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Abstract

One of the most active areas in atomic, molecular and optical physics is the use of
ultracold atomic gases in optical lattices to simulate the behaviour of electrons in
condensed matter systems. The larger mass, longer length scale, and tuneable
interactions in these systems allow the dynamics of atoms moving in these systems
to be followed in real time, and resonant light scattering by the atoms allows this
motion to be probed on a microscopic scale using site-resolved imaging. This book
reviews the physics of Hubbard-type models for both bosons and fermions in an
optical lattice, which give rise to a rich variety of insulating and conducting phases
depending on the lattice properties and interparticle interactions. It also discusses the
effect of disorder on the transport of atoms in these models, and the recently
discovered phenomenon of many-body localization. It presents several examples of
experiments using both density and momentum imaging and quantum gas micro-
scopy to study the motion of atoms in optical lattices. These illustrate the power and
flexibility of ultracold-lattice analogues for exploring exotic states of matter at an
unprecedented level of precision.
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1 Introduction
Since the development of techniques for laser-cooling atoms to microkelvin temper-
atures in the 1980s, one very active area of cold-atom research has been the
experimental realization of analogues of condensed-matter systems. In these experi-
ments, ultracold atoms in a low-density atomic vapour are made to play the part of
electrons in a solid or atoms in a liquid system of interest in condensed-matter
physics. The ultracold atom analogues, though, offer major experimental advan-
tages: atoms have internal structure that can be probed with high-resolution
spectroscopy, and the atom clouds can be directly imaged with CCD cameras and
resonant lasers. The strength of the interactions between ultracold atoms can be
tuned over a wide range of values, and from repulsive to attractive, through the
choice of atoms and the manipulation of their states with lasers and magnetic fields.
And the low density and extraordinarily low temperature of ultracold atom systems
mean that physical processes that unfold too rapidly to observe directly in
condensed-matter systems are slowed to a point where they can be followed in
real time.

The best-known example of this correspondence between ultracold atoms and
condensed matter physics is the study of quantum degenerate gases, where the
thermal de Broglie wavelength of the particles is comparable to the distance between
them. A sufficiently cold sample of identical bosons will undergo a sudden transition
to a state in which a large fraction of the atoms ‘condense’ into the lowest-energy
bound state of the trap that confines the atoms as they are cooled. This ‘Bose–
Einstein condensate’ (BEC), in which a large number of atoms share a single
quantum wavefunction, is closely related to the phenomenon of superfluidity in
liquid helium, where helium below the transition temperature (2.172 K for the
bosonic isotope helium-4) will flow without viscosity, transport heat with amazing
efficiency, and can only rotate at speeds where the angular momentum takes on
integer values. Superfluidity in liquid helium has been known since 1937, but
the 1995 achievement of BEC in dilute atomic vapours (for which Eric Cornell, Carl
Wieman, and Wolfgang Ketterle shared the 2001 Nobel Prize in Physics) opened a
new regime for studying these phenomena.
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Fermionic atoms cooled to quantumdegeneracy exhibit different behaviour, thanks
to the Pauli exclusion principle. A degenerate Fermi gas (DFG)will have all trap states
up to some characteristic energy filled, and will not exhibit superfluidity. If the
interactions between atoms are strongly attractive, though, they can ‘pair up’ to
form composite bosons, which can then undergo a transition to a superfluid phase at a
temperature well below the Fermi temperature, analogous to the superfluid transition
in liquid helium-3, at 0.002491 K. Ultracold atoms have multiple internal states, and
manipulating these states with external magnetic fields can change the strength of the
interatomic interactions, and even flip the interactions from repulsive to attractive.
This tunability has allowed experimental investigation of the ‘crossover’ region
between a BEC of tightly-bound diatomic molecules and a superfluid of long-range
atom pairs analogous to the ‘Cooper pairs’ of BCS superconductors. The BEC-BCS
crossover is of interest for theoretical studies of superconductivity, and ultracold atoms
provide a remarkably clean realization of these systems for direct experimental study.

In parallel with these analogues of fluid systems, another line of research has used
ultracold atoms to study the behaviour of solid systems. These experiments use
‘optical lattices’ created by the interference of laser beams to create a periodic
potential for the atoms, analogous to that felt by electrons inside a solid. Optical
lattices have been studied since before the achievement of BEC, but steady
improvements in the techniques used to study ultracold atoms in lattices have
allowed these experiments to push into new and exciting regimes.

These ultracold-lattice analogues offer several major advantages for the study of
condensed-matter physics, starting with the precise control of lattice and atom
properties. The lattice is imposed by an external laser field, whose properties are easy
to characterize and continuously tunable over a wide range of values. The strength
of the interactions between atoms can also be tuned in a variety of ways, allowing
ultracold-lattice experiments to separately explore the influence of parameters that
are often related in real solid systems.

The other benefit of ultracold-lattice analogues is a great expansion of the length
and time scales involved in electron transport. In real solids, electrons move in a
lattice of atoms separated by distances on the order of nanometers at Fermi
velocities on the order of 106 m s−1, so the electron dynamics have a characteristic
time scale in the femtosecond range. In optical lattices, on the other hand, the
potential wells are separated by hundreds of nanometers, and atoms move at
velocities of mm s−1, so the dynamics unfold on a millisecond time scale. This opens
the possibility of following the evolution of the system in real time, using atomic
imaging to track the motion of atoms on a microscopic scale.

This combination of exquisite control and microscopic monitoring allows the
creation and study of exotic states of matter at an unprecedented level of precision.
Ultracold atoms in optical lattices serve as quantum simulators, with properties that
can be tuned to explore transitions between conducting and insulating phases due to
a variety of physical effects. Exploring condensed-matter phenomena in ultracold-
lattice systems may help clarify complicated theoretical issues involving materials
with strongly-interacting electrons, and lead to new insights into the physics of high-
Tc superconductors and other exotic materials.
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2 Background
2.1 Optical lattices

The essential physics enabling these experiments is the ‘AC Stark shift’, more
colloquially known as the ‘light shift’. This is a change in the energy levels of an atom
exposed to light at a frequency that differs fromthe resonance frequencyω0 of an atomic
transition by an amount Δ = ωlaser − ω0. Light at a frequency below the resonance
(red detuning, Δ < 0) will lower the energy of the ground state, while light above
resonance (blue detuning,Δ> 0) will raise the energy of the ground state. The light shift
scales like I/Δ, where I is the intensity of the light, while the absorption of off-resonant
light scales like I/Δ2,meaning that for a sufficiently largedetuningandhigh intensity, the
light shift can substantially alter the energy of an atom even though no photons will be
scattered. In many experiments, the lattice lasers use enormously large detunings—for
example, many experiments with rubidium atoms laser-cooled by light at 780 nm use
lattice lasers with awavelength of 1064 nm. For such large detunings, photon scattering
from the lattice beams is negligible, and the light shift simply changes the potential
energy of the atoms, without any discontinuous loss of energy due to photon scattering.

Applying a light field whose intensity varies in space, then, generates a potential
energy surface for ground state atoms moving within the light field. A single red-
detuned laser beam brought to a focus will trap sufficiently cold atoms in the region of
the focus (such ‘dipole traps’ are commonly used to confine BECs), while a single blue-
detuned beam will push atoms away from the focus. Two counter-propagating lasers
will interfere to generate a standing-wave pattern in the intensity, which in turn forms
a periodic array of potential wells (spaced by half the initial laser wavelength) for
atoms moving in one dimension. Additional laser pairs along orthogonal axes can
generate periodic potentials in 2D or 3D, analogous to the potential electrons feel
when moving through a crystal with a simple cubic lattice (figure 1). More complicated
lattice structures can be created by adding RF or magnetic fields to manipulate the
internal states of the atoms, or holographic imaging of the desired pattern.

The depth of the lattice potential wells is directly proportional to the light shift,
and thus the intensity of the interfering lasers, which is readily manipulated
experimentally. Independent control of the intensity applied along different axes
allows the creation of systems with reduced dimensionality—a pair of very intense
beams along the z-axis with weaker pairs along x and y will produce an array of
effectively two-dimensional lattices with little or no coupling between adjacent
‘sheets’, while intense pairs along y and z will create a set of effectively one-
dimensional ‘tubes’ along the x-direction.

For testing the simplest models of condensed-matter systems, optical lattices offer
the great advantage of being inherently defect-free. The potential in which the atoms
move is created entirely by the interference of the lattice beams, and is thus free of
the imperfections that inevitably arise from impurities in real physical samples.
Optical lattices approach the theoretical ideal of a perfect, fixed lattice, with an
easily calculable band structure (the finite extent of a real lattice and the need for an
external trapping potential to keep the atoms confined to the lattice region
complicate the picture somewhat, but not too badly).
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Given the critical role defects and disorder play in real solids, though, that
apparent perfection can be a disadvantage. The same light shift that creates the
lattice potential can, however, be used to add disorder to it by adding additional
lasers. A ‘superlattice’ with a wavelength that is not an integer multiple of the
primary lattice wavelength (for example, one experiment uses a standing wave at
738 nm to disorder a lattice at 532 nm) can be used to add a quasi-random light shift
that varies from site to site within the lattice. Alternatively, a laser speckle pattern
can be superimposed on the lattice to add a truly random site-to-site variation. As
with the lattice itself, the depth of the disorder potential can be smoothly varied by
controlling the laser intensity, allowing detailed investigation of varying amounts of
disorder. Furthermore, the statistical properties of the disorder potential can be
precisely characterized, enabling more accurate theoretical models (though these are
not necessarily easy to work with).

2.2 Theory of atoms in optical lattices

Atoms in an optical lattice are quantum particles in a periodic potential, like
electrons in a solid, and thus are best described by wavefunctions that extend over

Figure 1. An optical lattice is formed from the interference of three counter-propagating pairs of lasers. (a) If
all three pairs have high intensity, trapped atoms are tightly bound at a simple cubic array of lattice sites.
(b) Reducing the intensity of one pair of beams traps atoms in an array of quasi-one-dimensional ‘tubes’, with
a weak lattice along the tube. (c) Reducing the intensity of two pairs of beams produces a set of quasi-two-
dimensional ‘pancakes’, or sheets of atoms trapped within a weaker lattice. (d) Illustration of the potential
energy surface for atoms trapped in one two-dimensional plane of an optical lattice.
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the full lattice. In such a system the narrow, well-defined bound states characteristic
of a single well give way to a large collection of allowed states with energies that vary
continuously over some range. These ‘Bloch bands’ are separated by band gaps—
regions of energy for which there are no allowed states in the lattice. The exact
distribution of these energy bands and gaps will depend on the periodicity and
crystal structure of the lattice; in real solids, this band structure determines most of
the electrical properties of insulators, conductors and semiconductors.

At the ultracold temperatures and low atom numbers used for typical optical
lattice experiments, however, all the atoms are confined to the lowest Bloch band. In
this case, the motion of the atoms in the lattice can be approximately described by a
model in which atoms hop from site to site within the lattice. These Hubbard type
models (either a Bose–Hubbard or a Fermi–Hubbard model, depending on the spin
of the atoms) are characterized by a competition between two processes: tunnelling
from site to site and an on-site energy due to collisions between atoms. These
parameters are experimentally adjustable within an optical lattice: the tunnelling
rate decreases exponentially with increasing lattice depth, while the on-site energy is
determined by the (tunable) interactions between atoms. While simple, this model
gives rise to a rich variety of quantum phenomena, including transitions between a
conducting phase where atoms move freely through the lattice and a ‘Mott insulator’
phase where atoms are locked in place.

The physics of this transition is easily illustrated using a system with only two
potential wells (left and right) and an adjustable barrier between them. The Bose–
Hubbard Hamiltonian for a system of N bosons in a double-well potential is:

ˆ = − ˆ ˆ + ˆ ˆ + ˆ ˆ − + ˆ ˆ −−
† †( )H J a a a a

U
n n n n

2
( ( 1) ( 1))R LB H L R L L R R

The first term describes the tunnelling process: the annihilation operator âL removes
an atom from the left well, and the creation operator ˆ †aR creates an atom in the right
well (or vice versa). The second term describes the on-site energy due to collisions
between atoms in a given well; this energy depends on the number of atoms present,
given by the number operators n̂L,R (the sum nL + nR = N). The tunnelling strength
J decreases exponentially with increasing barrier height, while the on-site energyU is
proportional to the scattering length describing interatomic collisions (positive for
repulsive interactions and negative for attractive) and the integral of the atomic
density within the well. In addition to tuning the scattering length, the effective
interaction strength can also be increased by adding atoms, or confining the system
more tightly.

We can understand the behaviour of a sample of N atoms in the lowest-energy
state by thinking about the effect of these terms on the bound states of a single well.
Thanks to tunnelling, an atom initially placed in the left-hand well will spend only a
limited time there, so the states of that well acquire an energy width that increases
with increasing J (in keeping with the energy–time uncertainty relation Δ Δ ⩾ ℏE t

2
).

The on-site energy, on the other hand, shifts the energy of a given well’s bound states
by an amount that depends on the number of atoms already present in that well.
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When the on-site interactions are weak compared to the tunnelling (small values
of the ratio U/J), the energy shift due to moving an atom from left to right (or vice
versa) is small compared to the width of the states, and atoms may freely move
between wells (figure 2). The lowest-energy state will have the atoms evenly divided
between the wells (nL = nR = N/2), but with a large variance in the number in a
single well as atoms tunnel back and forth. When the ratio U/J becomes large
(either by decreasing the tunnelling rate or increasing the on-site interactions), the
shift due to moving a single atom from left to right becomes larger than the energy
width; without some overlap between left-well and right-well states, tunnelling is
impossible, and the system enters a Mott insulator phase, where atoms are locked
in place. The ground state still has N/2 atoms in each well, but the number variance
drops to zero.

The Bose–Hubbard model is readily extended to larger numbers of wells,
including two- and three-dimensional lattices, simply by adding on-site energy
terms for additional wells, and tunnelling terms for neighbouring pairs of wells. The
Mott insulating transition carries over to these larger systems as well: for small
values of U/J, atoms move freely through the lattice, while above some critical value
of U/J, the system moves into a Mott insulating phase.

The Fermi–Hubbard model for fermionic particles must satisfy the Pauli
exclusion principle as well, which means two atoms in the same internal state
cannot occupy the same lattice site. These systems must therefore involve an
additional ‘spin’ component (‘spin-up’ and ‘spin-down’ states are generally identi-
fied with two different internal states of the atoms, with ‘spin-flip’ transitions driven

Figure 2. Schematic illustration of the competition between terms in the Bose–Hubbard Hamiltonian in a
double-well system. (a) With a high barrier between wells, the single-well states have a small energy width,
and strong on-site interactions shift the energies so the single-well states do not overlap, suppressing the
motion of atoms between wells. This gives rise to an insulating state. (b) With a lower barrier between wells,
tunnelling between wells gives the single-well states a large energy width, so the states continue to overlap
even in the presence of on-site interactions, and atoms may move freely between wells. This gives rise to a
conducting state.
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by additional lasers), changing the form of the Fermi–Hubbard Hamiltonian
slightly:

∑ˆ = − ˆ ˆ + ˆ ˆ + ˆ ˆ + ˆ ˆ
σ

σ σσ σ−
† †

↑ ↓ ↑ ↓( )H J a a a a
U

n n n n
2

( )R LF H L R L L R R

Here the tunnelling term includes contributions for both spin states (the summation
index σ can be either ↑ for spin-up or ↓ for spin-down; atoms do not flip spin while
tunnelling), while the on-site interaction is between atoms in different spin states. As
with the Bose–Hubbard Hamiltonian, this can be extended to larger systems by
adding additional on-site energy terms, and tunnelling between more pairs of wells.
Pauli exclusion limits the number to either 0 or 1 for a given spin state in a given
well; as a consequence, there is no on-site interaction for a perfectly spin-polarized
system of fermions.

The mathematical form of this Hamiltonian is deceptively simple, as the change
to fermionic particles allows a rich variety of states. The most straightforward shift is
the introduction of another type of insulating phase, a ‘band insulator’, in which the
lowest energy level in each well is fully occupied (one ‘spin-up’ and one ‘spin-down’
atom). In a band insulator, atoms can move only by jumping up to the next Bloch
band, a substantial energy gap. Even an incompletely filled lattice can produce
surprises, though, as strong on-site interactions lead to the breakdown of conven-
tional theoretical assumptions, producing new and hard to calculate phases
analogous to the ‘strange metal’ phase seen in high-Tc superconductors above the
critical temperature (discussed more below).

The introduction of disorder adds further complexity to the possible phases of
atoms in an optical lattice, with new mechanisms leading to insulating phases. In the
context of a Hubbard-type model, disorder appears as an energy shift similar to
the on-site energy but independent of the number of atoms present, with the size of
the shift varying randomly from site to site. For non-interacting atoms, the addition
of disorder will lead to localization, where individual atoms become trapped in
specific sites of the lattice, even in lattices with large tunnelling rates. Disorder-
induced localization for non-interacting particles, known as ‘Anderson localization’,
is generally discussed in terms of destructive interference between different paths for
an electron moving between sites. In the Hubbard model context, this can also be
understood conceptually in a manner similar to the Mott insulator transition: when
the site-to-site shift due to disorder is larger than the energy width due to tunnelling,
hopping between sites is suppressed, and atoms can no longer move through the
lattice.

Finally, the interplay of disorder and interactions adds yet more complexity to the
phases available for study. The simplest theoretical models suggest that interactions
will always disrupt Anderson localization and allow transport through a disordered
lattice, but recent work (beginning around 2006 with a seminal paper by Denis
Basko, Igor Aleiner, and Boris Altshuler) points to the existence of ‘many-body
localization’, producing a metal-to-insulator transition for strongly interacting
particles in a disordered lattice. Many-body localization is a very challenging
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problem to treat theoretically, but cold-atom experiments offer an exceptionally
clean realization of these systems, and can provide experimental data to guide and
test theoretical models.

2.3 Preparing ultracold atoms in optical lattices

The starting point for ultracold-lattice experiments is the laser cooling of a vapour of
atoms. This technique exploits the momentum of individual photons to exert forces
on atoms: an atom absorbing a photon gets a momentum ‘kick’ in the direction the
photon was moving. The resulting velocity change is typically quite small compared
to the thermal velocity of atoms at room temperature (rubidium atoms, for example,
change velocity by about 6 mm s−1 when absorbing a single 780 nm photon,
compared to the thermal velocity of around 200 m s−1), but huge numbers of
photons are readily available, allowing large changes in velocity. Tuning the laser
slightly below the atomic resonance frequency (Δ < 0) will ensure that the only
atoms absorbing photons are those moving toward the laser, as the frequency they
‘see’ is Doppler shifted closer to resonance. For these atoms, the momentum ‘kick’
from absorbing a photon reduces their velocity, and thus the temperature of the
atoms.

Counter-propagating pairs of red-detuned lasers produce a situation known as
‘optical molasses’. Here, atoms experience a force opposing their motion that is
proportional to the velocity, like particles moving in a viscous fluid. Adding a weak
quadrupole magnetic field to the system forms a ‘magneto-optical trap’ (MOT),
which can accumulate on the order of a hundred billion atoms at microkelvin
temperatures, corresponding to thermal velocities on the order of centimeters per
second.

The light scattering involved in the Doppler cooling process limits the minimum
temperature and maximum density that can be achieved for these samples, so
forming a BEC or DFG requires transferring the atoms to either an optical dipole
trap (a tightly focused red-detuned laser beam) or a magnetic trap (which uses the
Zeeman shift of energy levels in a magnetic field and a spatially varying magnetic
field to create a trapping potential for the atoms). Further cooling is done by
‘evaporative cooling’, selectively removing the highest-velocity atoms from the
sample, leaving behind a sample with a lower average energy and thus a lower
temperature. The evaporation process necessarily involves removing most of the
atoms from the sample, so the end result of the process is a quantum-degenerate gas
of several thousand to a few million atoms at temperatures in the nanokelvin range.

The final temperature and density of the atoms are determined by the duration of
the evaporation process and the strength of the trapping potential. Once the desired
temperature and density are reached, the optical lattice is imposed by turning on the
lattice lasers, increasing the intensity slowly (typically over ∼100 ms) so as to avoid
heating the sample.

The atoms are allowed to evolve in the lattice for some time, after which their
position and momentum are probed by imaging the cloud of atoms. For large
samples of atoms, this is generally accomplished by either fluorescence or absorption
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imaging: the trapping potential (both the optical lattice and magnetic or optical trap
in which the initial cooling was accomplished) is turned off, allowing the atom cloud
to expand for some time, and then a laser tuned near resonance is flashed on briefly.
In fluorescence imaging, a camera detects the light from atoms that absorb a photon
from the laser and re-emit a photon in a random direction. For absorption imaging,
the resonant laser shines through the cloud onto a camera; absorption by atoms in
the cloud casts a ‘shadow’ in the beam, and the depth of that shadow gives a direct
measurement of the two-dimensional density profile of the cloud.

3 Current directions

3.1 Simulating conductor-to-insulator transitions with transport experiments

Both fluorescence and absorption imaging techniques directly probe the distribution
of atoms, and variations on the basic imaging technique, described below in the
context of specific experiments, can probe the phase of the wavefunction and the
momentum of the atoms. These quantities are closely related to the ease with which
atoms move from site to site in the lattice, which is precisely what distinguishes
conductors from insulators. These techniques are thus ideal for studying various
types of conductor-to-insulator transitions.

The most straightforward sort of transport experiments rely on simply measuring
how the position distribution evolves in time. In a 2008 experiment, Alain Aspect’s
group in Paris, France, used fluorescence imaging of rubidium atoms to demonstrate
Anderson localization in a lattice with a weak disorder potential added. They
released a small BEC of rubidium-87 into a one-dimensional optical lattice, and
allowed it to expand for some time before taking a fluorescence image of the cloud.
In the lattice alone, the width of the density profile increased linearly in time,
reflecting a small constant velocity of the trapped atoms moving through the lattice.
When they added a weak disorder potential by superimposing a laser speckle
pattern, the expansion stopped after about half a second, and the atomic density
decayed exponentially with distance from the centre of the cloud. Exponential
localization is a clear signature of Anderson localization, and this cold-atom
experiment was the first direct observation of this phenomenon (figure 3).

Atomic density distributions can also be used to probe more subtle features of the
optical lattice system, thanks to the quantum nature of the atoms. When the lattice is
switched off rapidly, each individual site can be regarded as a point source of
expanding de Broglie waves, and the final density distribution after the atoms have
expanded by a distance that is large compared to the original size of the sample is
determined by the interference of these many sources. This interference pattern
depends not only on the physical distribution of atoms within the lattice, but also on
the relative phase of the atom waves expanding from different lattice sites. This can
reveal detailed information about the motion of atoms within the lattice; for example,
a 1998 experiment in Mark Kasevich’s group at Yale University showed pulses of
atoms leaking out of a vertically oriented 1-d optical lattice, caused by a difference in
phase evolution between atoms at different heights in the gravitational potential.
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Figure 3. (a) A Bose–Einstein condensate in a tight magnetic trap is exposed to a one-dimensional optical
lattice with a weak disorder potential applied. (b) After the magnetic trap is switched off, the BEC expands
through the lattice for some time, and then the distribution of atoms is measured using fluorescence imaging.
(c) Measured density in the expanded cloud (red line) with an exponential fit (blue line) to the outer wings of
the distribution. (d) Same data as (c), with a logarithmic vertical scale, clearly showing the exponential position
distribution characteristic of Anderson localization. Inset: Size of the cloud as a function of time for samples
with (red) and without (green) the disorder potential. The large red diamond indicates the experimental
condition for the data plotted in (c) and (d). From Billy J et al 2008 Direct observation of Anderson
localization of matter waves in a controlled disorder Nature 453 891–4. Reprinted by permission from
Macmillan Publishers Ltd, copyright 2008.
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The interference pattern of atoms suddenly released from a lattice also reveals
information about the metal-to-insulator phase transition. In a conducting phase,
where atoms move freely from site to site, all of these point sources will start out in
phase, producing interference patterns with sharp, well-resolved peaks. In an
insulating phase, on the other hand, each well is independent of the others, with
random relative phases, and the interference pattern will be smeared out to a single
diffuse cloud. The loss of interference contrast as the ratio U/J increases, then,
reflects the increasing phase variance as the motion of atoms between wells is cut off,
and was first used in 2001 by the Kasevich group in a 1-d lattice with a large number
of weakly confined atoms per site. This loss of contrast is also the experimental
signature of the Mott insulator transition, first observed in 2002 in the group of
Immanuel Bloch in Munich, Germany, using a three-dimensional lattice with tighter
confinement and thus a larger on-site interaction. For low values of U/J, their
density images (figure 4) show a square array of well-defined interference peaks,
characteristic of the simple cubic 3-d lattice they used. As they increased U/J,
the central peak gradually broadened and higher interference orders became
less distinct; above the Mott insulator transition, the images show only a single
broad peak.

Atomic density profiles can also provide evidence of the momentum distribution
of atoms in the lattice. If the cloud of atoms is allowed to expand a long enough
time that the typical distance an atom moves is large compared to the initial size of
the cloud, then fast-moving atoms will move a long distance, and end up at the
outside of the distribution regardless of their initial position in the lattice.
Meanwhile, slow-moving atoms will remain near the centre of the distribution.

Figure 4. These absorption images show the density distribution of a cloud of atoms released from a three-
dimensional optical lattice after 15 ms of free expansion. Lattice depth increases with each image, beginning
with the no-lattice case in image (a). The high-contrast interference peaks at low lattice depths are indicative of
a conducting state, and the loss of contrast with increasing lattice depth reflects the decreasing mobility of the
atoms, until the Mott insulating transition is reached around image (g). From Greiner M et al 2002 Quantum
phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms Nature 415 39–44. Reprinted
by permission from Macmillan Publishers Ltd, copyright 2002.
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The final density distribution is thus a direct image of the initial momentum
distribution.

When the lattice is switched off rapidly, the momentum distribution that is
imaged is the momentum for an individual site, averaged over all the populated sites
of the lattice. If the lattice is lowered slowly compared to the vibrational motion of
atoms within a single well, though, the final momentum distribution will reflect the
quasimomentum distribution of atoms within the lowest energy band of the lattice.
In the Mott insulating phase, atoms are distributed evenly over all quasimomenta,
and the density images become sharp-edged polygons corresponding to the
quasimomentum distribution associated with that particular lattice form.

Just as experiments with macroscopic solids measure electron transport properties
by applying an electric field and measuring the current that flows, this quasimo-
mentum mapping can reveal the transport properties of atoms in the lattice by
applying an external force that attempts to shift the momentum of the atoms. If the
external force manages to make the atoms move, this will be reflected as a shift in the
centre of the momentum distribution corresponding to the centre-of mass velocity of
the atoms after the applied impulse.

Brian DeMarco’s group at the University of Illinois has used quasimomentum
mapping to study the appearance of an unusual state in a lattice without disorder, in
a regime where the strong interactions between atoms undermine assumptions of
standard theory. They filled a lattice with fermionic potassium atoms in a single
internal state (playing the role of a ‘spin-up’ state). They then used a laser pulse to
resonantly transfer about 30% of the atoms into a second internal state, giving them
a momentum kick in the process. They allowed the atoms to evolve in the lattice for
some time, then separated the spin-up and spin-down states and measured their
momentum distributions separately (figure 5).

Figure 5. The evolution of atoms after a momentum kick in the ‘strange metal’ phase of an optical lattice.
(a) Images showing the density of atoms for three different experimental conditions. The hexagons in the top
image show the boundaries of the lowest energy band for the separated spin-down and spin-up clouds. The
spin-down atoms are initially displaced to the left due to the momentum perturbation, but over time the cloud
returns to the unperturbed position. (b) The average momentum of the spin-down cloud as a function of hold
time, showing the decay back to the unperturbed case. Figure by Brian DeMarco, used with permission.
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At short times after the laser pulse, they see a different centre-of-mass velocity for
the spin-down component, reflecting the applied impulse, while the centre-of-mass
velocity for the spin-up component does not change. Over a period of several
milliseconds, the centre-of-mass velocity of the spin-down component decays back
to the unperturbed value, undergoing some damped oscillations along the way. The
lifetime of these momentum excitations reveals some unusual behaviour—in
particular, the lifetime decreases slightly with increasing temperature, where conven-
tional theory says it should increase. This behaviour is analogous to the ‘strange
metal’ phase seen in high-Tc superconductors above the superconducting transition,
a state that is not well understood. The ability to readily tune interactions and probe
transport in detail that cold-atom experiments provide may help shed light on these
mysterious metals, and in turn provide clues to explain the mechanism of high-
temperature superconductivity.

3.2 Momentum distributions and many-body localization

The momentum mapping technique can probe transport at the microscopic level
through measurements of the centre-of-mass velocity shift due to an external
impulse, but the absence of such a shift can also be revealing. In addition to looking
at transport in strange metals, the DeMarco group has also used momentum shifts
to study many-body localization by looking at where the atoms stop moving.

As in the ‘strange metal’ experiments, they load an optical lattice with fermionic
40K atoms, adding a disorder potential created by a laser speckle pattern. To perturb
the momentum of the atoms in the lattice, they apply a magnetic field gradient for a
short time, which acts to push the atoms in a particular direction. Then they measure
the centre-of-mass velocity resulting from this impulse by measuring the displace-
ment of the momentum distribution from that measured with no impulse.

Adding disorder to the lattice reduces the measured velocity, and for sufficiently
large disorder, the motion is completely stopped, indicating that the atoms have
become localized. This localization is not solely a function of the disorder, though,
as in Anderson localization, but depends on the interactions between atoms. The
disorder strength needed to produce localization increases slightly as the relative
strength of the interactions between atoms increases (a 20% increase with a factor of
2 change in U/J), and does not depend strongly on temperature, consistent with the
predicted behaviour of many-body localization.

The Bloch group has also used momentum mapping to explore localization
physics by measuring transport in an optical lattice in an indirect way. They use a
superlattice with twice the wavelength of their primary lattice to empty every other
site in a one-dimensional lattice, so their initial sample with one atom per site is
replaced by a lattice with two atoms in every other site. They allow the atoms to
move within the lattice for some time, then use the superlattice a second time to
promote atoms in the originally-empty sites to an excited band. They image the
atoms in the original and excited bands separately to determine the relative
populations in the different sites, and thus measure the rate at which atoms re-fill
the empty wells.
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Starting from a BEC of 87Rb in a lattice without disorder, they observe damped
oscillations of the number of atoms in the emptied sites, quickly re-establishing
an equilibrium distribution where both sets of sites are equally likely to be filled
(figure 6). This already serves as a simulation of complicated quantum dynamics
whose exact solution taxes the limits of current classical computer algorithms
(the theoretical calculations they compare with their data only cover about half the
duration of the experiment).

Moving to a system of fermionic in a disordered lattice, they see a transition to
the many-body localized state. They trap 40K atoms in every other site of a one-
dimensional lattice with a period of 532 nm, adding disorder by superimposing an
additional lattice with a 738 nm spacing. In the absence of disorder, the imbalance
between the number of atoms in initially-full and initially-empty wells undergoes
damped oscillations similar to those in the bosonic case, settling back to its

Figure 6. Redistribution of atoms in a one-dimensional optical lattice. (a) The experimental sequence: (1) a
superlattice empties every other site in the lattice, leaving only even-numbered wells populated, (2) the lattice
depth is reduced and atoms are allowed to tunnel for some time, (3) the lattice depth is raised again, and the
population of the wells read out. (b) To read out odd and even wells, the superlattice is used to excite atoms in
odd-numbered wells to a higher energy band, which is spatially separated from the lower band during the
readout measurement. (c) Evolution of the population in the bands as a function of hold time, from a
composite of slices through density profiles like those in (b). (d) Fraction of the atoms occupying odd-
numbered wells from the data in (c), showing damped oscillations before returning to an equal distribution
between odd and even sites. Figure 1 from Trotzky S et al 2012 Probing the relaxation towards equilibrium in
an isolated strongly correlated one-dimensional Bose gas Nat. Phys. 8 325–30. Reprinted by permission from
Macmillan Publishers Ltd, copyright 2012.
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equilibrium value of zero. As they increase the amount of disorder in the lattice,
the imbalance between wells settles down to a non-zero value, indicating that
transport between wells has been suppressed. They map out the properties of this
many-body localization transition for a variety of different lattice conditions
and interaction strengths. Prediction of the final imbalance is feasible with
existing numerical methods only in the limit of very strong interactions, but
the experiment maps out the transition in conditions where existing theory is
inadequate.

These experiments use one-dimensional lattices, but of course the actual sample
of atoms is three-dimensional. Their measurements thus involve a large number of
one-dimensional ‘tubes’ cut off from each other by a strong optical lattice in the
other two dimensions; the quasi-random disorder from the incommensurate 738 nm
lattice ensures that all these tubes are identical. Reducing the lattice depth in one of
those directions allows coupling between neighbouring tubes, and reveals a striking
difference between the Anderson localization of non-interacting particles and the
many-body localization of interacting particles. When an external magnetic field is
used to tune the collisional interaction energy to zero, they see a localized state that
persists for a very long time, in both the ‘1D+’ system with very weak coupling
between adjacent tubes and the ‘2D’ system where atoms can readily tunnel between
tubes. With interactions turned on, however, the ‘1D+’ system remains localized for
a long time, but the ‘2D’ system rapidly delocalizes.

These experiments reveal some of the rich physics involved in many-body
localization, and point to the wide range of phenomena that remain to be explored.
Some of these phenomena can also be explored in greater detail, by looking at the
motion on the atomic scale.

3.3 Quantum gas microscope

The density profiles of atoms released from an optical lattice provide a wealth of
information about the dynamics inside the lattice, but optical technology allows an
even more spectacular investigation. The essential idea is very simple, though the
execution is formidably complicated (figure 7). Atoms in a two-dimensional optical
lattice are trapped very close to the aperture of a high-resolution imaging system.
The spacing between lattice sites in these systems is only slightly smaller than
the wavelength of the laser cooling transitions for these atoms, so for a sufficiently
large lens, the resolution of the imaging system can be made smaller than
the spacing between lattice sites. This allows the imaging of individual atoms
within the lattice, and the same imaging system can also be used to direct
additional lasers onto the atoms, to change the state of atoms at selected lattice
sites.

The imaging phase of these experiments consists of turning on a very deep
optical lattice tuned far from resonance, to prevent atoms from moving during
the imaging process, then illuminating the atoms with near-resonant light from
the optical molasses used to do the initial cooling of the sample. Some of the light
scattered by atoms in the lattice is emitted in the direction of the imaging system,
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typically thousands of photons per atom during several hundred milliseconds
of imaging. Sites occupied by a single atom show up as bright spots on a
CCD camera, while unoccupied sites remain dark. Doubly occupied sites also
show up as dark spots, as the imaging light induces state-changing collisions
between atoms in the same lattice site that result in both atoms being lost. For
very dense samples with many multiply-occupied sites, the site-resolved images
are essentially a parity measurement, with sites containing an odd number
of atoms fluorescing brightly, and sites containing an even number of atoms
remaining dark.

Site-resolved imaging of atoms in optical lattices was first developed in the group
of Markus Greiner at Harvard in 2010, and shortly thereafter in the Bloch group.
Both groups initially used these ‘quantum gas microscopes’ to study the Mott
insulator transition. A Mott insulator shows up in these images as a broad region of
the lattice where every site is occupied, with little variation, while the metal phase is
a region of occupied sites mixed with unoccupied. The finite size of the BEC clouds
loaded into the lattice leads to a concentric shell structure for the trap, with an outer
low-density metallic region surrounding an ‘N = 1’Mott insulator where every site is

Figure 7. The arrangement of the optics and lattice beams used in the quantum gas microscope experiment. A
pair of intense lattice beams in the vertical direction confines atoms to a single two-dimensional ‘pancake’
directly above a thin vacuum window. Less intense beams in the horizontal plane produce a two-dimensional
lattice within that pancake, in which atoms are trapped. Immediately outside the window, a large microscope
objective lens collects fluorescence light from trapped atoms, imaging the sample with single-site resolution.
Adapted from figure 1 in Choi J et al 2016 Exploring the many-body localization transition in two dimensions
Science 352 1547–52.
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occupied by a single atom (figure 8). At higher densities, this is followed by an inner
metallic region mixing singly and doubly occupied sites, and then a central ‘N = 2’
Mott insulator core where all the sites are doubly occupied (and thus dark in the
images). As the temperature of the atoms loaded into the lattice increases, these
shells can be seen ‘melting’, with the insulating regions narrowing and the variance
increasing.

Quantum gas microscopy with fermions is more challenging than with bosons,
as Pauli exclusion forces atoms into higher-energy states that are more difficult to
keep contained in lattice sites during the imaging process. This requires an
additional cooling phase, after the atoms have been transferred to the deep
‘pinning’ lattice, increasing the complexity of the experiment, but site-resolved
imaging of fermions in a lattice has been achieved by several groups. In these
systems, both Mott insulators and band insulators can be seen, depending on the
interaction strength (figure 9). For moderate interactions, the central region of
peak density is a band insulator with every site doubly occupied, surrounded by
a metallic shell, then a Mott insulating region. For greater interaction strengths,
on-site collisions prevent double occupancy, leading to a larger central N = 1 Mott
insulator.

Figure 8. Site-resolved images of atoms using a quantum gas microscope. The top row shows density images
from the experimental apparatus, with sites containing an odd number of atoms showing as bright points,
while unoccupied or doubly occupied sites are dark (due to light-assisted collisions that eject pairs of atoms
from the lattice during the imaging process). The middle row shows a numerical reconstruction of the density
image, and the bottom row a reconstruction of the atom number distribution with each dark circle representing
a single detected atom at a particular lattice site. Column a shows a BEC prepared in a conducting state, while
columns b–g show Mott insulators with an increasing total number of atoms. As the number of atoms
increases, a concentric shell structure of Mott insulators with different numbers of atoms per site develops,
visible as bright and dark rings in the images. From Sherson J F et al 2010 Single-atom-resolved fluorescence
imaging of an atomic Mott insulator Nature 467 68–72. Reprinted by permission from Macmillan Publishers
Ltd, copyright 2010.
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Quantum gas microscopy can also be used to study transport on a microscopic
scale, measurements that complement those described in the previous section.
The Bloch group used a system with the capacity to individually address atoms at
selected lattice sites to change the states of the atoms on a single line of sites within
an initial Mott insulator, and then removed the remainder of the cloud with a
pulse of resonant light. They then lowered the lattice along the direction
perpendicular to the line of atoms, held them for some time, and then imaged
their position. The atoms execute a quantum random walk, tunnelling from site to

Figure 9. Site-resolved images of fermionic atoms in a quantum gas microscope showing both band insulator
and Mott insulator states. (A) Top images are experimental density profiles, bottom are numerical
reconstructions of the atomic distribution. For a low number of atoms and weak interactions (left column),
the entire system is in an insulating state. As the number of atoms increases but interactions remain weak
(middle columns), the system develops a band-insulator core of doubly occupied sites, with an outer shell of
Mott insulator, and conducting regions separating the shells. For strong interactions (right column), the whole
system is in a Mott insulating state, with a broad core of singly occupied sites. (B) Theoretical prediction of the
atomic distribution for the given lattice parameters. (C) Average occupation number and number variance as a
function of distance from the center of the sample; points are experimental data, solid lines a fit to extract the
temperature. Regions of low variance indicate an insulating phase, while high variance indicates a conducting
phase. From Greif D et al 2016 Site-resolved imaging of a fermionic Mott insulator Science 351 953–7.
Reprinted with permission.
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site, and the time evolution of the wavefunction gives a direct measurement of the
tunnel coupling between sites that matches the expected value based on the lattice
strength.

They have also used this system to explore the microscopic physics of many-body
localization, by removing one half of a Mott insulator, creating a sharp boundary
between fully occupied and unoccupied sites, and then allowing the atoms to expand
in a lattice with added disorder. In the absence of disorder, atoms quickly re-fill the
emptied sites, but the addition of disorder stops this, and the population imbalance
persists for a very long time. They find a sharp onset of localization at some critical
disorder strength, which increases with an increase in on-site interactions, consistent
with many-body localization (figure 10).

These experiments involve of the order of 100 atoms moving in two dimensions,
a set of conditions well beyond the capability of current numerical methods.
A simulation using non-interacting atoms disagrees very badly with the experimen-
tal measurements, highlighting the critical role of the interactions.

4 Outlook
The preceding examples represent only a sampling from a large and rapidly growing
body of experimental work using ultracold atoms in optical lattices to simulate

Figure 10. Using a quantum gas microscope to measure many-body localization in a two-dimensional gas. (A)
The experimental configuration, showing the configuration of optical lattice beams, and the disordered
potential that is imaged onto the atom cloud through the microscope objective used for imaging. (B) Images
showing the evolution of atoms in a half-emptied lattice for both single experimental runs (left column) and an
average over 50 experiments (right column). In the absence of disorder, the atoms rapidly expand to fill the
whole lattice (white circle in bottom row). (C) With the addition of the disorder potential, the re-filling of the
emptied sites is dramatically slowed, indicating the presence of a many-body localized state. From Choi J et al
2016 Exploring the many-body localization transition in two dimensions Science 352 1547–52. Reprinted with
permission.
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condensed matter systems. The general theme of exploiting the longer length and
time scales involved to study insulating and conducting phases under different lattice
conditions is common to much of the field, and the particular experiments discussed
above should serve to illustrate some of the power of these techniques.

While condensed-matter physics is a relatively mature field, many of the
phenomena here are quite new, and being probed experimentally for the first
time. In particular, the phenomenon of many-body localization was only identified
relatively recently, so experiments exploring it are breaking new ground. The
discovery of many-body localized phases raises deep questions about thermalization
of quantum systems, and experimental studies of the phenomenon, particularly the
coupling of localized systems to a larger environment, may help address these
fundamental issues.

The experiments described here have focused primarily on transport of the atoms
within the lattice, without regard to their internal state. Another large area of
condensed matter physics involved the study of magnetic effects due to electron spin,
and these phenomena can also be modelled using internal hyperfine sublevels of the
atoms to represent the different spin states. This is another area where current
numerical algorithms are taxed by even moderate numbers of strongly-interacting
spins, but these systems may be experimentally accessible. The introduction of state-
selective quantum gas microscopy in a recent paper by the Bloch group seems
especially promising.

The last several years of research on ultracold-lattice analogues of condensed
matter systems have shown their power as a tool for investigating complicated
many-body physics with exceptional precision and control. In particular, they
provide very clean realizations of phenomena that are difficult to treat theoretically,
such as many-body localization and the strongly interacting ‘strange metal’ phase.
The level of experimental detail available should allow testing of existing models,
and stimulate the development of new ones. This process will undoubtedly uncover
new questions to be answered, and ultracold lattices seem likely to remain a hot
topic of research for many years to come.

Additional resources
Seminal theoretical paper on many-body localization, demonstrating the presence of a metal-to-

insulator transition for strongly interacting particles in a disordered lattice; Basko D M,
Aleiner I L and Altshuler B L 2006 Metal–insulator transition in a weakly interacting many-
electron system with localized single-particle states Ann. Phys. 321 1126

Experimental observation from the DeMarco group of many-body localization of strongly
interacting potassium atoms in a disordered optical lattice; Kondov S S et al 2015
Disorder-induced localization in a strongly correlated atomic Hubbard gas Phys. Rev.
Lett. 114 083002

First experimental study of the Mott insulator transition using a quantum gas microscope with
single-site resolution, from the group of Markus Greiner; Bakr W S et al 2010 Probing the
superfluid-to-Mott insulator transition at the single-atom level Science 329 547–50
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Introduction of state-selective quantum gas microscopy by the Bloch group; Boll M et al 2016
Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi–Hubbard
chains Science 353 1257–60

Experimental observation of localization of a Bose–Einstein condensate expanding in a one-
dimensional optical lattice with added disorder, as described in figure 3; Billy J et al 2008
Direct observation of Anderson localization of matter waves in a controlled disorder Nature
453 891–4

First observation of the Mott insulator transition in a Bose–Einstein condensate loaded into a
three-dimensional optical lattice, as described in figure 4; Greiner M et al 2002 Quantum
phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms Nature 415
39–44

Experimental observation of behaviour analogous to the ‘bad metal’ state in high-Tc super-
conductors above the transition temperature, using ultracold potassium in an optical lattice.
As described in figure 5.; Xu W et al Bad metal in a Fermi lattice Gas https://arxiv.org/abs/
1606.06669

Experimental observation of the redistribution of atoms from a BEC loaded into a one-
dimensional optical lattice, as described in figure 6; Trotzky S et al 2012 Probing the
relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas
Nat. Phys. 8 325–30

Experimental observation of ‘melting’ of the shell structure in a Mott insulator using a quantum
gas microscope, from the group of Immanuel Bloch. As described in figure 8; Sherson J F et al
2010 Single-atom-resolved fluorescence imaging of an atomic Mott insulator Nature 467
68–72

Experimental observation of fermionic atoms in a quantum gas microscope, showing both band
insulator and Mott insulator behaviour, as described in figure 9; Greif D et al 2016 Site-
resolved imaging of a fermionic Mott insulator Science 351 953–7

Experimental observation of many-body localization using a quantum gas microscope to observe
the re-filling of a two-dimensional lattice with half the sites empty, as described in figure 10;
Choi J et al 2016 Exploring the many-body localization transition in two dimensions Science
352 1547–52

Summary of theoretical research on fundamental issues of thermodynamics raised by the
phenomenon of many-body localization; Huse D https://physics.aps.org/articles/v9/76#c7

First experimental observation of Bose–Einstein condensation in ultracold rubidium atoms, from
the group of Carl Wieman and Eric Cornell, who shared the 2001 Nobel Prize in Physics for
the discovery. Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A
1995 Observation of Bose–Einstein condensation in a dilute atomic vapor Science 269 198

First experimental observation of Bose–Einstein condensation in ultracold sodium atoms, from the
group of Wolfgang Ketterle, who shared the 2001 Nobel Prize in Physics for the discovery.
Davis K B, MewesM-O, Andrews MR, van Druten N J, Durfee D S, Kurn DM and Ketterle
W 1995 Bose–Einstein condensation in a gas of sodium atoms Phys. Rev. Lett. 75 3969

First observation of a degenerate Fermi gas in ultracold potassium atoms; DeMarco B and Jin
D S 1999 Onset of Fermi degeneracy in a trapped atomic gas Science 285 1703–6

Experimental observation of an interference pattern in atoms leaking out of a BEC confined in a
one-dimensional optical lattice, used to infer the quantum phase difference between sites
within the lattice; Anderson B P and Kasevich M A 1998 Macroscopic quantum interference
from atomic tunnel arrays Science 282 1686–9
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Experimental observation of the reduced variance in the number of atoms per site predicted by the
Bose–Hubbard model for a BEC in a one-dimensional optical lattice; Orzel C, Tuchman A
K, Fenselau M L, Yasuda M and Kasevich M A 2001 Squeezed states in a Bose–Einstein
condensate Science 291 2386–9

Seminal theoretical paper showing that random impurities in a solid can prevent transport of
electrons, now called ‘Anderson localization’ after its author, Philip Anderson, who shared
the 1977 Nobel Prize in Physics. Anderson P W 1957 Absence of diffusion in certain random
lattices Phys. Rev. 109 1492–505

Experimental observation of many-body localization in ultracold potassium atoms in a disordered
lattice, probing transport by measuring the momentum shift of atoms after a perturbation;
Kondov S S, McGehee W R, Xu W and DeMarco B Disorder-induced localization in a
strongly correlated atomic Hubbard gas 2015 Phys. Rev. Lett. 114 083002

Experimental observation of many-body localization of ultracold potassium in a disordered
optical lattice, by observing the population imbalance in a lattice where half the sites were
originally empty; Schreiber M, Hodgman S S, Bordia P, Lüschen H P, Fischer M H, Vosk R,
Altman E, Schneider U and Bloch B 2015 Observation of many-body localization of
interacting fermions in a quasirandom optical lattice Science 349 842–5

Experimental investigation of the effect of coupling between neighbouring ‘tubes’ in a disordered
quasi-one-dimensional optical lattice that shows many-body localization; Bordia P, Lüschen
H P, Hodgman S S, Schreiber M, Bloch I and Schneider U 2016 Coupling identical one-
dimensional many-body localized systems Phys. Rev. Lett. 116 140401

One of the first experimental observations using a quantum gas microscope to study fermionic
potassium atoms; Cheuk L W, Nichols M A, Okan M, Gersdorf T, Ramasesh V V, Bakr W S,
Lompe T and Zwierlein M W 2015 Quantum-gas microscope for fermionic atoms Phys. Rev.
Lett. 114 193001

One of the first experimental observations using a quantum gas microscope to study fermionic
potassium atoms; Haller E, Hudson J, Kelly A, Cotta D A, Peaudecerf B, Bruce G D and
Kuhr S 2015 Single-atom imaging of fermions in a quantum-gas microscope Nat. Phys. 11
738–42
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