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Introduction

Optics is a very old field of science. It has been taught traditionally as propagation,
imaging, and diffraction of polychromatic natural light, then as interference, diffraction,
and propagation of monochromatic light. Books like Principles of Optics by E. Wolf in
1952 gave a comprehensive and extensive in-depth discussion of properties of
polychromatic and monochromatic light. Topics such as optical waveguide, fiber optics,
optical signal processing, and holograms for laser light have been presented separately in
more recent books. There appears to be no need for any new book in optics. However,
there are several reasons to present optics differently, such as is done in this book.

Many contemporary optics books are concerned with components and instruments
such as lenses, microscopes, interferometers, gratings, etc. Reflection, refraction, and
diffraction of optical radiation are emphasized in these books. Other books are
concerned with the propagation of laser light in devices and systems such as optical
fibers, optical waveguides, and lasers, where they are analyzed more like microwave
devices and systems. The mathematical techniques used in the two approaches are very
different. In one case, diffraction integrals and their analysis are important. In the other
case, modal analysis is important. Students usually learn optical analysis in two separate
ways and then reconcile, if they can, the similarities and differences between them.
Practicing engineers are also not fully aware of the interplay of these two different
approaches. These difficulties can be resolved if optical analyses are presented from the
beginning as solutions of Maxwell’s equations and then applied to various applications
using different techniques, such as diffraction or modal analysis.

The major difficulty to present optics from the solutions of Maxwell’s equations is the
complexity of the mathematics. Complex mathematical analyses often obscure the basic
differences and similarities of the mathematical techniques and mask the understanding
of basic concepts.

Optical device configurations vary from simple mirrors to complex waveguide
devices. How to solve Maxwell’s equations depends very much on the configuration
of the components to be analyzed. The more complex the configuration, the more
difficult the solution. Optics is presented in this book in the order of the complexity of
the configuration in which the analysis is carried out. In this manner, the reasons for
using different analytical techniques can be easily understood, and basic principles are
not masked by any unnecessary mathematical complexity.

Optics in unbounded media is first presented in this book in the form of plane wave
analysis. A plane wave is the simplest solution of Maxwell’s equations. Propagation,
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refraction, diffraction, and focusing of optical radiation, even optical resonators and
planar waveguides, can be analyzed and understood by plane wave analysis. It leads
directly to ray optics, which is the basis of traditional optics. It provides a clear
demonstration and understanding of optics without considering boundary condition or
device configuration. Even sophisticated concepts such as modal expansion can also be
introduced using plane waves. Plane wave analysis is the focus of the first two chapters.

Realistically, wave propagation in bulk optical components involves a finite boundary
such as a lens that has a finite aperture. Plane wave analysis can no longer be used in this
configuration. However, in these situations, the waves are still transverse electric and
magnetic (TEM). Therefore, TEM waves are rigorously analyzed using Maxwell’s
equations in Chapter 3. The diffraction analysis presented in Chapter 3 is identical to
traditional optical analysis. Since applications of diffraction analysis are already covered
extensively in existing optics books, only a few basic applications of diffraction theory
are presented here. The distinct features of our presentation here are: (1) Both the TEM
assumption of the Kirchoff’s integral analysis and the relation between diffraction
theory and Maxwell’s equations are clearly presented. (2) Modern engineering concepts
such as convolution, unit impulse response, and spatial filtering are introduced.

Diffraction integrals are again used to analyze laser cavities in the first part of
Chapter 4, for three reasons: (1) Laser modes are used in many applications. (2) The
diffraction analysis leads directly to the concept of modes. It is instructive to recognize
that they are inter-related. (3) An important consequence of laser cavity analysis is that
laser modes are Gaussian. A Gaussian mode retains its functional form not only inside,
but also outside of the cavity.

The second part of Chapter 4 is focused on Gaussian beams and how different
applications can be analyzed using Gaussian beams. Gaussian modes are also natural
solutions of theMaxwell’s equations. It constitutes a complete set. Just like any other set
of modes, such as plane waves, any radiation can be represented as summation of
Gaussian modes. When the diffraction integral is used in Chapter 3 to analyze waves
propagating through components with finite apertures, the diffraction loss needs to be
calculated by the Kirchoff’s integral for each aperture. In comparison, the diffraction
loss of a Gaussian beam propagating through an aperture can be calculated without any
integration. Therefore, a Gaussian beam is used to represent TEM waves in many
engineering applications.

Although TEMmodes exist in solid-state and gas laser cavities, waves propagating in
waveguides and fibers are no longer transverse electric and magnetic. Microwave-like
modal analysis needs to be used to analyze optical devices that have dimensions of the
order of optical wavelength.

Optical waveguides and fibers are dielectric devices. They are different from
microwave devices. Microwave waveguides have closed metallic boundaries. The
mathematical complexity of finding microwave waveguide modes is much simpler
than that of optical waveguides.

The distinct features in the analysis of dielectric waveguides are: (1) There are
analytical solutions for very few basic device configurations because of the complex
boundary conditions. Analyses of practical devices need to be carried out by
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approximation techniques. (2) There is a continuous set of radiation modes in addition to
the discrete guided-wave modes. Any abrupt discontinuity will excite radiation modes.
(3) The evanescent tail of the guided-wave modes not only reduces propagation loss, but
also provides access to excite the modes by coupling through evanescent fields.
(4) Multiple modes are often excited in devices. The performance of the device depends
on what modes have been excited.

Because of the complexity of modal analysis of optical waveguides and fibers, it is
presented here in four parts.

In the first part, modes of simple waveguides and fibers are discussed in Chapter 5.
Analytical solutions for planar waveguides and step–index fiber are presented. Although
these are not realistic devices, they are the only solutions that can be obtained from
Maxwell’s equations. Modes of these simple basic devices are very useful for
demonstrating various properties of the guided waves. Approximation methods are
then presented to discuss modes of realistic devices. For example, the effective index
method is used here to analyze channel waveguides.

Guided-wave devices operate by mutual interactions among modes. These
interactions need to be analyzed in the absence of exact solutions. Therefore, several
approximation methods, the perturbation technique, the coupled mode analysis, and the
super mode analysis, are presented in Chapter 6. The differences and similarities of the
three methods are compared and explained. Examples in applications are used to
demonstrate these techniques.

In the third and fourth parts, modal analyses of passive and active guided-wave
devices are presented. Passive guided-wave devices function mainly as power dividers,
wavelength filters, resonators, and wavelength multiplexers. In each of these system
functions, there are several different devices that could be used. Thus, devices
that perform the same system function are discussed and analyzed together. Their
performance is compared.

Active devices utilize electro-optical effects of the electrical signals to operate.
Discussion of active guided-wave devices is complex because there are different
physical mechanisms involved. How these mechanisms work is reviewed.The electrical
performance, as well as the optical performance of these devices are analyzed.

In summary, when optics are presented as solutions of Maxwell’s equations, the
inter-relation between plane wave, diffraction, and modal analysis becomes clear. For
example, the use of modal analysis is not limited to waveguides and fibers. There can be
modes and modal expansion in plane wave analysis, as well as in diffraction optics. As
we learn optics step by step in the order of the mathematical complexity and device
configuration, we learn optical analysis from various perspectives.
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propagating through components with finite apertures, the diffraction loss needs to be
calculated by the Kirchoff’s integral for each aperture. In comparison, the diffraction
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1 Optical plane waves in an
unbounded medium

Engineers involved in design and the use of optical and opto-electronic systems are often
required to analyze theoretically the propagation and the interaction of optical waves
using different methods. Sometimes it is diffraction analysis; on other occasions, modal
analysis. They are all solutions of Maxwell’s equations, yet they appear to be very
different. All optical analyses should be presented as solutions of Maxwell’s equations so
that the inter-relations between different analytical techniques are clear. In order to
avoid unnecessary mathematical complexity, the simplest analysis should be presented
first. In this book, optics will be presented first by plane wave analysis, followed by
diffraction and modal analyses, in increasing order of complexity.

Plane waves are the simplest form of optical waves that can be derived rigorously from
Maxwell’s equations. Plane wave analysis can be used to derive ray analysis, which is the
basis of traditional optics. It can be applied directly to analyze many optical phenomena
such as refraction, reflection, dispersion, etc. It can also be used to demonstrate sophis-
ticated concepts such as superposition, interference, resonance, guided waves, and
Fourier optics. Plane wave analyses will be the focus of discussion in Chapters 1 and 2.

However, plane wave analysis cannot be used to analyze diffraction, laser modes,
optical signal processing, and propagation in small optical components such as fibers
and waveguides, etc. These analyses will be the focus of discussion in subsequent chapters.

1.1 Introduction to optical plane waves

Plane wave analysis is presented here in full detail, so that the mathematical derivations
and details can be fully exhibited and the physical significances of these analyses are
fully explained.

1.1.1 Plane waves and Maxwell’s equations

All optical waves are solutions of the Maxwell’s equations (assuming there are no free
carriers),

∇� E ¼ �∂B
∂t

; ∇� H ¼ ∂D
∂t

ð1:1Þ
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Here E is the electric field vector, H is the magnetic field vector, D is the displacement
vector, and B is the magnetic induction vector. For isotropic media,

B ¼ μH ; D ¼ εE ð1:2Þ
Let ix , iy , and iz , be unit vectors in the x, y, and z directions of an x-y-z rectangular
coordinate system. Then E, H and the position vector r can be written as

E ¼ Exix þ Eyiy þ Eziz  H ¼ Hxix þ Hyiy þ Hziz ð1:3aÞ

r ¼ xix þ yiy þ ziz ð1:3bÞ

A special solution of Eqs. (1.1) and (1.2) is a plane wave that has no amplitude
variation transverse to its direction of propagation. If we designate the z direction as the
direction of propagation, this means that

∂
∂x

¼ 0 and 
∂
∂y

¼ 0 ð1:4Þ

Substituting ∂/∂x = 0 and δ/δy = 0 into the ∇ × E and ∇ × H equations leads to two
distinct groups of equations:

∂Ey

∂z
¼ μ ∂Hx=∂t;  

∂Hx

∂ z
¼ ε∂Ey=∂t; or 

∂Ey
2

∂z2
¼ με

∂2

∂t2
Ey ð1:5aÞ

and

∂Hy

∂ z
¼ � ε∂Ex=∂ t; 

∂Ex

∂z
¼ � μ∂Hy=∂ t; or 

∂Hy
2

∂z2
¼ με

∂2

∂t2
Hy ð1:5bÞ

Clearly, these are two separate independent sets of equations. Ey and Hx are related only
to each other, and Hy and Ex are related only to each other. Solutions of Eq. (1.5a) are
plane waves with y polarization of the electric field (or x polarization in magnetic field).
Solutions of Eq. (1.5b) are plane waves with x polarization in the electric field E (or y
polarization in magnetic field H).

(a) The y-polarized plane wave
For a cw optical plane wave with a single angular frequency ω that has a time variation,
ejωt, and for lossless media (i.e. the medium has a real value of ε), there is a well-known
solution of Eq. (1.5a) in the complex notation. It is

Ey ¼ Ef
ye

�jβzejωt; Hx ¼ Hf
x e

�jβzejωt; Hf
x ¼ �

ffiffiffi
ε
μ

r
Ef
y ; ð1:6aÞ

where β ¼ ω
ffiffiffiffiffi
με

p
. The real time domain expression for the complex Ey shown in (1.6a)

is Ef
y

��� ���cos βz� ωt þ φð Þ where φ is the phase of Ef
y

��� ���at z = 0 and t = 0. The angular

frequency ω is related to the optical frequency f by ω ¼ 2πf . This wave is known
as a y-polarized forward propagating wave in the +z direction. The phase of
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Ey, i.e. βz� ωt ¼ β z� vpt
� �

, is a constant when z ¼ vpt. Thus vp is known as the phase

velocity of the plane wave.
If the medium in which the plane wave propagates is free space, then ε ¼ εo and the

free space phase velocity is co ¼ 1=
ffiffiffiffiffiffiffi
μεo

p
≡3� 108 m s�1. In free space, the optical wave

length for a frequency f is λo, where f λo ¼ co. If the medium is a lossless dielectric

material with a permittivity ε, then its index of refraction is n ¼ ffiffiffiffiffiffiffiffiffi
ε=εo

p
,

β ¼ nβo ¼ nω
ffiffiffiffiffiffiffi
μεo

p
. If ε is a function of wavelength, the medium is said to be dispersive.

There is also a second solution for the same polarization of the electric field,

Ey ¼ Eb
ye

jβzejωt; Hx ¼ Hb
x e

jβzejωt; Hb
x ¼

ffiffiffi
ε
μ

r
Eb
y ð1:6bÞ

This solution is a backward propagating wave because the phase of Ey, i.e.
βzþ ωt ¼ β zþ vpt

� �
, at any time t is a constant when z ¼ �vpt and vp ¼ ω=β.

If the permittivity has a loss component, ε ¼ εr � jεσ, then

β ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ εr � jεσð Þ

p
¼ βr � jβσ ð1:7Þ

The phase velocity of light is now vp ¼ c ¼ ω=βr. The amplitude of the plane wave
decays as e�βσz′for forward waves and eþjβσz′for backward waves. In comparison with the
phase velocity of free space, the ratio of the phase velocities, co/c, is the effective
refractive index of the plane wave, n ¼ coβr=ω ¼ co=c. The wavelength in the medium
is λ ¼ λo=n. In addition to β, or phase velocity, the loss of optical waves in the medium is
an important consideration in applications.

(b) The x-polarized plane wave
A similar solution exists for the x-polarized electric field and Hy. For the forward wave,

Hy ¼ Hf
y e

�jβzejωt; Ex ¼ Ef
xe

�jβzejωt; Ef
x ¼

ffiffiffi
μ
ε

r
Hf

y ð1:8aÞ

For the backward wave,

Hy ¼ Hb
y e

þjβzejωt; Ex ¼ Eb
xe

jβzejωt; Eb
x ¼ �

ffiffiffi
μ
ε

r
Hb

y ð1:8bÞ

In summary, both equations (1.5a) and (1.5b) are second-order differential equations.
Mathematically, each of them has two independent solutions, which are the forward and
the backward propagating waves. However, Eqs. (1.5a) and (1.5b) are also two separate
set of equations. The solution for Eq. (1.5a) describes a plane wave polarized in the y
direction. The solution of Eq. (1.5b) describes a plane wave polarized in the x direction.
Both waves have the same direction of propagation. β is usually designated as a
propagation vector along the direction of propagation z that has magnitude β,

β ¼ βiz ; z ¼ ziz ; βz ¼ β • z ð1:9Þ
The forward wave has +β, the backward wave has –β.

6 Optical plane waves in unbounded medium

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139871419.002
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:11:14, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.002
https://www.cambridge.org/core


It is important to note that, along any direction of propagation, there are always plane
waves with two orthogonal polarizations. In each polarization, there are always two
solutions, the forward wave and the backward wave. The propagation constant β and
phase velocity will depend on the medium and the frequency.

1.1.2 Plane waves in an arbitrary direction

Frequently, plane waves in other directions of propagation need to be expressed math-
ematically for analysis. As an example, let there be another xʹ-yʹ-zʹ rectangular coordi-
nate which is related to the x-y-z coordinate by

ix′ ¼ ix ; iy′ ¼ cos θiy � cos
π
2
� θ

� �
iz ; iz′ ¼ cos

π
2
� θ

� �
iy þ cos θiz ð1:10Þ

The x-y-z and the xʹ-yʹ-zʹ coordinates are illustrated in Figure 1.1. The xʹ-yʹ-zʹ coordinate
is just the x-y-z coordinate rotated by angle θ about the x axis. The x and xʹ axes are the
same.

Let there be a plane wave propagating along the zʹ direction. The solutions for
the yʹ and xʹ polarized plane waves have already been given in Eqs. (1.6) and
(1.8). However, these solutions could also be expressed in the x, y, and z coordi-
nates, where

βz′ ¼ β • z′ ¼ β cos θzþ β cos
π
2
� θ

� �
y ð1:11Þ

β ¼ βiz′ ¼ β cos θiz þ β cos
π
2
� θ

� �
iy ð1:12Þ

e�jβz′ ¼ e�jβ • z′ ¼ e�jβ • r ð1:13Þ
For the yʹ polarized plane wave propagating in the +zʹ direction,

y

x

z

y’

x’

z’

θ

θ

Figure 1.1 Illustration of x-y-z and xʹ-yʹ-zʹ coordinates.
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Ey′ ¼ Ef
y0
iy′e

�jβ • z′ejωt ¼ Ef
y0
e�jβ • rejωt

¼ Ef
y0
cos θiy � Ef

y0
sin θiz

� �
e�jβ • rejωt ð1:14Þ

Hx ¼ Hx′ ¼ �
ffiffiffi
ε
μ

r
Ef
y0
e�jβ • rejωtix ð1:15Þ

For the yʹ polarized backward plane wave propagating in the –zʹ direction,

Ey′ ¼ Eb
y0 e

þjβ • rejωtiy′ ; Hb
x0 ¼

ffiffiffi
ε
μ

r
Eb
y0 e

þjβ • rejωtix′ ð1:16Þ

For the xʹ polarized plane wave propagating in the +zʹ direction,

Ex′ ¼ Ex ¼ Ef
x0
e�jβ • rejωtix′ ð1:17Þ

Hy′ ¼
ffiffiffi
ε
μ

r
Ef
x0
e�jβ • rejωtiy′ ¼

ffiffiffi
ε
μ

r
Ef
x0

cos θiy � sin θiz
� �

e�jβ • re�jωt ð1:18Þ

For the xʹ polarized backward wave plane wave propagating in the –zʹ direction,

Ex′ ¼ Ex ¼ Eb
x0 e

þjβ • rejωtix0 ð1:19Þ

Hy′ ¼ �
ffiffiffi
ε
μ

r
Eb
x0 e

þjβ • rejωtiy′ ð1:20Þ

The preceding example can be generalized for any orientation of the xʹ, yʹ,
and zʹ coordinates with respect to the x, y, and z coordinates. Any plane wave
propagating in the zʹ direction can have two mutually perpendicular polarizations,
ia and ib . iz′ , ia and ib are mutually perpendicular to each other, i.e.

ia • ib ¼ ia • β ¼ ib • β ¼ 0.

Let ia ¼ ix′ and ib ¼ iy′ ð1:21Þ

Then the general solutions for the case of ia polarization are:

Ef
a ¼ Ef

ae
�jβ • r′ejωtix′ Hf

a ¼
ffiffiffi
ε
μ

r
Ef
ae

�jβ • r′ejωtiy′ ð1:22Þ

Eb
a ¼ Eb

ae
þjβ • r′ejωt ix′ Hb

a ¼ �
ffiffiffi
ε
μ

r
Eb
ae

þjβ • r′ejωtiy′ ð1:23Þ

β ¼ βx′ix′ þ βy′iy′ þ βz′iz′  β2 ¼ βx′
2 þ βy′

2 þ βz′
2 ð1:24Þ

Here, β makes angles θxʹ, θyʹ, and θzʹ with respect to the xʹ, yʹ, and zʹ axes, with
βx′=β ¼ cos θx′; βy′=β ¼ cos θy′; and βz′=β ¼ cos θz′ . The general solutions for the case
of ib polarization are:
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Ef
b ¼ Ef

be
�jβ • r′ejωtiy′ Hf

a ¼ �
ffiffiffi
ε
μ

r
Ef
be

�jβ • r′ejωtix′ ð1:25Þ

Eb
b ¼ Eb

ae
þjβ • r′ejωtiy′ Hb

a ¼
ffiffiffi
ε
μ

r
Eb
ae

þjβ • r′ejωtix′ ð1:26Þ

It is important to recognize that when there is a wave solution containing various
terms, any term that has the form shown in Eqs. (1.17) to (1.26) represents a plane wave
propagating in the direction of β.

1.1.3 Evanescent plane waves

Eqs. (1.22) to (1.26) described propagating plane waves that have real βxʹ, βyʹ, and βzʹ
values. The maximum real βxʹ and βyʹ values of propagating plane waves are limited toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βx′2 þ βy′2
q

< ω
ffiffiffiffiffi
με

p
, i.e. 0 < θxʹ, θyʹ, and θzʹ < π/2. Nevertheless, Maxwell’s equation is

still satisfied even if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2x þ β2y0

q
is larger than β. In that case Eq. (1.24) can only be

satisfied if βzʹ is imaginary. When βzʹ is imaginary, the zʹ variation is a real decaying or

growing exponential function, e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βx′2þβy′2�β2

p
z′ . In any passive medium, the plane wave

cannot grow without energy input. Thus the solution must decay exponentially in the zʹ
direction. Any solution with imaginary βzʹ is called an evanescent wave. Such solutions
do not propagate in the z direction. They do not have a phase velocity. Evanescent
waves are excited usually in the vicinity of a boundary with an incident wave applied
across the boundary. It is only a near field, meaning that it is negligible at locations far
away from the boundary.1 It is interesting to note that when βxʹ = β, βyʹ = βzʹ = 0, it is no
longer a plane wave propagating in the zʹ direction. It is a plane wave propagating in
the +xʹ direction.

1.1.4 Intensity and power

In optics, only time-averaged power can be detected directly by means of detectors
or by recording media such as film. The time-averaged power per unit area is known
commonly as the intensity. In comparison with rf and microwaves, intensity analysis
plays a much more important role in optics. From text books on electromagnetic
theory, it is well known that the total time-averaged power in the direction of
propagation is [1]

Pav ¼ 1

2
Re
ð
S

E � H� • iz′ds ¼
ð
S

I • iz′ds;  I ¼ 1

2
Re½E � H � ð1:27Þ

1 It is important to note that although the mathematical solution of a plane wave exists for βx or βy values larger
thanω

ffiffiffiffiffi
με

p
, such a solution is important only if those plane waves are excited in specific applications such as

total internal reflection. Otherwise, the solutions have no practical significance.
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The integration is carried out over the entire surface of the plane wave, S.
The * designates the complex conjugate of the variable. Re designates the real part
of the complex quantity. Therefore the time-averaged power per unit area in the
direction of propagation zʹ in either polarization is

Iz′ ¼ 1

2
ReEaHa

� ¼ 1

2

ffiffiffi
ε
μ

r
EaEa

�  or  Iz′ ¼ 1

2
ReEbHb

� ¼ 1

2

ffiffiffi
ε
μ

r
EbEb

� ð1:28Þ

Note that although the total I is the sum of the Is in each polarization, the total
I carries no information about polarization breakdown. Although the complex amplitude
of the plane wave has a phase, its intensity I has no phase information. For plane waves
in a lossless medium, i.e. εσ= 0, its intensity I is a constant. In media with loss, the decay

of the time-averaged power is e�2βσz′ for a forward wave and eþ2βσz′for a backward wave.
In microwaves, I is known as the Poynting vector. In x-y-z coordinates, the intensity

along the z direction is ½ReExHy
�, the intensity along the y direction is ½Re EzHx

�, and
the intensity along the x direction is ½ReEyHz

�.

1.1.5 Superposition and plane wave modes

Plane waves in different direction of propagation (or plane wave modes) can be super-
imposed simultaneously. This is known as the superposition theory in linear media.
Many interesting optical phenomena can be understood by superposition of plane waves.
Three examples are presented here to illustrate the effects of superposition. They are
important concepts in many applications.

(a) Plane waves with circular polarization
Let us consider superposition of two plane waves of equal magnitude, polarized in x and
y, with a π/2 phase difference.

E ¼ Eo ix þ jiy
� �

ð1:29Þ

The real time domain form of this wave is

E ¼ Eo cosðβz� ωt þ φÞix þ sinðβz� ωt þ φÞiy
h i

ð1:30Þ

So that, at any time t, the polarization rotates at different z positions. This type of wave is
known as a circular polarized optical wave because the polarization of E rotates as it
propagates. When these two waves have unequal amplitudes they give rise to an
elliptical polarized plane wave.

(b) Interference of coherent plane waves
Let us consider two plane waves of equal amplitude at the same ω and y polarization.
They propagate at different directions of propagation β in the x–z plane. Their βs lie in
the x–z plane and make angles, θ and ζ, with respect to the z axis. Mathematically, the
waves are
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Eoe
�jβ sin θxe�jβ cos θzejωtiy þ Eoe

�jβ sin ζxe�jβ cos ζ zejωtiy ð1:31Þ

According to Eq. (1.28), its time-averaged intensity in the z direction is

Iz ¼
ffiffiffi
ε
μ

r
Eoj j2 1þ cos β ðsin θ � sin ζ Þxþ ðcos θ � cos ζ Þzð Þ½ � ð1:32Þ

Therefore, for θ ≠ ζ, we would detect a sinusoidal intensity interference pattern of the
twowaves in the x direction. As z changes, the interference pattern in xwill change. If we
could record this intensity interference pattern, for example, by the transparency of a
film, we could reproduce the plane waves by illuminating this film with another input
plane wave. This is the very basic principle on which holography and phased array
detection are based [2,3,4].

However, if the two waves do not have the sameω or a definite phase relation between

them, then Iz ¼
ffiffiffiffiffiffiffi
ε=μ

p
Eoj j2. In other words, there is no interference pattern unless the

two waves are coherent.2 The total intensity of incoherent waves is just the sum of
the intensities of individual waves. It is also important to note that when the two coherent
plane waves have cross polarizations, the total intensity is also just the sum of the two
intensities without the interference effect.

(c) Representation by summation of plane waves
Let there be a linearly polarized TEM electric field propagating in the z direction with xy
variation g(x,y) at z = 0. It is well known that g can be represented by its Fourier
transform. Let G be the Fourier transform of g.

G fx; fy
� � ¼ FtðgÞ ¼

ðþ∞

�∞

ðþ∞

�∞

gðx; yÞe�j2π fxxþfyyð Þdxdy ð1:33Þ

gðx; yÞ ¼ Ft
�1ðGÞ ¼

ðþ∞

�∞

ðþ∞

�∞

Gðfx; fyÞej2πðfxxþfyyÞdfxdfy ð1:34Þ

G is the magnitude of the Fourier component at (fx, fy). When g(x,y) contains only slow
variations in x and y,Gwill have significant values only at low spatial frequencies fx and
fy. In that case the integration in Eq. (1.34) could be approximated by just the integration
of G within a limited range of fx and fy.

Let

2πfx ¼ βx′ ¼ β cos θx′ ;  2πfy ¼ βy′ ¼ β cos θy′ ð1:35Þ

dfx ¼ �β sin θx′dθx′  dfy ¼ �β sin θy′dθy′ ð1:36Þ

2 If the two waves have a randomly time-varying relative phase relation, for example from two independent
lasers, the time-averaged detected intensity also will not have the interference pattern.
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Eq. (1.33) gives the magnitude of the Fourier component that has an xʹyʹ variation of
e�jβ cos θx′x′e�jβ cos θy′y′ . If we also let β ¼ ð2πco=λoÞ ffiffiffiffiffiffi

μεr
p ¼ 2πc=λ and consider only those

Fourier components with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βx′2 þ βy′2

q
< β (i.e. 0 < θxʹ and θyʹ < π/2), then Eq. (1.33)

gives the magnitude of the Fourier component that has the xʹyʹ variation of a plane wave
propagating in a direction β, which has direction cosines θxʹ, θyʹ, and θzʹ. θzʹ is related to
θxʹ and θyʹ by Eq. (1.24). However, for propagating plane waves, θxʹ,θyʹ, and θzʹ must
be real. The maximum and minimum values of fx and fy for real values of θxʹ and θyʹ, are

–β/2π and +β/2π. Moreover,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βx′2 þ βy′2

q
< β.3 It means that, the Fourier components

that correspond to propagating waves with real values of θxʹ and θyʹ, are only Fourier
components that have low values of fxʹ and fyʹ.

In summary, when g contains only variations in x and y very much slower than λ,
G(fx,fy) has significant values only at those fx and fy less than the limit fmax. If fmax

< β/2π, it means the electric field g(x,y) could be represented by superposition of just
plane waves propagating in different directions β. Under that condition, Eq. (1.34) can
be approximated by

gðx; yÞ ¼ Ft
�1ðGÞ ffi

ðþfmax

�fmax

ðþfmax

�fmax

Gðfx; fyÞej2πðfxxþfyyÞdfxdfy ð1:37Þ

There are three important concepts introduced here: (1) We have shown that plane
waves can be used to represent an arbitrary field with slow xʹ and yʹ variations. This is
equivalent to the modal expansion concept used in microwaves. Here, plane waves are
the modes of unbounded medium. (2) Fields with any xʹyʹ variation can be represented
by their Fourier components.4 This means that many modern Fourier analysis tech-
niques can be applied to optics. This is the basis of Fourier optics [2] and optical
image processing [4]. (3) Knowing the plane wave composition at z = 0, we have
determined the xy variation of each plane wave components at any distance z later.
Thus it allows us to predict the electric field that propagates to z via plane wave
analysis. Note that as component plane waves propagate the total optical radiation
spreads or contracts. This phenomenon is also known as the diffraction of optical
radiation. More details on diffraction will be presented in Chapter 3.

It is interesting to note that ifG(fx,fy) contains frequency components with large fx and

fy such that fx2 þ fy2 > β2=4π2, then the z variation of the plane waves for those
components will exponentially decay. This means that those components will contribute
only to the near field and they will not propagate far in the z direction. Only the frequency

components with fx2 þ fy2 < β2=4π2 will propagate, so the fields at some z distance
away will not be exactly the same as g(x,y).

3 Evanescent plane waves in the z direction could have βx′ or βy′ larger than β. However they are not
propagating waves.

4 Fields with rapid xy variation would yield Fourier components that are evanescent local waves in the z
direction.
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1.1.6 Representation of plane wave as optical rays

When an optical wave has a finite beam size, the diffraction effect will spread the beam
as it propagates. Diffraction analysis allows us to analyze the fields at various positions
that are not at the center of the beam. Diffraction will be discussed in Chapters 3 and 4.
However, in many situations, we are only interested in analyzing the optical beam near
the center; then diffraction is not important. In those situations, a local optical beam
with finite beam size can be approximated by a plane wave, as long as the beam size is
much larger than the optical wavelength and the variation of the beam within a distance
of wavelengths is very small.5 The plane waves could then be considered simply as
optical rays. Furthermore, in the analysis of natural light, which has many wavelengths
or frequency components, with no specific phase relation among the different compo-
nents, the phase interference effects of optical light are not important. Only the location,
intensity, and direction of the propagated beam are detectable and important.

Let the beam propagates in a y–z plane at an angle θwith respect to the z axis. The y–z
plane is located at a constant x position. Let the beam originate at z = 0. In the traditional
ray analysis used in the literature, its position at variance z distance from the z axis, i.e its
y position at z, is given by r(z) and its direction is given by rʹ(z) which is drðyÞ=dz. Note
that, for a ray making an angle θwith respect to the z axis, r′ ¼ sin θ. Then the ray can be
represented at a given z by its ray matrix

rðzÞ
r′ðzÞ
����

���� ð1:38Þ

Note that for a ray making an angle θ with respect to the z axis, r′ ¼ sin θ. When the
beam reaches a new y position later at zʹ, where d ¼ z′ � z, its r(zʹ) and rʹ(zʹ) at zʹ are
related to r(z) and rʹ(z) by

r′ðz′Þ ¼ r′ðzÞ;  rðz′Þ ¼ rðzÞ þ r′ðzÞd ð1:39Þ
In other words, the relation can be expressed by a ray matrix,

rðz′Þ
r′ðz′Þ
����

���� ¼ 1 d
0 1

����
���� rðzÞr′ðzÞ
����

���� ð1:40Þ

A ray in an arbitary direction in the xyz coordinate could be considered as a ray in the
yʹ–z plane of a new xʹyʹzʹ coordinate. Similar to Section 1.1.2 the xʹyʹzʹ coordinate is a
rotation of the xyz coordinate. The expressions for r and rʹ in xʹyʹzʹ have been given in
Eqs. (1.39) and (1.40). They could be expressed in terms of xyz through coordinate
transformation as we have done in Section 1.1.2.

The ray representation is only an approximation. It ignores the size of the optical beam
and the size of the medium in which the beam propagates. It ignores diffraction effects. It
does not give the intensity of the beam unless it is specified separately. When the

5 For example, the free space wavelength of visible light ranges from 0.4 to 0.7 μm. A uniform visible light
beam a fraction of a millimeter wide can be approximated by a plane wave near the center of the beam. The
approximation is good within short distances of propagation, such as a few centimeters or more.
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polarization of the ray is important in some applications, it must be specified in addition
to the ray matrix for r and rʹ.

1.2 Mirror reflection of plane waves

Reflection properties of optical light can be analyzed very simply by plane waves.

1.2.1 Plane waves polarized perpendicular to the plane of incidence

Let there be a plane wave, polarized in the x direction and propagating in the β direction
in the y–z plane that makes an angle θi with respect to the z axis,

β ¼ β sin θiiy þ β cos θiiz ; Ei⊥ ¼ Eoe
�jβ sin θiye�jβ cos θizejωtix ð1:41Þ

In this case, the electric field is perpendicular to the plane of incidence, which is the y–z
plane. Thus the electric and magnetic fields are designated by E⊥ and H⊥ . The incident
wave generates a reflected electric field plane wave,

βr ¼ β sin θriy þ β cos θriz ; Er⊥ ¼ Ere
�jβ sin θryeþjβ cos θrðz�z′Þejωtix ð1:42Þ

When this wave is incident on a ideal planar mirror (or an ideal conductor with infinite
conductivity) at z = zʹ, extending from x = –∞ to +∞ and from y = –∞ to +∞, the boundary
condition at z = zʹ is that the total electric field tangential to the boundary, i.e. Ei⊥ þ Er⊥ ,
be zero at z = zʹ. The boundary condition at z = zʹ demands that

θr ¼ π � θi and Er ¼ �Eoe
�jβ cos θiz′ ð1:43Þ

or

Er⊥ ¼ �Eoe
�jβ sin θiyeþjβ cos θiðz�z′Þe�jβ cos θiz′ejωtix ð1:44Þ

From Eqs. (1.18) and (1.20) of Section 1.1, the magnetic field for the incident wave is

Hi⊥ ¼
ffiffiffi
ε
μ

r
Eoðcos θiiy � sin θiizÞe�jβ sin θiye�jβ cos θize�jωt ð1:45Þ

The magnetic field for the reflected wave is

Hr⊥ ¼
ffiffiffi
ε
μ

r
Eoðcos θiiy þ sin θiizÞe�jβ sin θiyeþjβ cos θiðz�z′Þe�jβ cos θiz′e�jωt ð1:46Þ

The relation given in Eq. (1.43) is commonly known as the law of reflection. The
reflection changes the direction of propagation from β to βr which is a mirror reflection
of β. The polarizations of the incident and reflected electric field are the same, but the
orientations of the incident and reflected magnetic field are different. The magnetic field
will induce surface current in the conductor at z = zʹ. For ideal mirrors, the ratio Erj j= Eoj j,
called the reflectivity R of the mirror, is one. For actual mirrors with reflectivity R < 1,

Er ¼ �REoe�jβ cos θiz′ .
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1.2.2 Plane waves polarized in the plane of incidence

The second independent solution for plane wave propagating in the same β direction has
H directed along the x direction and E polarized in the y–z plane, which is the plane of
incidence. The incident wave is designated as E== and H == .

Ei== ¼ Eo½�cos θiiy þ sin θiiz �e�jβ sin θiye�jβ cos θizejωt ð1:47Þ

Hi== ¼ Eo

ffiffiffi
ε
μ

r
e�jβ sin θiye�jβ cos θizejωtix ð1:48Þ

The reflected plane wave is

Er== ¼ ΓEo½þcos θiiy þ sin θiiz �e�jβ sin θiyeþjβ cos θiðz�z′Þe�jβ cos θiz′ejωt ð1:49Þ

Hr== ¼ ΓEo

ffiffiffi
ε
μ

r
e�jβ sin ϑiyeþjβ cos ϑiðz�z′Þe�jβ cos ϑiz′ejωtix ð1:50Þ

Note that only the y component of the total electric field is zero at z = zʹ for ideal mirrors
with Γ = 1.

1.2.3 Plane waves with arbitrary polarization

For plane waves with an electric field polarized in any other direction, it can always be
decomposed into the summation of two mutually perpendicular polarized electric field
plane wave components, one polarized perpendicular to the plane of incidence and one
polarized in the plane of incidence. There is a change in the reflected electric and
magnetic field from that of the incident field at the reflection boundary. According to
Sections 1.2.1 and 1.2.2, the polarization of the reflected beam will depend on the
decomposition. Results obtained in Eqs. (1.41) to (1.50) could be applied to any plane
waves in any direction of propagation in any polarization by a change of the x-y-z
coordinates to new xʹ-y-zʹ coordinates. In the new coordinates the direction of the
incident beam is in the yʹ-zʹ plane.

1.2.4 The intensity

According to Eq. (1.28) of Section 1.1, the intensities of the incident and reflected waves
along their directions of propagation are

Ii ¼ 1

2

ffiffiffi
ε
μ

r
Eoj j2;  Ir ¼ 1

2

ffiffiffi
ε
μ

r
Erj j2 ð1:51Þ

1.2.5 Ray representation of reflection

The reflection at zʹ of a light beam could again be described by the ray matrix representa-
tion discussed in Section 1.1.5. In that case, the r and the rʹ of the incident and the
reflected beams at zʹ in the plane of incidence are related by
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rrðz′Þ
r′rðz′Þ
����

���� ¼ 1   0
0 � 1

����
���� riðz′Þr′iðz′Þ
����

���� ð1:52Þ

The phase of the reflected beam and the polarizations of the beams are not included in the
ray representation.

1.2.6 Reflection from a spherical mirror

Let there be a mirror that is a section of a sphere with radius R. Here, in this section, R is
not the reflectivity of the mirror as it is commonly used in the literature. Figure 1.2 shows
the cross-sectional view of a spherical mirror in the y–z plane and an incident beam. The
spherical mirror is centered at the origin of the x-y-z coordinate. It is much larger than the
size of the incident beam. Consider a small incident beam, uniform within a lateral area
that is much larger than the optical wavelength. It is sufficiently wide so that it can be
approximated by a plane wave near the center of the beam. Let the incident beam be
represented approximately by a plane wave polarized in the x direction at an angle θi
with respect to the z axis in the y–z plane.

β ¼ β sin θiiy þ β cos θiiz ; Ei⊥ ¼ Eoe
þjβ sin θiye�jβ cos θizejωtix ð1:53Þ

Hi⊥ ¼
ffiffiffi
ε
μ

r
Eoðcos θiiy � sin θiizÞeþjβ sin θiye�jβ cos θize�jωt ð1:54Þ

In Figure 1.2, θi is shown as a negative angle. The slope of the incident beam is tanθi.
When the beam is incident on the mirror at zʹ, the mirror at that location can be
approximated by a planar mirror tangential to the sphere. This flat tangential mirror
makes an angle φ with respect to the y axis. According to Sections 1.2.1 and 1.2.5, the
reflected beam will make an angle �π þ 2φþ θi with respect to the z axis. The slope of

ϕ
r

y

z

ϕ

Spherical mirror

Incident beam

Reflected beam

–θi
–π + 2ϕ + θi

Figure 1.2 The cross-sectional view in the y–z plane for an optical beam reflected by a spherical mirror. The
local incident beam at the incident angle –θ is reflected by the curved mirror. The plane tangential
to the spherical mirror at the incident location makes an angle –φ with respect to the vertical axis.
The reflected beam makes an angle �π þ 2φþ θi with respect to the +z axis.
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the reflected beam is tanð�π þ 2φþ ϑiÞ ¼ tan 2φþ tan θi
1þ tan 2φ tan θi

ffi� 2rðz′Þ
R

þ tan θi. The

same conclusion is obtained when the electric field is polarized in the y–z plane.6

Therefore, the reflection from a spherical mirror in the ray representation is

rrðz′Þ
r′rðz′Þ

����
���� ¼

1  0

� 2

R
 1

�������
�������
riðz′Þ
r′iðz′Þ

����
���� ð1:55Þ

For incident beams parallel to the z axis, the reflected beams will be focused at z = R/2.
Therefore, this location is called the focus of the spherical mirror.7

1.3 Refraction of plane waves

Refraction properties of optical radiation could also be derived directly by plane wave
analysis.

The law of refraction is concerned with the reflection and the change of direction of
propagation of optical light incident obliquely onto a planar boundary of twomaterials that
have different dielectric permittivities, ε1 and ε2, or indices of refraction, n1 and n2. For the
sake of simplicity, the media are assumed to be lossless in Sections 1.3.1 to 1.3.4.8

Refraction is used in designing optical components ranging from eye glasses and cameras,
to telescopes. Refraction and reflection of plane waves will be discussed first, followed by
ray optical analysis and analysis of components such as prisms, lenses, and gratings.

1.3.1 Plane waves polarized perpendicular to the plane of incidence

Let there be an incident plane wave polarized in the x direction, perpendicular to the
plane of incidence, and propagating in a direction in the y–z plane with an angle θi with
respect to the z axis in media 1.

β ¼ β1sin θiiy þ β1cos θiiz ; Ei⊥ ¼ Eoe
�jβ1sin θixe�jβ1cos θizejωtix ð1:56Þ

Hi⊥ ¼
ffiffiffiffi
ε1
μ

r
Eoðcos θiiy � sin θiizÞe�jβ1sin θiye�jβ1cos θize�jωt ð1:57Þ

Let there be a plane boundary at zʹ, extending from x = –∞ to +∞ and from y = –∞ to
+∞, with medium #1 at z < zʹ and medium #2 at z > zʹ. The boundary separates medium
#1 from medium #2. In addition to the transmitted wave in medium #2, there is a
reflected wave in medium #1. The boundary condition at z = zʹ is that the electric field
E and the magnetic field H tangential to the boundary, i.e. Ex, Ey, Hx, and Hy, must be
continuous across the boundary at zʹ. Since the incident wave is polarized in the x

6 Since the mirror is curved, the locally reflected beam is no longer strictly a plane wave. The use of plane
wave for local analysis is an approximation.

7 The analysis presented here does not include rays at angles of incidence oblique to meridian planes. It is
presented here only to demonstrate the very basic concept.

8 In media with losses, β1 and β2 will be complex.Waves will be attenuated as they propagate. Thematching of
attenuated waves at the boundary becomes much more complex than the simple relationship presented here.
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direction, the reflected and transmitted wave must also be polarized in the x direction.
The reflected wave in medium #1 is9

βr ¼ β1sin θriy þ β1cos θriz ; Er⊥ ¼ Γ⊥12Eoe
�jβ1sin θrye�jβ1cos θrzejωtix ð1:58Þ

Hr⊥ ¼ �
ffiffiffiffi
ε1
μ

r
Γ⊥12Eoðcos θriy þ sin θrizÞe�jβ1sin θrye�jβ1cos θrze�jωt ð1:59Þ

The transmitted plane wave in media #2 is

βt ¼ β2sin θtiy þ β2cos θtiz ; Et⊥ ¼ T⊥12Eoe
�jβ2sin θtye�jβ2cos θtzejωtix ð1:60Þ

Ht⊥ ¼
ffiffiffiffi
ε2
μ

s
T⊥12Eo cos θtiy � sin θtiz

� �
e�jβ2sin θtye�jβ2cos θtze jωt ð1:61Þ

Figure 1.3 illustrates the incident wave, the reflected wave, and the transmitted wave
in media #1 and #2, plus the boundary at z = zʹ. The continuity conditions of tangential E
and H at z = zʹ at all time t demand that

θr ¼ π � θi; β2 sin θt ¼ β1 sin θi or n2 sin θt ¼ n1 sin θi ð1:62Þ

y

zx

Reflected wave

θr

θi

θt

Incident wave

Transmitted
wave 

z  = z’

Medium #1 Medium #2

Figure 1.3 Reflection and transmission at a planar dielectric interface. The incident beam makes an angle θ
with respect to the +z axis. The transmitted beam refracted from the vertical interface makes an
angle θt. The reflected beam makes an angle θr.

9 Note the notations. Γ⊥12  and T⊥12 stand for reflection and transmission coefficients of the electric field
perpendicular to the plane of incidence from medium #1 to medium #2. The coefficients may be different
when the polarization is changed or the direction of propagation is reversed.
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T⊥12 ¼ 1þ Γ⊥12; T⊥12 ¼ ð1� Γ⊥12Þ n1 cos θin2 cos θt
ð1:63Þ

or

Γ⊥12 ¼ n1 cos θi � n2 cos θt
n1 cos θi þ n2 cos θt

¼ � sinðθi � θtÞ
sinðθi þ θtÞ ; T⊥12 ¼ 2n1cos θi

n1cos θi þ n2 cos θt
ð1:64Þ

In this case, the intensities of the incident, reflected, and transmitted waves in the z
direction are:

I⊥i ¼
ffiffiffiffi
ε1
μ

r
Eoj j2cos θi; I⊥r ¼

ffiffiffiffi
ε1
μ

r
Γ⊥12Eoj j2cos θr; I⊥t ¼

ffiffiffiffi
ε2
μ

r
T⊥12Eoj j2cos θt

ð1:65Þ
The intensities are conserved in the z direction, i.e.

I⊥i ¼ I⊥t þ I⊥r

1.3.2 Plane waves polarized in the plane of incidence

The second independent solution of the plane wave propagating in the same β direction
has the electric field polarized in the plane of incidence. Its H is directed along the x
direction, and its E is polarized in the y–z plane.

Ei== ¼ Eo½�cos θiiy þ sin θiiz �e�jβ1sin θi1ye�jβ1cos θizejωt ð1:66Þ

Hi== ¼ Eo

ffiffiffiffi
ε1
μ

r
e�jβ1sin θiye�jβ1cos θizejωtix ð1:67Þ

The reflected wave in medium #1 and the transmitted wave in medium #2 are:

Er== ¼ Γ==12Eo½þ cos θiiy þ sin θiiz �e�jβ1sin θiyeþjβ1cos θiðz�z′Þe�jβ1cos θiz′ejωt ð1:68Þ

Hr== ¼ þ Γ==12Eo

ffiffiffiffi
ε1
μ

r
e�jβ1sin θi1yeþjβ1cos θiðz�z′Þe�jβ1cos θiz′ejωtix ð1:69Þ

Et== ¼ T==12Eo½� cos θtiy þ sin θtiz �e�jβ2sin θtye�jβ2cos θtzejωt ð1:70Þ

Ht== ¼ T==12Eo

ffiffiffiffi
ε2
μ

r
e�jβ2sin θtye�jβ2cos θtzejωtix ð1:71Þ

The boundary conditions at z = zʹ requires:

β2 sin θt ¼ β1sin θi or n2 sin θt ¼ n1sin θi ð1:72Þ

ðΓ==12 � 1Þcos θi ¼ �T==12 cos θt;  ð1þ Γ==12Þn1 ¼ T==12n2 ð1:73Þ
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In other words,

T==12 ¼
2n1 cos θi

n2 cos θi þ n1 cos θt
; Γ==12 ¼

n2 cos θi � n1 cos θt
n2 cos θi þ n1 cos θt

¼ tanðθi � θtÞ
tanðθi þ θtÞ ð1:74Þ

The intensities in the z direction for the incident, transmitted, and reflected plane waves
are:

I==i ¼
ffiffiffiffi
ε1
μ

r
Eoj j2cos θi; I==r ¼

ffiffiffiffi
ε1
μ

r
Γ==12Eo

�� ��2cos θi; I==t ¼
ffiffiffiffi
ε2
μ

r
T==12Eo

�� ��2cos θt
ð1:75Þ

Again, the intensities in the z direction are conserved, i.e. I==i ¼ I==r þ I==t.
It is important to note that all optical reflection, refraction, and diffraction effects are

calculated based on meeting the boundary conditions by waves that satisfy Maxwell’s
equations. The energy in the waves is conserved. Note that the transmission and
reflection coefficients of optical waves are dependent on the polarization of the electric
field, while the intensity of the wave is not affected.

1.3.3 Properties of refracted and transmitted waves

(a) Transmission and reflection at different incident angles
It is interesting to note that, at normal incidence, θi ¼ θt ¼ 0 and θr ¼ π. T and Γ are
the same for polarizations either perpendicular to the plane of incidence or in the plane of
incidence. The direction of propagation of the transmitted wave is the same as the
incident wave, while the reflected wave has a reverse direction of propagation. There is
no change of polarization of the reflected and transmitted waves from the incident wave.

T12 ¼ 2n1
n1 þ n2

; Γ12 ¼ n2 � n1
n2 þ n1

ð1:76Þ

Ii ¼ It þ Ir ð1:77Þ
It is important to realize the relative importance of this result in practical applications. At
an interface of free space with n1 = 1 and glass with n2 = 1.5, T12 = 0.8 and Γ12 = 0.2,
which is small. Therefore in many applications of glass components, such as imaging
through a lens, the reflection may not be analyzed. The situation is very different when
medium #2 has a large index of refraction such as a III–V semiconductor. If n2 = 3.5, then
T12 = 0.56 and Γ12 = 0.44 at normal incidence.

At other angles of incidence, Γ and T will vary dependent on the angle of incidence
and the polarization. The magnitude of reflection increases at large θi. It is interesting to
note that when θi þ θt ¼ π=2, Γ==12 ¼ 0 in Eq. (1.74). The θi that satisfies this condition

is traditionally known as the Brewster angle. At this angle the incident and the reflected
plane waves are polarized perpendicular to each other in the plane of incidence. The
Brewster angle has many practical applications because at this angle the reflection is
zero without any anti-reflection coating.
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(b) Total internal reflection
When n1 > n2, at the angle of incidence θi, such that n1 sin θi ¼ n2,
θt ¼ π=2; Γ ¼ 1 and It ¼ 0. This means that, for a plane wave with any polarization

there is no energy transmitted in the z direction. For θi > sin�1n2=n1 and Ei polarized
perpendicular to the plane of incidence, the boundary condition in Eq. (1.62) demands

that cos θt ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn21 sin2θ1=n22Þ � 1

q
. Therefore, we have an evanescent wave in medium

2 in which the propagation constant in the z direction of the transmitted wave shown in

Eq. (1.60) is imaginary. The reflection coefficient is Γ12 ¼ Γ12j jejϕ12 . From Eq. (1.64),
we obtain Γ⊥12j j ¼ 1 and

φ⊥12 ¼ tan�1 �2n1 cos θi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n12 sin

2 θi � n22
p

n12 cos2 θi � ðn12 sin2 θi � n22Þ
From Eq. (1.74), a similar conclusion can be reached for plane waves polarized in the

plane of incidence. Again, Γ==12

�� �� ¼ 1. However, the phase angle is different from ϕ⊥12.

φ==12 ¼ tan�1 �2n2 cos θi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 sin

2 θi � n12
p

n22 cos2 θi � ðn22 sin2 θi � n12Þ
In summary, the incident plane wave with any polarization is said to be totally

internally reflected at the boundary for θi > sin�1n2=n1, but the phase angle is dependent
on polarization. Total internally reflected waves have only an evanescent tail in the lower
index medium. Total internal reflection is utilized extensively in optical fibers and
waveguides to minimize the loss due to the surroundings, by using a cladding layer
that has a lower index of refraction so that losses in the surrounding media at distances
further away from the interface than the length of the evanescent tail do not cause much
propagation loss to the totally internal reflected optical wave.

(c) Refraction and reflection of arbitrary polarized waves
For plane waves with arbitrary polarization, results derived in Eqs. (1.56) to (1.75) are
applicable when the electric field is first decomposed into two components, one polar-
ized perpendicular to the plane of incidence and the second polarized in the plane of
incidence. Although these two components have the same direction of propagation of
reflected and transmitted waves (see Eqs. (1.62) and (1.72)), their polarization, transmis-
sion coefficient T, and reflection coefficient Γ are different.

(d) Ray representation of refraction
It was shown in Sections 1.1.6 and 1.2.5 that natural light with finite beam width and
location can be represented by its ray matrix. There is also a matrix representation of the
refracted (i.e. transmitted) beam as follows
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rðz′Þ
r′ðz′Þ

�����
����� ¼

1  0

0 
n1
n2

�������
�������
rinðz′Þ
rin′ðz′Þ

�����
����� ¼

1  0

0 
sin θ2
sin θ1

�������
�������
rinðz′Þ
rin′ðz′Þ

�����
����� ð1:78Þ

Note that the ray matrix representation is independent of polarization. It does not tell
us the magnitude, the size, or the polarization of the refracted beam. The reflected beam
is not included in Eq. (1.78). The ray matrix representation of the reflected beam for a
mirror is given in Eq. (1.52) in Section 1.2.5.

1.3.4 Refraction and dispersion in prisms

Prisms are optical components used to redirect the direction of propagation of an optical
beam. Note that the permittivity ε and the index of refraction n2 of materials are usually
wavelength (i.e. ω or λ) dependent. This means that the transmitted plane wave at the
boundary will have different directions of propagation at different wavelengths. This is
known commonly as the dispersion. In a prism spectrometer, the incoming optical beam
may havemany wavelength components. The collimated incident beam passes through a
prism. At the exit of the prism, different wavelength components propagate in different
directions due to the dispersion effect. The exit beams in different directions are focused
by a lens to different positions. An exit slit located on the focal plane of the lens selects
the radiation in a specific wavelength range to be detected. The spectral width of the
detected radiation is determined by the width of the slit. As the prism rotates, the
detected radiation displays the spectral component of the incident radiation as a function
of the prism angle.

(a) Plane wave analysis of prisms
A prism is usually a dielectric cylinder with a triangular cross-section made from
material with a refractive index n2. This index n2 is larger than the index of the
surrounding medium, which has index n1. Usually the surrounding medium is free
space with n1 = 1. The triangular cross section of a prism in the y–z plane is shown in
Figure 1.4. The prism is uniform in the x direction. It has a vertex angle, A +B, and a base
angle, ðπ=2� AÞ, for the front surface, and base angle, ðπ=2� BÞ, for the back surface.
The dimensions of the surfaces of the triangle are larger than the width of the optical
beam, which is much larger than the optical wavelength itself.

Let there be an optical incident beam propagating in a direction θi from the z axis in
the y–z plane. For uniform beams that have a beam width much larger than the optical
wavelength, the beams can be represented by plane waves near the center of the beam.
The incident beam, the refracted beam in the prism, and the transmitted beam of the
prism are also illustrated in Figure 1.4. The analysis of the wave propagation in prisms is
simply a detailed analysis of the directions of the refracted beams at each dielectric
interface, as follows.

In order to analyze the beam propagation, let us designate xʹ-yʹ-zʹ coordinates and xʹʹ-
yʹʹ-zʹʹ coordinates, as shown in Figure 1.4. The yʹ axis is parallel to the front prism surface
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and the zʹ axis is perpendicular to the front surface. The yʹʹ axis is parallel to the back
prism surface and the zʹʹ axis is perpendicular to the back surface. The xʹ-yʹ-zʹ and xʹʹ-yʹʹ-
zʹʹ coordinates are related to the x-y-z coordinates by:

iy′ ¼ cosAiy þ sinAiz ; iz′ ¼ �sinAiy þ cosAiz ð1:79Þ

iy″ ¼ cosBiy � sinBiz′ iz″ ¼ þsinBiy þ cosBiz ð1:80Þ

In Figure 1.4, the incident beam in material #1 is directed in the θ
0
i direction in the yʹ–zʹ

plane, where θ
0
i ¼ θi þ A. The refracted beam from the front surface is directed in the θʹ t

direction in the yʹ–zʹ plane. According to Eqs. (1.62) and (1.72), θ
0
t ¼ sin�1ðn1 sin θ0

i =n2Þ.
The angle θt that this beam makes with respect to the z axis in the x–y plane is

θt ¼ A� θ
0
t . In the xʹʹ-yʹʹ-zʹʹ coordinates, the refracted beam at the angle θt in the x-y-z

coordinates makes an angle θ″i with respect to the zʹʹ axis, where

θ″i ¼ θt þ B ¼ A� θ
0
t þ B. Its exit beam in medium #1 makes an angle θ″t with respect

to the zʹʹ axis, where θ″t ¼ sin�1ðn2 sin θ″=n1Þ. In the x-y-z coordinates, this exit beam

makes an angle θout with respect to the z axis, θout ¼ B� θ″t . This analysis of beam
direction is independent of polarization.

There are also reflected beams at each surface. Reflections need to be considered
whenever the difference of refractive indices at the interface of the prism is large.

y

z
x, x’, x’’ 

z’

y’’

z’’

θi

y’

θ’t θ’’tθ’’i

θout

A

B

A

BFront surface

Back surface

Cross-section of a prism

Incident beam
Exit output beam

Refracted beam

θ’i

Figure 1.4 Incident, refracted, and transmitted wave in a prism. The prism has a vertex angle A + B. The
incident beam angle is θi. It is refracted by the front prism surface. The transmitted beam from the
front surface makes an angle θʹt with respect to the vertical axis of the front prism surface. It is
refracted again by the back prism surface. The output beam angle is θout.
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Reflection and transmission at each surface can be calculated according to Eqs. (1.63),

(1.64) and (1.74) from θ
0
i , θ

0
t , θ

″
i , and θ

″
t . However, in most applications, only the analysis

of the transmitted beam is important, the reduction of the amplitude of the transmitted
wave due to reflections is not important.

(b) Ray analysis of prisms
In the ray matrix representation, the incident ray enters the front prism surface at the zi
location with the y position ri(zi). It has a riʹ(zi) in the x-y-z coordinates, r

0
i ðziÞ ¼ sin θi.

The refracted beam at zi has the same y position, rtðziÞ ¼ riðziÞ, and a slope,
rt′ðziÞ ¼ sin θt. When the refracted beam is incident on the back surface at the zout
position, its y location is routðzoutÞ ¼ riðziÞ þ ðzout � ziÞtan θt. The slope of the output

beam is r
0
outðyoutÞ ¼ sin θout. In matrix notation the relationship is:

rout

r
0
out

����
���� ¼

1  0

0 
sin θout
sin θt

�������
�������
1  ðzout � ziÞ=cos θt

0   1

�������
�������
1   0

0 
sin θt
sin θi

�������
�������
ri

r
0
i

����
����: ð1:81Þ

In the case of thin prisms, A+B is small, and zout � zi ≈ 0.

rout

r
0
out

����
���� ¼

1 0

0 
sin θout
sin θi

�������
�������
ri

r
0
i

����
���� ð1:82Þ

In other words, a thin prism does not change the position of the beam. It only changes its
direction. Furthermore, for a small incident angles θi,

θout ¼ θi � n2 � n1
n1

ðAþ BÞ: ð1:83Þ

Note that the reflected beams are not included in the ray representation above. The
magnitude and polarization of the beams are also not included in the ray representation.
These quantities may not be important in applications that use natural light in compo-
nents that have low value of n2. For applications, such as image formation, the ray
representation is a simple method for analyzing the direction, position, and propagation
distance of the beam that are most important.

(c) Thin prism represented as a transparent layer with a varying index
It is interesting to view this result from another viewpoint. In a thin prism we could also
consider the prism as a dielectric layer that has an n2 layer with thickness τ embedded in a
mediumwith index n1. The thickness τ varies at different position y. From Figure 1.4, we
obtain τ ¼ ðyvert � yÞðtanAþ tanBÞ ffi ðyvert � yÞðAþ BÞ. Here, yvert is the vertex of
the prism. Let there be a plane wave propagating in the z direction in a medium that has
index n1. The beam is centered at yi. After transmitting through this composite dielectric
layer, the electric field for this beam is
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Eout ¼ Eoe
�jn1βoze�jðn2�n1Þβoτejωt ¼ Eoe

�jn1βoze�jðn2�n1Þβoyvert e�jn1βosin ϕoutyejωt; ð1:84Þ
where n1 sinφout ¼ �ðn2 � n1ÞðAþ BÞ:

Any plane wave that has an expð�jn1βo sinφoutyÞ variation in y is a plane
wave propagating at an angle φout in the y–z plane. This φout agrees with the θout given
in Eq. (1.83) above. In other words, we have just introduced an important new
concept. Transmission through a thin prism could also be represented by transmission
of a plane wave through a medium with a phase transmission coefficient that is a linear
function of y,

t ¼ toe
�jðn2�n1Þβoðyvert�yÞðtan AþtanBÞ ð1:85Þ

Eout ¼ tEin. Note that the results in Eqs. (1.84) and (1.85) are independent of
polarization.

In other words, when a plane wave is transmitted through a refractive medium with
variable refractive index given in Eq. (1.85), it produces an output beam in a different
direction of propagation. The conclusion is also valid for a small incidence angle θi.
Conversely, any transmission medium with a phase transmission coefficient that has
a linear y variation will tilt the incident beam to a new direction of propagation like a
prism.

1.3.5 Refraction in a lens

A lens is probably the most commonly used optical component. It is used principally for
imaging and instrumentation. Ray analysis is the principle tool used for lens design. The
design of a compound lens is very complex. A detailed discussion on ray analysis of lens
design is beyond the scope of this book. However, an analysis of a simple spherical lens
for meridian rays will be beneficial to illustrate the basic principle of a lens.10 It will be
presented first by ray analysis, then as a transparent medium with a quadratic varying
phase in transmission.

(a) Ray analysis of a thin lens
Let us consider a simple spherical lens whose geometrical configuration is shown in
Figure 1.5. The right surface of the lens is described by

x″
2 þ y″

2 þ z″
2 ¼ r21 ð1:86Þ

The left surface of the lens is described by

x
02 þ y

02 þ ðz0 � z1Þ2 ¼ r22 ð1:87Þ

10 Like prism analysis, reflection exists at any dielectric interface. There are reductions of the amplitude of the
transmitted wave as it propagates through the lens. Reflections in lenses are analyzed when it is necessary.
Thus only ray analysis of the transmitted beam will be presented here.
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The origin of the spherical surfaces are at z = 0 and z = z1. The refractive index of the lens
is n2. It is placed in a medium that has refractive index n1. In free space, n1 = 1. The thin
lens and the dotted spheres shown in Figure 1.5 are the cross-sectional view of the lens
and the spheres in the y–z plane.

In order to demonstrate the properties of a lens with simple ray analysis, let us
consider an optical beam incident on the lens in the y–z plane at an angle –θi with
respect to the z axis. This beam is incident on the lens at the zʹ and yʹ positions. The
refracted beam is transmitted through the lens and excites an output beam. In the thin
lens approximation, the yʹ positions of the beam at the front and the back surfaces of the
lens are the same. At the yʹ position of the front surface, the curved spherical lens surface
can be approximated locally by a plane tangential to the sphere centered at z1. This plane
makes an angle Awith respect to the Yaxis. Similarly, at the back surface of the lens, the
curved surface can be approximated by a plane tangential to the sphere centered at z = 0.
This plane makes an angle B with respect to the y axis. Thus the change of direction of
the beam going through the lens at this location is approximately the same as a beam
going through a prism with the vertex angle, A+B. From Section 1.3.4, we obtain

θout ¼ �θi � n2 � n1
n1

ðAþ BÞ ¼ �θi � n2 � n1
n1

1

r1
þ 1

r2

� 	
y ð1:88Þ

If we designate

1

f
¼ n2 � n1

n1

1

r1
þ 1

r2

� 	
ð1:89Þ

The thin lens
r2

r1

..
z = z1

z = 0

x’’  

2+y’’  

2+z’’  

2 = r1
2

x’  

2+y’  

2+(z’− z1)2 = r2
2

z

y
x

Figure 1.5 The geometrical configuration of a spherical lens. Two spherical surfaces centered about z = z1 and
z = 0 are shown. The front (left) and back (right) surfaces are made from the interception section of
these two spherical surfaces.
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then the refraction of a beam through a thin spherical lens placed at zʹ can be expressed in
a ray optical representation as

routðz0 Þ
r′outðz0 Þ

�����
����� ¼

1  0

� 1

f
 1

�������
�������
riðz0 Þ
r′iðz0 Þ

�����
����� ð1:90Þ

When the incident beam is parallel to the z axis, θi = 0. Parallel beams at different y
positions would all focus on the z axis at the position zʹ + f. Therefore z = f is commonly
known as the focal length of the lens. For parallel beams incident at small θi, θout will still be

related to θi by Eq. (1.88). Thus they will be focused to a point at z ¼ z
0 þ f and y ¼ θif .

The plane at z = zʹ + f is known as the focal plane of the lens. The preceding analysis has
only been carried out for optical beams incident in the y–z plane. However, in a
cylindrically symmetric configuration, the x and y axes can be rotated about the z axis.
Thus the results can be generalized to three dimensions for any beam incident in the
meridian plane.

The objective of the analysis presented here is only to demonstrate simple lens
properties by plane wave analysis. The analysis of practical lenses is much more
complex than the preceding discussion. It involves oblique rays, skewed rays, astigma-
tism, etc. and is beyond the scope of this book [5].

(b) Thin lens represented as a transparency with varying index
Similar to the discussion in Section 1.3.4 (c) for the prism, it is instructive to represent a
thin lens as a transparent planar medium with a varying phase change. Consider an
incident plane wave that has a beam size small compared to the size of the lens. It
propagates in the direction of z axis.

Ei ¼ Eoe
�jβ1zejωt

Let us consider this small beam in the y–z plane near x = 0. At the transverse position
(x = 0, y), it passes through the lens beginning at z = z1 – r2 and ending at z = r1. Its phase
at the output will depend on y because the ray goes through a higher index region with
thickness, zʹʹ – zʹ, at y = yʹ= yʹʹ. The change in its phase, in comparison to a beam in free
space without the lens, is:

Δϕ ¼ �β1ðn2 � n1Þðz″� z0Þ

¼ �β1ðn2 � n1Þ r1 1� y2

r1 2

8<
:

9=
;

1=2

� z1 þ r2 1� y2

r22

8<
:

9=
;

1=2
0
B@

1
CA ð1:91Þ

Here, zʹʹ > zʹ and x and y << r1 and r2 inside the lens. Binomial expansion can be used
again for the terms in the curly brackets. When the first-order approximation is used for a
thin lens, we obtain

Δϕ ¼ �βðn2 � n1Þ r1 þ r2 � z1 � y2

r1
� y2

r2


 �
: ð1:92Þ
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The focal length of a thin spherical lens is given in Eq. (1.89) as 1/f= (n2 – n1)(1/r1 + 1/r2).
Thus, for any wave passing through a thin lens near x = 0, we can nowmultiply the incident
wave on the lens by a phase function,

tl ¼ e�jβ1ðn2�n1Þðr1þr2�z1Þej
β1
2f ðy2Þ ð1:93Þ

to obtain the wave that has passed through the lens. The preceding result can be extended
to incident rays in any meridian plane by rotating the x and y axes with respect to the z
axis. Therefore the general result in the x-y-z coordinates for a plane wave incident on the
lens in the z direction is

t ¼ ej
β1
2f ðx2þy2Þ ð1:94Þ

Eout ¼ tEoe
�jβ1r1ejωt ð1:95Þ

The output electric field at the back side of the lens is

Eout ¼ Eoe
�jβ1ðr1þf Þ ejβ1f ej

β1
2f ðx2þy2Þejωt

h i
ð1:96Þ

The quantity in the brackets represents a spherical wave, ejβ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2þx2þy2

p
ejωt, in the form of

the first term of a binomial expansion at z = r1. The spherical wave is focused on to the
location z = r1 + f.

This is a very simple result that can be applied to any incident wave passing
perpendicularly through a lens. It should be emphasized that this is a thin lens approx-
imation. Only an ideal lens can be represented by Eq. (1.94). A practical lens will have
other higher-order phase shifts, which are considered as distortions from an ideal lens.
Note that the output after leaving the lens is no longer a plane wave. Fourier analysis
discussed in Section 1.1.5 (c) must be used to find its plane wave components.

The importance of this representation is to recognize that whenever a medium has a
quadratic phase variation in transmission, it functions as a lens.

1.4 Geometrical relations in image formation

Image formation is one of the most important applications in optics. It has been
presented extensively in traditional optical literatures. It is also a very specialized
topic. The geometrical relation between an object and its image is presented here only
to demonstrate the basic relation between ray analysis and image formation.

Consider a point optical source placed at x = 0 and z = –p at the position y = hob, a thin
lens with focal length f is placed at z = 0, centered at x = 0 and y = 0 and perpendicular to
the z axis. Figure 1.6 illustrates the configuration. From the discussion in Section 1.1.5
(c), we can consider that the point source yields a summation of plane wave component
beams in different directions. Let us consider two incident component rays. (a)A component
ray that propagates parallel to the z axis. According to discussion in the previous section, this
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ray will be redirected after the lens. It passes through the focus of the lens at z = f. (b) A
component ray that propagates toward the center of the lens at y = 0. This ray is not
redirected in its direction of propagation because it passes locally through two parallel
dielectric interfaceswith negligible separation at y= 0. The two raysmeet at the image point.
If ray analysis is carried out for rays in other directions of propagation, they will also meet at
the same image point. In other words, the optical light from the object point source is
refocused by the lens to the image point. The relation between the positions of the object and
the image is determined geometrically.

From Figure 1.6, it is clear that

hob
f

¼ him
q� f

for ray ðaÞ;  
hob
p

¼ him
q

for ray ðbÞ ð1:97Þ

or,

1

p
þ 1

q
¼ 1

f
;  

him
hob

¼ q
p

ð1:98Þ

Any extended object at z = –p can be represented by the summation of point objects at
different h. Therefore the magnification ratio of the image to the extended object is q/p.
When p = ∞, q = f, and him = 0. Thus the object is focused by the lens to z = f.
Conversely, when p = f, q = ∞. A point source is collimated by the lens to a parallel
beam.

Eqs. (1.97) and (1.98) represent the geometrical relations between an object and its
image.

–p +q+f z

y

x

Object

Image

Thin lens

hob

–him

Figure 1.6 Illustration of the geometrical relations in imaging. The object hob long is placed at –p. The lens
with focal length f is placed at 0. The image him long appears at q.
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1.5 Reflection and transmission at a grating

An important property of optical radiation used in many applications is the diffraction of
an optical wave by a grating. Analysis of grating diffraction in traditional optical
analysis is often complex. However, it can be easily understood by plane wave analysis.

A grating is either a transmission or reflection medium with a periodic variation of
amplitude or phase, or a mirror with a periodic variation of reflectivity. If an optical wave
is incident on a grating then its transmitted or reflected wave will have different Fourier
plane wave components that correspond to different directions of propagation. These
Fourier components are known as different orders of grating diffraction.

Consider first a thin medium that has a periodic sinusoidal amplitude transmission
coefficient t of the electric field such that

t ¼ toð1þ Δt cos 2πfgyÞ ¼ to þ to
Δt
2
ej2πfgy þ to

Δt
2
e�j2πfgy ð1:99Þ

Themedium is placed at z = 0, parallel to the x–y plane. to is its averaged transmission, and
Δt is the magnitude of the periodic variation in the y direction. Δt ≤ 1, so t is always
positive. The minimum transmission is to – Δt; the maximum transmission is to + Δt. The
periodic variation has a grating period Tg per unit length in the y direction where
Tg ¼ 1=fg

Let there be an incident plane wave polarized in the x direction and propagating at an
angle θ with respect to the z axis.

Eix ¼ Exix ¼ Eoe
�jβ cos θze�jβ sin θyejωtix ;  Hiy ¼ Hyiy ¼

ffiffiffi
ε
μ

r
Eoe

�jβ cos θze�jβ sin θye�jωtiy

ð1:100Þ
The output plane wave at z > 0 after the grating is

Eox ¼ Eoxix ;Eox ¼ Eoto e�jβ sinθy þΔt
2
e�jβðsinθ�2πfg=βÞy þΔt

2
e�jβðsinθþ2πfg=βÞy


 �
e�jβ cosθzejωt

ð1:101Þ

Hoy ¼ Hoyiy ; Hoy ¼
ffiffiffi
ε
μ

r
Eox ð1:102Þ

The output wave has three components, a plane wave propagating in the incident
direction, a plane wave propagating at an angle θ+1, called the +1 order diffracted
wave where θþ1 ¼ sin�1ðsin θ þ 2πfg=βÞ, and a plane wave propagating at an angle
θ−1, called the –1 order diffracted wave, where θ�1 ¼ sin�1ðsin θ � 2πfg=βÞ. Note that
θ−1 and θ+1 of any propagating diffracted wave must be less than �π=2, otherwise that
order of the diffracted wave is an evanescent wave. When the diffracted wave for a
specific order is evanescent, we say that the grating is cut off for that order. A similar
result is obtained for a y polarized incident wave. If t depends on polarization, the
magnitude of the diffracted wave will be polarization dependent. However, the diffrac-
tion angles will not be polarization dependent.
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The sinusoidal grating transmission function in Eq. (1.99) is used here because it is
simple to analyze. When the periodic transmission function t has a non-sinusoidal
periodic variation, it can be expressed as a Fourier series with periodicity Tg. For
example, for a grating with an on–off periodic variation of Δt, Δt can be expressed as
a repetition of individual on–off sections.

ΔtðyÞ ¼ Δto
X
m

rect
mTg � y

δ=2

� 	
¼
X
n

Δtncosð2πnfgyÞ ð1:103Þ

rect(τ) is defined as

rectðτÞ ¼ 1 for  τj j ≤ 1 and rectðτÞ ¼ 0 for  τj j > 1 ð1:104Þ
Here, δ is the width of individual on-section, δ < Tg. Tg � δ is the width of individual
off-section. ΔtðyÞ can also be expressed by its Fourier series. Each Fourier component
has a magnitude Δtk . For the kth Fourier component,

Δtk ¼ 2
ðTg
0

ΔtðyÞcosð2πkfgyÞdy ð1:105Þ

Each ±n Fourier component has an angle of diffraction, θ�n ¼ sin�1ðsin θ � 2nπfg=βÞ
They are the ±nth order of diffracted waves. Only those with θ�n

�� �� < π=2 are propagat-
ing waves.

Plane wave analysis provides a simple way to understand grating diffraction. Note
that the direction of the nth-order diffracted wave is dependent on β, which is propor-
tional to the optical frequency ω, or wavelength. This is known as the dispersion of the
grating diffraction. Different orders of diffraction will have different angles for the
diffracted beam. Some orders of diffraction may be cut off.

1.6 Pulse propagation of plane waves

When the amplitude of the plane wave is time dependent, the wave is a pulse. Let there
be a plane wave pulse in the z direction, polarized in the x direction,

Ex ¼ Exix ¼ AðtÞe�jβðωoÞzejωotix ð1:106Þ
Here, in order to emphasize the dispersion effect, we have written β as β(ω). At z = 0,

Ex ¼ AðtÞej2πfot ð1:107Þ
A(t) can be represented by its Fourier transform pairs,

FAðf Þ ¼
ðþ∞

�∞

AðtÞe�j2πftdt; AðtÞ ¼
ðþ∞

�∞

FAðf Þeþj2πftdf ð1:108Þ

Here FA is the component of A at frequency f. Therefore, at z = 0,
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Exðz ¼ 0Þ ¼
ðþ∞

�∞

FAðf Þeþj2πðfo�f Þtdf ð1:109Þ

It is a sum of plane waves at different frequencies fo – f. Each component at fo – f
propagates with a different β to the position z. Therefore, at z

ExðzÞ ¼
ðþ∞

�∞

FAðf Þe�jβðfoo�f Þze�j2πðfo�f Þtdf ð1:110Þ

Usually, fo – f << fo. Therefore, β(f) can be represented by its Taylor’s series,

βðf Þ ¼ βðfoÞ þ ∂β
∂f

ðfoÞ

 �

ð�f Þ þ 1

2

∂2β
∂f 2

ðfoÞ

 �

ð�f Þ2 þ � � � ð1:111Þ

When the second- and higher-order terms can be neglected, we obtain

Ex ¼
ðþ∞

�∞

FAðf Þe j2π ∂β
∂ωð Þjfo zeþj2πftdf

2
4

3
5e�jβðfoÞzejπfot ð1:112Þ

where

vg ¼ ∂ω=∂β fo

�� ð1:113Þ
is known as the group velocity.

In a realistic situation, pulse distortion is important if the distance of propagation is
very long and the pulse duration of A(t) is short. If the group velocity is independent of f,

the quantity ej2π
∂β
∂ωð Þ fo zj can be factored out of the integral. The pulse is then propagated to

z without distortion, i.e. A(t) is unchanged. The only change is a change of the phase of

Ex from e�jβðfoÞz which equals 2πð∂β=∂ωÞ fo z
�� . Otherwise, there will be distortion, or

change of A(t). Clearly, when higher-order terms in Eq. (1.111) cannot be neglected,
there will be additional distortion.

Chapter summary

Basic plane wave analysis is presented. A plane wave is the simplest rigorous solution of
Maxwell’s equations. Yet it can be used to illustrate many basic concepts in optics.
Under appropriate circumstances, an optical ray could be represented locally approxi-
mately by a plane wave. Optical properties such as reflection, refraction, and focusing
can also be derived from plane wave analysis. The plane wave presented here shows how
the traditional analysis is related toMaxwell’s equations. However, much more complex
analyses are required for optical components design and image transfer [5]. Traditional
optics is better suited for these applications. On the other hand, plane wave analysis
shows optical properties that are not emphasized in traditional optics. These include the
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dependence of refraction on polarization, the differentiation between the amplitude
(including phase) and intensity of the wave, the importance of change in polarization,
the phase interference effects, etc.

Sophisticated engineering analytical techniques can be illustrated by plane wave
analysis. Concepts such as evanescent waves are introduced. Thin refractive compo-
nents are representable by a transparent medium with phase variation. Grating diffrac-
tion is presented as another example of how phase variation can be used to understand
simply a complex phenomenon.

Note that, an arbitrary optical field can be represented by summation of plane waves in
the form of Fourier transformation, which is the basis of optical signal processing.
Representation of an arbitrary radiation pattern by superposition of plane waves is also
probably the simplest form of modal analysis in which the modes are just the plane
waves.

Plane wave analysis is also an important vehicle to learn the basic mathematics of
wave solutions. For example, there are always two independent solutions, the forward
and the backward waves, and two mutually perpendicular polarizations for each direc-
tion of propagation. Optical interactions in all components are analyzed by matching the
boundary conditions at the interfaces.
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2 Superposition of plane waves
and applications

The basics of many applications such as anti-reflection and reflection coatings, beam
splitters, interferometers, resonators, holography, and planar waveguides, etc. can be
analyzed by superposition and multiple reflections of plane waves. These analyses
demonstrate the usefulness of simple plane wave analysis in another dimension. This
is the focus of Chapter 2.

However, there are many shortcomings of plane wave analysis. It does not provide a full
characterization of many applications because it ignores lateral variation of beams that
occur in real components. For example, the consequence of the finite size of the beam is not
included in plane wave analysis. Other analytical tools such as Fourier transform and
convolution theory also cannot be presented by plane wave analysis. Laser cavity modes
andGaussian beams are not planewaves. These analyses are presented inChapters 3 and 4.

2.1 Reflection and anti-reflection coatings

Reflection and transmission of plane waves at a dielectric interface can often be
increased or reduced by coating the surface with transparent dielectric layers that
have appropriate refractive indices. It is an anti-reflection coating when it is designed
for maximum transmission and a reflection coating when it is designed for maximum
reflection. It is a beam splitter when a specific ratio of reflected and transmitted
intensities is required for some applications.

Consider an x-polarized plane wave propagating in the +z direction in a medium with
refractive index n1. If this wave is incident perpendicularly onto another unbounded
medium that has a refractive index n2 at z > d, the reflection Γ12 and transmission T12 of
this plane wave at the boundary is given by Eq. (1.64) in Section 1.3.1 as:

Γ12 ¼
1� n2

n1

1þ n2
n1

;  T12 ¼ 2

1þ n2
n1

ð2:1Þ

Themagnitude of the transmitted and reflected waves in Eq. (2.1) can be changed by adding
layers of transparent materials with appropriate refractive indices in front of medium #2.

Let us consider a single transition layer of a transparent dielectric material that has a
refractive index nt and thickness d. It is placed from z = 0 to z = d in front of the medium
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with n2, as shown in Figure 2.1. Let there be an x-polarized wave for z < 0, incident on the
interface along the z direction. Its x-y-z variation is:

Ei ¼ Eie
�jβ1zix ð2:2Þ

Hi ¼
ffiffiffiffi
ε1
μ

r
Eie

�jβ1ziy ð2:3Þ

For simplicity, the time variation of e jωtis not shown here explicitly.
There will also be a reflected wave in z < 0,

Er ¼ REie
þjβ1zix ð2:4Þ

Hr ¼ �
ffiffiffiffi
ε1
μ

r
REie

þjβ1ziy ð2:5Þ

There are two plane waves in the transition layer in 0 < z < d, a forward wave and a
backward wave.

Et ¼ ðEf e�jβtz þ EbeþjβtzÞix ð2:6Þ

Ht ¼
ffiffiffiffi
εt
μ

r
ðEf

e�jβtz � EbeþjβtzÞiy ð2:7Þ

There is a transmitted wave in the unboundedmediumwith refractive index n2 at z > d.

Medium # 1, n = n1 Medium # 2, n = n2

Coating, n = nt

Incident wave

Transmitted wave

Reflected wave

Forward 
wave

Backward 
wave

y

z

x

d

Figure 2.1 Anti-reflection and reflection coatings. A coating with index nt is placed between z = 0 and z = d.
The incident and reflected waves in medium #1, the forward and backward waves in the coating,
and the transmitted wave in medium #2 are shown.
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Eo ¼ Eoe
�jβ2ðz�dÞix ð2:8Þ

Ho ¼
ffiffiffiffi
ε2
μ

r
Eoe

�jβ2ðz�dÞiy ð2:9Þ

In order to meet the boundary conditions at z = 0 and at z = d, it is required that

Ei þ REi ¼ Ef þ Eb; 
1

Z1
ðEi � REiÞ ¼ 1

Zt
ðEf � EbÞ ð2:10Þ

Ef e�jβtd þ Ebeþjβtd ¼ Eo;  
1

Zt
ðEf e�jβtd � EbeþjβtdÞ ¼ 1

Z2
Eo ð2:11Þ

Zt ¼
ffiffiffiffi
μ
εt

r
; Z1 ¼

ffiffiffiffi
μ
ε1

r
; Z2 ¼

ffiffiffiffi
μ
ε2

r
; 

Zt
Z1

¼ n1
nt
; 

Z2
Zt

¼ nt
n2

ð2:12Þ

The solution of Ef and Eb in Eq. (2.11) is:

Eb

Ef
ej2βtd ¼

1� n2
nt

1þ n2
nt

; or 
Eb

Ef
¼ e�j2βtdΓt2 ð2:13Þ

Γt2 ¼
1� n2

nt

1þ n2
nt

¼ �Γ2t; Tt2 ¼ 2

1þ n2
nt

; Γt2 þ Tt2 ¼ 1 ð2:14Þ

From Eq. (2.10),

R ¼ Γ1t þ Γt2e�j2βtd

1þ Γ1tΓt2e�j2βtd
ð2:15Þ

Γ1t ¼
1� nt

n1

1þ nt
n1

¼ �Γt1; T1t ¼ 2

1þ nt
n1

; Γ1t þ T1t ¼ 1 ð2:16Þ

Eo

Ei
¼ T1tTt2

1þ Γ1tΓt2e�j2βtd
e�jβtd ð2:17Þ

If we choose nt and d such that

nt ¼ ffiffiffiffiffiffiffiffiffi
n1n2

p
  and  e�j2βtd ¼ �1 ð2:18Þ

Then

nt
n1

¼ n2
nt

¼
ffiffiffiffiffi
n2
n1

r
;  R ¼ 0;  Eo ¼ �jEi ð2:19Þ

In this manner, we have obtained an anti-reflection coating that has no reflection in
medium #1 and 100% transmission into medium #2 at a specific wavelength, at which d
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is equal to ¼ of the wavelength. Identical results are obtained when the electric field is
polarized in the y–z plane. Note that for a given d the anti-reflection effect is wavelength
sensitive. As the wavelength deviates, the reflection will increase and the transmission
will decrease. Thus there is an effective wavelength range of the anti-reflection coating.

In reality, there may not be a coating material that has exactly the required nt. The
wavelength range within which anti-reflection, reflection, or beam splitting is required
for different applications may also need to be decreased or increased. Therefore, multi-
ple layer coatings are used in most commercial devices. However, the basic principle is
demonstrated by the above example. In a similar manner, coatings can be applied to
enhance reflection or to split the incident beam into desired ratios of reflected and
transmitted beams. Beam splitters can also be designed for beams incident at specific
incident angles.

Note that the analysis presented here is similar to impedance transformation analysis
of microwave transmission lines. The differential equation for E and H is identical to
that for V and I of microwave transmission lines [1]. In microwaves, anti-reflection is
called impedance matching.

Many of the analytical techniques developed for microwaves are also very useful for
optical analysis, especially when we need to analyze multi-layer transitions. It is
important for optics engineers to understand transmission line methods. However, a
detailed discussion of that is beyond the scope of this book.

2.2 Fabry–Perot resonance

2.2.1 Multiple reflections and Fabry–Perot resonance

Although plane waves propagating between two boundaries have already been analyzed
in the previous section by matching the total fields at the boundaries, an alternate way to
analyze it is to consider an incident plane wave multiply reflected and transmitted at the
two boundaries. Much more physical insight on resonance could be gained by present-
ing this alternate approach.

Let us first consider a plane wave incident on the first boundary at z = 0, without
considering the second boundary at z = d. This incident wave Eiwould excite a reflected
backward wave Er1 in medium #1 and a transmitted forward wave Ef

1 in the transition
medium. Let the boundary at z = 0 have a reflection coefficient Γ1t and transmission
coefficient T1t for the incident wave. The x-y-z variations without showing the time
variation ejωt are:

Ef
1 ¼ T1tEie

�jβtzix for d > z > 0;  Er1 ¼ Γ1tEie
þjβ1zix for z < 0 ð2:20Þ

This boundary will have reflection coefficient Γt1 and transmission coefficient Tt1 for any
plane wave incident on it in the reverse direction from the transition medium.

As Ef
1 propagates to z = d, it excites a reflected wave Eb

1 in the transition medium and
a transmitted wave Eo1 in medium #2. Let the boundary at z = d have reflection
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coefficient Γt2 and transmission coefficient Tt2 for any forward wave propagating in the
transition medium. Then we obtain:

Eo1 ¼ Tt2ðT1tEie
�jβtdÞe�jβ2ðz�dÞix for z > d ð2:21Þ

Eb
1 ¼ Γt2ðT1tEie

�jβtdÞeþjβtðz�dÞix for 0 < z < d ð2:22Þ

The reflected wave Eb
1 propagates back to z = 0 and excites another transmitted

backward wave Er2 in medium #1 and a reflected forward wave Ef
2 in the transition

medium.

Ef
2 ¼ Γt1Γt2ðT1tEie

�jβtdÞe�jβtde�jβtzix for 0 < z < d ð2:23Þ

Eb
2 ¼ Γt1Γt2

2ðT1tEie
�jβtdÞe�2jβtde þ jβtðz�dÞix for 0 < z < d ð2:24Þ

Er2 ¼ Tt1Γt2ðT1tEie
�jβtdÞe�jβtdejβ1zix ð2:25Þ

As Ef
2 reaches z = d, it excites a forward Eo2 in the transition medium and an Eb

2 in
medium #2.

Eo2 ¼ Tt2ðΓt1Γt2T1tEie
�j3βtdÞe�jβ2ðz�dÞix for z > d ð2:26Þ

As Eb
2 reaches z = 0, it excites a forward Ef

3 in the transition region and an Er2 in
medium #1.

Er3 ¼ Tt1Γt1Γt2
2ðT1tEie

�jβtdÞe�3jβtde þ jβ1zix for 0 < z ð2:27Þ
Consequentially, the forward and the backward waves in the transition medium

continue to generate backward reflected waves at z < 0 and transmitted output waves
at z > d. The amplitudes of the total forward and backward propagating waves are related
to the incident wave by:

Eo

Ei
¼ T1tTt2e

�jβtd½1þ Γt1Γt2e
�j2βtd þ Γt1

2Γt2
2e�j4βtd þ . . .� ¼ T1tTt2e�jβtd

1� Γt1Γt2e�j2βtd
ð2:28Þ

for z > d,

Er

Ei
¼ Γ1t þ Γt2T1tTt1e

�j2βtd
1

1� Γt1Γt2e�j2βtd
¼ Γ1t þ Γt2e�j2βtd

1� Γt1Γt2e�j2βtd
ð2:29Þ

for z < 0, and

Ef

Ei
¼ T1t

1

1� Γt1Γt2e�j2βtd
; 

Eb

Ei
¼ T1tΓt2

e�j2βtd

1� Γt1Γt2e�j2βtd
ð2:30Þ

for 0 < z < d.
When the Γs and Ts in Eqs. (2.14) and (2.16) in the previous section are used in Eqs.

(2.28) and (2.29) the solutions of Eo and Er become identical to the results in Eqs. (2.15)
and (2.17) of the previous section. However, the above results are more general. They
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also apply if the boundaries are partially reflecting mirrors. Note that, the reflection
coefficients, Γ, and transmission coefficients, Ts, at the two mirrors are related by

Γ1t þ T1t ¼ 1; Γt2 þ Tt2 ¼ 1; Γ1t ¼ �Γt1; Γ2t ¼ �Γt2 ð2:31Þ
When the mirrors have high reflection coefficients, Eq. (2.30) shows that the forward

and backward plane waves in the transmission medium can be very large whenever

e�j2βtdffi1. At the wavelengths and separation of the mirrors, d, that satisfy this condi-
tion, the round-trip phase shift δ of the plane wave is 2qπ. This means that the multiply
reflected forward and backward waves in the transmission medium reinforce each
other. The stored energy of the plane waves becomes very high for a small incident Ei.
The optical component is said to be in resonance at these wavelengths.

2.2.2 Properties of Fabry–Perot resonance

So far, only a formal analysis has been presented. In order to understand the physical
significance of Eo and Er, let us consider a case in which medium #1 and medium #2 are
identical, the mirrors are symmetrical, and Γs and Ts are real.

Γ1t ¼ Γ2t ¼ Γ; T1t ¼ T2t ¼ T ; Rm ¼ Γ1t
2 ¼ Γ2t

2; Tm ¼ T1t
2 ¼ T2t

2 ð2:32Þ
Rm and Tm are the optical power reflection and transmission coefficients of the
mirrors.

The time-averaged incident and reflected powers in medium #1 and the transmitted
power in medium #2 are:

Pi ¼ 1

2
n1

ffiffiffiffi
εo
μ

r
EiEi � ð2:33Þ

Pr ¼ 1

2
n1

ffiffiffiffi
εo
μ

r
4Rmsin

2ðβtdÞ
ð1� RmÞ2 þ 4Rmsin

2ðβtdÞ
EiEi� ð2:34Þ

Po ¼ 1

2
n1

ffiffiffiffi
εo
μ

r ð1� RmÞ2
ð1� RmÞ2 þ 4Rmsin

2ðβtdÞ
EiEi� ð2:35Þ

Since the sine function is nonlinear, Po remains very small at wavelengths other than the
resonance wavelengths. When Rm is close to 1, Po/Pi is close to 1 within a narrow
wavelength range from the resonance wavelengths at which δ ¼ 2βtd ffi 2qπ (q = any
integer).

For a given d, resonance occurs at frequencies fq such that

fq ¼ q
2d

ffiffiffiffiffiffi
εtμ

p ¼ qco
2ntd

ð2:36Þ

The separation of adjacent resonance frequencies, known as the free spectral range
(FSR) of the Fabry–Perot resonance, is
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Δfq ¼ fqþ1 � fq ¼ 1

2d
ffiffiffiffiffiffi
εtμ

p : ð2:37Þ

If we let Δδ ¼ δ� qπ, then T can be expressed as

T ¼ Po

Pi
¼ ð1� RmÞ2

ð1� RmÞ2 þ 4Rm sin
Δδ
2

� 	2 : ð2:38Þ

T is at its maximum when Δδ ¼ 2qπ; it drops to ½ when

Δδ2 ¼ ðδ� qπÞ2ffið1� RmÞ2
Rm

ð2:39Þ

The reflected power Pr is

Pr

Pi
¼

4Rmsin
Δδ
2

� 	2

ð1� RmÞ2 þ 4Rmsin
2 Δδ

2

� 	 : ð2:40Þ

If we let ωo be the center of the resonance frequency, ωo ¼ qπ=2
ffiffiffiffiffiffi
μεt

p
d, and q = any

integer, then the half linewidth Δω in which T drops to ½ is

Δω ¼ ð1� RmÞcoffiffiffiffiffiffi
Rm

p
ntd

ð2:41Þ

Figure 2.2 shows the ratio of Po/Pi in Eqs. (2.33) and (2.35) for a typical Fabry–Perot
resonator as a function of βtd for several Rm. Clearly the resonance can serve as a very
narrow band filter when the reflectivity of the mirrors is high.

There are two ways to measure the quality of the resonance. A measure commonly
used to gauge the resonance in the optics literature is the finesse, F, which is the FSR
divided by the full line width. Using the half linewidth Δω in Eq. (2.41), we obtain

F ¼
ffiffiffiffiffiffi
Rm

p
π

ð1� RmÞ ð2:42Þ

In engineering applications, a measure commonly used to gauge any resonator
characteristics is the Q factor. It is defined for any resonator without any excitation as

Q ¼ ωo
energy stored

power dissipated
ð2:43Þ

The bandwidth is related to Q by Δω ¼ ωo=Q.
For the Fabry–Perot resonator under consideration, its homogeneous solution consists

of plane waves inside the resonator reflected back and forth between mirrors, and
partially transmitted at each reflection. For a plane wave with electric field amplitude
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E, its time-averaged stored energy per unit area is ðεt=2ÞEE�d. When it reaches the

mirror, the time-averaged transmitted power per unit area is 1=2Tm
ffiffiffiffiffiffiffiffiffiffiffiffiðεt=μÞ

p
EE�. The

ratio of energy stored/power loss is ntd=Tmco. As the plane wave is reflected in each trip
at the two mirrors, this ratio is repeated. Therefore the total ratio of energy stored/power
loss is also ntd=Tmco. The Q and the bandwidth of the resonator at resonance are

Q ¼ ωo
ntd
Tmco

  Δω ¼ Tmco
ntd

ð2:44Þ

Comparing the bandwidth shown in Eq. (2.41) and Eq. (2.44), they agree with each
other when the reflectivity Rm is high.

Fabry–Perot resonators are important in many applications, such as scanning inter-
ferometry and wavelength filtering. Fabry–Perot resonance properties that are com-
monly used in optics are line width, finesse, and free spectral range. The quantities
commonly used in engineering are free spectral range, line width, and Q factor. These
properties depend only on the reflectivity of the mirrors and the separation distance d in
the lossless plane wave approximation. In reality, they may also be affected by the
propagation loss of the medium and the diffraction losses.

2.2.3 Applications of the Fabry–Perot resonance

Fabry–Perot resonance has many applications, such as spectrometry, wavelength filter-
ing, loss measurement, and time delay. However, different applications utilize different
features of the resonance.

(a) The Fabry–Perot scanning interferometer
The operation of prism spectrometers discussed in Section 1.3.4 depends on the dispersion
of the refractive index of the material; they have low spectral resolution. The operation of
grating spectrometers discussed in Section 1.5 depends on the dispersion created by

1.0

0.8

0.6

0.4

0.2

0.0
q–2 q–1 q q+1 q+2

Rm = 0.1
Rm = 0.5
Rm = 0.7

(1 – Rm)2

(1 – Rm)2 + 4Rm sin2 (βid )

βtd / π

Rm = 0.9

Figure 2.2 Ratio of transmitted to incident power in a typical Fabry–Perot resonator with different reflectors.
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diffraction of the optical beam by the periodically reflecting or transmitting grooves. The
angular separation of diffraction angle at different wavelengths can be increased by
reducing grating periodicity, i.e fg. Thus, grating spectrometers have much higher spectral
resolution power than prism spectrometers. However, their resolution is still limited due to
the finite size of the grating and the divergence of the optical beam.1 In a Fabry–Perot
spectrometer, the separation distance d between the two mirrors is varied mechanically.
The maximum transmission of the incident radiation with different wavelength compo-
nents will occur at different d when fq ¼ q=2d

ffiffiffiffiffiffi
εtμ

p ¼ qco=2ntd. As d is scanned,

the variation of fq is δfq=δd ¼ �qco=2ntd2. The linewidth of transmission,

Δω ¼ Tmco=
ffiffiffiffiffiffi
Rm

p
ntd, at each transmission peak is very narrow at large d. Thus, scan-

ning Fabry–Perot spectrometers can offer very high spectral resolution, for example,
they are commonly used to measure the spectral distribution of multi-mode lasers.
However, when the incident radiation contains a range of spectral components wider
than the free spectral range, transmission peaks of different order qwill occur within the
same range of d.

Note also that at incident angles θ different than the normal incidence, the
Fabry–Perot resonance peak will occur at fq ¼ q=2d cos θ

ffiffiffiffiffiffi
εtμ

p ¼ qco=2ntd cos θ.

Thus, for a divergent incident beam and for a given d, the transmission peak of
the same frequency component will appear at different θ, caused by the different
orders q. If a lens is used to focus the output beam, the output will appear as concentric
circles.

In retrospect, while the prism spectrometer is the simpler tool to fabricate, it has a low
resolution. Grating spectrometers can be designed to provide very high resolution. Both
of them are used commonly to measure inputs with wide spectral content. Scanning
Fabry–Perot spectrometers are useful for resolving closely spaced spectral components
such as those emitted from a multi-mode laser. However, overlapping transmission of
different orders of q within the scanning range needs to be resolved for inputs that have
spectral contents wider than the free spectral range.

(b) Measurement of refractive properties of materials
From Eq. (2.37), it is clear that the refractive index nt of the transmission medium
between mirrors is related to d and the free spectral range of Fabry–Perot resonances by
nt ¼ co=2Δfqd. For a given d, if the frequencies of adjacent resonance transmission
peaks can be measured accurately, one can obtain an accurate evaluation of the refractive
index nt of the medium between mirrors by Δfq. Note that the accuracy of this measure-
ment is independent of the reflectivity Rm. Therefore, it can be used to measure the
refractive index of any material, even if the reflectivity between medium 1 and the
transition medium is low or moderate.

When the transition medium has loss, βt ¼ βtr � jβtσ. Eq. (2.28) becomes

1 The divergence of an optical beam that has a limited beam size will be discussed in the next chapter.
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Eo

Ei
¼ T1tTt2e

�jβtd½1þ Γt1Γt2e
�j2βtd þ Γt1

2Γt2
2e�j4βtd þ…� ¼ T1tTt2e�βtσde�jβtrd

1� Γt1Γt2e�2βtσde�j2βtrd

ð2:45Þ
When Rm and Tm are real as shown in Eq. (2.32), the Po is

Po ¼ 1

2
n1

ffiffiffiffi
εo
μ

r ðTmÞ2e�2βtσd

ð1� Rme�2βtσdÞ2 þ 4Rme�2βtσdsin2ðβtrdÞ
EiEi

� ð2:46Þ

Po is a maximum at βtr d ¼ qπ, and a minimum at βtr d ¼ ðqþ 1=2Þπ. The ratio of Po at
its maximum to Po at its minimum, called the contrast ratio, is

Po;max

Po;min
¼ 1þ Rme�2βtσd

1� Rme�2βtσd
ð2:47Þ

Therefore, for a known Rm, the contrast ratio can be used to determine βtσ, i.e. the loss of
the refractive material.

(c) Resonators for filtering and time delay of signals
From Eq. (2.41), it is clear that if d is large and Tm is small, the bandwidth of a Fabry–
Perot resonator can be made very small. Therefore it can be used as a filter. Although
plane wave Fabry–Perot resonators are too bulky to use for many applications, wave-
guide resonators have been used effectively as filters in other configurations.

It takes time for the stored energy in a resonator to decay, caused by dissipation. Thus,
the decay time of energy in the resonator, τ, is

dðstored energyÞ
dt

¼ 1

τ
ðstored energyÞ ¼ dissipated energy  τ ¼ Q

ωo
¼ d=Tm

co=nt
ð2:48Þ

In many applications, a time delay is used for signal processing. For example, a long
optical fiber is often used to delay a pulsed signal. The time delay that can be achieved by
propagating in a medium such as a waveguide (or fiber) that has refractive index nt and
length L is ntL=co. In a Fabry–Perot resonator, an input signal pulse will be reflected
back and forth between mirrors. Therefore the output pulse, which is emitted later, is a
delayed signal. The output pulsed signals will decay in time. It is common to regard τ as
the useful time period of signals. Therefore, the last useful output pulse would have
increased the delay time by 1/Tm.

2.3 Reconstruction of propagating waves

When the intensity of the interference pattern between an object wave and a reference
wave is recorded as the index or transmittance variation in a recording medium, the
transmitted waves of another incident beam in the form of the original reference beam
through the recorded medium will then reproduce the original object wave and its
conjugate.2 This is the basic principle of holography. It can be illustrated very simply
by plane wave analysis.

2 The principle is also applicable to recordings in reflection.
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Consider an object beam, Aoe
�jβo•r e jωt, and a reference beam, Are

�jβr•r e jωt. Both are
polarized in the x direction. They are incident on a recording medium at z = 0, as
illustrated in Figure 2.3(a). The total electric field and the time-averaged intensity of the
incident and the reference beams are:

θoy

θry θoy θox

θoz

θczθcx

θcy

θrz

θrx

θox

θoz

θrx

θry

θrz

x

x

y

y

z

z

(a) Holographic recording

(b) Holographic reconstruction

Object beam

Reference beam

Recording
medium

Reconstructed object beam

Illumination beam

Recorded medium

Conjugate beam

Transmitted beam

Figure 2.3 Holographic recording and reconstruction of a plane wave. (a) The interference pattern of
the intensity of the object and the reference beam is recorded by the recording medium. (b)
Upon the illumination of a beam identical to the reference beam used in the recording
process in (a), the reconstructed object beam, the un-diffracted beam and the conjugate
beam are created.
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Et ¼ ðAoe
�jβ cos θoxxe�jβ cos θoyye�jβ cos θozz þ Are

�jβ cos θrxxe�jβ cos θryye�jβ cos θrzzÞejωt ð2:49Þ

I ¼ 1

2

ffiffiffi
ε
μ

s
EtEt

�

¼ 1

2

ffiffiffi
ε
μ

s
fAo

2 þ Ar
2 þ AoAr½e�jβðcos θox�cos θrxÞxe�jβðcos θoy�cos θryÞy

þ eþjβðcos θox�cos θrxÞxeþjβðcos θoy�cos θryÞy�g
ð2:50Þ

Here, cos θox; cos θoy; and cos θoz are direction cosines of the object beam with respect
to the x, y, and z axes. Similarly, cos θrx; cos θry; and cos θrz are direction cosines of the
reference beam. A recording medium is placed at z = 0 to record I. Let the transparency
of the recorded medium, t, be proportional to I, i.e. t(x,y) = ToI. If an illumination plane
wave Ein ¼ A3e

�jβox•r e jωtis incident on the recording medium as shown in Figure 2.3
(b), the transmitted wave tEin is

tEin ¼ To
1

2

ffiffiffi
ε
μ

s
Aine

�jβ cos θrxxe�jβ cos θryye�jβ cos θrz

fAo
2 þ Ar

2 þ AoAr½e�jβðcos θox�cos θrxÞxe�jβðcos θoy�cos θryÞy

þ eþjβðcos θox�cos θrxÞxeþjβðcos θoy�cos θryÞy�ejωtg
ð2:51Þ

There are three output terms. The first term, which represents a transmitted illumina-
tion beam, is

To
1

2

ffiffiffi
ε
μ

r
AinðAo

2 þ Ar
2Þe�jβ cos θrxxe�jβ cos θryye�jβ cos θrzzejωt ð2:52Þ

The second term, which represents a beam identical to the object wave, called a
reconstructed wave, is

To
1

2

ffiffiffi
ε
μ

r
AinAoAre

�jβ cos θoxxe�jβ cos θoyye�jβ cos θozzejωt ð2:53Þ

The third term, which represents a beam tilted into a new direction with respect to the x
and y axes, called a conjugate beam, is

To
1

2

ffiffiffi
ε
μ

r
AinAoAre

�jβðcos θox�2cos θrxÞxe�jβðcos θoy�2cos θryyÞe�jβ cos θczzejωt ð2:54Þ

The conjugate beam has direction cosines cos θcx, cos θcy, and cos θcz, where cos θcx ¼
cos θox � 2cos θrx; cos θcy ¼ cos θoy � 2cos θry; and cos θcz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2θcx � cos2θcy

p
In short, if the recording medium with transmittance, t(x,y), is illuminated by Ein, it

recreates the object beam and its conjugate. The relative magnitude of the transmitted
beams can be adjusted by the magnitude of Ar, Ao, and Ain. If there is more than one object
wave, then all the object waves will be recreated by Ein. For example, the object waves can
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be the Fourier components of a complex object. The same Fourier components are created
in the object and conjugate beams. This is the basic principle of holography.

2.4 Planar waveguide modes viewed as internal reflected plane waves

Optical planar waveguides can also be understood from the analysis of plane wave propaga-
tion in multi-layeredmedia. A typical optical planar waveguide is illustrated in Figure 2.4. It
has a high-index layer, n2, surrounded by a cladding with index nc and a substrate with index
ns. The width of the middle waveguide layer, the cladding and the substrate, extends to both
y = ±∞ and z = ±∞. The thickness of the substrate and cladding also extends to infinity in the
x direction. If we analyze the optical planewaves, propagating in amulti-layeredmedia such
as that shown in Figure 2.4, we find that there are three typical cases.

2.4.1 Plane waves incident from the cladding

Consider a plane wave that is incident obliquely on the layered structure shown in
Figure 2.4 from x > t. Let us assume the plane wave is polarized in the y direction.3 It
propagates in the x–z plane in a direction that makes an angle θjwith respect to the x axis

x

z

y

x = t

n = n2

n = nc

n = ns

The cladding

The substrate

The waveguide

Figure 2.4 Illustration of a planar optical waveguide. The core with index n2 has a planar surface parallel to the
y–z plane, placed between x = 0 and x = t. The substrate is below x =0. The cladding is above x = t.

3 For an electric field polarized in the plane of incidence, there will be a similar set of equations. However, the
boundary conditions at z = 0 and z = twill lead to a different set of solutions than those shown in this section.
In this case, the magnetic field will be in the y direction. In Chapter 6, we will show that these solutions are
the TM modes.
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in various layers. The angle, θj, will be different in different layers where j designates the
layer with index nj. For example, the incident plane wave in the cladding with index nc
will have a functional form,

Eiiy ¼ Ae�jnck sinθc zeþjnck cos θc xiy ð2:55Þ

k is the free space propagation constant, k ¼ 2π=λo. There will be a reflected wave in the
cladding, excited by the incident wave,

Erc1iy ¼ Ae jnck cos θc tΓcwe
�jnck sinθc ze�jnck cosθcðx�tÞiy ð2:56Þ

There will be a forward transmitted wave in the waveguide layer excited by the incident
wave,

Efw1iy ¼ Ae jnck cos θc tTcwe
�jn2k sinθ2 ze�jn2k cosθ2ðx�tÞiy ð2:57Þ

The continuity of the tangential electric field demands that n1ksin θ1 ¼ n2ksin θ2 at the
boundary x = t. The amplitudes Aarc and Afw, including their phase, will be given by A
and the reflection and transmission coefficients at x = t. When the transmitted wave Efw1

reaches x = 0, it excites a transmitted wave in the substrate Ets and a reflected wave Erw in
the waveguide.

Ets1iy ¼ ATcwTwse
jnck cos θc te�jn2kcos θ2te�jnsk sin θs zeþjnsk cosθs xiy ð2:58Þ

Erw1iy ¼ Arwe
�jn2k sin θ2 ze�jn2k cosθ2 xiy ð2:59Þ

The boundary condition at x = 0 is nsksinθs ¼ n2ksin θ2. The amplitudes Ats and Atw are
given by Afw and the transmission and the reflection coefficients at x = 0. All the
reflection and transmission coefficients at the x = t and x = 0 boundaries are given in
Section 1.3.1. Similar to the discussions presented in Section 2.2.1, for waveguide
structures with n1 < ns <n2, there will be multiple reflected and transmitted waves. In
addition to the multiple forward and backward waves in the waveguide, the total
reflected waves in the cladding and the total transmitted waves in the substrate are
also the sum of the waves after each reflection and transmission.

Note that at the maximum incidence angle θc ¼ π=2, the maximum θ2 is

θ2;max ¼ sin�1ðnc=n2Þ. In a typical waveguide, n2 > ns > nc. Thus, for any plane wave
incident from the cladding, all the plane waves in the waveguide layer have angle
θ2 < θ2,max. The transmitted wave in the substrate will have θs limited to

θs ¼ sin�1ðnc=nsÞ.
When

2n2kcosθ2t þ φwc þ φws ¼ 2qπ; ð2:60Þ
where q is an integer, and the multiply reflected and transmitted waves in the waveguide
layer will be in phase with each other. Here φwc and φws are the phase angles of Γwc and
Γws for this polarization of the electric field at the waveguide-to-cladding and the
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waveguide-to-substrate interfaces. At these specific angles of incidence, similar to the
Fabry–Perot resonance the sum of the waves in the waveguide layer could have very
large amplitude.

2.4.2 Plane waves incident from the substrate

Similarly when there is a plane wave incident on the waveguide from the substrate side,
there will be a transmitted and a reflected beam in the waveguide and a reflected beam in
the substrate at the x = 0 interface. The θs can vary within the range 0 < θs < π/2.
However, there are two different cases.

(a) Incident plane waves with sin−1(nc /ns) < θs < π /2
Let the incident wave have θs such that sin−1(nc /ns) < θs < π /2. Since in most
waveguides, nc < ns <n2, the plane wave in the cladding is an evanescent wave. At the

θs limit, the plane waves in the waveguide have θ2 ¼ �sin�1ðns=n2Þ. Moreover, at the
discrete incidence angles in which the condition in Eq. (2.60) is satisfied, there will be
resonance in the waveguide, as discussed in the previous section.

(b) Incident plane waves with 0 < θs < sin−1(nc /ns)
If the incident angle θs is small enough such that 0 < θs < sin�1ðnc=nsÞ, there will also be
transmitted waves in the cladding. The transmitted plane waves in the cladding have
ncsinθc ¼ nssinθs. The solutions will be similar to those shown in Eqs. (2.55) to (2.59)
with the subscript c replaced by the subscript s and vice versa. The resonance condition
for the waves in the waveguide will be the same as that given in Eq. (2.60). Other
properties of the reflected and transmitted waves will be similar to those discussed in
Section 2.4.1.

Note that, at the same θc, θs, and θ2, the plane wave solution for incident wave in the

substrate with 0 < θs < sin�1ðnc=nsÞ discussed here and the plane wave solution for
incident wave in the cladding with 0 < θc < π/2 discussed in Section 2.4.1 constitute two
equivalent but independent solutions4 of Maxwell’s equations. The solutions could have
the same θ values; they are degenerate. Any linear combination of these degenerate
solutions is also a plane wave solution at the same angles. This feature is utilized in
Chapter 6 to give the air modes.

2.4.3 Plane waves incident within the waveguide: the planar waveguide modes

When nc < ns <n2, there is no solution at θ2 > sin�1ðns=n2Þ for plane waves incident
from either the substrate or the cladding. However, if there is a plane wave with

θ2 > sin�1ðns=n2Þ already excited in the waveguide there will be multiply totally
internally reflected plane waves at both the x = 0 and x = t boundaries. The sum of the
plane waves, reflecting back and forth between the interfaces at x = 0 and x = t are the
sum of the solutions of the Maxwell’s equation that satisfies all the boundary conditions.

4 The equivalent solutions have the same angles θc, θs, and θ2, and the same resonance condition.
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However, the sum of all the multiply reflected waves is zero because of the cancellation

of the phases e�jmkt2n2 cos θ2 . There is only one exception. When the condition in Eq.
(2.60) is satisfied, all the waves then add to each other. Therefore there is a solution of the
Maxwell’s equation only when the resonance condition is satisfied. Each of these
solutions is a discrete planar waveguide solution of the structure. There are only finite
and discrete values of θ2 that satisfy Eq. (2.60). Let us designate the mth discrete θ2 at
resonance to be θm, m = 0, 1, 2, 3 . . .

2n2kcos θmt þ φwc þ φws ¼ 2ðmþ 1Þπ ð2:61Þ
The mth reflected plane waves in the waveguide will be5:

Em ¼ A
�
e�jmð2n2kcos θmtþφwcþφwsÞeþjkn2kcos θm2x � e�jmð2n2kcos θmtþφwcþφwsÞe�jn2kcos θmx

�

� e�jkn2sin θmz ð2:62Þ

Here jΓj for total internal reflection is 1. From Section 1.3.3(b), we got two
separate φ answers for the electric field polarized perpendicular to the plane of
incidence and for the electric field polarized in the plane of incidence. The φ for
these two cases are

φ⊥wc ¼ tan�1 �2n2cos θm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22sin

2θm � nc2
p

n22cos2θm � ðn22sin2θm � nc2Þ
ð2:63Þ

φ⊥ws ¼ tan�1 �2n2cos θm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22sin

2θm � ns2
p

n22cos2θm � ðn22sin2θm � ns2Þ
ð2:64Þ

φ==wc ¼ tan�1 �2nccos θm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nc2sin

2θm � n22
p

nc2cos2θm � ðnc2sin2θm � n22Þ
ð2:65Þ

φ==w2 ¼ tan�1 �2nscos θm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ns2sin

2θm � n22
p

ns2cos2θm � ðns2sin2θm � n22Þ
ð2:66Þ

Therefore, radiation in two different polarizations will have two different sets of
solutions.

In short, planar waveguide modes are modes excited within the waveguide layer at

resonance values of θ2 where θ > sin�1ðns=n2Þ. Note that the direction of propagation of
the planar waveguide mode is z. There is no energy directed in the y direction. There are
two separate cases. For an electric field polarized along the x axis, there is a set of
modes satisfying Eqs. (2.61), (2.63) and (2.64). Although the total electric field is
perpendicular to z, the total magnetic field has components in both the y and the z

5 The waves in the waveguide at these discrete θm values of θ2 cannot be excited by an incident propagating
wave from either the cladding or the substrate.
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directions; therefore these modes are called TE modes. For an electric field polarized in
the plane of incidence, there is a set of modes satisfying Eqs. (2.61), (2.65) and (2.66).
These modes have a magnetic field in the x direction, perpendicular to the propagation
direction z, but the electric field has components in both the y and z directions; thus they
are called the TM modes.

All planar waveguide modes have evanescent fields in the cladding and sub-
strate. Therefore, even if there is scattering or absorption in the cladding or the
substrate, they still have low propagation losses in the z direction. Planar
waveguide modes cannot be excited by a propagating plane wave in the cladding
or the substrate.6

2.4.4 The hollow dielectric waveguide mode

Different than the planar waveguide, the hollow dielectric waveguide has the
same material geometry as the planar waveguide shown in Figure 2.4, except nc
and ns are both considerably larger than n2. The solutions presented in
Sections 2.4.1 and 2.4.2(b) are applicable. However, the hollow dielectric wave-
guide refers to the situation where the excitation takes place inside the waveguide
layer. When the excitation of the waves takes place inside the waveguide, there
will be multiple reflected plane waves back and forth between boundaries inside
the waveguide, and there will also be corresponding radiated waves in the clad-
ding and in the substrate that are propagating away from the boundaries. No
matter what the indices of the layers, whenever 2n2kcos θmt þ φwc þ φws ¼ 2mπ the
multiply reflected Erw and transmitted Efw in the waveguide layer will be in phase with
each other. Thus we again have resonance of the multiply reflected and transmitted
waves in the waveguide.

The reflection coefficients from the waveguide to the cladding and substrate at
the x = t and the x = 0 boundaries will depend on the polarization of the electric field.
They are

Γ⊥wc ¼ n2 cos θ2 � nc cos θ1
n2 cos θ2 þ nc cos θ1

  Γ⊥ws ¼ n2 cos θ2 � ns cos θs
n2 cos θ2 þ ns cos θs

ð2:67Þ

Γ==ws ¼ ns cos θ2 � n2 cos θs
ns cos θ2 þ n2 cos θs

  Γ==wc ¼ nc cos θ2 � n2 cos θc
nc cos θ2 þ n2 cos θc

ð2:68Þ

The resonance condition is

2n2kcos θmt þ φwc þ φws ¼ 2mπ ð2:69Þ
Note that the transmission coefficients to the propagating wave in the cladding and the
substrate are related to the reflection coefficients by

6 Planar waveguide modes can be excited from plane waves in a prism that has an index > n2.
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T⊥wc ¼ 1þ Γ⊥wc; T⊥ws ¼ 1þ Γ⊥ws; T==wc ¼ nc
n2

ð1þ Γ⊥wcÞ; 

T==ws ¼
ns
n2

ð1þ Γ==wsÞ ð2:70Þ

If nc and ns are significantly larger than n2 then the reflection coefficients in Eqs. (2.67)
and (2.68) can be large, and the transmission coefficients will be small. Similar to the
resonance effect discussed in Sections 2.4.1 and 2.4.2, it means that when the reflection
coefficients Γwc and Γws are large, the total field in the waveguide is much larger than the
fields in the cladding and the substrate at resonance. The excited field at resonance will
propagate in the z direction with just some radiation loss. Since the lowest n2 is the free
space, such a waveguide structure used at resonance is called a hollow dielectric
waveguide.

In summary, the planar waveguide structure shown in Figure 2.4 could be analyzed
simply by plane wave analysis. How such a structure functions depends on the excitation
of modes. (1) For incident beams in the cladding or the substrate, there are the usual
reflected and transmitted beams. As we have shown in Section 2.1, one can use it to
control reflection or transmission. There are also the resonances at specific θ2 angles.

(2) When nc < ns <n2 and θm > sin�1ðns=n2Þ, there is a non-zero solution only if the
resonance condition is satisfied. The mth solution satisfying the resonance condition is
the planar waveguide mode. It can only be excited from inside the waveguide. (3) If
n2 << ns and nc, waves excited within the waveguide layer at the resonance angle
propagate as hollow dielectric modes.

Although the solutions of guided-wave modes propagating in a planar wave-
guide are obtained here by plane wave analysis, the total field of the guided-wave
mode is no longer a TEM wave propagating in the z direction. For the electric
field polarized in the y direction, we have the TE modes. The magnetic field has
components in both x and z directions. For the magnetic field in the y direction, we
have the TM modes. In other words, even though the plane wave analysis provided
us with a solution, the properties of the waves can best be described in terms of
modes. In Chapter 5, these modes and their interactions will be analyzed again by
modal analysis. The modal analysis is used in Chapters 6, 7 and 8 to analyze
devices based on the mutual interactions of modes. These tasks cannot be accom-
plished by plane wave analysis.

Chapter summary

The interference effects caused by superposition and multiple reflections of plane waves
could be used very effectively to analyze and understand the gist of many applications.
They include anti-reflection coatings, beam splitting, reflection coatings, the Fabry–
Perot resonance, modes in planar waveguides, holography, various applications of the
Fabry–Perot resonance, etc.
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The analyses demonstrated the importance of the concept of superposition of
waves. Pedagogically, it is interesting to note that the plane wave analysis has already
yielded the modes in a planar waveguide. Yet, many properties and application of the
waveguide devices can only be discussed effectively by modal analysis, not by plane
wave analysis.

If we combine the discussions in Chapters 1 and 2, we see that plane wave analysis
could be used as a first approximation to analyze many applications. It is important to
note that plane wave analysis can be applied only to material structures with a planar
boundary. The full analysis of these applications in the non-planar configurations of
realistic components requires the use of diffraction or modal analysis that will be
presented subsequently in this book.

Reference
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3 Scalar wave equation and
diffraction of optical radiation

For analysis of optical radiation propagating in realistic components that have finite
boundaries and an optical radiation beam that has lateral variation, plane wave
analysis cannot be used. Maxwell’s equations with appropriate boundary conditions
should be used. However, rigorous analysis using vector Maxwell’s equations plus
boundary conditions is very complex and tedious. Even if we find the solutions they
might contain fine features (such as the fringe fields near the aperture) that are often of
little or no significance for practical applications. In many cases, we need only a simple
solution that can give us the main features (i.e. the amplitude and phase variations) of
the dominant electromagnetic field at a distance moderately far away from the input
aperture. We do not need to know the near field close to the aperture.

When one deals with radiation fields that have slow transverse variations and that
interact with devices that have overall dimensions much larger than the optical wave-
length λ, the fields are often transverse electric and magnetic (TEM). In TEM waves,
both the dominant electric field and the dominant magnetic field polarization lie
approximately in the plane perpendicular to the direction of propagation. The dominant
electric and magnetic fields are also perpendicular to each other. The polarization does
not change rapidly while the radiation propagates in an isotropic medium within
moderate distances.1 In this case, we usually need only to solve the scalar wave
equations to obtain the amplitude and the phase of the dominant electric field along its
polarization direction. The dominant magnetic field can be calculated directly from the
dominant electric field. Conversely, we can also first solve the scalar equation of the
dominant magnetic field, and the electric field can be calculated from the magnet field.

The condition under which the scalar wave equation is applicable will be discussed in
Section 3.1. To find the solution of the scalar wave equation, commonly known as the
Kirchoff’s integral, involves a lot of mathematical details. A discussion of its derivation
will divert our attention from the application of Kirchoff’s integral. Therefore it is
presented separately in the Appendix. Kirchoff’s integral is presented in Section 3.2
without derivation. In the rest of the sections in this chapter we will focus on the
applications of Kirchoff’s integral. These applications lead directly to the traditional
Fresnel and Fraunhofer diffraction patterns that determine the resolution of telescopes
and microscopes, as well as to laser cavity modes and Gaussian beams described in
Chapter 4. In addition, various mathematical techniques can be applied to the

1 In birefringent media such as crystal, the polarization of electric field rotates.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139871419.004
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:45:58, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.004
https://www.cambridge.org/core


Kirchhoff’s integral. For example, under certain circumstances, the incident and dif-
fracted fields are related by Fourier transform. Therefore, analytical techniques based on
Fourier analysis, such as convolution, are applicable.

3.1 The scalar wave equation

The simplest way to understand why we can use a scalar wave equation is to consider
Maxwell’s vector wave equation in a homogeneous medium without free charge car-
riers. It can be written in terms of the rectangular coordinates as:

∇2E � 1

c2
∂2 E
∂ t2

¼ 0 ; E ¼ Exix þ Eyiy þ Eziz ð3:1Þ

If E has only one dominant component, for example Ex ix, then Ey and Ez may be
neglected. The unit vector ix does not have to be displayed explicitly. In this approxima-
tion, the resultant equation is a scalar wave equation for Ex. Alternatively, the dominant
component may be Ey, and Ex and Ez can be dropped from Eq. (3.1).

In short, for TEMwaves with constant polarization, we usually describe the dominant
electromagnetic (EM) field by a scalar function U that is proportional to the dominant
electric field without specifying explicitly its polarization.2 In a homogeneous medium
without free carriers, U satisfies the scalar wave equation,

∇2U � 1

c2
∂2

∂ t2
U ¼ 0 ð3:2Þ

In our presentation here, U is the instantaneous complex amplitude of the transverse
electric field in its direction of polarization. U varies slowly in the transverse direction
within a distance comparable to the wavelength. The dominant magnetic field can be
calculated directly from the dominant electric field. From a different perspective, when
we use the scalar wave equation, we have implicitly assumed that the curl equations in
the Maxwell’s equations do not yield significant magnitudes of electric field in other
directions. There are other views of what constitutesU. In books such as that of Born and
Wolf, Principles of Optics, it is shown thatU can also be considered as a scalar potential
for the optical field. In that case, electric and magnetic fields can be derived from the
scalar potential [1].

Both the scalar wave equation (3.2) and the boundary conditions have been obtained
from Maxwell’s equations. If U represents the dominant electric field, the continuity of
electric field is equivalent to the continuity of U across the boundary. The continuity of
the magnetic field across the boundary is equivalent to the continuity of the normal
derivative of U. In other words, the boundary conditions in vector Maxwell’s equations
are replaced by boundary conditions of U (i.e. the continuity of U and the normal
derivative of U) across the boundary.

2 All detectors convert the optical power into electrical current. In electromagnetic field theory, we learned
that I ¼ 1=2jEj2= ffiffiffiffiffiffiffiffiffi

μo=ε
p

, where E is the transverse electric field. In optics,U is usually normalized (i.e. |U| is
just proportional to the magnitude of the transverse electric field) such that UU* is the intensity.

54 Scalar wave equation and diffraction of optical radiation

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139871419.004
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:45:58, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.004
https://www.cambridge.org/core


Note that U is only a solution for a given polarization of TEM wave. There are always
two independent solutions representing fields in orthogonal polarizations. For each
polarization, there are forward and backward waves that are two independent solutions.

For wave propagation in a complex medium, Eq. (3.2) can be considered as the
equation for propagation of TEM waves in the local region. In order to obtain a global
analysis of wave propagation in a complexmedium, solutions obtained for adjacent local
regions are then matched in both spatial and temporal variations at the boundaries of
local regions.

For cw single-frequency radiation with a harmonic time variation, we usually write:

Uðx; y; z; tÞ ¼ Uðx; y; zÞejωt ð3:3Þ
Here U(x, y, z) is complex, i.e. U(x,y,z) has both amplitude and phase. Consequently U
satisfies the Helmholtz equation,

∇2 U þ k2 U ¼ 0 ð3:4Þ
Here, k = ω/c = 2π/λ; c = velocity of light =1=

ffiffiffiffiffi
εμ

p
. The boundary conditions are the

continuity of U and the normal derivative of U across the discontinuity.

3.2 The solution of the scalar wave equation: Kirchhoff’s diffraction integral

Let us consider a radiation Uin incident on an opaque flat screen Σ at z = 0 that has a
limited open aperture Ω. The screen extends to infinity in both x and y directions. The
volume of space beyond the screen and the aperture is enclosed by a spherical boundary
at z >> 0 with a very large radius R. Figure 3.1 illustrates the configuration. When the U
within this enclosed volume does not have any optical radiation source, U satisfies the
radiation condition at the spherical boundary [2].

Lim
R→∞

R
∂U
∂n

þ jkU

� 	
¼ 0 ð3:5Þ

Here, ∂=∂n means the derivative normal to the boundary.
In most cases, we know the input Uin at z = 0 within the aperture Ω. We like to

calculate U for an observer located at a position ro, some distance away from the Ω. In
the appendix, U at ro is shown to be related to Uin as

3:

UðroÞ ¼ j
λ

ðð
Ω

Uin
e�jkro1

ro1
cosα dx1dy1 ð3:6Þ

Here r1 is any position x1 and y1 in the aperture at z = 0, and

ro1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxo � x1Þ2 þ ðyo � y1Þ2 þ zo2

q
. The integration is carried over the entire aper-

ture Ω. α is the angle of ro with respect to the z axis.

3 This result has also been derived from Huygens’ principle in classical optics.
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In a paraxial approximation, the observer position (xo,yo,zo) is in a direction not far
away from the center direction of propagation and the observer is located at a distance

reasonably far from the aperture, i.e. α ≈ 180°and jro1 j ≈ jzoj ffi ρ. Then, under the condi-

tion of paraxial approximation, α is now approximately a constant in the integrand of Eq.
(3.6) over the entire aperture Ω, while the change of ρ in the denominator of the
integrand also varies very slowly over the entire Ω. Thus, U can be simplified further
to yield:

Uðz ffi ρÞ ¼ �j
λ ρ

ðð
Ω

U ine
�jkro1dx1dy1 ð3:7Þ

Note that k = 2π/λ is a very large quantity. A small change in ro1 in the exponential can
significantly affect the value of the integral. Thus ro1 in the e�jkro1 factor in the integrand
cannot be simplified, while the ρ factor in the denominator of the integrand can be
considered as a constant in the paraxial approximation.

Both Eqs. (3.6) and (3.7) are known as Kirchhoff’s diffraction formula. In the case
of paraxial approximation, limited aperture and large ro1, Eq. (3.7) yields the same
result as Eq. (3.6). However, Eq. (3.7) is more commonly used in engineering
literature.

Note that, in order to calculate U at ro we need to know Uin(x,y,0) in the aperture.
Strictly speaking, when U is incident on the aperture, it creates a Uin(x,y,0) that includes
the incident U plus the fringe fields created by the induced currents on the screen. For
example, the screen could be made of metal. There are induced currents at the rim of the
aperture. However, the fringe fields are weak for large apertures. They are near-fields

R

roro1

Hemisphere surface with radius R

z

x

y

n = − iz

zo

yo

xo

α

Ω

∑ plane 

Figure 3.1 Geometrical configuration of the aperture and the semispherical volume for the Kirchoff’s
integral. The radiation is incident on Σ, which has an aperture Ω. The very large hemisphere with
radius R is connected to Σ. The coordinates for the observation point ro are xo, yo, and zo.
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that decay rapidly.4 Therefore, we assume Uðx; y; 0ÞffiUinðx; y; 0Þ in many optical
applications.5

3.2.1 Kirchhoff’s integral and the unit impulse response

Eq. (3.7) is sometimes presented in a different format for engineers. Let

�j
λ ρ

e�jkro1 ¼ h½ðx� xoÞ; ðy� yoÞ; ðz� zoÞ�: ð3:8Þ

Then, we can write U in a different format,

UðroÞ ¼
ðð
Ω

Uðx; y; 0Þh½ðx� xoÞ; ðy� yoÞ; zo�dxdy: ð3:9Þ

In this format,U at ro andU at (x,y,z = 0) are related by a transform relation through h.
IfU(x, y, 0) is a unit impulse δ(x,y) (i.e. a point source), then theU(ro) obtained from the
integration is approximately h for large aperturesΩ. Thus, the h function is known as the
unit impulse response function.

The expression h(x –xo, y–yo, z–zo) has the same format as the electrical impulse
response in system analysis. U (x, y, 0) is just the source excitation at the z = 0 plane. “h”
determines completely U(xo,yo,zo) from any input U(x,y,0). Eq. (3.9) is the foundation of
many pattern recognition, filtering, and optical signal processing techniques.

Note that unit impulse techniques used in system analyses usually use integrals
within –∞ and +∞ limits of integration, while the limits of integration in Eq. (3.9) are
determined by the aperture size. Nevertheless, much can be learned from those techni-
ques, especially when the aperture is large. Furthermore, as the integrand in Eq. (3.9)
can also be written as a product of “h(x,xo;y,yo)U(x,y,0)” and an unit step function of x
and y representing Ω, the limits of integration can be extended to ±∞.

3.2.2 Fresnel and Fraunhofer diffractions

In Eq. (3.7) or Eq. (3.9), we note that binomial expansion may be applied to ρ as follows:

ρ ¼ ðzo � zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðxo � xÞ2 þ ðyo � yÞ2

ðzo � zÞ2
s

¼ d 1þ 1

2d2
ðxo2 þ yo

2 � 2xxo � 2yyo þ x2 þ y2Þ þ higher-order terms


 �
:

ð3:10Þ

Here, d = zo – z, and in paraxial approximation, d >> jxo � xj and jyo � yj.
If d is sufficiently large so that we can drop the higher-order terms, we obtain from

Eq. (3.10):

4 See Section 1.1.5(c).
5 This is the major difference between microwaves and optics. The induced fields are often important in
microwaves, because of the much larger ratio of wavelength relative to the aperture size in microwaves.
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UðroÞ ¼ �j
λ d

e�jkde�jkxo
2þyo2

2d

ðð
Ω

Uðz ¼ 0Þe�j2πx
2þy2

2λd


 �
eþj2πxxoλd eþj2πyyoλd dxdy : ð3:11Þ

This is known as the Fresnel diffraction integral, which describes diffraction effects.
If d is so large that the term involving (x2 + y2) can also be neglected, then we obtain

even a simpler diffraction integral,

UðroÞ ¼ �j
λ d

e�jkde�jkxo
2þyo2

2 d

ðð
Ω

Uðz ¼ 0Þeþj2πxxoλ d eþj2πyyoλ d dxdy : ð3:12Þ

This is known as the Fraunhofer diffraction integral of the far radiation field. Note thatU as
a function of xo and yo is approximately a Fourier transform of U as a function of x and y.

It is important to note the implications and the differences of the results shown in Eqs.
(3.10) to (3.12). (1) The major physical difference in Fresnel and Fraunhofer diffraction
formula is the distance from the aperture. When the condition for Fraunhofer diffraction
is met, U(ro) and U(z=0) are related by a Fourier transform integral with finite limits of
integration. Therefore, mathematical techniques in Fourier analysis could be used to
analyze U(ro). (2) The preceding result is valid only if the radiation condition and the
condition for paraxial approximation could be satisfied. (3) When Uin is incident on the
aperture, part of the incident beamUin is blocked by the screen Σ, which has the aperture
Ω. Therefore the power carried by the diffracted beam is reduced from the power of the
incident beam by the screen.

3.2.3 Applications of diffraction integrals

There are many applications that could be analyzed by Fraunhofer and Fresnel diffrac-
tion integrals. There are numerous examples given in existing books. Only a few
applications are presented below to demonstrate the use and the significance of diffrac-
tion integrals.

(a) Far field diffraction pattern of an aperture
Far field diffraction from a uniformUin incident on a rectangular aperture is the simplest
example to illustrate the significance of Eq. (3.12).

Let the radiation Uin be a plane wave in the z direction that has amplitude A. It is
normally incident on an opaque screen at z = 0 that has a rectangular open aperture with
dimensions, 2lx and 2ly, in the x and y directions, i.e.

Uðx; y; z ¼ 0Þ ¼ A rect
x
lx

� 	
rect

y
ly

� 	
ð3:13Þ

where

rectðχÞ ¼ 0  for jχj 〉 1;
rectðχÞ ¼ 1  for jχ j ≤ 1

ð3:14Þ
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Figure 3.2 illustrates the geometric configuration. Substituting U(x,y,z=0) into Eq.
(3.12), we obtain:

Uðxo; yo; dÞ ¼ �je�jkde�j k2dðxo2þyo2Þ

λ d

ðð
Ω

Ae�jkx
2þy2

2d


 �
e j2π xo

λ dð Þxe j2π yo
λ dð Þydxdy: ð3:15Þ

When d is very much larger than the aperture, so that

k
lx2 þ ly2

2d
〈〈 1 ð3:16Þ

then e�jkx
2þy2

2d ffi 1: Since

ðlx
�lx

e j2π xo
λ dð Þxdx ¼ e j2π xo

λ dð Þlx � e�j2π xo
λ dð Þlx

j2π xo
λ d

� � ¼ j2 sin 2π xo
λ d

� �
lx

� 
j2π xo

λ d

� � : ð3:17Þ

we obtain the far field U from Eq. (3.17) as,

Uðxo; yo; dÞ ¼ 4je�jkde�j k2dðxo2þyo2Þ

λd
A lxlysinc

2lxxo
λd

� 	
sinc

2lyyo
λd

� 	
;

where

sincðxÞ ¼ sinπx
πx

ð3:18Þ

U is the classical Fraunhofer diffraction pattern of the rectangular aperture for a plane
wave normally incident on the aperture. There are four comments. (1) The Fraunhofer
diffraction pattern is ignored in geometric or ray optics because the transverse amplitude
and phase variations are not important in those applications. The ray optics approxima-
tion corresponds to the situation where one is interested only in U as xo/d and yo/d→ 0 in
Eq. (3.18). (2) U in the far field has a spherical phase front centered about z = 0. Whether

2ly

2lx

U

ro

zo

yo
xo z

x

y

Ω

Opaque screen

Figure 3.2 Geometrical configuration of a rectangular aperture. The radiation U is incident on a rectangular
aperture Ω on an opaque screen, which is the x–y plane. For a far field, ro is far away with large zo
coordinates. In the paraxial approximation, jzoj >> jxoj and jyoj.
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this phase variation is important or not depends on the application. Unlike microwaves,
the electric field cannot be detected directly in optics. Detectors and films onlymeasure the
intensity of the radiation. Thus the phase information is not important for most classical
optics applications, such as imaging. However, the phase information becomes very
important for a number of applications that involve wavelength selection, signal proces-
sing, interference, and diffraction. For example, when laser radiation is used to illuminate
an image pattern, there are many speckles created by interference effects of small
irregularities. This is the primary reason why laser light is not used for photography.
(3) The effect of the phase of U can also be detected by its interference with another U' or
by diffraction effects of U with a medium that has an interference pattern, such as
holography. (4) Besides the main radiation lobe within angle α from the z axis that has
αx ffi xo=d < λ=2lx and αy ffi yo=d < λ=2ly, there are side lobes with secondary peaks
at 2lxxo=λd ¼ nþ 1=2 and 2lyyo=λd ¼ nþ 1=2 where n = 1, 2, 3,. . . In some appli-
cations the side lobes are very important.

When the input is a plane wave incident on the screen in the y–z plane at an angle θ
with respect to the z axis,

Uðx; y; z ¼ 0Þ ¼ Ae�jksinθxrect
x
lx

� 	
rect

y
ly

� 	
ð3:19Þ

The far field is

Uðxo; yo; dÞ ¼ 4je�jkde�j k2dðxo2þyo2Þ

λd
A lxlysinc

2lx
λ

sinθ � xo
d

� �� 	
sinc

2lyyo
λd

� 	
ð3:20Þ

Therefore the diffracted wave is a wave with its main lobe in the direction xo=d ¼ sin θ.

(b) Far field radiation intensity pattern of a lens
If a point source is placed at the focus of a lens with infinite aperture, it creates a plane
wave at the output of the lens. When the lens has a finite size, the output is equivalent to
having this plane wave to pass through an additional aperture, as discussed in (a).

The intensity I at xo and yo for a point source placed at the focus of a lens with a
rectangular aperture is:

Iðxo; yoÞ ¼ UU� ¼ 4Alxly
λd

sinc
2lxxo
λd

� 	
sinc

2lyyo
λd

� 	
 �2
: ð3:21Þ

Figure 3.3 illustrates I as a function of xo when yo = 0. Clearly I is inversely
proportional to d2, as we would expect for a divergent wave. The intensity I has a
major radiation loop directed along the direction of propagation of the incident beam. I
also has minor radiation loops in x directions when xo/d = (3/2)λ/lx, (5/2)λ/lx, etc., and in
y directions when yo /d = (3/2)λ/ly, (5/2)λ/ly, etc.
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In optics, the minimum diffraction beam width of the major loop is defined as the
angle θ between the direction of propagation and the first zero of I. Thus, for a
rectangular aperture, the beam widths, θx and θy, are:

θx ¼ λ
2 l x

and

θy ¼ λ
2 ly

ð3:22Þ

The preceding discussion in the rectangular coordinates demonstrated clearly the char-
acteristics of the diffracted far field without complex mathematics. In practice, the
apertures are round. For circular apertures with radius r', similar results have been
described in classical optics books using cylindrical coordinates and Bessel functions.6

In that case the beam width of the main radiation loop is given by [1]:

θc ¼ 0:62λ=rʹ ð3:23Þ
As a result, Eq. (3.23) is commonly used to specify the angular resolution of a lens. It is
also applicable to mirrors. The difference in the results derived from circular and
rectangular apertures is minor.

The diffraction beam width at the far field is often used to characterize the output
radiation from many instruments without a detailed discussion of the beam pattern.
For example: (1) the output from a laser is frequently described in trade brochures by
its far field radiation beam width; (2) for communication among distant stations or
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π

Figure 3.3 Diffraction pattern of the plane wave passing through the rectangular aperture Ω in Figure 3.1.

6 The mathematics is much more complex for the calculation. It does not lead to any new insight. Therefore it
is not presented in detail in this book.
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imaging using telescopes, the far field pattern specifies the angular resolution of the
telescope obtained through a lens or mirror; (3) the diffraction limited beam width is
used to estimate the resolution limit in instruments such as spectrometers.

We should be careful about using the far field radiation formula in practical situations
because a far field pattern is applicable only if Eq. (3.16) is satisfied. For example, for a
lens aperture 1 mmwide and a point source at 1 μmwavelength placed at the focus of the
lens, the Fraunhofer diffraction formula is not valid until the distance of observation is
30 meters or larger.7 Such distances are often not available in indoor laboratories. Often,
what we observe in the laboratory is the Fresnel diffraction pattern.

It is interesting to note that when a plane wave (microwave) is incident on a metal
screen with a very small rectangular opening that has a size comparable to wavelength,
the emerging wave is no longer a TEM wave, and Maxwell’s equations need to be used,
not Kirchhoff’s integral. The radiation field created by the induced current on the edges
of the opening needs to be included. As the opening is increased, the far field radiation
field contribution from the induced current is decreased.

(c) Fraunhofer diffraction in the focal plane of a lens
A lens is a very common optical component. In imaging, the diffraction effect yields a
finite spot size. The Fraunhofer diffraction in the focal plane of a lens is presented below.
In addition to the diffraction limit of the spot size, there is a Fourier transform relation-
ship between the incident field and the field at the focal plane. It is used in many signal
processing functions, for example spatial filtering [3].

Consider a plane wave incident normally on a lens at z = 0. A plane aperture is
placed immediately after the lens. Let the focal length of the lens be z2. Then, from
Section 1.3.5 (b), the transmitted U(ro) for a pane wave normally incident on the lens
placed at z = 0, without any limitation on the aperture size, will be focused onto a spot
at r2 ¼ z2iz . The output from the lens, before the aperture, is a convergent wave. The

lens, the focus, and the aperture are illustrated in Figure 3.4.
The spherical wave emerging from the lens can be expressed for 0 < zo < z2 as

U ¼ A
eþjkr2o

r2o
;  r2o ¼ jr2 � ro j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � xoÞ2 þ ðy2 � yoÞ2 þ ðz2 � zoÞ2

q
ð3:24Þ

Note that the + sign in the exponential combined with the e+jωt time variation represents
a convergent wave. U immediately after the lens is given by Eq. (3.24) where
xo ¼ x; yo ¼ y; and zo ¼ 0. When an aperture Ω is placed after the lens at z = 0, U at
(xo, yo, zo) for z2 > zo > 0 is given by Eq. (3.7).

Uðxo; yo; zoÞ ¼ �jA
λz2ro1

ðð
Ω

e�jkðr01�r21Þdxdy ð3:25Þ

7 It will be shown in Chapter 4 that the far field condition for the Gaussian modes of a laser is much less
stringent than the condition in Eq. (3.16).
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Here, the coordinates in the aperture (x1, y1, z) in Eq. (3.7) are replaced by (x, y, z) in
Eq. (3.25). Using paraxial approximation and binomial expansion, and noting that the
aperture is in the (z = 0) plane, we obtain:

kðro1 � r21Þ ¼ k½zo � z2� þ k
2

xo2 þ yo2

zo
� x22 þ y22

z2


 �
� k

xoxþ yoy
zo

� x2xþ y2y
z2


 �
þ

k
2

x2 þ y2

zo
� x2 þ y2

z2
þ � 1

4

ðxo � xÞ2 þ ðyo � yÞ2
h i2

zo3
þ 1

4

ðx2 � xÞ2 þ ðy2 � yÞ2
h i2

z23

8><
>:

9>=
>;

þ other higher-order terms

2
6664

3
7775

ð3:26Þ
For sufficiently large zo and z2,

k
8

ðxo � xÞ2 þ ðyo � yÞ2
h i2

zo3

�������
�������
max

<< 2π

and

k
8

ðx2 � xÞ2 þ ðy2 � yÞ2
h i2

z23

�������
�������
max

<< 2π ;

ð3:27Þ

the terms in the curly brackets and other higher-order terms can be neglected.

Incident spherical wave from a
lens

Aperture

Ω

Diffracted convergent
spherical  wave

Spherical wave front

.

(x,y,z)

(z = z2)

(xo,yo,zo)

ro1

r21

z

x

y

Lens focus

Figure 3.4 Illustration of a spherical wave incident on a plane aperture Ω. The incident wave is a converging
spherical wave focused at (x2, y2, z2). It passes through an opening apertureΩ of an opaque screen,
which is the x–y plane. ro is the observation point.
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Uðxo; yo; zoÞ ¼ �jAe�jkðzo�z2Þe�jk xo2þyo2

2zo

� �
λ z2zo

ðð
Ω

e
jπλ

1
zo
� 1

z2

h i
ðx2þy2Þ

e
j2π xo

λzo
� x2

λz2

h i
x
e
j2π yo

λzo
� y2

λz2

h i
y
dxdy:

ð3:28Þ
When zo ≅ z2, the term in square brackets involving “ 1zo � 1

z2
” in the above integral is 0.

Therefore the radiation in the focal plane of the lens is a Fourier transform of the input
with the limits of integration given by the aperture Ω. When Ω is very large, it
approaches a δ function in the x–y plane centered at z = z2.

Two conclusions can be drawn from this result. (1) Eq. (3.28) is the same as the result
obtained for Fraunhofer diffraction in the far field expressed in Eq. (3.12), except for the
constant A/z2. The finite beam width implies that there will be a finite-sized focused spot
for a plane wave input. From Eq. (3.23), the circular spot size is 0:61f λo=nrʹ. Note that,
in the literature,NA = f/nr' is commonly known as the numerical aperture of the lens, and
n is the refractive index of the medium in the focal plane. f/2r' is known as the F number
of the lens. In other words, the resolution limit of a microscope is approximately λF. (2)
If a thin transparent film with amplitude and phase transmission t(x, y) is placed before
the aperture and the lens at z = 0, then U at the focal plane for a normal incident uniform
plane wave is:

Uðxo; yo; z2Þ ¼ �jAe�j2π xo2þyo2

2λzo

� �
λz02

ðð
Ω

tðx; yÞe j2π xo
λzoð Þxe j2π yo

λzoð Þydxdy ð3:29Þ

This is an important result. It states that when the limits of integration are large, U at the
focal plane zo = z2 is essentially the Fourier transform of t at z = 0. The spatial Fourier
frequencies of the Fourier transform are fx ¼ xo=λzo and fy ¼ yo=λzo.

The usefulness of this result can be illustrated by two simple applications:

(1) In the first application, a student wants to measure the far field radiation pattern of a
laser. It is not necessary for him to actually do the measurement at a distance far
away. All he needs to do is to use a camera focused to ∞. At the focal plane of the
lens, he obtains the far field pattern.

(2) The second application is a spatial filter that can be described as follows. Let us
consider two optical lenses with focal length f. Let the lenses be placed in series
and perpendicular to the optical axis. They are separated from each other by a
distance 2f. If the size of the lens is sufficiently large then the integration limit in
Eq. (3.28) can be approximated by ∞. Now consider the optical signal processing
set up shown in Figure 3.5. Let U be a normally incident plane wave. The field at
the focal plane of the first lens is the Fourier transform of the transmission of the
transparent film, t, placed in front of the first lens. When this radiation is
transmitted through an aperture placed at the focal plane of the first lens, the
higher Fourier frequencies are blocked by the opaque portion of the aperture.
Thus the U obtained after the second lens is –tU filtered through a low-pass
spatial frequency filter. Such a setup has many applications. For example, when
a laser mode passes through optical instruments, it frequently is perturbed
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because of imperfections or defects in the optical elements. A setup such as that
shown in Figure 3.5 (without the transparent film t and with a pin-hole aperture)
is commercially sold as a spatial filter to clean up the effects of perturbations or
defects, which typically produce higher spatial frequencies than the laser mode.

(d) The lens viewed as a transformation element
A simple alternative way to consider a thin lens is to represent it by its transmission
function t, as discussed in Section 1.3.5(b). Thus, for any U passing through a thin lens
without any aperture, we can now multiply the incident U on the lens by a phase
function,

tl ¼ toe
j πλ f ðx2þy2Þ ð3:30Þ

to obtain U immediately after the lens.
We emphasize that this is a thin lens approximation. Only an ideal lens can be

represented by Eq. (3.30). A practical lens will have other higher-order phase shifts,
which are considered to be distortions from an ideal lens. Although we have derived this
result only for a thin spherical lens, it is used to represent any ideal compound lens
where f is the focal length.

3.2.4 Convolution theory and other mathematical techniques

A major difference between the traditional optical analysis used for imaging and
diffraction and engineering optical analysis of TEMwaves presented here is the analysis
of the transform relationship between the incident and the diffracted fields in various

Opaque screen

Aperture

Lens Lens

Optical axis

ff

U

t

Figure 3.5 Spatial low-pass filtering of an optical wave. A transparent film with transmission function
t(x, y) is placed in front of an ideal lens with focal length f. A spatial filter which consists
of an opaque screen with a pin-hole aperture is placed at the center, a distance f from the
lens at the front. A second lens with focal length f is placed a distance f from the spatial
filter.
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applications. In order to illustrate further the engineering analyses, the following
examples are presented.

(a) The convolution relation
The convolution relation allows us to simplify the calculation of the integral in Eq. (3.29)
into two simpler parts.

Let the incident U in the example to be an optical wave with complex functional
variation instead of a simple plane wave. The integral given in Eq. (3.29) is then the
Fourier transform, F, (with limits of integration at ∞) of the product of two functions,
RR ¼ rectðx=lxÞ rectðy=lyÞ and U(x, y, z = 0). RR is the single rectangular aperture in
Figure 3.2.

Let us designate the Fourier frequencies to be:

fx ¼ xo
λ d

 and fy ¼ yo
λ d

Let  FRRðf ʹx; f ʹyÞ ¼
ðþ∞

�∞

ðþ∞

�∞

rect
x
lx

� 	
rect

y
ly

� 	
eþj2π f ʹxxeþj2π fy ʹy dx dy ;

   FUðf ʹx; f ʹyÞ ¼
ðþ∞

�∞

ðþ∞

�∞

Uðx; yʹ; z ¼ 0Þeþj2π f ʹxxeþj2π f ʹyyʹ dx dyʹ

ð3:31Þ

Then, according to convolution theory,

UðroÞ ¼ �j
λ d

e�jkde�jk
x0

2þyo2

2d

ðþ∞

�∞

ðþ∞

�∞

FRRðfxʹ; fyʹÞFUðfx � fxʹ; fy � fyʹÞ dfxʹ dfyʹ ð3:32Þ

FRR and FU are likely results that we already have. Thus we can obtain U at ro from the
known results by convolution.

(b) Double slit diffraction
Let us consider the diffraction pattern of a double slit, from y = h – ly to y = h + ly and
from y = –h – ly to y = –h + ly. The incident U is a plane wave (U = A) propagating in the
+z direction.

Using superposition theory and the convolution relation, we obtain immediately the
diffraction pattern to be:

UðroÞ ¼ �2Aj
λ d

e�jkde�jkxo
2þyo2

2d cos 2π
yo
λ d

� �
h

h i

ðþ∞

�∞

ðþ∞

�∞

rect
x
lx

� 	
rect

yʹ
ly

� 	
eþj2π xo

λ dð Þxeþj2π yo
λ dð Þyʹ dxdyʹ: ð3:33Þ

66 Scalar wave equation and diffraction of optical radiation

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139871419.004
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:45:58, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.004
https://www.cambridge.org/core


The cosine function expresses the interference effect of the diffracted radiation from the
double slit.

(c) Diffraction by an opaque disk
Let us consider the diffracted field when the screen is an opaque obstacle such as a
finite-sized disk Ω. We can express any opaque aperture Ω as Σ – (Σ – Ω), where Σ is
the entire z = 0 plane. “Σ – Ω” is the complimentary aperture of Ω. Therefore we can
rewrite Eq. (3.12) as

UðroÞ ¼ Uincðr ¼ roÞ �
�j
λ d

e�jkde�jkxo
2þyo2

2d

ðð
Σ�Ω

Uincðz ¼ 0Þeþj2πxxoλ d eþj2πyyoλ d dxdy

2
4

3
5 ð3:34Þ

(d) The Fresnel lens
Let us consider next a refractive Fresnel lens. This lens does not have a spherical
surface. The configuration of a Fresnel lens is illustrated in Figure 3.6. It has a material
structure that has a sectional continuous profile. For the first segment, the surface
profile is such that from the center r = 0 to a radius r, the phase shift is described in
Eq. (3.30). However, this surface stops at r = r1 when the phase shift is 2π, i.e. when
r1

2/λf = 2. A new segment of the surface starts at r1 with 0 phase shift. This second
segment of the surface will give a phase shift proportional to “(r2/λf) –2.” The second
surface segment stops at r2 when r2

2/λf = 4. The third segment starts at r2 with 0 phase
shift. These segments continue until the shortest length of segments, rj – rj–1, reaches
the resolution limit of the fabrication technology. Figure 3.7 illustrates the phase shifts
along the radial direction r.

When one calculates the diffraction pattern of the Fresnel lens, the Kirchhoff’s
integral will be performed over each segment of continuous phase shift zone separately.
The sum of all the diffraction integrals gives U(ro). The insertion of ej2nπ (n = any
integer) to any integrand does not change the value of the integral. We can easily show
that for any normally incident plane wave, U given by the Kirchhoff’s integrals for the
Fresnel lens behaves identically to any thin spherical lens with the same focal length.
The difference between the spherical lens and the Fresnel lens lies in the higher-order
terms of the phase shifts, which we neglected in the first-order approximation. For
oblique incident radiation, the diffraction pattern of the segments yields distortions.

(e) Spatial filtering
As a final example, let us consider an example in Goodman’s book [3]. A plane wave
with amplitude A is incident normally on a transparent film at z = 0, followed immedi-
ately by an ideal thin lens with focal length f, as shown in Figure 3.8. The film is placed in
a square aperture (d × d) centered at x = y = 0. The electric field transmission t of the
transparent film is:
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tðx; yÞ ¼ 1

2
½1þ cos ð2πHxÞ� rect x

d=2

� 	
rect

y
d=2

� 	
: ð3:35Þ

Here H >> (1/d). A spatial filter screen is placed at the focal plane of this lens.
The screen is opaque in two regions: (1) |x| < l/2 and |y| < l/2 for the inside region
and (2) |x| > l and |y| > l for the outside region. The spatial screen is shown in

Thickness variations, βt

r

2π

r1

r2

r3

r4

r5

0

r6

r7

Figure 3.6 Thickness variation in a Fresnel lens.
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Figure 3.7 Phase shifts in a Fresnel lens.
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Figure 3.9. A second lens with focal length f is placed at a distance f behind the
screen.

At z = f, the incident field on the screen is:

Uðx1; y1; f Þ ¼ �jAe�jkf e�jk
x1

2þy1
2

2f

� �
λ f

ðd=2
�d=2

ðd=2
�d=2

1

2
1þ 1

2
ej2πHx þ 1

2
e�j2πHx


 �
ej2π

x1
λ fð Þxej2π y1

λ fð Þydxdy

¼ �jAe�jkf e�jk
x1

2þy1
2

2f

� �
2λ f

sin
π x1d
λ f

� 	
π
x1
λ f

þ
sin π H þ x1

λ f

� 	
d

� 	

2π H þ x1
λ f

� 	 þ
sin π H � x1

λ f

� 	
d

� 	

2π H � x1
λ f

� 	
2
664

3
775
sin

π y1d
λ f

� 	
π
y1
λ f

ð3:36Þ
Thus there are three radiation peaks in the x1 direction, at x1 = 0, x1 = λfH, and
x1 = –λfH. The width (defined by the first zero of the field) of the peaks in the x
direction is λf/d centered at the peaks. All radiation peaks in the y direction are
centered about y1 = 0 with width λf/d. However, the transmission range of the screen
in the x direction at z = f is l/2 < |x1| < l. Thus the peak centered about x1 = 0 is
always blocked by the screen. In order for the two side peaks to pass the screen, we

. ..
z = 2fz = 0 z = f

Aperture

Lens with focal
length f

Film The spatial filter
screen

z

X2X1X

Figure 3.8 Illustration of an example of spectral filtering in the Fourier transform plane. A
transparent film with transmission function t(x, y) is placed in front of an ideal lens
with focal length f at z = 0, followed by a square aperture (d ×d). A spatial filter is placed
at z = f. A second lens with focal length f is placed at z = 2f to reconstruct the filtered
light.
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need l/2 < fλH < l. In order for the main lobe of the two side peaks to pass through
the screen, we need

λHf þ λ f
d

〈 l 〈 2λHf � 2λ f
d

ð3:37Þ

Since the peaks are centered in the y direction at y1 = 0, the transmission of the screen is
effectively from y1 = –l to y1 = l. If we approximate the transmitted radiation field by
deleting the term representing the peak centered about x1 = y1 = 0, we obtain the
diffracted transmitted radiation after the screen to be:

U ʹðx; y; f Þffi �Ae�jkze
�j k x2þy2

2ðz�f Þ

� �
2λ 2f ðz� f Þ

ðl
�l
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π y1d
λ f

� 	
π
y1
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2

2 f

2
664

3
775e�jk
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2

2ðz�f Þe
j2π y
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� �
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dy1
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x1
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2π
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x1
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ð3:38Þ
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Fig. 3.9 The optical spatial filter in Figure 3.8. It is opaque for
jX1j and jY1j < l=2 and jX1j and jY1j > l.
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When this diffracted field passes through the second lens at z = 2f, the exponential term

in front of the integral, e�jkx
2þy2

2ðz�f Þ, is canceled by the quadratic phase change of an ideal

lens, e jkx
2þy2

2f , for z ≥ 2f.
The integration is quite messy in the general case. However, the answer is

simple for the following special case. Let λf/d be small (i.e. the width of radiation
peaks is narrow), and let the dimension l be such that at least the main lobe
of the two side peaks passes through the screen at z = f. Then
sin ðπ y1=λ f =dÞ=ðπ y1=λ f Þ is large only for y1 < λf/d, and its peak value is proportional
to d. Within such a small range of y1, the three exponential terms in the above y1 integral
can be approximated by constant values at y1 ≅ 0. This means that

e�jky12=2f e�jky12=2ðz�f Þe jky1=2ðz�f Þy ffi 1.
Similarly the three exponential terms in the two x1 integrations can be approximated

by x1 ¼ λHf and by x1 ¼ �λHf , respectively.
Therefore, immediately after the second lens at z = 2f, we have the following field.

U″ðx2; y2; 2f Þ ffi �Ae�jk2f

2λ2f 2
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sin π
2π y1d
λ f
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π
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λ f
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e�jkλ2H2f e jkλHx2
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x1
λ f

� H
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2π
x1
λ f
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þe�jkλ H2 f e�jkλHx2
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sin π
x1
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2π
x1
λ f
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� 	 dx1

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

: ð3:39Þ

If the second lens has a sufficiently large size, the diffraction effect due to the finite
size of the second lens can be neglected. The far field diffraction pattern will be
given by two beams, one beam propagating as e−jkzejkλHx and the second beam
propagating as e−jkze−jkλHx. The incident beam propagating along the z axis has been
filtered out.

The example is presented here to demonstrate the mathematical complexity of the use
of Kirchoff’s integral. It will be compared with the use of the Gaussian beam in
Chapter 4.

Chapter summary

Diffraction analysis of optical waves is the forte of traditional optics. There is no need to
present any extensive discussion of diffraction optics in this book. However, the limita-
tion and the theoretical basis of diffraction analysis are not always clearly understood. It
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is shown here that the scalar wave equation can only be used to analyze TEM optical
radiation. Under the TEM approximation, Kirchhoff’s integral can be used to calculate
the propagation of any incident radiation through various instruments, without solving
Maxwell’s equation separately each time.

In addition, it is shown here that, for single-frequency radiation such as laser
radiation, the format of Kirchhoff’s integral allows us to apply mathematical techniques
to relate the diffracted field to the incident field. For example, under certain circum-
stances, the incident and diffracted fields are related by Fourier transform. Many
engineering analytical techniques based on Fourier analysis, such as convolution,
become applicable. Signal processing applications such as spatial filtering are based
on the transform relations of the optical fields.

Natural light has many frequency components with random relative phases among
them. Many effects, such as the Fourier transform relationship, convolution, spatial
filtering, etc. depend on the phase relations. Thus, these effects will not be observed in
general for natural light. On the other hand, techniques such as Kirchoff’s integral are
still applicable to each frequency component. Conclusions such as diffraction-limited
focus spot size and far field beam width are valid. Even Fabry–Perot resonance could
still be observed when the frequency range of the natural light is narrow. Since there are
already many excellent books that discuss the optics of natural light, the diffraction of
natural light is not presented extensively in this book.
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4 Optical resonators and Gaussian
beams

Although diffraction analysis of many applications has already been presented
extensively in the literature, laser and Gaussian beam analysis has not been
emphasized much in traditional optical books. Laser analysis is the focus of
the first part of this chapter; Gaussian beam analysis is the focus of the second
part.

There are three reasons to present analysis of laser cavities and Gaussian beams.
(1) Much of the optical applications today use laser radiation. Understanding of laser
modes is very important. For example, analysis of laser cavities allows us to appreciate
the difference between longitudinal and transverse modes. It shows us that laser modes
are Gaussian. (2) In laser cavities, Kirchoff’s diffraction analysis yields the character-
istics of the modes. From that discussion, we can appreciate that diffraction and modal
analysis are closely related. (3) The Gaussian modes can be used to represent any TEM
wave. It is an important analytical technique in itself.

Although Gaussian modes were derived from the analysis of laser cavities in the first
part of Chapter 4, they are also a direct solution of Maxwell’s equations. Gaussian
modes also constitute a complete set. It means that any TEM radiation can be repre-
sented as a summation of Gaussian modes. The propagation of a Gaussian beam
through any component with a large enough aperture retains the Gaussian form. It
simply suffers a loss of power due to diffraction. Therefore, its propagation
through various components can be analyzed without carrying out the messy diffraction
integrals used in Chapter 3.

It is well known that the basic solid-state and gas laser cavities consist of two concave
end reflectors that have the transverse (or lateral) shape of a flat disk or a part of a large
sphere. The reflectors are separated longitudinally by distances varying from
centimeters to meters. The size of the end reflectors is small compared to the separation
distance, but still very large compared to the optical wavelength. Thus, the cavity modes
are resonant modes of TEM waves, bouncing back and forth between reflectors. They
can be analyzed by means of Kirchhoff’s integral. Laser cavities are sometimes called
Fabry–Perot cavities because of their similarity to Fabry–Perot interferometers,
discussed in Section 2.2.1 This is the case for solid-state and gas lasers, but not for
waveguide semiconductor lasers. Scalar wave equation analysis is not able to analyze

1 However, Fabry–Perot interferometers have distances of separation much smaller than the size of the end
reflectors; therefore, diffraction loss is negligible.
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waveguide laser cavities that have dimensions of the order of optical wavelength. The
fields in waveguides are not transverse electric and magnetic.2

4.1 Integral equations for laser cavities

Consider a typical laser cavity as shown in Figure 4.1. Let the y-polarized electric field
on the Sʹmirror be Eyʹ(xʹ, yʹ) and the electric field on S be Ey(x, y). The diffracted electric
field Eyʹʹ (x, y) on the S mirror can be calculated by Kirchhoff’s integral from Eyʹ on Sʹ.
Similarly, the diffracted Eyʹʹʹ on Sʹ can be calculated from Ey on S.

E″yðx; yÞ ¼
ð
Sʹ

jkð1þ cos ϑʹÞ
4πρ

e�jkρEʹ
yðxʹ; yʹÞdsʹ

and

E‴yðxʹ; yʹÞ ¼
ð
S

jkð1þ cos θÞ
4πρ

e�jkρEyðx; yÞd:

ð4:1Þ

P(x,y,z) is a point on S, Pʹ(x,y,z) is a point on Sʹ, and ρ is the distance between P and

Pʹ, ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xʹÞ2 þ ðy� yʹÞ2 þ ðz� zʹÞ2

q
. If we have a symmetric pair of mirrors and if

the cavity supports a stable mode, then Ey and Eyʹmust eventually reproduce each other,
except by a complex constant γ, i.e.:

b

ρ

2 a

2 a

S'(x',y',z')

(x = 0,y = 0,z = –d/2)
(x = 0,y = 0,z = +d/2)

S(x,y,z)

x

z

y

Figure 4.1 Illustration of a laser cavity. A confocal cavity has two spherical end reflectors, S and Sʹ. The
reflectors have a square aperture, 2a × 2a. The spherical center of the S surface is at the center of Sʹ,
with radius b. The spherical center of the Sʹ surface is at the center of S, also with radius b. The
focus of both the S reflector and the Sʹ reflector is at the center of the opposite mirror; ρ is the
distance from a point on the S surface to a point on the Sʹ surface.

2 Surface emitting semiconductor lasers also have TEM cavity modes. Their end reflectors are much smaller
than solid-state and gas lasers. The distance between reflectors is comparable to wavelength. In this
configuration, diffraction loss is negligible, so surface emitting laser cavities are also not analyzed by
means of Kirchoff’s integral.
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γEy ¼ E″y and γEý ¼ E‴y

γEyðx; yÞ ¼
ð
Sʹ

jkð1þ cos θʹÞ
4πρ

e�jkρEyʹðxʹ; yʹÞdsʹ;

γEʹ
yðxʹyʹÞ ¼

ð
S

jkð1þ cos θÞ
4πρ

e�jkρEyðx; yÞds
ð4:2Þ

Ey and Eʹy have the same x and y functions.
Any stable resonant mode of the cavity must satisfy Eq. (4.2). Conversely, any solution

of Eq. (4.2) is a resonant mode of the cavity. The field pattern of the resonant mode of the
laser was found first by Fox and Li [1]. They calculated numerically the diffraction integral
on a computer, starting from an assumed initial mode pattern on S. The resultant electric
field pattern on the opposite mirror Sʹ was then used as Ey in the diffraction integral to
calculate the field on S after a round trip. This process was iterated back and forth many
times. Eventually, stabilized mode patterns (i.e. mode patterns that differ from each other
only by a complex constant after one diffraction) were found. In the next section, we will
first discuss in detail the analytical solution of the integral equation for a specific cavity
configuration, the confocal laser cavity. We will then extend the analysis of confocal
cavities to other non-confocal cavity configurations. All the modes discussed in this
chapter are “cold” or “passive” cavity modes, meaning that there is no gain in the material.

4.2 Modes of confocal cavities

Consider the resonator shown in Figure 4.1. In a confocal resonator, there are two identical
spherical mirrors with radius b, symmetrically placed about the z axis at z = ± d/2 (d = b
in confocal cavities). In order to take advantage of the simplicity of mathematical analysis
in rectangular coordinates, both mirrors are assumed to have a square shape (2a × 2a in
transverse dimension).3 The size of themirror is small compared to the separation distance,
i.e. d >> a. While the centers of the spherical surfaces are located at x = y = 0 and z = ± d/2,
the focal point of bothmirrors is at x = y = 0 and z = 0; hence it is called the confocal cavity.
We will analyze the confocal cavities following Boyd and Gordon [2].

4.2.1 The simplified integral equation for confocal cavities

Since a << d, θ ffi 0 and cos θ ffi 1 in Eq. (4.2). Thus Eq. (4.2) for an electric field
polarized linearly in the y direction can be simplified as:

γEyðx; yÞjon S ¼ j
λd

� 	 ða
�a

ða
�a

Eyðxʹ; yʹÞjon Sʹ e�jkρdxʹdyʹ: ð4:3Þ

3 The shapes of actual mirrors are round.
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Here, ρ is the distance between P and Pʹ on the S and Sʹ surfaces. Clearly Ey on S and Sʹ
must be identical. Equation (4.3) is an integral equation for Ey. It is well known
mathematically that, like differential equations with appropriate boundary
conditions, such an integral equation has independent eigenfunctions and eigenvalues.
If we can find these independent solutions, we have found the modes of the confocal
cavity.

The Sʹ and S surfaces are described by:

zʹ � d
2

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � xʹ2 � yʹ2

p
ffi � d þ xʹ2 þ yʹ2

2d
;

z þ d
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � x2 � y2

p
ffi d � x2 þ y2

2d

ð4:4Þ

When e�jkρ is simplified by binomial approximation and when the higher-order terms
are neglected, we obtain

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� zʹÞ2 þ ðx� xʹÞ2 þ ðy� yʹÞ2

q
ffi ðz� zʹÞ þ 1

2

ðx� xʹÞ2 þ ðy� yʹÞ2
ðz� zʹÞ

2
4

3
5

 ffi d � xʹ2 þ yʹ2

2d
� x2 þ y2

2d

0
@

1
Aþ ðx2 þ xʹ2Þ þ ðy2 þ yʹ2Þ � 2xxʹ� 2yyʹ

2d

2
4

3
5

 ffi d � xxʹþ yyʹ
d

ð4:5Þ
When z and zʹ are on S and Sʹ, d is used to approximate the (z – zʹ ) term in the
denominator. Note that the quadratic terms xʹ2 þ x2=2d and yʹ2 þ y2=2d in the second
square-bracketed term of the binomial series expansion are canceled by the quadratic
terms xʹ2 þ yʹ2=2d and x2 þ y2=2d in the round brackets, created by the spherical
surfaces of the confocal resonator. This coincidence gives us a simplified expression
for ρ. When higher-order terms are neglected, Ey at (x, y, z) on S is related to Ey at (xʹ, yʹ,
zʹ) on Sʹ by a simplified equation:

γEyðx; y; zÞjon S ¼ j
λd

e�jkd

� 	 ðþa

�a

ðþa

�a

Eyðxʹ; yʹ; zʹÞjon Sʹ e jk xxʹþyyʹ
dð Þ dxʹdyʹ ð4:6Þ

Neglecting the higher-order terms in the binomial expansion is justified when a2/bλ <<
(b/a)2.

If we compare Eq. (4.6) with the diffraction integrals for Fraunhofer diffraction in the
focal plane of a lens, we see that the relation between Ey on S and Ey on Sʹ is again a
Fourier transform with finite integration limits, ±a. There are known mathematical
solutions for such an integral equation. This is really the secret of the simplicity of a
confocal cavity and the reason we started the cavity analysis with it.
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4.2.2 Analytical solutions of the modes in confocal cavities

If we let Ey on S be described by F(x)G(y), then the integral equation for F and G is:

σlσmFlðxÞGmðyÞ ¼
ðþa

�a

ðþa

�a

je�jkb

λd
FlðxʹÞGmðyʹÞe jk xxʹþyyʹ

bð Þdxʹdyʹ; ð4:7Þ

Here γ is represented by σlσm. When we make the following change of variables,

Λ ¼ a2k
b

; X ¼
ffiffiffiffi
Λ

p

a
x;  and Y ¼

ffiffiffiffi
Λ

p

a
y

we obtain

σlσmFlðX ÞGmðYÞ ¼ je�jkb

2π

ðþ ffiffiffi
Λ

p

� ffiffiffi
Λ

p
FlðX ʹÞejXX ʹdX ʹ

ðþ ffiffiffi
Λ

p

� ffiffiffi
Λ

p
GmðY ʹÞe jYY ʹdY ʹ: ð4:8Þ

This is a product of two well-known identical integral equations, one for X and one for Y.
In order for both of them to be satisfied for all X and Y, each integral equation must
be satisfied separately. Slepian and Pollak [3] have shown that the lth independent
solution to

FlðX Þ ¼ 1ffiffiffiffiffi
2π

p
χl

ðþ ffiffiffi
Λ

p

� ffiffiffi
Λ

p
FlðX ʹÞejXX ʹdX ʹ ð4:9Þ

is

FlðX Þ ¼ S0l Λ;
Xffiffiffiffi
Λ

p
� 	

ʹ;  and χl ¼
ffiffiffiffiffiffi
2Λ
π

r
j lR0l

ð1ÞðΛ; 1Þ;  l ¼ 0; 1; 2;… ð4:10Þ

S0l and R0l are, respectively, the angular and radial wave functions in prolate
spheroidal coordinates, as defined by Flammer [4]. Thus the eigenvalues and eigenfunc-
tions of Eq. (4.9) are:

σlσm ¼ jχlχme
�jkb ¼ 2Λ

π
R0l

ð1ÞðΛ; 1ÞR0m
ð1ÞðΛ; 1Þ jmþlþ1e�jkb

and

Ey ¼ Ulmðx; yÞ ¼ S0l Λ;
x
a

0
@

1
AS0m Λ;

y
a

0
@

1
A

ð4:11Þ

with l, m = 0, 1, 2, 3. . . According to Slepian and Pollak [3], the R and S functions are
real. It confirms that the mirrors are surfaces of constant phase of Ey.

For each mode, as it propagates from one mirror to the other, its amplitude changes by

χlχmand its phase changes by je�jkb. For a given transverse lth and mth mode, there are
resonances at those frequencies when kb = qπ.
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It is interesting to recognize that we have obtained cavity modes as solutions of
diffraction integrals without the use of any modal expansion concept. Yet, once we
know the existence of these modes, we realize that the laser properties are best described
by modes. In other words, diffraction analysis of laser cavities has led us directly into the
modal concepts.

4.2.3 Properties of resonant modes in confocal cavities

Many conclusions can be drawn from the solution of the fields in the cavity discussed in
Section 4.2.2 above. Seven properties of the resonant modes of the confocal cavities are
presented below.

(a) The transverse field pattern
We normally designate the resonant modes as TEMlm modes, which have the transverse
variation given by Ulm. Figure 4.2 illustrates the transverse field distribution of lowest
order TEMlm modes in confocal resonators. There is also a set of TEM modes for an
electric field polarized in the x direction.

Note that the lth order mode will have l nodes or zeros in the x direction, while
the mth order mode will have m nodes in the y direction. This information is
important. It allows us to experimentally identify the mode order by examining its
intensity pattern. For a given transverse TEMlm mode, the cavity resonates at
frequencies whenever kb = qπ. The modes of the same transverse TEMlm

pattern that have different resonance frequencies are known as the longitudinal
modes.

TEM00 TEM10 TEM01 TEM11

TEM02 TEM20 TEM12 TEM21

Figure 4.2 Sketch of transverse field distribution of lower-order modes in confocal resonators. The arrows are
used to indicate the electric field patterns of various low-order TEMlm modes on the mirror. The
direction of the field is shown by the direction of the arrows and the magnitude of the field is
indicated by the size of the arrows.
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(b) The resonance frequency
At resonance, the phase shift after each round trip of propagation in the z direction must
be integers of 2π. Thus resonance in the z direction occurs only at discrete wavelengths
λlmq that correspond to various values of q multiples of 2π.

π � 4πb
λlmq

þ ðmþ lÞπ
����

���� ¼ 2qπ ð4:12Þ

Here m, l, and q are all integers. From here on, we designate modes belonging to
different l and m as transverse modes and modes belonging to different q longitudinal
modes. Note that, lower-order transverse modes have small integers or 0 for m and l,
while q may be a very large number, up to millions, for long cavities.

In summary, the resonance frequency flmq for a given order of mode, designated by
l, m, and q, is:

flmq ¼ c
4b

ð2qþ l þ mþ 1Þ ð4:13Þ

where c is the velocity of light in the cavity.
From Eq. (4.12), we see that the TEMlmmodes are degenerate with respect to l andm.

Degeneracy means independent modes with the same l + m value, but different l and m
values, will have the same resonance frequency. As we will show in the next section,
such degeneracy does not exist in non-confocal cavities. In principle, degenerate modes
may resonate at the same frequency. However, we usually do not want more than one
mode to resonate at the same frequency because it creates uncertainty in the modal
content of the total field. The mode degeneracy is a disadvantage of confocal resonators.
Therefore confocal configuration is not used in practical lasers.

TEMlm modes that have adjacent longitudinal mode orders, i.e. q and q + 1, will have
resonance frequencies separated by c/2b. “2b/c” is the round trip propagation time for a
wave front to travel around the cavity. Thus the frequency spacing of the longitudinal
modes is controlled by the mirror separation between the reflectors and the velocity of
light. For cavities filled with dielectric that has refractive index n, the resonance
frequency separation of the adjacent longitudinal modes will be 2bn/co where co is the
velocity of light in the free space.

(c) The orthogonality of the modes
Ulm is a set of orthogonal functions, i.e.

ða
�a

ða
�a

Fm
x
ffiffiffiffi
Λ

p

a

 !
Gn

y
ffiffiffiffi
Λ

p

a

 !
Fmʹ

x
ffiffiffiffi
Λ

p

a

 !
Gnʹ

y
ffiffiffiffi
Λ

p

a

 !
dx dy ¼

ða
�a

ða
�a

UmnUmʹnʹ dx dy ¼ 0;

ð4:14Þ
whenm ≠mʹ or n ≠ nʹ. Therefore these modes are orthogonal modes.4Moreover, it can be
shown mathematically that eigenfunctions of the integral equation of the form given in
Eq. (4.3) always form a complete set.

4 Orthogonality of modes can be proved in general only for cavity medium without loss.
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The orthogonality relation is very helpful in expanding any arbitrary electric
field U(x, y) in terms of Ulm.

5 For example, for any field U in the cavity, we can write

U ¼
X
l:m

alm Ulm ð4:15Þ

Then, because of the orthogonality relation,

alm ¼

ða
�a

ða
�a

U Ulmdx dy

ða
�a

ða
�a

Ulm
2 dx dy

ð4:16Þ

There are many important applications of the orthogonality properties of modes.
When an input radiation is coupled into an optical component that has TEMnm

modes, the input radiation Uin can be written as a summation of TEMlm modes. For
example, if U is symmetric in x and y, the coupling between TEMlm mode with an
odd value of l or m and any symmetric input radiation will be zero. In another
example, we may be interested in the power of a given U. The intensity of U is
proportional to UU*. Since Ulm is orthogonal, the total power isÐþa

�a

Ðþa

�a
UU�dxdy ¼P

lm
almalm� Ðþa

�a

Ðþa

�a
UlmUlm

�dxdy. In other words, the total power

is just the sum of the power in each mode.

(d) A simplified analytical expression of the field
For x and y << a, Ulm can be approximated by the product of a Hermite polynomial and a
Gaussian envelope,

Ey;lm ¼ Ulmðx; yÞ ¼ Γ½ðl=2Þ þ 1�Γ½ðm=2þ 1Þ�
Γðl þ 1ÞΓðmþ 1Þ Hl

x
ffiffiffiffi
Λ

p

a

 !
Hm

y
ffiffiffiffi
Λ

p

a

 !
e�πðx2þy2Þ=dλ

ð4:17Þ
Here, Γ is the usual gamma function, and Hermite polynomials are tabulated in many
physics and mathematics books.

H0ðxÞ ¼ 1;
H1ðxÞ ¼ 2x;
H2ðxÞ ¼ 4x2 � 2
. . .

HnðxÞ ¼ ð�1Þn ex2 ∂n

∂ xn
e�x2

ð4:18Þ

5 Any arbitrary TEM field polarized in the y direction can also be expressed as superposition of other complete
set of modes, such as plane waves or spherical waves. The selection of what specific form of modal
expansion to use will be based on the configuration of the device and mathematical convenience, such as
the availability of expressions for the modes.
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For l =m = 0, the lowest order Hermite polynomial is just 1. Thus the TEM00mode is just
a simple Gaussian function. An lth-order Hermite polynomial is an lth order algebraic
polynomial function. Thus, it will have l zeros. Even-order modes will be even functions
while odd-order modes will be odd functions. At large x and y values, polynomials are
weakly varying functions, while the exponential function dominates the amplitude
variation. The envelope of all TEMlm modes is a Gaussian function that is independent
of the mode order, l and m. Thus they are known as Gaussian modes.

(e) The spot size
The radius at which the exponential envelope term falls to 1/e of its maximum value at
x = 0 and y = 0 is the spot size ω

s
of the Gaussian modes on the mirror. At this distance

from x = 0 and y = 0, the intensity falls to 1/ e2 of its maximum value. Therefore, for all
TEMlm modes, the spot size on the mirror is:

ω
s
¼

ffiffiffiffiffiffiffiffiffiffi
bλ=π

p
ð4:19Þ

Note that the spot size on the mirror is independent of the mode order, l and m. It is
controlled only by the radius of curvature of the confocal mirror.

(f) The diffraction loss
There is a fractional energy loss per reflection, γD. It is commonly called the diffraction
loss per pass (i.e. the loss from propagation of the wave front from one reflector to the
second reflector and back again) of the TEMlmmode. It means that the diffracted field of
the first mirror is only partially captured by the second mirror. Because of this loss, the
magnitude of the eigenvalue χm is less than one. There are two ways to calculate γD.

(1)

γD ¼ 1� jχlχmj2 ð4:20Þ
(2) We can calculate γD from the ratio of the energy captured by the mirror to the total

energy in the E field at the mirror. i.e.:

γD ¼ 1�
∬
Ω
jEðx; y; zÞj2dxdy

Ð∞
�∞

Ð∞
�∞

jEðx; y; zÞj2dxdy
ð4:21Þ

Here E is given in Eqn. (4.17) and Ω is the aperture representing the mirror. Figure 4.3
shows γD for several lower-order modes of the confocal resonators, obtained by Boyd
and Gordon, as well as the γD obtained by Fox and Li in their numerical calculation for
two flat mirrors. This is a very important result. (1) Note that TEMlmq and TEMlmqʹ

modes have the same diffraction loss (i.e. the diffraction loss is independent of the
longitudinal mode order). The diffraction loss increases, in general, for higher-order
transverse modes. Note also that the diffraction loss varies rapidly as a function of a2/bλ.
In lasers, we like to have just a single TEM oscillating mode most of the time. If the
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diffraction loss is sufficiently high for higher-order modes, they will not oscillate.
Controlling the diffraction loss by the aperture size is a very important technique in
laser cavity design. (2) Note that, in conventional Fabry–Perot interferometers, a2/bλ is
much bigger than those used in laser cavities shown in Figure 4.1. Therefore diffraction
loss is insignificant for many modes in Fabry–Perot interferometers.

(g) The line width of resonances
In Section 2.2.2, we showed that the line width of Fabry–Perot resonance depends on the
reflectivity of the mirror. In laser cavities, even for mirrors with perfect reflectivity, there
will be diffraction loss. When we include the diffraction loss, the equivalent power
reflectivity of a mirror is the material reflectivity of the mirror multiplied by γD. For a
given total reflectivity, the line width of a given mode can be obtained from Eq. (2.41).
The higher-order transverse modes will have much larger line width. Longitudinal
modes of the same transverse order will have the same line width.

Knowing the properties of laser modes has many practical applications. For example:
(1) It allows us to identify experimentally the modes that we are observing. (2) The
minimum spot size of a laser beam is the beam waist of the Gaussian modes. (3) It allows
us to understand the difference between transverse and longitudinal modes and their
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Figure 4.3 Diffraction loss per pass for the lowest-order mode of a plane parallel cavity and for lower-order
modes of confocal cavities: a is the mirror size and b is the mirror spacing. The pairs of numbers
under the arrows refer to the transverse mode order l and m of the confocal cavity; n is the
refractive index of the material between reflectors.

82 Optical resonators and Gaussian beams

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139871419.005
Downloaded from https:/www.cambridge.org/core. New York University, on 21 Apr 2017 at 14:34:39, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.005
https:/www.cambridge.org/core


resonance frequencies. (4) It shows us how to control the diffraction loss of different
modes by varying a2/bλ. Laser oscillation occurs in any mode whenever the gain exceeds
the loss. (5) In order to have only a single-mode oscillation, one must control the
diffraction loss and the mirror separation d such that only one transverse and one
longitudinal mode has a diffraction loss profile that satisfies the oscillation condition
within the gain profile. The higher-order modes do not oscillate because their loss
exceeds the gain.

Cavities for surface emitting semiconductor lasers also have TEMmodes. Thus they
can also be analyzed by scalar wave equations. However, they usually have transverse
dimensions much larger than the separation of reflectors. Diffraction loss is not an
important issue in these cavities. Instead, how to obtain high reflectivity in the
reflectors becomes a major concern. Note that since the separation of reflectors is
so small the Fresnel and Fraunhoffer approximations of Kirchhoff’s integral are not
applicable.

4.2.4 Radiation fields inside and outside the cavity

Inside the cavity, the internal fieldU can be obtained by applying Kirchhoff’s diffraction
formula to U on the mirror. If the mirror is partially transmitting, there will also be a
radiation field outside the cavity.6 Since U must be continuous across a partially
transmitting surface, the propagation of U outside the cavity can also be calculated by
Kirchoff’s diffraction formula from U on the mirror. The result is

Eylmðx; y; zÞ ¼ A
2

1þ ξ2
Γ½ðm=2Þ þ 1�Γ½ðl=2Þ þ 1�

Γðmþ 1ÞΓðl þ 1Þ Hl
xffiffiffiffiffi
bλ
2π

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

1þ ξ2

vuut
0
BBBB@

1
CCCCA

� Hm
yffiffiffiffiffi
bλ
2π

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

1þ ξ2

vuut
0
BBBB@

1
CCCCAexp � kr2

bð1þ ξ2Þ

2
4

3
5

� exp �j k
b
2
ð1þ ξÞ þ ξ

1þ ξ2
r2
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2
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3
5� ð1þ l þ mÞ π

2
� ϕ

0
@

1
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8<
:

9=
;

0
@

1
A;

ð4:22Þ
Here r2 ¼ x2 þ y2 ; ξ ¼ 2z=b; tan θ ¼ ð1� ξÞ=ð1þ ξÞ, and A is the amplitude.

Eq. (4.22) implies that the amplitude spot size at any z is

6 Since the transmission is usually low, the outside field will have much smaller amplitude than the internal
field.
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ωðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bλ
2π

ð1þ ξ2Þ
r

ð4:23Þ

The intensity of the radiation is proportional to EyEy
*, thus the intensity falls to

1/e2 of its maximum value at the edge of the spot. Clearly the minimum spot size
ωo is at z = 0.

ωo ¼
ffiffiffiffiffi
bλ
2π

r
ð4:24Þ

The Gaussian beam at z = 0 is known as the beam waist. Note again that, at large x and y,
the amplitude variation will be dominated by the exponential function, instead of any
polynomial function dependent on l andm. Thus the spot size is independent of the order
of the mode.

Three important examples of how to use the above results are given here.

(a) The far field pattern of the TEM modes
From Eq. (4.23), we can calculate ωs/z for very large z. This ωs/z ratio is the radiation
beam width θrad of the TEM modes in the far field,

θrad ¼ tan�1 λ
πωo

 !
ffi λ

πωo
¼

ffiffiffiffiffi
2λ
πb

r
ð4:25Þ

If we compare this far field beam width, λ=πωo , with the beam width, λ/2lx or λ/2ly , of a
plane wave incident on a rectangular aperture, given in Eq. (3.22), we see immediately
the similarity between them. However, in the case of Eq. (3.22), we defined the radiation
intensity beam width by the first node of the radiation intensity; here we define the
radiation beam width when the intensity falls to 1/e2 of its maximum.

(b) A general expression for the TEMlm Gaussian modes
We can now rewrite Ey lm given in Eq. (4.22) in a form that has clear physical meaning
for different parts of the expression, as follows:

Eylm ¼ Eo

ωo

ω ðzÞHl

ffiffiffi
2

p
x

ω
ðzÞ

" #
Hm

ffiffiffi
2

p
y

ω
ðzÞ

" #
e
� r2

ω2 ðzÞ
e
�jk r2

2RðzÞ

� �
e�jkzþjðlþmþ1Þη ð4:26Þ

Here, Eo is just the amplitude, a constant, and

ω ¼ ωo 1þ z
zo

0
@

1
A

22
4

3
5
1=2

;   zo ¼ b
2
;

RðzÞ ¼ 1

z
½z2 þ zo

2� ;

η ¼ tan�1ðz=zoÞ ð4:27Þ
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The three exponential terms in the above expression have different physical meanings.
(1) The first exponential term exhibits the Gaussian envelope amplitude variation at
any z. This is the most commonly cited property of laser cavities. Because of this term,
the laser modes are also known as the Gaussian modes. (2) The second exponential term
exhibits the quadratic phase variation (i.e. the spherical wave front) with a specific radius
of curvature R(z) at each z value. Note that at z = ± d/2, R is just the curvature of the
confocal reflector, as we would expect. At z = 0, i.e. at the beam waist, the mode has a
planar wave front, as well as the smallest spot size. (3) The third exponential term
expresses the longitudinal phase shift in the z direction. The phase shift is important in
determining the resonance frequency.

Note that the electric field distribution of any TEMlm mode is independent of the size
of the reflector. The Gaussian beam already includes the diffraction effect without
explicitly invoking Kirchoff’s formula. Only the diffraction loss is dependent on the
reflector size.

The amplitude variation of the intensity is the main concern of conventional optics.
Since U*U is the intensity, we are not concerned with the phase variation of U in many
applications. However, in laser optics, the quadratic phase variation is also important.
For example: (1) high coupling efficiency between a specific laser mode and the mode of
another optical component requires good phase matching, as well as amplitude
matching of the two modes; (2) phase variations are important in analyzing the diffrac-
tion pattern; (3) as the laser light encounters a lens, the quadratic phase variation of the
lens will control the focusing of the laser radiation.

(c) An example to illustrate confocal cavity modes
Consider a confocal cavity with end reflectors separated by 30 cm and a = 0.5 mm. The
medium between the mirrors is air, i.e. n = 1. The wavelength is 1 μm. The reflectors are
99% reflection and 1% transmission in intensity. The confocal resonator modes will have

a beam waist size on the mirror,
ffiffiffiffiffiffiffiffiffiffi
bλ=π

p
= 0.3 mm, which is independent of and much

smaller than the mirror size. The mode pattern in the x and y directions will not be
dependent on the mirror size.

The mode pattern will depend only on the mode order, l and m, and bλ. According to
Eq. (4.23), the radiation field of the mode assumes its far field pattern when 4z2/b2 >> 1.

The beam divergence angle at the far field is given by Eq. (4.25) as
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ=π b

p
, which is

1.5 m radians and independent of the mode order. Notice that the condition for the
far field is different than the far field condition for Kirchhoff’s diffraction given in Eq.
(3.16). The Fraunhoffer condition requires a much longer distance to satisfy.

The diffraction loss per pass will depend on the mode order, l and m. For this cavity
a2/bλ = 0.83. From Figure 4.4 the diffraction loss for the TEM00 mode is approxi-
mately 10−3 per pass. The diffraction loss per pass for the TEM01 or TEM10 mode
jumps to 2 × 10 −2, while the loss per pass for the TEM11 mode is 5 × 10−2. The mirror
size, a, is much larger than the spot size. The mode pattern in the x and y variations are
the same. According to Eq. (4.21), the diffraction loss per pass will be independent of
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whether the mirrors are square or round in the cross section, as long as the area of the
mirror is approximately the same. Since the transmission is 1%, the total loss per pass
is 1.1 × 10−2 for the TEM00 mode, 3 × 10−2 for the TEM01 or TEM10 modes, and
6 × 10−2 for the TEM11 mode. Notice the sensitivity of the diffraction loss per pass to
changes in a2/bλ. In order to get much larger loss per pass for the TEM01, TEM10, or
TEM11 mode, it is necessary to reduce the mirror size, a. At a = 0.525 mm, the total
losses for these modes are: 1.02 × 10−2, 1.5 × 10−2, and 2 × 10−2. The increase of total
loss per pass for the higher-order modes will be much less significant for the larger
mirrors. A favorite practical trick to increase the differential losses of the higher-order
modes is to put an aperture in front of the mirror to reduce “a.” In other cases, the
effective “a” of the cavity may be limited by other considerations such as the size of
the laser tube.

4.3 Modes of non-confocal cavities

In this section, modes of non-confocal cavities with arbitrary spherical end reflectors at
a given distance of separation will be found by identifying them with the modes of a
virtual equivalent confocal cavity as follows. (1) We will first show that the reflectors of
any given confocal resonator can be replaced by other reflectors at various locations
that have an appropriate radius of curvature. Such a replacement will not change the
resonant mode pattern. We call this technique the formation of a new cavity for known
modes of confocal resonators. (2) We will then solve the inverse problem: how to find the
virtual equivalent confocal resonator for a given pair of non-identical spherical mirrors
at a given distance of separation. (3) Once we have found the virtual equivalent confocal
resonator we will obtain the properties of the modes of the original resonator, such as the
field pattern, diffraction loss, resonance frequencies, etc. from the modes of the virtual
resonator. (4) We will illustrate how to find the modes in non-confocal cavities via an
example.

4.3.1 Formation of a new cavity for known modes of confocal resonator

Let us first examine closely the consequence of the confocal resonator modes found in
Section 4.2. Eq. (4.26) implies that there is a constant phase surface for any resonator
mode whenever x, y, and z satisfy the condition,

zþ r2

2RðzÞ ¼ constant ð4:28Þ

It is clear that if a reflector with curvature R(z) is placed at this z position to
replace one of the confocal mirrors at z = ±d/2, we will still have the same
Gaussian transverse mode as the original confocal cavity. The frequency at
which resonance will occur will be shifted because η is a function of z, and the
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round trip distance of propagation will be different than that of the original
confocal resonator. However, the transverse mode variation will be the same.
The spot size on this mirror at z is given by the ω in Eq. (4.27). The diffraction
loss per pass will depend on the size of the reflectors.

In other words, a new optical cavity can be formed with mirrors at z1 and z2, provided

R1 ¼ z1 þ zo2

z1
   and  R2 ¼ z2 þ zo2

z2
ð4:29Þ

The transverse lmmodes of the original confocal resonator are also modes of this new
cavity. The resonant modes of the new cavity will have the same transverse field
variation as the modes of the original cavity. The diffraction loss of the modes will be
the same in the original cavity and in the new cavity when the mirror size varies
proportional to ωðzÞ. Figure 4.4 illustrates the surfaces of constant phase at two z
positions. Note that one of z1 and z2 can have a negative value, producing a negative R,
which means we have a curved mirror at z < 0 bending toward z = 0. As ǀz2ǀ or ǀz1ǀ
becomes very large, ǀR1ǀ and ǀR2ǀ become approximately the same as ǀz1ǀ or ǀz2ǀ, i.e. the
surface of constant phase is approximately the same as a spherical wave originated
from z = 0. As ǀz1ǀ or ǀz2ǀ becomes very small, ǀR1ǀor ǀR2ǀ becomes very much larger than
ǀz1ǀ or ǀz2ǀ. At z = 0, the surface of constant phase is a plane.

..
R1

R2

Confocal cavity, reflectors at z = ± zo,
R = 2zo

Beam waist at z = 0,
flat phase front, R = ∞

z

y

x

Spherical wave front with
radius R2

Spherical wave front with radius R1

Figure 4.4 Illustration of constant phase fronts of the modes of confocal resonators. The confocal cavity is
shown as two spherical reflectors at z = ±zo. The radius of these confocal spherical reflectors is 2zo.
The modes of the confocal cavity have a spherical wave front inside and outside the cavity.
Outside, a spherical wave front (dashed curve) is shown to have a radius of curvature R2. Inside, a
spherical wave front (dotted curve) is shown to have a radius of curvature R1. The waist of the
modes (solid line) is at z = 0; the modes have a flat wave front at this position.
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4.3.2 Finding the virtual equivalent confocal resonator for a given set of reflectors

If there are twomirrors with curvatures R1 and R2, separated by a distanceD, we can find
z1 and z2 to fit R1 and R2 according to Eq. (4.29) as follows:

z1 ¼ R1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1

2 � 4zo2
p

z2 ¼ R2

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

2 � 4zo2
p ð4:30Þ

Here, ± zo are the positions of the mirrors for the virtual equivalent confocal
resonator that will have the same transverse modes. However, we still need to
determine zo.

In order to find zo, we shall first observe some important conditions for zo. Assuming
z2 > z1, we obtain,

D ¼ z2 � z1 ¼ R2

2
� R1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

2 � 4zo2
p

	 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1

2 � 4z02
p

ð4:31Þ

Rearranging terms and squaring both sides to eliminate the square root, we obtain,

zo
2 ¼ Dð�R1 � DÞðR2 � DÞðR2 � R1 � DÞ

ðR2 � R1 � 2DÞ2 ð4:32Þ

Clearly zo must be a positive quantity in order to obtain real values for the equivalent
confocal resonator position.

Eq. (4.32) allows us to calculate zo with a real value only when the right-hand side is
positive. The requirement for the right-hand side to be positive imposes also certain
conditions on R1, R2, and D as follows. Let us assume that R1 is negative at negative
z1. Then, we must have:

DðjR1j � DÞðjR2j � DÞðjR1j þ jR2j � DÞ > 0 ð4:33Þ
There are only two ways to satisfy this condition. (1) 0 < D < ǀR1ǀ or ǀR2ǀ, whichever is
smaller. (2) ǀR1ǀ+ǀR2ǀ > D > ǀR1ǀ or ǀR2ǀ, whichever is larger. Condition (1) can be
expressed as 0 < (1 – D/ǀR1ǀ)(1 – D/ǀR2ǀ). Condition (2) can be expressed as (1 – D/
ǀR1ǀ)(1 –D/ǀR2ǀ) < 1. Hence the criterion for the existence of a resonator mode, equivalent
to a confocal resonator mode with zo given in Eq. (4.32), is

0 < 1� D
jR1j

� 	
1� D

jR2j
� 	

< 1 ð4:34Þ

If we plot this equation in a rectangular coordinate system with the two axes as
D/ǀR1ǀ and D/ǀR2ǀ, then the boundary of the product to be zero consists of two straight
lines, D/ǀR1ǀ = 1 and D/ǀR2ǀ = 1. On the other hand, the boundary of the product to be 1
is a hyperbola in this coordinate system. Figure 4.5 shows this plot. The shaded
regions show the combinations of R1, R2, and D that satisfy the inequality in Eq.
(4.34). Resonators with these combinations are called stable resonators. The regions
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outside of the shaded regions are called unstable resonator regions. The confocal
resonator configuration has D = ǀR1ǀ = ǀR2ǀ. Thus the confocal resonator can easily be
pushed into the unstable region by a slight misalignment of the cavity. In reality, the
assumptions used in our diffraction loss calculation breakdown near the boundaries of
stable and unstable regions. More precise calculations show the diffraction loss
increases rapidly from the stable to the unstable configuration. There is no sudden
change in diffraction loss from the stable to the unstable configuration. Unstable
resonator modes not only exist, they are used often in very high-power lasers so that
optical energy is not concentrated in a small physical region to avoid material damage
by the high electric field.

In summary, when the given R1, R2, andD satisfy the stability criterion, Eq. (4.34), zo,
z1, and z2 are determined from Eqs. (4.31) and (4.32). zo provides us with the specifica-
tions of the virtual equivalent confocal resonator. Note that the ± sign in Eq. (4.31) give
us two answers for z1 and for z2. The correct choice is the one that gives the correct D.

4.3.3 A formal procedure to find the resonant modes in non-confocal cavities

A formal procedure can now be set up to find the resonant modes in non-confocal
cavities for a given set of reflectors, according to the analysis presented in the
previous subsection. We will first test the stability of the given R1, R2, and D

R1D

R2D

=11–
R2

D
1–

R1

D

= 1R1D

= 1R2D

High-loss region

High-loss region

High-loss region

High-loss region

Stable regions

=1
R2

1–
D

1–
R1

D

Figure 4.5 The stable and unstable regions of laser cavities. The straight lines are the plots of the lower limit
of Eq. (4.34), and the hyperbola is the plot of the upper limit. The shaded region (i.e. the stable
region) shows the D/ǀR1ǀ and D/ǀR2ǀvalues that satisfy Eq (4.34). In this region, modes have low or
modest diffraction loss per pass. Cavities in the high loss region do not have D/ǀR1ǀ and D/ǀR2ǀ
values that satisfy Eq. (4.34). It is called the unstable region.
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according to Eq. (4.34). For stable cavities, we will find the field pattern, the diffraction
loss and the resonant frequency of their resonant modes by the following seven steps:

(1) Calculate zo, z1, and z2 from Eqs. (4.31) and (4.32). “z1 and z2” determine the center
position (i.e. the z = 0 plane) of the equivalent virtual confocal cavity. “z0” determines
the separation and the radius of curvature of the equivalent virtual confocal cavity.

(2) The minimum spot size of all modes at z = 0 is ω
o
¼ ffiffiffiffiffiffiffiffiffiffiffi

λzo=π
p

.
(3) The spot sizes on the two reflectors are:

ω
s1
¼ω

o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz1=zoÞ2

q
;  and ω

s2
¼ ω

o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz2=z0Þ2

q
ð4:35Þ

(4) Let the size of the two mirrors be a1 and a2. In order to calculate the diffraction loss
of a non-confocal resonator, we first find the equivalent sizes of the virtual confocal
mirrors with areas, aeq,1

2 and aeq,2
2, which will be proportional to a1

2 and a2
2. The

proportionality is the ratio of the areas of the spots on the actual mirrors to the areas
of the spots on the equivalent confocal resonator. The confocal resonator with aeq,1
and aeq,2 will have the same diffraction loss as the actual cavity with a1 and a2. Using
Eq. (4.35) as the guide, we obtain

aeq;1 ¼
ffiffiffi
2

p
ω

o

� �
a1=ω

s1
and aeq;2 ¼

ffiffiffi
2

p
ω

o

� �
a2=ω

s2
ð4:36Þ

(5) For symmetrical cavity, the diffraction loss per pass is calculated directly from the
confocal resonator with size aeq. For asymmetrical cavities, the diffraction loss per
pass is the average of the diffraction losses. The averaged diffraction loss per pass for
the cavity is ½ of the sum of the diffraction loss for the two different virtual confocal
cavities, one with mirror size aeq,1 and the second one with mirror size aeq,2.

(6) In general, the resonance wavelength, λlmq, is determined by

ð2πD=λlmqÞ ¼ qπ þ ðl þ mþ 1Þðtan�1z2=zo � tan�1z1=zoÞ ð4:37Þ
The differences in resonance frequency for different longitudinal order q and
transverse order l and m are:

fl;m;qþ1 � fl;m;q ¼ c=2D ;

flʹ;mʹ;q � fl;m;q ¼ c
2πD

π
2
� tan�1 z2

zo
� tan�1 z1

zo

0
@

1
Aðlʹ� l þ mʹ� mÞ ð4:38Þ

Note again that the difference in resonance frequency for two adjacent longitudinal
orders is just 1/Twhere T is the round trip propagation time inside the cavity, T = 2D/c.
If the cavity is filled with a dielectric that has an index of refraction n, T = 2nD/c. The
transverse modes are still degenerate. All modes that have the same l + m order will
have the same resonance frequency.

(7) Practical resonators do not use end mirrors with square cross-sections. It is clear
from the previous discussions that the mode patterns (i.e. the Hermite polynomials
and the Gaussian envelope) will be affected only by the curvature and the position of
the reflector, not by the shape of the cross-section, e.g. whether it is square or round.
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Thus the modes derived for the square mirrors are equally applicable to the round
mirrors. From Eq. (4.21), it is clear that the diffraction loss per pass depends
primarily on the area Ω of the mirror. Round or square mirrors with the same size
are likely to have the same diffraction loss per pass. Thus Figure 4.4 is also used to
estimate the diffraction loss for round mirrors.

4.3.4 An example of resonant modes in a non-confocal cavity

Let us consider a semi-spherical cavity that has one flat reflector with a1 = 2 mm and one
spherical reflector with radius of curvature R2 = 0.7 m and a2 = 0.6 mm, separated by a
distance of D = 30 cm. The wavelength is 1 μm. The medium between reflectors is air.
Clearly, the stability criterion in Eq. (4.34) is satisfied so that we can find the modes and
their diffraction losses by means of the virtual equivalent confocal cavity. Following the
process outlined in Section 4.3.3, we obtain the following results.

For the equivalent virtual confocal cavity, zo = [D(R2 – D)]1/2 = 0.346410 m, z1 = 0,
z2 = 0.3 m. Notice that there are two solutions for z2 given in Eq. (4.32). The correct
solution is the one that yields z2 – z1 = D.

The spot sizes are ωo = 0.332063 mm, ωs1 = 0.332063 mm, and ωs2 = 1.32288 ×
0.332063 = 0.439278 mm.

The appropriate sizes of the equivalent confocal reflectors for the calculation of
diffraction loss are: aeq,1 = 2.82843 mm, aeq,2 = 0.641427 mm.

For reflector #1, a2/2zoλ is 11.5. For reflector #2, a2/2zoλ is 0.59. Therefore, the
diffraction loss per pass of the TEM00 obtained from Figure 4.4 for the flat mirror is
negligible, while the diffraction loss per pass for the second mirror is 5 × 10−3. The
averaged diffraction loss per pass for the cavity is 2.5 × 10−3. The averaged diffraction
loss per pass for the TEM01 mode will be approximately 5%.

In this section, we have not only shown how a non-confocal cavity can be analyzed,
and designed from confocal cavity analysis. We have also shown important properties of
non-confocal resonators, such as the stability diagram in Figure 4.5. The understanding
of these properties allows us to determine the stability of any cavity configuration
without detailed analyses.

From the discussion presented in Section 4.2.4, we observe that the Gaussian mode
pattern also extends to the outside of non-confocal cavities. This is a very important
result. It means that any Gaussian beam propagating through different environment
remains a Gaussian beam.

4.4 The propagation and the transformation of Gaussian beams
(the ABCD matrix)

There are many forms of the solutions of Maxwell’s equations in the literature, such as
plane waves, cylindrical waves, spherical waves, etc. These solutions have been used to
analyze radiation fields propagating in different components whenever it is appropriate.
The Gaussian beam is one of them.
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Gaussian modes were shown in the last section to form a complete set. Any
radiation field can be represented by a summation of Gaussian modes. The advantage
of the use of a Gaussian beam to represent approximately any radiation field is that
fields propagating through reasonably large apertures retain the same functional
variations, except for a reduction in their amplitudes. Thus the wave equation is
satisfied, and the diffraction effect is accounted for without the use of Kirchoff ’s
diffraction integral. Furthermore, we will show in the following section that
Gaussian modes are also natural mathematical solutions of Maxwell’s equations
without solving the scalar wave integral equation and without the existence of a
cavity [5].

4.4.1 A Gaussian mode as a solution of Maxwell’s equation

Consider, Maxwell’s equations,

∇ � h ¼ ε∂e=∂t; ∇� e ¼ �μ∂h=∂t; ∇• ðεeÞ ¼ 0 ð4:39Þ
In the most general case ε can be a function of (x,y,z). From ∇�∇� e, we obtain

∇2e � εμ
∂2e
∂ t2

¼ �∇
1

ε
e �∇ε

� 	
ð4:40Þ

If∇ε⊥e (such as the ε variation in an optical fiber) or if∇ε is small, we can then replace
the right-hand side with 0. If we further assume the time variation to be ejωt, then the
equation for the electric field is:

∇2e þ k2ðrÞ e ¼ 0;

where k2ðrÞ ¼ ω2=μεðrÞ ð4:41Þ
When the medium is homogeneous, k is a constant. Note that Eq. (4.41) is similar to
Eq. (3.4).

Let E be a linearly polarized field and,

Eðx; y; zÞ ¼ ψðx; y; zÞe�jkz ð4:42Þ
We will now show below in five mathematical steps that, in a homogeneous
medium, the circular symmetric ψ has a functional form identical to that of Gaussian
modes.

(1) Substituting Eq. (4.42) into Eq. (4.41), we obtain in a cylindrical coordinate with
∂ψ/∂θ = 0:

∇t
2ψ � 2jk

∂ψ
∂z

¼ 0 ;

where

∇2 ¼ ∇t
2 þ ∂2

∂ z2
¼ ∂2

∂ r2
þ 1

r
∂
∂ r

þ ∂2

∂ z2

ð4:43Þ
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(2) Let

ψ ¼ e
�j pðzÞþ k

2qðzÞ r
2

h i
ð4:44Þ

Substituting this functional form into the equation, we obtain

� k
q

� 	2

r2 � 2j
k
q

� 	
� k2r2

∂
∂ z

1

q

� 	
� 2k

∂ p
∂ z

¼ 0 ð4:45Þ

This equation must hold for all values of r. Thus, the terms involving different
powers of r must vanish simultaneously, i.e.

1

q2
þ ∂
∂ z

1

q

� 	
¼ 0;  and 

∂
∂ z

p ¼ �j
q

ð4:46Þ

(3) Let 1/q = (dS/dz)/S, then the equation for S is d2 S/dz2 = 0. The solution for S is
obviously,

S ¼ azþ b; and q ¼ S=ðdS=dzÞ ¼ zþ b=a ¼ zþ qo ð4:47Þ
Substituting this solution to the equation for p(z), we obtain

∂ p
∂ z

¼ � j
zþ qo

; pðzÞ ¼ � j ln 1þ z
qo

� 	
ð4:48Þ

(4) The objective of finding the solutions for p and q is to show that ψ has the functional
form of a TEM00 Gaussian beam. Substituting qo by a new constant qo = jπωo

2/λ, we
obtain

e�jpðzÞ ¼ e
�ln 1�

jλ z
πωo

2

0
@

1
A
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðλ2z2=π2ωo
4Þ

q e
j tan�1 λ z

πωo
2

0
@

1
A
;

e

�jkr2

2ðzþqoÞ ¼ e

�r2

ωo

2 1þ
λ z

πωo
2

0
@

1
A

2
" #

e

�jkr2

2z 1þ
πωo

2

λ z

0
@

1
A2

 !
 

ð4:49Þ

(5) Substituting the above results into the expression for ψ, we obtain an expression for
E identical to the TEM00 mode in Eq. (4.26) of Section 4.1,

E ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðλ2 z2=π2ωo

4Þ
q e

�r2

ωo2 1þ λ z
πωo2

h i2
 �
e

�jkr2

2z 1þ πωo2
λ z

� �2h i
e�jkze

j tan�1 λ z
πωo2

� �
ð4:50Þ

In summary, a Gaussian beam is a natural solution of Maxwell’s vector wave
equations with ∇ε ⊥ e or ∇ε ffi 0. We have only derived the Gaussian mode for a
homogeneous media. Yariv showed in his book that when k2(r) = k2 – k k2 r2 in an
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inhomogeneous graded index medium, the solution of Eq. (4.43) for a circular
symmetric mode is still a Gaussian beam [5].

4.4.2 The physical meaning of the terms in the Gaussian beam expression

We note that, for a given Gaussian mode, we can describe its functional variation at
various values of z by

E ¼ Aðx; yÞe�jkze�jpðzÞe
�jk r2

2qðzÞ
 ;

Aðx; yÞ ¼ EoHl

ffiffiffi
2

p
x

ωðzÞ

2
4

3
5Hm

ffiffiffi
2

p
y

ωðzÞ

2
4

3
5 ð4:51Þ

Here, the coordinate z starts at the beamwaist where the spot size isωo . TheE given here
is taken from Eq. (4.26)

The first term, A, describes the x and y variation (i.e. the field pattern) of E. At two
different z positions, z1 and z2, the A function will be the same. A(x,y) is different for
different l and m orders of the mode.

The second term, e−jkz, and the third term, e−jpz, are simple functions of z. They specify
the phase of the beam as the beam propagates from one z position to another. They are
independent of x and y. p is dependent on the mode order, l and m.

e�jpðzÞ ¼
ωo

ωðzÞ e
j ðlþmþ1Þtan�1

λ z
πω2

o

0
@

1
A

ð4:52Þ

Thus, “p + kz” determines the phase of E at different z.
The 1/q term carries the most important physical meaning of the Gaussian beam. This

term has a real part, which specifies the curvature of the phase front, and an imaginary
part, which specifies the Gaussian variation of the amplitude at any z. To be more
specific,

1

q
¼ 1

R
� j2

kω2
ð4:53Þ

q is independent of the mode order, l and m.
q will be different at different z positions,

1

q
¼ 1

zþ qo
ð4:54Þ

From Eq. (4.54), the q values at two z values are related to each other by

qðz2Þ –qðz1Þ ¼ z2–z1 ð4:55Þ
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In the following sub-sections, 4.4.3 to 4.4.9, how a Gaussian beam propagates
through various components will be presented. This will demonstrate clearly the
advantage of using Gaussian beams to analyze propagation of waves with diffraction
loss.

4.4.3 The analysis of Gaussian beam propagation by matrix transformation

It is important to note that as a Gaussian beam propagates, E is always given by
Eq. (4.51). The relationship between q(z1), call it q1, and q(z2), call it q2, is linear.
Instead of writing the Gaussian beam as a function of coordinates x, y, and z,
we may write the relation between q1 and q2 in the formal form of a linear
transformation,

q2 ¼ Aq1 þ B
Cq1 þ D

ð4:56Þ

where A = 1, B = z2 – z1, C = 0, D = 1, q1 = q(z1), and q2 = q(z2). In other words,
q2 is transformed from q1 by a linear transformation with the above ABCD
coefficients.

A linear transformation relationship also exists between q values for Gaussian
beams transmitting or reflecting from various optical components. When a
Gaussian beam is incident on an ideal thin lens, we have learned from
Eq. (3.30) that the transmitted field immediately after the lens, Et, is related to
the incident field Einc by the transmission function of the lens, which is a quadratic
phase shift, i.e.

Et ¼ Eince
j πλf ðx2þy2Þ ¼ Ae�jkze�j pðzÞe�jπλ

1
q�1

fð Þr2 ð4:57Þ
Therefore, the transmitted beamwill have the same form as given in Eq. (4.51). Let q1 be
the q parameter before the lens and q2 the q parameter after the lens. q2 is related to q1 of
the incident beam by

1

q2
¼ 1

q1
� 1

f
ð4:58Þ

When we separate the imaginary and the real part of Eq. (4.58), we obtain

ω2 ¼ ω1;  
1

R2
¼ 1

R1
� 1

f
ð4:59Þ

It implies that the spot size is not changed by transmission through a thin
lens. However, the radius of curvature of the phase front is changed according to
Eq. (4.59). We conclude that q2 and q1 are again related by Eq. (4.56) with A = 1,
B = 0, C = –1/f, and D = 1. p does not change when the beam propagates through a
thin lens.

If the lens has a finite aperture, the transmitted Gaussian beam will have
the same functional variation as for an infinite aperture. However, the amplitude
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will be reduced. The reduction in amplitude will be identical to the amplitude
reduction calculated from the diffraction loss per pass caused by the same
aperture.

The ABCD transformation method is applicable to propagation of Gaussian modes
through many optical elements. The ABCD transformation coefficients of various
optical components, such as those shown in Table 4.1 are also given in other text-
books [5]. It does not include the diffraction loss.

Table 4.1. The ABCD transmission matrix for some common optical elements and media.

Transformation description Figure Matrix

Homogeneous medium:
length d 

Thin lens:

Focal length f

(f  >  0, converging;
f  <  0, diverging)

Dielectric interface:

Refractive indices

n1, n2

Spherical dielectric interface:

Radius R

Spherical mirror:

Radius of curvature R

in

out

d
Z1 Z2

in out

in out

n1 n2

in

R

out

n1 n2

in

out

R

10
1 d

1
–2

01

R

01

n2

n1

n2 · R
n2 – n1

1
–1

01

f

0

01

n2

n1
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If a Gaussian beam propagates through more than one optical component, the
q parameters at various positions can be determined by ABCD transformations in
succession. For two successive transformations:

q3 ¼ A2q2 þ B2

C2q2 þ D2
;  q2 ¼ A1q1 þ B1

C1q1 þ D1
;  thus

q3 ¼ ðA1A2 þ B2C1Þq1 þ ðA2B1 þ B2D1Þ
ðA1C2 þ C1D2Þq1 þ ðB1C2 þ D1D2Þ ¼ Aq1 þ B

Cq1 þ D
 

ð4:60Þ

The ABCD coefficients for q3 in terms of q1 in the above equation are simply the
coefficients obtained by multiplying matrix A1 B1 C1 D1 by matrix A2 B2 C2 D2, as
follows:

A B

C D

������
������ ¼

A2 B2

C2 D2

������
������ �

A1 B1

C1 D1

������
������ ð4:61Þ

After the Gaussian beam has propagated through many optical components, this
matrix multiplication process can be repeated many times to obtain the ABCD coeffi-
cients for the total transformation matrix.

q of the final output Gaussian beam is related to the input q by Eq. (4.56) where the
ABCD coefficients are given by Eq. (4.61). Thus the ABCD coefficients are called the
ABCD transformation matrices. It can be shown that any ABCD matrix is a unitary
matrix, i.e. AD – BC = 1. It is important to keep in mind that the order of multiplication
must follow the order in which the Gaussian beam is propagating through various
elements. It cannot be taken for granted that permutation of the order of matrix multi-
plication will give the same result.

p changes only when the z position changes. Therefore when the TEMlm mode
passes through any component that has zero thickness, such as a thin lens, p does
not change. After the mode has propagated through many elements and distances,
the new p is obtained by using the distance of propagation as z. A(x,y) does not
change.

4.4.4 Gaussian beam passing through a lens

Consider a Gaussian beam at λ = 1 μmwithωo = 0.4 mm at z = 0. It propagates through
a thin lens with f = 2 mm at z = 0.1 m. Let us find the field pattern at z = 0.1 m after the
lens.

There are two ways to find the answer: (1) We can find the answer using Eq. (4.26).

The given Gaussian beam has zo ¼ πωo
2=λ ¼ 0:502665m. From Eq. (4.26),

we also know the field pattern for any TEMlm mode incident on the lens at z = 0.1 m.
It has a Gaussian amplitude variation with ω = 0.407839 mm, a radius
of curvature for the phase front R = 2.62662 m, and a phase shift given by η = 0.1964
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radians. According to Eq. (4.57) the radiation field emerging from the thin lens will have
the same phase and amplitude variation. However, the radius of curvature for the phase
front will now be Rf/(R – f), which is 2.00152 × 10−3 m. We would intuitively expect
such an answer because the lens should create a focused spot near its focal plane. (2) The
answer could also be obtained very quickly from the ABCD matrix transformation as
follows:

A B
C D

����
���� ¼

1 0�1

0:002
1

������
������ � 1 0:1

0 1

����
���� ¼ 1 0:1

�500 �49

����
����

At z = 0, q is jkω2
0/2, which is j0.502655. Therefore at the exit plane of the lens,

1

q
¼ Cq1 þ D

Aq1 þ B
¼ �500ðj0:502655Þ � 49

j0:502655þ 0:1
¼ �131:231� j0:502645

0:262662

¼ �499:619� j1:91366 :

Here the real part of 1/q is 1/R, while the imaginary part –λ/πω2. Note
that the complete expression of the field is given in Eqs. (4.51) and (4.52) with this q
value.

4.4.5 Gaussian beam passing through a spatial filter

Let us reconsider the example in Section 3.2.4(e) when the incident beam is a
Gaussian beam. The ABCD transformation matrix method lets us find the
main propagation characteristics of the incident beam without any integration.
We will need to perform integration only when we want to know the diffraction
loss.

Figures 3.8 and 3.9 have already illustrated the geometrical configuration of this
spatial filtering set-up. Let the incident beam be a TEM00 Gaussian beam incident on the
film at z = 0. The incident beam is:

E ¼ Eoe
�jkze�jpðzÞe�jk r2

2qo

The beam waist is at z = 0 with spot size ωo , ωo << d. Notice now the effective beam
size is controlled by ωo and not by d. Therefore,

1

qo
¼ � j2

kωo
2

For d > ωo , the aperture size d does not change the functional form of theGaussian beam. It
introduces a reduction of the amplitude because of the diffraction loss caused by the
aperture. At z = 0, immediately after the film with the transmission function t in
Eq. (3.35), we obtain
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E ¼ 1

2
Eoe

�jkze�jpðzÞe
�jk r2

2q0

þ 1

4
Eoe

j2πHxe�jkze�jpðzÞe
�jk r2

2qo

þ 1

4
Eoe

�j2πHxe�jkze�jpðzÞe
�jk r2

2qo ð4:62Þ

Each of the three terms in the above expression is still a Gaussian beam. The first term
is the same as the incident Gaussian beam with half the amplitude. For λH << 1,
e j2πHxe−jkz is a propagating beam in the x–z plane at an angle –θ with respect to the
z axis where sinθ = λH. Similarly, the third term is a propagating beam in the x–z plane at
an angle θ with respect to the z axis. For small θ, the three beams are still approximately
Gaussian beams in their three respective directions of propagation, i.e. the z axis, the +θ
axis and the –θ axis. Therefore, we will treat them as three separate Gaussian beams
along those directions.

After the lens at z = 0, we have

E ¼ 1

2
Eoe

�jkze�jpðzÞe
�jk r2

2q1

þ 1

4
Eoe

�jkze�jpðzÞe�j2πHxe
�jk r2

2q1

þ 1

4
Eoe

�jkze�jpðzÞeþj2πHxe
�jk r2

2q1

ð4:63Þ

where

1

q1
¼ 1

qo
� 1

f
;   q1 ¼ �ðkωo

2Þ2f þ j2kωo
2f 2

ðkωo
2Þ2 þ ð2f Þ2 ð4:64Þ

In front of the screen at z = f, the three beams are:

E ¼ 1

2
Eoe

�jkf e�jpðz¼f Þe
�jk r2

2q2

þ 
1

4
Eoe

�jkf e�j2πHxe�jpðz¼f Þe
�jk r2

2q2

þ 
1

4
Eoe

�jkf eþj2πHxe�jpðz¼f Þe
�jk r2

2q2

ð4:65Þ
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where

q2 ¼ q1 þ f ¼ 2jf 2

kωo
2 þ 2jf

;  
1

q2
¼ þ 1

f
� j

kωo
2

2f 2
¼ 1

R2
� j2
kω2

2
ð4:66Þ

Here R2 is the curvature of the Gaussian beam and ω2 is the spot size at z = f.
Therefore,

R2 ¼ f  and  ω2 ¼ λ f
π ωo

ð4:67Þ

This means that the curvature of the beam is f and that the spot size is proportional to
f/ωo. This result fits our intuition since we expect an ideal lens to focus a plane wave
into a spherical wave with a focused spot size proportional to the focal length
and inversely proportional to the incident beam size. For small θ, we have approxi-
mated the distance along the respective directions of propagation by z in this
calculation.

The centers of the three beams are at z = 0 and z ffi ±θf ffi ±λHf. The beam centered at
z = 0 is always blocked by the screen. In order for the two beams in the ±θ directions to
pass, we need

λHf þ f λ
πωo

 〈 l 〈 2λHf � 2f λ
πωo

ð4:68Þ

This is the same result we obtained in the example in Section 3.2.4(e).
When the two transmitted beams travels to z = 2f, in front of the second lens, the q

parameter of the Gaussian beams is q3, where

q3 ¼ q2 þ f ;  q3 ¼ fkωo
2

kωo
2 � 2jf

;  and 
1

q3
¼ 1

f
� 2j
kωo

2
: ð4:69Þ

After the lens, the parameter q4 is

1

q4
¼ 1

q3
� 1

f
¼ � 2j

kωo
2

ð4:70Þ

Therefore we get back two original Gaussian beams, now propagating in the ±θ direc-
tions with the same spot size. There will be some diffraction losses associated with the
aperture and the screen.

Comparing the solution presented in this section with the solution presented in
Section 3.2.4(e), the Gaussian beam analysis is much simpler.

4.4.6 Gaussian beam passing through a prism

A thin prism is illustrated in Figure 4.6. Let the prism bemade of material with refractive
index n at wavelength λ. Let the prism axis be the x axis and the base of the prism be
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parallel to the y axis. The prism has a wedge angle α. The vertex of the prism is placed at
x = h and z = 0. Let a Gaussian beam

Einc ¼ Aðx; yÞe�jkze�jpðzÞe�jkðx
2þy2Þ
2qðzÞ ð4:71Þ

be incident on the prism. The symbols in the expression for the incident E have already
been defined and explained in Eq. (4.51).

Similar to a thin lens, discussed in Section 4.4.4, there is a phase change for any
beam propagating through a thin prism. For the geometry shown in Figure 4.6, the
phase change from any incident beam to the outgoing beam can be derived from
phase changes of small optical rays passing through the prism at different x
positions. The transfer function t for any beam passing through a thin prism was
discussed in Section 1.3.4 (c) for plane waves. It is:

t ¼ e�jkðn�1Þαðh�xÞ ð4:72Þ
Here we have assumed that the beams are located well below x = h so that the diffraction
from the prism vertex at x = h can be neglected. α is small so that sinαffi α. Therefore, the
output beam will be

Eout ¼ Aðx; yÞe�jkðn�1Þαhe�jkze�jpðzÞe jkðn�1Þαxe�jkðx
2þy2Þ
2qðzÞ ð4:73Þ

z

y

x

Z ’

x = h
Input Gaussian
beam

X’

Prism

(n    – 1)α

Output Gaussian beam

α

Figure 4.6 Illustration of a Gaussian beam passing through a prism. The phase shift of an optical beam passing
through a thin prism can be represented as a phase shift equivalent to tilting the wave from the
direction of propagation in xyz coordinates to a direction in xʹyʹzʹ coordinates. The tilt angle is (n – 1)α,
where n is the index of prism material at the wavelength and α is the vertex angle of the prism.
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If we define a new set of coordinates, xʹ and zʹ, such that they are rotated from x and z by
an angle (n – 1)α, as shown in Figure 4.7, where

xʹ ¼ x cos½ðn� 1Þα� � z sin½ðn� 1Þα� ffi x� zðn� 1Þα
zʹ ¼ x sin½ðn� 1Þα� þ z cos½ðn� 1Þα� ffi xðn� 1Þαþ z

ð4:74Þ

then we can rewrite E approximately as:

Eout ¼ Ae�jkðn�1Þαke�jkzʹe�jpðzʹÞe�jkðxʹ
2þy2Þ
2qðzʹÞ ð4:75Þ

Here, we have neglected terms involving α2, and we have made the approximation
pðzÞffi pðzʹÞ and qðzÞffi qðzʹÞ. The term e�jkðn�1Þαk is just a constant phase factor.
Therefore Eout describes approximately a Gaussian beam propagating in the new zʹ
direction without any change of Gaussian beam parameters. Since n is wavelength
dependent, the direction of the output beam will be wavelength dependent, as we
would expect for chromatic dispersion. However, because of the change in direction
of propagation there is no simple way to express the transition as an ABCD
transformation. When the beam size becomes comparable to the size of the prism,
there will be diffraction losses. The diffraction loss can be calculated according to
Eq. (4.21). When there is diffraction loss the coefficient A in Eq. (4.75) will be reduced
accordingly.

4.4.7 Diffraction of a Gaussian beam by a grating

Diffraction of a plane wave by a grating was discussed in Section 1.5. Analysis of
the diffraction of a Gaussian beam is similar to that. However, the analysis
now includes the effect of the finite size of the optical beam. Let there be a
transmission grating with its transmission function t identical to that used in
Section 1.5.

t ¼ toð1þ Δt cos2πfgyÞ ¼ to þ to
Δt
2
ej2πfgy þ to

Δt
2
e�j2πfgy ð4:76Þ

Let there be an input Gaussian beam,

Einc ¼ Aðx; yÞe�jkze�jpðzÞe�jkðx
2þy2Þ
2qðzÞ ð4:77Þ

The output beam is

Eout ¼ toAʹðx; yÞ 1þ Δt
2
e�j2πfgy þ Δt

2
eþj2πgfy

� 	
e�jkze�jpðzÞe�jkðx

2þy2Þ
2qðzÞ ð4:78Þ

There are three terms in Eq. (4.78). The first term is a Gaussian beam in the direction
of the z axis. The second term is a diffracted Gaussin beam in the direction of θ+1, called

the +1 order diffracted wave where θþ1 ¼ sin�1ð2πfg=βÞ. The third term is a diffracted
Gaussian beam in the direction of θ−1, called the –1 order diffracted wave where
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θ�1 ¼ sin�1ð�2πfg=βÞ. Aʹ will be proportional to A. The proportion will be determined
by the diffraction loss, which can be calculated from Eq. (4.21). Diffraction by gratings
of different groove periodicity and shape can be analyzed in a similar way to the
discussion using Eq. (1.103).

4.4.8 Focusing a Gaussian beam

Intuitively, we know that in order to focus a beam to a distance d away from a lens or
mirror, we use a lens or a mirror with a focal length of d. The smaller the value of d, the
smaller the focused spot. However, we will always wonder whether the focusing will be
affected by the characteristics of the Gaussian beam or by the location of the lens. It is
also instructive to see how the focusing of a Gaussian beam can be analyzed by the
ABCD transformation method. This analysis will allow us to calculate the value of f that
will yield the smallest focused spot at a given distance away and the size of the focused
spot.

Figure 4.7 shows a laser oscillating in the TEM00 mode and a lens focusing the laser
mode. ωo of the TEM00 oscillating mode is 1 mm on the flat mirror located at z = 0. Let
the wavelength be 1 μm. A lens of focal length f is used to focus the laser beam to a
distance 10 mm after the lens.

For a semi-spherical laser cavity the beam waist of the resonant mode is on the flat
mirror. The Gaussian beam parameter, q1, of this oscillating mode at z = 0 is

1

q1
¼ �j

1

π
   1=meter ð4:79Þ

The lens is located at z = 0.5 m away. The Gaussian beam parameter at z = 0.5 m, q2, is

Focused spot

Lens with focal length f

Laser cavity

Flat output mirrorCurved
mirror

0.5 m

10 mm

z

x

y

z = 0

Figure 4.7 Illustration of a Gaussian beam focused by a lens. The laser is oscillating in the TEM00mode of the
cavity. The laser radiation from the flat reflector needs to be focused to a spot 10 mm beyond the
lens. The Gaussian beam transformtion technique is used to find the optimal focal length of
the lens.
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q2 ¼ q1 þ 0:5 ¼ jπ þ 0:5;  
1

q2
¼ 0:5

π2 þ ð0:5Þ2 � j
π

π2 þ ð0:5Þ2 ð4:80Þ

Immediately after the lens, q3 is

1

q3
¼ 0:5

π2 þ ð0:5Þ2 �
1

f

" #
� j

π

π2 þ ð0:5Þ2 ð4:81Þ

We still have a Gaussian beam after the lens. At the intended focusing position,
1=q4 ¼ 1=ðq3 þ 0:01Þ. We obtain the smallest focused spot if the Gaussian beam
waist is located at that position. Therefore the correct f for us to use is the f value
that will yield a zero for the real part of 1/q4. In other words, q4 must be imaginary, or
the real part of q3 should be –0.01. the numerical solution of that condition yields f =
0.00999516 m. In order to obtain the spot size at the focus, we need to find the
imaginary part of 1/q4. Note that Im[q4] = Im[q3]. Substitution of the f value into
1/q3 yields a spot size of 9.88 μm at the focus. Clearly, a change in the position of the
lens or in the Gaussian parameter q1 will change very slightly the desired f value to use.
On the other hand, if we reduce the distance of the focused spot to the lens, we will
obtain a smaller focused spot size.

4.4.9 An example of Gaussian mode matching

Let there be a Gaussian beam with parameter qa at location A. Let there be an optical
instrument that requires a Gaussian beam with parameter qb at location B, as illustrated
in Figure 4.8. A lens with focal length f is placed at specific distance d from A to match
the Gaussian beamwith qa at Awith a Gaussian beamwith qb at B.We can find f and d by
the ABCD transformation method as follows.

Gaussian
beam with
parameter qa

BA

Gaussian
beam with
parameter qb

Lens with focal
length f

L

d

Figure 4.8 Matching a Gaussian beam at A to a Gaussian beam at B. A lens can be used to match a Gaussian
beam at A to a different Gaussian beam at B. The Gaussian beam transformation technique can be
used to determine the position and the proper focal length of the lens.
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We know qb is related to qa as

qb ¼ ðqa þ dÞf
f � ðqa þ dÞ þ ðL� dÞ ð4:82Þ

qa and qb have two differences, the difference in the real part (i.e. the curvature of the
Gaussian beam wave front) and the difference in the imaginary part (i.e. the Gaussian
spot size). We have two algebraic equations for f and d that can be easily obtained from
Eq. (4.82) to match the two differences in qa and qb. Michael Spurr and Malcolm
Dunn [6] have shown that high school geometry can be used to solve these algebraic
problems arising from Gaussian beam optics.

4.4.10 Modes in complex cavities

When there are many optical elements in a cavity, the q parameter of the Gaussian beam
at different positions in such a cavity can be found by considering the transformation of q
after a round trip in the cavity.

Let the q parameter at any point in the cavity be qs. The final q parameter after a round
trip is (Aqs + B)/(Cqs +D). For a stable mode in the cavity, it must also be the original qs.
Thus the equation for qs is:

qs ¼ Aqs þ B
Cqs þ D

ð4:83Þ

This is a quadratic algebraic equation for 1/qs. The solution is

1

qs
¼ D� A

2B
�

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ½ðDþ AÞ=2�2

q
B

¼ D� A
2B

� j sin θ
B

;

where  cos ϑ ¼ Dþ A
2

ð4:84Þ

We learned earlier that

1

qs
¼ 1

R
� j

λ
πω2

ð4:85Þ

For a stable resonator, R is the radius of curvature of the spherical phase front, and ω is
the spot size. Therefore the magnitude of cos θ must be less than 1, or

D þ A
2

����
���� < 1 ð4:86Þ

For simple cavities, Eq. (4.86) is identical to Eq. (4.34). ǀ(D+A)/2 ǀ = 1 is also represented
by the boundary between stable and unstable regions shown in Figure 4.5.

Once q at various positions in the cavity is known, we can find the position at which q
is purely imaginary. This position is that of the origin of the z axis, i.e. z = 0, for the
virtual equivalent confocal resonator. At this position, the beam waist is ωo. The lmth
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mode of the equivalent virtual confocal resonator is given by Eqs. (4.51) and (4.52) in
terms of these coordinates and the complex q values. The phase shift for the round trip
propagation depends on the mode order, l and m, and the total distance of propagation
from z = 0. The resonance frequency is determined by the wavelength at which the round
trip phase shift is 2π. The diffraction loss per pass of each optical element encountered in
the round trip path can be calculated by the same procedure as we have used for
reflectors in non-confocal resonators at the end of Section 4.2.3.

4.4.11 An example of the resonance mode in a ring cavity

A ring cavity is illustrated in Figure. 4.9. There are three flat mirrors at A, B, and C,
separated by a distance d between A and B. C is separated from A and B by 2d. A lens
with focal length 1 m is placed midway between mirrors A and B. The recirculating
resonance mode is the mode that starts with Gaussian parameter q2 at mirror B, is
reflected by mirrors C and B, is transmited through the lens, and propagates back to
mirror B. Let d = 1 m and λ = 1 μm. We can find the recirculating resonant modes
and the diffraction loss per pass from the ABCD transformation matrix method as
follows.

d/2 d/2

2d 2d

Mirror A
Mirror B

Mirror C

Gaussian
beam with
parameter q1

Gaussian
beam with
parameter
q2

Gaussian
beam with
parameter
q3

Lens with focal length f

Gaussian
beam with
parameter q4

Gaussian
beam with
parameter
q5

Figure 4.9 Illustration of a Gaussian mode in a ring cavity. In a ring cavity, the resonant mode is the
recirculating mode that reproduces the field pattern with integer multiples of 2π phase shift
after a round trip of multiple reflections. The optical path of the recirculating mode is shown by the
block arrows. The Gaussian beam parameters values of q before and after each reflector are also
shown.
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The transformation matrix M from q2 to q1 at mirror B through q3, q4, and q5, in the
counterclockwise direction in Figure 4.9 is:

M ¼ 1  
d
2

0  1

������
������

1  0

� 1

f
 1

�������
�������

1  
9d
2

0  1

������
������ ð4:87Þ

For d = 1 and f = 1,

M ¼
þ 1

2
   

11

4

�1   � 7

2

���������

���������
ð4:88Þ

If we require that qs = q2 in a round trip, we have

q2 ¼
1

2
q2 þ 11

4

�q2 � 7

2

ð4:89Þ

Therefore

1

q2
¼ � 8

11
� j

ffiffiffiffiffi
20

p

11
ð4:90Þ

The values of 1/q at each mirror tell us the curvature and the spot size of the Gaussian
beam at that mirror. We can obtain the diffraction loss per pass of each mirror from the
mirror size and the spot size. In particular, q3 is imaginary. Thus we know that the beam
waist of the recirculating resonant mode is at mirror C. The size of the beamwaist,ωo, at
mirror C is determined by the value of q3. From ωo we obtain zo of the equivalent
confocal resonator mode.

Chapter summary

Diffraction analysis presented in Chapter 3 is the mathematical base used to analyze
large laser cavities. The result of the analysis of laser cavities showed us various
properties of laser modes. It is interesting to note that although the modes are the result
of diffraction analysis, laser properties can much better be understood in terms of the
modal description. There is not clear-cut boundary between diffraction analysis and
modal analysis. The important considerations in analyzing any application are the
geometrical configuration of the device and the most appropriate way to analyze the
fields in that configuration.

The laser cavity analysis yielded a set of Gaussian modes. Once we have the Gaussian
modes, we can use them to represent any optical radiation, whenever it is appropriate.
The advantage of representing the radiation beam by a Gaussian mode is that the
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diffraction loss through components with limited aperture is taken care of without the
use of diffraction integrals. Several examples of how to use Gaussian mode analysis in
applications have been demonstrated. Please note that the use Gaussian beam analysis
is still limited to TEM waves.
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5 Optical waveguides and fibers

Kirchoff’s integrals cannot be used to analyze optical waves in waveguides and fibers
because they are not TEM waves and there are significant variations of the electro-
magnetic field in the transverse direction within distances comparable to or smaller than
the wavelength. For electromagnetic analysis of guided-wave structures, Maxwell’s
vector equations plus appropriate boundary conditions need to be used to find the
modes in these devices. Opto-electronic devices also function via the interaction of
these modes. For these reasons, modal analyses are presented in Chapters 5 to 8.
Chapter 5 focuses on the modes of optical fiber and channel waveguides. Chapter 6
presents the methods that analyze the mutual interactions of modes. Passive and active
devices are discussed in Chapters 7 and 8. Many of the theoretical methods in optical
guided-wave analysis are very similar to those used in microwaves.

From another perspective, modal analysis, plane wave, and diffraction integral
analysis are all analyses based on Maxwell’s equations. There are also other solutions
of Maxwell’s equations in the literature, such as cylindrical and spherical waves. They
are just different ways to analyze optical fields demanded by different device config-
urations. The more complex the configuration, the more complex the mathematical
analysis. What form of analyses should be used is determined by what is the most
appropriate one to use.

5.1 Introduction to optical waveguides and fibers

Optical waveguides and fibers are made from dielectric materials. They have a high
index core surrounded by lower index cladding or substrate. The transverse dimensions
of the core are comparable to or smaller than the optical wavelength. Guided electro-
magnetic waves propagate in and around the core. A typical optical fiber and a typical
channel waveguide are illustrated in Figure 5.1.

Guided-wave modes are solutions of homogeneous Maxwell’s electromagnetic equa-
tions in waveguide structures that have a constant cross-section and infinite length in the
direction of propagation. The modes of optical fibers and waveguides are the focus of
discussion in this chapter. Homogeneous solution means that these are the propagating
electric and magnetic fields that satisfy the differential equations and the appropriate
boundary conditions in the absence of any radiation source. What modes are excited is
determined by the input radiation.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139871419.006
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:50:16, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.006
https://www.cambridge.org/core


Modal analyses are used in microwaves as well as optics. However, there are important
differences between optical and microwave waveguides. In microwaves, we usually have
closed waveguides inside metallic boundaries. Metals are considered to be perfect con-
ductors at most microwave frequencies. Figure 5.2 illustrates a typical microwave rec-
tangular waveguide, which is surrounded bymetallic walls. The boundary condition at the
metal surface is that the tangential electric field is zero. Microwaves propagate within the
metallic enclosure. In such closed structures, we have only a discrete set of waveguide
modes. At optical wavelengths, we avoid the use of metallic boundaries because of their
strong absorption of radiation at optical frequencies. All optical waveguides are open
dielectric waveguides. Two examples have been illustrated in Figures 5.1(a) and 5.1(b).

There are at least three differences between microwave and optical waveguide
analysis.

(1) The mathematics of finding the modes is more complex for open waveguides. In
fact, there exists no analytical solution for three-dimensional open-channel

y

x

θ

ρ

z

High-index core

Low-index cladding

(a)

(b)

x
z

y

High-index core

High-index ridge

Substrate
x = 0

x = t

Low-index cladding

W

x = to

Figure 5.1 Illustration of a step-index optical fiber and a ridged channel waveguide. (a) The round optical
fiber has a high-index core in the center, surrounded by a low-index cladding. It is shown in
cylindrical coordinates. (b) The channel waveguide core consists of a high-index planar
waveguide and a high-index ridge. The ridge plus the planar waveguide is t thick and W wide.
There is a substrate under the core and a cladding surrounding the core on top.
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waveguides or graded-index fibers. We only have analytical solutions for the modes
of the round step-index fiber shown in Figure 5.2(a) and the planar waveguides
shown in Figure 2.4. Numerical analysis or approximation methods must be used to
analyze the modes of optical waveguides.

(2) Modes in microwave waveguides do not have an evanescent tail. In open dielectric
waveguides, the discrete optical guided-wave modes have an evanescent field out-
side the core region (the core is often called vaguely the optical waveguide). The
evanescent tail ensures that any perturbation of the mode from any structural change
several decay lengths away is small. Since propagation loss of the guided-wave
modes is caused often by scattering or absorption, it means the attenuation rate of the
guided mode will be very low as long as there is little absorption or scattering in or
near the high-index core. Thus optical fibers are used for long-distance communica-
tion. Yet, significant energy is still carried in the evanescent field near the core. This
evanescent field may be used to achieve mutual interactions with other radiation
fields. For example, the evanescent field is used to operate devices such as the
dielectric grating, the distributed feedback laser, and the directional coupler.

(3) In addition to the guided modes that have discrete eigenvalues, there is an infinite set
of continuous modes in open waveguides in optics. Only the sum of both the discrete
and continuous modes constitutes a complete set of functions. It means that,
rigorously, any arbitrary incident field should be expanded mathematically as a
summation of this complete set of modes. At any dielectric discontinuity, the
boundary conditions of the continuity of electric and magnetic fields are satisfied
by the summation of both the guided-wave modes and the continuous modes. In
other words, continuous modes are excited at any discontinuity in optics. Energy is
radiated away from the discontinuity by the continuous modes. In microwaves, only
discrete modes are excited at any discontinuity.

Because of the differences between the optical and microwave waveguide structures,
the calculation of their modes also differs.

x
z

x = –t

x = +t

y = –W y = +W

Metallic walls

Figure 5.2 Illustration of a rectangular microwave waveguide. Within the metallic walls, it has lateral
dimensions of 2t in the x direction and 2W in the y direction. The waveguide is oriented along
the z direction.
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Finding the modes analytically in realistic channel waveguides and graded optical
fibers is mathematically too difficult to obtain. Hence only the modes of planar wave-
guides and step-index fibers are presented in this chapter.

The plane wave analysis in Section 2.4 has already given the solutions for a planar
waveguide. However, it is difficult to use plane waves to describe the properties of the
waveguide modes and to see how modes could be used to analyze devices. For example,
properties such as the othogonalilty of the modes could not be understood easily by
plane waves. Thus modal analysis of planar waveguides is presented in this chapter. The
TE and TM modes of planar waveguides and their properties are presented in detail in
Sections 5.2 to 5.5. Modes of channel waveguides are discussed in Section 5.6 by means
of an approximation technique called the effective index method. Modes of optical fibers
are discussed in Section 5.7.

Although the configurations of planar waveguides and step-index fibers are very
simple compared to those of the actual devices, the properties of the modes of these
simple structures illustrate clearly the properties of optical guided waves in general. The
modes of these simple structures also serve as the basis for the approximate analyses to
be presented later to analyze realistic devices such as directional couplers, resonators,
modulators, and filters in channel waveguides.

Modal analysis of planar and channel waveguides has been presented in many
existing books. However, these discussions do not emphasize the implications of the
approximation methods, the mutual interaction properties of the modes, and the effect of
the excitation of modes.

5.2 Electromagnetic analysis of modes in planar optical waveguides

5.2.1 The asymmetric planar waveguide

A typical uniform dielectric planar waveguide has been shown in Figure 2.4. For planar
waveguides, the core, the cladding, and the substrate are all uniform and infinitely wide in
the y and the z directions. The core typically has a thickness, t, of the order of a wavelength
or less, supported by a substrate and covered by a cladding (or air) many wavelengths (or
infinitely) thick. The refractive index of the waveguide core, n2, is higher than the indices
of the surrounding layers, nc of the cladding (nc = 1 for air) and ns of the substrate. All
layers have the same magnetic permeability μ, and the time variation is ejωt.

Since the structure is identical in any direction in the y–z plane, we could choose the +z
axis as the direction of propagation in our analysis without any loss of generality. For
planar modes, we further assume ∂/∂y ≡ 0. This assumption on the y variation applies in
Sections 5.2, 5.3, and 5.4.

5.2.2 Equations for TE and TM modes

When we substitute ∂/∂y = 0 into ∇ × E and ∇ × H in Maxwell’s equations, we obtain
two separate groups of equations.
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∂Ey

∂ z
¼ μ ∂Hx=∂ t;

∂Ey

∂ x
¼ �μ∂Hz=∂ t;

∂Hz

∂ x
� ∂Hx

∂ z
¼ �ε∂Ey=∂ t

and

∂Hy

∂ z
¼ �ε∂Ex=∂ t;

∂Hy

∂ x
¼ ε∂Ez=∂ t;

∂Ez

∂ x
� ∂Ex

∂ z
¼ μ∂Hy=∂ t

ð5:1Þ

Clearly, Ey, Hx, and Hz are related only to each other, and Hy, Ex, and Ez are related only
to each other. Since the direction of propagation is z, the solutions of the first group of
equations are called the TE, transverse electric, modes. The solutions of the second
group of equations are the TM, transverse magnetic, modes. In other words, all planar
waveguide modes can be divided into TE and TM types.

Since ε is only a function of x, the z variation of the fields must be the same in all layers.
This is the consequence of the continuity of Ey orHy for all z. For TE modes, the transverse
electric Ey in Eq. (5.1) can now be written as a product of a function in y and a function in z,
i.e. Eyðx; zÞ ¼ EyðxÞEyðzÞ. When all these considerations are taken into account, we obtain:

∂2

∂ x2
þ
�
ω2με ðxÞ � β2

�
 �
EyðxÞ ¼ 0 ð5:2aÞ

∂2

∂z2
þ β2


 �
EyðzÞ ¼ 0 ð5:2bÞ

Similar equations exist for TM modes.
Mathematically, Eq. (5.2) and its equivalent for TM modes are second-order differ-

ential equations. All the TE modes form a complete set of TE eigenfunctions, meaning
that any arbitrary electric field polarized in the y direction with ∂=∂y ¼ 0 can be
represented as a summation of TE modes. Similarly, all the TM modes form a complete
set of TM eigenfunctions, meaning at any arbitrary electric field polarized in the x
direction with ∂=∂y ¼ 0 can be represented as a summation of TMmodes. Any radiation
field with arbitrary polarization needs to be decomposed first into TE and TM compo-
nents, and then analyzed.

5.3 TE modes of planar waveguides

The planar TE modes (i.e. modes with ∂=∂y ¼ 0) in the planar waveguides are eigen-
solutions of the equation

∂2

∂ x2
þ ∂2

∂ z2
þ ω2με ðxÞ

2
4

3
5Ey ðxÞEyðzÞ ¼ 0

  ε ðxÞ ¼ nc2εo   x ≥ t
     ¼ n22εo   t > x > 0 ð5:3Þ
     ¼ ns2εo   0 ≥ x

Hx ¼ � j
ωμ

∂Ey

∂ z
;  Hz ¼ j

ωμ
∂Ey

∂ x
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Here, εo is the free space electric permittivity. The boundary conditions are the continuity
of the tangential electric and magnetic fields,Ey andHz, at x = 0 and at x = t. The continuity
ofHz is equivalent to the continuity of ∂Ey=∂x. Note that whenEy is known,Hx andHz can
be calculated directly from Ey. Thus only Ey is shown explicitly in the following sections.

5.3.1 TE planar guided-wave modes

Eqs. (5.2) and (5.3) suggest that the solution of Ey(x) is either a sinusoidal or an

exponential function, and the solution of Ey(z) is e±jβz. Guided by the discussion in
Section 2.4, we look for solutions of Ey(x) with sinusoidal variations for t > x > 0 and
with decaying exponential variations for x > t and x < 0. In short, we obtain the following
functional form for a forward propagating Ey(x,z). The subscript m stands for the mth
order solution of Eq. (5.3).

Emðx; zÞ ¼ EmðxÞEmðzÞ ¼ Am fsinðhmt þ φmÞe�pmðx�tÞge�jβmz x ≥ t
Emðx; zÞ ¼ EmðxÞEmðzÞ ¼ Am fsinðhmxþ φmÞge�jβmz   t>x>0
Emðx; zÞ ¼ EmðxÞEmðzÞ ¼ Am fsinφmeqmxge�jβmz     0 ≥ x

where; in order to satisfy Eq: ð5:2Þ

   ðβm=kÞ2 � ðpm=kÞ2 ¼ nc2

   ðβm=kÞ2 þ ðhm=kÞ2 ¼ n22

   ðβm=kÞ2 � ðqm=kÞ2 ¼ ns2

   

ð5:4Þ

Eq. (5.3) is clearly satisfied byEm in all the individual regions. Note that the continuity of
Ey is automatically satisfied at x = 0 and x = t. In order to satisfy the Hz magnetic
boundary conditions at x = 0 and x = t, hm, qm, and pm must be the mth set of the root of
the transcendental equations, which are also called the characteristic equations,

tan½ðhm=kÞkt þ ϕm� ¼ � hm=pm  and tan ϕm ¼ hm=qm ð5:5Þ
For a given normalized thickness kt, there are only a finite number of roots of the

characteristic equations yielding a discrete set of real values for hm, pm, and qm. For this
reason, the guided-wave modes are also called the discrete modes. They are labeled by the
integer subscript m (m = 0, 1, 2,. . . .). The lowest-order mode with m = 0 has the largest β
value, β0 > β1 > β2 > β3. . . and h0 < h1 < h2. . .Moreover, one can show that the number of
times that sin (hmx + φm) is zero is m. Thus, we could identify experimentally the order of
the mode by the number of zeros in its intensity pattern. The βm/k value is called the
effective index, neff,m, of the mode. The velocity of light in the free space divided by
effective index neff is the phase velocity of the mth-order guided-wave mode. The expo-
nential decay rate of any guided-wave mode in the cladding and the substrate is determined
by the index of the surrounding layer (either at x > t or at x < 0) and the βm/k value of the
mode. Lower-order modes will have larger effective index and faster exponential decay.

The lossless TE planar guided-wave modes are orthogonal to each other and to any
other TE or TM modes of the same waveguide [1,2]. It is customary to normalize the
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constant Am so that a unit amount of power (1 W) per unit length in the y direction is
carried out by a normalized mode. Thus,

1

2
Re

ðþ∞

�∞

EynHxm
�dx

2
4

3
5 ¼ ðβm=2ωμÞ

ð
EnEm

�dx ¼ δnm ð5:6Þ

From this condition, we obtain

Am
2 ¼ 4ωμ

βm

1

pm
þ 1

qm
þ t


 ��1

ð5:7Þ

5.3.2 TE planar guided-wave modes in a symmetrical waveguide

In order to visualize more easily why there should be only a finite number of modes, let
us consider the example of a symmetrical waveguide. In this case, nc = ns = n and pm =
qm. The quadratic equations for hm and βm and the transcendental equation in Eq. (5.5)
now become

hm
k

� 	2

þ pm
k

� �2
¼ n2

2 � n2 ð5:8Þ

and

tan
hm
k

� 	
kt


 �
¼

�2
hm
pm

1� hm2

pm2

ð5:9Þ

Since

tan 2
hm
k

0
@

1
A kt

2

2
4

3
5 ¼

2 tan
hm
k

0
@

1
A kt

2

2
4

3
5

1� tan2
hm
k

0
@

1
A kt

2

2
4

3
5

ð5:10Þ

Eq. (5.9) can be reduced to two equations,

tan
hm
k

� 	
kt
2


 �
¼ pm=k

hm=k
;   hence 

hm
k

tan
hm
k

� 	
kt
2


 �
¼ pm

k
ð5:11Þ

or

tan
hm
k

� 	
kt
2


 �
¼ � hm=k

pm=k
;  hence � hm

k
cot

hm
k

� 	
kt
2


 �
¼ pm

k
ð5:12Þ
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If we seek graphical solutions in the coordinate system of pm/k and hm/k, they are given
by the intersections of one of the two curves described by the equivalent tangent
equations, either Eq. (5.11) or Eq. (5.12), and the quadratic equation,
ðhm=kÞ2 þ ðpm=kÞ2 ¼ n22 � n2.

In summary, there are two sets of equations. The solutions for the first tangent
equation (5.11) and the quadratic equation (5.8) are known as the even modes because
they lead to field distributions close to a cosine variation in the film. They are symmetric
with respect to x = t/2. The solutions from the second tangent equation (5.12) and the
quadratic equation (5.8) are called the odd modes because the fields in the film have
distributions in sine variations. They are anti-symmetric with respect to x = t/2.

It is instructional to examine the even modes in detail. If we plot the quadratic
equation of hm/k and pm/k in Eq. (5.8), it is a circle with radius (n2

2– n2)1/2. The
curve describing the tangent equation in Eq. (5.11) as functions of hm/k and pm/k
will be obtained whenever the left-hand side (LHS) equals the right-hand side
(RHS) of the tangent equation. The RHS is just pm/k; the LHS has a tangent which
is a multi-valued function. It starts from 0 whenever (hm/k)kt/2 is 0, π, or mπ. It
approaches + or – infinity when (hm/k)kt/2 approaches +π/2 or –π/2, or (mπ + π/2)
or (mπ – π/2), where m is an integer. The curves representing these two equations
are illustrated in Figure 5.3. Clearly there is always a solution, as long as n2 > n,
i.e. there is an intersection of the two curves, no matter how large (or how small)
the circle (i.e. the n2 value). This is the fundamental mode, labeled by m = 0.
However, whether there will be a solution for m ≥ 1 depends on whether the radius
is larger than 2π/kt. There will be m = j solutions when the radius is larger than 2jπ/
kt. When the radius of the circle is just equal to 2jπ/kt, the value for p/k is 0. This is
the cut-off point for the jth (j > 1) mode. Notice that h0 < h1 < h2. . . and β0 > β1 >
β2 >. . . m is called the order of the mode.

The odd modes are solutions of Eqs. (5.8) and (5.12). The solutions of odd modes can
be obtained similarly to the even modes in Figure 5.3. However, since Eq. (5.12)

contains a cotangent function, pm=k is zero when hm=k ¼ ð2mþ 1Þπ
kt

and +∞ when

hm=k ¼ 2mπ
kt

. Therefore there is a minimum value of n22�n2 below which the circle

given in Eq. (5.8) does not intercept the curve representing Eq. (5.12).
There are two conclusions that can be made: (1) There is a minimum n22�n2, below

which there is no solution of the odd mode for a given t. (2) For a given t and n22�n2, the
value of hm/k for themth odd mode is larger than themth even mode. Therefore the value
of βm=k (or neff,m) for the mth even mode is larger than for the mth odd mode.

If we list all the modes in descending order of the values of neff, then the lowest-order
mode that has the largest neff is the m = 0 even mode, followed by the m = 0 odd mode,
the m = 1 even mode, the m = 1 odd mode, etc. Note that the number of x positions at
which the electric field E is zero for the first mode (m = 0, even) is zero, one for the
second mode (m = 0, odd), two for the third mode (m = 1, even), three for the fourth

mode (m = 1, odd), etc. If n22 � n2 and t are sufficiently small, there is only a single
mode, the m = 0 even mode.
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The symmetric waveguide is not a realistic waveguide. Its analysis is presented here
because the mathematics is simple to understand, and the consequence of the various
aspects of the modal characteristic can be easily shown.

5.3.3 The cut-off condition of TE planar guided-wave modes

In order to have an mth-order mode in an asymmetric planar waveguide, there are two
conditions that need to be satisfied. The first condition is: n2 > ns and nc. Let us assume n2 >
ns ≥ nc. For a given set of n, the second condition is that there is a minimum thickness,
called the cut-off core thickness tm, that will permit the mth solution of Eq. (5.5) to exist.

At the cut-off thickness of the mth mode, qm = 0, βm/k = ns, hm/k = (n2
2 – ns

2)1/2, and
ϕm = ±(m+1/2)π. Thus the cut-off thickness can be calculated from Eq. (5.5) to be:

ktm ¼ mþ 1

2

� 	
π � tan�1½ðn22 � ns

2Þ=ðns2 � nc
2Þ�1=2

� �
ðn22 � ns

2Þ�1=2 ð5:13Þ

The thicker the core, the larger the number of guided-wave modes the waveguide can
support. For all guided-wave modes above the cut-off, n2 ≥ ǀβm/kǀ > ns.

Note that, in symmetric waveguides, the cut-off condition is different from the condition
shown in Eq. (5.13) for asymmetric waveguides discussed above. For symmetric wave-
guides, there is always an even m = 0 mode. There is no cut-off condition for the even
m = 0 mode. In asymmetric waveguides, there is a cut-off condition below which no mode

x

x

x

kt kt
2 kt3 kt
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ktkt
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Figure 5.3 Illustration of the graphical solution for hm and pm, for even TE guided-wave modes in a
symmetrical planar waveguide.
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exists. In many applications, a single-mode waveguide is required. In that case, t and the
indices of the layers are controlled so that only one mode exists in the waveguide.

5.3.4 An example of TE planar guided-wave modes

Figure 5.4 shows the effective index, neff = βm/k, of TEm planar guided-wave modes in
epitaxially grownwaveguides on InP substrates as a function of the waveguide thickness t,
where ns = 3.10, n2 = ns + Δn, and nc = 1. The abscissa is kt in units of π. Δn, i.e. n2 – ns,
depends on the alloy composition of the epitaxially grown layer. Curves with circles, o,
are for Δn = 0.10; curves with crosses, x, are for Δn = 0.05, curves with solid dots, •, for
Δn = 0.025, and curves with triangles, Δ, for Δn = 0.01. The (a) curves are for TE0 modes,
(b) curves are for TE1, (c) curves for TE2, (d) curves for TE3, and (e) curves for TE4. These
curves are taken from Figure 1.5 of another book of mine [3]. At large kt, neff increases
monotonically toward n2. At the cut-off, all modes have neff = ns. neff for higher-order
modes is always smaller than neff for lower-order modes. For a given thickness t, there are
more modes for waveguides that have a larger Δn. For kt < 1.8π, the waveguide has only
the TE0 mode for Δn = 0.1, 0.05, and 0.025. Notice that we have real eigenvalues for β, h,
p, and q. Since β is real, these modes propagate in the z direction without attenuation. The
fields of these modes are evanescent in the air and in the substrate.

Physically, as we have discussed in Section 2.4, the electric field of the mth TE guided-
wave mode inside the core is just a plane wave (with the electric field polarized in the
y direction), totally internally reflected back and forth from the two boundaries at x = 0 and
x = t. Its propagation direction in the x–z plane makes an angle θmwith respect to the x axis.

neff

3.2

3.19

3.18

3.17

3.16

3.15

3.14

3.13

3.12

3.11

3.1
0 1 2 3 4

kt (π)
5 6 7 8

e – TE4

d – TE3

a – TE0

b – TE1

c – TE2

Figure 5.4 neff values of TEm modes in epitaxially grown waveguides on InP substrates.
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βm ¼ n2k sin θm; hm ¼ n2k cos θm ð5:14Þ
Since θm is a very small angle, the magnetic field of TE modes is polarized predomi-
nantly in the x direction with a small component in the z direction.

5.3.5 TE planar substrate modes

As we have discussed in Section 2.4, when ns > ǀβ/kǀ > nc, the electric field has an
exponential decay for x > t, and sinusoidal variation within the core and in the substrate.
The plane waves in the core are totally internally reflected at the boundary x = t. The
plane waves in the substrate are propagating. These are the substrate modes. From Eq.
(5.3), we obtain the following expression for TE substrate modes:

EðsÞðx; z; βÞ ¼ AðsÞ sinðht þ φÞe�pðx�tÞe�jβz  x ≥ t
EðsÞðx; z; βÞ ¼ AðsÞ sinðhxþ φÞe�jβz    t 〉 x 〉0
EðsÞðx; z; βÞ ¼ ½CðsÞe�jρx þ CðsÞ�eþjρx�e�jβz  0 ≥ x

ð5:15Þ

with

ðh=kÞ2 þ ðβ=kÞ2 ¼ n22
ðβ=kÞ2 � ðp=kÞ2 ¼ n2c
ðρ=kÞ2 þ ðβ=kÞ2 ¼ n2s

ð5:16Þ

tan½ðh=tÞkt þ φ� ¼ �h=p  ð5:17Þ
and

  CðsÞ ¼ AðsÞ½sinφþ jðh cos φ=ρÞ�=2: ð5:18Þ
C(s) and A(s) are normalized so that

ðβ=2ωμÞ
ð∞
�∞

EðsÞðx; z; βÞEðsÞ�ðx; z; βʹÞdx ¼ δðρ� ρʹÞ ð5:19Þ

which requires

CðsÞCðsÞ� ¼ ωμ
βπ

ð5:20Þ

Unlike guided-wave modes, which have n2 > ǀβm/kǀ> ns > nc and discrete values of βm,
the β, p, h, ρ, and φ of the substrate modes have a continuous range of values that satisfy
the above equations within the range ns > ǀβ/kǀ > nc. Thus, these modes are continuous
modes; they are orthogonal to each other and to the guided-wave modes.

5.3.6 TE planar air modes

In Section 2.4, we have shown that there are two equivalent independent solutions of
Maxwell’s equations corresponding to either waves incident from the cladding with
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incident angle θc < π/2, or waves incident from the substrate with incident angle

0 < θs < sin�1ðnc=nsÞ. At any specific θc and θs such that nc sin θc ¼ ns sin θs, the two
independent solutions are equivalent in θc and θs. By linearly combining the two
independent equivalent solutions one can obtain two orthogonal independent modes
for each set of propagation constants. These orthogonal modes propagate in both
substrate and cladding. They are known as air modes in the literature because the
cladding medium is often the air.

For symmetrical structures, i.e. ns = nc, these two orthogonal modes represent odd and
even linear combinations of two equivalent solutions, one solution consists of plane
waves incident from the cladding and the second solution consists of plane waves
incident from the substrate. For asymmetrical structures, such as the one shown in
Figure 2.4, the x variations are more complex than just odd and even combinations.
Nevertheless, there are still two orthogonal modes for each set of propagation constants,
these twomodes differ from each other by a π/2 phase shift of the sinusoidal variations in
the x direction in the film, which has the index n2.

The mathematical expressions for Ey of the air modes that satisfy Eq. (5.3) are:

Eʹðx; z; βÞ ¼ fDʹe�jσðx�tÞ þ Dʹ�eþjσðx�tÞge�jβ z   x ≥ t
Eʹðx; z; βÞ ¼ Aʹ sinðhxþ φÞe�jβ z       t > x > 0
Eʹðx; z; βÞ ¼ ½Cʹe�jρ x þ Cʹ�eþjρ x�e�jβ z     0 ≥ x
for the first set
 

ð5:21Þ

and

E″ðx; z; βÞ ¼ fD″e�jσðx�tÞ þ Dʹʹ�eþjσðx�tÞge�iβ z  x ≥ t

E″ðx; z; βÞ ¼ A″ sinðhxþ φþ π
2
Þe�jβ z     t > x > 0

E″ðx; z; βÞ ¼ ½C″e�jρ x þ Cʹʹ�eþjρ x�e�jβ z    0 ≥ x
for the second set

ð5:22Þ

with

  ðβ=kÞ2 þ ðσ=kÞ2 ¼ nc2

  ðβ=kÞ2 þ ðh=kÞ2 ¼ n22

  ðβ=kÞ2 þ ðρ=kÞ2 ¼ ns2
ð5:23Þ

Imposing the boundary conditions at x = 0 and x = t, we obtain:

Cʹ ¼ Aʹ½sinφþ jðh cos φ=ρÞ�=2

Dʹ ¼ Aʹ sinðht þ φÞ þ j
h
σ
cosðht þ φÞ

2
4

3
5=2 ð5:24Þ

For the second set of modes, A″,C″, andD″ are obtained when φ is replaced by φ + π/2 in
the above equation. For both sets of modes, a continuous range of solutions of ρ, σ, β, and
h exist, where nc ≥ ǀβ/kǀ ≥ 0. All modes form an orthogonal normalized set,
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ðβ=2ωμÞ
ð∞
�∞

Eʹðx; z; βaÞEʹ�ðx; z; βbÞdx ¼ δðρa � ρbÞ ð5:25Þ

ðβ=2ωμÞ
ð∞
�∞

E″ðx; z; βaÞE″�ðx; z; βbÞdx ¼ δðρa � ρbÞ ð5:26Þ

ðβ=2ωμÞ
ð∞
�∞

Eʹðx; z; βaÞE″�ðx; z; βbÞdx ¼ 0 ð5:27Þ

Air modes are also orthogonal to substrate and guide wave modes.

5.4 TM modes of planar waveguides

The planar TM modes are eigensolutions of the wave equation (with ∂/∂y = 0 and ejωt

time variation):

∂2

∂ x2
þ ∂2

∂ z2
þ ω2εðxÞμ

2
4

3
5HyðxÞHyðzÞ ¼ 0

Ex ¼ j
ωεðxÞ

∂Hy

∂ z
;  Ez ¼ �j

ωεðxÞ
∂Hy

∂ x

ð5:28Þ

where ε(x) is the same as given in Eq. (5.3). Or, in a manner similar to Eq. (5.2a), we can
write,

∂2

∂ x2
þ
�
ω2μεðxÞ � β2

�
 �
HyðxÞ ¼ 0 ð5:29Þ

TMmodes are similar to TE modes. The main difference between TE and TMmodes is
the polarization. In lossless waveguides, all TM modes are orthogonal to each other and
to TE modes [2,3].

5.4.1 TM planar guided-wave modes

Like the TE modes, the y component of the magnetic field for the nth TM planar guided-
wave mode propagating in the +z direction is:

Hynðx; zÞ ¼ HynðxÞHynðzÞ ¼ Bn fsinðhnt þ φnÞe�pnðx�tÞge�jβn z  x ≥ t
Hynðx; zÞ ¼ HynðxÞHynðzÞ ¼ Bn sinðhnxþ φnÞe�jβn z      t>x >0
Hynðx; zÞ ¼ HynðxÞHynðzÞ ¼ Bn fsinφneqnxge�jβn z       0 ≥ x

ð5:30Þ
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with

ðβn=kÞ2 � ðpn=kÞ2 ¼ nc2

ðβn=kÞ2 þ ðhn=kÞ2 ¼ n22

ðβn=kÞ2 � ðqn=kÞ2 ¼ ns2
ð5:31Þ

Continuity of the tangential electric field requires that hn, qn, and βn also satisfy the
transcendental equation,

tan½ðhn=kÞkt þ φn� ¼ � nc2 hn
n22pn

  and  tan φn ¼ ns
n2

� 	2 hn
qn

: ð5:32Þ

TMn modes are given by the nth solutions of Eq. (5.29). The magnetic field is in the y
direction. The dominant electric field is in the x direction.

TM modes are orthogonal and normalized:

1

2
Re

ðþ∞

�∞

HynExm
� dx

2
4

3
5 ¼ βn

2ω

ðþ∞

�∞

HynHym
� 1

εðxÞ dx ¼ δnm ð5:33Þ

From this condition, we obtain:

Bn
2 ¼ 4ωεo

βn
� n22

ns2pn
� pn2 þ hn2

hn2 þ n22

ns2

� 	2

pn2
þ n22

nc2qn
� qn2 þ hn2

hn2 þ n22

ns2

� 	
qn2

þ t

2
6664

3
7775
�1

ð5:34Þ
All TM modes are orthogonal to all TE modes [1,2].

5.4.2 TM planar guided-wave modes in a symmetrical waveguide

It is instructive to see what happens to the TM modes in a symmetrical waveguide, i.e.
nc = ns = n. In this case, pn = qn. The quadratic equation for hn and βn and the transcen-
dental equations now becomes

hn
k

� 	2

þ pn
k

� �2
¼ n2

2 � n2  and  tan
hn
k

� 	
kt


 �
¼ �

2
n2hn
n22pn

1� n2hn
n22pn

� 	2 ð5:35Þ

As we have seen in the case of TE guided-wave modes in symmetrical waveguide
structures, the above tangent equation is equivalent to two equations,

tan
hn
k

� 	
kt
2


 �
¼ � n2hn=k

n22pn=k
  and  tan

hn
k

� 	
kt


 �
¼ n22pn=k

n2hn=k
ð5:36aÞ
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or,

� n2

n22
hn
k

� 	
cot

hn
k

� 	
kt
2


 �
¼ pn

k
  and 

n2

n22
hn
k

� 	
tan

hn
k

� 	
kt
2


 �
¼ pn

k
: ð5:36bÞ

These equations again point to the existence of two orthogonal sets of modes. They are
either even or odd with respect to t/2. The n = 0 even TMmode has no cut-off thickness t.
These equations are very similar to the equations for the TE modes, except for the ratio,
(n/n2)

2, which is always smaller than 1. Therefore, for the same order (i.e. m = n), the pn
values of the TM modes are slightly smaller than the pm values of the TE modes for the
same thickness t and indices.

5.4.3 The cut-off condition of TM planar guided-wave modes

Again, for a given normalized thickness kt, there is only a finite number of discrete
modes, labeled by the subscript n (n = 0, 1, 2,. . .), where h0< h1 < h2 < h3. . . and n2 > β0 >
β1 > β2 > β3. . .> ns. At the cut-off of each mode, βn = nsk and qn = 0. The cut-off thickness
for the nth TM mode for the asymmetric waveguide is:

ktn ¼ nπ þ tan�1 n22

nc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ns2 � nc2

n22 � ns2

s2
4

3
5

8<
:

9=
;ðn22 � ns

2Þ�1=2 ð5:37Þ

Note that the cut-off thickness tn for TM modes is always larger than the cut-off
thickness tm for TE modes of the same order.

In many applications we want a single-mode waveguide so that there cannot be any
conversions into higher-order modes. Since TM modes have a larger cut-off thickness, it is
possible to design the asymmetric waveguide with appropriate n2, ns, nc, and t so that only
the lowest-order TEmode can exist.1On the other hand, in other applications, wemaywant
to have two or more modes interacting with each other. In that case the indices of the layers
and the thickness t are controlled to yield the desired number of guided-wave TE and TM
modes. Note that TE and TM modes have perpendicular polarizations. Thus the total
electric field in the TE polarization direction is not affected by the TM modes. Conversely,
the total electric field in the TM polarization direction is not affected by the TE modes.
Please also note that, in a multi-mode waveguide, the properties of the component are
governed only by the modes excited in the waveguide.

5.4.4 An example of TM planar guided-wave modes

Figure 5.5 shows the effective index neff, i.e. βm/k, of TMm planar guided-wave modes in
epitaxially grown waveguides on InP substrates as a function of the waveguide thickness,
t, where ns = 3.1, n2 = ns + Δn, and nc = 1. This figure is taken from Figure 1.6 of my book,
published by Cambridge University Press [3]. The abscissa is kt in units of π. Δn, i.e. n1 –
n2, depends on the alloy composition of the epitaxially grown layer. Curves with circles, o,
are for Δn = 0.10; curves with crosses, x, are for Δn = 0.05; curves with solid dots, •, for

1 Notice the difference between the symmetric and the anti-symmetric waveguides.
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Δn = 0.025; andwith triangles,Δ, forΔn = 0.01. The a curves are for TM0modes, b curves
are for TM1, c curves are for TM2, d curves are for TM3, and e curves are for TM4. At the
cut-off, all modes have neff = ns. neff for the higher-order modes is always smaller than neff
for lower-order modes. For a given thickness, t, there are more modes for waveguides that
have a larger Δn. For kt < 0.6π, there is no TM guided wave. Thus a single-mode
waveguide has only the TE0 mode. For kt < 1.9π, the waveguide has only the TM0

mode for Δn = 0.1, 0.05, and 0.025. Because of the dependence on (ns/n2)
2 and (nc/n2)

2,
which are always smaller than 1, β/k of the TMmodes is usually slightly smaller than the
corresponding TE modes. Like the TE modes, the exponential decay rate of any guided-
wave mode is determined only by the index of the layer (either at x > t or at x < 0) and the
βn/k value of the mode. The velocity of light in free space, c, divided by neff is the phase
velocity of the guided-wave mode. For the same polarization, lower-order modes will
have a larger effective index and faster exponential decay. The most important difference
between TM and TE modes is, of course, the polarization of the optical electric field.

5.4.5 TM planar substrate modes

For the substrate TM modes, the y component of the magnetic field is:

HðsÞðx; z; βÞ ¼ BðsÞ sinðht þ ϕÞe�pðx�tÞe�jβ z     x ≥ t
HðsÞðx; z; βÞ ¼ BðsÞ sinðhxþ ϕÞe�jβ z        t > x > 0

ð5:38aÞ
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Figure 5.5 neff values of TMm modes in epitaxially grown waveguides on InP substrates.
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HðsÞðx; z; βÞ ¼ ½DðsÞe�jρx þ DðsÞ�eþjρx�e�jβz     0 ≥ x

DðsÞ ¼ BðsÞ

2

0
@

1
A sin ϕ þ j

ns2h cosϕ
n22ρ

0
@

1
A

2
4

3
5 ð5:38bÞ

tan½ðh=kÞkt þ ϕ� ¼ � nc2h
n22p

ð5:38cÞ

D and B are obtained from the orthogonalization and normalization conditions,

β
2ω

ðþ∞

�∞

H ðsÞðβÞHðsÞ�ðβʹÞ=εðxÞ dx ¼ δðρ� ρʹÞ ð5:39Þ

From Eq. (5.39), we obtain,

DðsÞDðsÞ� ¼ ωεons2

βπ
ð5:40Þ

β, p, h, ρ, and ϕ have a continuous range of solutions within the range, ns > ǀβ/kǀ >nc.

5.4.6 TM planar air modes

There are again two orthogonal TM air (or cladding) modes for each set of propagation
constants. For the first set of modes,

H ʹðx; z; βÞ ¼ fEʹe�jσðx�tÞ þ E ʹ�½eþjσðx�tÞ�ge�jβ z x ≥ t
H ʹðx; z; βÞ ¼ Bʹ sinðhxþ φÞe�jβ z      t>x>0
H ʹðx; z; βÞ ¼ ½Fʹe�jρ x þ F ʹ�ðeþjρ xÞ�e�jβ z    0 ≥ x

ð5:41Þ

And, for the second set of modes,

H″ðx; z; βÞ ¼ fE ″e�jσðx�tÞ þ E ″�½eþjσðx�tÞ�ge�jβ z x ≥ t

H ″ðx; z; βÞ ¼ B ″ sin hxþ φþ π
2

0
@

1
Ae�jβ z   t>x>0

H ″ðx; z; βÞ ¼ ½F ″e�jρ x þ F ″�ðeþjρ xÞ�e�jβ z    0 ≥ x

ð5:42Þ

For both sets of orthogonal modes, a continuous range of solutions of ρ, σ, β, and h, exist
where nc ≥ ǀβ/kǀ ≥ 0. For the first set of modes, the continuity of the electric and magnetic
fields at x = 0 and x = t requires:

E ʹ ¼ 1

2
B ʹ sinðht þ ϕÞ þ j

h nc2cosðht þ ϕÞ
σ n22

8<
:

9=
;

ð5:43Þ
F ʹ ¼ 1

2
B ʹ sin ϕþ j

hns2 cos ϕ
ρ n22

8<
:

9=
;

For the second set of modes, ϕ is replaced by ϕ + π/2 in Eq. (5.43).
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Similar to Eqs. (5.24) to (5.27) in Section 5.3 for TE modes, TM air modes are
orthogonal and normalized. They are also orthogonal to TM substrate and guided-wave
modes, and to all TE modes.

5.4.7 Two practical considerations for TM modes

(1) The effect of metal electrodes. Often, metallic electrodes are fabricated on top of the
nc layer intended for applying a DC or RF electric field to the opto-electronic device.
Since the electric field is polarized predominantly in the y direction for TE modes
and in the x direction for TM modes, the difference in the polarization of the optical
electric field may make a difference to the attenuation of the guided-wave mode in
the z direction caused by the metal electrode. For example, when there is metallic
absorption, the TM modes have higher attenuation.

(2) Scattering or absorption losses. Scattering or absorption loss in cladding or substrate
usually does not significantly affect the mode pattern. However, at the scattering
centers, radiation modes are excited. The radiation loss will cause attenuation as the
mode propagates. Figures 5.4 and 5.5 demonstrated clearly that the higher-order
modes have lower β/k values, and the evanescent decay in the cladding and substrate
layers will be slower for higher-order modes. When there are scattering centers or
absorption losses in the substrate or cladding, the evanescent decay is slower, and the
attenuation rate larger. For this reason, higher-order guided-wave modes often have
larger attenuation rate. Thus TM modes may have higher scattering loss.

The distinction between TE and TM modes is very important in applications. TE
modes are excited by input radiation that has an electric field polarized in the y
direction. TM modes are excited by input radiation that has an electric field polarized
in the x direction. Most waveguide structures support both types of modes. The perfor-
mance of the devices depends which modes have been excited.

In ideal straight waveguides, the electric fields of TE and TM modes do not interact
with each other except at discontinuities or defects in the waveguide. At each defect or
discontinuity, we need the sum of all TE and TMmodes to satisfy the boundary condition.
Thus TM as well as TE modes may be excited by the incident mode (or modes) at any
defect or discontinuity. The scattered modes constitute the scattering loss.

5.5 Guided waves in planar waveguides

There are various applications, such as the Star coupler, acousto-optical scanner and
RF spectral analyzer [4], that use planar waveguides. It is important to learn about the
properties of generalized planar guided waves, how they focus or collimate and how to
excite them in various configurations.

5.5.1 The orthogonality of modes

The orthogonality condition is important to analyze how modes function and interact in
a waveguide.
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When there are several modes propagating in the waveguide,

E ¼ Exix þ Eyiy ; Ey ¼
X
m

ηmEym ; Ex ¼
X
n

ηnExn ð5:44Þ
ηm and ηn can be obtained from the orthogonality condition by

ηm ¼ βm
2ωμ

ðþ∞

�∞

EyEm
�ðxÞdx  ηn ¼

ω
2βn

ðþ∞

�∞

εðxÞExEn
�ðxÞdx ð5:45Þ

The total power carried by the modes is:

1

2
Re

ðþ∞

�∞

ðEyHx
� þ Ex

�HyÞdx
2
4

3
5 ¼

X
m

ηmηm
� þ

X
n

ηnηn
�: ð5:46Þ

In other words, the total power is just the sum of the powers carried in each mode.

5.5.2 Guided waves propagating in the y–z plane

In Sections 5.3 and 5.4, we have presented the analysis of the planar modes when
they propagate in the direction of the z axis. In reality, planar modes for a waveguide
structure such as that as shown in Figure 2.4 can propagate in any direction in the
y–z plane with the same x functional variation, Eym(x) in Eq. (5.4) for TE modes and
Hyn(x) in Eq. (5.30) for TM modes. For a planar guided-wave mode propagating at
an angle θ with respect to the z axis, Eym(y,z) or Hyn(y,z) will have a z variation of

e�jneff kðcos θÞz and a y variation of e�jneff kðsin θÞy. For such a planar guided wave, there is
no variation of the field in the direction perpendicular to the direction of propagation
in the y–z plane.

5.5.3 Convergent and divergent guided waves

There can be superposition of TEm modes propagating at different θ angles to form
diverging or focusing waves in the y–z plane with identical x variations. Similarly, there
can be superposition of TMn modes propagating at different θ angles to form diverging
or focusing waves in the y–z plane with the same x variation. Notice that, for TE modes,
the electric fields are polarized in the y–z plane perpendicular to their direction of
propagation and the dominant magnetic field is polarized in the x direction.
Conversely, for TM modes, the magnetic fields are polarized in the y–z plane perpendi-
cular to their directions of propagation, while the dominant electric field is polarized in
the x direction. What TE or TMmode will be excited depends on the polarization and the
xyz variation of the incident field.

Superposition of planar guided waves with the same Em(x) or Hn(x) that propagate in
different θ directions in the y–z plane can yield very complex field variations in the y–z
plane. For example, a planar Em(x) beam propagating in the z direction with a finite beam
width 2ly can be written as
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Ey ¼ AEmðxÞrect y
ly

� 	
e�jneff ;mkz ð5:47Þ

rectðτÞ ¼ 1 for jτj ≤ 1 and  rectðτÞ ¼ 0 for ½τ½> 1

The rect function can be expressed by Fourier transform as

FyðfyÞ ¼
ðþ∞

�∞

rect
y
lx

� 	
e�j 2πfyydy ð5:48Þ

rect
y
lx

� 	
¼
ðþ∞

�∞

FyðfyÞeþj 2πfyydfy ð5:49Þ

Substituting Eq. (5.49) into Eq. (5.47), we obtain

Ey ¼ AEmðxÞ
ðþ∞

�∞

FyðfyÞ eþj2πfyye�jneff ;mkz
� 

dfy ð5:50Þ

This means that Ey is made up of a summation of planar Em(x) modes propagating in θ
directions with amplitude Fy(fy) and e−jneff,mk sin θy variation in the y direction where

θ ¼ sin�1 2πfy
neff ;mk

� 	
ð5:51Þ

In other words, the beam will diverge as it propagates. The beam divergence will be
determined by Fy(fy).

5.5.4 Refraction of a planar guided wave

There are refractions in planar waveguides. Let there be a straight junction of two
waveguides at z = zo. When a planar TE guided-wave mode Em at the θin direction of
propagation is incident on the second planar waveguide, it excites transmitted TE
discrete and continuous modes in the second waveguide. The mode, Ek, that has the x
variation closest to the Em(x) variation will be the dominant mode excited in the second
waveguide. The direction of the propagation of the Ek guided-wave mode θout will be
determined by the direction of the incident radiation beam through a relationship similar
to Snell’s law in free-space optics,

neff ;m sin θin ¼ neff ;k sin θout: ð5:52Þ

In other words, when continuous modes are neglected, Snell’s law is directly applicable
using the effective indices. For example, a prism for a planar waveguide can be made by
simply depositing an extra high-index layer on top of the waveguide cladding in the
shape of a triangle. However, the change in direction of propagation is small because the
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difference between neff,m of the original waveguide and neff,k of the guided-wave mode
under the prism is small.

5.5.5 Focusing and collimation of planar waveguide modes

Similar to the focusing of a plane wave by a lens discussed in Section 1.3.5, any guided

wave that has an x variation of the mth order mode and a variation e�jneff ;mk
ffiffiffiffiffiffiffiffiffi
y2þz2

p
in the

y–z plane is an outgoing wave cylindrically radiating away from z = y = 0. Conversely, an

eþjneff ;mk
ffiffiffiffiffiffiffiffiffi
y2þz2

p
variation will represent an incoming cylindrical wave focused at z = y = 0.

When z is large,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ y2

p
 ffi zþ y2

2z
ð5:53Þ

Let there be a planar mth-order guided-wave mode propagating in the forward z

direction that has e�jneff ;mkz variation at z < –f. When its phase front is modified by the

factor, eþjneff ;mkðy2=2f Þ at z = –f, it will be converted into a cylindrical guided wave focused
at y = z = 0. In other words, an ideal lens with focal length f would transform any input

guided wave by multiplying its amplitude variation by a phase factor eþjneff ;mkðy2=2f Þ.
Conversely, when the phase factor eþjneff ;mkðy2=2f Þ is applied at z = f to an outgoing

cylindrically divergent guided wave originating from z = 0, the resultant amplitude

variation is e�jneff ;mkz, which is a planar guided wave in the +z direction. In other words,
an outgoing divergent cylindrical guided wave is also collimated by a lens. Needless to
say, for any lens or guided-wave beam of finite size, there will be diffraction effect due to
the limited aperture, such as those discussed in Sections 3.2.3 and 5.5.3.

There are several ways to obtain a guided-wave lens, including the Luneberg lens, the
geodesic lens, and the Fresnel diffraction lens.

(a) The Luneberg lens
A generalized Luneberg lens in three dimensions is a variable-index, circular, symmetric
refracting structure that reimages two objects to each other. Luneberg and other
researchers have analytically determined the refractive index distribution that will
give a diffraction limited performance. Using the dispersion relation of the waveguide
(i.e. neff vs thickness), the analysis has been extended to the required variation of the
thickness profile of the waveguide that will yield a waveguide lens [4]. A Luneberg lens
has been fabricated by depositing lens material on a planar waveguide through a shaped
mask. However, it is difficult to achieve the prescribed effective index distribution.
Consequently it has not been used in practice.

(b) The geodesic lens
When a planar waveguide is fabricated on a substrate with a contoured surface, propaga-
tion of a guided-wave beam will follow the contour. Let there be a contoured depressed
area. Guided-wave beams propagating through the depressed area in different paths will
experience different phase shifts produced by the different path lengths. Figure 5.6
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shows a waveguide on a substrate that has a spherical depression on its surface. R is the
radius of curvature of the surface depression and 2θ is the vertex angle subtended by the
arc of depression. It has been shown that a guided wave propagating in the z direction

through the depression will have an additional quadratic phase variation eþjneff ;mk
y2

2f ,
where

f ¼ R sin θ
2ð1� cos θÞ ð5:54Þ

Therefore, a plane guided wave will be focused at a distance f after the lens.2 Conversely,
a cylindrical guided wave originating at a distance f before the lens will be collimated.
This is known as a geodesic lens. Since all spherical lenses have spherical aberrations,
research has been conducted to use aspheric rotationally symmetric depression to correct
them [4]. A numerically controlled, precision lathe has been used for diamond tuning the
required surface contour on a y-cut LiNbO3 substrate, followed by Ti-diffusion, to make
a geodesic lens on a LiNbO3 waveguide with f = 2 cm [4].

(c) The Fresnel diffraction lens
In Luneberg and geodesic lenses, the argument in the expression of the quadratic phase

shift for a lens, eþjneff ;mk
y2

2f

� �
, exceeds multiples of 2π as ǀyǀ increases. It is well known that

a phase shift of 2nπ is identical to a 0 phase shift. Curve (a) in Figure 5.7 shows the
normal quadratic phase shift for a lens. Curve (b) shows only the value of the phase
shift that exceeds 2nπ. Clearly, the multiplication of the amplitude and phase of a

x

z

Waveguide

R

Substrate

θ

Figure 5.6 Cross-sectional view of a geodesic lens.

2 Note that f is independent of effective index or wavelength. It depends only on the geometry.
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guided wave as a function of y by a phase shift shown in either (a) or (b) has the same
effect. In other words, a component that provides the phase shift shown in (b) will also
serve as a lens with a focal length f. Curve (c) shows a digitalized approximation of (b)
in which any phase shift from 0 to π is approximated by π, and any phase shift from π
to 2π is approximated by 0. The zones in which the sectional change of phase shift
is applied to an incoming guided wave are called the Fresnel zones. The digitalized
change of phase for an incident planar TE0 guided wave has been obtained by
depositing rectangular pads of high-index materials with length L in the zone pattern
on a planar waveguide [5]. The focusing effect of such a lens could also be viewed
as the diffraction effect of the zone pads. Thus it is also known as a Fresnel
diffraction lens.

A Fresnel lens is much shorter than a Luneberg or a geodesic lens. However, for large-
angle oblique incident or divergent waves, the zone structure gives a phase shift distorted
from that described in (c) of Figure 5.7.

5.5.6 Grating diffraction of planar guided waves

Gratings can be fabricated on waveguides by etching the grating pattern either onto
the cladding layer or onto the core. It can also be obtained by depositing a material
that has the grating pattern onto the waveguide. An ideal etched or deposited grating
would have a periodic rectangular spatial profile for the grooves, which have
permittivity εʹ, periodicity T, groove width δ, and thickness d (illustrated in
Figure 5.8). The grooves are located from x = H – d/2 to x = H + d/2, with length,
W. It can be described mathematically by Δε, which is the spatial variation of the
permittivity on top of a waveguide with a core from x = 0 to x = t and cladding from
x = t to x = H – d/2.

π

2π

3π

4π

5π

6π

7π

8π

s1 s2 s3 s4 s5 s6s7s8

Curve (a): neff k
y2

2f

Curve (b)Curve (c)

Phase shift

y0

Figure 5.7 Digital approximation of the quadratic phase shift – the Fresnel lens. (a) Quadratic phase shift of
an ideal lens. (b) Phase shift of an analog Fresnel lens. (c) Phase shift of a digital Fresnel lens.
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Δεðx; y; zÞ ¼ Δεðx; yÞΔεðzÞ ¼
X
k

ðεʹ� ε0 Þrect kT � y
δ
2

0
B@

1
CArect

x� H
d
2

0
B@

1
CA

2
64

3
75rect zþW

2
W
2

0
B@

1
CA ð5:55Þ

where

rectðτÞ ¼ 1 for jτj ≤ 1 and  rectðτÞ ¼ 0 for ½τ½>1

Here ε0 is the free-space permittivity. For gratings with rectangular grooves, Δε(x,y,z) =
ΔεðxÞΔεðyÞΔεðzÞ.

Δε(y) causes a y variation in which the mth planar waveguide mode under the grating
grooves has nʹeff,m different than that of the waveguide without the grating groove. Thus,
we have

Δneff ðyÞ ¼
X
k

ðnʹeff ;m � neff ;mÞrect kT � y
δ
2

0
B@

1
CA ð5:56Þ

For a forward mth guided-wave mode in the +z direction incident on the grating,

Ae�jneff ;mβz, the phase is modified as it transmits through the grating.3 The phase

dθ−

dθ

dβ

.

.

x

y

z

d

H

t

W
T

Core

Substrate

Incident guided wave

Deflected guided wave

2K

δ

Deflected guided wave

dβ
 

Figure 5.8 Illustration of a deflection grating on a planar waveguide. The input wave is incident at the normal
direction. The deflected waves are at angle ±θd. The inset shows the matching of K, βi, and βd.

3 From a strictly theoretical point of view, the incident mth mode will excite the mth mode in the grating
section, plus other substrate and air modes of the same polarization. When the groove depth, d, and the
refractive index of the grooves are not very large, very few substrate or air modes are excited.
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change for the part of the guided wave without the groove is jneff ;mβW , while the phase
change for the part of the guided wave with the groove is jnʹeff ;mβW . Therefore the
transmitted wave will have a phase variation that is a function of y,

Eout ¼ Aeþ jneff ;mkWe� jΔneff ðyÞkWe� jneff ;mkz ð5:57Þ

It is well known that any periodic function of y can always be represented by its Fourier
series. Since the grating in Figure 5.8 is an even function of y, we have

Δneff ðyÞ ¼ 1

T

ðT
0

Δneff ðyÞdyþ 2

T

ðT
0

Δneff ðyÞcos 2πyT dy

0
@

1
Acos

2π
T

yþ

    
2

T

ðT
0

Δneff ðyÞcos 4πyT dy

0
@

1
Acos

4π
T

yþ

    
2

T

ðT
0

Δneff ðyÞcos 6πyT dy

0
@

1
Acos

6π
T

yþ higher orders

ð5:58Þ

Since Δneff kW is small, we can express e�jΔneff ðyÞkWby its Taylor’s series,

e�jkWΔneff ðyÞ ¼ 1� jkW

1

T

ðT
0

Δneff ðyÞdyþ 2

T
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0

Δneff ðyÞcos 2πyT dy
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ð5:59Þ

The first term of the Fourier series is a constant. The cosine in the second term can be
written as:

jkW Δn0 e
�j
2π
T

y þ Δnoe
þj
2π
T

y
" #

: ð5:60Þ

Δno ¼ 1

T

ðT
0

Δneff ðyÞcos 2πyT dy ð5:61Þ

Therefore the transmitted wave has many terms. The first term is an mth guided-wave

mode in the +z direction. The second term has e�jneff ;mkze
± j

2π
T

y
variation in the y–z plane.

This second term represents two planar guided waves propagating in the ±θd directions
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with respect to the z axis where θd ¼ sin�1ð2π=Tneff ;mkÞ.There are also higher-order

terms with declining magnitudes at angles ±θd ¼ sin�1ð2Kπ=Tneff ;mkÞ, where K = 2,3
4. . . The analytical results presented here are applicable to both TE and TM modes.

5.5.7 Excitation of planar guided-wave modes

Planar guided waves can be excited by two different ways:

(1) End excitation. In this case an abruptly terminated planar waveguide with polished
end surface is illuminated by an external incident beam. At the vertical end surface
of the waveguide the incident tangential electric field Einc excites various modes in
the waveguide via the continuity condition,

Einc ¼ Einc;xðxÞEinc;xðyÞix þ Einc;yðxÞEinc;yðyÞiy ¼
X
n

AnEnðxÞ
ðþ∞

�∞

Finc;xðfyÞeþj2πfyydfyix  

þ
X
m

AmEmðxÞ
ðþ∞

�∞

Finc;yðfyÞeþj2πfyydfyiy þ TMandTE substrate and air modes

ð5:62Þ

where Finc(fy) is the Fourier transform of Einc(y) in the y direction similar to Eq.
(5.45). An and Am are determined from the orthogonality relations similar to those
shown in Eqs. (5.44) and (5.45).

(2) Prism excitation. In this case a prism with refractive index larger than the
refractive index of the core is placed close to the core. The bottom prism
surface is parallel to the top surface of the core with a low-index gap between
them. Because of the gap, an incident wave in the prism at the appropriate
angle will be internally reflected at the bottom surface of the prism with a
propagation constant in the z direction equal to neff,mk. When mechanical
pressure is applied so that the gap between the prism and the cladding is
less than the decay length of evanescent tails of both the incident beam and
the mth-order mode of the waveguide, optical energy is transferred from the
prism to the mth mode of the waveguide. When the size of the input beam
illuminating the bottom surface of the prism is adjusted appropriately, the
energy transfer from the incident beam to the mth order mode is maximized
[6,7]. Note that planar guided waves can be selectively excited by the prism,
while several modes are often excited simultaneously by the end excitation
method.
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5.5.8 Multi-layer planar waveguides

In practice, epitaxial growth of III–V semiconductor materials on InP or GaAs is often
used to create multiple-layer waveguides. These layers have different refractive indices.
Let the substrate with index no at x ≤ xo be labeled as the zeroth layer. There are N layers
on top. Each layer is located from xj–1 < x < xj. It is labeled as the jth layer, with index nj.
For planar waveguide modes, Eqs. (5.1) and (5.2) still apply. Thus we still have TE or

TMmodes with e�jβmz variation in the z direction. For TE modes, E(x) in the jth layer for
the mth mode in the x direction is:

Em;jðxÞ ¼ ½Am;je
jhm;jx þ Bm;je

�jhm;jx� ð5:63Þ

At the boundary x = tj–1, the boundary condition requires:

Am;je
jhm;jtj�1 þ Bm;je

�jhm;jtj�1 ¼ Am;j�1e
jhm;j�1tj�1 þ Bm;j�1e

�jhm;j�1tj�1

jhm;jAm;je
jhm;jtj�1 � jhm;jBm;je

�jhm;jtj�1 ¼ jhm;j�1Am;j�1e
jhm;j�1tj�1 � jhm;j�1Bm;j�1e

�jhm;j�1tj�1

ð5:64Þ

The TE modes are obtained from the solution of these equations. Note that when
the index nj of the jth layer is low, hm,j may be imaginary. It means the field in the
jth layer is exponentially decaying in the x direction. Similar comments apply to
TM modes.

Modes of multi-layer planar waveguides are usually calculated by numerical
methods.

5.6 Channel waveguides

Channel waveguides are used in devices such as directional couplers, Y-branch
splitters, waveguide lasers, guided-wave modulators, waveguide photo-detectors,
waveguide demultiplexers, ring resonators, and waveguide filters. Most channel
waveguides are microns wide and a few centimeters long. Because of the complexity
of the geometry of the dielectric boundaries, there is no analytical solution of the
modes of a channel waveguide. There are only approximate solutions [8] and
computer programs such as Rsoft BeamProp© or the Finite Element Method that
can simulate the modes[9]. The guided-wave modes can also be obtained by an
approximation method called the effective index method. Discussions of channel
waveguides using the effective index analysis will be the focus of discussion in
this section.

The properties of the channel guided-wave mode that are most important in these
applications are neff, the attenuation rate, the polarization of the modes that have been
excited by the incident radiation, and the decay rate of the evanescent tails.
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Channel waveguide devices often involve one guided-wave mode interacting with
another guided-wave mode through their evanescent tails. These interactions and the
applications resulting from these interactions will be analyzed in detail in the next three
chapters.

Channel waveguides are often fabricated either by diffusion or by micro-
fabrication procedures, such as etching, from planar waveguides. A realistic
diffused waveguide would have a graded variation of index from the core to the
cladding. Comparing to etched waveguides, the advantage of diffused channel
waveguides is that there is very little scattering loss at the boundaries. The cross-
sectional index variation of an idealized diffused waveguide is illustrated in
Figure 5.9(a). It shows only a core with a constant index. Figure 5.9(b) illustrates
an etched channel waveguide in which the thickness of the core in the cladding
region has been reduced. The waveguide shown in Figure 5.9 (b) is also called a
ridge waveguide. Ridge waveguides are used because the roughness of the etched
surface produces a large scattering loss. The thinner the ridge, the lower the total
scattering loss. Sometimes, a ridge waveguide is also formed by depositing a ridge
on top of the core. In both cases, the center core of the channel waveguide is
located at W/2 ≥ .׀y׀

5.6.1 The effective index analysis

Consider the rectangular channel waveguides in Figure 5.9(a) and (b), where there is a
rectangular core region in the y direction, y׀ ,W/2≥׀ and a cladding region, ׀y׀ ≥W/2. Let
us assume that the planar waveguide in the core region has only one mode in the
x direction, the TE0 mode. In Section 5.3.1, the propagation of the TE0 planar
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(a) Cross-sectional view of a diffused
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Figure 5.9 Illustration of the index profile of two examples of channel waveguides. (a) A diffused waveguide.
The illustration shows only a uniform index variation in the core instead of a graded index
variation. (b) An etched channel waveguide. The ridge is W wide. The thickness of the planar
waveguide and the ridge is t.
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guided-wave mode in the core region along its propagation direction z is given by e±jβoz

where β0/k is its effective index, ne1. In the ridge waveguide shown Figure 5.9(b), there is
also a planar TE0 guided-wave mode in the cladding region. Let the effective index of
the TE0 planar guided-wavemode of the structure in the cladding region be ne2. Since the
high-index layer is thicker at ׀y׀ ≤ w/2, ncore > ne1 > ne2 >ns. In the channel waveguide
shown Figure 5.9(a), there is no guided-wave mode in the cladding region. There are
only continuous substrate and air propagating modes for ׀y׀ ≥ W/2.

In the channel waveguide shown in Figure 5.9(b), the planar guided-wave mode
in the ׀y׀ ≤ W/2 core region can propagate in any direction in the y–z plane. Let
us consider a planar guided-wave mode TE0 propagating in a direction that makes
an angle δ with respect to the z axis. Its propagation constant in the z direction is
ne1k cos δ. If δ is so small that ne1 cos δ > ne2, where ne2 is the effective index of the TE0

mode outside the ridge, this planar guided wave will be totally internal reflected
repeatedly at the jyj ¼ W=2 boundaries. At any arbitrary δ, the sum of all the reflected
waves is zero because of phase cancellations. The sum of all the reflected core planar
guided waves would only yield a non-zero solution when the round-trip phase shift of
total internal reflection is a multiple of 2π. It happens only at specific values of δ.
Thus the allowed specific values of δ depend on ne1, W, and the phase of the
reflection coefficient at the jyj ¼ W=2 boundaries, which in turn depend on ne1, ne2,
and the polarization. These totally internally reflected planar waveguide modes in the
core constitute the channel guided-wave modes. The lowest-order mode (i.e. the zeroth-
order mode) in the y direction has a round trip phase shift of 2π, and the nth order
mode has a round-trip phase shift of 2(n + 1)π. Consequently the field of the zeroth-order
mode (n = 0) has no node in the y direction in the core. The nth-order mode has n
nodes. If W is sufficiently small, then we would have only a single mode in the y
direction in the core. Since the lowest order mode in the x direction is the TE0

mode, the lowest-order mode of the channel waveguide is called the TE00 mode.
Similarly, the nth totally internal reflected TEm mode yields the TEmn modes in the
channel waveguide.

The effective index method is just a simplified method to match the boundary condi-
tions, thereby determining approximately δ for the discrete modes of the channel
waveguides.

Consider now the mathematical details of effective index analysis. Let the TE0

electric field of the reflected planar waveguide mode have amplitude A. At the ׀y׀ =
W/2 boundaries, the tangential electric and magnetic fields need to be matched. The
dominant component of the electric field is approximately perpendicular to the
boundaries. A small component is in the z direction. This component has an
amplitude A sin δ. It is tangential to the jyj ¼ W=2 boundaries. The magnetic field
has two components, Hx and Hz. The dominant tangential field of the core planar
guided wave is Hx. At the ׀y׀ = W/2 boundary, we need to match the magnetic field
Hx and the z component of the electric field of the core and cladding modes of the
planar waveguides.
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Let the x variation of the mode in the core region be the TE0 mode. The mode
in the cladding region that matches closely the x variation of Hx and Ez in the core at
the ׀y׀ =W/2 boundary, is theHx and Ez of the cladding TE0 planar guided-wave mode. If
we neglect the continuous modes in the x direction, which will be excited at the
boundaries, we only need to match the amplitude and phase of the tangential compo-
nents of the TE0 mode on both sides of the boundary as a function of y and z.

In order to satisfy the boundary condition for all z values, the z variation of this
cladding guided-wave mode must be equal to e−jne1kcosδz. If we let the y variation of the

TE0 cladding guided-wave be e�jy k
y, γ must now satisfy the equation,

γ2 ¼ ne2
2 � ne1

2 cos2δ ð5:65Þ
γ is imaginary when ne1cos δ > ne2. An imaginary γ represents an exponentially decay-
ing cladding guided-wave in the y direction, not a propagating wave.

The equation forHx and the boundary conditions of the continuity of the amplitude and
phase of Hx and the z component of the electric field here is similar to the equation and
boundary conditions of an equivalent TE plane wave polarized in the y direction (withHx

in the x direction and ∂=∂x ¼ 0) bouncing back and forth between the y boundaries and
propagating in the z direction. The equivalent TE planewaves and the configuration of the
boundaries are illustrated in Figure 5.10. In this case, the equivalent plane wave in the
core has index ne1, and the equivalent plane wave in the cladding has index ne2.

In short, the mathematics used here for analyzing the total internal reflection of a core
planar guided wave in the y direction is approximately equivalent to analyzing a total
reflection of the equivalent TM plane wave propagating in the y–z plane at angle δ with
respect to the z axis where the magnetic field Hx is polarized approximately in the x
direction and electric field Ez is in the z direction. The equivalent material refractive
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y = W/2
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δ

Figure 5.10 Illustration of the TM wave used in the effective index approximation.
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indices are ne1 and ne2. In other words, we can use the TM planar guided-wave mode
equation for a symmetric waveguide in the y direction, i.e.

HxðzÞ ¼ Ae�jβo cos δz

∂2

∂y2
þ ω2εðyÞμ� β0

2cos2δ

2
4

3
5HxðyÞ ¼ 0

   εðyÞ ¼ εonej2  j ¼ 1 or 2

ð5:66Þ

Ey ¼ j
ωεðyÞ

∂HxðzÞ
∂z

and Ez ¼ �j
ωεðyÞ

∂Hx

∂y

Note that the equivalent plane wave has no x variation.4 The boundary conditions are the
continuity of Hx and Ez (or ∂Hx=∂y) at y = ±W/2. The nth solution of this equation will
yield the effective index and the y variation of even channel guided-wave mode TE0 n

that we are looking for.5 Note that the channel waveguide is now symmetric with respect
to y = 0. As we have discussed in Section 5.4.2, there are even and odd solutions of
Eq. (5.36). The total of all the even and odd modes constitutes all the channel waveguide
modes. This is the effective index method.

Although the TE0 mode is used in the preceding discussion, the result is applicable
to any TEm mode in the core. The most important quantity to be obtained is the effective
index, i.e. the βm,n/k or nm,e1cosδn, of the TEmn mode of the channel waveguide in the
z direction. Knowing this effective index, we know both the δ in the core and the
exponential decay constant γ in the cladding. Since δ is very small, the channel
guided-wave mode obtained from the TE core planar guided mode is still approxi-
mately a y-polarized TE mode propagating in the z direction. The x variation of Ey for
׀y׀ < W/2 is approximately the same as the core planar guided-wave mode TEm.

Similarly, a channel guided-wave mode with approximately TM polarization can be
obtained from TM planar guided-wave modes in the core and in the cladding region. In
that case the equivalent TE guided-wave equation will be used to find the effective index
of the channel waveguide mode and the y variation.

Notice that we no longer have pure TE or TM modes. We have basically TE- or TM-
like modes. These modes are called hybrid modes. Note also that the effective index
approximation did not give us a complete solution for the x variation of the electric field
near the boundaries. In order to satisfy the boundary conditions accurately, many other
modes, especially the substrate and air modes, need to be involved. The electric and
magnetic fields of these substrate modes will exponentially decay in the y direction, even
faster than the planar guided-wave mode in the cladding.

The neff of the channel waveguide mode calculated by the effective index method is
reasonably accurate when modes are well above the cut-off and when the field variations
of the mth order modes inside and outside of the core are close. No matter how accurate

4 The x variations of the core and claddingmodes have been taken into consideration by the use of the effective
indices ne1 and ne2.

5 Note that the TEmn channel waveguide mode is still polarized predominantly in the y direction in the y–z
plane.
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the result, the simple effective index analysis provides much insight about properties of
channel guided-wave modes.

For the waveguide shown in Figure 5.9(a), there is no planar waveguide mode
in the cladding. The x variation of the tangential field of a core planar guided
wave propagating at angle δ must be matched by the summation of the continuous
cladding modes at ׀y׀ = W/2. Since ne1cos δ > ns and nc, all continuous modes decay
exponentially away from the ׀y׀ = W/2 boundary. The core planar guided wave is again
totally internally reflected back and forth. The sum of all the reflected core planar guided
waves would yield a non-zero solution only when the round trip phase shift of total
internal reflection for specific values of δ is a multiple of 2π. These special sets of
totally internally reflected core planar waveguide modes constitute the channel guided-
wave modes. However, in this case, we only know the ne1 of the core TE planar guided-
wave mode. We do not know ne2 outside the core. Since a combination of substrates
and air modes must be used to match the x variation of the core guided wave at
y = ±W/2, the equivalent value of ne2 should be somewhere between nc and the
substrate index ns. The best equivalent index ne2 to be used for the cladding region
in the TM equation in ywill depend on the profile of the core TEmode. For a core guided
wave with a substantial evanescent tail in the x direction in the substrate, we may
use the substrate index. Fortunately, for well-guided channel modes in the core, the
solution of neff and the y variation is not very sensitive to the value of ne2 used for the
calculation.

Clearly, the accuracy of the effective index method may not be very good for such a
structure.

5.6.2 An example of the effective index method

Consider first a GaAs planar waveguide with n2 = 3.27 and ns = 3.19, and t = 0.9 μm in
the core region operating at λ = 1.5 μm. This waveguide is exposed to air with nc = 1. The
GaAs layer has been partially etched away at ׀y׀ ≥W/2,W = 3 μm. In the lateral cladding
region, t = 0.6 μm. We would like to find the effective index and the field of the lowest
order TE-like channel waveguide mode.

The first step of our calculation is to find the effective index of the TE0 planar
guided wave in the core region at W/2 ≥ ǀyǀ and in the cladding region at ǀyǀ > W/2.
From Eq. (5.5), we find the TE planar guided-wave modes for the core and the
cladding regions, ne1 =3.223 and ne2 = 3.211. According to Section 5.4.2, we solve
the following equations to obtain the lowest-order symmetrical channel waveguide
TE00 mode, which is polarized approximately in the y direction:

tan ðhʹn=kÞ kW2

 �

¼ ne12pʹn=k
ne22hʹn=k

;   
hʹn
k

� 	2

þ pʹn
k

� 	2

¼ ne1
2 � ne2

2 ð5:67Þ

The solution is (hʹ0/k) = 0.1795, which gives neff,0 = 3.218 and pʹ0/k = 0.2121. The field
distributions are approximately
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Ey

¼ A sinðh0xþ φ0Þcosðhʹ0yÞe�jneff ;0kz for  0< x< t; y ≤ jW=2j
¼ A sinφ0e

q0x cosðhʹ0yÞe�jneff ;0kz for x ≤ 0; y ≤ jW=2j
¼ A sinðh0t þ φ0Þe�p0ðx�tÞ cosðhʹ0yÞe�jneff ;0kz for  x ≥ t; y ≤ jW=2j

¼ A sinðh0xþ φ0Þ cosð hʹ0W
2
Þe

�pʹ0ðy� W
2
Þ
e�jneff ;0kz for  0< x< t; y>W=2

¼ A sinðh0xþ φ0Þ cosð hʹ0W
2
Þe

þpʹ0ðyþ W
2
Þ
e�jneff ;0kz for  0< x< t; y<�W=2

¼ A sinðh0t þ φ0Þe�p0ðx�tÞcosð hʹ0W
2
Þe�pʹ0ðy� W

2
Þ
e�jneff ;0kz for x > t; y > W=2

¼ A sinðh0t þ φ0Þeq0xcosð hʹ0W
2
Þe

�pʹ0ðy� W
2
Þ
e�jneff ;0kz for x< 0; y >W=2

¼ A sinðh0t þ φ0Þe�p0ðx�tÞcosð hʹ0W
2
Þepʹ0ðyþ W

2
Þ
e�jneff ;okz for x> t; y<�W=2

¼ A sinðh0t þ φ0Þeq0xcosð hʹ0W
2
Þe

�pʹ0ðyþ W
2
Þ
e�jneff ;0kz for x< 0; y < �W=2

ð5:68Þ

Here φ0, q0, h0, and p0 are parameters of the planar guided-wave TE0 mode in the
core (given by Eq. (5.4) with βm = 3.223k). Since we do not know in detail what the
radiation modes are, we cannot find the field distributions accurately in the cladding
regions (x > t, ǀyǀ > W/2) and (x < 0, ǀyǀ > W/2) from the effective index method. A
reasonable estimation is that the fields near ׀y׀ = W/2 have an x variation similar to
the field pattern of the TE0 mode in the core in the x direction.

5.6.3 Channel waveguide modes of complex structures

An important assumption made in the effective index method is that the field variations
in the x direction in the cladding and core regions near the boundaries in the y direction
are similar. In an actual multi-layer channel waveguide, the material indices and
thicknesses may eventually vary considerably in the y direction. Thus the pattern of
the planar waveguide mode may also vary considerably at different y locations. In this
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case, the entire waveguide may then be approximated by sections of local waveguides in
the y direction. Each local planar waveguide section has constant cross-sectional index
variation that is slightly different than its neighboring section. The local planar wave-
guide may have multiple modes. For TEmodes, the local Ez(x) andHx(x) for TEmmodes
in a given local section are matched at the y boundaries by the similar Ez and Hx of the
TEmmode in its neighboring sections by the effective index method. The effective index
of the total composite mode is determined from the equations obtained from all the
boundaries. For such structures, numerical simulation is usually employed to determine
the mode patterns and the neff.

5.7 Guided-wave modes in optical fibers

Optical fibers are used for low loss transmission of optical signals, often over
long distances. There are already many books that discuss the modes of various
optical fibers[1]. We will not repeat those discussions here. Guided-wave modes
in round, step-index optical fibers are presented here for three reasons: (1) They
are the only analytical solutions of optical fibers. (2) The properties of all the
optical fibers can be discussed using these solutions. (3) The presentation of the
analytical solution allows us to understand the discussions of optical fiber modes
in the literature. However, step-index fibers are not used in practical
applications.

The cross-section of a step-index optical fiber with uniform cladding and core
has already been shown in Figure 5.1(a). The core has radius a. The core index n1
is larger than the cladding index n2. In contrast to channel waveguides with
rectangular cross-sections, there are analytical solutions of guided-wave modes in
single-mode step-index fibers because of its cylindrical symmetry. Although the
field distribution and the effective index (especially the dispersion) of modern
graded index fibers used in communication systems are different than those of
the step-index fibers, step-index fiber modes are used here to demonstrate many
properties of the modes of round fibers.

5.7.1 Guided-wave solutions of Maxwell’s equations

The vector wave equations obtained from Maxwell’s equations in a homogeneous
medium with refractive index n are [1]:

ð∇2 þ n2k2ÞE ¼ 0  and  ð∇2 þ n2k2ÞH ¼ 0 ð5:69Þ

In addition, we have the curl equations relating E and H. If we assume that guided-wave
modes have e−jβz variation along the z direction, which is also the fiber axis, then in the
cylindrical coordinates we have:
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∇2 ¼ ½∇t
2� þ ∂2
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3
5þ ∂2

∂ z2
;

ð5:70Þ

ð∇t
2 þ kt

2ÞEz ¼ 0;  ð∇t
2 þ kt

2ÞHz ¼ 0;

kt
2 ¼ n2k2 � β2

The remaining transverse components of the fields are related to Ez and Hz as follows:
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kt2
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ð5:71Þ

The solutions of Eq. (5.70) are:

Ez ¼ AJmðkt1ρÞ cosðmθÞ  and Hz ¼ BJmðkt1ρÞ sinðmθÞ;
kt1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n12k2 � β2

q ð5:72Þ

for a ≥ ρ, and,

Ez ¼ CHm
ð2Þðjkt2ρÞ cosðmθÞ and Hz ¼ DHm

ð2Þðjkt2ρÞ sinðmθÞ;
jkt2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � n22k2

q ð5:73Þ

for ρ > a. Here n1 is the refractive index of the core, and n2 is the refractive index
of the cladding. There is a second set of solutions in which Ez has the sin(mθ)
variation and Hz has the cos(mθ) variation. Jm is the Bessel function of the first
kind and order m; Hm

(2) is the Hankel function of the second kind of order m; and
m is an integer. Similar to the guided waves in planar and channel waveguides, the
Hankel function gives an exponential decay as ρ→∞ in the cladding. Eρ, Eθ, Hρ,
and Hθ are obtained from Ez and Hz from Eq. (5.71). Continuity of Ez, Hz, Eθ, and
Hθ at ρ = a yields the relationship among A, B, C, and D coefficients and the
characteristic equation that determines the discrete values of β for the mode. Note
that since the fields decay exponentially in the radial direction in the cladding, the
thickness of the cladding does not affect the solution, as long as it is sufficiently
thick. The effective index, neff, of the mode is β/k. Similar to the channel
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waveguide modes, each mode has a cut-off condition. The higher the order of the
mode, the larger the value of ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n12 � n22

p
for the cut-off.

In many ways, the step-index fiber resembles a planar waveguide wrapped around
cylindrically. However, because of the cylindrical geometry, the mathematical expres-
sions appear to be more complicated.

5.7.2 Properties of the modes in fibers

It is interesting to note that the axially symmetric modes havem = 0. In that case, we have
again TE (with non-zero Hz, Eθ, and Hρ, called Hop modes) and TM (with non-zero Ez,
Hθ, and Eρ, called Eop modes) modes. However, the lowest-order mode that has the
largest decay constant in the cladding, jkt2, is not an axially symmetric mode. The
lowest-order mode is the HE11 mode, which has m = 1 and the lowest-order radial
solution of the characteristic equations. For m ≠ 0, the modes lose their transverse
character. They are known as hybrid modes. There is no cut-off for the HE11 mode. In
HE– modes the longitudinal electric field is bigger than the longitudinal magnetic field.
There are also EH– modes, in which the longitudinal magnetic field is dominant. The
TM (i.e. Eop) modes are the axially symmetric members of the HE– family of modes.
The Hop modes are the axially symmetric members of the EH– family of modes.

For weakly guiding modes, Δ ¼ ðn1 � n2Þ=n1 is small compared to unity. The
characteristic equation for HEmp modes is:

kt1a
Jmðkt1aÞ
Jm�1ðkt1aÞ ¼ ðjkt2aÞ Hm

ð2Þðjkt2aÞ
Hm�1

ð2Þðjkt2aÞ ð5:74Þ

where the subscript p refers to the pth root of the above equation. The characteristic
equation for EHmp modes is:

kt1a
Jmþ2ðkt1aÞ
Jmþ1ðkt1aÞ ¼ ðjkt2aÞHmþ2

ð2Þðjkt2aÞ
Hmþ1

ð2Þðjkt2aÞ ð5:75Þ

Both the HE– and HE– modes exhibit nearly transverse field distribution. The long-
itudinal components have a phase shift of π/2 with respect to the transverse components;
they remain small compared to the transverse field. The characteristic equation for HEmp

modes is the same as the characteristic equation for EHm–2,p modes. Therefore, for
weakly guiding fibers, any HEl+1,p mode is degenerate with EHl–1,p modes (i.e. they
have the same propagation constants or effective index).

When we linearly combine the degenerate HEl+1,p and EHl–1,p modes together, we
obtain the linearly polarized LPlp mode, which has the same effective index as the
HEl+1,p mode. The LPlp mode has only Ex and Hy in the core and cladding, it is nearly
uniformly polarized over the fiber cross-section. The LP01 mode is just the HE11 mode.
Each LP mode occurs in four different versions, two orthogonal directions of polariza-
tion, each with cos lθ and sin lθ variations. Figure 5.11 shows the phase parameter B as a

function of fiber parameter V ¼ ka
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n12 � n22

p
for low-order LPlp modes, taken from

Unger’s book [1].

144 Optical waveguides and fibers

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139871419.006
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:50:16, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.006
https://www.cambridge.org/core


5.7.3 Properties of optical fibers in applications

There are very few devices made from fibers. The most prominent devices are the fiber
lasers, fiber optical amplifiers, directional couplers, and grating filters.6 Optical fibers
are used primarily as transmission lines for optical pulses, often over many kilometers of
distance. As the optical pulse propagates, its pulse width widens, and its polarization
changes. Therefore, the properties of modes in fibers that are most important to fiber
communications are the number of propagating modes, the attenuation rate of the
modes, the dispersion, the polarization of the excited mode, and the change of the
state of polarization as the mode propagates. In addition, there are applications of
short fibers in instrumentation, where multi-mode fibers are used, and the important
considerations are not the modal analysis but the physical features of the fibers.

The wavelength dependence of the material absorption requires long-distance optical
fiber networks to operate at approximately 1.3 and 1.55 μm wavelengths. In order to
minimize dispersion, most fiber transmission lines use single-mode fibers. Only the HE11
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Figure 5.11 The phase parameter B of propagating modes in step-index, round fibers. The phase parameter B is
related to the effective index neff of the propagating modes,B ¼ ðn2eff � n22Þ=ðn21 � n22Þ. It is shown
as a function of the fiber material parameter V, V ¼ ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � n22

p
, for lower-order LP modes in the

weakly guiding fibers. The figure is taken from reference [1] with copyright permission from
Oxford University Press.

6 See Chapters 8 and 9 for discussions of waveguide gratings, filters and directional couplers. The optical fiber
devices operate very similarly to the waveguide devices.
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mode exits in these fibers and there is no mode interference. However, even in single-mode
fibers, there is dispersion because of two effects: (1) The solution of neff in Eq. (5.70)
depends clearly on λ. This is called the modal dispersion. (2) n1 and n2 also have slightly
different values at different wavelengths. This is known as material dispersion. As we
discussed in Section 1.6, dispersion causes the pulses of optical radiation to spread after
propagating a long distance in the fiber. It limits the data rate that can be transmitted
through the fiber. Thus, some single-mode fibers are designed so that material and mode
dispersion cancel each other at a specific wavelength, such as 1.3 or 1.5 μm. These fibers
are called zero-dispersion fibers. The effects of dispersion after a certain distance of
propagation can also be canceled by propagating in the next section of fiber which has
opposite dispersion. This technique is known as dispersion compensation.

The polarization of the propagating mode is determined by the excitation source.
However, any cylindrical fiber is degenerate in two orthogonal polarization directions.
Any minute changes in uniformity caused by factors such as bending and stress cause the
polarization of the radiation to rotate randomly in the fiber as it propagates. Polarization-
maintaining fibers remove this degeneracy by means of intentional strain or ellipticity of
the cross-section. The polarization of the radiation is maintained as it propagates.

5.7.4 The cladding modes

There are also cladding modes in optical fibers, corresponding to the continuous
substrate and air modes in the planar and channel waveguides. They are excited
whenever there is a defect, bending of the fiber, or dielectric discontinuity.
Cladding modes are solutions of the boundary value equations. Their effective
indices are less than n2. These modes do not exponentially decay away from the
core. A typical single-mode fiber has a core about 10 μm in diameter, while the
cladding has a diameter of the order of 100 μm. Thus there are many propagating
cladding modes, with the effective indices very close to each other, resembling a
continuous mode distribution. In the absence of the exponential decay, cladding
modes have high attenuation. Their amplitude is very small at distances far away
from the discontinuity. Cladding modes are utilized in short fibers used for
instrumentation, but little modal analysis is required for these applications.

Chapter summary

Modes of optical fibers and waveguides are presented in this chapter. Because of the
complex mathematics, only the analytical solutions of modes in round, step-index fiber
and planar waveguides have been presented in detail. These solutions demonstrate not
only the mathematical techniques for finding the modes, but also important properties of
the guided-wave modes, namely the effective index, the evanescent decay of the modes in
the cladding, the othorgonality of modes and the dispersion. Since there are no analy-
tical solutions for modes in channel waveguides, these modes are discussed using the
effective index approximation.
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The discussions in this chapter demonstrate clearly the advantages and necessity of
modal analysis.

Although the methods to solve the modes of fibers and channel waveguides are similar,
their applications are not. In long-distance optical-fiber transmission lines, the low
attenuation and the dispersion of the optical pulses are most important. Therefore,
dispersion in fibers is important to understand and to discuss. In opto-electronics,
devices are short. The performance of devices depends on the interaction of the excited
modes in channel waveguides. Therefore, how to understand and control the mode
pattern (using the effective index and the evanescent field), the orthogonality of
modes, and the excitation of modes becomes most important. These modal properties
of channel waveguides are used to discuss modal interactions and device properties in
Chapters 6, 7, and 8.
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6 Guided-wave interactions

The operation of many photonic devices is based on the interactions among optical
guided waves in channel waveguides. We have already discussed the modes of individual
fiber and channel waveguides in Chapter 5. From that discussion, it is clear that
approximation methods need to be used to obtain the modes of channel waveguides.
How to analyze the interactions of these modes is the focus of this chapter; much of this
analysis is also based on approximation methods.

There are three types of guided-wave interactions that are the basis of the operation
of most photonic devices: (1) The adiabatic transition of guided-wave modes in
waveguides (or fiber structures). In these devices, the cross-section of the waveguide
at one longitudinal position is transformed gradually to a different cross-section at
another longitudinal position as the modes propagate. An example of this type of
device is the symmetrical Y-branch that splits one channel waveguide into two
identical channel waveguides (see Section 6.7.2). (2) The phase-matched interaction
between guided-wave modes of two waveguides over a specific interaction distance.
A well-known example of photonic devices based on this type of interaction is the
directional coupler in waveguides (or fibers, see Sections 6.3.4 and 6.6). (3)
Interaction of guided-wave modes through periodic perturbation of the optical wave-
guide. An example of this is the grating filter in channel waveguides (or optical fibers,
see Section 6.3.3).

In this chapter, we first introduce two techniques that can be used to analyze
approximately the interactions of weakly coupled guided waves. These are perturbation
analysis and coupled mode analysis [1,2]. They are most accurate when the mutual
interaction is moderate. Following that, analysis of coupled waveguides by super modes
of the total structure is presented. The super mode analysis allows us to view the
interactions among both weakly and strongly coupled waveguides from another point
of view. It also allows us to understand the properties of strongly coupled waveguides
such as the Y-junction and the Mach–Zehnder interferometer, even without the exact
knowledge of the profile and the effective index of the modes. Much of the discussion in
this chapter is taken from my earlier book [3].

In guided-wave devices, radiation modes are excited at any dielectric discontinuity.
Rigorous modal analysis of propagation in a waveguide with varying cross-section in
the direction of propagation should involve, in principle, all these modes. However,
radiation modes usually fade away at some reasonable distance from the discontinuity.
They are important only when radiation loss must be accounted for. Thus in the
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discussion of guided-wave interactions in this chapter, radiation modes such as the
substrate and air modes in waveguides (and the cladding modes in fibers) are not
discussed.

6.1 Review of properties of the modes in a waveguide

In order to simplify our discussion, the formalism of modal equations and the properties
of the guided-wave modes are summarized first.

In any waveguide (or fiber) that has a transverse index variation independent of z
(i.e. independent of its longitudinal position), the electric and magnetic fields, E(x,y,z)
and H(x,y,z), can be explicitly expressed in terms of the longitudinal (Ez , Hz) and
transverse (Et,Ht) fields as follows:

E ¼ ½Exix þ Eyiy� þ Eziz ¼ Et þ Eziz ¼ Eðx; yÞe�jβ ze jω t;

H ¼ ½Hxix þ Hyiy� þ Hziz ¼ Ht þ Hziz ¼ H ðx; yÞe�jβ ze jω t;

∇ ¼ ∂
∂ x

ix þ
∂
∂ y

iy

2
4

3
5þ ∂

∂ z
iz ¼ ∇t þ ∂

∂ z
iz; ð6:1Þ

∇t � E t ¼ �jωμHziz;   ∇t � Ht ¼ jωεðx; yÞEziz;

∇t � Eziz � jβiz � Et ¼ �jωμHt;

∇t � Hziz � jβiz � Ht ¼ jωεðx; yÞEt

Equation (6.1) implies that the transverse fields can be obtained directly from the
longitudinal fields, or vice versa. One only needs to use either set of them to specify
the field.

The nth guided-wave mode, given by en and hn, is the nth discrete eigenvalue
solution of E and H in the above vector wave equation that satisfies the condition of
the continuity of tangential electric and magnetic fields across all boundaries. In view of
the properties of the modes discussed in Chapter 5, we expect the following properties
for the en and hn modes of any general waveguide with constant cross-section in z.

(1) The magnitude of the fields outside the higher-index core or channel region decays
exponentially away from the high-index region in lateral directions.

(2) The higher the order of the mode, the slower is the exponential decay rate of the
evanescent tail.

(3) The effective index neff,n (neff,n = βn/k) is less than the highest index that is in the core
index and larger than the index of the cladding or the substrate. neff is larger for a
lower-order mode.

(4) Most importantly, it can be shown from the theory of differential equations, that the
guided-wave modes of lossless waveguides are orthogonal to each other and to the
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substrate or cladding modes. Mathematically, this is expressed for guided-wave
modes as,

ðð
S

ðet;m � ht;n
�Þ � izds ¼

ð∞
�∞

ð∞
�∞

ðe
t;m

� ht;n
�Þ � izdxdy ¼ 0   for n≠m ð6:2Þ

where the surface integral is carried out over the entire transverse cross-section with
integration limits extending to ±∞. et,m is the transverse component of em. Guided-wave
modes plus all the radiation modes constitute a complete orthogonal set of modes so that
any field can be represented as a superposition of the modes. Moreover, the channel
guided-wave modes are normalized, i.e.:

1

2
Re

ðð
S

ðet;n � ht;n
�Þ � izdS

2
4

3
5 ¼ 1: ð6:3Þ

For planar guided-wave modes, the modes are also orthogonal and normalized in x
variation, as shown in Eq. (5.6) of Section 5.3.1 and Eq. (5.33) of Section 5.4.1.
However, integration with respect to the y coordinate is absent. The normalization
means that the power carried by the mth normalized planar guided-wave mode is 1 W
per unit distance (i.e. meter) in the y direction.

6.2 Perturbation analysis

It is difficult to calculate the modes of a complex waveguide structure. However, when an
original waveguide is perturbed by another object nearby, the perturbation analysis
allows us to calculate approximately the change in E and H of the guided-wave modes in
the original waveguide without solving Maxwell’s equations for the total waveguide
structure. Perturbation analysis is applicable as long as the perturbing object is either
small or at a position reasonably far away from the waveguide core so that the
evanescent tail of the mode for the original waveguides has decayed.

6.2.1 Derivation of perturbation analysis

Consider two waveguide structures that have the cross-sectional ε variation of the core
shown in Figure 6.1(a) and (b). The original waveguide core is shown in Figure 6.1(a). The
original waveguide core plus a perturbation waveguide core are shown in Figure 6.1(b).
The two structures differ in the dielectric perturbation Δε shown in Figure 6.1(c), where
Δε(x,y) = εʹ(x,y) – ε(x,y). Let E and H be solutions of Eq. (6.1) of the previous section for
the original waveguide with index profile ε(x,y) shown in Figure 6.1(a). Let Eʹ and Hʹ be
solutions of Eq. (6.1) for the waveguide structure with index profile εʹ(x,y) shown in
Figure 6.1(b). Let us assume that E, H, and the guided-wave modes of the structure
in Figure 6.1 (a) are already known. The guided-wave modes of the original waveguide
in Figure 6.1(b) are the perturbation of the guided-wave modes of the structure in
Figure 6.1(a) due to Δε.
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Mathematically, from vector calculus and Eq. (6.1), we know,

∇ � ½E� � H ʹþ E ʹ� H �� ¼ �jω ΔεE� � E ʹ ð6:4Þ
Let us apply volume integration to both sides of this equation over a cylindrical
volume, V. ððð

V

∇ � ½E� � H ʹþ E ʹ� H ��dxdydz ¼ �jω
ððð
V

ΔεE ʹ � E�dxdydz ð6:5Þ

The cylinder has flat circular ends parallel to the x–y plane. It has an infinitely large
radius for the circular ends and a short length dz along the z-axis. According to advanced
calculus, the volume integration on the left-hand side of this equation can be replaced by
the surface integration of ½E� � H ʹþ E ʹ� H �� on the cylinder. The contribution of the
surface integration over the cylindrical surface is zero because the guided-wave fields E
and Eʹ have already decayed to zero at the surface. For a sufficiently small dz, E� � E ʹ is
approximately a constant from z to z + dz. Therefore, we obtain:ðð

S

f½E� � H ʹþ E ʹ� H ��jzþdz � ½E� � H ʹþ E ʹ� H ��jzg � izdS

¼ �jω
ðð
S

ΔεE ʹ � E�dS

2
4

3
5 dz

Here S is the flat end surface of the cylinder oriented in the +z direction. In other words,ðð
S

∂
∂ z

½E t
� � Htʹþ Et ʹ� Ht

�� � izdS ¼ �jω
ðð
S

Δεðx; yÞE ʹ � E�dS ð6:6Þ

Mathematically,Eʹ andHʹ can be represented by summation of any set of modes. They
can be either the modes of the structure shown in Figure 6.1(a) or the modes of the
structure shown in Figure 6.1(b). Both sets of modes, (et,j, ht,j) and (etkʹ, htkʹ), form a
complete orthogonal set. From the perturbation analysis point of view, we are not
interested in the exact fields or modes of the structure shown in Figure 6.1 (b). We
only want to know how the fields for the waveguide in Figure 6.1(a) are affected by Δε.

ε1 ε1

ε3

(a) (b) (c)

ε3

ε2 Δε = ε2 − ε3

Figure 6.1 The index profile of a waveguide perturbed by Δε. (a) The permittivity variation, ε(x,y), of
the original unperturbed waveguide structure. (b) The permittivity variation, εʹ(x,y), of the
perturbed waveguide. (c) The permittivity perturbation from the additional material, Δε, to
the original waveguide structure.
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In Eq. (6.6), let us express any component of Eʹ and Hʹ for the waveguide with core ε1
in terms of the modes (etj, htj) as follows:

E t ʹðx; y; zÞ ¼
X
j

ajðzÞet;jðx; yÞe�jβjz;

Ht ʹðx; y; zÞ ¼
X
j

ajðzÞht;jðx; yÞe�jβjz ð6:7Þ

The radiation modes have been neglected in Eq. (6.7). Here, the subscript t designates
the transverse component. The variation of the aj coefficient shows how Etʹ and Htʹ vary
as a function of z. Substituting Eq. (6.7) into Eq. (6.6), letting Et = et,n and Ht = ht,n, and
utilizing the orthogonality and normalization relations,1 we obtain:

dan
dz

¼ �j
X
m

amCm;ne
þjðβn�βmÞz

Cm;n ¼ ω
4

ðð
S

Δε ð em � en�ÞdS ð6:8Þ

This is the basic result of the perturbation analysis [3]. It tells us how to find the aj
coefficients. Once we know the aj coefficients, we know Etʹ(x,y,z) and Htʹ(x,y,z) for the
waveguide with core ε1, perturbed by Δε. Please note that the results shown in Eq. (6.8)
do not tell us about the field around the waveguide with core ε2 in Figure 6.1(b). It only
shows us how to evaluate the change in the fields of the waveguide with core ε1 as a
function of z in terms of its own modes.

6.2.2 A simple application of perturbation analysis: perturbation
by a nearby dielectric

In order to demonstrate the power of the results shown in Eq. (6.8), let us find the change in
the propagation constant β0 of a forward propagating guided-wave mode caused by the
addition of another dielectric material with index εʹ in the vicinity of the original waveguide.

Let the original waveguide be located at x = 0 and y = 0. The waveguide is
surrounded by medium with permittivity ε1. The dielectric material with εʹ is located
at ∞ > x ≥ L and ∞ > y > –∞. L is located reasonably far away from the waveguide. Let
us apply this Δε to Eq. (6.8). If the original waveguide has only a single mode, e0, then
we do not need to carry out the summation in Eq. (6.8). We obtain,

d a0
d z

¼ �ja0
ω
4

ð∞
L

ð∞
�∞

ðεʹ� ε1Þe0 � e0�dxdy
2
4

3
5 ¼ �jΔβ a0

or

a0 ¼ A e�jΔβ z;  Δβ ¼ ω
4
ðεʹ� εÞ

ðþ∞

t

ðþ∞

�∞

e0 � e0�dxdy:

Etʹ ¼ Ae0ðx; yÞejðβþΔβÞz ð6:9Þ

1 The orthogonality relation has been proven only for modes in lossless waveguides. However, the modes are
often considered orthogonal in the literature, even when the modes are lossy.
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Clearly β0 for the guided mode e0 is changed by Δβ. Notice that the perturbation analysis
does not address the field distribution in the region x > L. The perturbation analysis
allows us to calculate Δβ for the original waveguide mode without solving the differ-
ential equation of the waveguide with perturbation.

6.3 Coupled mode analysis

When there are two waveguides located close to each other within the evanescent tail
distance, coupled mode analysis allows us to calculate the amplitudes and effective
index of the modes in both waveguides due to the mutual coupling. Since it is a
perturbation analysis, it is good when the coupling among the waveguides is moderate.

6.3.1 Modes of two uncoupled parallel waveguides

Consider the two waveguides shown in Figure 6.2(b). Let the distance of separation D
between the two waveguides, A and B, be very large at first in Figure 6.2(a). In that case,
the modes of A and Bwill not be affected by each other. The modes of the total structure,
etn and htn, are just the modes of individual waveguides, (eAn, hAn) and (eBn, hBn), or a
linear combination of them. The fields of the total structure can be expressed as the
summation of all the modes of the waveguides A and B.

E ¼
X
n

aAneAne
�jβAnz þ aBneBne

�jβBnz

H ¼
X
n

aAnhAne
�jβAnz þ aBnhBne

�jβBnz ð6:10Þ

D ~ ∞

ε1

ε1

ε2

ε3

ε2

(a) (b) (c) (d)

ε3

A

B

A

B

D

ε2
–
ε3

ε1 – ε3

SB

SA

Figure 6.2 Mutual perturbation of two waveguides. (a) The permittivity profile of two well-separated
waveguides. (b) The permittivity of twowaveguides, A and B, with core dielectric constants ε1 and
ε2 separated by a modest distance D. (c) The perturbation of ε3 by ε2 of waveguide B for modes in
waveguide A. (d) The perturbation of ε3 by ε1 of waveguide A for the modes in waveguide B.

6.3 Coupled mode analysis 153

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139871419.007
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:47:33, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.007
https://www.cambridge.org/core


Here the “a” coefficients are independent of z. Because of the evanescent decay of the
fields, the overlap of the fields (eAn, hAn) with (eBn, hBn) is negligible, i.e.:ðð

S

ðet;An � ht;Bm
�Þ�izdS ¼ 0 ð6:11Þ

In other words, modes in A and B are considered to be orthogonal and independent of
each other.

6.3.2 Modes of two coupled waveguides

When the twowaveguides are close, but not very close to each other, perturbation analysis
is applicable. From the previous section, we see that the perturbed fields, Eʹ and Hʹ, can
again be expressed as a summation of (e An and e Bn) and (h An and h Bn) as follows:

E ʹ ¼
X
n

aAnðzÞeAne�jβAnz þ aBnðzÞeBne�jβBnz

H ʹ ¼
X
n

aAnðzÞhAne�jβAnz þ aBnðzÞhBne�jβBnz ð6:12Þ

Here the “a” coefficients are functions of z. However, the effect of the perturbation
created by the finite separation distanceDwill be different for Amodes and for Bmodes,
as shown below.

Let the two waveguides, A and B, be separated by a finite distance D, as shown in
Figure 6.2(b). For modes of waveguide A, the significant change from waveguide A
shown in Figure 6.2(a) is the increase of permittivity from ε3 to ε2 at the position of the B
waveguide. This perturbation is shown in Figure 6.2(c). For modes of waveguide B, the
perturbation of the waveguide B is the increase of permittivity from ε3 to ε1 at the
position of waveguide A. This perturbation is shown in Figure 6.2(d). Applying
the result in Eq. (6.8) to waveguide A and B separately, we obtain:

daAn
dz

¼ �j CAn;AnaAn þ
X
m

CBm;Ane
jðβAn�βBmÞzaBm

" #

daBn
dz

¼ �j CBn;BnaBn þ
X
m

CAm;Bne
jðβBn�βAmÞzaAm

" #

where

CAn;An ¼ ω
4

ðð
SB

ðε2 � ε3Þ½eAn � eAn��dS

CBm;An ¼ ω
4

ðð
SB

ðε2 � ε3Þ½eBm � eAn��dS

CBn;Bn ¼ ω
4

ðð
SA

ðε1 � ε3Þ½eBn � eBn��dS

CAm;Bn ¼ ω
4

ðð
SA

ðε1 � ε3Þ½eAm � eBn��dS ð6:13Þ
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Eq. (6.13) is the well-known coupled-mode equation [1]. It is used extensively to
analyze waveguide devices.

The physical meaning of the results expressed in Eq. (6.13) is that the amplitude of
mode propagation in A is affected by the presence of B and its modes. Conversely, the
amplitudes of modes propagating in B are affected by the presence of A and its modes.
CAn,An (or CBn,Bn) represents the effect on the propagation wave number (or effective
index) of the eAn (or eBn) mode due to the presence of the second waveguide. CBm,An

represents the effect on the amplitude aAn of A by the mode aBn excited in the second
waveguide (or aBn by aAm of B by CAm,Bn).

The change in amplitudes aAn and aBn and propagation wave numbers is obtained
without knowing the modes of the total composite waveguide A and B together. The C
coefficients are a measure of the coupling strength among modes.

There are number of ways in which Eq. (6.13) may be simplified: (1) If one is only
interested in the mutual interaction among the modes excited in the waveguides, the
effect of the change in phase velocity (i.e. the effective index) may not be important.
Then CAn,An or CBn,Bn may not need to be calculated. (2) The example given in
Section 6.2.2 illustrates the case when CAn,An cannot be neglected because aBm is
zero. Here, CAn,An (or CBn,Bn) is used to calculate the change of the propagation wave
number (i.e. effective index) of the modes just due to the presence of the second
waveguide. (3) When there are higher-order modes in waveguides A and B, there should
also be more terms, such as CAn,Aj, CBn,Bj, CBj,An, and CAj,Bn, in a more precise analysis.
However, these C coefficients are even smaller than CAn,An, CBn,Bn, CBm,An, and CAm,Bn,
because of the orthogonality properties and the faster evanescent decay of the higher-
order modes. Therefore, those terms have not been included in Eq. (6.13).

6.3.3 An example of coupled mode analysis: the grating reflection filter

Grating filters are very important devices in wavelength division multiplexed (WDM)
optical fiber communication networks. In such networks, signals are transmitted via
optical carriers that have slightly different wavelengths. The purpose of a filter is to
select an optical carrier at a specific wavelength (or a group of optical carrier wave-
lengths within a specific band of wavelengths) to direct it (or them) to a different
direction of propagation (e.g. reflection) [4]. The desired characteristics of a grating
filter are: (1) High and uniform reflection of incident waves in a waveguide within the
selected wavelength band. (2) Sharp reduction of reflectivity immediately outside the
band. (3) High contrast ratio of the intensity of reflected optical carriers inside and
outside the band. In distributed feedback lasers, gratings are fabricated on channel
waveguides so that the forward and backward waves will be coupled and reflected to
form a resonator.

A grating reflection filter utilizes a perturbation of the waveguide by a periodic Δε.
The Δε couples the forward-propagating guided-wave mode to the reflected guided-
wave mode. Let us consider a grating layer which has a cosine variation of the dielectric
constant along the z direction, i.e. Δε(z), within a thickness d in the x direction and width
W in the y direction. It is placed on top of a channel waveguide that has thickness, t.
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Alternatively, a periodic variationΔε(z) can also be obtained in the cladding of an optical
fiber by photo-refractive methods.

Let us assume that the waveguide has only a single mode. Mathematically, the
waveguide is perturbed by Δε where

ΔεðzÞ ¼ Δε0 cosðKzÞ rect 2ðx� HÞ
d

� 	
rect

2y

W

� 	
ð6:14Þ

It has a periodicity T = 2π/K in the z direction and a maximum change of dielectric
constant Δε0. The Δε perturbation layer is centered at x = H in the cladding, where
H ≥ t + (d/2). This is a change in the cladding refractive index nc of the waveguide or
fiber. The above mathematical expression for Δε is a simplification from a realistic
grating. For example, an ideal etched grating may have Δε described by a rectangular
function of both x and z.2

Let the complex amplitude of the forward-propagating guided-wave mode be af and
the amplitude of the backward-propagating mode at the same wavelength ab. Then
the application of Eq. (6.13) to the fields in the waveguide within the grating section
from z = 0 to z = L yields:

E tʹðx; y; zÞ ¼ ½af ðzÞe�jβ0z þ abðzÞeþjβ0z�et;0ðx; yÞ
daf
dz

¼ �jCff af � jCbf abe
�j2β0z

dab
dz

¼ �jCbbab � jCfbaf e
j2β0z ð6:15Þ

Cff ¼ �Cbb ¼ �Cfb ¼ Cbf ¼ ω
4

ðHþd
2

H�d
2

ðW2
�W

2

Δε0je0 � e0�jdxdy

2
66664

3
77775

1

2
ðejKz þ e�jKzÞ

2
4

3
5

There are minus signs on Cbb and Cfb, because, in the normalization of the modes shown
in Eq. (6.2), iz is pointed toward the +z direction. iz for the backward wave is pointing
toward the –z direction. β0 is the propagation wave number of the incident mode,
β0 ¼ neff ;mk.

Clearly af and ab will only affect each other significantly along the z direction when
the driving terms on the right-hand side of Eq. (6.15) have a slow z variation. Since the
perturbation has a coz(Kz) variation, the maximum coupling between af and ab will take
place when K = 2β0. This is known as the phase matching (or the Bragg) condition of the
forward- and backward-propagating waves. When the Bragg condition is satisfied, the

2 The mathematical expression ofΔε for rectangular grating grooves has been given in Eqs. (1.103) to (1.105).
Any periodic Δε can be expressed as a summation of Fourier components of sinusoidal gratings. Thus the Δε
in Eq. (6.14) is just the fundamental component of all the Fourier components.
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relationship between β and K is illustrated in Figure 6.3, where β0 of the forward- and

backward-propagating modes with e�jβ0 z variations are represented by vectors with
magnitude β0 in the ±z directions. Since a cosine function is the sum of two exponential
functions, K is represented as a bi-directional vector of magnitude K.

If we designate λo as the free-space wavelength in which the maximum coupling takes
place, then the phase-matching condition is satisfied when K is given by:

K ¼ 4π neff
λo

: ð6:16Þ

Here neff is the effective index of the guided-wave mode. When K ffi 2β0, the
terms involving Cff and Cbb in Eq. (6.16) will have negligible effect on the
magnitude of daf =dz and dab=dz because of its sinusoidal variation in z. In com-
parison, the terms involving Cfb and Cbf will have the dominant effect on
daf =dz and dab=dz because the z variation in the e�j2βoz term is cancelled by one of
the e�jKz terms.

Since β is inversely proportional to λ, Eq. (6.16) will not be satisfied simultaneously
for all βwithin the desired wavelength band. In order to analyze the grating properties as
a function of wavelength for a given K, we need to consider the solution of Eq. (6.16)
under approximate phase-matching conditions. Let

2β0 � K ¼ δK ð6:17Þ
Under this condition, we obtain from Eq. (6.16),

K of the forward propagating mode 

K of the backward propagating mode

K of the grating

Figure 6.3 Propagation wave vectors for forward and backward waves and the grating. The propagation wave
vectors of the forward and backward guided waves are shown as K vectors in the +z and –z
directions. The

$
K of the grating is shown as a bi-directional vector. Phase matching is achieved

when the magnitude of j$K j is the sum of all the jK j.
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d af
d z

¼ �j
Cg

2
abe

jδKz

and

d ab
d z

¼ þj
Cg

2
af e

�jδKz

where

Cg ¼ ω
4

ðHþd
2

H�d
2

ðW2
�W

2

Δε0 jeoj2dxdy ð6:18Þ

Eq. (6.18) is known as the coupled mode equation between the forward and the back-
ward propagating modes. We know the solutions for such a differential equation are the
familiar exponential functions, eγ

þzand eγ
�z. Specifically, the solutions of Eq. (6.18) for

the forward- and backward-propagating waves are:

abðzÞ ¼ A1eγ
þz þ A2eγ

�z

af ðzÞ ¼ �j
2

Cg
½A1γ

þe�γ�z þ A2γ
�e�γþz�

γþ ¼ �j
δK
2
þ Q; γ� ¼ �j

δK
2
� Q

Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cg

2

0
@

1
A

2

� δK
2

0
@

1
A

2
vuuut

ð6:19Þ

The A1 and A2 coefficients will be determined from initial conditions at z = 0 and z = L.
For a grating that begins at z = 0 and terminates at z = L, the amplitude of af (z = 0) is

the same as the incident wave. The reflected wave in the input waveguide is equal to
ab(z = 0). The amplitude of the output wave at z > L is equal to af (z = L), and ab must be
zero at z ≥ L. Thus:

A2 ¼ �A1e2QL

ab ¼ �A12e
QL�j

δK
2 z

� 	
sin h½QðL� zÞ�

af ¼ �jA1
4

Cg
e
QLþj

δK
2 z

� 	
j
δK
2

sin h
�
QðL� zÞ

�
þ Q cos h

�
QðL� zÞ

�2
4

3
5

ð6:20Þ

At z = 0, the ratio of the reflected power to the incident power (for δk < Cg) is:
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jabðz ¼ 0Þj2
jaf ðz ¼ 0Þj2 ¼

Cg

2

� �2
sin h2QL

Q2cos h2QLþ ðδK=2Þ2sin h2QL
ð6:21Þ

At z = L, the ratio of the transmitted power in the forward propagating mode to the
incident power of the forward mode at z = 0 is:

jaf ðz ¼ LÞj2
jaf ðz ¼ 0Þj2 ¼

Q2

Q2cos h2QLþ ðδk=2Þ2sin h2QL
ð6:22Þ

Since jaf ðz ¼ LÞj2 þ jabðz ¼ 0Þj2 ¼ jaf ðz ¼ 0Þj2, the conservation of power of the
incident, transmitted, and reflected waves is verified.

For a reflection filter, we want jabðz ¼ 0Þ=af ðz ¼ 0Þj2 large within a desired band
of wavelength, and small outside this band. We also like to control the width of the
desired wavelength band. These features can be controlled by L, δK, and Cg, of the
grating. Notice that ǀab (z = 0)ǀ is larger for larger L and smaller δK/Cg. At λ = λg, δK is 0,
and the grating reflection is a maximum. The maximum possible value of

jabðz ¼ 0Þ=af ðz ¼ 0Þj2 is 1. At δK =Cg, Q is 0. When δk >Cg, Q becomes
imaginary. When Q is imaginary, sinhQL ¼ jsinjQjL and coshQL ¼ cosjQjL. So

jabðz ¼ 0Þ=af ðz ¼ 0Þj2 becomes oscillatory and decreases in peak values as δk is
increased. Let Δλg be the wavelength deviation form λg such that, when λ = λg ± Δλg,
Q = 0. Then 2Δλg is the pass band of the filter,

Δλg ¼ � 4πCg neff
K2

ð6:23Þ

In summary, K of the grating can be used to control the center wavelength λg at
which the transmission of the forward-propagating wave is blocked. Cg of the grating
is used to control the wavelength width Δλg within which effective reflection occurs.
The smaller the Cg, the narrower the range of transmission wavelengths. For a given
transmission range, L is used to control the magnitudes of the reflected and trans-
mitted waves. These are useful parameters for designing grating reflection filters.
Since the maximum reflection takes place at K ¼ 4π neff =λo, which is known in the
literature as the Bragg condition, such a reflector is also called a distributed
Bragg reflector, DBR. If the Δε variation of the grating groves is not sinusoidal, as
shown in Eq. (6.14), any periodic Δε can be written as a summation of Fourier
components. The higher-order Fourier components will provide phase matching at
mK ¼ 4π neff =λo; m ¼ 2; 3; 4; . . .

Therefore higher-order Bragg reflection can take place at λo/m. However, the
higher the order, the weaker the diffraction, because the Fourier component is usually
smaller.3

3 Sometimes the shape of the grating grooves is blazed to enhance diffraction of a specific order by increasing
the Fourier component.
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6.3.4 Another example of coupled mode analysis: the directional coupler

A directional coupler has an interaction region between two parallel waveguides (or
fibers). A prescribed fraction of power in waveguide A is transferred into waveguide B
within the interaction region and vice versa.

A top view of a channel waveguide directional coupler is illustrated in
Figure 6.4(a). Two well-separated waveguides are brought together into the inter-
action region by transition waveguides. After the interaction region, the two
waveguides are separated again via transition waveguides. Within the interaction
region, the waveguides are separated from each other by a distance D, which is
usually of the order of the evanescent decay length. Directional couplers could

Waveguide A

Waveguide B

z = 0 z = W

y 

Gap D

z 

(a) Top View of an Optical Directional Coupler

Mode A

Mode B

D 

Waveguide A

Waveguide B

(b) Illustration of Modes Outside of the Interaction Region

Waveguide A

Waveguide B

The Symmetric mode The Anti-symmetric mode

D

z

(c) Illustration of Modes in the Interaction Region

Figure 6.4 Top view of a directional coupler and illustration of its modes. (a) Top view of a channel
waveguide directional coupler. The interaction region begins at z = 0 and ends at z = W.
(b) Illustration of modes outside of the interaction region where the waveguides are well separated.
(c) Illustration of modes in the interaction region.
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also be obtained using two optical fibers or planar waveguides, provided there is a
similar coupling region.

Let the length of the interaction section beW. Clearly, Eq. (6.13) is directly applicable
to the modes of the individual waveguides in the interaction region. Outside the inter-
action region, the waveguides are well separated from each other without any further
interaction.

Let eA and eB be the modes of the two waveguides (or fibers) that are
interacting with each other through their evanescent field in the interaction sec-
tion. They have complex amplitudes, aA and aB. Let the two waveguides have
cores with cross-sections, SA and SB, and dielectric constants, εA and εB. The
cores are surrounded by a medium that has dielectric constant ε3. Let the coupling
region begin at z = 0 and ends at z =W as shown in Figure 6.4(a). For mathema-
tical convenience, the coupling is assumed to be uniform within this distance.
Application of Eq. (6.13) yields

daA
dz

¼ �jCBAe
jΔβzaBðzÞ

daB
dz

¼ �jCABe
�jΔβzaAðzÞ

CAB ¼ ω
4

ðð
SA

ðεA � ε3Þ½eA � eB��dS

CBA ¼ ω
4

ðð
SB

ðεB � ε3Þ½eB � eA��dS

Δβ ¼ βA � βB ð6:24Þ

Here, CAA and CBB have been neglected because we are only interested in the change in
the amplitude of aA and aB produced byCAB andCBA. Solution of aA and aB will depend
again on initial conditions.

Let the initial condition be aA = A and aB = 0 at z = 0. Then, we obtain

aA ¼ Ae
j
Δβ
2
z

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CBACAB þ Δβ

2

0
@

1
A

2
vuuut z

0
B@

1
CA� j

Δβ
2

0
@

1
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CBACAB þ Δβ

2

0
@

1
A

2
vuuut

sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CBACAB þ Δβ

2

0
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1
A

2
vuuut z

0
B@

1
CA

2
666666664

3
777777775

aB ¼ �jCABAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CBACAB þ Δβ

2

0
@

1
A

2
vuuut

e
�j

Δβ
2 z

sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CBACAB þ Δβ
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vuuut z

0
B@

1
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for 0 ≤ z ≤ W

ð6:25Þ
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Similarly, if the boundary condition is aB = B and aA = 0 at z = 0, we obtain:

aA ¼ �jCBABffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CBACAB þ Δβ

2

0
@

1
A

2
vuuut
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Δβ
2 z
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2
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2
vuuut z

0
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777777775

for  0 ≤ z ≤ W ð6:26Þ

At z = W, the power transmitted from one waveguide to another and the power
remained in the original waveguide are obtained from aB and aA. Note that, unless
Δβ = 0, there cannot be full transfer of power from A to B. Substantial transfer of power
fromA to B (or vice versa) at z =W can take place only whenΔβ is small. Thus βA = βB is
the phase-matching condition for maximum transfer of power. The C coefficients, W,
and Δβ, control the power transfer from A to B and from B to A. When W is increased
beyond the length for maximum transfer of power, then aA and aB will exhibit oscillatory
variation as W is increased.

Usually, the directional coupler has two identical waveguides. In that case, CBA =
CAB =C, and the ratio of ǀaBǀ

2/ǀaAǀ
2 is the power distribution among the two waveguides.

At z = 0, let there be an input power Iin in waveguide A, no input power in waveguide
B. Then the output power Iout in waveguide B after an interaction distance W is given
directly by Eq. (6.25). It is:

Iout=Iin ¼ 1

C2 þ Δβ
2

� �2 sin
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ Δβ

2

� �2
s

W

0
@

1
A ð6:27Þ

Clearly the ratio Iout/Iin can be controlled by W, C, and Δβ. C is determined by the
separation distance D and the evanescent decay of the modes involved. The maximum

Iout is obtained whenever
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ ðΔβ=2Þ2

q
W ¼ π=2; 3π=2; 5π=2; . . . . If for any rea-

sonW becomes too long or too short, Iout will oscillate between zero and the maximum. It
means also that, for a given W, the maximum Iout is obtained only at specific wave-
lengths. The value of W that equals π/2C is known as the coupling length of the
directional coupler. The bandwidth of Iout is determined by Δβ within the wavelength
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range between the wavelengths at which
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ ðΔβ=2Þ2

q
W ¼ π; 2π; 3π (i.e. Iout = 0)

and the wavelengths at which Iout is maximum.

6.4 Super mode analysis

The operation of a number of devices such as directional and grating couplers was
analyzed in the previous sections by perturbation and coupled mode analysis. However,
the perturbation approach breaks down when the interaction is too strong. The alter-
native analysis of the operation of such a device is the super mode analysis of the total
waveguide structure.

What is a super mode? For infinitely long parallel waveguides with uniform cross-
section and distance of separation, the modes of the total structure are the super modes.
These super modes can be calculated only in limited cases. Quite often, we cannot
calculate the mode profiles and effective index of the super modes because the total
waveguide configuration is too complex. However, even in that case, we can still make
important conclusions about the properties of the device without knowing the effective
index and mode profile of the modes.

In short, super mode analysis is an analysis of waveguide devices based on the
interference of the modes of the total structure. It is different from coupled mode analysis
because it does not assume that the modes of the individual waveguides are just
perturbed by its neighbor. Therefore the super mode analysis is accurate when the
separation between waveguides is very small, or even zero. Viewing the devices from
the super mode point of view also sheds a different light on their operation than the
coupled mode analysis.

In the following sections, we will present first how to find the super modes of
two coupled waveguides. This will be compared with the modes obtained from the
coupled mode analysis so the differences and the similarities of the two approaches
can be clearly demonstrated. After that, three sample devices, the directional
coupler, the Y-branch coupler, and the Mach–Zehnder interferometer, are presented
to demonstrate the super mode analysis. Among these examples, the directional
coupler has already been presented in Section 6.3.4 using the coupled mode
analysis. Thus we can also compare the results of two different approaches. The
Y-branch coupler is an example that cannot be analyzed by coupled mode analysis.
The Mach–Zehnder interferometer is an example in which the simplicity of super
mode analysis is clearly demonstrated.

6.5 Super modes of two parallel waveguides

In order to understand the inter-relation between the super modes and individual modes
clearly, we first present a general discussion of super modes in the following two
subsections.
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6.5.1 Super modes of two well-separated waveguides

Consider the two waveguides shown in Figure 6.4(a) outside of the interaction region.
The distance of separationD between the two waveguides, A and B, is very large. In this
case, the fields of the total structure can be expressed as the summation of all the modes
of the waveguides A and B.

E ¼
X
n

aAneAne
�jβAnz þ aBneBne

�jβBnz

H ¼
X
n

aAnhAne
�jβAnz þ aBnhBne

�jβBnz ð6:28Þ

Here the “a” coefficients are independent of z. Since there is evanescent decay of the
fields, the overlap of the fields (eAn, hAn) with (eBn, hBn) is negligible, i.e.:

ðð
S

ðet;An � ht;Bm
�Þ�izdS ¼ 0

In other words, modes of A and B are considered to be orthogonal to each other. The
super-modes of the total structure, (esn,hsn) and (ean,han) are just linear combinations of
the modes of individual waveguides, (eAn,hAn) and (eBn,hBn), such that

esn ¼
1ffiffiffi
2

p ðeAn þ eBnÞ and ean ¼
1ffiffiffi
2

p ðeAn � eBnÞ ð6:29Þ

Note that for such uncoupled waveguides, the magnitudes of the modes, ǀaAnǀ and ǀaBnǀ,
do not change as the modes propagate. This is the same conclusion that we have reached
in Section 6.3.1.

6.5.2 Super modes of two coupled waveguides

When the distance of separation between the two waveguides is close, as shown in
Figure 6.2(b), we can use the effective index approximation or numerical methods to
find the super modes.

Consider a two-channel waveguide, as depicted in Figure 6.5. It is just a waveguide A
and a waveguide B coupled through a gap. Figure 6.5(a) shows the cross-sectional view
in the x–y plane, while Figure 6.5(b) shows the top view in the y–z plane. In this
illustration, channel A (or waveguide A) has core thickness tA and width WA, while
channel B (or waveguide B) has core thickness tB and width WB. The width of the gap
between two channels is G. The thickness of the waveguide core in the cladding region
and in the gap is tc. The substrate index is nsub, while the index of the core of the
waveguide is nwg.

According to the effective index method presented in Section 5.6.1, we first find the
effective indices of the planar waveguide modes for the channel A and channel B
waveguides separately, as we did in Section 5.2. For simplicity, let us assume that
there is only a single TE0 mode in the x direction. Let the effective index for planar
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mode in waveguide A be neA, the effective index for the planar mode in waveguide B be
neB, and the effective index for planar mode in the gap and cladding regions be nec. The
lateral variation of the super mode in the y direction is then found by solving the
equivalent TM planar waveguide mode for Hx:

∂2

∂z2
þ ∂2

∂y2
þ ω2εðyÞμ

2
4

3
5Hxðy; zÞ ¼ 0

   εðyÞ ¼ εonej2  j ¼ A; B or c

ð6:30Þ

∂
∂x

≡0 for planar TMmode approximation ð6:31Þ

Ey ¼ j
ωεðyÞ

∂Hx

∂z
ð6:32Þ

Ez ¼ �j
ωεðyÞ

∂Hx

∂y
ð6:33Þ

where the boundary conditions are the continuity of Hx and Ez at y = ±ǀG/2ǀ and
y = ±ǀW+(G/2)ǀ; W = WA or WB.

The lowest-order super modes are illustrated in Figure 6.4(c). In the following
subsection, solutions of the super modes of two identical waveguides are obtained
explicitly. Super modes of two identical coupled waveguides have already been
obtained by the coupled mode analysis. It is instructional to compare the two results
side by side.

G

WB
WA

tctBtA

x

y
Substrate

Waveguide

(b) Top view(a) Cross-sectional

z

y

neBneA

nec nec
nec

y  = (G/2) + WBy  = –(g/2) – WA

y  = –G/2

Waveguide BWaveguide A

y  = G/2

Figure 6.5 The two-channel waveguide. (a) The cross-sectional view. The two parallel ridge waveguides,
with WA and WB wide ridges, are separated by a gap G. (b) The top view.
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6.5.3 Super modes of two coupled identical waveguides

(a) Super modes obtained from the effective index method
When channels A and B are identical in Figure 6.5, we let neA = neB = n1, W = WA

= WB, and nec = n2. The super modes are symmetric or anti-symmetric modes in the
y direction. The analytical expressions of the super modes in the effective index
approximation are:

(1) Symmetric mode:

Hx ¼ B cos h1
W
2

0
@

1
Aþ φ

2
4

3
5eþq2 yþ G

2 þW

� 	
 �

β2 � q22 ¼ k2n22   for y ≤ � G
2
�W

ð6:34aÞ

Hx ¼ B cos h1 yþ GþW
2

0
@

1
A� φ

2
4

3
5

 β2 þ h12 ¼ k2n12   for � G
2
þW

0
@

1
A ≤ y ≤ � G

2

ð6:34bÞ

Hx ¼ Bʹ½e�q2y þ eþq2y�
   β2 � q22 ¼ k2n22   for � G

2
≤ y ≤ þ G

2
ð6:34cÞ

Hx ¼ Bcos h1 y� GþW
2

0
@
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Aþ φ

2
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3
5

          for 
G
2

≤ y ≤
G
2
þW

ð6:34dÞ

Hx ¼ Bcos h1
W
2
þ φ

2
4

3
5e�q2 y� G

2 þW

� 	
 �

          for 
G
2
þW ≤ y

ð6:34eÞ

where B and Bʹ are related by

Bʹ e�q2G2 þ eþq2G2
h i

¼ Bcos h1
W
2
� φ


 �
ð6:35Þ
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φ, q2, and h1 of the symmetric mode are obtained from the following transcendental
equations derived from the boundary conditions at y = ± ǀG/2ǀ and at y = ± ǀW + (G/2)ǀ:

h1
n12

sin h1
W
2
þ φ

� 	
¼ q2

n22
cos h1

W
2
þ φ

� 	
ð6:36aÞ

B
h1
n12

sin h1
W
2
� φ

� 	
¼ Bʹ

q2
n22

eþq2G2 � e�q2G2
h i

ð6:36bÞ

h1
2 þ q2

2 ¼ ðn12 � n2
2Þk2 ð6:36cÞ

(2) Anti-symmetric mode

Hx ¼ �B cos h1
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þW ≤ y

ð6:37eÞ

Where B and Bʹ are related by
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Bʹ e�q2G2 � eþq2G2
h i

¼ �B cos h1
W
2
� φ


 �
ð6:38Þ

φ, h1, and q2 of the anti-symmetric mode are solutions of the following transcendental
equations obtained from the boundary conditions:

h1
n12

sin
h1W
2

þ φ

� 	
¼ q2

n22
cos

h1W
2

þ φ

� 	
ð6:39aÞ

Bʹ
q2
n22

e�q2G2 þ eþq2G2
h i

¼ B
h1
n12

sin h1
W
2
� φ

� 	
ð6:39bÞ

h1
2 þ q2

2 ¼ ðn12 � n2
2Þk2 ð6:39cÞ

For both symmetric and anti-symmetric modes, the dominant electric field Ey is
related to Hx by

Ey
�β

n2ωεo
Hx

(b) Super modes obtained from coupled mode analysis
It is interesting to note that, in the coupled mode equations (Eq. (6.13)) the modes of the
total structure are just linear combinations of themodes of the uncoupled waveguides, eA
and eB, which are illustrated in Figure 6.4(b).

This is the classical example of a pair of coupled identical waveguides.
Mathematically, in terms of Eq. (6.13), we have βA =βB, εA = εB, and CAB = CBA = C.
Then, the solution of Eq. (6.24) is:

aAðzÞ ¼ 1

2
ðA� BÞeþjCz þ 1

2
ðAþ BÞe�jCz

aBðzÞ ¼ 1

2
ðB� AÞeþjCz þ 1

2
ðAþ BÞe�jCz

C ¼ ω
4

ðð
SB

ðεA � εBÞ½eB � eA�dS ð6:40Þ

A and B are determined from the initial condition at z = 0. Substituting this result into Eq.
(6.12), we obtain:

Eʹ ¼ 1ffiffiffi
2

p ðA� BÞ 1ffiffiffi
2

p ðeA � eBÞ

 �

e�jðβ�CÞz þ 1ffiffiffi
2

p ðAþ BÞ 1ffiffiffi
2

p ðeA þ eBÞ

 �

e�jðβþCÞz

ð6:41Þ
The symmetric combination, es ¼ 1=

ffiffiffi
2

p ðeA þ eBÞ, is a normalized symmetric eigen-
mode with βs ¼ βþ C. The anti-symmetric combination, ea ¼ 1=

ffiffiffi
2

p ðeA � eBÞ, is a
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normallized anti-symmetric eigenmode with βa ¼ β� C. The total electric field of two
identical waveguides is a superposition of two super modes, es and ea. In other words,4

E ʹ ¼ 1ffiffiffi
2

p ðA� BÞeae�jβaz þ 1ffiffiffi
2

p ðAþ BÞese�jβsz

¼ Aaeae
�jβaz þ Asese

�jβsz ð6:42Þ
When we compare the super mode result in (b) with the result in (a), we note the

similarity between two results. When the coupling is weak, the symmetric mode obtained
in (a) is approximately the same as eA + eB obtained in (b), while the anti-symmetric
mode obtained in (a) is approximately the same as eA – eB obtained in (b). However, it is
much easier to obtain the results by the coupled mode analysis. On the other hand, the
mode profile and βa and βs obtained from the coupled analysis are inaccurate when
the separation, G, of the two waveguides is small. The correct answer is given only by the
super mode analysis.

6.6 Directional coupling of two identical waveguides
viewed as super modes

The modes of individual isolated waveguides at z < 0 in the uncoupled region have been

illustrated in Figure 6.4(b). The symmetric mode es is 1=
ffiffiffi
2

p ðeA þ eBÞ, the anti-

symmetric mode ea is 1=
ffiffiffi
2

p ðeA � eBÞ. es, ea, eA, and eB all have the same propagation
wave number (or effective index). There is no transfer of power from one mode to
another. The total field at any position z (e.g. W > z > 0) in the coupled waveguide
depends on the excitation. When the excitation field at z = 0 is symmetric in A and B,
only the symmetric modes exist. When the excitation field is anti-symmetric at z = 0,
only the anti-symmetric mode exists. The lowest order es and ea in the coupled region are
illustrated in Figure 6.4(c). When there is only incident radiation to waveguide A and
there is no incident radiation to waveguide B at z = 0, both the symmetric and the anti-
symmetric modes exist with equal amplitude. The power carried in A and B forW > z > 0
depends on the interference of the symmetric and anti-symmetric modes. At z > W, the
waveguides again become uncoupled, and powers in A and B remain the same as the
powers in A and B at z = W.

Let the difference in effective index for these two modes be Δneff at 0 < z <W. As an
example, let the excitation be A = 1 and B = 0 at z = 0. When Δneff kW = π, the sum of the
symmetric and anti-symmetric modes will have no power in channel A at z = W; all the
power is in channel B. The minimum length at which complete transfer of power takes
place is called the characteristic length, which is Wc = π/Δneff k.

5 For z > W, the two
waveguides are well separated from each other. The power in waveguide A and B in

4 It has also been shown by coupled mode analysis that when waveguides A and B are not identical, there are

also two modes. Their propagation wave numbers are: β ¼ βA þ βB
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CBACAB þ ðΔβ=2Þ2

q
.

5 From Eq. (6.41), it is clear that Δneff of the symmetric and anti-symmetric modes is equivalent to 2C in the
coupled mode analysis for weakly or moderately coupled directional coupler.
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those regions is independent of z. Therefore all the optical power P will remain in B for
z > W. The power in channel B oscillates as a sinusoidal function of Δneff kW. The
maxima are at Δneff kW = (2n + 1)π; the minima are at Δneff kW = (2n + 2)π.

Compare this result with the results obtained in Section 6.3.4: the results are the same.
However, when the coupling is strong, the mode profiles and the C coefficient obtained
by the coupled mode analysis will be inaccurate.

6.7 Super mode analysis of the adiabatic Y-branch and Mach–Zehnder
interferometer

In the following subsections, a new concept, the adiabatic transition, will be introduced
first. The operation of the Y-branch splitter depends on an adiabatic transition and will
be discussed next. Lastly, the Mach–Zehnder interferometer, which consists of two
parallel waveguides connected to input and output waveguides by two Y-branch split-
ters, will be discussed.

6.7.1 The adiabatic horn

Consider the transition for a guided-wave mode propagating from waveguide C into
waveguide D, as shown in Figure 6.6(a), known commonly also as a waveguide horn.
Let waveguide C be a single-mode waveguide and waveguide D be a multi-mode
waveguide. As the waveguide cross-section expands, the second mode emerges at
z = z1 (i.e. there exists a second mode in the electromagnetic solution of an infinitely
long waveguide that has the greater width at z = z1). The third mode emerges at z = z2, etc.
The transition section can be approximated by many steps of local waveguides that have
constant local cross-section within each step, as shown in Figure 6.6(b). At each junction
of two adjacent steps, modal analysis can be used to calculate the excitation of the modes
in the new step by the modes in the previous step. For adiabatic transition in the forward
direction, the steps are so small that only the same-order mode is excited in the next
section by the mode in the previous section. In other words, the overlap integral of the
lowest-order mode in the transmitted section to the same-order mode in the incident
section is approximately one, while the overlap integrals to other orders of modes in the
transmitted section to the incident order of mode in the incident section are approxi-
mately 0. In other words, a negligible amount of power is coupled from the input lowest-
order mode into higher-order modes and radiation modes. Similarly, if the waveguide C
can support multi-modes, only those modes excited in C will be transmitted into D.

Let us now consider a reverse transition from z > z3 to z = 0, where the incident field
excites several modes at D. D is a multi-mode waveguide; C is a single-mode wave-
guide. Whenever a higher-order mode propagating in the –z direction is excited at D, it
will not be transmitted to C. The power in this higher-order mode will only be transferred
into the radiation modes at the z position where this mode is cut off. Only the power in
the lowest-order mode at D will be transmitted to the lowest-order mode at C. An
important practical application of this result is that when an LED is used to excite a
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single-mode waveguide via a waveguide horn, the efficiency will be very low because
only the fraction of the power in the lowest-order mode will be transmitted. Note that if C
is also a multi-mode waveguide that supports the first m modes, only these m modes
excited in D will be transmitted into C without any loss of amplitude.

In an expanding adiabatic transition, only the lowest-order mode is excited in the
multi-mode output waveguide by the lowest-order mode in the input section, and there
is no power loss. Conversion of power into higher-order modes will occur when the
tapering is not sufficiently adiabatic or when there is scattering. The same conclusion
can be drawn for propagation of the lowest-order mode in the reverse direction, i.e.
from D to C. Power in higher-order modes will be dissipated before it reaches C.

6.7.2 Super mode analysis of a symmetric Y-branch

How a Y-branch functions depends on the modes that are supported by the waveguides
that make up the Y-branch. Two examples are presented here to demonstrate this effect.

(a) A single-mode Y-branch
A guided-wave component used frequently in fiber and channel waveguide devices is a
single-mode waveguide symmetric Y-branch. Its top view in the y–z plane is illustrated
in Figure 6.7(a). A single-mode channel waveguide is connected to two single-mode

x

y

z

C

D

z = z1 z = z2

z = z3

z

y

x

C
D

z = z1 z = z2 z = z3

(a) The transition from a single-mode channel waveguide to
a multi-mode channel waveguide

(b) The step approximation of the transition

Figure 6.6 Top view of an adiabetic transition and its step approximation. (a) The transition from a single-
mode channel waveguide to a multi-mode channel waveguide (i.e. a waveguide horn). (b) The step
approximation of the transition. Within each local section of the waveguide the dielectric constant
profile is independent of z. The second mode exists for z > z1, the third mode for z > z2, and the
fourth mode for z > z3.
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channel waveguides at z = 0. It is symmetric in the y direction with respect to the x–z
plane. At z > L0, the two waveguides are well separated from each other. All waveguides
have identical cross-sectional index profiles in the x and y directions.

The practical application of such a device is to split the forward-propagating power in
the original waveguide at C equally into two waveguides at D. The symmetric Y-branch
functions like a 3 dB coupler from the input waveguide to the two output waveguides. In
an ideal adiabatic transition, the angle of the branching, θ, is sufficiently small that the
scattering and conversion loss from z = 0 to z = L0 are negligible. Thus, losses are not
included in the following analysis.

The forward propagation of guided waves in an ideal Y-branch coupler can be
analyzed as follows. The input wave is a single TE0 mode with amplitude ain at z < 0.
Only the TE0 mode is excited by any incident radiation. The waveguide width in the y
direction begins to broaden at z > 0. After z > z0, the waveguide (or the split waveguides)
has two modes. At z > zt, there are two waveguides. From z = z0 to zffi L0, the two super

modes are the symmetric mode, 1=
ffiffiffi
2

p ðeA þ eBÞ, and the anti-symmetric mode,

1=
ffiffiffi
2

p ðeA � eBÞ. As the guided wave propagates from z < 0 to z = L0, only the symmetric
mode is excited at each successive junction in Figure 6.7(b). No anti-symmetric mode is
excited in such an adiabatic transition. At z > L0, the coupling between the two
waveguides is zero. Thus the optical power in the input waveguide is split equally into

z
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z = –zo
z = –Lo

z = Lo
z = zo

z = zt
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D
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x
(a) A symmetric coupler

(b) The step approximation of the 3 dB coupler

(c) The symmetric coupler in the reverse
direction

z = zt
z = Lo

Wave propagation

Figure 6.7 Top view of a symmetric Y-branch coupler. (a) A symmetric 3 dB coupler that splits the power in
the input channel waveguide at C into two identical channel waveguides at D. (b) The step
approximation of the Y-branch 3 dB coupler. (c) The reverse symmetric coupler that combines the
field from two input waveguides into a single-mode output waveguide at C.
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waveguides A and B. The amplitude of the modes in A and B are aA and aB. In a lossless

Y-branch, the power is conserved. Thus jaAj ¼ jaBj ¼ 1ffiffiffi
2

p jainj
The reverse situation is shown in Figure 6.7(c). A radiation is incident backwards on

the Y-branch at z = D. If the incident field at z = L is symmetric, it will excite only the
lowest-order symmetric mode of the double waveguides. This symmetric mode is
transmitted without loss to the output waveguide at C as the TE0 mode. However, if
the incident mode is an anti-symmetric mode, it will continue to propagate as the anti-
symmetric mode from z = –L0 to its cut-off point. Just before the cut-off point, the anti-
symmetric mode has a very long evanescent tail, and its neff is very close to the effective
index of cladding or substrate modes. The anti-symmetric mode begins to transfer its
energy into the radiation mode in the cladding or the substrate. After the cut-off, there is
no anti-symmetric mode propagating in the device. Therefore, when the incident radia-
tion excites both the symmetric and anti-symmetric mode at z = L0, the lowest-order
symmetric mode is transmitted to the waveguide at z < 0, and the anti-symmetric mode
any high-order symmetric mode is blocked.

(b) A double-mode Y-branch
In order to demonstrate the characteristics of Y-branch when there is a change in the
waveguide structure, let the input waveguide at z ≤ 0 in Figure 6.7(a) have twomodes. The
waveguides after z > zt are still single-mode waveguides. Let the two modes at z ≤ 0 be the
lowest-order symmetric and anti-symmetric modes. In the case of a forward-propagating
Y-branch, if the incident radiation is just in the symmetric mode, it will be transmitted as the
symmetric mode at z = L0 as discussed in the preceding paragraph. If the incident radiation
is just in the anti-symmetric mode, it will also be transmitted as the anti-symmetric mode at
z = L0. If both the symmetric and the anti-symmetric modes are excited at z = 0 they will all
be transmitted without any change in magnitude to z = L0. However, symmetric and anti-
symmetric modes have different phase velocities, i.e. neff. neff is also a function of the
separation of the two waveguides, which is a function of z. As the modes propagate, their
relative phase will change. The profile of the total field at z = L0 will depend on the relative
phase and amplitude of symmetric and anti-symmetric modes. Consequently, the power-
splitting ratio will depend on the design of the horn and the excitation.

In the reverse coupler shown in Figure 6.7(c), when the waveguide at z < 0 has two
modes, radiation in both the symmetric and anti-symmetric modes will be transmitted
without loss to z = 0. However, the total field pattern at z = 0 will be very different,
depending on the relative phase between them, which is the total cumulative phase
difference between the two modes from z = –L0 to z = 0.

6.7.3 Super mode analysis of the Mach–Zehnder interferometer

The Mach–Zehnder interferometer, illustrated in Figure 6.8, consists of two symmetric
single-mode Y-branches (one is a forward-expanding Y-branch, the second a reverse Y-
branch) connected by two parallel propagating single-mode channel waveguides that are
well separated from each other. The objective is to control a specific fraction of the input
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optical power to the output by controlling the propagation constant of one (or both) of
the connecting propagating waveguides.

Let the waveguides A and B in the parallel propagation section havemodes, eA and eB,
with amplitude (including phase), aA and aB. The incident radiation excites the funda-
mental symmetric mode in the input waveguide at z = 0. The incident radiation excites
the modes of individual identical waveguides in the propagating section, A and B,

equally in amplitude and phase, jaAj ¼ jaBj ¼ 1=
ffiffiffi
2

p jainj. Since the connecting wave-
guides, A and B (located from z = Lb to z = Lb + Lp), are well separated, modes will
propagate in them without any interaction. If the refractive indices of the materials in A
and B differ, the magnitude of aA and aB will not change, but the phase of aA and aB will
differ at z = Lb + Lp. If the relative phase between aA and aB at z = Lb + Lp is π, the total
incident mode to the output Y-branch is anti-symmetric: it excites only the anti-
symmetric mode. The anti-symmetric mode is dissipated into the substrate in the reverse
Y-branch. Thus the output power is zero. If the relative phase is 2π, the symmetric mode
is excited at the output Y-branch. All the optical power is transmitted to the output. For
other relative phase differences between aA and aB, there will be a mixture of symmetric
and anti-symmetric modes excited. Only the symmetric mode excited at the reverse
output coupler is transmitted as the output. Therefore the amount of power transmitted to
the output waveguide can be varied from 0% to 100% by controlling the relative phases
of aA and aB. This is the principle of the Mach–Zehnder interferometer.

Beside differences in phase, there can also be other differences between waveguides.
For example, waveguide B could have absorption such that aB = 0 at z = Lb + Lp. In that

case, jasj ¼ jaaj ¼ 1=
ffiffiffi
2

p jaAj ¼ 1

2
jainj. Therefore only ¼ of the input power is trans-

mitted to the output.
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Figure 6.8 Top view of a channel waveguide Mach–Zehnder interferometer. Two isolated waveguides, A and
B, connect an input single-mode symmetrical Y-branch 3 dB coupler to an output reversed single-
mode symmetric Y-branch coupler. Waveguides A and B are well separated from each other. Only
the power in the symmetric super mode at the input of the output Y-branch coupler will be
transmitted to the single-mode output waveguide.
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Chapter summary

Three different analytical techniques that can be used to analyze interactions of guided
waves in devices have been presented. It is important to recognize the differences,
the similarities, and the limitations of these techniques. Four commonly used applica-
tions, the directional coupler, the waveguide Y-branch, the grating filter, and the
Mach–Zehnder interferometer have been used as examples to demonstrate these
techniques. It is interesting to note that how a waveguide Y-branch and a Mach-
Zehnder interferometer operate can by analyzed by the super mode analysis without
even knowing the effective index and the profile of the modes. These techniques will be
used again in Chapters 7 and 8 to analyze various opto-electronic devices.
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7 Passive waveguide devices

The passive waveguide (and fiber) devices used in optical communication are mode
transformers, power dividers, wavelength filters, resonators, frequency multiplexers,
and couplers. All these are optical devices. How these devices work is the focus of this
chapter. The guided-wave modes presented in Chapter 5 and the analytical techniques
presented in Chapter 6 will be used to analyze these devices. The performance of each
device will be evaluated in terms of its application.

In the next chapter, active waveguide devices will be discussed. Active devices
utilize other physical mechanisms, such as the electro-optical effect, the acousto-
optical effect, or the electro-absorption effect, to achieve their function. When we
discuss active devices it is also necessary to discuss these mechanisms. The electrical
properties of the devices using these mechanisms are as important as their optical
properties.

7.1 Waveguide and fiber tapers

Waveguide and fiber tapers are used to match the mode of one waveguide (or fiber) to the
mode of another waveguide (or fiber) that has a different configuration.

In a taper, the cross-section of a waveguide or fiber is adiabatically tapered to a new
dimension to transform the profile of the mode. The ideal taper has already been
illustrated and analyzed in Section 6.7.1. In realistic tapers, there will be conversion
losses into radiation or other guided-wave modes caused by fabrication defects. These
losses need to be minimized. The performance of a realistic taper is measured by how
efficiently the mode can be transformed.

7.2 Power dividers

In guided-wave and fiber optical systems, power dividers are used to distribute specific
fractions of input power into different output channels. The input and output waveguides
(or fibers) are often interconnected to other waveguides (or fibers). The performance of
power dividers is measured by their desired output power distribution, wavelength
variation of the power distribution, physical size, and insertion losses, which include
the coupling loss to other input and output waveguides (or fibers). The commonly used
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power dividers are the Y-branch equal-power splitter, the directional coupler, the multi-
mode interference coupler, and the Star coupler.

7.2.1 The Y-branch equal-power splitter

An adiabatic symmetric single-mode Y-branch waveguide splits the optical power in the
input waveguide equally into two output waveguides. It is a 3 dB power splitter. In this
device, a single-mode waveguide is interconnected with two identical single-mode wave-
guides in a Y-branch configuration. In most applications, the input and output waveguides
are also coupled into otherwaveguide devices or opticalfibers. The ideal device has already
been analyzed and discussed in Section 6.7.2 and illustrated in Figure 6.7. In any realistic
Y-branch coupler, there is an excess insertion loss caused by the power scattered into the
substrate or the cladding at the intersection region by the defects produced in fabrication
processes. There are also coupling losses to and from other waveguides or fibers. The
performance of any splitter is characterized by its total insertion loss and by the evenness of
its distribution of input power into the output waveguides (or fibers). Since the power
splitting ratio is independent of wavelength, and since the excess and propagation losses
vary slowlywithwavelength, the characteristics of aY-branch equal-power splitter are only
mildly dependent on wavelength. Conversely, a Y-branch coupler in the reverse direction
can also be used as a power combiner. Note that, in order to function as a 3 dB coupler for
all incident radiation, the input waveguide must be a single-mode waveguide. The effi-
ciency of the combiner in the inverse direction depends on the phase of excited modes.

7.2.2 The directional coupler

Awaveguide directional coupler consists of two parallel waveguides, A and B, coupled to
each other in a coupling sectionW long. Within the coupling region, the guided waves in
the two waveguides interact with each other via the evanescent fields. The coupling
section is connected to waveguides in the input and output sections through transition
waveguides. Outside the coupling region, the input and output waveguides are well
isolated from each other, and the waveguides function as individual isolated waveguides.

An ideal channel waveguide directional coupler was discussed and analyzed in
Section 6.3.4 by coupled mode analysis and in Section 6.6 by super mode analysis; it
was illustrated in Figure 6.4. In most directional couplers, A and B are identical wave-
guides. There is input to only one of the waveguides. Let the input power be in the A
waveguide. From the coupledmode analysis point of view,Δβ = 0 betweenA andB.When
propagation and coupling losses are neglected andwhen there is no input power in B, 100%
of the input power to waveguide A is transferred into waveguide B forCW ¼ ðnþ 1=2Þπ,
and all power is retained in waveguide A for CW = nπ. At appropriate value of CW within
nπ < CW < (n + 1/2)π, any desired distribution of power in A and B can be obtained.
Conversely, if the input is in B, there is 100% transfer of power from waveguide B to
waveguide A when CW ¼ ðnþ 1=2Þπ, and all power is retained in waveguide B when
CW = nπ. In reality, there will be an insertion loss caused by the propagation loss and the
excess scattering loss produced by the defects created in the fabrication processes.
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In a more sophisticated operation, the directional coupler can also combine two inputs
into two outputs. If there are inputs to both A and B, the amplitudes of the modes
transferred to the outputs are superimposed. However, there will be interferences of the
modes in the output waveguides that depend on the relative phase of the inputs.

From the point of view of super mode analysis, any input radiation to the total
waveguide structure that includes both A and B excites the symmetric and the anti-
symmetric modes. As the excited modes propagate through the coupling region, they
interfere with each other because anti-symmetric and symmetric modes have different
effective indices. The output powers in A and B are determined by the sum of the
amplitudes (including phase) of symmetric and anti-symmetric modes at the exit of the
coupling section.

The directional coupler is a reciprocal device. Reflected optical power in the output
waveguides will also be distributed in the same ratio back to the input waveguides. Most
commonly, the fibers (or waveguides) at the input and output ends are match terminated,
meaning that no reflected power at the outputs will be reflected back to the input (or
inputs).

Since the coupling coefficient C and Δβ (or the neff of the super modes) are dependent
on the wavelength, the distribution of power will depend on the wavelength.
Furthermore, when the coupling coefficient C or the Δβ (or Δneff) is controlled electro-
optically, the outputs are a function of the applied electrical signal. Then the directional
coupler becomes a switch (or modulator), which will be discussed in Chapter 8.

Although the directional coupler discussed here uses two channel waveguides
coupled to each other side by side, there are also directional couplers using two
waveguides that are coupled vertically. In that case, the coupling region consists of
two waveguides fabricated on top of each other and separated by an isolation layer
between them.

In optical fibers, the directional coupler can also be made when the cladding is
partially removed to provide the coupling via the evanescent field. The length of this
interaction region and the proximity of fiber cores control the power splitting ratio
between the two fibers. The advantage of a fiber directional coupler is that there is no
need to couple the power in the input fiber into the output fibers, which may have
insertion loss.

Comparing the directional coupler with the Y-branch power splitter, it is clear that the
directional coupler is a more flexible device. The Y-branch is a 3 dB power splitter. What
fraction of the input power is split into the output waveguides in a directional coupler
can be easily varied. On the other hand, the Y-branch is easy to make. The operation of
the single-mode Y-branch power splitter is independent of wavelength, while the power
splitting in directional couplers is wavelength dependent.

7.2.3 The multi-mode interference coupler

A multi-mode interference coupler consists of a section of multi-mode channel wave-
guide, L long, abruptly terminated at both ends. A number of access channel waveguides
(usually single-mode waveguides) are connected to it at the beginning and at the end.
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The modes in the multi-mode channel are excited by the radiation from the input access
waveguides. As they propagate to the end of the multi-mode channel, their relative
phases are shifted because of the difference of effective indices. The amplitudes of the
modes excited in the output access waveguides are determined by the interference
pattern of the modes after propagating L distance in the multi-mode channel. Such
devices are generally referred to as N × M multi-mode interference (MMI) couplers,
where N and M are the number of input and output waveguides, respectively [1].

Figure 7.1(a) illustrates a multi-mode interference coupler with two input and two
output access waveguides. The multi-mode section is shown here as a step-index ridge
waveguide with width, W, and length, L. It is single mode in the depth direction x and
multi-mode (n ≥ 3) in the lateral direction y. The objective of such a multi-mode coupler
is to redistribute the powers in the input access waveguides transferred into the output
access waveguides.

Let the multi-mode waveguide be a ridge waveguide, as shown in Figure 5.9(b). The
profile of the effective index of the planar TE0 modes in the y direction is illustrated in
Figure 7.1(b). For the planar waveguide mode in the core (i.e. within the ridge), there is
just a single TE0 mode in the x direction with effective index ne1. There is also a TE0

mode in the cladding with an effective index ne2; ne1 > ne2. The channel guided-wave
modes in the core can be found by the effective index method discussed in Section 5.6.1
or by numerical methods. The field variation of the first few modes in the y direction is
illustrated in Figure 7.1(c).
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Figure 7.1 A multi-mode interference coupler. (a) The top view of a 2 × 2 multi-mode interference coupler.
Themulti-mode waveguide is L long andWwide. (b) The effective index profile of the multi-mode
waveguide. (c) The field patterns (as a function of y) of the lowest-order modes of the multi-mode
section.
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Beforewe discuss the interference pattern of themodes, let us discuss first the properties
of individual modes. For well-guidedmodes, it has been shown in the literature [2] that the
solution of transcendental Eq. (5.66) of Section 5.6.1 can be approximated by

EnðyÞ ¼ AnsinðhnyÞ

tan ðhn=kÞ kWe

2


 �
ffi∞ ð7:1Þ

whereWe is the effective width of the ridge,We >W. We is illustrated in Figure 7.1(c). It
is usually taken to be the effective width of the lowest-order mode m = 0 in the x
direction and n = 0 in the y direction. Therefore, we can represent the modes approxi-
mately by Eq. (7.1) with

hn ¼ ðnþ 1Þπ
We

and

β0n
2 ¼ ne12k2 � hn2;  β0n ffi ne1k � ðnþ 1Þ2πλ

4ne1We
2

ð7:2Þ

In Eq. (7.2), the propagation constants of the various-order modes have a quadratic
dependence on n. By defining Lπ as the beat length (i.e. the propagation length in which
the phase difference of the two modes is π) between the n = 0 and n = 1modes, we obtain

Lπ ¼ π
β0 � β1

;   β0 � βn ¼
nðnþ 2Þπ

3Lπ
ð7:3Þ

Let us examine the total field of all the modes. Let there be N modes in the multi-mode
channel. The y variation of any input field at z = 0, Ein(y,z = 0), can be expressed as the
summation of the En modes. Thus,

Einðy; 0Þ ¼
Xn¼N�1

n¼0

CnEnðyÞ

Einðy; zÞ ¼
Xn¼N�1

n¼0

CnEnðyÞe
j
nðnþ 2Þπ

3Lπ
z

2
4

3
58<

:
9=
;e�jβ0z

ð7:4Þ

EnðyÞ ¼ An sinðhnyÞ
Any input field at z = 0 will be repeated or mirrored at z = L, whenever

e
jnðnþ2Þπ

3Lπ
L ¼ 1 ð7:5Þ

or

e
jnðnþ2Þπ

3Lπ
L ¼ ð�1Þn ð7:6Þ
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When the condition in Eq. (7.5) is satisfied, the field at z = L is a direct replica of the input
field. When the condition in Eq.(7.6) is satisfied, the even modes will have the same
phase as the input, but the odd modes will have a negative phase, producing a mirrored
image of the input field. For the 2 × 2 coupler shown in Figure 7.1(a), this means that
power in input Awill be transferred to output C when Eq. (7.5) is satisfied and to output
D when Eq. (7.6) with odd n is satisfied.1

More general analysis of the mode interference pattern can be obtained as
follows. Eqs. (7.1) and (7.2) show that the y variation of the field of a well-
guided multi-mode channel-waveguide mode resembles the lowest-order sine
terms of a Fourier series in y within the period from y = –We/2 to y = +We/2.
There are only a finite number of sine Fourier series terms representing the
modes. In order to analyze the more complex interference patterns, let us now
extend the expression for the modes to outside of the range –We/2 to We/2 in a
periodic manner so that we can take advantage of our knowledge of the
Fourier series. Since these modes have a half-cycle sine variation within –We/2
< y < We/2, the extended mode in –3We/2 < y < –We/2 and in We/2 < y < 3We/2 should
be anti-symmetric with respect to the mode in –We/2 < y < We/2. A similar extension
can be made beyond y > ǀ3We/2ǀ. Consider now the total extended field over all y
coordinates, including the periodic extension of the fields outside the multi-mode
waveguide region. The extended input field from all the input access waveguides
(periodically repeated outside the region from y = –We/2 to We/2) can then be
expressed as a summation of these Fourier terms. Eq. (7.4) shows that the relative
phase of the Fourier terms dependent on L. Different multi-fold images in the y
direction at the end of the multi-imode section can be formed by summing these
phase terms with different L. As an example, let us consider L = 3pLπ/2, where p is an
odd integer. Then

Ein y;
3pLπ
2

0
@

1
A ¼

X
n even

CnEnðyÞ þ
X
n odd

ð�jÞpCnEnðyÞ

       ¼ 1þ ð�jÞp
2

E0ðy; 0Þ þ 1� ð�jÞp
2

E0ð�y; 0Þ
ð7:7Þ

The last equation represents a pair of images of Ein in quadrature, with amplitudes 1=
ffiffiffi
2

p
,

at distances z ¼ 3Lπ=2; 9Lπ=2; …. The replicated, the mirrored, and the double images
of E0 at various z distances are illustrated in Figure 7.2. Clearly, for a 2 × 2 coupler, we
have a 3 dB power splitter from input B into output waveguides, C and D, at z = 3Lπ/2
and at z = 9Lπ/2. We transfer the power from B to C (called the cross-state) when z = 3Lπ,
and from B to D (called the through-state) when z = 6Lπ.

The preceding discussion is for an ideal M × N interference coupler. A realis-
tic 2 × 2 InGaAsP MMI cross-coupler has been made with W = 8 μm and

1 Note that a two-mode interference coupler is identical to a two-waveguide directional coupler with zero gap
of separation. Therefore it can also be analyzed by super mode analysis. This concept can also be extended to
the MMI coupler.
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L = 500 μm, which gives excess loss of 0.4 to 0.7dB and an extinction ratio of
28 dB, and a 3 dB splitter with L = 250 μm and imbalances between C and D well
below 0.1 dB [1].

The actual design of an MMI coupler must take into account the number of input and
output access waveguides, the number of modes in the multi-mode waveguide, the
relative phase and amplitude of the incident modes in the input access waveguides,
and the position and width of access waveguides. Compared with directional couplers
and Y-branch couplers, the MMI coupler is very compact. It allows M × N coupling.
However, it can only redistribute the power at specific ratios. AnMMI coupler is likely to
have more insertion loss, and the division of power into the output waveguides is not
flexible.

7.2.4 The Star coupler

The diffraction of the radiation from an input channel waveguide mode into a planar
waveguide produces a broadened beam in the planar waveguide as the planar guided-
wave propagates. When there are N output channel waveguides placed at the end of the
planar waveguide section, the input power is distributed into the output waveguides.
This is the basic principle of a Star coupler.

If there are N such input ports and N output ports, the Star coupler is an N × N power
distributor. It is used in the wavelength division multiplexed (WDM) fiber optical
systems. An example of a Star coupler is illustrated in Figure 7.3 [3].

The Star coupler consists of two arrays of N uniformly spaced identical ports fed into
the planar waveguide in the horizontal direction. Each port is a TE00 mode channel
waveguide which has a width “a.” The planar waveguide also supports a TE0 mode that
matches the TE00 channel waveguide mode in the vertical direction. Ports (i.e. ends of
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z = 1.5Lπ
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Figure 7.2 Images of the input field at various distances in a multi-mode interference coupler. The input field
is shown at z = 0. It can be decomposed into a summation of modes. Each mode has a different
phase velocity. The total profile of the summation of these modes will yield a two-fold image of the
input at z = 1.5 Lπ and at z = 4.5Lπ, a mirror single image at z = 3Lπ, and a direct image at z = 6Lπ.
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channel waveguides) in each array are located on a circular arc with radius R. There are
two circular arcs facing each other. One for the input ports, and one for the output ports.
The center of the circle of the array on the left is at Oʹ, which is also the middle of the
circular arc for the array on the right. Conversely, the center of the circle on the right is at
O, which is also the middle of the circular arc or the array on the left. In other words,
these are confocal circular arcs. The center position of the kth port on the left arc is given
by Rθo,k, and the center position of the jth port on the right arc is given by Rθʹo,j.
The power entering the single-mode planar waveguide region (from any one of the 2N
waveguides) will be diffracted and propagated in the horizontal plane of the
planar waveguide. Waveguides on the opposite circular arc are excited by this planar
guided wave.

The objective of the Star coupler is to maximize the power transfer from any one of
the channel waveguides in the left array to the waveguides in the right array. Ideally,
there is no power loss and the power from any input waveguide is divided uniformly into
the N output channels. In that case the transfer efficiency will be 1/N. However, this is
difficult to achieve in practice. In this section wewill analyze the diffraction of the planar
TE0 guided-wave mode. In particular we will calculate the field at the output array
produced by the radiation from a given channel waveguide in the input array. We will
calculate the excitation of the mode of the channel waveguide in the output array by this
field, thereby determining the power transfer from the input channel to the output
channels.

The incident field at each port is the mode of the input channel waveguide. Let us
assume here that the Ey of the guided-wave mode for all input and output channels in
the horizontal plane is ψ(y) or ψ(yʹ), where y (or yʹ) is the coordinate along the left (or
right) circular arc, as shown in Figure 7.3. The transmission between any two ports

θ = θo,k

θ ′ = θo,j′

a

y ′ya

O O′

P

2α

R

ψ

a/2–a/2

R(θ − θo,k)

ρ

P′

Figure 7.3 The Star coupler. (Taken with permission from Ref. [3] with permission from IEEE.)
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(i.e. channel waveguides), i.e. from the P port on the left circular arc centered about θo,k
to the Pʹ port on the right circular arc centered about θo,jʹ, is determined by: (1)
calculating the generalized planar guided-wave field at yʹ = Rθʹ diffracted from P, and
(2) calculating the coupling of that field into the waveguides at Pʹ.

In order to calculate the field radiated from P to Rθ ʹ, we note that the distance between
y and yʹ in the first-order approximation of the binomial expansion is

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Rcos θ′ � ðR� Rcos θÞ�2 þ ðRsin θ′ � Rsin θÞ2

q
 ffi R� Rsin θ ′sin θ ffi R� Rθθ′: ð7:8Þ

Thus, for any large βρ, the field produced by P at Pʹ is;

EyðRθ ′Þ ffi 

ffiffiffiffiffiffiffiffiffiffi
neff k

j2π R

s
e�jneff kR

ðθ0;kþ a
2R

θ0;k� a
2R

ψðRθÞeþj2π
neff
λ ϑ′ð ÞRϑRdθ ð7:9Þ

Here, we have assumed that the field for the kth port is confined approximately within the
waveguide, as shown in the inset of Figure 7.3. Note that the phase factor, –jneffkR, is
now a constant on the circular arc on the right. The positioning of the ports on confocal
circular arcs serves the function of creating a constant phase factor, –jneffkR, similar to
the spherical reflectors in a confocal resonator in three dimensions.2 The relation
between EyðRθ′Þ and ψðRθÞ is related by an integral resembling Fourier transform as
follows.

Using a change of variable, u ¼ 2R=aðθ � θ0;kÞ, we obtain:

EyðRθ′Þffia

ffiffiffiffiffiffiffiffi
neff
jλR

s
e�jneff kRe

þj2π
neff Rθ0;kθ′

λ
φðRθ′Þ

where;

φðRθ′Þ ¼ 1

2

ðþ1

�1

ψ
au
2

0
@

1
Ae

þj2π
neff aθ′
2λ

0
@

1
Au

du

ð7:10Þ

Since ψ(au/2) is identical for all the waveguides, the φ factor is independent of θ0,k. Ey

is only dependent on the center position Rθ0,k of the input channel through the factor

ej2π
neff Rθ0;kθ′

λ .
Let the total Ey at Rθʹ be expressed as a summation of the fields of all the channel

guides, ψi(Rθʹ), on the right circular arc array plus the stray guided-wave fields in the

2 The confocal mirrors in the confocal resonator of laser cavities in Chapter 4 also allowed us to simplify the
diffraction integral equations.
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gaps between channel guides, ζ(Rθʹ). Let us assume, as an approximation, that there is
negligible overlap among all ψi and ζ. Then

EyðRθ′Þ ¼
X
i

biψiðRθ′Þ þ ζ ðRθ′Þ: ð7:11Þ

Here, ψi(Rθʹ) is the ψ centered about θo,i. Multiplying both sides by ψj
*(Rθʹ) and

integrating with respect to Rθʹ from –∞ to +∞, we obtain:

ðϑo;jþ a
2R

ϑo;j� a
2R

EyðRθ′ÞψðRθ′ÞRdθ′ffibj

ðθo;jþ a
2R

θo;j� a
2R

ψðRθ′Þj j2Rdθ′ ð7:12Þ

Utilizing once more the change of variable, u′ ¼ 2R=aðθ′ � θo′Þ, we obtain,

jbjj2 a
2

ðþ1

�1

ψ
a
2
u′ þ Rθ0;j

� ���� ���2du′
2
4

3
5
2

¼ neff a4

λR
φðRθo;kÞj j2 φðRθo;jÞj j2


 �
; ð7:13Þ

or

jbjj2 ¼ 4neff a2

λR

φðRθo;kÞ
�� ��2 φðRθo;jÞ

�� ��2:
ðþ1

�1

ψ
a
2
uþ Rθo;k

� ���� ���2du
2
4

3
5
2 ð7:14Þ

Since the power contained in the total Ey is proportional to
ð
jEyj2Rdθ, which is

approximately equal to
X
i

jbij2
ð
jψj2Rdθ, ǀbjǀ2 is the power transfer from the channel

waveguide centered at θo,k to the channel waveguide centered at θo,j.
In an actual Star coupler, R, N and “a” are designed to optimize the power

transfer. C. Dragone and his colleagues have optimized the design, which
gives 0.34(1/N) to 0.55(1/N) of the input power to any one of the output
channels [3].

In summary, comparing the Star coupler with the Y-branch coupler, the direc-
tional coupler, and the MMI coupler, it is clear that the power in any one of the N
input ports in the Star coupler is always distributed as evenly as possible to all the
N output ports with equal phase. It works in both the forward and the backward
directions. The insertion loss and the uniformity of the output power distribution
are the major issues in its performance. On the other hand, the Y-branch single-
mode coupler achieves even distribution of power for one input waveguide coupled
to two output waveguides, i.e. it is only a 1 × 2 coupler. Its insertion loss can be
very small, and the balance of output power is very good. Although the Y-branch
coupler can be repeated to obtain 1 × 2 N coupling in the forward direction, then
the total device will be long. The directional coupler is a much more flexible 2 × 2
coupler that can split the input power at any ratio into the output channels in both
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the forward and backward directions. It can also be fabricated in fibers. However,
it is wavelength dependent. The MMI coupler is the smallest N × M coupler. It can
transfer the input power into the output waveguides only at fixed ratios, dictated
by the various image patterns. Its insertion loss is an issue. It is also wavelength
dependent.

7.3 The phased array channel waveguide frequency demultiplexer

In wavelength division multiplexed (WDM) optical fiber systems, optical radiations at
different wavelengths from an input waveguide need to be directed into different output
waveguides.

Let us consider a component called a PHASAR demultiplexer [4]. In this device,
two Star couplers discussed in Section 7.2.4 are interconnected by an array of identical
channel waveguides, each with length Lj, as shown in Figure 7.4(a). On the input side
of the first Star coupler, only the kth waveguide (i.e. the transmitting waveguide) on
the input side is excited. All other input waveguides have zero power. The electric field
of the input transmitting channel waveguide at the kth position will create a field
distribution Ey(Rθʹ) at the output circle in the first Star coupler. If all the interconnect-
ing waveguides have equal length, and if the stray fields, ζ, in the gap between channel
guides are small, a field distribution identical to Ey(Rθ) in the first Star coupler will be
created on the input side of the second Star coupler. By reciprocity, this field distribu-
tion on the input side of the second Star coupler will create a field distribution on the
output side, which excites only ψk at the position of the kth output waveguide and not
elsewhere. In other words, the power in the kth transmitting waveguide of the first Star
coupler will now be transmitted exclusively to the kth output channel of the second
Star coupler. The situation does not change if the lengths of the interconnecting
waveguides between the two Star couplers differ from each other so that the phase
shift between adjacent interconnecting waveguide is 2π, i.e.

2π neff ;c
λ

ðLj � Lj�1Þ ¼ 2πneff ;c
λ

ΔL ¼ 2π ð7:15Þ

Here, neff,c is the effective index of the channel waveguide. The physical ΔL required to
meet this condition will depend on λ.

Let the spacing between adjacent channel waveguides be da (da = RΔα) in the first Star
coupler. Then, according to Eq. (7.10) of Section 7.2.4, Ey (created by the field of the kth
channel waveguide in the input array) at the center of the mth waveguide in its output
circular array, has the phase

ej2π
neff R

λ ðkΔαÞðmΔαÞ ð7:16Þ
kRΔα and mRΔα are the center angular positions of the kth and mth channel waveguide in
the input and output array of the Star coupler, as shown in Figures 7.3 and 7.4(b). k andm are
integers, ranging from –(N – 1)/2 to (N – 1)/2. neff is the effective index of the planar
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waveguidemode in the Star coupler. If the excitation changed from the kth waveguide to the
(k + 1)th waveguide, the difference in Ey caused by this change is just a phase difference,
mΔφ = 2π(RΔα)(neff /λ)(mΔα), at the center of the mth waveguide. Conversely, when the
radiation in the array of input waveguides in the second Star coupler has a total Ey field that
contains this extra phase factormΔφ for each input waveguide,m = –(N – 1)/2 to (N – 1)/2,

(a)

(b)

Interconnecting
channel
waveguides

Transmitter
waveguide

First Star coupler

Lj

Receiving waveguides

Second Star
coupler

Array
waveguide

da

S

θ

Δα

da

Ra

O

O’

Input aperture

Focal line

(measured along
the focal line)

Receiver
waveguidesImage plane

Figure 7.4 The PHASAR demultiplexer. (a) The layout. (b) Geometry of the Star coupler on the receiver side.
This figure is taken from Ref. [4] with permission from IEEE. The two Star couplers are connected
by an array of interconnecting channel waveguides that have different lengths. Optical radiation
from the input waveguide is transmitted to the interconnecting waveguides by the input Star
coupler. The input radiation to the output Star coupler will have phase shifts controlled by the
wavelength, as well as by the length increments of the interconnecting waveguides. The objective
is to create an appropriate phase shift so that radiation at different wavelengths is transmitted to
different output waveguides of the output receiver Star coupler.
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the total radiation will be coupled to the (k+1)th output waveguide instead of the kth output
waveguide.

The central idea of this demultiplexer is that, when the kth waveguide is the output
guide at λ1 and when the appropriate phase shift mΔφ is obtained as the wavelength is
shifted from λ1 to λ2, we will have shifted the output from the kth waveguide to the (k+1)
th waveguide at λ2.

Let the difference in length of the adjacent interconnecting waveguides be ΔL. The
mth interconnecting waveguide has a length mΔL longer than the waveguide at the
origin. Now consider in detail the second Star coupler at two different wavelengths, λ1
and λ2. Let the output channel be the kth waveguide at λ1. This extra phase factor mΔφ
(which is needed to shift the output to the (k+1)th waveguide) will be obtained at λ2 when

mΔφ ¼ 2π
c
neff ;cðΔf ÞmΔL;  or 

RΔα
Δf

¼ da
Δf

¼ neff ;c
neff

� 	
ΔL
Δα

� 	
1

f2
ð7:17Þ

Here, f1 = c/λ1, f2 = c/λ2, and Δf = f1 – f2. The ratio of da/Δf is called the dispersion of the
interconnecting waveguides. In practice, there may be optical carriers at a number of
close, equally spaced wavelengths, λ1, λ2, λ3. . .. . . (i.e. Δf = constant), in the transmitting
channel. When the above dispersion relationship is satisfied, optical carriers at different
wavelengths are transmitted to a different output waveguide. This device is called a
PHASAR wavelength demultiplexer in WDM fiber systems.

The use of the confocal circular arc configuration of channel waveguides to distribute
the power with equal amplitude and phase to the output ports and the use of channel
waveguides with unequal length to control the phase distribution are clever uses of the
waveguide properties to achieve frequency demultiplexing. The properties of the chan-
nel waveguides important to this application are neff,c, the uniformity of neff,c, and the
length variations of different channels and the attenuation of the waveguides. The major
limitations of the performance of a Star coupler are the insertion loss and the degree of
the uniformity that can be achieved.

7.4 Wavelength filters and resonators

7.4.1 Grating filters

The most commonly used wavelength filter or deflector is a periodic grating. There are
two types:

(1) Gratings with periodic variation of dielectric constant or reflectivity transverse to
the direction of propagation of the incident optical radiation. Within this category,
grating diffraction of plane waves was discussed in Section 1.5. Deflection of an
incoming planar guided wave into different directions was discussed in
Section 5.5.6. They all operate in a similar manner: the incident radiation is
diffracted into different directions that correspond to different orders of diffraction.
The direction of a given order of diffracted radiation depends on the periodicity of
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the grating grooves and the wavelength of the radiation, known as the dispersion of
the grating. Large dispersion of these transverse gratings yields reasonably high
sensitivity to wavelength variation. The distinct features of this type of grating are:
they operate within fairly large range of optical wavelength. The transverse gratings
are used commonly in instruments such as grating spectrometers, beam scanners,
etc. There is no resonance effect.

(2) Gratings with periodic variation of dielectric constant in the direction of propagation
of incident optical radiation. Longitudinal grating diffraction in channel waveguides
was discussed in Section 6.3.3. In this case, the grating functions like a reflection
filter, known as a distributed Bragg reflector, DBR. The center frequency of reflec-
tion is determined by the periodicity of the grating shown in Eq. (6.16). The
reflection coefficient is high within a narrow band of frequency that is controlled
by the magnitude of the periodic grating perturbationCg and the length of the grating
L. Longitudinal gratings can also be made in optical fibers [5].

Although the analyses of both types of gratings are similar, how to utilize the
diffraction effect is very different. One is for deflection of radiation into different
directions, utilizing the dispersion properties. The other is to obtain very narrow band
filtering. Very narrower band wavelength filter DBR grating reflectors can be obtained
by using small Cg and long L.

7.4.2 DBR resonators

When two identical longitudinal grating reflectors are placed consecutively on the same
waveguide separated by a distance, d, the guided-wave mode reflected back and forth
between the DBR reflectors behaves like a Fabry–Perot resonator at optical wavelengths
close to the wavelength that satisfies the Bragg condition. In order to analyze such a
resonator, we note that the reflection coefficient Γ of a DBR is given in Eq. (6.21). It has a
phase φΓ. Since there are two identical DBRs, the resonance condition is

2βod þ 2φΓ ¼ 2nπ ð7:18Þ
Like any Fabry–Perot resonator, if d and Γ are large, the resonance will have a much
sharper frequency response than the DBR reflector itself. The frequency response of all
Fabry–Perot resonators is similar for the same Γ and d. Fabry–Perot resonance filtering
of the plane waves is presented in Sections 2.2.1 and 2.2.2. Properties of Fabry–Perot
resonators presented in Section 2.2.2 are applicable to DBR resonators.3

7.4.3 The ring resonator wavelength filter

Channel waveguides can also be made into a ring (or loop), as illustrated in
Figure 7.5(a). Resonances in an isolated waveguide ring occur at frequencies, ω, when
the phase shift of a guided-wave mode after one round of propagation is a multiple of 2π,

3 A single grating with appropriate β0d can also resonate. When such a resonator is used in semiconductor
lasers it is known as the distributed feedback (DFB) lasers.
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ωneff
c

ð2πRÞ ¼ 2nπ ð7:19Þ

where R is the radius of the ring. The Q-factor and the finesse of the resonator are
affected by the propagation loss of the guided wave. However, the ring resonance
cannot be utilized in applications unless another waveguide is coupled to the ring. A
ring resonator coupled to a straight waveguide via a variable-gap directional coupling
interaction is illustrated in Figure 7.5(b). The coupling region is Lc long. The
coupling changes the losses of the resonator, as well as providing input and output
to the ring.

In order to analyze the resonator shown in Figure 7.5(b), how the ring resonator and
the straight waveguide are coupled needs to be discussed first. Then the resonance
condition and the finesse and Q of the resonator, which are affected by the coupling,
can be analyzed.

(a) Variable-gap directional coupling
Directional coupling between two adjacent waveguides was discussed in
Section 6.3.4 for a constant coupling gap. Directional coupling between two
waveguides with a variable coupling gap can be approximated as a cascade of
short, local directional couplers that has a constant coupling gap within each local
section.

Results obtained in Eqs. (6.25) and (6.26) for two coupled waveguides could be
rewritten in matrix form for the jth local section with constant coupling gap as

Input Coupling
region

Output
A

B

a1

a2 b2

b1

Lc

Channel waveguide ring

D

Straight
waveguide

(a) (b)

Figure 7.5 Ring resonators. (a) An isolated ring resonator. (b) A ring resonator coupled to a straight input–
output waveguide. The coupling region is Lc long.
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b1j
b2j

����
���� ¼ tj  κj

�κj� tj�

����
���� a1ja2j

����
���� ð7:20Þ

where a1j and b1j are the complex amplitude of the guided wave at the input and
output of the local straight waveguide, while a2j and b2j are for the local ring
waveguide. tj and κj are the abbreviated expressions of the results given in these
two equations.

At the junction of the next section a1;jþ1 ¼ b1j and a2;jþ1 ¼ b2j: Therefore, the
effect of the variable coupling for the total coupling region Lc can be expressed as
a matrix,

t k
�k� t�

����
����

which is the product of all these [tj κj] matrices.4

In Figure 7.5 (b), Amarks the beginning of the coupling region and Bmarks the end of
the coupling region. The distance between A and B of the coupling region is Lc.
The length of the isolated waveguide in the ring is D. The incident optical guided
wave in the straight waveguide is shown to have complex amplitude a1 at position A
before the coupling. The exit optical wave in the straight waveguide is shown to have
complex amplitude b1 at position B. The complex amplitude of the guided wave in
the ring resonator is a2 at A and b2 at B. a1, a2, b1, and b2 are related by the variable
coupler as

b1
b2

����
���� ¼ t κ

�κ� t�

����
���� a1a2
����
���� ð7:21Þ

Where

κκ� þ tt� ¼ 1 ð7:22Þ

(b) The resonance condition of the coupled ring
For the guided wave propagating fromB to A in the ring, the distance of propagation isD
in the isolated waveguide of the ring. Therefore

a2 ¼ b2e
�αDe�jneff kD ¼ b2e

�αDe�jθ ð7:23Þ
Where θ ¼ neff kD. α is the attenuation coefficient of the guided-wave mode and neff is
its effective index. Note that, from Eq. (7.21), b2 ¼ �κ�a1 þ t�a2 where t ¼ jtjejφt . Thus
the phase shift for one round of propagation is θ þ φt. Similar to the discussion of the
resonance condition expressed in Eq. (7.19), resonance for CW radiation at a single free-
space wavelength λo now occurs when θ þ φt ¼ 2nπ, which is:

4 Alternatively, the coupled mode equation can be solved with a variable coupling coefficient C.
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θo þ φtffi
2πneff ðDþ LcÞ

λo
¼ 2nπ ð7:24Þ

(c) Power transfer
The power transmitted from the input guided-wave a1 to the output is jb1=a1j2, and the
power transmitted from the input guided-wave a1 to the recirculating guidedwave in the

ring is ja2=a1j2 They have been calculated from Eq. (7.22) by Yariv [6] to be:

b1
a1

����
����
2

¼ e�2αD þ jtj2 � 2e�αDjtjcosðθ þ φtÞ
1þ e�2αDjtj2 � 2e�αDjtjcosðθ þ φtÞ

ð7:25Þ

a2
a1

����
����
2

¼ e�2αDð1� jtj2Þ
1� 2e�αDjtjcosðθ þ φtÞ þ e�2αDjtj2 ð7:26Þ

At resonance, cosðθ þ φtÞ ¼ 1. jb1=a1j2 drops to zero when e�αD ¼ jtj, known as the
critical coupling condition. At critical coupling (i.e. e�αD ¼ jtj), there is perfect destruc-
tive interference between the guided wave in the output waveguide coupled from the
ring and from the input. The amplitude ja2=a1j2also soars rapidly to a high value near
resonance. Its maximum value at resonance is

a2
a1

����
����
2

max

¼ jtj2
1� jtj2 ð7:27Þ

(d) The free spectral range and the Q-factor
The free spectral range FSR of adjacent resonances at wavelengths, λn and λn+1, is

FSR ¼ ωnþ1 � ωn ¼ 2cπ
neff ðDþ LcÞ ð7:28Þ

As the wavelength changes, “θ + φt” deviates from its resonance condition by

Δðθ þ φtÞffi
neff ðDþ LcÞðω� ωoÞ

c
ð7:29Þ

As Δðθ þ φtÞ increases, jb1=a1jwill increase and ja2=a1jwill decrease. If there is critical
coupling, ja2=a1j2 drops to half of its maximum value when

Δω ¼ ð1� jtj2Þc
neff Djtj ¼ jκj2c

neff Djtj ð7:30Þ

Here Δω is defined as half the linewidth when the intensity drops to ½ of its maximum.
Again, we can calculate the Q factor of the resonator to be

Q ¼ ωo

2Δω
¼ ωoneff Djtj

2cjκj2 ð7:31Þ

Assuming that since Lc << D, the finesse of the ring resonator is approximately

192 Passive waveguide devices

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139871419.008
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:32:07, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.008
https://www.cambridge.org/core


F ¼ ωnþ1 � ωn

2Δω
ffi πjtj
ð1� jtj2Þ ð7:32Þ

High Q or high finesse depends on the ability to achieve small α in the ring. There are
usually two major factors that may contribute to the propagation loss: (1) the scattering
and absorption loss of the channel waveguide and (2) the radiation loss of a curved
waveguide.

The radiation loss of a curved waveguide
In a straight channel waveguide, the guided-wave mode can be considered as planar
guided waves totally reflected at the lateral boundaries of the core. There is an
evanescent field in all the cladding regions because βz (i.e. neffkz) in the direction of
propagation is so large that the propagation wavenumbers of the fields in the lateral
directions in the cladding are imaginary, as they are required by the continuity of the
fields in the longitudinal direction. Total internal reflection has zero propagation loss
in the cladding regions, as long as the propagation wavenumbers in the lateral
directions, βx and βy, are imaginary. When the waveguide has curvature ρ, the lateral
region outside of the curved waveguide fans out. The electromagnetic field in the
expanded lateral region propagates with a new expanded coordinate in the z direction,
which increases as the distance from the waveguide increases. At some distance away
from the waveguide, β of the fields in the lateral direction outside the curve no longer
needs to be imaginary in order to meet the continuity condition of neffkz. At this point,
the fields become propagating waves and energy will radiate away. The total internal
reflection will now have a radiation loss. The smaller the curvature, ρ, the larger the
radiation loss. Unger has presented clearly an analysis of the radiation loss in a curved
planar waveguide [7]. His analysis shows that the radiation loss from a curved planar
waveguide increases exponentially as kρ is decreased. Kominato et al. have shown
experimentally that the radiation loss increases dramatically in their waveguides for a
bending radius if less than 4 mm [8].

The propagation loss
There are two kinds of propagation loss in waveguides: absorption loss and scattering
loss. Volume scattering is usually caused by defects in materials, while surface
scattering is caused by defects on the interface created during processing. Low-loss
straight channel waveguides have been made in LiNbO3 waveguides by diffusion.
However, the propagation loss of curved LiNbO3 waveguides is generally unknown.
Absorption loss occurs in semiconductors due to dopands and free carriers. Although
absorption in intrinsic semiconductors can be kept very low, substantial surface
scattering loss occurs quite often in channel waveguides in high refractive index
crystalline medium because of the defects produced in the fabrication processes. For
this reason, low-loss semiconductor waveguides are usually ridged waveguides,
discussed in Section 5.6. Surface scattering loss is especially high in curved
semiconductor waveguides because etching tends to follow crystalline orientation,
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thereby creating large defects along the curved boundary. Low-loss ring resonators
have been made primarily with doped silica waveguides on Si substrates.

There are many similarities between the ring resonator and the Fabry–Perot
resonator. Assuming that the reflectivity, R, in the Fabry–Perot resonator and the
coupling, κ, in ring resonators are independent of frequency, both Fabry–Perot and
ring resonatos have many sharp resonances that are equally spaced in frequency.
However, there are four important considerations: (1) In order to get the same Q, D of
the ring resonator can be much smaller than the L of the Fabry–Perot resonator. It is
hard to get very long low-loss waveguides for Fabry–Perot resonators. It is easy to get
a low-loss silica waveguide ring within a ring. Extremely high Q has been obtained in
silica ring resonators. (2) The radiation loss of channel waveguide ring resonators
increases with decrease in the radius of curvature. Therefore, large ring size needs to
be used to obtain very high Q. (3) The FSR, i.e. the separation of the adjacent
resonances, is usually much larger in Fabry–Perot resonators than in ring resonators.
Kominato et al. have shown that a finesse, F, larger than 30 has been obtained in ring
resonators made from GeO2-doped silica waveguides with a ring radius of 6.5 mm at
λ = 1.55 μm [9]. However, the FSR of their resonator is only 5 GHz. (4) Techniques
such as double ring resonators need to be employed to achieve a wide FSR [10].
A double ring resonator with 100 GHz of FSR and F > 138 was demonstrated by
S. Suzuki et al. [11].

7.4.4 The ring resonator delay line

When a pulsed optical signal is injected into the input waveguide of a ring resonator, it is
coupled into and recirculated in the ring. The optical signal pulse is transmitted periodi-
cally to the output, whenever it reaches the output port. Therefore, there are delayed
output optical signals at multiple-delay time intervals of (D + Lc)/vg in ring resonators).
For low-loss resonators, the output pulses will be repeated many times. If there are ng
output pulses and if the last pulse is used for signal processing, then the total available
time delay of this pulse from the input pulse is ng times the single time delay interval of
the resonator.

Note that the time response of a resonator is related directly to the
frequency response of the resonator (e.g. FSR) discussed in the previous section.
It is well known that when there are N outputs at discrete frequencies separated at
equal frequency intervals δω around a center frequency ωo, we obtain
mathematically,

E ¼
XþðN�1Þ=2

�ðN�1Þ=2

AejðωoþnδωþφÞt ¼ Aejωotejφ
sinðNδωt=2Þ
sinðδωt=2Þ ð7:33Þ

where A and φ are amplitudes and phases of all the outputs. n identifies the individual
field at frequency,ωo þ nδω and varies from –(N – 1)/2 to +(N – 1)/2 for oddN. E is now
periodic in t with period T ¼ 2π=δω.
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Chapter summary

Passive optical waveguide devices are used to transform the mode profile from one
location to another, to divide optical power from various input ports into output ports, to
split optical power into different outputs at specified distribution ratio, to redirect
optical energy according to its wavelength, to filter optical signals according to
wavelength, to create resonances that have very narrow bandwidth, and to provide
time delays of signals. Although resonance, beam splitting, and wavelength filtering
functions can also be obtained by plane wave and TEM wave devices, the performances
of the waveguide devices are much superior. The analyses presented in this chapter let us
understand how the performances of these devices are controlled by various design
factors. The analyses are equally applicable to channel waveguides and to optical fibers.
Note that waveguide devices can only be analyzed by the modal analyses presented in
Chapters 5 and 6.
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8 Active opto-electronic guided-wave
components

Opto-electronic components are optical devices driven by electric signals or converters
of optical signals into electrical signals. The operation of these devices depends on
various electro-optical effects. In order to discuss these devices, it requires not only
optical analysis, but also the analysis of the electro-optical processes and their rf circuit
response. Performances of these components should also be evaluated from both optical
and electrical points of view.

The most well-known electro-optical effect is probably the amplification of optical
radiation by stimulated emission of radiation. When the amplification exceeds the losses
and the outputs in a cavity, laser oscillation is obtained [1]. Any discussion of laser
oscillators can be divided into two parts: the amplification process and the laser cavity.
In gas and solid-state lasers, amplification is obtained by optical pumping or electrical
discharge. In semiconductor lasers, the amplification of the guided wave is obtained via
current injection in a forward biased p-n junction.When end reflections (or feedback) are
absent and when there is a net gain, a laser amplifier is obtained [2]. Cavity analyses are
optical; the analysis of optical cavities for solid-state and gaseous lasers was presented in
Chapter 4. The waveguide cavity using DBR reflectors was discussed in Chapter 6. In a
waveguide laser oscillator, distributed feedback resonance of a grating is also used to
form the cavity. However, the discussion of the amplification processes involves exten-
sive knowledge of physics.

The second well-known electro-optical effect is the detection of optical radiation by
photo-generation of carriers. When optical radiation is incident on a semiconductor with
photon energy greater than the semiconductor bandgap, electrical carriers are generated
by absorption of the radiation. Photo-generated carriers in a reverse biased p-i-n junction
are then collected and transmitted to the external circuit [3]. In the surface normal photo
configuration, the optical radiation is absorbed in the absorbing layer of a reverse-biased
diode. The optical analysis of the detector is simple. It consists of the plane wave
propagating through a p-i-n diode that has absorption layer. In waveguide photo detec-
tors, the optical radiation is incident onto and absorbed by a waveguide that is also a
reverse-biased diode. The absorption takes place over the length of the waveguide [4].
Optical waveguides were discussed in Chapters 5 and 6. The analysis of the transport of
photo-generated carriers and their transit times in p-i-n structures requires analysis of
semiconductor devices.

In semiconductor lasers and photo-diodes, discussion of carrier injection, stimulated
emission, recombination, and carrier transport in semiconductor junctions requires
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extensive review of semiconductor-device physics. Such a discussion is beyond the
scope of this book and there are already many books on lasers and detectors [5,6,7].
Therefore, semiconductor lasers and photo detectors will not be discussed here.

Besides lasers and detectors, the most common electro-optical effects used in active
opto-electronic guided-wave devices are the change of the absorptive or refractive
properties of materials created by an applied electrical or acoustic signal. For example,
in Mach–Zehnder interferometers or directional couplers, the electro-optical change in
susceptibility is utilized in order to operate them as modulators or switches. How we
analyze modulators and switches is the focus of the discussion in this chapter.

8.1 The effect of electro-optical χ

Let us first understand the effect of Δχ.
Propagation of any guided wave is affected by the susceptibility, χ, of the material. In

general, χ is complex,

χ ¼ χ′ � jχ″ ð8:1Þ
In a homogeneous lossless isotropic material without any electro-optical effect, we have
assumed in previous chapters that

ε ¼ χoεo ¼ n2εo; or χo′ ¼ n2 and χo″ ¼ 0 ð8:2Þ
When there is an electro-optical effect, Δχ is produced by the applied electric signal. Δχ
has a real part Δχʹ and an imaginary part Δχʹʹ:

Δχ ¼ Δχ′ � jΔχ″ ð8:3Þ
If there is Δχ, the susceptibility is changed from χo to χeo,

ε ¼ χeoεo ¼ ðχo þ ΔχÞεo ¼ n2εo þ ðΔχÞεo ð8:4Þ
In general, χeo ¼ χ′eo � jχ″eo, thus the real and the imaginary part of χeo are

χ′eo ¼ n2 þ Δχ′ and χ″eo ¼ Δχ″ ð8:5Þ

8.1.1 Electro-optic effects in plane waves

If Δχ is created by the electric field of a DC or low-frequency rf signal whose spatial
field variation is much slower than the dimensions of the opto-electronic device, then
Δχ is considered to be uniform at any instant of time within the device. For a plane
wave propagating in the z direction in a material that has a uniform susceptibility χeo,

Eðz; tÞ ¼ Ee jðωt�keozÞ ð8:6Þ
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keo ¼ ω
ffiffiffiffiffiffiffiffiffiffi
μoεeo

p ffi ω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μon2εo

q
1þ Δχ′

2n2

� 	
� j

Δχ″
2n2

� 	
 �
ð8:7Þ

Therefore,

Eðz; tÞ ¼


Eejωte�jω

ffiffiffiffiffiffiffiffiffi
μon2εo

p
z

�
e�jω

ffiffiffiffiffiffiffiffiffi
μon2εo

p
Δχ′

2n2
ze� ω

ffiffiffiffiffiffiffiffi
μon2εo

p
Δχ″

2n2
z ð8:8Þ

and

IðzÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
μo=εeo

p jEðz; tÞj2ffi 2E2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μo=n2εo

p
" #

e� ω
ffiffiffiffiffiffiffiffi
μon

2εo

p
Δχ″

n2
z ð8:9Þ

dI
dz

¼ �αI; with α ¼ ω
ffiffiffiffiffiffiffiffiffi
μoεo

p
Δχ″

n
ð8:10Þ

Therefore, if there is Δχʹ, a plane wave exhibits an additional electro-optical
phase shift, ω

ffiffiffiffiffiffiffiffiffi
μoεo

p ðΔχ′=2nÞz. The effect of Δχʹʹ is different. When Δχʹʹ is positive, the

intensity, I, of the plane wave is attenuated by e�
ω
ffiffiffiffiffiffi
μoεo

p
Δχ″

n z. When Δχʹʹ is negative, I is
amplified.

8.1.2 Electro-optic effects in waveguides at low frequencies

Similarly, the electro-optical Δχʹ and Δχʹʹ in the material creates a change in the effective
index and an attenuation of the guided-wave mode. At low frequencies, Δχ varies
uniformly in time across the entire device. In order to calculate rigorously the effect of
the electro-optic Δχ on guided-wave modes, n2 in Eq. (5.1) of Section 5.1 of guided-wave

modes and other equations need to be replaced by n2 þ Δχ′ � jΔχ″. However, to find the
modes and neff with the modified n is a major undertaking. If the modes of the waveguide
without the electro-optic effects are already known, the effect of Δχʹ and Δχʹʹ can be
calculated much more easily as perturbations of the original guided-wave modes by Δχʹ
and Δχʹʹ. The perturbation analysis will be used in this chapter.

(a) Effect of Δχʹ
For analysis of modes involvingΔχʹ, let us consider that there is a change in index from n
to nþ Δn, then

ðnþ ΔnÞ2 ¼ n2 þ Δχ′ or Δn ffi 1

2n
Δχ′ ð8:11Þ

If the change in Δn covers the entire profile of the mode, then the result given in Eq. (8.8)
applies directly to guided-wave modes.

However, the rf or DC electric field that creates Δχ may only exist within a region
smaller than the size of the guided-wave mode. Then, we describe Δn by:
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Δnðx; yÞ ¼ Δno gðx; yÞ ð8:12Þ
The guided wave will now have a z variation,

Ae�jneff βoz e�jΔneff βoze jωt ð8:13Þ
From the perturbation analysis in Eq. (6.8), we obtain

βoΔneff ¼
ωnεo
2

Δno

ð
electro-optic region

gðx; yÞðem•em�Þdxdy ð8:14Þ

Since em is normalized,

neff ;mβo
2ωμ

ðð
∞

em•em
�dxdy ¼ 1

Δneff ;m ¼ nΔno
neff ;m

Γm Γm ¼

ðð
electro-optic region

gðx; yÞem•em�dxdy

ð∞
�∞

ð∞
�∞

em•em
�dxdy

ð8:15Þ

Γm is known as the overlap integral (or filling factor) of the electro-optic effect. Note
again that the primary effect of Δχʹ is to create a phase shift of the guided wave after
propagating a distance z.

(b) Effect of Δχʹʹ
In the absence of Δχʹʹ, the nth mode of the waveguide propagating in the z direction was
expressed as

ane
�jneff ;nβoze jωt ð8:16Þ

If Δχʹʹ is uniform over the entire profile of the guided-wave mode, then the result in Eq.
(8.8) again applies.

If Δχʹʹ(x,y) exists only in a portion of the waveguide, we will have

Δχ″ðx; yÞ ¼ Δχ″o gðx; yÞ
The effect of the change in susceptibility on the guided-wave mode can again be
calculated by perturbation analysis. According to Eq. (6.8), we have

dan
dz

¼ �Δαn
2

an;  
Δαn
2

¼ ω
4
εoΔχ″o

ðð
active region

gðx; yÞðen•en�Þdxdy ð8:17Þ

an ¼ Ae�
Δαn
2 z ð8:18Þ

In view of the normalization of en we can rewrite the expressions into the form:

8.1 The effect of electro-optical χ 199

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139871419.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:50:31, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.009
https://www.cambridge.org/core


Δαn
2

¼ ΓΔαo
2

¼ βo
2neff

ΓnΔχ″o;  Γn ¼

ðð
active region

gðx; yðen•en�Þds
ðð
∞

en•en
�ds

ð8:19Þ

Γn is the overlap integral (or filling factor) of Δχʹʹ in the active region for the nth mode.
Note that according to Eq. (8.19), the transmission of the guided wave after a distance L
is T ¼ e�αoLe�ΓΔαavL. If there is residual propagation loss, αo includes all the residual
attenuation that already existed in the absence of the modulation electric field.

8.2 The physical mechanisms to create Δχ

Δχ is produced by the electro-optical effects of the rf electric field. Several physical
mechanisms that create Δχ are presented here.

8.2.1 Δχʹ

The most commonly used electro-optical effect to obtain Δχʹ is the linear Pockel’s effect.
An electric field F is applied to the electro-optically active material by the electrodes
fabricated on the waveguide. Δχʹ is proportional F. The specific relation between F and
Δχʹ depends on material and the configuration of the device. The most common wave-
guide materials that have been used include LiNbO3, polymers, and III–V compound
semiconductors.

Electro-optic materials such as LiNbO3 are often birefringent. In birefringent materi-
als, the optical displacement D is no longer parallel to the optical electric field E. Any
birefringent material has principle crystalline axes, x, y, and z. Along the principle axes,
D and E have a matrix relationship:

Dx

Dy

Dz

������
������ ¼ ε0

nx2 0  0
0  ny2 0
0  0  nz2

������
������
Ex

Ey

Ez

������
������ ð8:20Þ

For each plane wave propagating along a given direction of propagation s
(s ¼ sxix þ syiy þ sziz ), there are two independent solutions in which D and E are

parallel. One is an extraordinary wave that has De ¼ neEe . The second is an ordinary

wave that hasDo ¼ noEo . Both “Do and Eo ” and “De and Ee” are perpendicular to s. The

solutions ofD, E, eo, and ne, for the ordinary and extraordinary plane waves are obtained
from the following equation for any specific direction of s [8, 9]:

1

E•D
Dx

2

nx2
þ Dy

2

ny2
þ Dz

2

nz2


 �
¼ 1 ð8:21Þ

If we let
Dx

2

E•D
¼ X 2;

Dy
2

E•D
¼ Y2; and

Dz
2

E•D
¼ Z2, Eq. (8.21) is simplified to:
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X 2

nx2
þ Y2

ny2
þ Z2

nz2
¼ 1 ð8:22Þ

Eq. (8.22) is referred to in the literature as the index ellipsoid because it has the form
of an ellipsoid that has axial lengths, nx, ny, and nz in the (x, y, and z) coordinates. As an
example, for a plane wave propagating in the x direction and polarized in the y direction,
Dy ¼ nyEy. For a plane wave in the x direction and polarized in the z direction,
Dz ¼ nzEz.

When an external field F is applied to the material, its effect can be expressed as a
change of the index ellipsoid. Since F may not be parallel to the crystalline axes x, y,
and z, the change of index ellipsoid is expressed in general as:

1

nx2
þ Δ

1

n2

0
@

1
A

1

2
4

3
5X 2 þ 1
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þ Δ

1
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0
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1
A

2

2
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3
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1
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3
5Z2

þ2Δ
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1
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5
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1

n2

0
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1
A

6

XY ¼ 1 ð8:23Þ

Δð1=n2Þiare related to F through an electro-optic tensor of the material,

Δ
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����������������������

ð8:24Þ

The analysis of plane wave propagation in anisotropic media has been presented in a
number of references [8,9]. The rij coefficients of different materials are also given in
these references. In general, calculation of the electro-optic effect in waveguides due to
F is very complex. Fortunately, the optical waveguides and F in commonly used devices
are oriented along only specific directions of crystalline axes in LiNbO3, polymers, and
III–V semiconductors. In these devices, calculation of Δχʹ as a function of F is not
difficult. In order not to side track from the main objectives of the chapter, only a
discussion of Pockel’s effect along these special directions is presented here.
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(a) The LiNbO3 waveguide
LiNbO3 waveguides are usually fabricated on x-cut or z-cut substrates with propagation
in the y direction of the crystal [10]. Figure 8.1 illustrates these two types of waveguide.
Figure 8.1(a) shows a diffused waveguide on z-cut LiNbO3. In order to take advantage of
the large electro-optic coefficient, r33, F in the waveguide applied by the electrodes is
oriented predominantly in the z direction. Let us assume for this discussion that F is
uniform in the region occupied by the guided-wave mode. Therefore, Fx = Fy ffi 0, and
the crystalline x, y, and z axes are still the axes of the index ellipsoid with the applied F.
Plane waves propagating in the y direction with bothD and E polarized in the z direction
will have n = neʹ, while plane waves with x polarization of D and E will have n = noʹ. In
these two polarizations, D is parallel and proportional to E. From Eqs. (8.23) and (8.24),
we obtain the following neʹ and noʹ:

n′e ¼ 1

n2e
þ r33Fz

� 	�1=2

ffi ne � 1

2
n3er33Fz; n′o ¼ 1

no2
þ r13Fz

� 	�1=2

ffi no � 1

2
n3or13Fz

ð8:25Þ
Since, like plane waves, modes in waveguides also have a dominant electric and

magnetic field polarized perpendicular to the direction of propagation, the neʹ and noʹ

rf electric field

LiNbO3 substrate

LiNbO3 substrate

Ground electrodes

Signal electrode

Diffused waveguide

(a)

(b)

x

x

z

z

y

y

Diffused waveguide
rf electric field

Signal electrode Ground electrodes

Figure 8.1 Commonly used waveguide and electrode configurations in LiNbO3. (a) A diffused
waveguide on z-cut substrate. (b) A diffused waveguide on x-cut substrate. The direction
of propagation is in the y direction. The rf field produced by the electrode is oriented in the z
direction in the core of the waveguide.
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obtained for the plane waves can be used to represent approximately the electro-optical
change in material index for the guided waves in the same polarization.

For waveguides on z-cut substrates shown in Figure 8.1(a), guided-wave modes
propagate in the y direction. The TE modes have a dominant optical electric field
polarized in the x direction, while the dominant optical electric field in the TM modes
is polarized in the z direction.D and E are parallel to each other for the dominant electric
field in these two cases. Therefore, in the scalar approximation of the wave equation and
for uniform F across the waveguide, the effective index of the TE modes can be
calculated approximately by using noʹ, while the effective index of TM modes can be
calculated approximately by using neʹ.

A diffused waveguide on x-cut substrate is shown in Figure 8.1(b). For waveguides
along the y direction on x-cut substrates, the TE modes have the dominant electric field
polarized in the z direction, and the TMmodes have the dominant electric field polarized
in the x direction. F applied from the electrodes is predominantly in the z direction. In
this case, the effective index of TE modes for uniform F can be calculated using neʹ, and
the effective index of TM modes can be calculated using noʹ.

In summary, in order to maximize the electro-optic effect, F is applied in the z
direction to TE modes in x-cut LiNbO3 and to TM modes in z-cut LiNbO3. It is also
clear that any change from these two cases, for example, an addition of Fx in addition
to Fz may require us to find the xʹ, yʹ, and zʹ axes and then the new De and Do. The
analysis of the effective index of the guided modes would then be much more
complicated.

(b) The polymer waveguide
For polymer waveguides, the vertical direction in which the poling field is applied is
usually defined as the z direction. The x and y axes are then in the plane parallel to the
substrate. Material properties are symmetric in the x and y directions. The non-vanishing
elements of the electro-optic tensor are r13 = r23, r42 = r51, and r33[11]. The largest
electro-optic coefficient is r33. In order to maximize the electro-optic effect, F is usually
applied in the z direction by the electrodes. The analysis of the electro-optic effect of TM
modes is identical to that of the z-cut LiNbO3 with F = Fiz and a different r33 coefficient.
On the other hand, the TE modes will not have any electro-optic effect. The value of the
r33 coefficient will depend on the polymer material engineering. The reported r33 is
much larger than that of LiNbO3, making polymers very attractive for electro-optic
applications. For example, r33 = 130 pm/Vmay be anticipated. In comparison, r33 = 30.8
pm/V in LiNbO3. The challenge for polymer waveguide research is to obtain a material
that has a high glass temperature, a low propagation loss, and a large electro-optic
coefficient, simultaneously [12].

(c) The III–V compound semiconductor waveguide
GaAs or InP has r41 = r52 = r63. All other rij are zero. In such a material with cubic
crystalline symmetry, nx = ny = nz = no. Therefore the equation of the index ellipsoid for
all III–V compound semiconductor materials is:

8.2 The physical mechanisms to create Δχ 203

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139871419.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:50:31, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.009
https://www.cambridge.org/core


X 2 þ Y2 þ Z2

n2o
þ 2r41ðFxYZ þ FyZX þ FzXYÞ ¼ 1 ð8:26Þ

In GaAs, no = 3.6 and r41 = 1.1 × 10−12 m/Vat the 0.9 μm wavelength, and no = 3.3 and
r = 1.43 × 10−12 m/V at 1.15 μm wavelength. Similar values of no and r41 have been
reported in other III–V compound semiconductors. As an example, for a rf electric field,
F, in the z direction, we obtain

X 2 þ Y 2 þ Z2

no2
þ 2r41FzXY ¼ 1 ð8:27Þ

Let zʹʹ = z,
ffiffiffi
2

p
x″ ¼ xþ y and

ffiffiffi
2

p
y″ ¼ �xþ y, then the index ellipsoid in xʹʹ, yʹʹ, and zʹʹ

is:

1

no2
þ r41Fz

� 	
X ″2 þ 1

no2
� r41Fz

� 	
Y″

2 þ 1

no2
Z″2 ¼ 1 ð8:28Þ

For plane waves propagating along the yʹʹ axis, the major and minor axes of the ellipse
for D and E are the xʹʹ and the zʹʹ axes. Their n values are:

ForD==E==z″ axis n¼ no ð8:29Þ

ForD==E==x″ axis n¼ n ¼ no � 1

2
no

3r41Fz ð8:30Þ

For waveguides fabricated on z-cut substrates1 and oriented in the yʹʹ direction, as shown
in Figure 8.2, the electric field is obtained by applying a electrical voltage across the i
layer in a reverse biased p-i-n junction. Since the intrinsic layer is usually very thin, the
electric field can be very high for a given voltage applied to the electrode. Let us assume
again that the electric field is uniform in the intrinsic electro-optic layer. The effective
indices of TEmodes are found by perturbation analysis using n ¼ no � 1=2 no3r41Fz for
the intrinsic layer. TMmodes have no electro-optic effect. Since Eq. (8.26) is symmetric
in x, y, and z, this result is applicable to x-cut or y-cut samples with electric field in the x
or y directions.

No matter what material, F, and waveguide configuration, are used, the electro-optic
effect produces a Δχʹ and Δneff of the guided-wave mode. After propagating a distance z,
Δneff produces a phase shift Δφ in the guided-wave mode where Δφ ¼ Δneffω

ffiffiffiffiffiffiffiffiffi
μoεo

p
z.

The relationship between Δχʹ and F depends not only on the material properties, but also
on waveguide and electrode configurations.

1 Typically semiconductor waveguides are fabricated by epitaxial growth of the core and cladding layers that
are parallel to the substrate surface. In order to apply the rf electric field most effectively, the core layer is
usually an i layer sandwiched between n- and p-type semiconductor layers, and a reverse-biased voltage is
applied to the p-i-n junction. Electrical voltage is applied across the ground and the signal electrodes. Thus F
is usually in the direction of the cut of the sample. The channel ridge waveguide is often formed by etching.
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8.2.2 Δχʹʹ in semiconductors

In order to understand Δχʹʹ in semiconductors, a brief discussion of the absorption
properties of semiconductors is presented here.

(a) Stimulated absorption and the bandgap
Absorption of optical radiation in semiconductors can be understood most easily
through the following abbreviated description of the process.

In semiconductors, electron and holes undertake stimulated emission and absorp-
tion. How such carriers are generated, transported, and recombined has been dis-
cussed extensively in the literature [13,14]. We note in particular that they occur in a
periodic crystalline material. The energy levels of free electrons and holes are
distributed in bulk crystalline semiconductors within conduction and valence
bands. Within the conduction band and the valence band, each energy state has a
wave function of the form

ΨCðrÞ ¼ uCk ðrÞe jk •r

where uCk ðrÞ has the periodicity of the crystalline lattice. The energy of electrons in the
conduction band for a state with given k (in the parabolic approximation of the energy
band structure) is

x”

y”

z and z”

y

x

Ground electrode

i-semiconductor

Signal electrode

Ground electrode

p-semiconductor

n-semiconductor

Ridged channel waveguide

Substrate

Figure 8.2 Examples of an electro-optic waveguides on III–V semiconductors. The ridged channel
waveguide on the z-cut substrate is oriented along the yʹʹ direction, which is 45° from both
the x and the y axis. The high-index intrinsic core of the waveguide is sandwiched between a
p-doped and an n-doped semiconductor. A reverse bias is applied from the electrodes to the i
layer through the p-i-n junction.
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Eeðjk jÞ � EC ¼ ℏ2jk j2
2me

ð8:31Þ

A similar expression is obtained for energy levels in the valence band,

Ehðjk jÞ � EV ¼ �ℏ2jk j2
2mh

: ð8:32Þ

EC is the bottom of the conduction band and EV is the top of the valence band.me andmh

are, respectively, the effective masses of the electron and the hole. EC – EV is known as
the bandgap, Egap, of the material, Egap =EC –EV. There are no energy levels between the
conduction and valence bands in pure bulk semiconductors. There are a large number of
energy levels per unit energy range within each band. Absorption or emission can take
place only between states in these two bands. The number of energy levels per unit range
of Ee (or Eh) (defined as the density of states) increases rapidly as “Ee –Ec (or Ev – Eh)” is
increased. Thus the absorption increases very rapidly for radiations with photon energy
above the bandgap. The specific distribution of energy levels (i.e. me, mh, and the
parabolic approximation) depends on the material. Because of other issues, such as
phonon interactions and electric-field-induced exciton effects, the variation of absorp-
tion near or below the band edge as a function of optical wavelength is rapid, but not
abrupt.2 In any case, whenever there is a change of bandgap (created by F), there is a Δχʹʹ
for any radiation that has a photon energy just below the bandgap.

To maximize Δχʹʹ, the photon has an energy just below the bandgap. Since the
absorption of a photon depends on the availability of energy states, the photon absorp-
tion depends on the changes in the bandgap and the energy states due to F. This is known
as the Frantz–Keldish effect in bulk semiconductors. Much research has been devoted to
create material structures that will have energy states that provide a more rapid
variation of the absorption of the phonon with the applied F. The most effective method
to do that is to obtain a material which has a quantum-confined Stark effect, QCSE.

(b) The quantum-confined Stark effect, QCSE
In order to understand QCSE, we must first understand quantum wells and their energy
levels. We then need to understand the exciton absorption of these quantum wells,
followed by how they can be utilized to obtain a rapid change in Δχʹʹ by an applied
electric field F.

Energy levels in quantum wells
A quantum well double heterostructure in semiconductors consists of a thin layer of
material, called the well, that has a smaller bandgap, EΓ, sandwiched between materials
with a larger bandgap, Eg, called the barrier. These layers are typically III–V group
semiconductors with different compositions that are grown epitaxially on a lattice
matched to the GaAs or InP substrates. The thickness of the well LW is typically 50
to 150 Å. The barrier is just thick enough (e.g. 50 to 100 Å) to isolate the wells.

2 This is known in physics as the Erbach tail.
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Figure 8.3(a) shows a typical one-dimensional potential diagram of the conduction and
valence bands as a function of thickness position x at zero applied electric field. At the
interface of the well and the barrier, there are discontinuities in the conduction band edge
ΔEC and the valence band edge ΔEV, ΔEC + ΔEV = Eg – EΓ. Quantum mechanical
calculations of energy states in such potential wells yield discrete energy levels, Ee, for
electrons in the conduction band and discrete energy levels, Eh, for holes in the valence
band [15]. In the example illustrated in Figure 8.3(a), Ee1 is the lowest-order energy level
for electrons in the conduction band. The energy state for this energy level is illustrated
as ψe. Some holes in the valence band have a heavier mass, called heavy holes, and some
holes have a lighter mass, called light holes. The highest hole energy in the valence
band is usually for heavy holes. Only Ehh1 and its energy state ψhh are illustrated in
Figure 8.3(a). Other higher electron levels and lower hole levels such as Ee2 and Elh1 are
not shown here. The energy states Ψ demonstrate that electrons and holes in a quantum
well are confined in the thickness direction that we designated as the x direction.
A multiple quantum well (MQW) structure consists simply of multiple of quantum
wells separated by barriers.

Exciton transitions and absorption
Ee and Eh are the only energy levels of the electrons and holes in the thickness, x,
direction. The total energy of electrons and holes is the sum of their energy in the x
direction, i.e. Ee + Eh, and the energy of an electron–hole pair in the y–z pane, Eyz. In
order to understand the energy of the electron–hole pair in the y–z plane, let us consider
first the energy of an electron–hole pair in three dimensions in bulk semiconductors.
When electron–hole pairs are created by absorption of a photon, they are initially close
to each other. In bulk semiconductors, such electron and hole pairs will experience

Eex

Ehh1

Ψhh

Ψe

Ee1

(a) (b)

Eg

Ee1

EC

Ψhh

Ψe

Δ EV

Δ EC

EΓ

LW

Eexo

Ehh1

EV

Figure 8.3 Potential energy diagrams, energy levels, and energy states in quantum wells. (a) At zero
electric field. (b) At a bias electric field.
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mutual three-dimensional Coulomb forces similar to those present in a hydrogen atom.
The energy of such an electron–hole pair is lower than the energy of free electrons and
holes; this electron–hole coordination gives rise to a set of energy levels (called exciton
levels) just below the bandgap. The exciton spectra in bulk materials have been directly
observed only at very low temperatures. The situation is different in quantum wells. In
the y and z directions of the quantumwell, electrons and holes are also subject to periodic
potentials and forces in a bulk crystal. The quantum confinement in the x direction
increases the binding energy of the exciton. Therefore exciton transitions are directly
observable at room temperatures.

Exciton absorption in quantum wells (i.e. Δχʹʹ) has been observed directly at room
temperatures and under applied electric fields. The stimulated transition of heavy hole
excitons takes place at photon energy just below Ee1 – Ehh1. The solid curve in Figure 8.4
shows the TE polarized absorption spectrum of an InAs0.4P0.6(93 Å thick wells)/
Ga0.13In0.87P(135 Å thick barriers) multiple quantum well (MQW) at zero applied
electric field [16]. The heavy hole exciton transition has a transition wavelength
shown as λexo with a line width δexo. For this sample the half width at half maximum
δexo is 6 meV. A second transition with a less distinct absorption peak due to a light hole
can also be seen in this figure at λ = 1.250 μm.

Note that the absorption coefficient α will be dependent on the polarization of the
electric field because the matrix element3 for any induced transition between an electron
and a hole is polarization dependent. For a TE guided wave in the y–z plane, its electric
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Figure 8.4 Absorption spectra of InAsP/GaInP multiple quantum well at different bias voltages.

3 The transition probability of any two energy states is proportional to the matrix element of the applied
radiation.
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field is polarized in the y–z plane. Its absorption coefficient will be the same as α for a
plane wave propagating in the x direction. For TMmodes in a waveguide oriented in the
y–z plane, its dominant electric field will be in the x direction, and it will have a different
value of α.

The quantum-confined Stark effect (QCSE)
Under the application of an electric field in the x direction, the potential wells are tilted as
shown in Figure 8.3(b). The quantum mechanical solution for the energy values in the
quantum well indicates usually a reduction in Ee1 – Ehh1. Therefore, the exciton absorp-
tion line at Eexo shifts normally toward longer wavelengths (i.e. the absorption peak is at
smaller photon energy), known as a red shift. Occasionally the shift in a specific
potential well configuration may be toward a shorter wavelength, known as a blue
shift. This is the quantum-confined Stark effect (QCSE) [17, 18, 19]. Note also that
as the potential wells are tilted, the wave functions of energy states for electrons and
for holes are also shifted to the opposite side of the quantum well, as illustrated in
Figure 8.3(b). Since the amplitude of the stimulated absorption between the two energy
states depends on the matrix element of the electric dipole connecting ψe and ψhh, the
shift of energy state function to the opposite side of the quantum well will produce a
reduction of the exciton absorption as the electric field is increased.

The QCSE, the reduction in the absorption coefficient at the exciton peak αm and the
broadening of the exciton line width δex, are clearly demonstrated experimentally for a
specific sample in Figure 8.4 as the applied voltage is increased. In this case, the electric
voltage shown in the figure is applied across a reverse-biased p-i-n junction that has an
i-layer approximately 0.5 μm thick (containing 21 periods of quantum wells and
barriers). Therefore the electric field F in units of V/cm applied to the quantum well is
approximately 2 × 104 times the applied voltage divided by the thickness of the device.
In this figure, the laser radiation at wavelength λlaser is detuned from the exciton peak at F
= 0 by Δλdeto. As the QCSE increases, the absorption coefficient in the MQW for λlaser
shown in Figure 8.4 will first increase whenΔλdet > 0 and then decrease whenΔλdet < 0, as
F is increased. When the electric voltage is changed from 0.5 V to 1.5 V, the
change in absorption coefficient at λlaser shown in the figure is Δα ffi 4000 cm. Thus,
Δα/ΔF ffi 200 × 10−3/V.

Figure 8.5 shows the measured QCSE and the calculated shift of Ee1 – Ehh1 of the
sample used in Figure 8.4. The discrepancy has been attributed to the variation of the
exciton binding energy as the applied electric field is varied. Figure 8.6 illustrates Δα at
different detuning energy and reverse biases that can be obtained in this sample. Note the
importance of small δexo and appropriate choice of detuning energy and reverse bias in
order to maximize Δα for a given ΔF.

QW structures became a reality because the epitaxy technology in material growth
provided the means for control of the quantum well layer thickness and the smoothness
of the interfaces up to atomic-level accuracy. Quantum wells and barriers are always
parallel to the surface of the substrate. The direction of the applied electric field needs to
be perpendicular to the substrate surface. The most effective way to apply such an
electric field is by fabricating a p-i-n structure parallel to the substrate surface where the

8.2 The physical mechanisms to create Δχ 209

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139871419.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:50:31, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.009
https://www.cambridge.org/core


MQW constitutes the i layer. In a reverse-biased p-i-n structure, the electrical field is
predominantly perpendicular to and focused in the i layer. This is the way in which α is
obtained in Figures 8.4, 8.5, and 8.6; it is α for the TE polarization. Note that the
measured α is the averaged absorption coefficient of the entire MQW layer. For a given
electric field, the actual absorption takes place only in the well, not in the barrier.
Therefore Δα/ΔF is increased by using a thinner barrier layer. The minimum barrier
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thickness will be governed by the decay of the energy state functions, ψe and ψh, in the
barrier. The conventional guideline is that the barriers be thick enough so that the energy
states of adjacent wells will not significantly interact with each other.

QCSE provided the largest Δχʹʹ that can be obtained by a given F. Figure 8.4 demon-
strated the change of absorption coefficient by QCSE in a specific sample for a specific
photon energy. Quantum wells can also be designed to provide a more rapid change in
the absorption coefficient for other photon energies. The goal of the quantum well
material design is to maximize Δχʹʹ/F. The goal of the electrode design is to maximize F.

In this section, several common physical mechanisms for obtaining Δχ have been
presented. It is important to know how these mechanisms function so we can analyze the
operation of active components. How to obtain maximum Δχʹ or Δχʹ for a given F and
how to maximize F for a given rf signal power are clearly issues of individual design.
Discussion of different designs is beyond the scope of this book. In the rest of this
chapter, discussions of active components will be presented only in terms of a given Δχʹ
or Δχʹʹ.

8.3 Active opto-electronic devices

Commonly used electro-optical active components that will be presented here include
the phase modulator, the directional coupler modulator/switch, the Mach–Zehnder
modulator, and the electro-absorption modulator.

8.3.1 The phase modulator

The phase modulator is a very simple device. Phase modulation of the guided wave is
obtained whenever an electric field is applied to a waveguide fabricated on electro-optic
materials. Δχʹ is created by the electric field.

Let there be a change of the material index,

Δnðx; yÞ ¼ Δnogðx; yÞ ð8:33Þ
Δn creates Δneff for the guided wave; this guided wave propagating in a waveguide now
has the phase variation,

Ae�jneff βoze�jΔneff βozejωt ð8:34Þ
In Eq. (8.15), it has already been shown that

Δneff ;m ¼ nΔno
neff ;m

Γm; Γm ¼

ðð
electro-optic region

gðx; yÞem•em�dxdy

ð∞
�∞

ð∞
�∞

em•em
�dxdy

ð8:35Þ
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Therefore the electro-optic effect has created a phase shift, Δneff βoL, where L is the
length of the waveguide. Figure 8.7 illustrates a phase modulator on x-cut LNbO3.

Note that the F that created the Δn is produced by the voltage, V, applied to the
electrodes. A crude approximation to estimate F for a given Von the electrode is:

Fz ¼ V
d

ð8:36Þ

where d is the separation of the electrodes. In reality, calculation of F by V can be
complex; nevertheless, F is proportional to V. Therefore, we can replace d by deff.

Note that the performance of a phase modulator will be measured by the voltage
required to achieve a given Δφ. The larger Δno of the material and Γ, the larger is Δneff.
The smaller de, the larger is F/V. The longer L, the lower the required F for a given
Δneff.

The electrodes shown in Figure 8.7 are just a portion of the rf circuit, driving the
modulator. In order to discuss the modulator performance as a function of the rf
frequency, we also need to know how V is produced by the rf source through the
electrical circuit. For our discussion here, let us consider the simplest case. The electrode
is represented electrically by a capacitance, C. It is connected in parallel with a matching
resistance, R, to match the rf signal source. The combination of R and C is driven by a
current source that is represented by is in parallel with an internal resistance, Rs. Since
the impedance of C is inversely proportion to frequency, V across the electrode drops to

½ from DC to ωc when ωc

�
RRs=ðRþ RsÞ

�
C ¼ 1. ωc is known as the bandwidth of the

modulator. In other words, the performance of the modulator is measured not only by the
phase shift that can be achieved by a given rf input power, but also by its RC bandwidth.

8.3.2 The Mach–Zhender modulator

The Mach–Zhender (MZ) interferometer has already been discussed in Section 6.7.3.
When there are shifts of phase, ΔφA of the guided wave in arm A and ΔφB of the guided-
wave in arm B, there is a relative phase difference of the modes at the end of the arms,

Lp

Electrodesx

y

z

LiNbO3
Ti diffused waveguide

Figure 8.7 An x-cut LiNbO3 phase modulator.

212 Active opto-electronic guided-wave components

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139871419.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:50:31, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.009
https://www.cambridge.org/core


Δφ ¼ ΔφA � ΔφB. Note that asΔφ is varied, the sum of the guided waves in the two arms
at the input of the Y-branch coupler is

ðψa þ ejΔφψbÞe�jφa ¼ ½Cðψa þ ψbÞ þ Dðψa � ψbÞ�e�jφa

The amplitude, C, of the symmetric mode (ψa + ψb) is

C ¼ 1

2
ð1þ cosΔφ� j sinΔφÞ

Only the symmetric mode is transmitted to the output of the Y-branch. The anti-
symmetric mode is dissipated. Therefore, the amplitude of the guided wave in the output
waveguide is C. As an example, when the relative phase shift is π, the amplitude of the
output guided wave is 0; when the relative phase shift is 0, the output is 1. The output
optical power is proportional to C2.

Whenever an MZ interferometer is fabricated on an electro-optic material that
yields Δn, each individual arm of the interferometer functions as a phase modulator,
discussed in the previous section. The phase of the guided wave propagating for a
distance Lp in the arm is Δφ ¼ Δneff βo Lp. Δneff is given in Eq. (8.35). It is proportional
to the applied voltage, V. In single-arm modulators, an electrode such as that shown in
Figure 8.7 is applied to just one arm. In push–pull modulators, electrodes are applied to
both arms. In this case, the voltage applied to the two sets of electrodes is reversed,
thereby doubling Δφ.

The performance of a Mach–Zehnder modulator is be measured by the voltage
required to achieve a given depth of modulation.4 The larger Δno of the material and
Γ, the larger is Δneff. The smaller de, the larger is F/V. The longer Lp, the lower the
required V to obtain a given Δφ. However, the capacitance, C, representing the electrical
behavior of the electrode is proportional to Lp/de. It is larger for larger Lp and smaller de.
The MZ modulator will have the same RC-limited bandwidth as the phase modulator.

8.3.3 The directional coupler modulator/switch

Directional coupler is discussed in Sections 6.3.4, 6.6, and 7.2.2, and illustrated in
Figure 6.4. Let us consider a directional coupler that has two identical waveguides
coupled together in the interaction region from z = 0 to z =W, as shown in Figure 6.4. In
order to operate a directional as a modulator or switch, the waveguides are fabricated on
electro-optical material. Electrodes such as those used in phase modulators are fabri-
cated on waveguides in the interaction region to obtain Δneff in the waveguides. As
shown in Eqs. (6.25) and (6.26), when the power is incident to one waveguide the output
in the other waveguide Pout is proportional to

4 Note that, although Δφ is linearly proportional to V, the output power of an MZ modulator is not linearly
proportional to Δφ. In digital applications, the desired modulation depth is determined by the required on/off
ratio of optical power. In analog applications, the modulator may be biased at a specificVDC in addition to the
signal, Vrf. The desired modulation depth is determined by the rf-modulated optical output variation that
satisfies the linearity requirement.
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Pout ∝ sin2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CBACAB þ Δβ

2

� 	2
s0

@
1
A  z;  Δβ ¼ βA � βB ¼ ðneffA � neffBÞβo

ð8:37Þ
At differentΔβ values, Pout varies from Pout = 0, whenCBACAB þ

�
ðΔβ=2Þ2

�
= 0 (or nπ)

to Pout =1 when CBACAB þ
�
ðΔβ=2Þ2

�
= π/2 (or (2n + 1)π/2). Just like the phase

modulators, neffA and neffB are proportional to the voltage applied to the electrodes on
waveguide A and waveguide B. Reverse of the voltage will reverse Δneff.

5

Such a directional coupler is a switch when the input is incident to one waveguide and
the output is taken from the other waveguide. It is a modulator when the input power is
incident to one waveguide and the output power is taken from the same input waveguide.
Note that the electric field, F, and the voltage, V, on the electrode will vary as a function of
the rf frequency in the samemanner as the phasemodulator discussed in Section 8.3.1. The
smaller de, the larger is F/V, and the larger is its electrical capacitance, C. Similar to the
phase modulator, there is an RC-limited bandwidth of the directional coupler or switch.

8.3.4 The electro-absorption modulator

Figure 8.8 illustrates an EAwaveguide modulator. It shows a ridged waveguide on an InP
substrate, where the waveguide core consists of a quaternary InGaAsP layer sandwiched

GaAsInP waveguide core

InP  substrate

n-doped InP cladding & contact

Electrodes

Electro-absorption
layer 

p-doped InP contact

Ridge for lateral optical confinement

Figure 8.8 An electro-absorption modulator.

5 From the point of view of super mode analysis, the applied voltage changes Δneffk of the modes in the
coupled waveguides.

214 Active opto-electronic guided-wave components

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139871419.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:50:31, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.009
https://www.cambridge.org/core


among lower-index InP layers in the vertical direction. A ridge is etched on the top
cladding layer to provide the mode confinement in the lateral direction. Within the
cladding layers above the core, there is an EA layer, which is a QCSE layer, discussed
in Section 8.2.2. In order to provide a large electric field from a given applied voltage, the
EA layer is the intrinsic layer of a reverse-biased p-i-n diode. In addition to the electrode
on top of the EA layer, the n layer under the QCSE layer serves as the bottom electrode. It
is connected electrically to the electrodes on the sides via the n layers.

As we apply a voltage, V, to the electrodes, it creates Δχʹʹ(x,y) via QCSE. As shown in
Eqs. (8.18) and (8.19), the amplitude of the guided wave is reduced by this Δχʹʹ. V
consists of a DC bias voltage Vb and an rf voltage Vrf. Thus a DC attenuation of the
guided-wave αb is created by Vb in addition to the attenuation Δαn created by Vrf.

Let the amplitude be an at z = 0, then

anðz ¼ LÞ ¼ ane
�ΔαL

2 ¼ ane
�ΔαbL

2 e�
ΔαnL
2 ð8:38Þ

Δαb is the attenuation due to Vb, and Δαn is the attenuation due to Vrf

ΔαnðorΔαbÞ ¼ ΓnΔαo ¼ βo
neff

ΓnΔχ
″
o  ð8:39Þ

The power carried by the nth mode of guided wave is reduced by e�ðΔαbþΔαnÞL at the
output end of the modulator. This is the essence of an electro-absorption, EA, modulator.

The performance of the EA modulator is measured by the smallest ΔVrf required to

achieve a givenmodulation of optical power. In digital applications, it is the total eΔαL for
ΔVrf that produces the on/off signal. For analog applications, it is the linear portion of
eΔαnL/ΔVrf

6 that is used for transmission of analog signals [10]. Note again that the
electrical circuit representation of the electrodes across a p-i-n junction is a capacitance
in parallel with a junction resistance. Therefore, similar to the phase modulator, the MZ
modulator, and the DC modulator, the frequency response is RC limited.

8.4 The traveling wave modulator

The discussions in Section 8.3 assume that Δχ in the device is the same at any given
instant of time. When the wavelength of the rf signal is comparable or shorter than the
length of the electrode, the voltage- and current-induced modulation electric field F is no
longer the same across the device at any instant of time.

Usually the rf voltage is applied to the electrodes at the start of the electrode at z = 0.
The electrode is designed as an electrical transmission line. The rf voltage propagates as
a traveling wave on the electrode with7

Vrf ðz; tÞ ¼ Vocosðωmt � neff ;mkzÞ ð8:40Þ
In a phase modulator, it produces an instantaneous Δneff that varies locally as

6 Vb is adjusted to maximize the linear variation.
7 This assumes that the microwave is a forward-propagating wave without reflection.
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Δneff ;rf ðz; tÞ ¼ 1

2
Δnoeff ½ejðωmt�neff ;mkzÞ þ complex conjugate� ð8:41Þ

In the meantime, the optical wave propagates in the z direction with propagation
wave number nmk. Δneff(z,t) seen by the photons entering the waveguide in the mth
mode at z = 0 is

Δneff ¼ Δnoeff cos½ωmt � ðnm � neff ;mÞkz� ¼ Δnoeff cosðωmt � δnkzÞ ð8:42Þ
where δn = nm – neff,m. The electric field of the mth mode of the guided wave is:

Eðx; y; zÞ ¼ Aemðx; yÞe�jneff ;mze
�j

�
Δneff :mo

Ðz
0

cosðωmt�δnkzÞdz
�

ð8:43Þ

Therefore, the total phase shift Δφ of the guided wave produced by the CW traveling
wave rf signal for a distance of Lp is

Δϕ ¼ Δneff ;m
0
ðLp
0

cosðωmt � δnkÞdz ¼ Δnoeff ;m Lp
sin δnkLp

2

� �
δnkLp
2

� � cosðωmt � δnkLpÞ ð8:44Þ

Note that when the microwave equivalent index, nm, matches the optical effective index
neff,m, then δn = 0 and the Δφ modulation is a constant at all rf frequencies. In that case,
large Δφ can be obtained with large Lp. However, Δφ is sensitive to δn at large kLp.
When δnkLp=2 = 1.4, Δφ is reduced to 1=

ffiffiffi
2

p
of its maximum value atω = 0.8 Therefore,

the bandwidth of traveling wave modulation for a given δn and Lp is given in the
literature to be

LpΔωm ¼ 2:8c
δn

ð8:45Þ

The smaller δn is, the longer Lp that can be used. The longer Lp, the smaller
Δnoeff ;mrequired to yield a givenΔφ, and the smaller is the required rf modulation voltage.
There is no RC limitation of electrical bandwidth. However, the microwave is also
attenuated as it propagates. The attenuation increases as the rf frequency ωm is
increased.9 Thus the microwave attenuation limits further both the effectiveness of
using large Lp and the bandwidth of the modulator.

Traveling wave electro-absorption modulators can be analyzed in a similar
manner [10].

8 When δnkLp/2 = 1.9, Δφ is reduced to ½ of its maximum value at ωm = 0. If we use this criterion to define
bandwidth, we will get a slightly different answer, The bandwidth Δω will depend on how large the
maximum variation of Δφ is allowed within the band.

9 Typically αrf is proportional to
ffiffiffiffi
ω

p
in the microwave transmission line.
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Chapter summary

Besides lasers and detectors, there are switches and modulators. They operate by an
electro-optical change of susceptibility. They can be classified into two categories: the
devices that utilize Δχʹ and the devices that utilize Δχʹʹ. In order to discuss them together
systematically, the general effects of Δχʹ and Δχʹʹ on plane waves and waveguide modes
are discussed first. The various mechanisms that produce Δχʹ and Δχʹʹ are presented next.
The operation of individual active devices using different physical mechanisms is then
analyzed. The electrical and optical performances of these devices are evaluated. At low
frequencies, the bandwidths of these devices are limited by the RC time constants of the
electrical circuit. At high frequencies, traveling wave modulators need to be used.
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Appendix Solution of the scalar wave
equation: Kirchoff’s diffraction integral

The Helmholtz equation plus boundary conditions for TEM waves with time variation
ejωt, in Eq. (3.4) is:

∇2U þ k2U ¼ 0 ðA:1Þ
where, k ¼ ω=c ¼ 2π=λ. It is typically solved mathematically using Green’s function.

In the following, we will first present Eq. (A.2), which defines Green’s function,
G. Then we will show how a solution of G will let us find U at any given observer
position (xo,yo,zo ) from U and ∇U at the boundary. Using Green’s function, we obtain
Kirchoff’s integral. For known U on a planar boundary, Kirchoff’s integral can be
further simplified.

The equation for Green’s function

Green’s function, G, is the solution of the equation,

∇2G ðx; y; z; xo; yo; zoÞ þ k2 G ¼ � δ ðx� xo; y� yo; z� zoÞ
¼ �δ ðr � roÞ : ðA:2Þ

Eq. (A.2) is identical to Eq. (A.1) except for the δ function. The boundary conditions forG
are the same as for U. δ is a unit impulse function that is 0 when x≠xo; y≠yo; and z≠zo.
It tends to infinity when (x, y, z) approaches the discontinuity point (xo,yo,zo). δ satisfies the
normalization condition,ððð

V

δ ðx� xo; y� yo; z� zoÞ dxdydz ¼ 1

¼
ððð
V

δ ðr � roÞ dv
ðA:3Þ

where r ¼ xix þ yiy þ ziz ; ro ¼ xoix þ yoiy þ zoiz and dv = dxdydz = r2sin θdrdθdφ. V is
any volume that includes the observation point (xo; yo; zo).

Finding U from Green’s function, G

From advanced calculus, we learned that,

∇ � ðG∇U � U∇GÞ ¼ G∇2U � U∇2G : ðA:4Þ

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139871419.010
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:50:46, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.010
https://www.cambridge.org/core


Applying a volume integral to both sides of the above equation and utilizing Eqs. (A.2)
and (A.3), we obtainððð

V

∇�ðG∇U � U∇GÞdv ¼
ðð
S

ðGn �∇U � Un �∇GÞ ds

¼
ððð
V

½�k2GU þ k2UGþ Uδ ðr � roÞ� dv ¼ U ð roÞ ðA:5Þ

Here, V is any closed volume (within the boundary S) enclosing the observation
point ro. n is the unit vector perpendicular to the boundary in the outward
direction, as illustrated in Figure A.1.

Equation (A.5) is an important mathematical result. It shows that, whenG is known,U
at the position (xo,yo,zo) can be expressed directly in terms of the values ofU and∇U on
the boundary S, without solving explicitly the Helmholtz equation (A.1). Eq. (A.5) is
known mathematically as Green’s identity. The key is how to find G.

A general Green’s function, G

A general Green’s function, G1 has been derived in many classical optics textbooks
[2]. It is:

G ¼ 1

4π
e�jkro1

ro1
ðA:6Þ

r = xix + yiy + ziz

ro = xoix + yoiy + zoiz

ro1
rε

n

n

1S

S

V

V1

x

y

z

•

•

Figure A.1 Illustration of volumes and surfaces to which Green’s theory applies. The volume to which
Green’s theory applies is V, which has a surface S. The outward unit vector of S is n; r is
any point in the x,y,z space. The observation point within V is ro. For the volume Vʹ, V1 around ro is
subtracted from V. V1 has surface S1, and the unit vector n is pointed outward from Vʹ.

1 There are different Green’s functions, see [1].
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where ro1 ¼ jro � rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xoÞ2 þ ðy� yoÞ2 þ ðz� zoÞ2

q
. As shown in Figure A.1,

ro1 is the distance between ro and r.
This G can be shown to satisfy Eq. (A.2) in two steps: (1) By direct differentia-

tion, “∇2G + k2G” is clearly zero everywhere in any homogeneous medium except at
rffi ro. Therefore Eq. (A.2) is satisfied within the volume Vʹ which is V minus the
volume V1 (with boundary S1) of a small sphere with radius rε enclosing ro in the
limit as rε approaches 0. V1 and S1 are also illustrated in Figure A.1. (2) In order
to find out the behavior of G near ro, we note that |G| → ∞, as ro1 → 0. If we
perform the volume integration of the left-hand side of Eq. (A.2) over the volume
V1, we obtain:

Lim
rε→0

ððð
V1

½∇ �∇Gþ k2G�dv ¼
ðð
S1

∇G � nds

¼ Lim
rε→0

ð2π
0

ðπ=2
�π=2

� e�jkrε

4πrε2


 �
rε

2 sin θ d θ dφ ¼ �1 ðA:7Þ

Thus, using this Green’s function, the volume integration of the left-hand side of Eq.
(A.2) yields the same result as the volume integration of the δ function. In short,G given
in Eq. (A.6) satisfies Eq. (A.2) for any homogeneous medium.

From Eq. (A.5) and G, we obtain the well-known Kirchoff’s diffraction formula,

UðroÞ ¼
ðð
S

ðG∇U � U∇GÞ � nds ðA:8Þ

Note that, in this format, we need to know both U and ∇U on the boundary in order to
calculate its value at ro inside the boundary.

For many practical applications, only U is known on a planar aperture, followed by a
homogeneous medium with no additional radiation source. In this case, calculation of
U(ro) can be simplified.

Green’s function for known U in a planar aperture

Let there be an aperture on the planar surface z = 0. A known radiationU is incident on the
aperture Ω from z < 0, and the observation point zo is located at z > 0. As a mathematical
approximation to this geometry, we defineV to be the semi-infinite space at z ≥ 0, bounded
by the surface S. S consists of the plane z = 0 on the left and a large spherical surface with
radius R on the right, as R→ ∞. Figure A.2 illustrates the hemisphere.

The boundary condition for a sourceless U at z > 0 is given by the radiation condition
at very large R, as R → ∞ [3],

Lim
R→∞

R
∂U
∂n

þ jkU

� 	
¼ 0 ðA:9Þ
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The radiation condition is essentially a mathematical statement that there is no
incoming wave at very large R. Any U that represents an outgoing wave in the z > 0
space will satisfy Eq. (A.9).

If we do not know the ∇U term in Eq. (A.8), we need to find a Green’s
function that has G = 0 on the plane boundary (i.e. z = 0). However, we already
know the incident radiation for z < 0. We need only apply Eq. (A.8) to the
hemisphere S for z > 0. We note that any function, F, in the form of e–jkr/r, will
satisfy ½∇F þ k2 F ¼ 0�, as long as r is not allowed to approach 0. Thus we can
add such a second term to G given in Eq. (A.6). This satisfies Eq. (A.2) for z > 0
as long as r never approaches 0.

To be more specific, let ri be a mirror image of (xo,yo,zo) across the z = 0 plane at z < 0.
Let the second term be e�jkri1=ri1, where ri1 is the distance between (x,y,z) and ri. Since
our Green’s function will only be used for zo > 0, ri1 for this second term will never
approach zero for z ≥ 0. Thus, as long as we seek a solution of U in the space z > 0, Eq.
(A.2) is satisfied for z > 0. However, the difference is that the sum of the two terms is zero
when (x,y,z) is on the z = 0 plane.

Let the Green’s function for this configuration be

G1 ¼ 1

4π
e�jkr01

r01
� e�jkri1

ri1


 �
ðA:10Þ

α

R

roro1

Σ plane

Ω

Hemisphere surface with radius R

z

x

y

n = − iz

zo

yo

xo

Figure A.2 Geometrical configuration of the hemispherical volume for Green’s function, G.
The surfaces to which Green’s function applies consist of Σ, which is part of the
xy plane, and a very large hemisphere which has a radius R, connected with Σ. The
outward normal of the surface Σ and Ω is –iz. The coordinates for the observation point ro
are xo, yo and zo.
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Here ri is the image of ro across the z = 0 plane. It is located at z < 0, as shown in Figure
A.3. G1 is zero on the x–y plane at z = 0. When this G1 is applied to Green’s identity, Eq.
(A.8), we obtain

Uð roÞ ¼
ðð
Σ

Uðx; y; z ¼ 0Þ ∂G1

∂ z
dxdy ðA:11Þ

Here Σ refers to the x–y plane at z = 0. Because of the radiation condition expressed in
Eq. (A.9), the value of the surface integration over the very large semi-sphere enclosing
the z > 0 volume (with R→∞) is 0.

For most applications, U ≠ 0 only in a small sub-area of Σ, e.g. the radiation U is
incident on an opaque screen that has a limited open aperture Ω, or if the incident
radiation has only a limited beam size Σ. In that case, �∂G1=∂ z at zo >> λ can be
simplified. We obtain

�∇G1 � iz ¼ 2 cos α
e�jkro1

4π r01
ð�jkÞ ðA:12Þ

α is illustrated in Figure A.2. Therefore, the simplified expression for U is:

UðroÞ ¼ j
λ

ðð
Ω

U
e�jkro1

ro1
cos α dxdy ðA:13Þ

This result is also known as Huygens’ principle in classical optics.

ro
ri

r

ro

r

ri

ri1
ro1

zo

yo

xo

–zo z

x

y

ro = xoix + yoiy + zoiz

ri = xoix + yoiy – zoiz

r = xix + yiy + ziz

Figure A.3 Illustration of r, the point of observation ro and its image ri, in the method of images. For G,
the image plane is the x–y plane.
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