of

the surface is obtained by minimizing ~Fðp;hÞ with respect to p. After some calculations,

we have the following equation near the equilibrium surface slope pe, Figure 6.11(C):

~Fðp;hÞ ¼ L2 ~f ðhÞ þ 1

2
L2
h
f xx
�
pe

�
Dp2

x þ f yy
�
pe

�
Dp2

y þ
�
f xy
�
pe

�þ f yx
�
pe

��
DpxDpy

i
; (F.3)
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where ~f ðhÞ represents the Andreev free energy [57]; and fxx(pe), f
yy(pe), f

xy(pe), and fyx(pe)

are the components of the surface stiffness tensor defined by Eqn (6.27).

Hence, the capillary wave Hamiltonian of the inclined crystal surface becomes

Gaussian (Figure 6.11(C)) as follows:

HCW ¼ 1

2

ZL

0

dx

ZL

0

dy
h
f xx
�
pe

�
Dp2

x þ f yy
�
pe

�
Dp2

y þ
�
f xy
�
pe

�þ f yx
�
pe

��
DpxDpy

i
: (F.4)

Appendix G. Other Microscopic Models
Appendix G.1. Discrete Gaussian Model

The discrete Gaussian (DG) model introduced by Chui and Weeks [42] is one of the SOS

models, and the Hamiltonian of the DG model is given as follows:

HDG ¼ J

2

X

j;d

�
hj � hjþd

�2
; (G.1)

where {hj} represents the surface height at a site j and J represents the energy cost to

create the height difference on the surface between i and iþ d as the nn lattice sites. The

summation with respect to i runs over all lattice points, and the summation with respect

to d runs over all the nn sites around i. Note that {hj} in the DG model is a continuous

variable.

Since the DG model is a Gaussian-type model, it is easy to analyze theoretically. The

model, therefore, contributes to establishing an essential connection between the

roughening transition on the surface and the XY model in two dimensions.

Appendix G.2. RSOS-I Model

The image of the RSOS model and the materials of adsorption for the RSOS-I model are

similar to Figure 6.21. The Hamiltonian for the RSOS-I model [126,128] is written as

follows:

HRSOS�I ¼ HRSOS þHIsing þHint

¼ P

m;n

�
3
�
1� asy

�
m;n

��jhðmþ 1;nÞ � hðm;nÞj þ 3ð1� asxðm;nÞÞjhðm;nþ 1Þ � hðm;nÞj�

�J
P

m;n

½sxðm;nÞsyðm;nÞ þ sxðm;nÞsyðm� 1;nÞ

þsx

�
m;n� 1

�
sy

�
m;n

�þ sx

�
m;n� 1

�
sy

�
m� 1;n

��

�H
P

m;n

�
sxðm;nÞ þ syðm;nÞ�:

(G.2)

In the case of J¼ 0, the model reduces to the decorated RSOS model in Section 4.4.2

(Eqn (6.50)).
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7.1 Introduction
Any phase transformation starts with a new phase appearing inside the supersaturated

old (mother) phase. Because the thermodynamic stability of the system requires con-

tinuity of the thermodynamic functions during the entire course of phase trans-

formation, the change in system thermodynamic potential occurring infinitely close to

the transition point has to be infinitely small. Two possibilities correspond to this

postulate: either an infinitely small amount of the new phase would appear, with

properties distinctly different from the properties of the old phase, or an “infinitesimal”

new property would appear simultaneously in the entire phase volume. The first case is

denoted as a first-order phase transition because first derivatives of the thermodynamic

potential are changed, whereas the second case is denoted as a second-order phase

transition because second derivatives of the thermodynamic potential are changed.

Nucleation is a first-order phase transition. It is a widespread phenomenon in both nature

and technology. Rain, fog, ice and snow, salt crystallization by evaporation of sea water, and

gas bubble formation in mineral water—just to mention some—begin with the nucleation of

a new phase. Nucleation predetermines some basic properties of the new phases created in

chemical technology processes (e.g., during evaporation, condensation, and crystallization),

metallurgy, deposition of epitaxial layers in electronics, purification (including pharmaceu-

tical substances) by crystallization, formation of nanocrystals, etc. Even in some processes of

biological matter crystallization, such as in protein crystallization, nucleation plays a central

role. The questions to be answered here are: Why is nucleation required for new phase

formation in so many phenomena and processes? Why is it ubiquitous?

Qualitative consideration of the simplest case of a first-order phase transition, namely

the transition from single molecules randomly scattered in vapor to a new condensed

liquid phase, comes in evidence to nucleation inevitability. Vapor condensation starts

with the formation of a sequence of molecule clusters: pairs, triplets, etc. (Figure 7.1).

However, because they have a highly convex shape, such clusters tend to dissolve

into the ambient mother phase rather than continue to grow. According to the

Young–Laplace equation, the smaller the droplet is (i.e., the higher its surface curvature),

the higher the droplet vapor pressure is. Although evaporation of a single molecule from

a large (flat) liquid surface does not change its curvedness, the same process with very

small droplets results in a noticeable curvature increase, and thus in vapor pressure

augmentation and further droplet evaporation. In 1878, J.W. Gibbs [1] assumed that

repeated density fluctuations in the mother phase were the only reason to oppose such a

course of events. He stipulated that a series of density fluctuations were responsible for

the formation of an entire set of differently sized undercritical molecule clusters

(Figure 7.1(b)) and the critical nucleus itself.
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As is very well known, fluctuations are not limited to metastable system conditions

only. Under equilibrium conditions, there already exist locally different and temporally

fluctuating numbers of variously sized molecule clusters (Figure 7.1(a)). Gibbs’ notion

suggests that the probability of sufficiently large fluctuations leading to a stable new

phase is infinitesimal in view of the processes occurring near equilibrium. This sug-

gestion is attributed to the large barrier to phase transition arising from the energy cost

for creating an interface between the new born cluster and the original phase. Moreover,

the larger the critical nucleus is, the larger density fluctuation that is needed for its

formation; also, the larger the fluctuation, the less probable (and rarer) is its appearance.

Therefore, the prerequisite for the occurrence of a noticeable nucleation process is the

establishment of sufficiently high supersaturation, when small fluctuations are required

for critical nuclei appearance. Conversely, a limit on metastability is set when, due to a

supersaturation increase, fluctuations leading to the new phase become comparable in

number to the equilibrium thermodynamic fluctuations in the original phase [2]. This

means that the system needs to be brought sufficiently deep into the metastable region

to reduce the phase transition barrier until it becomes of the same order as the thermal

energy, kBT (where kB is the Boltzmann constant and T is the absolute temperature).

7.2 Classical (Capillary) Nucleation Theory
and Nucleation in Vapors

Despite nucleation inevitability, even direct observation of critical nuclei has proven elusive.1

That is why theoretical explanations of nucleation processes have been developed. As already

(a) (b)

FIGURE 7.1 Snapshots of the dynamic process of new phase formation. (a) The initial state of the vapor phase.
Although some very small molecule clusters (e.g., pairs) may appear randomly, they exist only temporarily, decay,
and new pairs are born. (b) The start of the transition to the new phase formation.

1The protein crystal nuclei make no exception. Although formed by huge protein molecules, being still

nanosized particles they remain invisible by optical microscopy. In addition, the critical nuclei are not

labeled; it is impossible to distinguish them in the whole assembly of undercritical, critical, and

supercritical molecule clusters. In addition, the number of the critical nuclei changes dynamically because

of the constant growth/decay of differently sized clusters.
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mentioned, Gibbs [1] has given a thermodynamic description of the condensation of su-

persaturated vapors into liquid droplets. His ideas represent the cornerstone of the classical

nucleation theory (CNT), also called the capillary theory or fluctuation theory. Unfortunately,

the significance of Gibbs’ ideas on nucleation was largely ignored until 1926, when Volmer

and Weber [3] acknowledged their importance.

Evidently, when the phase transition is thermodynamically favored, the molecules in

the bulk of sufficiently large clusters of the new phase have to be of a lower free energy

than the same molecules residing in the parent phase. However, when a nucleus of a

new phase with distinctly different properties is formed within the original phase, the

two have to be separated by an interface region with intermediate structure and prop-

erties; the interfacial width is determined by the structures of the two phases and

the interactions between the molecules within these phases. In addition, the smaller the

cluster of the new phase, the larger is the percentage of building units that reside in

the interfacial region. In his fundamental work, Gibbs [1] introduced the notion of a

dividing surface between the old and new phase, and he assumed it was sharp.

Interface matter bonding is less strong than the one in the bulk of the new phase

cluster, which is why molecules in the interface region possess more energy compared to

the one they would have in the macroscopic new phase. Therefore, the interface, appearing

between small clusters and parent phase, is associated with definite interface energy. That

is why the creation of small clusters of the new phase requires work to be done; a free

energy cost has to be paid, which is the key barrier to nucleation (establishment of suffi-

ciently high supersaturation being condicio sine qua non for creation of small clusters).

7.2.1 Nucleation Driving Force

The thermodynamic supersaturation, which is the nucleation driving force, is generally

given as the difference in the chemical potentials of the parent and new phases, Dm> 0.

Respectively, equilibrium is characterized by Dm¼ 0 and undersaturation (overheating,

undervoltage) by Dm< 0. The thermodynamic supersaturation for vapor condensation is

expressed as

Dm ¼ kBT ln ðp�pNÞ (7.1)

where p is the actual vapor pressure and pN is the equilibrium pressure (where the

infinitely large condensed phase stands in equilibrium). An analogous expression holds

true for the bubble formation driving force (see Section 7.3). For the vapor deposition of

thin films, Dm is expressed by replacing the actual and equilibrium vapor pressures

through the corresponding impingement rates of vapor atoms on the substrate.

In the case of crystallization from solutions,

Dm ¼ kBT ln ða=aNÞzkBT ln ðc=cNÞ (7.2)

where a and aN are the corresponding solute activities. Because the activity coefficients

are usually taken as equal to 1, Dm is expressed in this case by the concentration ratio

c/cN, with c being the actual concentration and cN, being the equilibrium concentration.
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For crystallization from melts, Dm is expressed as

DmzQMDT=TM (7.3)

where Qn is the molar heat of fusion and the undercooling DT¼ Tn� T, with Tn being the

melting temperature and T being the actual temperature.

Most nucleation processes do not involve chemical transformations; rather, they are

purely physical events. However, a few exceptions do exist, such as crystallization of

chemical reaction products and electrochemical nucleation. In the case of electro-

crystallization of metals, the nucleation driving force is

Dm ¼ zFh (7.4)

where z denotes the number of exchanged charges (e.g., the valence of the neutralizing

ions); F¼ 96,500 C/mol, which is the so-called Faraday equivalent; and h¼ e� eo is

the overpotential (overvoltage), which is given by the difference between the electrical

potential e that is applied on the electrochemical system and the equilibrium potential eo
of the deposited ion in the solution [4].

7.2.2 Thermodynamics of Homogeneous Nucleation, Energy Barriers
for Homogeneous Nucleation, and the Critical Nucleus Size

The spontaneous formation of nuclei in the bulk of a supersaturated system where the

probability of the process is equal throughout the whole system, commonly known as

homogeneous nucleation, usually marks the beginning of any consideration regarding

the process. The reason is that the basic physics of nucleation is best illustrated with the

help of this (simplest) theory.

The formationofmolecule clustersof thenewphase inan isothermal and isobaric system

consisting of N molecules is to be considered for a one-component system. Gibbs [1] has

defined the change in free energy (or thermodynamic potential, DG), required for the new

phase formation as a sumof two terms: (1) the free energy gain resulting from the transfer of

nmolecules (atoms, ions) from the supersaturated phase to the new phase cluster, and (2)

the free energy penalty F imposed due to the formation of the new interface.

If we denote the starting thermodynamic potential by Gstart, and the final thermo-

dynamic potential by Gfin, we can write Gstart¼Nmmother, and Gfin¼ (N� n)mmotherþ
nmnewþF, where mmother and mnew are the chemical potentials of the mother and the

new phase. Thus,

DG ¼ Gfin � Gstart ¼ �nDmþ F (7.5)

where Dm¼ mmother� mnew> 0. The first term in Eqn (7.5) is negative because the new

phase is more stable than the old one. This term decreases the system thermodynamic

potential and indicates a tendency toward a spontaneous phase transition.

Consideration of droplet nucleation in the vapor phase, with droplets assumed to be

of spherical shape, is an important basis to analyze other cases. So, n depends on the

third power of droplet radius r, and the second term in the sum is proportional to the
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interface area (i.e., it depends on droplet radius in power 2). Initially, with very small

cluster sizes, the surface-to-volume ratio is large and the second term prevails. That is

why the smallest liquid clusters tend to evaporate. Rising cluster size leads to the volume

term increasing faster than the surface term. Thus, the competition between these two

terms determines the energy barrier for nucleus formation as the maximum in total free

energy change, DG*¼max, which is reached at the critical cluster size (Figure 7.2).

In large and/or open systems, the critical nucleus stands in an unstable equilibrium

with the surrounding parent phase.2 The equilibrium is unstable because even an

infinitesimal increase in the critical nucleus size leads to a decrease in thermodynamic

potential (Figure 7.2), and nucleus growth becomes favorable. With further growth,

droplet vapor pressure decreases continuously. Because the external pressure remains

unchanged in such systems, the growth process becomes irreversible. On the contrary, if

the critical nucleus radius decreases, its vapor pressure will augment and the droplet will

evaporate. A mechanical analog of unstable equilibrium is depicted in Figure 7.3.

r*

ΔG*

~ r3

ΔG

0
r

~ r2

FIGURE 7.2 Plot of the free energy (Gibbs’ thermodynamic potential), DG, versus droplet radius, r. DG*¼max
determines the radius of the critical nucleus r*.

FIGURE 7.3 Mechanical analog of unstable equilibrium. Even an extremely small push exerted on the ball causes it
to roll down, either to the right (which corresponds to growth) or to the left (which corresponds to dissolution).

2Stable equilibrium is achievable only in sufficiently small closed systems, when any droplet

evaporation increases appreciably the vapor pressure and leads to back condensation. Vice versa, if the

droplet grows above the critical size, the vapor pressure will decrease below the equilibrium value, which

inevitably leads to some droplet back evaporation.
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A unified consideration of liquid droplet and crystal nucleation is presented here. For

homogeneous crystal nucleation, the total surface free energy (of various shapes) is

F¼S(Shkl ghkl), where Shkl denotes the surface area of the crystal face with Miller indices

hkl and ghkl are the corresponding specific interface energies. Basically, F also includes

the binding energy of crystal edges and apexes. However, edge energy is negligibly small

as compared to surface free energy (see Section 7.7), whereas apex number is constant; it

changes only with the change in crystal shape. Then, we have for crystals of any shape

DG ¼ �nDmþ S
�
Shklghkl

�
(7.6)

From the postulate that the critical crystal nucleus is determined by the maximum of

the total free energy, d(DG)/dn¼ 0, with Dm and ghkl being independent on n, one obtains

Dm ¼ S
�
ghkl

�
dShkl

�
dn

��
; (7.7)

which is a general expression of the Gibbs–Thomson equation for crystals, in which edge

and apex energies are neglected.

For combinations of crystallographically equivalent faces, Eqn (7.6) simplifies to

DG ¼ �nDmþ Sg; (7.8)

where S is the total surface of the new phase and g is the specific interphase energy. The

graphical plot of Eqn (7.8) for spherical crystals is the same one as the presented in

Figure 7.2.

It should be emphasized here that Eqns (7.5), (7.6), and (7.8), which also hold true for

the energy barrier for nucleus formation, are meaningful for n[1 only; otherwise, these

equations would assign nonphysical, nonzero work for formation of the monomer, n¼ 1.

Again from the condition for a maximum of the thermodynamic potential, we have

dS�=dn ¼ Dm=g (7.9)

The two simplest cases are usually considered as examples. Firstly, the same

Gibbs–Thomson equation is obtained for liquid droplets and spherical crystals:

r� ¼ 2Ug=Dm (7.10)

where r* is the critical nucleus radius and U is the volume of a crystal building block

(CBB).

Secondly, a convenient model is the so-called Kossel crystal, which is a crystal built by

tiny cubic building blocks that are held together by equal forces in a cubic primitive lattice.

With an edge length d of a building block in the crystal lattice, the surface S* of the critical

nucleus constituted of n* molecules is S*¼ 6d2n*2/3, and U¼ d3. Then, Eqn (7.9) yields

n� ¼ 64U2g3
�
Dm3 (7.11)

The radius r�3 of the sphere inscribed in the crystal nucleus is r�3 ¼ ðn�UÞ1=3=2 ¼ r�.
Combining Eqns (7.8) and (7.9), one obtains the energy barrier DG�

homo for homo-

geneous crystal nucleation:

DG�
homo ¼ g½S� � n�ðdS=dnÞ� (7.12)
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Using Eqn (7.10), DG�
homo is calculated as

DG�
homo ¼ KU2g3

�
Dm2 (7.13)

with a coefficient K¼ 16p/3 for a sphere and K¼ 32 for the Kossel crystal. (Consideration

of fully completed crystals is an implicit assumption in the latter case.) Comparing

Eqns (7.13) and (7.11), one sees that for the Kossel crystal

DG�
homo ¼ n�Dm=2 (7.14)

Gibbs found that the energy barrier for nucleus formation DG�
homo amounts to one

third of the surface free energy. Now, substituting Dm from Eqn (7.10) in Eqn (7.8), and

with n*¼ 4pr*3/3U, one obtains the energy for reversible isothermal-isobaric formation

of a spherical nucleus:

DG�
homo ¼ 4pr�2g=3 ¼ S�g=3 (7.15)

Two other expressions can be obtained by substituting Dm from Eqn (7.10) in Eqn

(7.8):

1. For spheres,

DG
�
r
� ¼ DG�

h
3ðr=r�Þ2 � 2ðr=r�Þ3

i
; (7.16)

2. For the Kossel crystal, substituting nU¼ 4pr3/3

DG
�
n
� ¼ DG�

h
3ðn=n�Þ2=3 � 2ðn=n�Þ

i
(7.17)

Equation (7.17) will be used for deriving expressions for the nucleation rate in the

next subsection.

7.2.3 Rate of Homogeneous Nucleation: Steady-State Nucleation Rate

One of nucleation theory’s main purposes is to provide expressions for the nucleation

rate, J, which is the number of nuclei that appear in unit volume, 1 cm3 per unit time,

t¼ 1 s. Using a statistical-thermodynamic approach, Volmer [5] further developed the

Gibbs thermodynamic nucleation theory. He introduced and popularized the notion

of two- and three-dimensional nuclei. By treating the nucleation barrier as activation

energy, Volmer derived expressions for the rates of both kinds of nuclei formation. On

the basis of Boltzmann’s relationship between entropy and probability, taken in the form

used by Einstein, Volmer wrote [5]

J ¼ A expð � DG�=kBT Þ (7.18)

where A is a pre-exponential factor. Although A remained unknown in Volmer’s

statistical-thermodynamic derivation, Eqn (7.18) shows why the nucleation rate J is

extremely sensitive to Dm and g (compare Eqn (7.13)).

The pre-exponential factor A is revealed by the kinetic derivation of Eqn (7.18). After

Volmer and Weber [3] formulated the core kinetic ideas, Frakas [6] looked into the details

of the process mechanism. Using the chain reaction idea of Leo Szilard, he attempted to

derive the nucleation rate. This basic notion is the root of theoretical considerations

made later by Kaischew and Stranski [7], Becker and Döring [8], and Volmer [5].
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For the sake of simplicity, steady-state liquid droplet formation from supersaturated

vapors is examined further. Evidently, no steady-state process can be realized in a closed

supersaturated system because irreversible growth of supercritical nuclei exhausts the

monomers. To overcome this obstacle, a feasible physical model has been developed [5,8].

According to this model, all droplets that become larger than the critical size are removed

from the system and an equivalent amount of vapors is added immediately, so that the

number N of the molecules in the vapor phase is maintained constant. This secures

constant supersaturation at all times. The assumption is valid in some practical cases

because the number of molecules involved in forming the nuclei is sufficiently small, and

the single-molecule depletion has a negligible effect in the earliest stages of nucleation.

The model excludes the possibility for molecule clusters to coalesce and produce

larger size aggregates and/or disintegrate in smaller clusters. The clusters can grow or

decay by attachment/detachment of single molecules only. In other words, the classical

kinetic model describes cluster formation through a succession of steps, each leading to

a cluster of slightly (merely by one molecule) larger size. Then, a stationary flux of rising

size clusters will flow throughout the system:

1%
vþ
1

v�
2

2%
vþ
2

v�
3

3.
�
n� 1

�
%
vn�1

þ

vn�
n %

vn
þ

vnþ1
�

�
nþ 1

�

where nþ and n� are the corresponding probabilities (rate constants) for attachment and

detachment of single molecules. Taking into account the birth and decay processes of

clusters of size n, one obtains the time dependence of the concentration cn of clusters

constituted by n¼ 2, 3. molecules:

dcn=dt ¼
�
vþn�1cn�1 þ v�nþ1cnþ1

�� �
vþn cn þ v�n cn

�
(7.19)

Evidently, the net flux Jn of clusters through the size n is

Jn ¼ vþ
n�1cn�1 � v�n cn (7.20)

Thus,

dcn=dt ¼ Jn � Jnþ1 (7.21)

Considering the steady-state process, dcn/dt¼ 0, Jn¼ Jnþ1¼ Jst, where Jst denotes the

steady-state rate (that is frequency) of formation of clusters, which is independent on the

cluster size, and thus, includes the formation of critically sized nuclei as well. Therefore,

the rate of nucleation J is defined by the flux J* through the critical size, and the steady

state is characterized by

Jst ¼ vþ1 c1 � v�2 c2;

Jst ¼ vþ2 c2 � v�3 c3;

..:

Jst ¼ vþn cn � v�nþ1cnþ1

..:

Jst ¼ vþL�1cL�1:

(7.22)
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To totally exclude any probability of cluster evaporation, the chain is cut off at some

upper limit L[n�, where all supercritical nuclei leave the system, cL¼ 0. Becker and

Döring [8] multiplied each equation of this system by an appropriate rate constant ratio:

the first equation is multiplied by 1=vþ1 , the second one by v�2 =v
þ
1 v

þ
2 , and the n-th by

v�2 v
�
3 .v�n =v

þ
1 v

þ
2 .vþn . Then, they summed up the equation system. In doing so, Becker and

Döring got rid of the intermediate terms on the right-hand side of the equation. Because

cL¼ 0, the right-hand site of the sum becomes equal to c1 (molecules per cm3), and

Jst ¼ c1

,"
XL�1

n¼1

�
v�2 v

�
3 .v�n

��
vþn

�
vþ1 v

þ
2 .vþn�1

�
#

(7.23)

It is well known that the probability vþn�1 for the attachment of a molecule from the

vapor phase to the surface of a liquid droplet of size (n� 1) is determined by the number

of collisions per 1 cm2, times the surface area Sn�1:

vþn�1 ¼ pSn�1

�ð2pmkBT Þ1=2 (7.24)

where m is the atomic (molecular) mass.

Taking into account the fact that the molecules have a nonzero size, Volmer scruti-

nizes the crossing of a molecule through the spherical intermolecular-interaction

boundary that surrounds the droplet [5]. Evidently, a molecule is finally detached

from the droplet only after its mass center crosses the said boundary; just then, the liquid

surface of a cluster consisting of n molecules shrinks to Sn�1:

v�n ¼ pnSn�1

�ð2pmkBTÞ1=2 (7.25)

Using the Gibbs–Thomson equation,

p
�
pN ¼ expð2yg=kBTrÞ (7.26)

where y is the specific volume of a liquid molecule, we have for the critical nucleus,

n*¼ n� 1,

v�n
�
vþ
n�1 ¼ pn

�
p ¼ expfð2yg=kBTÞ½ð1=rnÞ � ð1=r�Þ�g (7.27)

Keeping in mind that ny¼ 4pr3/3, we obtain

�
v�2 v

�
3 .v�n

�
=
�
vþ1 v

þ
2 .vþn�1

� ¼ exp

(

ð2g=kBT Þ
�
4py2

�
3
�1=3 Xn

1

h�
1
�
n1=3

�� ð1=n�1=3Þ
i
)

(7.28)

In the framework of the CNT, n�[1, and the sum in the right-hand side of this

equation can be replaced by an integral. Then, integrating from 0 to n, we obtain

�
v�2 v

�
3 .v�n

�
=
�
vþ1 v

þ
2 .vþn�1

� ¼ exp
n
ðg=kBT Þ

�
4py2n�2�3

�1=3h
3ðn=n�Þ2=3 � 2ðn=n�Þ

io
(7.29)

The comparison with Eqns (7.15) and (7.17) leads to
�
v�2 v

�
3 .v�n

�
=
�
vþ1 v

þ
2 .vþn�1

� ¼ exp½DGðnÞ=kBT � (7.30)

Let us now note that the equilibrium distribution of heterophase fluctuations can be

calculated considering the metastable equilibrium in a slightly supersaturated system,
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where no critical nuclei can arise, J¼ 0. Evidently, the condition for (both steady-state

process and) equilibrium is a time-independent cluster-size distribution. However, the

concentration of clusters of category n is constant only provided the appearance and

disappearance rates are equal. Thus, the equilibrium concentration Cn of clusters in the

absence of molecular flux in the system is

vþn�1Cn�1 ¼ v�n Cn (7.31)

Equation (7.31) represents the so-called detailed balance, according to which at

equilibrium, each elementary process should be equilibrated by its reverse process.

Rewriting Eqn (7.31) as Cn=Cn�1 ¼ vþn�1=v
�
n and multiplying the ratios Cn/Cn� 1 from

n¼ 2 to n gives

Cn=C1 ¼
Yn

i¼2

�
vþi�1

�
v�i

� ¼ 1
���

v�2 v
�
3 .v�n

�
=
�
vþ1 v

þ
2 .vþn�1

��
(7.32)

Thus, Eqns (7.30) and (7.32) tell us that the metastable equilibrium concentration of

droplets consisting of n molecules is

Cn ¼ C1 exp½ � DGðnÞ=kBT � (7.33)

where C1 is the number of single atoms when the system is in equilibrium.

Bearing in mind that the nucleation rate Jst can be roughly estimated from the

number density of critical clusters multiplied by the attachment probability (frequency)

n*þ of a molecule to the critical cluster, we can write (with C1yc1)

Jst ¼ Cn
�v�þ ¼ c1v

�þ exp½ � DG�=kBT � (7.34)

The next step is to specify the expression. With this end in view, we replace the sum in

the denominator of Eqn (7.23) with an integral:
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�
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�
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�
vþ1 v

þ
2 .vþn�1

�
#

z

ZL

1

�
1
�
vþ
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�
exp

n
ðDG�=kBT Þ

h
3ðn=n�Þ2=3 � 2ðn=n�Þ

io
dn (7.35)

The function (DG*/kBT)[3(n/n*)
2/3� 2(n/n*)] possesses a sharp maximum in the

vicinity of n* and can be expanded in Taylor series. Thus, following the known procedure

(e.g., [9,10]) and after some approximations (including the assumption that vþn is con-

stant, equal to the attachment probability to the nucleus, and thus it can be placed in

front of the integral), the integration from �N to þN (instead from 1 to n) yields

Jst ¼ c1v
�þZ expð � DG�=kBT Þ (7.36)

where

Z ¼ �
1=n��ðDG�=3pkBT Þ1=2 (7.37)

In the literature, Z is known as the Zeldovich factor, which accounts for the difference

between the equilibrium and the actual steady-state numbers of critical nuclei.

Zeldovich [11] assumed that only variation by kBT in both sides around the maximum

DG* are of interest. The width of the energy barrier maximum is of special interest
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because, evidently, only the near-critical clusters contribute the most to the nucleation

rate. (For a more rigorous treatment of the problem, see Ref. [12].) In fact, Z is not a large

correction; its value is on the order of 10�2 for water (see Table 1.1 in Toshew’s work [9]).

To conclude, it should be noted that vapor droplet formation is one of the oldest

nucleation study topics. The literature on it is extensive and there is not space to review

it all here. I will note only that condensation of water droplets is of considerable practical

interest as well in view of its technological importance; for instance, to prevent energy

efficiency losses, it is essential to calculate the onset of water droplet nucleation in steam

turbines [13].

7.2.4 Non-Steady-State Nucleation Rate

Basically, steady-state nucleation can occur only for a short period of time in sufficiently

large systems and under the condition that concentration and/or temperature are

altered by supercritical nuclei growth in nuclei nearest proximity only, while remaining

unchanged in the bulk. Following that short period of time, supersaturation and

nucleation rate constantly drop until they finally approach zero—the reason being the

growth of supercritical nuclei. Zeldovich [11], Frenkel [14], Turnbull and Fisher [15],

Kashchiev [12] and many others have explored the transition periods of the non-steady-

state nucleation process, dcn/dts 0. For such a process, Zeldovich and Frenkel regarded

the number n of molecules constituting clusters as a continuous variable and replaced

the discrete cluster concentration dependence, expressed by Eqn (7.21), with a new

differential equation to satisfy the continuity condition:

dcðn; tÞ=dt ¼ �dJðn; tÞ=dn (7.38)

where c(n, t) and J(n, t) are the size- and time-dependent cluster concentration and rate

of cluster formation, respectively.

Correspondingly, Eqn (7.20) is replaced in this case by

J
�
n; t

� ¼ vþ
n�1c

�
n� 1; t

�� v�n c
�
n; t

�
(7.39)

Again for J¼ 0, the detailed balance equation is changed for the non-steady-state

case:

vþn�1C
�
n� 1

� ¼ v�n C
�
n
�

(7.40)

where C(n) denotes the equilibrium concentration of clusters of size n [14].

Thus, we can replace the detachment probability v�n to obtain

J
�
n; t

� ¼ vþ
n�1C

�
n� 1

�½cðn� 1; tÞ=Cðn� 1Þ � cðn; tÞ=CðnÞ� (7.41)

Using the approximation vþn�1Cðn� 1Þyvþn CðnÞ, we can write for the continuous case

J
�
n; t

�
y� vþn C

�
n
�
v ½cðn; tÞ=CðnÞ�=v n (7.42)

Combining Eqns (7.38) and (7.42), we obtain the partial differential equation that

describes the non-steady-state nucleation process:

v cðn; tÞ=v t ¼ v
�
vþn CðnÞv ½cðn; tÞ=CðnÞ�=v n

��
v n (7.43)
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Many authors attempted to solve this equation, but most of them made more or less

physically acceptable assumptions and approximations. Perhaps one of the most

rigorous solutions was given by Kashchiev [12]. Conducting a profound mathematical

examination of the non-steady-state nucleation problem, he concluded that only within

the critical region introduced by Zeldovich (of kBT in both sides around the maximum

DG*) does the non-steady-state distribution c(n, t) differ essentially from the steady-state

distribution, Cn. Thus, he wrote:

J
�
n; t

� ¼ Jst

"

1þ 2
XN

i¼1

ð�1Þί exp�� ί 2t
�
sN
�
#

(7.44)

where the parameter sN is called induction time or nonstationary time lag. It charac-

terizes the ability of the system to reorganize itself until producing a steady flow of

nuclei

sN ¼ 8kBT
�
p2lv�þ (7.45)

where l¼�[d2DG(n)/dn2]n¼n*> 0. After t> 5sN, the sum in Eqn (7.44) can be neglected

and the steady-state nucleation rate is achieved [12].

7.2.5 Induction Time for Nucleation

The nucleation process cannot become stationary immediately after setting the condi-

tions rendering a steady state. The reason is that when supersaturation is established in

the system, cluster size distribution changes first from the equilibrium distribution to

that corresponding to the metastable state. The larger the cluster, the longer it takes for

the cluster to emerge; hence, an equilibrium distribution of clusters smaller than the

critical size has to be attained before the appearance of the first critical nucleus.

Furthermore, any supersaturation change provokes an entirely new set of stationary

populations of subcritical and critical clusters; the inherited cluster size distribution has

to accommodate the new steady state.

Keeping in mind that the total number of nuclei C�
nðtÞ ¼

Z t

0

Jdt and substituting J(n, t)

from Eqn (7.44), Kashchiev [12] showed that the integral renders

C�
n

�
t
� ¼ Jst

(

t � �
p2sN

�
6
�� 2sN

XN

i¼1
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ð�1Þί

.
ί 2
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exp

�� ί2t
�
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�
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(7.46)

Again, the sum in the above equation can be neglected after t> 5sN [12], and C�
n

augments further linearly with time:

C�
n

�
t
� ¼ Jst

�
t � �

p2sN
�
6
��

(7.47)

When sN is smaller than the observation time t, that can be neglected:

C�
n

�
t
� ¼ Jstt (7.48)
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Induction time sN depends mainly on the attachment probability n*þ to the clusters of

critical size (Eqn (7.45))—that is, on the mechanism of molecule supply from the mother

phase. Therefore, the system type strongly influences sN; induction time can be a small

fractionof a second in vapor condensation, but can takemanyyears in aprocess such as glass

crystallization. Moreover, sN is inversely proportional to the square of supersaturation or

undercooling [9]; that is, thehigher the supersaturation, theshorter is the induction time.This

is confirmed experimentally (see the intersections of the curves in Figure 7.4 with the x-axis).

Induction time determination is of special interest because sN represents the inverse

of the frequency of critical nuclei formation, sNw 1/J. The temptation to measure sN
might be so irresistible that some authors tend to use the time for observing the first new

phase particles as a substitute for the true nucleation induction time. However, the time

for observing the first new phase particles is longer than the authentic induction time for

nucleation. Induction time per se includes only the time needed to achieve a stationary

size distribution of undercritical clusters and the time required for forming nuclei of

critical size. In contrast, the time for observing the first new phase particles includes

additionally the time for their growth to visible sizes. However loosely defined, the latter

depends on the growth rate and on the resolution capability of the observation method

used. Only by capturing nuclei at their birth by means of, for instance, laser light scat-

tering, can one render reliable data. Another possibility to directly measure the super-

saturation dependence of sN has been proposed [16,17]. Nucleation in some other

systems will be considered in the following sections.

7.3 Nucleation in some other systems, Nucleation of
Gas Bubbles from Superheated Liquids and Boiling

Although evaporation is taking place from any free liquid surface, boiling is a common

property of liquids. Therefore, nucleation of gas bubbles is of considerable technological

interest. It appears also in aerated waters (including carbonated beverages) and magma.

FIGURE 7.4 Number densities C�
nðtÞ of nucleated insulin crystals versus nucleation time t (Nanev, unpublished work).

Because the nucleation rate J cannot be determined directly, the figure plots experimentally determined number
densities of critical nuclei formed per the corresponding nucleation time. The numbers for the curves give
concentration ratios, ln(c/cN)¼Dm/kBT. The measurements plotted were carried out by separation of crystal
nucleation and growth stages (e.g., [16]).
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If bubbles of nitrogen form in divers’ blood while surfacing too fast, they suffer

decompression sickness and may die.

Liquids can be superheated easily. This fact points unequivocally to the existence of

a barrier to the formation of a new vapor phase inside the liquids. Although hetero-

geneous bubble nucleation occurs more easily than the homogeneous one, the basic

principles of the homogeneous process are discussed here because they represent a

general scientific platform for the phenomenon. For the impact of preexisting gas

cavities in surfaces (Figure 7.5), of container walls, of suspended particles, or in the

form of metastable microbubbles—called heterogeneous nucleation—interested readers

may refer to Ref. [18].

In contrast to a liquid droplet, a gas bubble in a bulk liquid is compressible.

Therefore, the thermodynamically derived Gibbs–Thomson equation for the vapor

pressure of bubbles is expressed again with the liquid molecule volume y:

kBT ln
�
pb

�
pN

� ¼ �2yg=rb; (7.49)

where pb is the gas pressure inside the bubble and rb is bubble radius. The significant

difference with respect to droplet formation is constituted in the negative sign of

equation’s right-hand side.

It is seen that pb is lower than the equilibrium pressure pN of the plane vapor–liquid

interface. The evident equilibrium condition refers to pb withstanding the sum of

FIGURE 7.5 Homogeneous (1), heterogeneous (2), and nucleation at preexisting gas microcavities (3) are depicted.
A finite nucleation energy barrier must be overcome for each nucleus, but significantly less dissolved gas
supersaturation is required for the third kind of bubble formation; increasing the supersaturation, a point is
reached at which the radius of curvature of each meniscus equals the critical radius, r*. Due to the smaller
volumes of the heterogeneous nuclei, the nucleation threshold for heterogeneous nucleation is significantly lower
than the one in the homogeneous case; this is most pronounced with preexisting gas cavities. Courtesy of
Elsevier; license Nr 3377621150350.
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external (usually barometric) pressure pex, capillary pressure 2g/rb, and hydrostatic

liquid pressure h

ˇ

2g:

p�
b ¼ pex þ 2g=rb þ bhdgzpex þ 2g=rb (7.50)

where h

ˇ

is the height of the liquid column above the bubble, d is liquid density, and g is

the gravity acceleration of Earth.

According to Eqn (7.49), p�
b < pN. Hence, gas bubble formation inside the liquid may

proceed merely under the condition pex< pN, but still positive: pex> 0.3 Therefore, the

bubble nucleus stands in equilibrium with a supersaturated liquid, with the equilibrium

being also unstable. With bubble formation driving force Dm ¼ ðp�
b � pexÞy, we obtain the

expression

DG�
homo ¼ 16pg3 y2

�
3Dm2 (7.51)

which is analogous to Eqn (7.13).

Noting that CNT describes fairly well the gas bubble formation during boiling, Hirth

and Pound [20] supposed that the contradictions appearing in the case of droplet for-

mation in vapors may be attributed to the incomplete molecule accommodation on the

surface of the arising cluster of the new liquid phase.

7.3.1 Crystal Nucleation in Melts

Crystal nucleation in melts is important from a technological point of view because the

nucleation rate predetermines grain size and, hence, the important mechanical prop-

erties of cast metal wares. The liquid-to-solid transition involves the appearance of new

periodic structure and density changes. Once periodic order appears, the molecules

become differently packed (in most cases, more closely) than in the liquid.

It is convenient to use Eqn (7.36) as a basis for the calculation of nucleation rates of

melt crystallization. Evidently, the attachment probability n*þ of a molecule from the

melt to the (spherical) critical crystal nucleus does not depend on molecule transport,

but only on molecule rearrangement in the crystal lattice

v�þ ¼ c14pr
�2z exp½ � DEre=kBT � (7.52)

where z is the product of a frequency factor times the molecule’s mean free path in the

melt, DEre is usually identified with the activation energy for viscous flow, and

Jst ¼ c214pr
�2zZ exp½ � DEre=kBT �exp½ � DG�=kBT � (7.53)

In this case, temperature plays a more significant role than in vapor condensation.

When T decreases, it causes simultaneous augmentation of undercooling (Eqn (7.3)) and

melt viscosity, and vice versa. The difficulties in the comparison of theoretical and exper-

imental results stem from the presence of impurity particles and from the temperature

history of the crystallizing system (memory effects [2] and presence of athermal nuclei [9]).

3Bubble formation under negative external pressure exerted on the liquid is called cavitation. This is a

mechanical rupture of a liquid; similar to solids, liquid cavitation occurs abruptly (for more details, see

Ref. [19]).
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7.3.2 Crystal Nucleation in Solutions

Crystal nucleation in solutions is another case of new phase formation for which it is

convenient to use Eqn (7.36). In this case, the attachment probability n*þ of a molecule

from the solution to the spherical critical crystal nucleus depends on both molecule

transport and rearrangement in the crystal lattice. Being a relatively slow process,

diffusion is usually the rate-limiting stage in the process. However, before attachments

to the nucleus, the species (ions or molecules) also have to become free of their im-

mediate solvent surroundings

v�þ ¼ 4pr�2c2 exp½ � DEdis=kBT � (7.54)

where DEdis is the dissolvation energy and 2 is the product of vibration frequency times

the molecule’s mean free path in the solution. Thus,

Jst ¼ c24pr�22Z exp½ � DEdis=kBT �exp½ � DG�=kBT � (7.55)

7.4 Earlier Corrections of the CNT
Operating with lucid and easily understandable ideas, and being relatively simple and

easy to use, CNT properly explains the origins of the nucleation barrier and nucleation

rate. However, the difficulties with CNT arise mainly because it assumes that data derived

from property measurements on macroscopic phases, such as surface tension, structure,

and density, can be applied to microscopic clusters containing a limited number of

molecules; CNT treats such clusters as small phases cut out of large macroscopic phases.

Capillarity—that is, the assumption of the interface between the arising small cluster of

the new phase and the parent phase being sharp—is another drawback of CNT. The

interface is described simply by a surface with a specific (per unit area) free energy, g.

However, g is usually not available from direct measurements; for nanosizes, it is

experimentally quantifiable only to a very limited extent (e.g., [21,22]). Besides, the

g-value for a curved boundary is relatively independent on the position chosen for

the dividing surface, only when its radius of curvature is much larger than the width of the

interface transition region. In contrast, the size of the smallest critical clusters is similar to

the thickness of the molecularly diffuse interface, so that the dividing surface cannot be

sharp. The interfacial width increases toward much larger values near the thermody-

namic critical point, which finally brings about spinodal transformation in the unstable

regions of the free energy; then, the work of formation for the fluctuation vanishes [2].

Tolman was the first to realize the extent by which the surface tension of a small

liquid droplet, gR, deviates from its planar value, gN. Using thermodynamic consider-

ations to account for this circumstance, he introduced a curvature correction dT [23]:

gR ¼ gN=ð1þ 2dT=ReÞ (7.56)

where dT is the difference in the radii of the equimolecular dividing surface [1] and the

so-called surface of tension [24]; Re is the equimolar radius of the liquid droplet. dT is also
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known as the Tolman length. Tolman’s correction represents the first term of the

expansion in power series of the surface energy, Eqn (7.56), in terms of surface curvature:

gRzgNð1� 2dT=ReÞ (7.57)

Equations (7.56) and (7.57) show that the surface energy starts to deviate appreciably

from its planar value when the droplet radius is on the order of dT. It should be noted

here that, according to Eqns (7.13) and (7.18), a variation of only 10% in g can alter the

nucleation rate by many orders of magnitude. Due to this tremendous effect, the issue is

still of enormous interest; using the keyword Tolman length, many dozens of papers

devoted to the topic can be found online. Despite the large number of works concerned

with Tolman’s correction, there is hardly a generally accepted view on the problem; the

topic is still debated [25] and a plethora of experimental techniques have been employed

to perform nucleation rate measurements (e.g., see the first 12 references listed in

Ref. [26]). Basically, they show that although CNT is valid near equilibrium where the

critical fluctuation and the work required for it are large, a different behavior is observed

moving further away from equilibrium.

Mutaftschiev [19] also studied the surface energy size dependence and the limits of

capillary approximation applicability. Taking into account the corrections needed for

this dependence in view of the discrete (atomic) constitution of extremely small clusters,

he added a constant in the classical expression for the thermodynamic potential of the

new condensed phase [19]. It is remarkable that, being a constant, this correction term

does not change the derivation of the Thomson–Gibbs equation (Section 7.2.2).

Another disadvantage of CNT is its intrinsic feature to allow for a miscalculation of

the degree of freedom of nucleating clusters. Because for homogeneous nucleation the

nucleus can form around any one of the molecules present, it can appear anywhere in

the homogeneous system with the same probability. Moreover, a free cluster is not static

but translates and rotates freely in the entire volume of the parent phase, thus

contributing to a higher system disorder. It has higher entropy than the one ascribed by

CNT and, therefore, lower free energy than a small phase cut out of a large condensed

phase. Thus, classical thermodynamics overestimates the cluster’s excess free energy.

With this in mind, Lothe and Pound [27] introduced the so-called Lothe and Pound

(correcting) factor, G. In the case of a homogeneous water droplet nucleation from

vapors, the calculations yield Gz 1017, but it turns out that it affects only the pre-

exponential factor in the nucleation rate equation [28].

A typical assumption used in the kinetic models of CNT is that cluster–cluster in-

teractions can be neglected because of their rarity. An alternative to this assumption is

the so-called chemical approach presented by Frenkel [14]. He considered the molecule

clusters as polymer molecules that obey chemical reaction laws. His approach allows

aggregation of clusters of any size, but not only attachment/detachment of single

molecules to/from the clusters. Mutaftschiev [29] discussed the merits and in-

consistencies of the chemical approach. With this approach, it becomes clear why the

critical nucleus plays the role of an “activated complex” in the theory of the chemical

332 HANDBOOK OF CRYSTAL GROWTH



reactions; the critical nucleus is the “molecule” of maximum energy and minimum

concentration.

However, CNT is not an anachronism. Firstly, a quite surprising validity of the

capillary approximation has been noticed by Bonissent and Mutaftschiev, even for

particles of only a few atoms [30]. In the authors’ opinion, this seems to be due to a kind

of compensation effect between energy and entropy (for closer look at the topic, see

Ref. [30]). As far as the cluster coagulation effect on the nucleation rate is concerned, it

should be noted that it is not only too infrequent to be concurrent with single molecule

attachment, but at least for one case—namely, the diffusion controlled aggregation of

protein crystalline clusters—it is highly improbable (see Section 7.12.4 and Ref. [31]).

7.4.1 Some Recent Nucleation Theories

Due to space limitations, only some novel ideas will be mentioned here in addition to the

corrections mentioned above. For instance, contrary to the CNT assumption that crystal

embryo structure and properties are the same as that of the bulk macroscopic crystal

phase, some authors assumed that the embryo’s structure differs significantly (e.g.,

Ref. [32]). A fractal structure of the heterogeneous nucleus has been suggested as well

[33]. However, polyhedral nuclei of apoferritin crystals have been observed by atomic

force microscopy [34]; the authors have shown that crystals of near-nucleus size exhibit

the same fcc structure as the bulk apoferritin crystals.

Numerous investigations have been carried out to solve specific nucleation problems,

the recent methods of choice being predominantly molecular dynamic and Monte Carlo

computer simulations (e.g., [26,35]), just to mention a few. McGraw and Laaksonen [36]

considered a diffusive liquid droplet of changing density. Using the Gibbs surface

dividing method [24] and density functional theory, the authors found a temperature-

dependent correction to the nucleation barrier DG*, which, however, is independent

of the nucleus size (the latter is assumed to be the same as the one found in CNT). The

surface energy gd correction introduced by the authors [36,37] is considered to be an

alternative to the Tolman correction (Eqn (7.56)):

gd ¼ gN þ f ðT Þ=S� (7.58)

where f is an arbitrary function.

Walton and Rhodin pointed out that although the CNT is capable of describing the

nucleation phenomenon at low supersaturations, an atomistic approach is more com-

mon at high supersaturations [38–40]. They developed a statistical nucleation theory for

vapor deposition of thin films, according to which, at high impingement rates of atoms

on the substrate, even a single atom can be a critical nucleus. Moreover, point defects on

the crystal surface can trap adatoms, which then appear as supercritical centers of

irreversible growth [41].

Milchev and Stoyanov [42,43] (see also Ref. [44]) have adopted the atomistic approach

for the case of electrochemical nucleation, where high overvoltages are applied as well.

Scrutinizing the discrete character of the cluster size alteration for single-digit molecule
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numbers, they pointed out that the n* versus Dm relationship is not continuous, but a

stepwise one (Figure 7.6). It was shown, too, that a supersaturation interval, not a fixed

supersaturation, corresponds to each critical nucleus; the smaller the nuclei, the wider

the intervals and vice versa. Also, the supersaturation dependence of the steady-state

nucleation rate is altered for extremely small nuclei. A broken line is observed in the

atomistic case with high Dm, while according to CNT lnJst should change smoothly

(Figure 7.7).

Using numerical simulations, ten Wolde and Frenkel [45] have shown that density

fluctuations in a protein solution located near the liquid–liquid boundary may induce

the formation of a high-density protein drops surrounded by low-concentration

solution. On this basis arises the so-called two-stage nucleation mechanism of pro-

tein crystal nucleation. The first step in this mechanism consists of the separation of

dense protein liquid drops from the bulk of the solution of the nucleating substance.

The second step is crystal nuclei formation inside the high-concentrated regions,

0

n*

Δμ

FIGURE 7.6 Critical nucleus size n* versus Dm. The
smooth line is the plot of the Gibbs–Thomson
equation. Courtesy of Elsevier; license Nr
3375810205283.

  lnJst

Δ μ

FIGURE 7.7 Schematic representation of the lnJst
vs. Dm relationship. The slope of each straight
line section of the curve gives the number of
atoms in the critical nuclei. Courtesy of Elsevier;
license Nr 3375800275481.
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which proceeds at a reduced energy barrier. Because of the slow ordering kinetics of

the crystalline phase, this step determines the nucleation process rate [46]. Based also

on experimental observations, the two-step nucleation mechanism remarkably re-

sembles Ostwald’s rule of stages (e.g., [19]). The topic is considered in full detail by

Vekilov in Chapter 19 of Volume 1B.

7.5 Molecular-Kinetic Approach to Crystal Nucleation
A significant advancement in CNT has been marked by the molecular-kinetic approach

to crystal nucleation, equilibrium, growth, and dissolution developed by Stranski and

Kaischew [47–49]. First, Kossel [50] and Stranski [51] recognized, simultaneously and

independently from each other, the importance of the unique position on the crystal

surface known nowadays as a kink (kink site). Kossel called it a repeatable step because

no change in surface geometry and energy takes place if an individual CBB is added

to/or detached from the kink on an “infinitely” large crystal face. For the same posi-

tion, Stranski used the notion of half-crystal position (Figure 7.8). This position on the

crystal face determines the thermodynamic equilibrium with the ambience of a suf-

ficiently large crystal (i.e., its chemical potential) because, evidently, under equilibrium

the statistical probabilities for its occupation or nonoccupation are equal. Thus, with a

sufficiently large crystal—so large that the energy contributions of the particles situ-

ated at the ends of its faces can be ignored—any crystal can be grown or dissolved

reversibly by repetitively attaching/detaching CBB at the kink site; this proceeds with

the same attachment or detachment energy, respectively, which is measured as the

work of separation 41/2. Indeed, 41/2 depends on crystal lattice structure. For instance,

1/2

FIGURE 7.8 Schematic presentation of a half-crystal position (1/2) on a face of “infinitely” large crystal. CBB in
this position is as follows (see the arrows): (1) at the end of a half CBB row (starting backwards); (2) connected to
the ledge of a half-crystal lattice plane (situated on the left); and (3) standing on the half of the “infinite” crystal
(beneath). To complete the crystal, one has to add the three missing crystal half-parts. Then, the atom (ion,
molecule) under consideration would stand in crystal bulk. Hence, CBB in the half-crystal position is bound exactly
two times less strongly than the atom (ion, molecule) standing in the crystal bulk and has an equal number of
saturated and dangling bonds.
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CBB at the kink site in the Kossel crystal is connected to three first-nearest neighbors

(Figure 7.8). Taking into account only this kind of interaction, its bond energy is

41/2¼ 3j, where j denotes the energy of a single bond between two CBBs.

Kaischew [52] revealed the quantitative relationship between chemical potential,

vapor pressure of the “infinitely” large crystal face, pN, and 41/2 for monoatomic vapors

and for temperatures for which crystal energy is negligible:

mc
N ¼ mo þ kBT ln pN ¼ �41=2 þ kBT ln

h
ð2pmÞ3=2ðkBTÞ5=2

�
Z3
i

(7.59)

where mc
N is the chemical potential of an “infinitely” large crystal, mo is the standard

chemical potential, and h– is Planck’s constant. Thus, at T¼ 0, mc
N ¼ �41=2.

The situation with small crystals is completely different. The smaller the crystal, the

greater are the deviations in the work of separation at the beginning and the end of the

crystal face as compared with the work of separation from the half-crystal position.

Taking into account this fact (and the principle of detailed balance), Stranski and

Kaischew [47–49] suggested that, under equilibrium conditions, the probability of

attachment of a whole new lattice plane on a crystal face should be equal to the prob-

ability of its detachment. Consequently, they calculated the energetic parameter that

determines the equilibrium of small crystals with the surrounding media as the mean

value of the work of separation (MWS), 4, averaged per building block of the corre-

sponding crystal face. In doing so, Stranski and Kaischew divided the total work of

separation involved in disintegrating the uppermost lattice layer of any face belonging to

the crystal equilibrium form by the total number of blocks in that layer. Being equal for

every face of the crystal, MWS determines its equilibrium shape (see Section 7.6).

Figure 7.9 depicts the procedure for calculating MWS with a (100) face of a Kossel

crystal. CBBs are removed successively, one by one (n3� 1)2 CBB (namely all white cubes

in Figure 7.9(a)), starting with the atom situated on the right-hand front crystal apex.

Detaching each of them from its three neighboring cubic CBB, a separation work

amounting 3j is performed per each single cube. Then, the two rows of 2(n3� 1) dashed

cubes in Figure 7.9(b) are separated, performing work 2j for each. Finally, the last

remaining cube (the black one at the left-behind crystal apex in Figure 7.9(c)) is

n3 δn3 δ n3 δ

(a) (b) (c)

FIGURE 7.9 Three stages of detachment from a Kossel crystal of a whole (100) lattice plane, constituted of n2
3

building blocks.
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separated, performing work j. Now, dividing the sum of those three works by the total

number of n2
3 particles, we obtain the MWS for that crystal plane:

4 ¼
h
3jðn3 � 1Þ2 þ 2j2

�
n3 � 1

�þ j
i.

n2
3 ¼ 3j� ð2j=n3Þ ¼ 41=2 � ð2j=n3Þ (7.60)

It is seen that the smaller the crystal, the lower the MWS. In contrast, 4 approaches

41/2 with a crystal size increase.

Keeping in mind the analogy with Eqn (7.58), Kaischew [52] has shown that in the

case of finite size crystals, MWS appears instead of 41/2. Thus, MWS determines the

vapor pressure, p, of such crystals (see also [10]):

mc
f ¼ mo þ kBT ln p ¼ �4þ kBT ln

h
ð2pmÞ3=2ðkBT Þ5=2

�
Z3
i

(7.61)

The supersaturation is

Dm ¼ mc
f � mc

N ¼ kBT lnðp�pNÞ ¼ 41=2 � 4 ¼ 2j=n3 (7.62)

Stranski and Kaischew [47–49] conceived the concept of MWS to establish a link

between the molecular kinetic theory of crystal nucleation and growth and the

thermodynamic-statistical treatment of the problems, given by Gibbs [1] and Volmer [5].

To demonstrate this link, the specific surface energy g, limited to energetic interaction

between first-nearest neighbors in the Kossel crystal, is defined as

g ¼ j
�
2d2 (7.63)

Thus, j¼ 2gd2, and

Dm ¼ 4d2g
�
n3 (7.64)

Keeping in mind that the diameter of the sphere inscribed in the Kossel crystal is

2r� ¼ n�
3d, and U¼ d3, Eqn (7.64) represents the Gibbs–Thomson equation (compare Eqn

(7.10)).

The molecular-kinetic approach also enables the calculation of the energy barrier for

crystal nucleation, DG�
homo. Stranski [53] has defined the free energy F as the difference

between the total binding energy of a cluster as if all its building blocks are in the bulk of

the infinitely large crystal, expressed by the term n3
341=2, and the energy of the bonds in

the real small cluster, U:

F ¼ n3
341=2 �U ; (7.65)

where U ¼ Pn
i¼14i is the disintegration energy of the entire crystalline cluster into n ¼ n3

3

individual building blocks. Evidently, this difference gives the number of unsaturated

dangling bonds on the outside of the cluster, multiplied by the energy necessary to break a

bond. Note that Stranski’s relationship is universal, in the sense that it applies equally well

to large and one-digit molecule crystal clusters. Replacing Eqn (7.65) with Eqn (7.5) and

using the Gibbs–Thomson equation presented in the form of Eqn (7.62), Dm¼ 41/2� 4,

one obtains the energy barrier for crystal (including nucleus) formation:

DG�
homo ¼ n3

�34�
Xn

i¼1

4i: (7.66)
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Taking into account only the first-nearest neighbor interactions in a Kossel crystal,

one can see that the separation work of a CBB situated on the eight cube vertices is

3j¼ 41/2 (Figure 7.9(a)); that is, the cubic shape is stable [54]. The total binding energy of

a Kossel crystal possessing n3 CBB in the edge is

Xn

i¼1

4i ¼ 3n2
3

�
n3 � 1

�
j (7.67)

Using Eqns (7.66) and (7.60), Kaishew [54] obtained

DG�
homo ¼ n3

3½3j� ð2j=n3Þ� � 3n2
3

�
n3 � 1

�
j ¼ n2

3j (7.68)

Replacing n3 from Eqn (7.62), n3¼ 2j/Dm, yields

DG�
homo ¼ 4j3

�
Dm2 (7.69)

Thus, one finally obtains [54]:

DG�
homo ¼ 32U2g3

�
Dm2 (7.70)

Generally, applying the MWS method, Stranski and Kaischew arrived at the same

conclusions for crystal nucleation that have already been known from CNT, and they

have been able to develop further kinetic notions for the process. Moreover, operating

with interaction energies in the crystal lattice only (thus avoiding the use of macroscopic

surface tension values for small clusters), the MWS approach overcomes one of the

deficiencies of CNT. Indeed, the absolute values of the intralattice interactions are

known merely for limited crystal types (e.g., for ionic crystals [55]), but Stranski and

Kaischew required to have their relative strength only. Hence, they considered the

problems of crystal nucleation from a more realistic standpoint than CNT.

Perhaps the single shortcoming of the Stranski–Kaischew’s theory is that it is limited

to complete and highly symmetrical crystals. Excluded from the considerations remain

vicinal surfaces on crystals. However, these limitations are not of principle importance.

Firstly, the incomplete clusters would have an increased number of dangling bonds,

which would be attractive sites for subsequent attachments until a complete shape

would be attained. Secondly, even using the simplest models, such as the Kossel crystal,

Stranski–Kaischew’s considerations reveal the general features and trends of the

nucleation phenomenon (and crystal growth and evaporation as well). This is shown

here taking into account only the first-nearest neighbor interactions, but the same

results have been obtained using first-, second- and third-neighbor interactions.

Although rarely used nowadays, as seen from the brief introduction provided here (see

also Ref. [56]), the MWS approach is not obsolete. Based on this approach, a consideration

of protein crystals equilibrium shapes is presented in Section 7.12.2 (see also Ref. [57]).

Another example for an MWS application is the calculation of the energy barrier for

protein crystal nucleation (Section 7.12.3). As seen in the next three sections, the predictive

and explanatory power of the MWS approach should not be underestimated. However, the

original works of Stranski and Kaischew are not very accessible (they are in Bulgarian and

German). Therefore, the brief introduction provided above may be useful to the reader.
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7.6 Equilibrium Shape of Crystals
Gibbs [1] showed thermodynamically that, at a constant crystal volume, the equilibrium

crystal shape is established under a minimum in the total surface free energy,

F¼ S(Shkl ghkl)¼minimum. His idea has been elaborated further in a geometric con-

struction, now known as the Gibbs–Curie–Wulff theorem. According to this theorem, the

equilibrium shape of a crystal can be depicted by putting crystal faces at distances hi

from a central crystal (so-called Wullf’s) point, with hi being strictly proportional to the

specific surface free energies gi of the corresponding crystal face. Then, the innermost

body obtained is the equilibrium crystal shape. Wullf’s theorem is expressed as

gi=hi ¼ const; or g1:g2:g3. ¼ h1:h2:h3. (7.71)

The derivation is simple (e.g., see Ref. [10]) but lengthy and is omitted here.

Chapter 5 (this volume) by Einstein is devoted to a thorough consideration of the issue.

Therefore, it will not be reviewed here in any detail, but the underlying physical ideas of

Stranski and Kaischew’s determination of the equilibrium shapes of crystals will be dis-

cussed; the reason is their simplicity [58]. The principle is that no CBB whose bonding with

the crystal is looser than the MWS can belong to the equilibrium shape because the vapor

pressure of such crystals would be higher than the equilibrium pressure. From this

standpoint, Stranski and Kaischew started with an arbitrary crystal shape and successively

removed all CBB—the separation work of which is smaller than MWS. In doing so, they

revealed the equilibrium shape faces. However, depending on the starting crystal shape,

some nonequilibrium faces may still remain. Therefore, the areas of all faces have been

varied until the same MWS is reached for all of them. Due to the disappearance of all

nonequilibrium faces, this procedure leads to the true equilibrium crystal shape (see also

Ref. [59]). In addition, Stranski and Kaischew showed [58] that, with an increase in the

supersaturation, the equilibrium shape becomes simpler because some faces disappear

from it; due to the diminishing nucleus size, the latter shrinks to a CBB size.

The equilibrium shapes of crystals nucleated on a foreign substrate are considered in

Section 7.8.

7.7 Two-Dimensional Crystal Nucleation
Although he did not systematically consider nucleation kinetic problems, Gibbs noticed

that the growth of a face on a crystal must be a periodic process, which is accomplished

by a successive formation and spreading of crystal layers. Moreover, he pointed out that

the formation of every new lattice layer is associated with surmounting an energetic

barrier (although it is not high). In 1927, Brandes reconsidered the possibility of two-

dimensional (2D) nuclei formation and found that the energy cost, DG�
2 was precisely

half of the total edge energy:

DG�
2 ¼ ð1=2ÞS�cili

�
(7.72)

where ci is the specific edge energy of the i-th edge and li is its length.
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There are several different ways to obtain this result [5,8]. To demonstrate how fruitful

the MWS method can be, we use it here. In analogy with deriving the MWS method for

three-dimensional (3D) crystals, Stranski and Kaischew [48] suggested that, under

equilibrium conditions, the probability for evaporation of all CBB that form the edge of a

2D crystalline cluster has to be equal to the probability for their deposition. Using as a

model a 2D crystalline cluster of length l2¼ n2d, formed onto (100) face of the Kossel

crystal (Figure 7.10) and denoting the corresponding MWS as 42, Stranski and Kaischew

determined it to be

42 ¼ 3j� j=n2 ¼ 41=2 � j=n2 (7.73)

Analogically to Eqn (7.62) for the 2D case,

Dm ¼ kBT lnðp�pNÞ ¼ 41=2 � 42 ¼ j=n2 (7.74)

Stranski and Kaischew [60] realized that the condition for a simultaneous equi-

librium between the 3D-nucleus, 2D-nucleus, and vapor phase is the equality of the

two MWS, 4¼ 42, or for the Kossel crystal n2¼ n3/2 (compare Eqns (7.62) and (7.74)).

From this standpoint, the work for the formation of a 2D nucleus upon a completed

(100) face of a Kossel crystal is calculated by a conceivable separation of the process

in three stages (Figure 7.11), with the first step being the attachment of a single atom

from the vapor phase (Figure 7.11(a)). From an energy perspective, it is the most

difficult step because the required separation work, equal to j, is substantially lower

than 42, and the single atom should be removed. Therefore, a free energy fluctuation

amounting 42� j¼ 2j� j/n2 is required for the deposition of the first CBB on the

n3 δ

n2 δ

FIGURE 7.10 2D crystal on the (100) face of the Kossel crystal. n2 is the number of CBBs in the edge row of the 2D
crystalline cluster; n3 is the number of CBBs in the Kossel crystal edge.

n3 δn3 δn3 δ

(a) (b) (c)

FIGURE 7.11 Formation of a 2D nucleus upon a completed (100) face of a Kossel crystal.
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completed (100) face of a Kossel crystal (Figure 7.11(a)). The next step is the forma-

tion of two edge rows of the arising 2D nucleus (Figure 7.11(b)). It requires binding

energy of 2j per CBB, so that the necessary energy fluctuation is 42� 2j¼ j� j/n2.

Multiplying by the number 2(n2� 1) of such particles, one obtains the total energy

fluctuation as 2(n2� 1)(j� j/n2). Finally, the attachment of (n2� 1)2 CBB that com-

plete the 2D nucleus (Figure 7.11(c)) requires binding energy of 3j per CBB, and the

necessary energy fluctuation is 42� 3j¼�j/n2. Thus, the total energy fluctuation for

this stage is minus (n2� 1)2(j/n2). Summing all that up, Stranski and Kaischew show

that the total energy fluctuation needed for the formation of the complete 2D nucleus

is DG�
2 ¼ n2j. Using the definition for the specific edge energy c as c¼ j/2d and with

l2¼ n2d, the authors [60] obtained:

DG�
2 ¼ 2cl2 (7.75)

This is Brandes’ Eqn (7.72) for the Kossel crystal. Note that exactly the same result is

obtained considering the formation of the 2D nucleus in an alternative way, such as

dissolving its surrounding crystal lattice plain [60]. It should be emphasized that

combining c¼ j/2d with g¼ j/2d2, from Eqn (7.62) yields c¼ dg. Because d is on the

order of 10�7 cm, we see that c � g.

Burton, Cabrera, and Frank [61] have pointed out that in calculating DG�
2 Volmer [5]

and Becker and Döring [8] neglected the conformational entropy. This is equivalent to an

assumption that the nucleus shapes are independent of temperature, and that all shapes

are like the nucleus shape at T¼ 0 K. A more rigorous treatment of the problem [61]

shows that the inclusion of the conformational entropy rendered only a small correction

of DG�
2 (multiplication by a factor of 0.8), and that the equilibrium nucleus shape de-

pends on the temperature only, but not on the supersaturation. The shape is completely

polygonized at T¼ 0 K and becomes increasingly rounded with temperature increase

[61]. As a matter of fact, this circumstance was already known to Gibbs, who noticed that

the apexes of a crystal at equilibrium with the surrounding media should be slightly

rounded on a molecular scale.

Before the knowledge that real crystals are imperfect, Volmer suggested that 2D

nucleation is a mandatory requirement for the growth process [5]. Frank’s idea that the

self-perpetuating steps originating from screw-dislocation emergence points make the

nucleation mechanism unnecessary for crystal growth [62] sparked a new era in modern

crystal growth theory, in which the interest in 2D nucleation declined significantly.

However, the physical reality of 2D nucleation has been proven by experiments per-

formed with free of screw-dislocation emergence points silver (100) and (111) crystal

faces [63] and the (0001) face of cadmium crystals [64]; such faces grow by means of the

so-called capillary technique for electrocrystallization.

Volmer also considered the formation of negative 2D nuclei (Lochkeime in German),

which have to appear on sufficiently large close-packed crystal faces under considerable

undersaturation. His suggestion has been confirmed experimentally with perfect faces of

p-toluidine crystals; local undersaturation has been evoked using a directed sharp
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air-blow, and the evaporation depressions created on the crystal faces were attributed to

negative 2D nucleation [65]. However, even easier than on a perfect crystal faces, 2D

nuclei arise also on emergence points of edge dislocations. The reason is that, due to the

accumulated dislocation strain energy Ed, the chemical potential increases locally on

such places. To elucidate the problem, Cabrera [66] described the change in the ther-

modynamic potential as

DG ¼ �pr2eCDm
�
Uþ 2preCg

0 � hEd (7.76)

where re is the radius of the empty disc that arises on the emergence point of

the dislocation, C is the hollow depth, and g0 is the energy of hollow periphery, which

is usually set as g0 z g. With the elastic strain energy, Eel and dislocation core

energy, Ecore, the total edge dislocation energy per unit length is Ed ¼ Eel þ Ecore ¼
�Gb2

B lnðre=roÞ=4pð1� xÞ þ Ecore, where �G is the shear modulus (modulus of rigidity), bB
is the Burgers vector of the dislocation, ro is the radius of the so-called core of the

dislocation, and xz 0.3, being Poisson’s cross-contraction ratio. From the condition

for a maximum of DG and keeping in mind that Ecore is a constant, two equilibrium

radii arise [66]:

r�min; max ¼
h
1H

�
1� 4rF

�
r��
2

�1=2i
r��
2

�
2 (7.77)

where rF ¼ �Gb2
B=8p

2g0ð1� xÞ is Frank’s hollow core radius and r��
2 is the radius of the

negative 2D nucleus on the perfect crystal face. Because r�min rises and r�max diminishes

with an undersaturation increase (the latter diminishing r��
2 ), a critical undersaturation

can be reached when r�min ¼ r�max, and r��
2 ¼ 4rF. The energy barrier for nucleation dis-

appears and a spontaneous formation of hollow disks on the edge dislocation emergence

points proceeds with further undersaturation augmentation.

7.8 Heterogeneous (Substrate) Nucleation, the
Equilibrium Shape of Crystals on Supports, and
Energy Barriers for Heterogeneous Nucleation

Homogeneous nucleation occurs very rarely. Much more frequent is heterogeneous

nucleation, occurring on foreign surfaces of different origins, such as impurity parti-

cles, container walls, etc. (Ions also activate nucleation, the most famous example

being droplet formation in the so-called Wilson camera [5].) The reason for the highly

predominating heterogeneous nucleation is that DG�
heter can be very much less than

DG�
homo.

Again, Gibbs [1] laid the foundations of the theory describing how liquid droplets

nucleate on interfaces between two bulk liquids and on a solid support. The theory has

been further developed by Volmer [5]. The expression for the heterogeneous nucleation

work is

DG�
heter ¼ DG�

homo

�
0:5� 0:5 cos b� 0:25 sin2

b cos b
�

(7.78)
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where DG�
homo is given for spherical drops from Eqn (7.13) and b is the wetting angle. For

b¼ 0, meaning complete wetting, DG�
heter ¼ 0 and vapor condensation requires only a

relatively small barrier for 2D liquid nucleation. For b¼p, meaning complete non-

wetting, DG�
heter ¼ DG�

homo—that is, the substrate has no effect on droplet nucleus for-

mation. For any b value between 0 and p, nucleation of liquid droplets proceeds

heterogeneously in an easier manner than in a bulk vapor phase.

Due to its enormous practical significance, theoretical consideration of heteroge-

neous crystal nucleation has been provided by many authors (e.g., [67–69], just to

mention some). Using the MWS method (Section 7.5) and the Kossel crystal model,

Kaishew calculated equilibrium crystal shapes and energy barriers for crystal nucleation

on foreign substrates [54,70]. Later, his significant contribution was called the

Wulf–Kaischew theorem [68]. Here, Kaischew’s work is presented in brief because his

original papers [54,70] are in Bulgarian and are not accessible to the general scientific

audience.

Because any molecule on a nucleus surface has to occupy an equilibrium position, at

a given supersaturation the kind and size of nucleus faces contacting the ambient phase

only have to remain the same (Figure 7.12). As for the four faces in Figure 7.13(a) con-

tacting with the support, each built by n’n3 CBB (with n’ being the number of CBBs in

the normal to the support crystal edges) Kaischew calculated the MWS, 40, as

j 0 ¼ ½n0n3jþ n0ðn3 � 1Þjþ n3ðn0 � 1Þjþ n3j
0�=n0n3 ¼ 3j� ½ðj� j0Þ=n0 þ j=n3� (7.79)

where j0 is the detachment energy of a single CBB from the support. Because under

equilibrium the MWS of these faces must be equal to the MWS of the topmost crystal face

contacting with the vapor phase only, it follows according to Eqns (7.62) and (7.79) that

Dm ¼ 2j=n3 ¼ ðj� j0Þ=n0 þ j=n3 (7.80)

h10 h11

(10)
(11)

h10 h11

(10)
(11)

h'10

h10

(10)
(11)

h''10

h11

(a)

(b)
(c)

FIGURE 7.12 Three combined crystal
shapes: a homogeneous nucleus (a)
and heterogeneously formed nuclei
(b) and (c). Wullf’s points are shown
by small circles, while the support is
represented by the straight line. From
Ref. [54].
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Thus, the equilibrium crystal shape (Figure 7.13(a)) is determined by

n0=n3 ¼ 1� j0=j: (7.81)

To calculate the energy barrier DG�
heter, Kaischew used Eqn (7.63), which relates j with

g; analogically, he expressed j0 by the specific adhesion energy, u¼ j0/d2 (this expres-

sion reflects the fact that only one crystal surface is appearing by detachment of a CBB

from the support). In the case under consideration,

Xn

i¼1

4i ¼ 2n3n
0�n3 � 1

�
jþ n2

3

�
n0 � 1

�
jþ n2

3j
0; (7.82)

Again, Eqn (7.66)] is used to establish the energy barrier for heterogeneous crystal

nucleation, DG�
heter. With Eqn (7.60), Kaischew obtained

DG�
heter ¼ n2

3n
0½3j� ð2j=n3Þ� �

Xn

i¼1

4i ¼ n2
3

�
j� j0� ¼ n2

3jð1� j0=jÞ ¼ DG�
homoð1� j0=jÞ

¼ DG�
homoð1� u=2gÞ: (7.83)

In a similar manner, he considered nucleation in concave edges (Figure 7.13(b)),

where the crystal reclines on two support plains, and in concave vertices (Figure 7.13(c)),

where the crystal sits on three support plains [54]. In doing so, Kaishew showed that in

the former case

DG�
heter ¼ DG�

homoð1� u=2gÞ2; (7.84)

In the second case,

DG�
heter ¼ DG�

homoð1� u=2gÞ3; (7.85)

It is seen that the equilibrium crystal shapes (Figure 7.13(a)), energy barriers, and thus

rates of crystal nucleation on substrates depend on the differing nucleation activity of

n' δ

n3 δ(a)

(b)(c)

FIGURE 7.13 3D models of Kossel-crystals
nucleated on (a) one substrate, (b) two equal
substrates, and (c) three equal substrates.
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foreign surfaces, expressed by the corresponding specific adhesion energies, u.

Furthermore, Kaischew also calculated thermodynamically the ratio DG�
heter=DG

�
homo (for

the same supersaturation) [70]:

DG�
heter

�
DG�

homo ¼ V �
heter

�
V �
homo: (7.86)

The physical explanation of this result is simple: depending on the substrate nucle-

ation activity, the nucleus volume is decreased (see Figure 7.12), and the nucleation

energy barrier is proportionally decreased.

Kaishew considered only the simplest case of nucleation on structureless (or

isomorphous) substrate. Clearly, on a lattice-mismatched substrate, the deposited

crystal as well as some part of the underlying substrate are strained. In such cases, the

elastic strain energy arising due to the misfit with the support has to be added to the

change in thermodynamic potential. In doing so, Mueller and Kern [68] concluded that,

owing to the strain, the equilibrium crystal shape changes; some facets decrease while

some others increase in size.

7.8.1 Saturation Density of Nuclei during Mass Crystallization
in Solutions and Melts

Particularly active sites for nucleation are present on the substrates themselves as well.

Assuming equal activity of the sites, the rate dÑ/dt at which they are consumed has been

calculated by Robins and Rhodin [41]. Evidently, this rate depends on the number

(Ña� Ñ*) of the still unoccupied active sites:

d ~N
��
dt ¼ J 0stð ~N a � ~N

�Þ (7.87)

where J 0st ðs�1Þ is the nucleation frequency per active site and Ña and Ñ* denote the

density of the active sites and nuclei numbers, respectively. Taking into account the

initial condition that for t¼ 0, Ñ*¼ 0, the integration from Ña to Ña� Ñ* yields

~N
� ¼ ~N a

�
1� exp

��J 0stt
��

(7.88)

As seen, at t/N, Ñ*/ Ña¼ const. Due to the exponential dependence, the ratio

Ñ*/Ña¼ 0.98 to 0.99 is attained at t > 4=J 0st to 5=J 0st, 1=J
0
st being the time constant of the

process.

However, the active sites on the support can possess different activity in respect to

the nucleation phenomenon [63]. Even when the substratum is a single crystal, its

surface is not homogeneous; there are always emergence points of (both edge and

screw) dislocations, tilt and twist boundaries, foreign inclusions embedded in the

crystal lattice, point defects, and surface steps, which, due to the locally increased

chemical potential or/and relief change, can become the preferred nucleation sites.

Evidently, any different kind of site can become active in the nucleation process,

provided the system’s supersaturation rises higher than some characteristic threshold.

Correspondingly, these kinds of sites can be classified with respect to the said critical

supersaturation. In such a case, the maximal nuclei density does not exceed the
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number of corresponding kind of active sites. However, with the increase in the

system’s supersaturation, less active sites will be involved in the nucleation process.

The limit to this stepwise activation process is set by the critical supersaturation that

is sufficient for homogeneous nucleation. This issue has been quantitatively looked

into by Kaischew and Mutaftschiev [71].

Similar to CNT, matter and heat transport in the mother phase are neglected by

Stranski and Kaischew’s theory. However, they are of importance in condensed systems.

As already noted (Section 7.2.4), depending on the matter and heat transport in the

parent phase, nuclei growth may substantially change the concentration and/or tem-

perature in their immediate surroundings. The so-called excluded nucleation zones

appear when supersaturation falls below the critical nucleation limit (e.g., see Ref. [10]).

Then, the exhaustion of the active particles/centers and/or the overlap of the excluded

nucleation zones sets the upper limit of the nuclei number.

7.9 Nucleation Theorem
Gibbs [1] was the first to notice that the thermodynamic nucleation theory proposed by

him leads to a simple relationship between the critical work and critical size; the

relationship between DG*, n*, and Dm is given by Eqn (7.14) (see also Ref. [72]). Perhaps

the famous nucleation theorem, given by Kashchiev and Oxtoby [73–76], was a result of

this argument. This nucleation theorem is very valuable for experimenters because it

reveals how the critical nucleus size is related to the supersaturation dependence of

nucleation rate. Using experimental data for the nucleation rate Jst, the number of

molecules n* constituting critically sized nuclei4 can be calculated by means of the

following equation:

n�zkBTdðln JstÞ=dðDmÞ þ a1 (7.89)

where a1 is a small correction taking values between 0 and 1 [74].

It should be emphasized that nucleation theorem validity is not restricted by nu-

cleus shape or size [73,74]. Moreover, nucleus size can be established without

knowing the molecular mechanism details of its formation. An in-depth theoretical

analysis [74] has shown that Eqn (7.89) provides a high degree of certainty; it “can be

used to give n* with an accuracy of 1–2 molecules” [73]. A statistical mechanical–

kinetic derivation of the nucleation theorem, which takes into account the kinetic

prefactor in the rate expression as well as the exponential term, has been proposed by

Ford [77]. The nucleation theorem has also been checked thoroughly by Schmelzer

[78], who expanded its application.

Kashchiev [75] gave strict phenomenological and thermodynamic proof of the

nucleation theorem and provided some generalizations. Although oversimplified, a

4In concentrated systems, this is the excess number of molecules in the critical nucleus, which is given

by the difference between the number of molecules in the nucleus and the number of molecules there

would be in the same volume without the nucleus.
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simple derivation of Eqn (7.89) is presented here, starting from the logarithmic form of

Volmer’s equation (Eqn (7.18)) for the nucleation rate:

ln J ¼ ln A� DG�=kBT (7.90)

Then, replacing the DG* value from Eqn (7.8), Eqn (7.90) is derived with respect to Dm,

under the assumption that A and g are constants. In doing so, an equivalent form of Eqn

(7.89) is obtained:

n�zkBTdðln JÞ=dðDmÞ � ½dn�=dðlnDmÞ � gðdS�=dðDmÞÞ� (7.91)

Then, with Eqn (7.10) for spherical crystals, one obtains

n�zkBTdðln JÞ=dðDmÞ (7.92)

Using Eqn (7.9) and with dS*/d(Dm)¼ (dS*/dn*)[dn*/d(Dm)], Eqn (7.92) is yielded for

the Kossel crystal as well.

7.10 Probabilistic Features of the Nucleation Process
Both molecule attachment and detachment are random processes, which means that

any cluster smaller than the critically sized one performs a random size-walk forth and

back on the time axis, until it eventually reaches the critical size [9]. Therefore, the

nucleation rate itself is a random quantity as well. Thus, the formal probability laws

govern the statistical distribution of the nucleation rates, whereas the kinetic nucleation

theory predicts their average values only. This fact is reflected in the inherent data scatter

of the measured nucleation rates.

The probabilistic features of the nucleation process have been discussed thoroughly

by Toshev and co-workers [9,79]. Following these authors, only the simplest case of

steady-state nucleation will be considered here because it is more lucid than the

nonsteady case and renders a clear result.

Toshev [9] considered nucleation as a sequence of independent random events

occurring during a fixed time interval. Using the Poisson expression, he calculated the

probability PM of finding M events within the time interval from 0 to t:

PM ¼ �
�N

M
exp

�� �N
���

M ! (7.93)

where �N is the average number of expected nucleation events, which should appear in

the chosen time interval.

Following the calculus of probability, Toshev [9] derivates Poisson’s formula to obtain

a relationship between the probability and nucleation rate d �N/dt:

dP�M ¼ �
d �N

�
dt
���

�N
M�1��ðM � 1Þ!�exp�� �N

�
dt (7.94)

Integrating Eqn (7.94), he obtained the probability of formation of minimumM nuclei

before time t is elapsed. Introducing the total number of nuclei according to Eqn (7.48),

he considered �N and J¼ d �N/dt as representative for the whole system and assumed that

the supersaturation remains constant. To obtain an expression for appearance of at least
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one nucleus, M¼ 1, Toshev assumed as a limiting case the rate equation for steady-state

nucleation and reached

dP�1 ¼ Jst expð � JsttÞdt (7.95)

This formula expresses the probability of occurrence of the first nucleus within the

time interval between t and tþ dt. By integrating, the probability P�1 (that at least one

nucleus has arisen before the time t is elapsed) was obtained:

P�1 ¼ 1� expð � JsttÞ (7.96)

According to the theorem for average values of a function, the mean expectation time

T1 for the appearance of at least one nucleus is

T1 ¼
ZN

0

tdP�1 ¼ 1=Jst (7.97)

It is seen that the mean expectation time T1 needed to form at least one nucleus is

reciprocal to the steady-state nucleation rate. Although the time of first nucleus for-

mation in the system is also a random quantity, Toshev and co-workers had shown that

it yields valuable information concerning the kinetics of the process [79].

Some novel applications of the nucleation theory will be considered in the following

sections.

7.11 Use of Burst Nucleation for Producing
Equally-Sized Nanoparticles

A detailed understanding of the mechanisms responsible for formation of metallic

particles with carefully tailored properties is indispensable to many contemporary

technology areas, such as photovoltaics, catalysis, electronics, and medicine. In this

respect, burst nucleation of metal colloids and nanoparticles in solutions, followed by

diffusional growth and aggregation, or their combinations, represents an interesting

development [80]. Burst nucleation is initiated by chemically generating (or introducing)

monomers. By burst nucleation and further growth, molecule clusters reach sizes up to a

couple of tens of nanometers. In many cases, nanocrystals of ZnS, CdS, Fe2O3, Au, Ag

(and other metals) can begin to aggregate, becoming “monomers” for the formation of

(crystalline) colloids. A modification of CNT has been used to explain the burst nucle-

ation [80].

7.12 Nucleation of Protein Crystals
Protein crystal nucleation is a special case of spontaneous highly precise self-assembly

of biological macromolecules into stable clusters, formed as a result of selective and

appropriately directed interactions. It is a mandatory requirement that biological

macromolecules have to be arranged in a geometry that is appropriate for creating
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crystallographically symmetrical molecular structures. On the basis of reliable statistic

data, Wukovitz and Yeates [81] revealed a tendency for proteins to crystallize in a small

number of preferred space groups, where it is the easiest to achieve connectivity. The

specificity of protein crystal nucleation will be considered in the following section.

7.12.1 Bond Selection Mechanism

It is known that only the structure of the protein molecule surface dictates a molecule’s

ability to bind to partners during protein crystallization. Evidence comes from the

entirely analogous crystallization behavior of apo- and holoferritin, observed to occur

due to the same molecule surface structure, regardless of the dramatically different

molecule core. Recall that apoferritin is an empty shell, while a mineral core is present in

the holoferritin. Nevertheless, when forming under the same conditions, the crystals of

both proteins have exactly the same shape; the crystals differ only in their color: apo-

ferritin crystals are yellowish, whereas holoferritin is reddish-brown [82]. Taking that

into account and the experimental observations that protein crystal nucleation is rather

slow, a bond selection mechanism (BSM) has been suggested [83,84]. It represents an

attempt to describe the most important features of the extremely complex molecular-

kinetic mechanism of protein crystal nucleation.

As is well known, there is a fundamental difference between small inorganic and large

protein molecules. Small molecules possess spherical interaction fields with constant

interaction potential. In supersaturated media, every hit between them, independently

of molecules’ spatial orientation, has the potential to contribute to a crystal bond for-

mation. In contrast, the surface of the protein molecule is highly patchy and heteroge-

neous. The rationale behind BSM rests on the concept that patch–patch recognition is

mandatory for the formation of lattice contacts in protein crystals.

Although it is impossible to observe the elementary acts of protein crystal bond

formation, knowledge about lattice contacts (e.g., see Protein Data Bank, (PDB) data in

Refs [85–88]), resulting in protein crystallization, lay a sound basis to suggest a mech-

anism of protein crystal bonding. It has been evidenced by PDB-structure statistics [85]

that protein lattice contacts are not random; they occur through strict selection of

amino-acid residues situated on the protein molecule surface. Only two (arginine and

glutamine) predominate in crystal lattice contacts, of the 20 proteinogenic amino-acid

residues that the vast multitude of living organisms rely on. In contrast, the least likely

residues to be found in the crystal lattice contacts are lysine and glutamate residues [85].

Such a bond selection imposes severe steric restriction to protein molecule associa-

tion, leading to crystal nucleus formation. In addition, it should be emphasized that only

amino-acid residues situated in proper positions on the molecule surface are able to

participate in producing crystal lattices. Even though potentially active, some residues

that are out of crystallographically symmetrical positions (if, for instance, they are sit-

uated too close) can remain unused. Therefore, over their surface, protein molecules

exhibit a highly limited number of discrete patches, which are the authentic bonding
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sites under the actual crystallization conditions. Because such a patch occupies only a

small fraction of the total surface of the protein molecule [82], BSM dramatically de-

creases the chance for a crystalline lattice bond formation and postpones the nucleation

process significantly.

Indeed, the steric restriction effect is somewhat mitigated by rotational diffusion,

which involves multiple collisions. The latter increases the chance for fine-tuning of the

proper spatial positioning of crystallization patches on the two meeting protein mole-

cules [89]. However, the rotational diffusion is highly effective only for protein pair

formation. Its impact decreases strongly with larger complexes, following the order of

pair[trimer[.n-mer./0. The reason is that random rotation slows down very fast

with larger complexes; for spheres, it is inversely proportional to their volume [89,90].

Therefore, it is highly improbable that the rotational diffusion may effectively assist a

reasonably frequent formation of critical clusters constituted of large number of protein

molecules (see also Section 7.12.4).

The reasons for BSM and its impact on protein crystal nucleation are considered in

full detail in a review paper [91].

7.12.2 Shape of the Protein Crystal Nucleus

Crystal nucleation kinetics is studied intensively with globular proteins, but the

experimental determination of the shape of the crystal nucleus still remains a chal-

lenge. The evident reason is the principal impossibility to see the critical nuclei directly.

As already mentioned (see Section 7.4.1), the shape of the critical crystal nucleus has

been deduced from the observed nearly critical apoferritin crystallites [34]. Surprisingly,

the crystallites had a raft-like form. This observation is rather puzzling [92,93] because

the apoferritin molecule is quite symmetrical in shape, almost spherical, and crystal-

lizes in fcc lattice. Using the classical approach of the MWS method, the observation of

Yau and Vekilov has been explained on the basis of the hypothesis for different crystal

lattice bond strengths [57].

A Kossel-like crystal nucleus model was considered for globular proteins [83,84], in

which spheres replaced the cubic building blocks of the said crystal (Figure 7.14).

Keeping in mind the nature of the lattice binding forces between the huge biomolecules,

FIGURE 7.14 Cubic primitive lattice model
of a 3D crystal, formed due to six sticky
patches (not to scale): A, B, C, E, F, and
the patch just behind C that is not seen.
l, l1 and l2 are the numbers of molecules
in the corresponding rows.
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only the first-nearest neighbors were taken into account. A diametrical opposition of the

sticky patches was assumed because it simplified substantially the quantitative

consideration of the nucleus shape (Figure 7.14).

The crystal model shown in Figure 7.14 is constructed from three rows of molecules. The

bond strength of the most stable contact between two molecules, the one in the horizontal

front row in Figure 7.14, is denoted as j1, j1¼max. Then, a second type of weaker bond of

strength j2 is added horizontally at the back. And finally, a third type of bond j3 is

necessary to construct the three-dimensional cluster; those are the weakest bonds. Using

this model, it is easy to calculate the corresponding MWS, 4, for the three types of faces:

41 ¼ j1 þ j2 þ j3 � j1=l � j2=l1 � for the top ðor bottomÞ face in Figure 5:14: (7.98)

42 ¼ j1 þ j2 þ j3 � j1=l � j3=l2 � for the front ðor backÞ face in Figure 5:14: (7.99)

43 ¼ j1 þ j2 þ j3 � j2=l1 � j3=l2 � for the side� faces in Figure 5:14: (7.100)

At equilibrium, all three MWSs have to be equal. Hence:

l=l1 ¼ j1=j2; l1=l2 ¼ j2=j3 and l=l2 ¼ j1=j3 (7.101)

Because j1> j2> j3, the three-dimensional crystal is a parallelepiped, but not cube.

It is worth showing here that this result obeys the Gibbs–Curie–Wulff law. According

to Eqn (7.101) we have: l/l1> 1, l/l2> 1 and l1/l2> 1, and hence:

ll2 > l1l2; ll1 > l1l2; and ll1 > ll2 (7.102)

Thus, the smallest are the left- and right-hand side faces in Figure 7.14, which are

situated normally to the strongest connecting force; the largest (top and bottom) faces

are normal to the weakest bonding force. Keeping in mind Eqn (7.63) for the specific

surface free energy gi, one sees that the equilibrium crystal face with the largest specific

surface free energy g1z j1/2s is the smallest in size, and the one possessing the lowest

energy g3z j3/2s (having the weakest dangling bonds) is the largest in size. Thus, the

model obeys the Gibbs–Curie–Wulff law.

Closely packed 3D-crystal nuclei models built of spherical protein molecules,

including those similar to the raft-like apoferritin crystal shapes of Yau and Vekilov, have

been considered as well [57]. It should be noted that the formation of nonequilibrium

shaped clusters is feasible but its energy cost is higher [94].

7.12.3 Energy Barrier for Protein Crystal Nucleation

Applying the MWS method to calculate the energy barrier for homogeneous protein

crystal nucleation [84], using Eqn (7.66), gives

DG�
homo ¼ ll1l24�

Xn�

1

4i (7.103)

The total binding energy of the crystal, built of n*¼ ll1l2 individual molecules, is

Xn�

1

4i ¼
�
l � 1

�
l1l2j1 þ

�
l1 � 1

�
ll2j2 þ

�
l2 � 1

�
ll1j3; (7.104)
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and thus,

DG�
homo ¼ ll1j3

� ¼ ll2j2 ¼ l1l2j1

�
(7.105)

From Eqn (7.62), l, l1, and l2 are expressed by j1, j2, and j3 and the supersaturation

Dm: l¼ 2j1/Dm, l1¼ 2j2/Dm and l2¼ 2j3/Dm. Then, an analog to Eqn (7.13) is obtained

expressing j1, j2, and j3 by the corresponding surface free energies g1, g2, g3, according

to Eqn (7.63):

DG�
homo ¼ 32g1g2g3U

2
�ðDmÞ2 (7.106)

The numerical estimation, performed by means of Eqn (7.106) and with gz 1 erg/

cm2 [95], Uz 3� 10�20 cm3, and Dmz 3kBT, yields DG�
homo ¼ 2� 10�12erg. In view

of Eqn (7.83), and taking into account the experimental data obtained for

heterogeneous insulin crystal nucleation, DG�
heter ¼ ð3:8� 6:8Þ � 10�13erg [84], the result

is encouraging.

7.12.4 Protein Cluster–Cluster Aggregation on Diffusional Encounter

Despite the unusually high supersaturations applied in protein crystal nucleation

studies, the nucleation kinetics is rather slow [84,31]. One possible explanation of this

observation may be that successive series of multiple coalescences of critical and/or

near-critical clusters could reduce the observed crystal yield. Because there is no

technique to track the destiny of the individual undercritically, critically, and super-

critically sized clusters, it is particularly difficult to give any confident statement

regarding the intermediate processes that may occur before and after the onset of

crystal nucleation. In addition to the complexity of the issue is the fact that, while

coalescence of clusters equal or larger than the critical size would diminish the crystal

nucleation rate, coalescence of smaller sized clusters would augment it.

Firstly, due to the patchy and highly inhomogeneous surface of the protein molecules

constituting the clusters, it is reasonable to expect that BSM should affect protein

molecule clusters as well. In other words, when such clusters meet, their proper spatial

orientation provides an inevitable coalesce condition. Because crystalline protein clus-

ters are polyhedrons in shape [34], the simplest model is coalescence of two clusters with

a Kossel-like lattice that consists of eight molecules each (i.e., two dice; Figure 7.15).

Evidently, the facets on the two dice that correspond to the strongest intermolecular

binding are most prone to bind together [31].

The probability for a proper meeting of two such dice in space is equal to the

probability for the simultaneous appearance of just the same number on both dice

by crap-shooting—that is, w0.028. This probability is about 3 times smaller than that

one for formation of protein molecule dimmers, which has been estimated to be

0.09–0.13 [84].

Note that the dice-meeting probability also includes partial coincidence, when

merely one or two molecules on each dice become associated. Such a construction

would hardly have sufficient stability; complete stability could only be achieved by
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bonding of all eight molecules on both preferred dice faces. Thus, an additional spatial

adjustment is required, which may be provided by rotational diffusion. However,

because of the Brownian motion, the dice also may be separated in the meantime, which

additionally decreases the coalescence probability.

Coalescence of clusters larger than eight molecules has also been discussed [31].

Obviously, the attachment of a ninth (and also tenth and eleventh) protein molecule to

the dice in Figure 7.15 will create bulges. Bulges appear also on clusters consisting of

13–15 protein molecules, etc. However, flat faces bind together much stronger

than bulges do, thus reducing coalescence probability even further. As already

mentioned (see Section 7.12.2), in complete parallelepiped clusters, the side faces

normal to the strongest connecting forces are of the smallest area (this holds true also for

completed clusters consisting of 12, 60, etc. molecules), which decreases their coales-

cence probability.

Only coalescence of equally sized protein clusters has been considered so far. Indeed,

differently sized clusters coalesce as well, but their coalescence does not change the

general trend [31]. The reason is that smaller clusters rotate diffusionally and accom-

modate faster than larger particles. This is especially pronounced with clusters of highly

differing sizes. In such a case, only the smaller cluster rolls about the larger one, like a

ball on a floor. The larger cluster is almost immovable.

A general conclusion can be drawn that, due to the spatial adjustment via rotational

diffusion, coalescence of critical and/or supercritically sized crystalline clusters of

protein molecules is less probable than that for clusters smaller than the critical nu-

cleus size. Moreover, due to the decreasing effect of the rotational diffusion, any suc-

cessive (multiple) cluster coalescence resulting in a large-scale conglomeration is

improbable.

FIGURE 7.15 Accidental meeting in
space of two clusters (two dice)
that consist of eight protein
molecules each.
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The protein cluster coalescence problem has been given some quantitative consid-

erations as well [31]. Using Smoluchowski’s approach to rapid coagulation of spherical

colloids, the dynamic process of the single coalescence of clusters composed of n protein

molecules, which are consumed to produce larger size of clusters, is described by the

rate equation for second-order bimolecular reactions written for every category of

equally sized clusters:

dZn=dt ¼ �knZ
2
n; (7.107)

where kn is the coalescence rate constant and Zn is the concentration of clusters in the

category n. Our implicit assumption is based on the predominating process of

monomer attachment/detachment to/from the clusters; thus, no cluster size is missing.

In other words, a quasi-equilibrium cluster distribution (Szillard chain) is established

sufficiently fast.

Coalescence balance is estimated by integrating Eqn (7.107) from Zo
n at t¼ 0 to Zn:

Zo
n

�
Zn ¼ 1þ Zo

nknt ¼ Rn; (7.108)

Note that Zo
nknt is dimensionless, likely Rn; Z

o
nkn has the meaning of reciprocal half-

life time, and larger Rn means a faster coagulation for the particles in the category n.

It has been suggested [31] that the cluster coalescence rate constant kn represents

the coalescence probability. Whether the change in kn is monotonous or not is rather

uncertain; that is why the following logical scheme has been applied: denoting j¼ n*/2

for even n* numbers and j¼ (n* þ 1)/2 for odd n* numbers, it follows from the qual-

itative consideration presented above that the coalescence probability Pj for clusters in

the category j, is much larger than the coalescence probability Pn* for the clusters in the

category n*. Respectively, Pjþ1 > Pn*þ1, Pjþ2 > Pn*þ2, . , Pn*�1 > Pn*þj�1. Thus, the rate

constants kn<n* have to be systematically larger than the rate constants kn�n*. In

addition, it is logical to assume that the initial concentrations of the clusters Zo
n<n� , for

every cluster category n¼ 2, 3, ., n*� 1, is at least equal to Zo
n�n� ; for instance, the

critical nuclei are of minimum concentration (Section 7.4). Finally, summing up the

system of equations of the type of Eqn (7.108) for the different cluster categories and

for the same time t, and knowing that kn<n�Zo
n<n� > kn�n�Zo

n�n� , we see that the coa-

lescence probability for clusters in the range from j to n* � 1, which may produce

critical and supercritical nuclei, should be larger as compared with the coalescence of

clusters of critical and supercritical size. Taking into account the rotational diffusion

effect as well, the general conclusion is that being too slow, cluster coalescence does

not play any role in the process of bulk protein crystal nucleation.

7.13 Concluding Remarks
The study of nucleation is the subject of a huge number of papers. The literature also

comprises more than 70 books and reviews. (For an extended list of books and reviews,

see the preface of Kashchiev’s book [75].) A number of excellent books (e.g., [2]) and
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papers have been published subsequently (e.g., [46,80,96–99]), and the scientific and

technological interest in the topic is not declining. Due to the large body of literature on

the subject, this chapter is not intended to be exhaustive. I outlined some of the basic

physics that is believed to underlie this phenomenon. With the intention of making the

topic more comprehensible to a broader readership, heavy mathematics was omitted. In

addition, the limited space permits consideration of nucleation in a one-component

system only. (Readers interested in nucleation in multicomponent systems may refer

to Ref. [2].) In view of the author’s background and preferences, the chapter focuses on

some cases that seem underestimated in contemporary literature, such as the almost

forgotten but fruitful MWS method.

7.14 Perspectives
In a constant quest to improve the nucleation theory, many corrections have been

suggested, some of which were mentioned in Sections 7.4 and 7.4.1. Except for the most

basic notions of CNT, such as the necessity of fluctuative nucleus formation under a

sufficiently high driving force, almost all remaining postulates have been questioned in

recent decades. Nevertheless, CNT remains the essence of nucleation theory. Although it

is particularly difficult to give any confident statement as to how the theory will develop

in the coming years, it is possible to predict that improvement will most likely be

centered on explanations of specific cases, such as nanoparticle and protein crystal

nucleation.

Frequently Used Abbreviations
BSM bond selection mechanism
CBB crystal building block
CNT classical nucleation theory
MWS mean work of separation
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8.1 Introduction: Purpose of This Chapter
We know that the ground state of many identical particles (e.g., atoms and molecules) is

a state of a crystal in which particles form a periodic array. Figure 8.1 shows an example:

a tiny 1-mm crystal of Pb shows a perfect array of atoms [1]. If a Pb atom were as large as

FIGURE 8.1 A 750 nm � 750 nm scanning tunneling microscope image of a Pb crystal acquired at a temperature
of 383 K. The inset shows the atomically resolved (111) surface zooming into the top facet. Reprinted from
Ref. [1], with permission from AIP.
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a golf ball, the size of the facet would be several tens of meters. It is not evident at all,

however, that the particles can really form such a structure spontaneously. Merely by

reducing temperature or increasing pressure, atoms or molecules in a liquid/gas

aggregate and organize themselves to form a crystal. The purpose of this chapter is to

explain the basic mechanism of this self-organization of atoms for beginners who have

some basic knowledge of physics.1

The present chapter is not intended to give a comprehensive view of growth mech-

anisms but rather to explain the simple typical pathways of crystal growth on such a level

that beginners can understand the physical mechanism. As a result, topics are limited

and a comprehensive biography is not supplied.

8.2 Crystal Growth as a Process of Phase Transition
Crystallization is the process of the phase transition from a liquid or a gas to a solid.

Crystal growth is a synonym of crystallization, and the word suggests that the crystal is

becoming larger and larger. The birth of a crystal is called nucleation, which is explained

in Chapter 7 of this book. This chapter discusses how small crystals grow.

8.2.1 Equilibrium and Transition to Solid Phase

The mother phase is the uniform isotropic phase and the solid phase has a periodic

atomic structure and therefore is anisotropic (no spherical symmetry). Because of the

difference in symmetry, the two phases can be distinguished clearly. In Figure 8.2, a

FIGURE 8.2 A typical form of the phase diagram of simple material. Continuous transition from the gas to the
liquid is realized along the dashed curve.

1There are already many textbooks available in bookstores. Some of the books the author noted and

consulted to write the present chapter are Refs [3–9].
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typical phase diagram is shown. In contrast to the solid–liquid (or gas) transition, a

continuous transition between the gas and the liquid is possible, as indicated

by the dashed curve in Figure 8.2, because there is not any change in symmetry. Liquid

and gas can be distinguished clearly only when they exists at the same time with an

interface.

If one changes the temperature T and/or pressure P of the system, the state of matter

may change so as to lower the Gibbs free energy G(T, P). The most important quantity is

the chemical potential m(T, P), which is the Gibbs free energy per particle2: m ¼ G/N.

Figure 8.3 shows chemical potentials of solid and liquid (or gas). Figure 8.3(A) corre-

sponds to the change of m along a horizontal cut in Figure 8.2, and Figure 8.3(B) is along a

vertical cut. If one decreases the temperature or increases the pressure beyond the

coexisting point, the chemical potential mL of the liquid becomes higher than that of the

solid, mS. Their difference, Dm ¼ mL � mS is the driving force of solidification. Note that we

have assumed the entropy in solid sS, which is the down slope in Figure 8.3(A), is smaller

than that in liquid sL. Otherwise, the solid phase appears at the high-temperature side.3

Also, we have assumed the atomic volume in solid vS, which is the slope in Figure 8.3(B),

is smaller than that in liquid vS. A well-known counterexample is water (H2O): ordinary

ice melts when pressure is applied. For simplicity, we always assume the standard

behavior, as in Figure 8.3. Similarly, if the mother phase is a gas, Dm ¼ mG � mS is the

corresponding driving force.

(A) (B)

FIGURE 8.3 Change of chemical potentials of the solid and the liquid (gas) as a function of temperature T (A) and
pressure P (B).

2Unless explicitly mentioned, we always deal with the simplest case—that is, one-component simple

atoms/molecules.
3This case is rare but is seen in He [6].
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8.2.2 Linear Kinetics

If a solid and a liquid are in equilibrium, temperature T, pressure P, and chemical po-

tential m are equal in both phases. When these quantities are shifted from equilibrium,

the pressure balance is related to mechanical equilibrium and restored at once. An

imbalance of temperature produces heat flow, and an imbalance of chemical potential

produces mass flow. When the shift is not too large, the corresponding response is

proportional to the amount of shift. Such a linear response relationship usually holds

true. In crystal growth, however, nonlinear behavior sometimes controls the system.

8.2.3 Transport and Chemical Potential

The process of crystallization is like constructing a brick building. Bricks that make

up the building are transported from other places by various ways to the construction

site. There, bricks are piled up one by one, and the building becomes larger and larger.

Waste from construction is in turn transported by trucks from the site and discarded

somewhere in the environment. Crystallization processes are categorized into two types:

transport of materials and waste (transport processes) from/to remote places and

assembling at the construction site (kinetics at the interface). In both processes, free

energy is consumed. In crystallization at given temperature and pressure, chemical

potential is consumed in such processes.

If convection is neglected, transport is controlled by diffusion, and the local mass

current j at the position r is determined by

jðrÞ ¼ �DmVmðrÞ
¼ �DVnðrÞ; (8.1)

where Dm and D are the diffusion coefficients and n(r) is the local number density of

atoms. In a dilute system, chemical potential is proportional to density n and the second

line holds.4 Material is transported to the interface by the gradient of chemical potential.

At the interface, with consumption of chemical potential Dm, transformation from liquid

(gas) to solid—crystallization—occurs. Such process is called interface kinetics (surface

kinetics), and it consists of several atomic processes. Macroscopically, the speed of

liquid–solid transformation is measured by the velocity of the solid surface V and can be

written as

V ¼ KDm; (8.2)

where Dm is the difference of the chemical potential of the liquid at the interface and that

of the solid. The proportionality coefficient K is called the kinetic coefficient. The pro-

portionality is expected, except for a singular surface called a facet. A distinction between

the facet and nonsingular faces is essential to understand the crystal growth mechanism,

as explained in detail in Chapters 5 and 6 of this book.

4Because m ¼ kBT lnn þ const., for a small change dm ¼ (kBT/n)dn f dn, and D ¼ DmkBT/n.
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8.3 Growth from Various Mother Phases
Crystallization occurs not only from the liquid phase but also from various other phases:

from the vapor (from a gas, pure or mixture), from the solution (from a liquid mixture),

and from other solid or amorphous phases. This section explains the characteristic

features of several basic cases.

8.3.1 Growth from the Vapor

Growth of a solid directly from a gas is called vapor growth. It is the reverse process of

evaporation (sublimation, more specifically). Growth of snow crystals in the sky and

growth of frost on the window glass are examples from everyday life. Because obser-

vation of the surface is relatively easy, one can see what is happening there to find the

growth mechanism better than in other cases. In a dilute gas, each elementary process

contains only a few atoms (molecules), which also helps our understanding. As a result,

we have relatively good control of the system.

Features of the vapor growth include the following:

1. Because the crystal grows from a dilute phase, the growth velocity is low. It is

convenient for the surface manipulation (e.g., of semiconductor crystals) to make a

device but is inefficient for making a big bulk crystal.

2. Unless the crystal is very large, the growth environment can be regarded as uni-

form, and local difference of the growth conditions is usually negligible.

3. The difference of density in solid and in gas is large, and the anisotropy of the sur-

face is strong. As a consequence, large facets appear on the surface of the crystal.

4. Because most of the surface of a crystal consists of facets, where immediate solidi-

fication is usually difficult, various surface processes limit the growth velocity and

the growth velocity is slow. These surface processes are very important and will be

explained in the following sections.

Let us estimate the maximum growth velocity expected for growth from the vapor. If

all atoms (or molecules) coming onto the crystal surface are taken into the crystal and

solidify, the incoming flux will give the growth rate when evaporation is absent. At finite

temperatures, evaporation occurs, and the evaporating flux should be subtracted from

the incoming flux to obtain the net flux of solidification. If we denote the incoming

current (flux density: number of atoms per unit area per unit time) by jin, the outgoing

current by jout and atomic volume in the solid by vS, the growth velocity, which is the

advancing velocity of the surface, is given by

V ¼ vS
�
jin � jout

�
: (8.3)

For a classical ideal gas, which in an equilibrium state takes the Maxwell–Boltzmann

distribution function,

f ðpÞd3p ¼ nG

ð2pmkBT Þ3=2
e�p2=2mkBTd3p; (8.4)
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where nG is the number density of the gas, jin is easily calculated. The number of atoms

incident to a unit surface area in the x� y plane within a time Dt from the above5 is

expressed as

jinðT ;PÞ ¼
Z0

�N

dpz

ZN

�N

dpy

ZN

�N

dpx

�
�pz

m

�
f ðpÞ

¼ nGkBTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p ¼ P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p
(8.5)

because atoms of the velocity vz ¼ pz/m (<0) within the distance jvzjDt collide with the

surface irrespective of the velocity vx and vy. The rate of evaporation, in contrast, must be

a function of temperature T and is independent of the atmosphere. Calculating the

evaporation current jout(T) is difficult, but we know that under the equilibrium vapor

pressure Peq(T), with which the solid neither grows nor sublimates, the two currents must

balance: jout(T) ¼ jin(T, Peq(T)). Therefore, we can write the growth velocity (Eqn (8.3)) as

Vmax ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p vS
�
P � PeqðT Þ

�
: (8.6)

Because we have assumed that all incoming atoms solidify, this equation, called the

Hertz-Knudsen formula, gives the maximum growth velocity from the vapor [10,11]. The

sticking coefficient—that is, the ratio of atoms captured by the solid surface to all

incoming atoms—is less than unity (only at a very rough surface is it close to unity), and

the growth is considerably slower.

If supersaturation is not too high, we can obtain a linear relation, as in Eqn (8.2).

From the relationship between chemical potential and pressure for an ideal gas:

m ¼ kBT ln P þ ðfunction of TÞ: (8.7)

Dm is related to the pressure difference as

Dm ¼ kBT ln

�
P

Peq

�
z kBT

P � Peq

Peq

¼ �P � Peq

�
vG; (8.8)

where vG is the volume per atom in gas. Equation (8.6) can be rewritten as

Vmax ¼ vS

vG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p Dm ¼ nG

nS

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p Dm: (8.9)

Therefore, the maximum value of the kinetic coefficient is

K vapor
max z

vS
vG

1

mvtherm
: (8.10)

8.3.2 Growth from the Melt

When a crystal grows from a liquid phase of the same material, it is called melt growth.

This is the reverse process of melting.

5The space z � 0 is assumed to be the solid.
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Features of melt growth include the following:

1. Because the density difference between the two phases is small, the

interfacial free energy and its anisotropy is usually small, and the interface tends

to be rough.

2. There is no need for material transport, and a rough interface brings about rapid

growth.

3. The velocity of growth is limited by transport of the latent heat. The transport of

heat is carried out by heat conduction in the material and/or convection in the

liquid. As a result, nonuniformity of the system is usually relevant, and stability of

the growth form should be always taken care of.

8.3.2.1 Sharp Interface Picture
One can estimate the growth velocity from the melt as in the vapor growth. When

the interface is rough, the growth velocity is determined by the balance of the

solidifying current jsol and the melting current jmel. For a rough surface, kink

sites, where solidification and melting take place, are everywhere, and the solidifying

current is

jsol zNkinkn0WSe
�Eb=kBT ; (8.11)

where Nkink w a�2 (a: lattice constant) is the number of kinks in a unit area, n0 is a

characteristic frequency of molecular motion (such as the Debye frequency), WS is the

number of possible molecular configurations in a solid, and Eb is the height of the energy

barrier to enter a kink site of the crystal. The energy barrier Eb is about the same

magnitude as the energy barrier Ed for atomic diffusion in the liquid. WS is related to the

configuration entropy asWS ¼ esS=kB and is unity for an isotropic molecule, such as a rare

gas atom. For molecules whose orientation in solid is limited, the difference of the

number of allowed molecular orientations in liquid, WL ¼ esL=kB , and in solid may be

significant. The current of the inverse process is

jmel zNkinkn0WLe
�ðEbþDhÞ=kBT ; (8.12)

where Dh ¼ hL � hS is the difference of enthalpy (note that the two processes occur
under a given pressure).

At the equilibrium temperature Tm, the two currents jsol and jmel must be equal and,

from Eqns (8.11) and (8.12), we have hL � TmsL ¼ hS � TmsS—that is, mL ¼ mS. If tem-

perature deviates from Tm, the net solidifying current is

jsol � jmel zNkinkn0WSe
�Eb=kBT

�
1� eDs=kBe�Dh=kBT

�

¼ Nkinkne
�Ds=kBe�Eb=kBT

�
1� e�Dm=kBT

�
;

(8.13)
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where n ¼ n0WL and Ds ¼ sL � sS. In the last line, we take the motion in liquid as the

standard and write the equation in a form that emphasizes reduction of the growth rate

by the difference of configurational entropy Ds. If supersaturation is not too large, the

growth velocity is written as

V z vSðjsol � jmelÞ
z vSNkinkne

�Ds=kBe�Eb=kBT
Dm

kBT
;

(8.14)

and is proportional to the driving force Dm. The temperature dependence of the kinetic

coefficient

Kmelt z
vSNkinkn

kBT
e�Ds=kBe�Eb=kBT (8.15)

z
an

kBT
e�Ds=kBe�Eb=kBT (8.16)

is controlled by the energy barrier Eb. Note that, in the last line, we have assumed that

Nkink z a�2: kinks cover the rough surface. Otherwise, a reduction factor Nkinka
2 is

necessary.

In terms of supercooling dT ¼ Tm � T, the linear relation is written as

V ¼ KDm ¼ KTdT ; (8.17)

KT ¼ ane�Eb=kBTe�Ds=kB
Ds

kBT
; (8.18)

where we have used Dm ¼ (sL � sS)dT ¼ DsdT. The entropy gap is related to the latent

heat per molecule, l, as Ds ¼ l/Tm. Because the diffusion coefficient is given by

Dza2ne�Eb=kBT , the first three factors of Eqn (8.18) are simply D/a, and

KmeltzðD=kBTaÞe�Ds=kB . The equation for the growth velocity from the melt is called the

Wilson-Frenkel formula [12,13]. With the Einstein–Stokes relation6 D ¼ kBT/(3pha), the

diffusion coefficient is related to the viscosity h, which is easily measured. Thus, the

kinetic coefficient KT is essentially determined by the viscosity of the liquid, but reduced

by a factor e�Ds=kB if the entropy gap is not negligible. By lowering the temperature, the

growth velocity first increases linearly with dT. When the temperature becomes too low,

however, the viscosity increases exponentially ðhfeEb=kBT Þ and solidification stops: in

extreme cases, amorphous material may appear instead of crystal.

For metals, the values of kinetic coefficients are estimated as KT z 1–50 cm/s K

(KT z 1015–17 s/g cm) [3]. In real systems, because the transport of latent heat is the rate-

limiting process, the apparent kinetic coefficient is much smaller if one uses the values of

Dm or dT measured far7 from the interface.

6We put the molecular radius as a/2, half the lattice constant.
7Macroscopically close sometimes means microscopically far.

Chapter 8 • Growth Kinetics: Basics of Crystal Growth Mechanisms 367



It is known from molecular dynamics simulations that the activation type behavior of

the kinetic coefficient (Eqn (8.18)) is not true for simple materials, such as molecules

with van der Waals interactions [14]. It seems that crystallization proceeds without an

energy barrier and ane�Eb=kBT is replaced by avtherm/lmf, where vtherm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kBT=m

p
is the

thermal velocity and lmf(wa) is the mean free path of an atom. To understand such

behavior, the image of melt growth must be modified.

8.3.2.2 Diffuse Interface Picture
The kinetic coefficient given above is derived with the assumption that the incorporation

of an individual atom to the solid is the elementary process of crystallization. In this

viewpoint, each atom belongs to the solid or to the liquid, and the boundary between solid

and liquid is sharply defined, although it may be very rough. In reality, as indicated by

many molecular dynamics simulations, it is not always possible to divide liquid and solid

sharply at a rough interface, and collective motion in the liquid is significant. The periodic

arrangement of atoms in the solid penetrates into the liquid phase with rather slow decay.

Then, growth of crystal is nothing but advancement of such an order to the region pre-

viously considered as liquid. In this process, many atoms shift their average positions only

slightly, and the crystalline order grows simultaneously in several atomic layers. Therefore,

the growth velocity can be much faster than that in the growth of single atoms.

Historically, a continuum model of a diffuse interface was introduced by van der

Waals [15] and has been studied in the context of a first-order phase transition as the

Ginzburg-Landau model [16]. The important conclusion derived from the continuum

model is that the kinetic coefficient is essentially given by the interface width divided by

the relaxation time of the local order. (A modern continuum model is the phase field

model. Various versions of it are used in many other fields, and the models in crystal

growth are explained in Chapter 15 in Volume IB.) Cahn studied the growth of a periodic

structure in a diffuse interface with the use of a lattice model [17]. More recently, an

estimation of the real kinetic coefficient based on a picture of the diffuse interface was

given by Mikheev and Chernov [18]. In this picture, the relevant quantity to describe the

system is the order parameter h, which changes continuously at the interface. The local

number density may be represented as follows (Figure 8.4):

nðr; tÞ ¼ nC þ
X

G

hG

�
z � Rt

�
eiG $ r ; (8.19)

where G is the reciprocal lattice vector and R is the velocity of the interface. With a

detailed theoretical analysis, the following formula for the kinetic coefficient is proposed

[19,20]:

K z
n2
LS
�
G1

�

kBTsG1

"
X

jGj¼G1

Z �
dhG

dz

�2

dz

#�1

; (8.20)

where S(G1) is the structure factor of the liquid for the smallest G (G1 is assumed to be

approximately equal to the wave number at the peak of S(k) in the liquid). The relaxation

time of the density fluctuation, sG1
, is determined from the half-width of the peak S(k,u).
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The last factor with n2
L roughly corresponds to the interface width, which is larger than

the atomic distance and contributes to the increase in K as expected from the simple

continuum theory [16]. The Eqn (8.20) can be estimated with measurable quantities,8

and gives a good values of K for simple metals [19]. It provides the correct hierarchy of K

for different faces. The order of magnitude of the estimated values K w (mvtherm)
�1

agrees reasonably with the experimental data. The analysis also suggests that the growth

is limited by formation of the lateral order in the interface plane.

8.3.3 Growth from a Solution

Although the major pathways of crystal growth are from the melt and from the vapor,

growth from a solution is also very important. A crystal, simple substance or compound,

can grow from a liquid phase with additional components, which is called solution

growth.9 Many kinds of crystals, such as salt and quartz, are grown from solutions. Salt

(NaCl) crystals are easily produced from seawater at room temperature despite that the

melting temperature is 800 �C. The melting temperature of quartz (SiO2) is very high as

1610 �C, but industrial quartz is produced from an alkaline solution under high pressure

at approximately 350 �C (hydrothermal synthesis).

Solution growth is similar to vapor growth in the respect that growth occurs with an

excess of solute concentration c. Solidification proceeds via incorporation of an atom,

which exists at the probability ca3 z cvS in an atomic volume of the solution, into a kink

site by passing over an energy barrier. In solution growth, it is sometimes necessary for

an atom (or a molecule) to break bonds with solvent molecules in solidification, which is

FIGURE 8.4 Diffuse interface between solid (left) and liquid (right) propagating during growth [18,19]. (A) Atoms
are ordered in the crystal and disordered in the melt. (B) Profile of the number density is assumed to have the
form n(z) ¼ nC þ hG(z � Rt)eiG,r, with nL z nS h nC. Reprinted from Ref. [19], with permission from Elsevier.

8The interface width is identified as the half width of the peak of S(k) in the liquid.
9Sometimes, it is called flux growth when inorganic compounds are used as solvents.
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called desolvation. Therefore, by a similar argument that led to Eqn (8.14), we obtain the

growth velocity from the solution

V z vSðjsol � jmelÞ
z v2SNkinkne

�Ds=kBe�ðEbþEdesÞ=kBT ðc � ceqÞ;
(8.21)

where Edes is the extra energy barrier for desolvation. In a dilute solution, the chemical

potential msol is related to the concentration as msol ¼ kBT ln c þ (function of T), and

chemical potential mS in the solid is the equilibrium value meq. Then,

Dm ¼ msol � mS ¼ msol � meq ¼ kBT ln(c/ceq), and we obtain

V zNkinknv
2
Sceqe

�Ds=kBe�ðEbþEdesÞ=kBT�eDm=kBT � 1
�

zNkinknv
2
S

ceq
kBT

e�Ds=kBe�ðEbþEdesÞ=kBTDm:
(8.22)

The linear relation in the last line, with the kinetic coefficient

K zNkinknv
2
S

ceq
kBT

e�Ds=kBe�ðEbþEdesÞ=kBT (8.23)

is valid for small supersaturation. Compared with the melt growth in Eqn (8.16), there is

an extra factor vSceqe
�Edes=kBT , which is very small for a dilute solution and for a high

desolvation energy barrier. Solution growth is much slower than melt growth.

8.4 Normal Growth and Lateral Growth
Except for faceted faces, the surface of a crystal is rough and there are kinks every-

where.10 The surface can grow in the direction normal to the local surface orientation, on

a microscopic scale, by incorporating surrounding atoms or molecules. The growth is

called normal growth or adhesive growth. On the other hand, if the surface is faceted, an

atom or a molecule needs to find a kink site to crystallize stably. Kinks are present along

a step on the faceted surface, and steps on the facet move forward along the surface so

that the surface advances. Because the crystal grows by the lateral motion of steps, the

growth is called lateral growth or layer growth.

8.4.1 Adhesive Growth on Rough Faces

For adhesive growth to occur, the surface must be rough—that is, temperature must be

higher than the roughening temperature of the face. As we have seen in Eqn (8.3), the

normal growth velocity V of the surface is proportional to the supersaturation Dm near

10Meanings of rough and smooth faceted faces are explained in Chapters 5 and 6 and depicted

schematically in Figure 8.5.

370 HANDBOOK OF CRYSTAL GROWTH



the kink sites. Because kinks are everywhere, Dm is practically the same all over the

surface. Such a linear relationship between the growth velocity and the supersaturation,

V ¼ KDm, is characteristic for rough surfaces. Thus, the kinetic coefficient K is a well-

defined quantity for rough surfaces.

The linearity does not hold for a facet because supersaturation is not uniform on the

surface and the local supersaturation at the growth site differs depending on the

configuration of kinks (or steps). To understand the growth of a faceted surface, we

should consider the generation mechanism of steps and the motion of steps, of which

kinks are present at the edge.

8.4.2 Growth via Two-Dimensional Nucleation on a Facet

On a facet of a perfect crystal at very low temperatures, there are no steps, so the facet

cannot grow at all. At finite temperatures, there are small two-dimensional (2D) islands

or holes that are thermally excited, as shown in Figure 8.5(A). For a 2D island of typical

radius R, the step edge costs energy typically 2pRb, where b is the step free energy per

unit length.11 Near equilibrium, Dm z 0, as a result of thermal fluctuation, islands whose

energy is of the order of kBT or smaller may be created. Thus, the typical size of the

thermally created islands is x w kBT/(2pb), which is the correlation length of the height.

If such a thermally excited island grows, the energy will increase. Most islands tend to

lower their energy and disappear soon.

If the environment becomes supersaturated, the free energy of a circular 2D island is

given by (Figure 8.6):

G2ðRÞ ¼ �pR2

U2

Dmþ 2pRb; (8.24)

FIGURE 8.5 Smooth (A) and rough (B) faces. The height difference of A and B is within the lattice constant az in
(A). The height difference is expected to increase logarithmically with the distance between A and B in (B).

11Roughly speaking, the free energy density of a step, b, vanishes above the roughening transition

temperature, and the formation of an island does not require any extra free energy on a rough surface.
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where U2 ¼ 1/(aznS) ¼ vS/az is the atomic area and az is the atomic height. The first term

is the free energy gain by the solidification of pR2/U2 atoms. In a supersaturated state,

Dm > 0, G2 increases with the size and takes a maximum value

G2ðR2cÞ ¼ p
U2b

2

Dm
hG2c (8.25)

at the radius

R2c ¼ U2b

Dm
; (8.26)

and decreases beyond this point. The 2D island of the size R2c is at unstable equilibrium

with the environment, called the critical 2D nucleus. R2c is called the radius of a critical

nucleus, and G2c is its free energy. According to the nucleation theory described in

Chapter 7, if an island larger than the critical radius appears as a result of thermal

fluctuation, it most likely grows forever. This growth of an island is nucleation of the new

layer of the crystal.

The frequency of the appearance of a critical nucleus by thermal fluctuation [20] is

determined by the critical free energy G2c. From the nucleation theory, the steady-state

nucleation rate per unit area per unit time is given by the product of three quantities

[4,5,21]:

jnuc zZwþ
c n

eq
c : (8.27)

The last factor, n
eq
c , is the equilibrium density of critical islands expressed as

neq
c zn1e

�G2c=kBT w
e�G2c=kBT

U2

; (8.28)

where n1 is the density of atoms on the surface and is wU�1
2 for melt growth. This

quantity is controlled by the critical free energy G2c and the most sensitive factor to Dm in

jnuc. The second factor, wþ
c , is the attachment rate of atoms to the critical island; it is

proportional to the edge length 2pRc ¼ 2pU2b/Dm and to the incoming current jin. Its

FIGURE 8.6 Free energy of a circular two-dimensional nucleus as a function of the radius.
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explicit expression depends on systems we consider. For surface diffusion with diffusion

length xs, it is the number of impinging atoms onto a zone near the step edge of the

width 2xs (assuming Rc a xs):

wþ
c z 4pxsRc f ¼ 4pxsU2b

Dm
f ; (8.29)

where f is the impingement rate of atoms onto the surface per unit area. For simple melt

growth,

wþ
c z

an0e
�Eb=kBT

U2

2pRc ¼ 2pan0e
�Eb=kBT

b

Dm
: (8.30)

The first factor Z is the Zeldovich factor, which appears as a result of stochastic nature

of nucleation (see Chapter 7), representing broadness of the peak of the free energy

(Eqn (8.24)):

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDmÞ3
4p2U2kBTb

2

s

: (8.31)

From Eqns (8.28), (8.30), and (8.31), the nucleation rate (Eqn (8.27)) is estimated as

[21,22]

jnuc w
n

U2

�
Dm

kBT

�1=2

e�pU2b
2=ðDmkBTÞ; (8.32)

where U�1
2 ¼ a�2 is the number of sites where nucleation is possible, and n ¼ n0e

�Eb=kBT is

a typical frequency of the atomic attachment to the island edge per site.

8.4.2.1 Single-Nucleation versus Multinucleation
When supersaturation is weak, G2c is large so that e�G2c=kBT is extremely small: the

nucleation rate is practically zero. If supersaturation is increased, nucleation may occur

within the observation period, and the facet starts to grow. For a very small facet, the

nucleated supercritical 2D island spreads to cover the whole facet, which means that the

growth stops until a new supercritical island is born on the new layer. Such intermittent

growth is called single-nucleation growth (Figure 8.7(A)). The growth velocity of a facet of

the size Rf is the lattice constant times the nucleation rate:

V zpaR2
f jnuc ¼ an

pR2
f

U2

�
Dm

kBT

�1=2

e�pU2b
2=DmkBT : (8.33)

For a large facet, many nucleation events occur before a single island covers the whole

facet. Many islands coalesce to form a new atomic layer. The growth is continuous and

called multinucleation growth (Figure 8.7(B)).
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8.4.2.2 Growth of a 2D Circular Island
To find the growth velocity in multinucleation growth, we need to know the growth of a

2D island under constant supersaturation. For a circular island bound by an isotropic

step, the effective driving force of the step edge is

Dmeff ¼ Dm� U2
~b

R
; (8.34)

where the second term is the retraction force due to the step stiffness12 ~b. Because the

step is always rough at a finite temperature, the velocity is proportional to the driving

force:

Vst ¼ Kst

 

Dm� U2
~b

R

!

¼ KstDm

�
1� R2c

R

�
;

(8.35)

where Kst is the kinetic coefficient of the step. The second line is expressed in terms of

the critical radius R2c, and it is valid if the crystal anisotropy in the plane can be

neglected.13 The island is then circular, and the radius at time t is obtained by integrating

Eqn (8.35) as

KstDm

R2c

t ¼ R

R2c

þ ln

				
R

R2c

� 1

				þ const: (8.36)

If the initial radius is smaller than the critical radius R < R2c, the island will disappear.

When R � R2c, it shrinks as

RðtÞzR2c



2KstDm

R2c

ðt0 � tÞ
�1=2

¼ �2KstU2
~b
�
t0 � t

�
1=2
; (8.37)

where t0 is the time it vanishes. If the initial radius is larger than the critical radius

R > R2c, the island expands. When the island becomes much larger than the

critical radius, R [ R2c, the step stiffness may be neglected and move at a constant

FIGURE 8.7 (A) Single-nucleation growth. (B) Multinucleation growth.

12The stiffness of a step, ~bðfÞ, is the most important quantity to characterize the step when crystal

anisotropy is relevant. It is the sum of b(f), which is now a function of the azimuthal angle f, and its

second derivative b00ðfÞ: ~b ¼ bþ b00.
13For an isotropic step, the stiffness is constant and the same as the free energy density: ~b ¼ b.
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speed: R(t) ¼ KstDm t. Except for a very early stage, the radius of an island created by 2D

nucleation grows at a constant speed:

Vst ¼ KstDm: (8.38)

8.4.2.3 Change of Coverage by Nucleation and Spread
To estimate the velocity of multinucleation growth, let us first consider the change of

coverage of a new layer on a flat facet by nucleation and spread of 2D islands [16,23,24].

For simplicity, we consider the growth of a single layer. We assume that nucleation

occurs randomly at constant probability and circular islands spread at the constant step

velocity Vst. At time t, an arbitrary point P located at x is still on the initial facet surface

with a probability p—that is, the ratio p of the facet area is not covered by the new layer.

The point P is covered by the new layer if there was a nucleation event at the location x0

and the time t0 that satisfies the following:

Vstðt � t 0Þ > jx � x0j:
If we denote t � t 0 ¼ t and x0 � x ¼ x, the probability p is given by the product of

probabilities that nucleation does not occur at the point satisfying the condition

Vstt > jxj. That is,
p ¼

Y

0<jxj<Vstt; 0<t<t

�
1� jnucd

2x dt
�
: (8.39)

Because the second term in the bracket is infinitesimal, this equation can be witten as

p ¼ exp
h
ln
Y

ð1� jnucd
2x dt

�i

¼ exp
�
�
X

jnucd
2x dt

�

¼ exp

0

B@� jnuc

Z t

0

dt

ZVstt

0

2px dx

1

CA

¼ exp
�
� p

3
jnucV

2
stt

3
�
:

Therefore, the coverage of the new layer Q2D changes as

Q2DðtÞ ¼ 1� p ¼ 1� exp
�
� p

3
jnucV

2
stt

3
�
: (8.40)

As shown in Figure 8.8, it initially increases as

Q2DðtÞzp

3
jnucV

2
stt

3; (8.41)

and approaches unity at about j
1=3
nucV

2=3
st tz1:5. A similar calculation in one and three

spatial dimensions gives the following results for the advancement of a straight step and

volume occupation of a new phase:

Q1DðtÞ ¼ 1� exp

�
� 1

2
jnucVkt

2

�
; (8.42)
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Q3DðtÞ ¼ 1� exp
�
� p

3
jnucV

3t4
�
; (8.43)

where Vk is the velocity of a kink and V is the velocity of the interface.

8.4.2.4 Velocity of Multinucleation Growth
Because one atomic layer is covered in a period swðjnucV 2

stÞ�1=3, the velocity of a facet

growing by multinucleation growth is

V ¼ a

s
zaj1=3nucV

2=3
st

¼ a

�
n

U2

�1=3�
Dm

kBT

�1=6

e�G2c=3kBT ðKstDmÞ2=3

w ðDmÞ5=6e�pU2b
2=ð3kBTDmÞ:

(8.44)

Note that the energy of a critical nucleus in the exponential factor is divided by three

compared with Eqn (8.32). In the case of step growth limited by surface diffusion, the

step velocity is proportional to c � ceq ¼ ceqðeDm=kBT � 1ÞzDm=kBT , and the prefactor

becomes proportional to (Dm/kBT)
5/6. The result is consistent with the Monte Carlo

simulation [25], which demonstrates the sharp contrast of the Dm dependence of growth

velocity below and above the roughening transition. In the experiment, the growth ve-

locity of a 4He crystal below the roughening transition temperature was measured with

changing14 Dm [26]. The data were analyzed with a simpler formula15:

VwVste
�G2c=3kBT ¼ KstDme

�pU2b
2=ð3kBTDmÞ. The plots ln(V/Dm) versus (Dm)�1 at various

temperatures show clear linear dependence, and from their slopes the step free energy

density b(T) was determined. The result showed a singular temperature dependence and

supported the theory of roughening transition (see Chapter 6) [6].
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FIGURE 8.8 Coverage of the new phase, in
one, two, and three dimensions (thin line
to thick line). The reduced time is t
multiplied by (jnucVk)

1/2, ðjnucV2
stÞ1=3 and

( jnucV
3)1/4, respectively.

14Although this is a melt growth experiment, the temperature is fixed and Dm is varied by the change of

pressure.
15The present system is a quantum system, and the pre-exponential factor is different from Eqn (8.44).
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In real growth of a macroscopic facet, there are steps originating from dislocations

exposed on the facet, and the growth proceeds via spiral growth, which is explained in

the following section. The 2D nucleation growth becomes important only under high

supersaturation.

8.4.3 Spiral Growth with Screw Dislocations

If a crystal is perfect without any defect, its facets cannot grow under weak supersatu-

ration because the free energy of a critical 2D island is much larger than the thermal

energy, dG2c [ kBT, and nucleation never occurs during the observation period. In real

crystals, however, facets certainly grow under weak supersaturation. This puzzle was

solved by Frank’s proposal that facets grow with the help of screw dislocations that al-

ways exist in a macroscopic crystal [27–29].

A screw dislocation is a topological defect of a crystal lattice. If one moves around the

dislocation, the lattice plane shifts by one layer (or more layers), like a spiral staircase.

The Burgers vector of a screw dislocation is parallel to the dislocation line. If the screw

dislocation is exposed on a facet, a step emerges at the end of the dislocation and

stretches to an edge of the facet (Figure 8.9(B)) When the chemical potential of the

environment is changed, the step advances or recedes according to the sign of Dm, as

shown in Figure 8.9(A) and (C). Because the end of the step is pinned at the dislocation,16

the shape of the step becomes spiral. Such growth helped by a dislocation is called spiral

growth. The advantage of spiral growth is that the step does not disappear, and the

growth continues without the creation of a new step.

8.4.3.1 Velocity of Spiral Growth
The velocity of a step is proportional to supersaturation, Vst ¼ KstDmeff, and growth is

possible under small supersaturation. If the distance between steps is l (Figure 8.9(C)),

the growth velocity V perpendicular to the facet is Vst(az/l). Because, far apart from the

dislocation, the curvature of the step is very small, the step velocity is VN
st ¼ KstDm, and

the growth velocity is given by

V ¼ az

l
KstDm: (8.45)

(A) (B) (C)

FIGURE 8.9 Spiral step with a dislocation: (A) in melting, Dm < 0; (B) in equilibrium, Dm ¼ 0; (C) in growth, Dm > 0.

16Dislocations may be moved with elastic stress, but not with Dm.
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The shape of the spiral step is similar to an Archimedean spiral, whose expression in the

polar coordinates is rðfÞ ¼ Af. In the polar coordinates, the curvature of the

Archimedean spiral is

1

R
¼ r2 þ 2ðr 0Þ2 � rr00
�
r2 þ ðr 0Þ2

�3=2 ¼ A2f2 þ 2A2

�
A2f2 þ A2

�3=2 : (8.46)

Near the origin (dislocation), where f/0, the curvature is R�1 ¼ 2/A. Because the step

advances little at the center of the spiral, the curvature there must be Rc, which means

A ¼ 2R2c. Thus, with one rotation, the distance from the center increases by

2pA ¼ 4pR2c ¼ l. For a more accurate calculation, one must solve Eqn (8.35) with

Eqn (8.46) numerically. The result is l z 19R2c [30], and the growth velocity is

V z
az

19R2c

KstDm ¼ Kst

az

19U2
~b
ðDmÞ2: (8.47)

Because the step distance is inversely proportional to Dm, the growth velocity is pro-

portional to (Dm)2, which is the characteristic feature of spiral growth.

Here, we have assumed that the step is isotropic. If a step is anisotropic, the spiral

is also anisotropic and the coefficient differs from 1/19. For example, if the equilib-

rium shape of the 2D island is square, the coefficient becomes (4L2c)
�1 instead of

(19R2c)
�1, where L2c ¼ 2~b=Dm is the side length of the square critical island. This

relationship is derived by assuming the straight step can grow only when the length

exceeds L2c [5].

8.4.3.2 Growth of a Facet with Many Dislocations
It is important to note that the growth velocity of a facet does not depend on the number

of dislocations as long as they are nonzero [28]. Figure 8.10(A) shows spiral growth with a

pair of screw dislocations of the opposite sign. If the Burgers vector of the dislocation is

opposite, the spiral winds in the opposite direction. The two spirals originating from the

opposite dislocations collide and merge to form concentric circles asymptotically. The

distance of successive steps is the same as the original spiral, and the growth velocity

remains the same as that with a single step. For two dislocations of the same sign (the

same Burgers vector), a similar recombination of steps occur if the centers of the spirals

FIGURE 8.10 (A) Spiral growth with a pair of screw dislocations. (B) A step pinned by a pair of screw dislocations.
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are not too close. If their distance d is smaller than the period of the spiral l, they operate

additively, and the efficiency as a step source can be twice as that of a single dislocation,

at the best.17 Therefore, the growth velocity of the whole facet is not much larger than

that with a single dislocation.

Although we find the growth velocity is proportional to (Dm)2, there is a small

threshold value of supersaturation for spiral growth to work. If there is a pair of dislo-

cations of the opposite sign as shown in Figure 8.10(B), the distance d should be larger

than 2R2c for the pair to operate as a step source. Otherwise, the advancement of the step

is blocked. Therefore, for growth of a facet, supersaturation should be stronger than the

threshold value

Dmth ¼ 2U2
~b

d
; (8.48)

where d is the narrowest channel for the step on the facet.18 For a small facet, growth is

sensitive to the configuration of dislocations: their number and location, the magnitude

of Burgers vector, etc. [31].

8.4.3.3 Change of Growth Mode and Kinetic Roughening
In thermal equilibrium, only small islands of the size xwkBT=~b appear temporarily as

fluctuations, and the position of a facet is locked at a single atomic layer: the surface is

atomically smooth (Figure 8.5(A)). Under weak supersaturation, the 2D nucleation rate is

so low that the facet never grows without dislocations. A facet under weak supersatu-

ration is thermodynamically in a metastable equilibrium state. With screw dislocations,

the facet grows above the threshold supersaturation Dmth. If Dm [ Dmth, the growth

velocity is proportional to (Dm)2. By increasing supersaturation, 2D nucleation growth

occurs in parallel to the spiral growth and eventually dominates the growth (Figure 8.11).

The successive nucleation of islands blurs the flat facet. Under high supersaturation, the

free energy of the critical nucleus, as in Eqn (8.25), becomes small and comparable to the

thermal energy kBT. The condition dG2c w kBT is equivalent to the condition R2c w x,

which means that the critical radius is of the same order of the characteristic length of

step fluctuation. There, so many steps appear on the facet and distinction between steps

originating from dislocations versus 2D nucleation is no longer possible. The facet is

atomically rough and its growth velocity becomes as fast as rough faces. The gradual

crossover phenomenon, with increasing supersaturation, from a facet to a rough face is

called kinetic roughening.19

17In fact, a dislocation with a large Burgers vector works very efficiently as a step source.
18Like dislocations, impurities may pin down steps on a facet. As a result, scattered impurities on a

facet can retard the motion of steps and the growth. If the concentration of impurities on a facet becomes

too high, they may completely block the growth of the facet and hysteresis may be observed in the

relationship between the supersaturation and the growth velocity [32,33].
19The concept of kinetic roughening has been used in a wider field of study than crystal growth. Some

of the reviews describing crystal growth are Refs [34–36].
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8.4.3.4 Formation of Mounds
We estimated the characteristic time s necessary to cover one layer by considering a

single layer system. In reality, nucleation occurs on a new layer before the new layer

covers the whole surface: growth proceeds on many layers simultaneously. During

growth from a vapor, transport along the surface–surface diffusion is important.20 On a

growing 2D island, nucleation of the new layer is likely to occur near the center of the

island because atoms landing near the step edge are consumed by the step growth and

the density of atoms near the center is higher. By successive nucleation in the central

area of new layers, a nearly concentric multilayer island is formed when supersaturation

is sufficiently high. Such a multilayer island is called a mound. Note that in growth at low

temperatures, evaporation is weak and nonuniformity of the height can be produced

only when the transport of material along the surface occurs. Thus, surface diffusion is

necessary for the formation of mounds. Mounds are formed by several ways; detailed

explanations are given in Refs [34,37,38].

8.5 Growth of Vicinal Faces
A face slightly tilted from a facet consists of an array of parallel steps and terraces bound

by the steps. Such a face is called a vicinal face. A vicinal face grows by layer growth—

that is, lateral advancement of parallel steps. Unlike the growth of a facet, the average

distance l of parallel steps is determined by external conditions, such as the tilt angle in

cutting the crystal.21

The growth velocity in the normal direction to the terrace is

Vz ¼ az

l
Vst ¼ aznstVst; (8.49)

FIGURE 8.11 Change of growth mode by increasing supersaturation.

20The role of surface diffusion in vapor growth is explained in Section 8.5.2.
21If a cone formed by a spiral step is large, its side face can be regarded as a vicinal face.
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where l is the distance between steps and Vst ¼ KstDmeff is the velocity of a step. The

growth velocity in the direction normal to the face is

V ¼ Vz cos q ¼ Vst sin q: (8.50)

The tilt angle q (or the slope p) and the step density nst are related as aznst ¼ tanq (¼p). If

q is very small, the distance between steps is very large and each step can move inde-

pendently. If the distance of neighboring steps becomes shorter, the steps compete each

other for obtaining material or evacuating heat via overlapping diffusion fields. Here, we

consider two typical cases in which the step velocity changes with the distance l

depending on the transport mechanism.

8.5.1 A Model of Solution Growth: Bulk Diffusion

In solution growth, flow of the solution (either artificial or natural) makes the solute

concentration and the temperature uniform. Because of the viscosity of the liquid,

however, the solution near the crystal surface is usually stagnant and diffusion in the

bulk liquid is important. A simple model representing this situation is shown in

Figure 8.12 [29]. At a distance l0 from the surface, the solute is regarded as static and

uniform with the bulk concentration cN. This hypothetical layer of the thickness l0 is

called the diffusion boundary layer. Diffusion of the solute to the equidistant parallel

steps conveys the material for growth of the crystal. A growing step is a sink of the solute,

and the diffusion flow brings up the advancement of the step. Approximating the step of

the height a with a half cylinder with the radius a/p, the step velocity is related to the

diffusion flow as

aVst

vS
¼ D

vc

vr

				
r¼a=p

a: (8.51)

Solving the diffusion equation V2c ¼ 0 with the boundary conditions (Eqn (8.51)) and

c(x, y ¼ l0) ¼ cN, the step velocity is calculated as [3,29]:

Vst ¼ vS
dcN

1
Kst

þ a
pD

ln



l
a
sinh

�
plD
l

�� ; (8.52)

FIGURE 8.12 Contours of the solute concentration and flow-lines to the steps of the solute [29].
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where dcN h cN � ceq, and the kinetic coefficient of the step is defined as22

Kst ¼ Vst

ySdcst
; (8.53)

where dcst ¼ c(rstep) � ceq is the supersaturation at the step position. The structure within

the boundary layer is difficult to observe, and the experimentally observable kinetic

coefficient of the step, Keff
st ¼ Vst=ðvSdcNÞ, is related to Kst as

1

Keff
st

¼ 1

Kst

þ a

pD
ln



l

a
sinh

�
plD

l

��
: (8.54)

The first term represents the resistance of attachment and detachment at the step, and

the second term represents the growth resistance of bulk diffusion. If the step distance is

larger than the thickness of the boundary layer, the second term becomes independent

of the step distance. Then, the growth velocity of the vicinal face is proportional to the

slope of the face, p ¼ a/l, and KwKeff
st ðp/0Þp. On the other hand, if the step distance is

small, the diffusion field interferes strongly and the growth velocity becomes insensitive

to the slope p. If the step distance is close to the lattice constant lw a, the second term of

Eqn (8.54) is lD/D, which means the growth resistance of the diffusion is proportional to

the thickness of the boundary layer: the face we consider is no longer a vicinal face but

practically a rough face.

The kinetic coefficient defined by Eqn (8.53) is intrinsic to the step and does not

depend on the surrounding conditions. Its magnitude can be estimated with the use of

Eqn (8.23). Nkinka
2 in the surface kinetic coefficient is replaced by the corresponding kink

density a/lkink (lkink is the average kink distance along the step) for a step, and

kBT=ðvSc0eqÞ is multiplied to convert K to K:

Kstep z
a

lkink
ane�Ds=kBe�ðEbþEdesÞ=kBT : (8.55)

For simple molecules Ds z 0, and Edes ¼ 0 if desolvation is not necessary at the step.

Then we obtain

Kstep z
a

lkink
ane�Eb=kBT : (8.56)

To some extent, a similar argument will apply to melt growth if the concentration field of

solute is replaced by a temperature field that evacuates the latent heat.

8.5.2 Vapor Growth and Surface Diffusion

In vapor growth, atoms landing on the surface migrate on a flat terrace and crystallize at

a kink position along the step. It is important to make a proper model of the surface to

understand the growth of a vicinal face.

22Here, K is defined in terms of the concentration c and the current j, and not in terms of the chemical

potential m and the velocity V. Because Dm ¼ kBT lnðc=c0eqÞzkBTðdc=c0eqÞ, they are related as K ¼ ðvSc0eq=kBTÞK.
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8.5.2.1 The BCF Model
The classical model of vapor growth is the BCF model studied by Burton, Cabrera, and

Frank [28]. Atoms enter from a uniform gas environment onto the crystal surface at a

constant rate: f atoms per unit area per unit time. Those atoms adsorbed on the surface

are called adatoms. An adatom migrates on the crystal surface and evaporates into the

gas with a lifetime s. Therefore, the number density c of adatoms at the position x (x is a

two-dimensional vector) obeys the diffusion equation

vcðxÞ
vt

¼ DsV
2cðxÞ � cðxÞ

s
þ f : (8.57)

If adatoms are uniformly distributed, then the balance of evaporation and impingement,

the last two terms, determines the adatom density as cN ¼ fs. In the model, atoms

(molecules) consisting of the crystal and atoms migrating on the surface are distin-

guished. Adatoms cannot solidify without steps, where kink sites are found.

If there is a step on the surface, the adatoms join the crystal there or the solid atoms

“melt” from the step onto the surface. Exchange of atoms between the solid and the

adatom layer occurs at the step. If the exchange is very fast, the adatom density at the

step becomes the equilibrium density:

cst h c
�
xstep

� ¼ ceq: (8.58)

The equilibrium density at the step is given by

ceq ¼ c0eq exp

�
� fstU2

kBT

�
z c0eq

�
1� fstU2

kBT

�
; (8.59)

where c0eq is the equilibrium density for a straight step. The exponential factor represents

the Boltzmann factor for the extra work necessary if a force fst is acting on the step23

when an atom of the area U2 solidifies. If cN > cst, adatoms flow into the step and the step

becomes a sink of adatoms: solidification occurs. If cN < cst, adatoms flow out from the

step and the step becomes a source of adatoms: melting occurs.

As for the force fst acting on the step, two origins are well known. One is the capillary

force due to the step stiffness: �~b=R corresponding to the second term in Eqn (8.34).24

The other is a force due to elastic stress, which drives the step to the direction of lower

elastic energy [7]. If there are two parallel steps of the same sign (both up or both down

steps) at a distance d, a repulsive force proportional to d�3 arises to make them move

apart [39].

The simple BCF model assumes fast step kinetics—that is, the adatom density takes

the equilibrium value ceq at the step. Then, Eqn (8.58) is the boundary condition for the

diffusion Eqn (8.57). Usually the density of adatoms is low, ceqU2 � 1, and the movement

of steps is slower than relaxation of the adatom density. Under such conditions, one may

use the static approximation of Eqn (8.57), in which the left-hand side is neglected and

23fst is defined as positive in the direction of the outward normal of the step.
24As the driving force of solidification, the extra work dm ¼ fstU2 is written as dm ¼ (vm/vc)dc ¼ (kBT/c)dc

because m ¼ kBT ln c for an adatom. Then, the shift dc corresponds to fstU2c/kBT as in Eqn (8.59).
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the solution with a given boundary condition at each instance is used. The diffusion

equation is cast into the form
�
V2 � 1

x2
s

�
ðcðxÞ � cNÞ ¼ 0; (8.60)

where

xs ¼
ffiffiffiffiffiffiffiffi
Dss

p

is the surface diffusion length. It represents the characteristic length scale that an atom

entering on a large facet can move within the lifetime s.

8.5.2.2 Asymmetric Kinetics at the Step
In general, solidification at the step proceeds at a finite rate as on a rough surface.

Supersaturation at the step is finite, and the solidification current is

js ¼ Kstdcst; (8.61)

from Eqn (8.53). Adatoms may come to the step either from the upper or from the lower

side of the step. We may write the solidification current separately for each side of the

step (Figure 8.13(A)):

js� ¼ K�
stdc

�
st; jsþ ¼ Kþ

stdc
þ
st ; (8.62)

where js� ( jsþ) indicates the solidification current on the left (right) side terrace of the step,

and c�st ¼ cðxstep � 0Þ is the adatom density on each side of the step. The corresponding

kinetic coefficients for the upper terraceK�
st and for the lower terraceKþ

st may be different

(A)

(B)

(C)

FIGURE 8.13 (A) Transport processes around the step and their resistances. (B, C) Paths of solidification current
from far on the terrace, cN, to the solid, ceq.
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because there is an extra energy barrier for hopping over the step edge:Kþ
st is usually larger

than K�
st. The extra energy barrier is called the Ehrlich-Schwoebel barrier (ES barrier) and

may have significant influence on themorphology of stepped surfaces in growth [40,41]. In

addition, if the kink density along the step is very low, adatomsmay pass through the step

without solidification or melting. Such a step is permeable (or transparent).

Figure 8.13(A) and (B) shows schematically the general boundary condition at the step

for the diffusion equations, Eqns (8.57) or (8.60). The adatomdensity at the step site (in the

solid), ceq, is related to that at the upper side of the step, cþst , and that at the lower side of the

step, c�st, by the resistance ðK�
stÞ�1. The latter two sites are connected by the resistanceP�1

(P: permeability of the step), and also with the environment away from the step, cN, by the

resistance of the surface diffusion on the terrace xs/Ds. Like an electric circuit, the current

between these positions are related to satisfy the conservation law:

j� ¼ js� þ jp; jþ ¼ �jsþ þ jp; (8.63)

where j�, and jþ are the diffusion current on both terraces, and jp is the current that

passes through the step. The step velocity is given by the solidification current from both

terraces as

Vst ¼ U2

�
js� þ jsþ

� ¼ U2

�
j� � jþ

�
; (8.64)

which is also expressed by the difference of the diffusion currents. These currents are

proportional to the differences of the corresponding adatom densities (Eqn (8.62);

equivalently, proportional to the chemical potentials) and [42]

jp ¼ Pðcðxst�Þ � cðxstþÞÞ: (8.65)

8.5.2.3 A Simple Example of Growth Kinetics
As an example for the growth of a vicinal face, let us consider the simple BCF model—

that is, the case with Kstþ ¼ Kst�, P ¼ N (Figure 8.13(C)). Because c(xstþ) ¼ c(xst�) ¼ cst,

the solution of the diffusion Eqn (8.60) for an array of equidistant steps at y ¼ 0

and y ¼ l is Figure 8.14

cðyÞ ¼ e�y=xs þ eðy�lÞ=xs

1þ e�l=xs
ðcst � cNÞ þ cN (8.66)

for 0 < y < l. From the density profile in Eqn (8.66), the diffusion current that flows into

the step at the origin is

j� � jþ ¼ �2Ds

vc

vy

				
y¼0

¼ 2
Ds

xs
ðcN � cstÞtanh

�
l

2xs

�
; (8.67)

which should be the same as the solidification current js� þ jsþ obtained from Eqn (8.62).

This condition determines the density at the step cst. With cst so determined, the velocity

of the step is easily calculated as

Vst ¼ U2

dcN
1

Kst
þ 1

2Ds
xs

tanh

�
l

2xs

�
; (8.68)
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where the kinetic coefficient is Kst ¼ 2Kstþ ¼ 2Kst�. This equation corresponds to the

step velocity in Eqn (8.52) in solution growth.

If the step distance l is much larger than the diffusion length (l [ xs), the step

incorporates adatoms within distance xs of its both sides. From Eqn (8.68) with

tanh(l/xs) / 1, the effective kinetic coefficient, defined by Keff
st ¼ Vst=ðU2dcNÞ,

1

Keff
st

¼ 1

Kst

þ xs
2Ds

(8.69)

is constant. If the step distance is small, l � xs, the territory for a step decreases by a

factor l/xs; the second term increases as

1

Keff
st

¼ 1

Kst

þ x2
s

Dsl
¼ 1

Kst

þ s
l
: (8.70)

If the exchange of atoms at the step is fast (relatively to the diffusion), we may put

Kst/N in Eqn (8.68), and the growth velocity of the surface becomes

Vz ¼ az

l
U2

2Ds

xs
tanh

�
l

2xs

�
dcN: (8.71)

FIGURE 8.14 Adatom density on a terrace of the width l in a growing vicinal face.
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For a vicinal face with a very small tilt, nstxs ¼ xs/l� 1, the velocity is proportional to the

step density nst:

Vz ¼ nstazU2

2Ds

xs
dcN: (8.72)

With a large tilt, nstxs ¼ xs/l [ 1, since x2s ¼ Ds, it becomes

Vz ¼ azU2

dcN
s

¼ azU2

�
f � f 0eq

�
¼ vSdf : (8.73)

The growth velocity is given by the impingement rate that exceeds the evaporation rate.

When steps are closely distributed, atoms entering onto the terrace always reach the

step, and the growth rate is given by the balance of impingement and evaporation as on

the rough surface (Eqn (8.6)).

For general cases, the static diffusion equation,25 Eqn (8.60), is solved with the

boundary conditions for a given configuration of steps. Then, the solution c(x) de-

termines the diffusion currents at the step

j� ¼ �Dsbn $Vcðxst�Þ; (8.74)

where bn is the unit normal vector of the step pointing downward. The difference of the

diffusion current gives the local step velocity from Eqn (8.64), and that determines the

change of the step configuration. Thus, the time evolution of the step-adatom system

can be calculated (in principle, numerically).

8.5.3 Growth of Vicinal Faces and Morphology of the Stepped Surface

In equilibrium, a vicinal face consists of equidistant parallel steps, whose configuration

is stabilized by the stiffness of each step and by repulsion between the steps. For a

face with a small tilt p ¼
�
vz
vx;

vz
vy

�
, the free energy per unit projected area f(p) can be

written as26

f ðpÞ ¼ að0; 0Þ þ b

az

				p
				þ

f

a3
z

				p
3

				þ/: (8.75)

where a(0, 0) is the surface free energy per unit area without steps, and isotropy in the

xy-plane has been assumed (therefore, ~b ¼ b). The second term is the free energy of

noninteracting steps, and the third term is the interaction energy, which is proportional

25The full time-dependent diffusion in Eqn (8.57) is seldom used because of the difficulty of solving it.
26Note the relationship between a(p) and f(p): aðpÞ ¼ f ðpÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
.

Chapter 8 • Growth Kinetics: Basics of Crystal Growth Mechanisms 387



to the repulsion energy27 fl�2 times the step density p ¼ az/l. The surface stiffness of the

two orthogonal directions are calculated from Eqn (8.75) as follows [4]:

~atðpÞz b

az

1

p
; (8.76)

~ajjðpÞz 6
f

a3
z

p: (8.77)

Equation (8.76) represents stiffness of the surface against deformation, such as

Figure 8.15(B), and is determined by the stiffness of each step. Equation (8.77) represents

stiffness against deformation, such as Figure 8.15(C), and is determined by the step

repulsion. By approaching the facet, a vicinal surface becomes stiffer in one direction

and softer in the orthogonal direction because the number density of steps decreases:

the surface deformation becomes more difficult and the step repulsion becomes weaker.

When a vicinal surface is growing or sublimating, surface diffusion tends to produce

deformation of the surface against the stabilizing effect of the surface stiffness. If the

destabilizing effect wins, the vicinal face becomes unstable and sinusoidal deformation

develops [45–47].

8.5.3.1 Wandering of Steps
If step kinetics is not symmetric (i.e., kinetic coefficients for the upper and the lower

terraces differ), a step may become unstable. If Kstþ > Kst�, the step incorporates more

atoms from the lower terrace than from the upper terrace during growth. If a small bump

is formed along the straight step as a result of fluctuation, the bump has an advantage for

further growth because it has moved into an area of higher adatom density. The bump

grows faster when the step stiffness is not strong enough to pull it back. The initially

straight step becomes wavy, and the instability is called step wandering (or meandering).

This is a kind of two-dimensional Mullin-Sekerka instability (see Chapter 14 of Volume

IB) [48]. The stability of the step is characterized by the amplification rate of sinusoidal

step fluctuation of wave number q, dyqðtÞ ¼ dy0e
�iqxþuqt . It is given by28 [49,50]

(A) (B) (C) (D)

FIGURE 8.15 Deformation of a vicinal face: (A) ideal vicinal face, (B) in-phase wandering of steps, (C) bunching of
steps, and (D) wandering with a phase shift. Reprinted from Ref. [43], with permission from Elsevier.

27Two types of repulsive interactions exist rather generally: the elastic repulsion originated from elastic

deformation near the steps [40] mentioned before, and an entropic repulsion due to thermal wandering

fluctuation of steps with the coefficient f ¼ (p2/6)((kBT)
2/b) [44].

28The growth rate of fluctuation, uq, given here is the formula for l / N.
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x2
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�Lq
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xs
� Gq2
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¼ V 0
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�
Lq � x�1

s

��DsU2GLqq
2;

(8.78)

where V 0
st is the velocity of the straight step, G ¼ U2c

0
eq
~b=kBT and Lqh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ x�2

s

p
. The

coefficient of q2 in the series expansion of Eqn (8.78) becomes positive when V 0
st �

2DsU2G=x
2
s ,
29 and long wavelength fluctuations grow. When evaporation is negligible,

xs / N Lq / q, and the amplification rate becomes

uq ¼ V 0
stq�DsU2Gq

3: (8.79)

Now, the step is always unstable under growth ðV 0
st > 0Þ. The fastest-growing mode is

given by the largest uq in Eqn (8.79), with the wave number

qmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V 0
st

3DsU2G

s

: (8.80)

The characteristic wavelength lmax ¼ 2p/qmax is inversely proportional to the square root

of the step velocity. Once the instability sets in, the pattern of the step is controlled by

the nonlinearity of the system. The time evolution of the destabilized step with evapo-

ration is found to be chaotic [49,50]: bumps of the wavy pattern of the wavelength lmax

arise, move, and annihilate randomly. In a vicinal face, the motion of neighboring steps

is correlated, and in-phase step wandering (Figure 8.15(B)) is observed [51]. Troughs

perpendicular to the steps appear.

The cause of the wandering instability is the front and back asymmetry in step

kinetics resulting from the step edge energy barrier. Other such asymmetry may

induce a similar instability. When an Si(111) surface is heated by direct electric cur-

rent perpendicular to the step, wandering instability is observed [46]. The current

produces drift of adatoms in the same direction as the current. Theoretically, the drift

of adatoms modifies the effective diffusion length in the upper terrace and that in the

lower terrace differently, and the instability may occur when the drift direction is

opposite to the step motion [52]. Also, in the growth of Si(111), wandering instability

is seen near the structural phase transition from the low-temperature 7 � 7 surface

structure to the high-temperature 1 � 1 structure [53]. The phase transition starts at

the step; near the transition temperature, the structures of the upper terrace and the

lower terrace of a step are different, which makes strong asymmetry to induce step

wandering.

29In terms of the impingement rate, this condition is f � fchf 0eqð1þ ð2~bU2Þ=ðxskBTÞÞ.
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8.5.3.2 Bunching of Steps
In equilibrium, the distance between parallel steps is kept equal by the step repulsion. If

an ES barrier is present (supposeKstþ > Kst�), equidistant steps become unstable during

sublimation. When a step recedes slightly faster than other steps by fluctuation, its lower

side terrace is wider than that of other steps, so it recedes even faster. If this effect is

stronger than the step repulsion that stabilizes the equidistant steps, the steps tend to

bunch and the vicinal face deforms like Figure 8.15(C). The instability is called step

bunching. If the step repulsion is short-range or very weak, pairing of steps will occur

[54]. With the existence of the power law repulsive interaction, bunching instability

occurs at a long wavelength; that is, a density wave of steps is seen (Figure 8.16(A)).

Bunching of steps occurs with various causes. In Figure 8.17, several examples are

shown. The velocity of a step is, in many cases, a function of the widths of its upper and

lower terraces, and the relationship determines the stability of the vicinal face [8]. If the

contribution of the lower terrace to the step velocity is dominant, the face is unstable

during growth. The impurity effect shown in Figure 8.17(A), in addition to the ES barrier

effect (Figures 8.17(B) and (C)), is an example. A considerable amount of impurities exist

in many systems, and they accumulate on terraces during growth to reduce the velocity

of steps. The density of impurities on the lower terrace is proportional to the exposure

time of the surface, which is proportional to the width of the terrace. Thus, impurity

accumulation causes instability of equidistant steps as shown in Figure 8.17(A) and the

formation of step bunches [56,57]. An external field may play a similar role to induce step

bunching. In Si(111) vicinal faces, direct electric current perpendicular to the steps for

heating the crystal induces step bunching [46,58,59] (Figure 8.17(D)). In solution growth,

(A) (B)

FIGURE 8.16 Evolution of step bunching (A) in sublimation and (B) with drift of adatoms. (A) Step bunching
develops as a density wave of steps. [32]. (B) Hierarchical pairing results in large bunches. Reprinted from
Ref. [53], with permission from AIP; and Ref. [55], with permission from Elsevier.
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like the drift of adatoms, external flow of solution induces step bunching in growth, as

shown in Figures 8.17(E) and (F) [60,61]. In this case, the velocity of a step is not locally

determined but is influenced by more distant conditions: growth/dissolution of a part of

the vicinal face is correlated with growth/dissolution of an upstream area.

8.6 Crystal Growth in a Diffusion Field
As discussed in the previous section, the growth of a vicinal face is possible through the

transport of atoms from the environment by bulk and/or surface diffusion followed by

incorporation of atoms at the steps. The series of transport processes is a general feature

of crystal growth. The flow of matter is controlled by the difference (or spatial gradient)

of chemical potential. The difference of chemical potential between the solid and the

environment, dmN, is consumed by each step of the transport: several processes work in

series (or sometimes in parallel) as resistances in an electric circuit (as in Figures 8.13(B)

and (C)). The diffusion current at the interface must be the same as the solidification

current. These conditions give relationships that determine the growth velocity.

Also, in general, heat released in solidification needs to be evacuated to the envi-

ronment. Heat transport should work in parallel with the transport of matter. Usually in

melt growth, heat transport is the rate-limiting process; in solution growth, material

transport is the rate-limiting process. We may neglect the faster process—material

transport in melt growth and heat transport in solution growth, respectively.

8.6.1 Melt Growth and Solution Growth

For simplicity, we neglect convection in the following discussion. Then, we can

formulate the two problems—evacuation of the latent heat by heat diffusion (synonym

of heat conduction) in melt growth and supply of matter by diffusion in solution

growth—in a similar way.

8.6.1.1 Evacuation of Latent Heat in Melt Growth
In growth from the melt, the growth velocity is proportional to supercooling at the

interface:

V ¼ KT ðTm � TiÞ; (8.81)

where Tm is the melting temperature (the equilibrium temperature), Ti is the tempera-

ture at the interface,30 and KT is a kinetic coefficient. Because the latent heat (L per unit

volume of a solid) should be evacuated from the interface by heat diffusion,

LV ¼ �kT bn $VT (8.82)

must hold. Here, k is heat conductivity in the melt, and we have assumed that the heat is

evacuated into the bulk liquid phase. In general, heat goes to both phases depending on

30Here, we assume a solid is the low-temperature phase.
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boundary conditions. The simple model here is called a one-sided model. The heat

diffusion is described by the diffusion equation

vT

vt
¼ DTV

2T ; (8.83)

where the thermal diffusion coefficient (diffusivity) DT is related to the thermal con-

ductivity kT and the heat capacity per unit volume cP as DT ¼ kT/cP.

It is convenient to use a dimensionless supercooling, in which temperature increase

from the far environment is measured by the temperature increase by the latent heat,

L/cP,

u ¼ T � TN
L=cP

: (8.84)

With the dimensionless supercooling u, Eqns (8.83) and (8.82) are cast into the simple

forms

vu

vt
¼ DTV

2u; (8.85)

V ¼ �DT bn $Vu: (8.86)

The other expression of the growth velocity, Eqn (8.81), with the Gibbs–Thomson effect,

is written as

V ¼ ~KT

�
D� ui � dTk

�
; (8.87)

where ~KT ¼ KL=cP, and

D ¼ u0
m ¼

�
T 0
m � TN

�
cP

L
(8.88)

is the value of u for a flat equilibrium interface (i.e., the dimensionless supercooling of

the environment). In Eqn (8.87), k ¼ 1/R1 þ 1/R2 is the curvature of the interface and dT
is the capillary length, which expresses the strength of the surface stiffness ~a

dT ¼ ~acPT
0
m

L2
: (8.89)

The capillary length is a length scale at which temperature increase by the latent heat,

L/cP, and the change of the equilibrium temperature due to the Gibbs–Thomson effect,

ða=dÞðT 0
m=LÞ, become comparable.

FIGURE 8.17 Various causes of step bunching. (A) Accumulation of impurities on terraces decreases the velocity of
steps. The step behind the wider terrace moves slower, and the step behind the narrower terrace moves faster: a
step pair is formed. (B) With Schwoebel barrier in growth, the retarded step has a wide lower terrace and moves
faster to recover the delay. (C) With Schwoebel barrier in sublimation, the advanced step has a wide lower
terrace and moves faster to amplify the advantage. (D) With step-down drift in sublimation, the advanced step
has a wide lower terrace and moves faster to amplify the advantage. (E) With step-down flow in growth, the
diluted part of solution moves to the lower area and hiders growth of the lower steps: the slope becomes
steeper. (F) With step-down flow in dissolution, the concentrated part of solution moves to the lower area and
decelerates dissolution of the lower steps: the slope becomes gentler.

=
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