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different applications. Modes of simple waveguides and fibers are also covered, as well
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Introduction

Optics is a very old field of science. It has been taught traditionally as propagation,
imaging, and diffraction of polychromatic natural light, then as interference, diffraction,
and propagation of monochromatic light. Books like Principles of Optics by E. Wolf in
1952 gave a comprehensive and extensive in-depth discussion of properties of
polychromatic and monochromatic light. Topics such as optical waveguide, fiber optics,
optical signal processing, and holograms for laser light have been presented separately in
more recent books. There appears to be no need for any new book in optics. However,
there are several reasons to present optics differently, such as is done in this book.

Many contemporary optics books are concerned with components and instruments
such as lenses, microscopes, interferometers, gratings, etc. Reflection, refraction, and
diffraction of optical radiation are emphasized in these books. Other books are
concerned with the propagation of laser light in devices and systems such as optical
fibers, optical waveguides, and lasers, where they are analyzed more like microwave
devices and systems. The mathematical techniques used in the two approaches are very
different. In one case, diffraction integrals and their analysis are important. In the other
case, modal analysis is important. Students usually learn optical analysis in two separate
ways and then reconcile, if they can, the similarities and differences between them.
Practicing engineers are also not fully aware of the interplay of these two different
approaches. These difficulties can be resolved if optical analyses are presented from the
beginning as solutions of Maxwell’s equations and then applied to various applications
using different techniques, such as diffraction or modal analysis.

The major difficulty to present optics from the solutions of Maxwell’s equations is the
complexity of the mathematics. Complex mathematical analyses often obscure the basic
differences and similarities of the mathematical techniques and mask the understanding
of basic concepts.

Optical device configurations vary from simple mirrors to complex waveguide
devices. How to solve Maxwell’s equations depends very much on the configuration
of the components to be analyzed. The more complex the configuration, the more
difficult the solution. Optics is presented in this book in the order of the complexity of
the configuration in which the analysis is carried out. In this manner, the reasons for
using different analytical techniques can be easily understood, and basic principles are
not masked by any unnecessary mathematical complexity.

Optics in unbounded media is first presented in this book in the form of plane wave
analysis. A plane wave is the simplest solution of Maxwell’s equations. Propagation,
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2 Introduction

refraction, diffraction, and focusing of optical radiation, even optical resonators and
planar waveguides, can be analyzed and understood by plane wave analysis. It leads
directly to ray optics, which is the basis of traditional optics. It provides a clear
demonstration and understanding of optics without considering boundary condition or
device configuration. Even sophisticated concepts such as modal expansion can also be
introduced using plane waves. Plane wave analysis is the focus of the first two chapters.

Realistically, wave propagation in bulk optical components involves a finite boundary
such as a lens that has a finite aperture. Plane wave analysis can no longer be used in this
configuration. However, in these situations, the waves are still transverse electric and
magnetic (TEM). Therefore, TEM waves are rigorously analyzed using Maxwell’s
equations in Chapter 3. The diffraction analysis presented in Chapter 3 is identical to
traditional optical analysis. Since applications of diffraction analysis are already covered
extensively in existing optics books, only a few basic applications of diffraction theory
are presented here. The distinct features of our presentation here are: (1) Both the TEM
assumption of the Kirchoff’s integral analysis and the relation between diffraction
theory and Maxwell’s equations are clearly presented. (2) Modern engineering concepts
such as convolution, unit impulse response, and spatial filtering are introduced.

Diffraction integrals are again used to analyze laser cavities in the first part of
Chapter 4, for three reasons: (1) Laser modes are used in many applications. (2) The
diffraction analysis leads directly to the concept of modes. It is instructive to recognize
that they are inter-related. (3) An important consequence of laser cavity analysis is that
laser modes are Gaussian. A Gaussian mode retains its functional form not only inside,
but also outside of the cavity.

The second part of Chapter 4 is focused on Gaussian beams and how different
applications can be analyzed using Gaussian beams. Gaussian modes are also natural
solutions of the Maxwell’s equations. It constitutes a complete set. Just like any other set
of modes, such as plane waves, any radiation can be represented as summation of
Gaussian modes. When the diffraction integral is used in Chapter 3 to analyze waves
propagating through components with finite apertures, the diffraction loss needs to be
calculated by the Kirchoff’s integral for each aperture. In comparison, the diffraction
loss of a Gaussian beam propagating through an aperture can be calculated without any
integration. Therefore, a Gaussian beam is used to represent TEM waves in many
engineering applications.

Although TEM modes exist in solid-state and gas laser cavities, waves propagating in
waveguides and fibers are no longer transverse electric and magnetic. Microwave-like
modal analysis needs to be used to analyze optical devices that have dimensions of the
order of optical wavelength.

Optical waveguides and fibers are diclectric devices. They are different from
microwave devices. Microwave waveguides have closed metallic boundaries. The
mathematical complexity of finding microwave waveguide modes is much simpler
than that of optical waveguides.

The distinct features in the analysis of dielectric waveguides are: (1) There are
analytical solutions for very few basic device configurations because of the complex
boundary conditions. Analyses of practical devices need to be carried out by
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Introduction 3

approximation techniques. (2) There is a continuous set of radiation modes in addition to
the discrete guided-wave modes. Any abrupt discontinuity will excite radiation modes.
(3) The evanescent tail of the guided-wave modes not only reduces propagation loss, but
also provides access to excite the modes by coupling through evanescent fields.
(4) Multiple modes are often excited in devices. The performance of the device depends
on what modes have been excited.

Because of the complexity of modal analysis of optical waveguides and fibers, it is
presented here in four parts.

In the first part, modes of simple waveguides and fibers are discussed in Chapter 5.
Analytical solutions for planar waveguides and step—index fiber are presented. Although
these are not realistic devices, they are the only solutions that can be obtained from
Maxwell’s equations. Modes of these simple basic devices are very useful for
demonstrating various properties of the guided waves. Approximation methods are
then presented to discuss modes of realistic devices. For example, the effective index
method is used here to analyze channel waveguides.

Guided-wave devices operate by mutual interactions among modes. These
interactions need to be analyzed in the absence of exact solutions. Therefore, several
approximation methods, the perturbation technique, the coupled mode analysis, and the
super mode analysis, are presented in Chapter 6. The differences and similarities of the
three methods are compared and explained. Examples in applications are used to
demonstrate these techniques.

In the third and fourth parts, modal analyses of passive and active guided-wave
devices are presented. Passive guided-wave devices function mainly as power dividers,
wavelength filters, resonators, and wavelength multiplexers. In each of these system
functions, there are several different devices that could be used. Thus, devices
that perform the same system function are discussed and analyzed together. Their
performance is compared.

Active devices utilize electro-optical effects of the electrical signals to operate.
Discussion of active guided-wave devices is complex because there are different
physical mechanisms involved. How these mechanisms work is reviewed.The electrical
performance, as well as the optical performance of these devices are analyzed.

In summary, when optics are presented as solutions of Maxwell’s equations, the
inter-relation between plane wave, diffraction, and modal analysis becomes clear. For
example, the use of modal analysis is not limited to waveguides and fibers. There can be
modes and modal expansion in plane wave analysis, as well as in diffraction optics. As
we learn optics step by step in the order of the mathematical complexity and device
configuration, we learn optical analysis from various perspectives.
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refraction, diffraction, and focusing of optical radiation, even optical resonators and
planar waveguides, can be analyzed and understood by plane wave analysis. It leads
directly to ray optics, which is the basis of traditional optics. It provides a clear
demonstration and understanding of optics without considering boundary condition or
device configuration. Even sophisticated concepts such as modal expansion can also be
introduced using plane waves. Plane wave analysis is the focus of the first two chapters.

Realistically, wave propagation in bulk optical components involves a finite boundary
such as a lens that has a finite aperture. Plane wave analysis can no longer be used in this
configuration. However, in these situations, the waves are still transverse electric and
magnetic (TEM). Therefore, TEM waves are rigorously analyzed using Maxwell’s
equations in Chapter 3. The diffraction analysis presented in Chapter 3 is identical to
traditional optical analysis. Since applications of diffraction analysis are already covered
extensively in existing optics books, only a few basic applications of diffraction theory
are presented here. The distinct features of our presentation here are: (1) Both the TEM
assumption of the Kirchoff’s integral analysis and the relation between diffraction
theory and Maxwell’s equations are clearly presented. (2) Modern engineering concepts
such as convolution, unit impulse response, and spatial filtering are introduced.

Diffraction integrals are again used to analyze laser cavities in the first part of
Chapter 4, for three reasons: (1) Laser modes are used in many applications. (2) The
diffraction analysis leads directly to the concept of modes. It is instructive to recognize
that they are inter-related. (3) An important consequence of laser cavity analysis is that
laser modes are Gaussian. A Gaussian mode retains its functional form not only inside,
but also outside of the cavity.

The second part of Chapter 4 is focused on Gaussian beams and how different
applications can be analyzed using Gaussian beams. Gaussian modes are also natural
solutions of the Maxwell’s equations. It constitutes a complete set. Just like any other set
of modes, such as plane waves, any radiation can be represented as summation of
Gaussian modes. When the diffraction integral is used in Chapter 3 to analyze waves
propagating through components with finite apertures, the diffraction loss needs to be
calculated by the Kirchoff’s integral for each aperture. In comparison, the diffraction
loss of a Gaussian beam propagating through an aperture can be calculated without any
integration. Therefore, a Gaussian beam is used to represent TEM waves in many
engineering applications.

Although TEM modes exist in solid-state and gas laser cavities, waves propagating in
waveguides and fibers are no longer transverse electric and magnetic. Microwave-like
modal analysis needs to be used to analyze optical devices that have dimensions of the
order of optical wavelength.

Optical waveguides and fibers are diclectric devices. They are different from
microwave devices. Microwave waveguides have closed metallic boundaries. The
mathematical complexity of finding microwave waveguide modes is much simpler
than that of optical waveguides.

The distinct features in the analysis of dielectric waveguides are: (1) There are
analytical solutions for very few basic device configurations because of the complex
boundary conditions. Analyses of practical devices need to be carried out by
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approximation techniques. (2) There is a continuous set of radiation modes in addition to
the discrete guided-wave modes. Any abrupt discontinuity will excite radiation modes.
(3) The evanescent tail of the guided-wave modes not only reduces propagation loss, but
also provides access to excite the modes by coupling through evanescent fields.
(4) Multiple modes are often excited in devices. The performance of the device depends
on what modes have been excited.

Because of the complexity of modal analysis of optical waveguides and fibers, it is
presented here in four parts.

In the first part, modes of simple waveguides and fibers are discussed in Chapter 5.
Analytical solutions for planar waveguides and step—index fiber are presented. Although
these are not realistic devices, they are the only solutions that can be obtained from
Maxwell’s equations. Modes of these simple basic devices are very useful for
demonstrating various properties of the guided waves. Approximation methods are
then presented to discuss modes of realistic devices. For example, the effective index
method is used here to analyze channel waveguides.

Guided-wave devices operate by mutual interactions among modes. These
interactions need to be analyzed in the absence of exact solutions. Therefore, several
approximation methods, the perturbation technique, the coupled mode analysis, and the
super mode analysis, are presented in Chapter 6. The differences and similarities of the
three methods are compared and explained. Examples in applications are used to
demonstrate these techniques.

In the third and fourth parts, modal analyses of passive and active guided-wave
devices are presented. Passive guided-wave devices function mainly as power dividers,
wavelength filters, resonators, and wavelength multiplexers. In each of these system
functions, there are several different devices that could be used. Thus, devices
that perform the same system function are discussed and analyzed together. Their
performance is compared.

Active devices utilize electro-optical effects of the electrical signals to operate.
Discussion of active guided-wave devices is complex because there are different
physical mechanisms involved. How these mechanisms work is reviewed.The electrical
performance, as well as the optical performance of these devices are analyzed.

In summary, when optics are presented as solutions of Maxwell’s equations, the
inter-relation between plane wave, diffraction, and modal analysis becomes clear. For
example, the use of modal analysis is not limited to waveguides and fibers. There can be
modes and modal expansion in plane wave analysis, as well as in diffraction optics. As
we learn optics step by step in the order of the mathematical complexity and device
configuration, we learn optical analysis from various perspectives.
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1  Optical plane waves in an
unbounded medium

Engineers involved in design and the use of optical and opto-electronic systems are often
required to analyze theoretically the propagation and the interaction of optical waves
using different methods. Sometimes it is diffraction analysis, on other occasions, modal
analysis. They are all solutions of Maxwell's equations, yet they appear to be very
different. All optical analyses should be presented as solutions of Maxwell s equations so
that the inter-relations between different analytical techniques are clear. In order to
avoid unnecessary mathematical complexity, the simplest analysis should be presented
first. In this book, optics will be presented first by plane wave analysis, followed by
diffraction and modal analyses, in increasing order of complexity.

Plane waves are the simplest form of optical waves that can be derived rigorously from
Maxwell s equations. Plane wave analysis can be used to derive ray analysis, which is the
basis of traditional optics. It can be applied directly to analyze many optical phenomena
such as refraction, reflection, dispersion, etc. It can also be used to demonstrate sophis-
ticated concepts such as superposition, interference, resonance, guided waves, and
Fourier optics. Plane wave analyses will be the focus of discussion in Chapters 1 and 2.

However, plane wave analysis cannot be used to analyze diffraction, laser modes,
optical signal processing, and propagation in small optical components such as fibers
and waveguides, etc. These analyses will be the focus of discussion in subsequent chapters.

1.1 Introduction to optical plane waves

Plane wave analysis is presented here in full detail, so that the mathematical derivations
and details can be fully exhibited and the physical significances of these analyses are

fully explained.
1.1.1 Plane waves and Maxwell’s equations
All optical waves are solutions of the Maxwell’s equations (assuming there are no free
carriers),
—0B oD
VXE=——, VXH=— 1.1
- ot - ot (1.1)
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1.1 Introduction to optical plane waves 5

Here E is the electric field vector, H is the magnetic field vector, D is the displacement
vector, and B is the magnetic induction vector. For isotropic media,

B=uH, D=¢E (1.2)

Let iy, iy, and i., be unit vectors in the x, y, and z directions of an x-y-z rectangular
coordinate system. Then E, H and the position vector » can be written as

E = Eiiy + Eyiy + E.i; H = Hyiy + Hyiy + Hi; (1.3a)

r = Xiy + yiy, + zi; (1.3b)

A special solution of Egs. (1.1) and (1.2) is a plane wave that has no amplitude
variation transverse to its direction of propagation. If we designate the z direction as the
direction of propagation, this means that

0 0

Substituting 6/0x = 0 and 6/3y = 0 into the V x E and V x H equations leads to two
distinct groups of equations:

OE OH, OE,? o
a_zy = uoH,/ot, ~ = g0E,/ot; or 62)2 = uewa (1.5a)
and
OH, OE, 0H,? o
8_zy = —¢0E,/0t, % — uoH,/ot; or 62; :,ungy (1.5b)

Clearly, these are two separate independent sets of equations. £, and H, are related only
to each other, and H,, and E, are related only to each other. Solutions of Eq. (1.5a) are
plane waves with y polarization of the electric field (or x polarization in magnetic field).
Solutions of Eq. (1.5b) are plane waves with x polarization in the electric field £ (or y
polarization in magnetic field H).

(a) The y-polarized plane wave
For a cw optical plane wave with a single angular frequency w that has a time variation,
¢!, and for lossless media (i.e. the medium has a real value of ¢), there is a well-known
solution of Eq. (1.5a) in the complex notation. It is

E, = Eje/*J, H,=He ™, H = —\/EEC7 (1.6a)
P

where f = w,/ue. The real time domain expression for the complex £, shown in (1.6a)
is ‘E{;’cos(ﬁz — wt + @) where ¢ is the phase of ’Ef;‘at z =0 and ¢ = 0. The angular

frequency w is related to the optical frequency f by w = 2zf. This wave is known
as a y-polarized forward propagating wave in the +z direction. The phase of
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6 Optical plane waves in unbounded medium

E, ie.pz — ot = B(z — vpt), is a constant when z = v, . Thus v, is known as the phase
velocity of the plane wave.

If the medium in which the plane wave propagates is free space, then ¢ = ¢, and the
free space phase velocity is ¢, = 1/,/ug,=3 X 108 m s~!. In free space, the optical wave
length for a frequency f'is 4,, where f4, = ¢,. If the medium is a lossless dielectric
material with a permittivity &, then its index of refraction is n = +/¢/e,,
B = np, = nw,/ug,. If ¢ is a function of wavelength, the medium is said to be dispersive.

There is also a second solution for the same polarization of the electric field,

E, = E)é”d”,  H,=H}J"™, H! = \/EEj’ (1.6b)
U

This solution is a backward propagating wave because the phase of E,, i.e.
Bz + wt = B(z + v,t), at any time ¢ is a constant when z = —v,¢ and v, = w/B.
If the permittivity has a loss component, ¢ = ¢, — j&,, then

f=o V :u(gr _jgo') = ﬁr _jﬁa (17)

The phase velocity of light is now v, = ¢ = w/f,. The amplitude of the plane wave
decays as e %" for forward waves and e */#+* for backward waves. In comparison with the
phase velocity of free space, the ratio of the phase velocities, c¢,/c, is the effective
refractive index of the plane wave, n = ¢,f8,/w = ¢,/c. The wavelength in the medium
is A = 4, /n. In addition to B, or phase velocity, the loss of optical waves in the medium is
an important consideration in applications.

(b) The x-polarized plane wave
A similar solution exists for the x-polarized electric field and H,. For the forward wave,

H, = H/fv"e*j/ize/‘wt7 E, = Ej;e*jﬁzejwt’ E{c = \/§H§ (1.8a)
For the backward wave,
H, = er+jﬂzej(l)t7 E, = E)l:eiﬂzejwt7 Ei’ = —\/'g[—[;’ (1.8b)

In summary, both equations (1.5a) and (1.5b) are second-order differential equations.
Mathematically, each of them has two independent solutions, which are the forward and
the backward propagating waves. However, Egs. (1.5a) and (1.5b) are also two separate
set of equations. The solution for Eq. (1.5a) describes a plane wave polarized in the y
direction. The solution of Eq. (1.5b) describes a plane wave polarized in the x direction.
Both waves have the same direction of propagation. S is usually designated as a
propagation vector along the direction of propagation z that has magnitude f,

B=Pi, z=zi., pz=p"z (1.9)

The forward wave has +f, the backward wave has 5.
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1*)’

N y

[lustration of x-y-z and x"-y"-z' coordinates.

It is important to note that, along any direction of propagation, there are always plane
waves with two orthogonal polarizations. In each polarization, there are always two
solutions, the forward wave and the backward wave. The propagation constant p and
phase velocity will depend on the medium and the frequency.

Plane waves in an arbitrary direction

Frequently, plane waves in other directions of propagation need to be expressed math-
ematically for analysis. As an example, let there be another x'-y"-z’ rectangular coordi-
nate which is related to the x-y-z coordinate by

Iy = Iy, iy = cosbi, — cos(g - (9)1’_2, i = cos(g - Q)iy +cosi;  (1.10)
The x-y-z and the x"-y"-z' coordinates are illustrated in Figure 1.1. The x"-y"-z' coordinate
is just the x-y-z coordinate rotated by angle 6 about the x axis. The x and x' axes are the
same.

Let there be a plane wave propagating along the z’ direction. The solutions for
the y’ and x' polarized plane waves have already been given in Egs. (1.6) and
(1.8). However, these solutions could also be expressed in the x, y, and z coordi-
nates, where

ﬁz':é-;’:ﬁcos&z—kﬁcos(;—r—@)y (1.11)
é:ﬂg:ﬁcosﬁi_z+ﬁcos(g79>iy (1.12)
o _ B _ i (1.13)

For the y' polarized plane wave propagating in the +z' direction,
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8 Optical plane waves in unbounded medium

Ey = Eiye P Zo = fl et
=2 il

= (E,cos i, — E/,sin i, e £ e/ (1.14)
Y y — £y S0

= Hy = —\/EE{,ejé"ef“”ix (1.15)

- w -

For the y' polarized backward plane wave propagating in the —z' direction,

0. . & 0 .
E, = E;’,e”/-* FSy,  HY = \/;Ef,e*’ﬁ Lefliy (1.16)
For the x' polarized plane wave propagating in the +z' direction,

E.=E, :Ei,e*fﬁ‘feiwfk (1.17)

H, = \/EEf,ej/—f're’A“”iy: = \/EEf, (cos i, — sin Hiz)efjé'fe’j‘”t (1.18)
—_ /ft X _ ﬂ X - —

For the x' polarized backward wave plane wave propagating in the —z' direction,

Ey = E, = B e e, (1.19)
Hy = —\/EEf,e“ﬁ"e"“”Q (1.20)

The preceding example can be generalized for any orientation of the x', ',
and z’ coordinates with respect to the x, y, and z coordinates. Any plane wave
propagating in the z' direction can have two mutually perpendicular polarizations,
i, and ip. i, i, and i, are mutually perpendicular to each other, i.c.

iy =it =ir B =0.
Leti, =iy and iy =iy (1.21)

Then the general solutions for the case of i, polarization are:

E =B rei, H = \/EEZej/—f"'e’“”iyr (1.22)
Eq B =0/ 4
Eb = EPe™Ereer  Hb — —\/EEge“/i"'dwiy, (1.23)
Eq o g p by

é :ﬁx'Q +ﬂy'£ +ﬂz’£ ﬁz :ﬁx’z +ﬁy’2 +ﬁz'2 (124)

Here, f makes angles 60,, 6,,, and 6. with respect to the x, y’, and z' axes, with
By /B = cos Oy, B,,/B = cos By, and B,./B = cos 0. The general solutions for the case
of i}, polarization are:
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1.1 Introduction to optical plane waves 9

ZiBer - E £ _iBer ;
B} = Eje oo, H] = _\/;Ege Ber oty (1.25)
Ep = EbeP re,  H) = \/iEfe”/Z"—’e/w’Q (1.26)

It is important to recognize that when there is a wave solution containing various
terms, any term that has the form shown in Egs. (1.17) to (1.26) represents a plane wave
propagating in the direction of .

1.1.3 Evanescent plane waves

Egs. (1.22) to (1.26) described propagating plane waves that have real p., 8, and §.-
values. The maximum real £, and 8, values of propagating plane waves are limited to

B+ ﬁy,2 < w,\/ug,i.e.0<0,, 0,,and 0., <m/2. Nevertheless, Maxwell’s equation is
still satisfied even if ,/ ,b’i + ,b’i, is larger than f. In that case Eq. (1.24) can only be

satisfied if 5, is imaginary. When f.- is imaginary, the z' variation is a real decaying or

growing exponential function, e V ™ any passive medium, the plane wave
cannot grow without energy input. Thus the solution must decay exponentially in the z’
direction. Any solution with imaginary f.is called an evanescent wave. Such solutions
do not propagate in the z direction. They do not have a phase velocity. Evanescent
waves are excited usually in the vicinity of a boundary with an incident wave applied
across the boundary. It is only a near field, meaning that it is negligible at locations far
away from the boundary.' It is interesting to note that when .= f3, By=p-=0,itisno
longer a plane wave propagating in the z' direction. It is a plane wave propagating in
the +x' direction.

1.1.4 Intensity and power

In optics, only time-averaged power can be detected directly by means of detectors
or by recording media such as film. The time-averaged power per unit area is known
commonly as the intensity. In comparison with rf and microwaves, intensity analysis
plays a much more important role in optics. From text books on electromagnetic
theory, it is well known that the total time-averaged power in the direction of
propagation is [1]

1 1
PHV:EReJExli*-gds:Jpgds, 1= RelE x H] (1.27)
S N

! Itis important to note that although the mathematical solution of a plane wave exists for f, or B, values larger
than w, /i€, such a solution is important only if those plane waves are excited in specific applications such as
total internal reflection. Otherwise, the solutions have no practical significance.
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10 Optical plane waves in unbounded medium

The integration is carried out over the entire surface of the plane wave, S.
The * designates the complex conjugate of the variable. Re designates the real part
of the complex quantity. Therefore the time-averaged power per unit area in the
direction of propagation z' in either polarization is

1 . 1 [e . 1 . 1 [e .
L =-ReE,H, ==, |2E,E, or L =—-ReEH, == ,/-EyE, (1.28)
2 2\ u 2 2\ u

Note that although the total 1 is the sum of the Is in each polarization, the total
I carries no information about polarization breakdown. Although the complex amplitude
of the plane wave has a phase, its intensity | has no phase information. For plane waves
in a lossless medium, i.e. e5= 0, its intensity lis a constant. In media with loss, the decay
of the time-averaged power is e/’ for a forward wave and e**#+'for a backward wave.

In microwaves, / is known as the Poynting vector. In x-y-z coordinates, the intensity
along the z direction is /2 Re E.H,*, the intensity along the y directionis /2 Re E.H,*, and
the intensity along the x direction is Y2Re E,H.".

1.1.5 Superposition and plane wave modes

Plane waves in different direction of propagation (or plane wave modes) can be super-
imposed simultaneously. This is known as the superposition theory in linear media.
Many interesting optical phenomena can be understood by superposition of plane waves.
Three examples are presented here to illustrate the effects of superposition. They are
important concepts in many applications.

(a) Plane waves with circular polarization
Let us consider superposition of two plane waves of equal magnitude, polarized in x and
y, with a 7/2 phase difference.

E = (i +jiy) (1.29)
The real time domain form of this wave is
E=E, [cos(ﬁz — wt + )i, +sin(fz — ot + ga)iy] (1.30)

So that, at any time ¢, the polarization rotates at different z positions. This type of wave is
known as a circular polarized optical wave because the polarization of £ rotates as it
propagates. When these two waves have unequal amplitudes they give rise to an
elliptical polarized plane wave.

(b) Interference of coherent plane waves
Let us consider two plane waves of equal amplitude at the same w and y polarization.
They propagate at different directions of propagation S in the x—z plane. Their fs lie in
the x—z plane and make angles, 8 and {, with respect to the z axis. Mathematically, the
waves are
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1.1 Introduction to optical plane waves 11

Eoe—j/ﬁ7 sin Oxe—jﬂcos Hzejwtiy + Ege_jﬂ sin Cxe—j/)’ cos Czej(utl-y ( 1.31 )

According to Eq. (1.28), its time-averaged intensity in the z direction is
L= \/E|E0|2[1 + cos B((sin8 — sin{)x + (cos @ — cos {)z)] (1.32)
u

Therefore, for 6 # {, we would detect a sinusoidal intensity interference pattern of the
two waves in the x direction. As z changes, the interference pattern in x will change. If we
could record this intensity interference pattern, for example, by the transparency of a
film, we could reproduce the plane waves by illuminating this film with another input
plane wave. This is the very basic principle on which holography and phased array
detection are based [2,3,4].

However, if the two waves do not have the same w or a definite phase relation between
them, then I, = \/8/7|E0|2. In other words, there is no interference pattern unless the
two waves are coherent.” The total intensity of incoherent waves is just the sum of
the intensities of individual waves. It is also important to note that when the two coherent
plane waves have cross polarizations, the total intensity is also just the sum of the two
intensities without the interference effect.

(©) Representation by summation of plane waves
Let there be a linearly polarized TEM electric field propagating in the z direction with xy
variation g(x,y) at z = 0. It is well known that g can be represented by its Fourier
transform. Let G be the Fourier transform of g.

“+00 o0

GmmJ:E@rzjjgwwam@WMM® (1.33)

gmwzﬂwm=ijwm¥mwwma (1.34)

G is the magnitude of the Fourier component at (f,, f,). When g(x,y) contains only slow
variations in x and y, G will have significant values only at low spatial frequencies f, and
/- In that case the integration in Eq. (1.34) could be approximated by just the integration
of G within a limited range of f; and f,.

Let

2zf, = B = fcos by, 2zf, = B, = fcos Oy (1.35)

df, = —PsinO,dby  df, = —Bsin6,d0, (1.36)
2 If the two waves have a randomly time-varying relative phase relation, for example from two independent
lasers, the time-averaged detected intensity also will not have the interference pattern.
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12 Optical plane waves in unbounded medium

Eq. (1.33) gives the magnitude of the Fourier component that has an x'y' variation of
g /PeosOux'e=ificos0y” Tf e also let f = (2mc, /Ao)/HiE, = 2mc/A and consider only those

Fourier components with , /8,2 +/3y/2 <p (ie. 0 <0, and 0, < n/2), then Eq. (1.33)

gives the magnitude of the Fourier component that has the xy’ variation of a plane wave
propagating in a direction f, which has direction cosines 6, 8, and .. 6..is related to
0, and 6, by Eq. (1.24). However, for propagating plane waves, 6,0, and 6. must
be real. The maximum and minimum values of £, and f,, for real values of 6, and 0, are

—f/2x and +/2x. Moreover, | /f,.* + f,* < /. It means that, the Fourier components

that correspond to propagating waves with real values of 6, and 0,, are only Fourier
components that have low values of £- and £,

In summary, when g contains only variations in x and y very much slower than 4,
G(f..f,) has significant values only at those f, and f, less than the limit fi,ax. If finax
< B2, it means the electric field g(x,y) could be represented by superposition of just
plane waves propagating in different directions f. Under that condition, Eq. (1.34) can
be approximated by

+fl‘nax +jl‘m|x
g(x,y) = F,(G) = J J G(fs, f,) &> 1, df, (1.37)
7fl‘nax 7_]1‘118)(

There are three important concepts introduced here: (1) We have shown that plane
waves can be used to represent an arbitrary field with slow X" and y' variations. This is
equivalent to the modal expansion concept used in microwaves. Here, plane waves are
the modes of unbounded medium. (2) Fields with any X'y’ variation can be represented
by their Fourier components.* This means that many modern Fourier analysis tech-
niques can be applied to optics. This is the basis of Fourier optics [2] and optical
image processing [4]. (3) Knowing the plane wave composition at z = 0, we have
determined the Xy variation of each plane wave components at any distance z later.
Thus it allows us to predict the electric field that propagates to z via plane wave
analysis. Note that as component plane waves propagate the total optical radiation
spreads or contracts. This phenomenon is also known as the diffraction of optical
radiation. More details on diffraction will be presented in Chapter 3.

It is interesting to note that if G(f,,f,) contains frequency components with large f, and
f, such that £;2 +f,2 > p*/4n?, then the z variation of the plane waves for those
components will exponentially decay. This means that those components will contribute
only to the near field and they will not propagate far in the z direction. Only the frequency
components with £,2 +£,> < */4z* will propagate, so the fields at some z distance
away will not be exactly the same as g(x,y).

3 Evanescent plane waves in the z direction could have f, or By larger than . However they are not
propagating waves.

* Fields with rapid xy variation would yield Fourier components that are evanescent local waves in the z
direction.
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1.1 Introduction to optical plane waves 13

1.1.6 Representation of plane wave as optical rays

When an optical wave has a finite beam size, the diffraction effect will spread the beam
as it propagates. Diffraction analysis allows us to analyze the fields at various positions
that are not at the center of the beam. Diffraction will be discussed in Chapters 3 and 4.
However, in many situations, we are only interested in analyzing the optical beam near
the center, then diffraction is not important. In those situations, a local optical beam
with finite beam size can be approximated by a plane wave, as long as the beam size is
much larger than the optical wavelength and the variation of the beam within a distance
of wavelengths is very small.” The plane waves could then be considered simply as
optical rays. Furthermore, in the analysis of natural light, which has many wavelengths
or frequency components, with no specific phase relation among the different compo-
nents, the phase interference effects of optical light are not important. Only the location,
intensity, and direction of the propagated beam are detectable and important.

Let the beam propagates in a y—z plane at an angle 8 with respect to the z axis. The y—z
plane is located at a constant x position. Let the beam originate at z = 0. In the traditional
ray analysis used in the literature, its position at variance z distance from the z axis, i.e its
y position at z, is given by r(z) and its direction is given by r'(z) which is dr(y)/dz. Note
that, for a ray making an angle 8 with respect to the z axis, 7' = sin 8. Then the ray can be
represented at a given z by its ray matrix

(1.38)

Note that for a ray making an angle 6 with respect to the z axis, ' = sin §. When the
beam reaches a new y position later at z', where d = z' — z, its #(z") and »'(z') at z' are
related to #(z) and r'(z) by

r'(z") =r'(2), r(z') =r(z) +r'(z)d (1.39)

In other words, the relation can be expressed by a ray matrix,

r(z)
r'(z)

A ray in an arbitary direction in the xyz coordinate could be considered as a ray in the
vz plane of a new xyz’ coordinate. Similar to Section 1.1.2 the x'y’z’ coordinate is a
rotation of the xyz coordinate. The expressions for 7 and ' in x’y’z" have been given in
Egs. (1.39) and (1.40). They could be expressed in terms of xyz through coordinate
transformation as we have done in Section 1.1.2.

The ray representation is only an approximation. It ignores the size of the optical beam
and the size of the medium in which the beam propagates. It ignores diffraction effects. It
does not give the intensity of the beam unless it is specified separately. When the

(1.40)

i a
o1

3 For example, the free space wavelength of visible light ranges from 0.4 to 0.7 um. A uniform visible light
beam a fraction of a millimeter wide can be approximated by a plane wave near the center of the beam. The
approximation is good within short distances of propagation, such as a few centimeters or more.
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14 Optical plane waves in unbounded medium

polarization of the ray is important in some applications, it must be specified in addition
to the ray matrix for » and .

1.2 Mirror reflection of plane waves

Reflection properties of optical light can be analyzed very simply by plane waves.

1.2.1 Plane waves polarized perpendicular to the plane of incidence

Let there be a plane wave, polarized in the x direction and propagating in the f direction
in the y—z plane that makes an angle 6; with respect to the z axis,

B = Psinbii, + fcos Oiiz, Ej = E,e Pointveibeostizger, (1.41)

In this case, the electric field is perpendicular to the plane of incidence, which is the y—=
plane. Thus the electric and magnetic fields are designated by £, and A , . The incident
wave generates a reflected electric field plane wave,

B, = Bsinbi, + pcosb,iz, E. = E e Psinbetipeost, (== gjot; (1.42)

When this wave is incident on a ideal planar mirror (or an ideal conductor with infinite
conductivity) at z = z’, extending from x =—o0 to +o0 and from y = —0 to +oo, the boundary
condition at z = z'is that the total electric field tangential to the boundary, i.e. £;; + E,.y,
be zero at z = z". The boundary condition at z = z' demands that

6, =m—6;, and E,=—E,e/fcs0 (1.43)
or

E, = —E,e/Psintygtipeosti(z=2) g=jhcos0iz' gjoot; (1.44)

From Egs. (1.18) and (1.20) of Section 1.1, the magnetic field for the incident wave is
H;| = \/EEO(COS Giiy — sin O;i, e P sin O g b cosOizg—jort (1.45)

The magnetic field for the reflected wave is
H, = \/EEO(COS 9@ &+ sin gil'_z)e*jﬂsinnye+jﬂ008Hi(zfz')e*jﬁcosH,Z'e*jlut (1.46)

The relation given in Eq. (1.43) is commonly known as the law of reflection. The
reflection changes the direction of propagation from S to f, which is a mirror reflection
of S. The polarizations of the incident and reflected electric field are the same, but the
orientations of the incident and reflected magnetic field are different. The magnetic field
will induce surface current in the conductor at z=z". For ideal mirrors, the ratio |E,|/|E,|,
called the reflectivity R of the mirror, is one. For actual mirrors with reflectivity R < 1,
E, = —RE, e /Feost
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1.2 Mirror reflection of plane waves 15

1.2.2 Plane waves polarized in the plane of incidence

The second independent solution for plane wave propagating in the same f direction has
H directed along the x direction and £ polarized in the y—z plane, which is the plane of
incidence. The incident wave is designated as £, and H ;.

E;; = E,[—cos 0;i, + sin 0;i,]e /sin o b cosbizgot (1.47)
I‘]l// — Eo \/Ee—jﬂsinH‘ye—j/)’cosé),zejwtix (148)
Ul P Ix
The reflected plane wave is
E,j) = TE,[+c0s 0;iy, + sin 0;i;]e #sn 0w etibeos Oilz=2) gmibeos 6.2’ et (1.49)
I—]r// =TE, \/Eej/)’ sinSiye+j/f cos Si(zfz’)efjﬁ cos S;z’ejwtix (1 50)
- /’t -
Note that only the y component of the total electric field is zero at z =z’ for ideal mirrors
with T = 1.
1.2.3 Plane waves with arbitrary polarization

For plane waves with an electric field polarized in any other direction, it can always be
decomposed into the summation of two mutually perpendicular polarized electric field
plane wave components, one polarized perpendicular to the plane of incidence and one
polarized in the plane of incidence. There is a change in the reflected electric and
magnetic field from that of the incident field at the reflection boundary. According to
Sections 1.2.1 and 1.2.2, the polarization of the reflected beam will depend on the
decomposition. Results obtained in Egs. (1.41) to (1.50) could be applied to any plane
waves in any direction of propagation in any polarization by a change of the x-y-z
coordinates to new x'-y-z' coordinates. In the new coordinates the direction of the
incident beam is in the y’-z’ plane.

1.2.4 The intensity

According to Eq. (1.28) of Section 1.1, the intensities of the incident and reflected waves
along their directions of propagation are

1 1
v=d R - e 051
2 \Vu 2\ u

1.2.5 Ray representation of reflection

The reflection at z' of a light beam could again be described by the ray matrix representa-
tion discussed in Section 1.1.5. In that case, the » and the »’ of the incident and the
reflected beams at z' in the plane of incidence are related by
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16 Optical plane waves in unbounded medium

r(z") ri(z")

r'(z") r'i(z")

The phase of the reflected beam and the polarizations of the beams are not included in the
ray representation.

1o
Tl -1

(1.52)

1.2.6 Reflection from a spherical mirror

Let there be a mirror that is a section of a sphere with radius R. Here, in this section, R is
not the reflectivity of the mirror as it is commonly used in the literature. Figure 1.2 shows
the cross-sectional view of a spherical mirror in the y—z plane and an incident beam. The
spherical mirror is centered at the origin of the x-y-z coordinate. It is much larger than the
size of the incident beam. Consider a small incident beam, uniform within a lateral area
that is much larger than the optical wavelength. It is sufficiently wide so that it can be
approximated by a plane wave near the center of the beam. Let the incident beam be
represented approximately by a plane wave polarized in the x direction at an angle 6,
with respect to the z axis in the y—z plane.

B = Psinbii, + fcos Oiiz, Ej = E,ePsintveibeostizger, (1.53)
H; = \/EEo(cos Osii, — sin 0;i, e P sin e ip eosbizgjot (1.54)
Hiy u Ly Iz

In Figure 1.2, 6; is shown as a negative angle. The slope of the incident beam is tand,.
When the beam is incident on the mirror at z’, the mirror at that location can be
approximated by a planar mirror tangential to the sphere. This flat tangential mirror
makes an angle ¢ with respect to the y axis. According to Sections 1.2.1 and 1.2.5, the
reflected beam will make an angle —z + 2¢ + 6; with respect to the z axis. The slope of

A Y

A
I

|

| Incident beam

I

|

|

I

Reflected beam

Spherical mirror

Figure 1.2  The cross-sectional view in the y—z plane for an optical beam reflected by a spherical mirror. The
local incident beam at the incident angle —6 is reflected by the curved mirror. The plane tangential
to the spherical mirror at the incident location makes an angle —p with respect to the vertical axis.
The reflected beam makes an angle —7 + 2¢ + 6; with respect to the +z axis.
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1.3 Refraction of plane waves 17

tan 2¢ + tan 6; 2r(z’'

the reflected beam is tan(—z +2¢ + 9;) = anspttanbi r(z) + tan ;. The
1 + tan2¢ tan 6; R

same conclusion is obtained when the electric field is polarized in the y—z plane.®

Therefore, the reflection from a spherical mirror in the ray representation is

i 1 O ’
r(z") _ _% ri(z") (1.55)
r'(z") R r'i(z")

For incident beams parallel to the z axis, the reflected beams will be focused at z = R/2.
Therefore, this location is called the focus of the spherical mirror.”

1.3 Refraction of plane waves

Refraction properties of optical radiation could also be derived directly by plane wave
analysis.

The law of refraction is concerned with the reflection and the change of direction of
propagation of optical light incident obliquely onto a planar boundary of two materials that
have different dielectric permittivities, &; and &, or indices of refraction, n; and n,. For the
sake of simplicity, the media are assumed to be lossless in Sections 1.3.1 to 1.3.4.%
Refraction is used in designing optical components ranging from eye glasses and cameras,
to telescopes. Refraction and reflection of plane waves will be discussed first, followed by
ray optical analysis and analysis of components such as prisms, lenses, and gratings.

1.3.1 Plane waves polarized perpendicular to the plane of incidence

Let there be an incident plane wave polarized in the x direction, perpendicular to the
plane of incidence, and propagating in a direction in the y—z plane with an angle 6; with
respect to the z axis in media 1.

B = Bisinbii, + picos O;iz, Ei = E e PisinOixgmifcosOizgfoty (1.56)
Hi = \/iEo(COS O;i, — sin 0, )e HPrsinOweiheos iz g ~jor (1.57)
il o b L

Let there be a plane boundary at z', extending from x = —o to +co and from y = —0 to
+o0, with medium #1 at z < z’ and medium #2 at z > z'. The boundary separates medium
#1 from medium #2. In addition to the transmitted wave in medium #2, there is a
reflected wave in medium #1. The boundary condition at z = z' is that the electric field
E and the magnetic field / tangential to the boundary, i.e. E,, E,, H,, and H,, must be
continuous across the boundary at z'. Since the incident wave is polarized in the x

¢ Since the mirror is curved, the locally reflected beam is no longer strictly a plane wave. The use of plane
wave for local analysis is an approximation.

7 The analysis presented here does not include rays at angles of incidence oblique to meridian planes. It is
presented here only to demonstrate the very basic concept.

# Inmedia with losses, 8, and 8> will be complex. Waves will be attenuated as they propagate. The matching of
attenuated waves at the boundary becomes much more complex than the simple relationship presented here.
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18 Optical plane waves in unbounded medium
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Reflection and transmission at a planar dielectric interface. The incident beam makes an angle 6
with respect to the +z axis. The transmitted beam refracted from the vertical interface makes an
angle 6,. The reflected beam makes an angle 8,.

Figure 1.3

direction, the reflected and transmitted wave must also be polarized in the x direction.
The reflected wave in medium #1 is’

B, = Bysin O,y + Bycos b,iz, E, = T pE,e Pisintmeibicosbizgioti (1.58)

e . , .
H, =— \/IFL 12E,(cos 6,iy, + sin 0,i, e Prsin Oy gihrcos Oz g —jot (1.59)
1 Ly Iz
The transmitted plane wave in media #2 is
B, = BsinOsiy, + Brcos Oiz,  E, = TLleoe*jﬁzsinﬁrye*jﬂzcosﬁzzejwtil (1.60)

B ) o ) )
H, = —ZTL LE, (cos 0,i, — sin H,iz) g IPasin 0y g=ifrc0s Oiz g joot (1.61)
el r Ly L

Figure 1.3 illustrates the incident wave, the reflected wave, and the transmitted wave

in media #1 and #2, plus the boundary at z =z". The continuity conditions of tangential £
and H at z =z'at all time ¢ demand that

6, =n—0;, p,sin6, =psinf; or nysinb, =n;sinb; (1.62)

° Note the notations. T'j 1, and 71, stand for reflection and transmission coefficients of the electric field
perpendicular to the plane of incidence from medium #1 to medium #2. The coefficients may be different
when the polarization is changed or the direction of propagation is reversed.
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1.3 Refraction of plane waves 19

ny cos 0;
Ti1p=1+4+T12, TLIZZ(I_FLIZ)Ii (1.63)
ny cos 6,
or
0; — 0 in(6; — 0 2 0;
L= 1] COS nycos@;  sin( /) " 11C0S (1.64)

n cos; +nycosd, sin(6; + 6,)’ - nicos 0; + ny cos 0,

In this case, the intensities of the incident, reflected, and transmitted waves in the z
direction are:

B B &)
1= ,/;1|Eo\2005 0, 1., = "/;1|FL12E()|ZCOS 0., I,;= ,/;|T¢12Ea|2005 0

(1.65)
The intensities are conserved in the z direction, i.e.

Ii=1,+1,

1.3.2 Plane waves polarized in the plane of incidence

The second independent solution of the plane wave propagating in the same S direction
has the electric field polarized in the plane of incidence. Its H is directed along the x
direction, and its E is polarized in the y—z plane.

E,// = Eo[—COS Giiy + sin gil;z]e—jﬂlsin@,-lye—jﬂ]cosﬁjzeiwt (166)
Ho ) = E . [Ele-iBisinbyo—jpicos bz gjort; (1.67)
Hif = Eey 7y, = '

The reflected wave in medium #1 and the transmitted wave in medium #2 are:

E.j; =T )j12Es[+ cosb;i, + sin 6;i.]e sin Oy g tihrcos Oi(z=2") g =ifreosOiz'gfor (1 68)

Hr// =+ F//leo \/aej/)’]sin Hnye+j/ilcos 49,(272’)e7j/f]cos (J,»z’e/'a)tix (169)
_r U X
Ey) = TypokEo[~ cos O,y + sin Oy, e FPrsin 0w gibacos iz gjoot (1.70)
Ht// = T//leU\/Eejﬁzsme’yejﬁzcosgfzejwtjx (171)
4l U X

The boundary conditions at z = z' requires:
B,sinb, = fB;sinf; or nysiné, = n;sinb; (1.72)

(1“//12 — l)COSHi = _T//12 Cos 9” (1 +F//12)n1 = T//12n2 (1.73)
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20 Optical plane waves in unbounded medium

In other words,

2ny cos 0; .- cos; —nycost, tan(6; — 0;)
ny cos0; + ny cosb,’ /2= nycosd; +nycosd, tan(6; + 6,)

T = (1.74)
The intensities in the z direction for the incident, transmitted, and reflected plane waves
are:

I//i = \/:(J;|EO|2COS (9,-, [//r = \/élE‘F//]zEO‘ZCOS (9,-, [//t = \/:;E‘T//]ZEO‘ZCOS (9;

(1.75)

Again, the intensities in the z direction are conserved, i.e. [;; =1/, + ;).

It is important to note that all optical reflection, refraction, and diffraction effects are
calculated based on meeting the boundary conditions by waves that satisfy Maxwell s
equations. The energy in the waves is conserved. Note that the transmission and
reflection coefficients of optical waves are dependent on the polarization of the electric
field, while the intensity of the wave is not affected.

1.3.3 Properties of refracted and transmitted waves

(a) Transmission and reflection at different incident angles
It is interesting to note that, at normal incidence, §; = 6, =0 and 6, = x. Tand I are
the same for polarizations either perpendicular to the plane of incidence or in the plane of
incidence. The direction of propagation of the transmitted wave is the same as the
incident wave, while the reflected wave has a reverse direction of propagation. There is
no change of polarization of the reflected and transmitted waves from the incident wave.

2m ny —n
Ty, = , Tp= 1.76
12 ny + ny 12 ny + ny ( )
L=1+1 (1.77)

It is important to realize the relative importance of this result in practical applications. At
an interface of free space with n; = 1 and glass with n, = 1.5, 1, =0.8 and ', = 0.2,
which is small. Therefore in many applications of glass components, such as imaging
through a lens, the reflection may not be analyzed. The situation is very different when
medium #2 has a large index of refraction such as a III-V semiconductor. If n, = 3.5, then
T1> =0.56 and I'|, = 0.44 at normal incidence.

At other angles of incidence, I and 7 will vary dependent on the angle of incidence
and the polarization. The magnitude of reflection increases at large ;. It is interesting to
note that when 6; + 6, = 7/2,T /1, = 01in Eq. (1.74). The 6, that satisfies this condition
is traditionally known as the Brewster angle. At this angle the incident and the reflected
plane waves are polarized perpendicular to each other in the plane of incidence. The
Brewster angle has many practical applications because at this angle the reflection is
zero without any anti-reflection coating.
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1.3 Refraction of plane waves 21

(b) Total internal reflection
When n; > n,, at the angle of incidence 60;, such that n;siné; =n,,
0, =x/2,T = landl, = 0. This means that, for a plane wave with any polarization
there is no energy transmitted in the z direction. For 6; > sin™'n, /n; and E; polarized
perpendicular to the plane of incidence, the boundary condition in Eq. (1.62) demands

that cos 6, = \/ (n? sin®6) /n3) — 1. Therefore, we have an evanescent wave in medium

2 in which the propagation constant in the z direction of the transmitted wave shown in
Eq. (1.60) is imaginary. The reflection coefficient is I';; = |I'12|e/2. From Eq. (1.64),
we obtain |T'; ;5| = 1 and

| —2n; cos 0;\/ ny? sin® 6; — n,?

n 2 cos? 0; — (n;2 sin® 6; — ny?)

@11p = tan

From Eq. (1.74), a similar conclusion can be reached for plane waves polarized in the
plane of incidence. Again,

I, /12| = 1. However, the phase angle is different from ¢ | .

| —2n; cos 0;\/ ny? sin® 0; — n;?

ny? cos? 6; — (ny2 sin? 0; — n;2)

(0//12 = tan~

In summary, the incident plane wave with any polarization is said to be totally
internally reflected at the boundary for 6; > sin~'n, /n, but the phase angle is dependent
on polarization. Total internally reflected waves have only an evanescent tail in the lower
index medium. Total internal reflection is utilized extensively in optical fibers and
waveguides to minimize the loss due to the surroundings, by using a cladding layer
that has a lower index of refraction so that losses in the surrounding media at distances
further away from the interface than the length of the evanescent tail do not cause much
propagation loss to the totally internal reflected optical wave.

(©) Refraction and reflection of arbitrary polarized waves
For plane waves with arbitrary polarization, results derived in Egs. (1.56) to (1.75) are
applicable when the electric field is first decomposed into two components, one polar-
ized perpendicular to the plane of incidence and the second polarized in the plane of
incidence. Although these two components have the same direction of propagation of
reflected and transmitted waves (see Egs. (1.62) and (1.72)), their polarization, transmis-
sion coefficient 7, and reflection coefficient I' are different.

(d) Ray representation of refraction
It was shown in Sections 1.1.6 and 1.2.5 that natural light with finite beam width and
location can be represented by its ray matrix. There is also a matrix representation of the
refracted (i.e. transmitted) beam as follows
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22 Optical plane waves in unbounded medium

S N P L ,
r(z') m Fin(2") ~| sin 6, rin(z") ‘ )
r'(z') ny | |rin'(2") sind, | |7in'(z") '

Note that the ray matrix representation is independent of polarization. It does not tell
us the magnitude, the size, or the polarization of the refracted beam. The reflected beam
is not included in Eq. (1.78). The ray matrix representation of the reflected beam for a
mirror is given in Eq. (1.52) in Section 1.2.5.

1.3.4 Refraction and dispersion in prisms

Prisms are optical components used to redirect the direction of propagation of an optical
beam. Note that the permittivity ¢ and the index of refraction n, of materials are usually
wavelength (i.e. @ or 4) dependent. This means that the transmitted plane wave at the
boundary will have different directions of propagation at different wavelengths. This is
known commonly as the dispersion. In a prism spectrometer, the incoming optical beam
may have many wavelength components. The collimated incident beam passes through a
prism. At the exit of the prism, different wavelength components propagate in different
directions due to the dispersion effect. The exit beams in different directions are focused
by a lens to different positions. An exit slit located on the focal plane of the lens selects
the radiation in a specific wavelength range to be detected. The spectral width of the
detected radiation is determined by the width of the slit. As the prism rotates, the
detected radiation displays the spectral component of the incident radiation as a function
of the prism angle.

(a) Plane wave analysis of prisms

A prism is usually a dielectric cylinder with a triangular cross-section made from
material with a refractive index n,. This index n, is larger than the index of the
surrounding medium, which has index #n;. Usually the surrounding medium is free
space with n; = 1. The triangular cross section of a prism in the y—z plane is shown in
Figure 1.4. The prism is uniform in the x direction. It has a vertex angle, 4 +B, and a base
angle, (z/2 — A), for the front surface, and base angle, (z/2 — B), for the back surface.
The dimensions of the surfaces of the triangle are larger than the width of the optical
beam, which is much larger than the optical wavelength itself.

Let there be an optical incident beam propagating in a direction 6; from the z axis in
the y—z plane. For uniform beams that have a beam width much larger than the optical
wavelength, the beams can be represented by plane waves near the center of the beam.
The incident beam, the refracted beam in the prism, and the transmitted beam of the
prism are also illustrated in Figure 1.4. The analysis of the wave propagation in prisms is
simply a detailed analysis of the directions of the refracted beams at each dielectric
interface, as follows.

In order to analyze the beam propagation, let us designate x"-y"-z’ coordinates and x'-
y"-z" coordinates, as shown in Figure 1.4. The y'axis is parallel to the front prism surface
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\y” Back surface

| Refracted beam | \

Front surface

Incident beam

|Cross—section of a prism|

Figure 1.4  Incident, refracted, and transmitted wave in a prism. The prism has a vertex angle 4 + B. The
incident beam angle is ;. It is refracted by the front prism surface. The transmitted beam from the
front surface makes an angle €', with respect to the vertical axis of the front prism surface. It is
refracted again by the back prism surface. The output beam angle is 6.

and the z' axis is perpendicular to the front surface. The y" axis is parallel to the back
prism surface and the z" axis is perpendicular to the back surface. The x"-y"-z"and x"-y""-
z" coordinates are related to the x-y-z coordinates by:

iy = cos Aiy +sindi;, iy = —sindi, + cosAi. (1.79)

iyr = cos Biy —sinBiy i = +sin Biy + cos Bi; (1.80)

In Figure 1.4, the incident beam in material #1 is directed in the 6; direction in the y'—=z'
plane, where 6; = ; + A. The refracted beam from the front surface is directed in the o’ ‘
direction in the yz' plane. According to Egs. (1.62) and (1.72), 6, = sin™' (n; sin 6 /n).
The angle 0, that this beam makes with respect to the z axis in the x—y plane is
0, =A— 6, Inthe x"-y"-z" coordinates, the refracted beam at the angle 6, in the x-y-z
coordinates makes an angle 6; with respect to the z" axis, where
9, =60, +B=A4-— (9; + B. Its exit beam in medium #1 makes an angle 9; with respect
to the z" axis, where 6, = sin”! (ny sin 0" /n1). In the x-y-z coordinates, this exit beam
makes an angle 6,,, with respect to the z axis, ,, = B — 6,. This analysis of beam
direction is independent of polarization.

There are also reflected beams at each surface. Reflections need to be considered
whenever the difference of refractive indices at the interface of the prism is large.
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24 Optical plane waves in unbounded medium

Reflection and transmission at each surface can be calculated according to Egs. (1.63),
(1.64) and (1.74) from 6:,6,,0;,and 6;. However, in most applications, only the analysis
of the transmitted beam is important, the reduction of the amplitude of the transmitted
wave due to reflections is not important.

(b) Ray analysis of prisms
In the ray matrix representation, the incident ray enters the front prism surface at the z;
location with the y position 7,(z;). It has a ;(z;) in the x-y-z coordinates, rf(z,-) = sin ;.
The refracted beam at z; has the same y position, r(z;) = r;(z;), and a slope,
7¢'(z;) = sin§,. When the refracted beam is incident on the back surface at the z,,
position, its y location is rou(Zout) = 7:(2i) + (Zowr — z:)tan ;. The slope of the output
beam is 7oy (Vout) = sin Byy. In matrix notation the relationship is:

1 0 1 (zouw —zi)/cos O, | |1 0

Fout : : v

2= 1o s1r_19;m 0 STHZz p (1.81)

ou sin; || 1 sin@; | 17

In the case of thin prisms, 4+B is small, and z,y — z; =0.
1 0

r?ut =1y sin By (1.82)
Tout sin 0; |7i

In other words, a thin prism does not change the position of the beam. It only changes its
direction. Furthermore, for a small incident angles 6;,

ny —n

Oout = 0 — (4+B). (1.83)

ni
Note that the reflected beams are not included in the ray representation above. The
magnitude and polarization of the beams are also not included in the ray representation.
These quantities may not be important in applications that use natural light in compo-
nents that have low value of n,. For applications, such as image formation, the ray
representation is a simple method for analyzing the direction, position, and propagation
distance of the beam that are most important.

(©) Thin prism represented as a transparent layer with a varying index

It is interesting to view this result from another viewpoint. In a thin prism we could also
consider the prism as a dielectric layer that has an n, layer with thickness r embedded in a
medium with index n;. The thickness 7 varies at different position y. From Figure 1.4, we
obtain 7 = (Pyert — y)(tand + tan B) = (Yyert — ¥)(4 + B). Here, yye is the vertex of
the prism. Let there be a plane wave propagating in the z direction in a medium that has
index n7. The beam is centered at y;. After transmitting through this composite dielectric
layer, the electric field for this beam is
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1.3 Refraction of plane waves 25

Eou = Ene—jn]/fnzefj(nzfnl )ﬂaTe/w’ _ Eoefjnlﬂ,,zefj(nzfm)/f”yvene*jm/fasin ¢m.d’e/wt’ (1.84)

where n; sing,,, = —(ny — n1)(4 + B).

Any plane wave that has an exp(—jnf,sing,,y) variation in y is a plane
wave propagating at an angle ¢, in the y—z plane. This ¢, agrees with the 0, given
in Eq. (1.83) above. In other words, we have just introduced an important new
concept. Transmission through a thin prism could also be represented by transmission
of a plane wave through a medium with a phase transmission coefficient that is a linear
function of y,

t = toefj(nzfnl)/)’U(yvmfy)(tan A+tan B) (185)

E, = tE;,. Note that the results in Egs. (1.84) and (1.85) are independent of
polarization.

In other words, when a plane wave is transmitted through a refractive medium with
variable refractive index given in Eq. (1.85), it produces an output beam in a different
direction of propagation. The conclusion is also valid for a small incidence angle 6.
Conversely, any transmission medium with a phase transmission coefficient that has
a linear y variation will tilt the incident beam to a new direction of propagation like a
prism.

1.3.5 Refraction in a lens

A lens is probably the most commonly used optical component. It is used principally for
imaging and instrumentation. Ray analysis is the principle tool used for lens design. The
design of a compound lens is very complex. A detailed discussion on ray analysis of lens
design is beyond the scope of this book. However, an analysis of a simple spherical lens
for meridian rays will be beneficial to illustrate the basic principle of a lens.'® It will be
presented first by ray analysis, then as a transparent medium with a quadratic varying
phase in transmission.

(a) Ray analysis of a thin lens
Let us consider a simple spherical lens whose geometrical configuration is shown in
Figure 1.5. The right surface of the lens is described by

Xyt = (1.86)

The left surface of the lens is described by

2 2 ’
- =2 (1.87)

19 Like prism analysis, reflection exists at any dielectric interface. There are reductions of the amplitude of the
transmitted wave as it propagates through the lens. Reflections in lenses are analyzed when it is necessary.
Thus only ray analysis of the transmitted beam will be presented here.
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Figure 1.5  The geometrical configuration of a spherical lens. Two spherical surfaces centered about z=z; and
z=0 are shown. The front (left) and back (right) surfaces are made from the interception section of
these two spherical surfaces.

The origin of the spherical surfaces are at z =0 and z = z;. The refractive index of the lens
is n,. It is placed in a medium that has refractive index »,. In free space, n; = 1. The thin
lens and the dotted spheres shown in Figure 1.5 are the cross-sectional view of the lens
and the spheres in the y—z plane.

In order to demonstrate the properties of a lens with simple ray analysis, let us
consider an optical beam incident on the lens in the y—z plane at an angle —0; with
respect to the z axis. This beam is incident on the lens at the z' and y' positions. The
refracted beam is transmitted through the lens and excites an output beam. In the thin
lens approximation, the y' positions of the beam at the front and the back surfaces of the
lens are the same. At the y’position of the front surface, the curved spherical lens surface
can be approximated locally by a plane tangential to the sphere centered at z;. This plane
makes an angle 4 with respect to the Yaxis. Similarly, at the back surface of the lens, the
curved surface can be approximated by a plane tangential to the sphere centered at z = 0.
This plane makes an angle B with respect to the y axis. Thus the change of direction of
the beam going through the lens at this location is approximately the same as a beam
going through a prism with the vertex angle, 4+B. From Section 1.3.4, we obtain

ny —m
Oout = —0; —

(4+B) = -0, - 21 <l+i)y (1.88)

ny ny r mn

If we designate

1mom (1+1> (1.89)

f i "o
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1.3 Refraction of plane waves 27

then the refraction of a beam through a thin spherical lens placed at z' can be expressed in
a ray optical representation as

Tout (Z/) . 1

= 1 (1.90)
A

' out (Z/)

When the incident beam is parallel to the z axis, §; = 0. Parallel beams at different y
positions would all focus on the z axis at the position z' + f. Therefore z = f'is commonly
known as the focal length of the lens. For parallel beams incident at small 8;, 8, will still be
related to 6; by Eq. (1.88). Thus they will be focused to a pointat z =z + fandy = 6,f.
The plane at z =z'+ fis known as the focal plane of the lens. The preceding analysis has
only been carried out for optical beams incident in the y—z plane. However, in a
cylindrically symmetric configuration, the x and y axes can be rotated about the z axis.
Thus the results can be generalized to three dimensions for any beam incident in the
meridian plane.

The objective of the analysis presented here is only to demonstrate simple lens
properties by plane wave analysis. The analysis of practical lenses is much more
complex than the preceding discussion. It involves oblique rays, skewed rays, astigma-
tism, etc. and is beyond the scope of this book [5].

(b) Thin lens represented as a transparency with varying index
Similar to the discussion in Section 1.3.4 (c) for the prism, it is instructive to represent a
thin lens as a transparent planar medium with a varying phase change. Consider an
incident plane wave that has a beam size small compared to the size of the lens. It
propagates in the direction of z axis.

E; = E,e P7e!
Let us consider this small beam in the y—z plane near x = 0. At the transverse position
(x=0, ), it passes through the lens beginning at z = z; — r, and ending at z = r|. Its phase
at the output will depend on y because the ray goes through a higher index region with

thickness, z" — z', at y = y'= y". The change in its phase, in comparison to a beam in free
space without the lens, is:

Ap = —p(n2 —m)(z" —2)
Vv Vv (1.91)

=—pim—m)|ni{l—= —z1+mn{l—=—

Here, z"" > z"and x and y << r| and r, inside the lens. Binomial expansion can be used
again for the terms in the curly brackets. When the first-order approximation is used for a
thin lens, we obtain

2 2
Ap = —Plny —m)|r +r2—z — L. (1.92)

r r
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28 Optical plane waves in unbounded medium

The focal length of a thin spherical lens is given in Eq. (1.89) as 1/f= (n, —n;)(1/r; + 1/r>).
Thus, for any wave passing through a thin lens near x = 0, we can now multiply the incident
wave on the lens by a phase function,

) = e g 507) (1.93)

to obtain the wave that has passed through the lens. The preceding result can be extended
to incident rays in any meridian plane by rotating the x and y axes with respect to the z
axis. Therefore the general result in the x-y-z coordinates for a plane wave incident on the
lens in the z direction is

t = ST (1.94)

Egu = tE e Pire®! (1.95)

The output electric field at the back side of the lens is
Eout = E,e 01+ aﬂlfef%(xz”z)ej‘”’} (1.96)

The quantity in the brackets represents a spherical wave, e/1 V/* 5% ¢/! in the form of
the first term of a binomial expansion at z = . The spherical wave is focused on to the
location z = ry + f.

This is a very simple result that can be applied to any incident wave passing
perpendicularly through a lens. It should be emphasized that this is a thin lens approx-
imation. Only an ideal lens can be represented by Eq. (1.94). A practical lens will have
other higher-order phase shifts, which are considered as distortions from an ideal lens.
Note that the output after leaving the lens is no longer a plane wave. Fourier analysis
discussed in Section 1.1.5 (¢) must be used to find its plane wave components.

The importance of this representation is to recognize that whenever a medium has a
quadratic phase variation in transmission, it functions as a lens.

1.4 Geometrical relations in image formation

Image formation is one of the most important applications in optics. It has been
presented extensively in traditional optical literatures. It is also a very specialized
topic. The geometrical relation between an object and its image is presented here only
to demonstrate the basic relation between ray analysis and image formation.
Consider a point optical source placed at x = 0 and z =—p at the position y = A,, a thin
lens with focal length fis placed at z = 0, centered at x = 0 and y = 0 and perpendicular to
the z axis. Figure 1.6 illustrates the configuration. From the discussion in Section 1.1.5
(c), we can consider that the point source yields a summation of plane wave component
beams in different directions. Let us consider two incident component rays. (a) A component
ray that propagates parallel to the z axis. According to discussion in the previous section, this

Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:11:14, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781139871419.002


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.002
https://www.cambridge.org/core

Figure 1.6

Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:11:14, subject to the Cambridge Core

1.4 Geometrical relations in image formation 29

4
Thin lens
Object \A(
o U "I
~ N
. Y
hgp AN AN
~. N
~ N

\\ N \\ .
-p T [~ +f N +q| 1 z

~ N

~ ~

<. R
~ N
~ N —-N-
\\\ N him
~. .~
\\ N
RN Image
~ N\
SN
\\@‘gr

[lustration of the geometrical relations in imaging. The object 4, long is placed at —p. The lens
with focal length f'is placed at 0. The image 4;,,, long appears at g.

ray will be redirected after the lens. It passes through the focus of the lens at z = £. (b) A
component ray that propagates toward the center of the lens at y = 0. This ray is not
redirected in its direction of propagation because it passes locally through two parallel
dielectric interfaces with negligible separation at y = 0. The two rays meet at the image point.
If ray analysis is carried out for rays in other directions of propagation, they will also meet at
the same image point. In other words, the optical light from the object point source is
refocused by the lens to the image point. The relation between the positions of the object and
the image is determined geometrically.
From Figure 1.6, it is clear that

hob him hob him
— = forray (a), — = — forray (b 1.97
T a-f (a) Y (b) (1.97)
or,
1 1 1 him ¢
=, m _ 7 1.98
p q f hoo p (1.98)

Any extended object at z = —p can be represented by the summation of point objects at
different 4. Therefore the magnification ratio of the image to the extended object is ¢/p.
When p = oo, g = £, and h;,, = 0. Thus the object is focused by the lens to z = f.
Conversely, when p = f, g = 0. A point source is collimated by the lens to a parallel
beam.

Egs. (1.97) and (1.98) represent the geometrical relations between an object and its
image.
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30 Optical plane waves in unbounded medium

1.5 Reflection and transmission at a grating

An important property of optical radiation used in many applications is the diffraction of
an optical wave by a grating. Analysis of grating diffraction in traditional optical
analysis is often complex. However, it can be easily understood by plane wave analysis.

A grating is either a transmission or reflection medium with a periodic variation of
amplitude or phase, or a mirror with a periodic variation of reflectivity. If an optical wave
is incident on a grating then its transmitted or reflected wave will have different Fourier
plane wave components that correspond to different directions of propagation. These
Fourier components are known as different orders of grating diffraction.

Consider first a thin medium that has a periodic sinusoidal amplitude transmission
coefficient ¢ of the electric field such that

At AV
t = t,(1 + Atcos2zfyy) = t, +1, Teﬂ’ﬁfﬂ +1, ?e-ﬂ’ffgy (1.99)

The medium is placed at z =0, parallel to the x—y plane. ¢, is its averaged transmission, and
At is the magnitude of the periodic variation in the y direction. Az<1, so ¢ is always
positive. The minimum transmission is #, — A¢; the maximum transmission is ¢, + A¢. The
periodic variation has a grating period T, per unit length in the y direction where
Ty =1/f;

Let there be an incident plane wave polarized in the x direction and propagating at an
angle 6 with respect to the z axis.

@:Exil:Eoefj/)’cosﬁzefj[)’s1n(9y‘_3/cutl~l7 @:Hyil: \/iEoejﬁCOSﬁZejﬁSlneyejwliy
(1.100)

The output plane wave at z > 0 after the grating is

El _ Enxi_xanx _ Eata efjﬂsinb‘y +%eﬁjﬁ(sin972nj§/ﬁ)y +%ejﬁ(sin0+2njg/ﬁ)y:| efjﬂcos Hzejwt
(1.101)
Hoy = Hyly, Hyy = \/EEOX (1.102)

The output wave has three components, a plane wave propagating in the incident
direction, a plane wave propagating at an angle 6", called the +1 order diffracted
wave where 6" = sin”!(sin 6 + 2zf, /f), and a plane wave propagating at an angle
', called the 1 order diffracted wave, where 6" = sin™'(sin @ — 2xf; /f3). Note that
6" and @' of any propagating diffracted wave must be less than £7/2, otherwise that
order of the diffracted wave is an evanescent wave. When the diffracted wave for a
specific order is evanescent, we say that the grating is cut off for that order. A similar
result is obtained for a y polarized incident wave. If ¢ depends on polarization, the
magnitude of the diffracted wave will be polarization dependent. However, the diffrac-
tion angles will not be polarization dependent.
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1.6 Pulse propagation of plane waves 31

The sinusoidal grating transmission function in Eq. (1.99) is used here because it is
simple to analyze. When the periodic transmission function ¢ has a non-sinusoidal
periodic variation, it can be expressed as a Fourier series with periodicity T,. For
example, for a grating with an on—off periodic variation of A¢, Az can be expressed as
a repetition of individual on—off sections.

At(y) = Atoz rect <m§/2_ y) = Z At,cos(2mnfyy) (1.103)

rect(z) is defined as

rect(t) =1 for |7|<1 and rect(r) =0 for |7]>1 (1.104)

Here, ¢ is the width of individual on-section, 6 < T,. T, — ¢ is the width of individual
off-section. A#(y) can also be expressed by its Fourier series. Each Fourier component
has a magnitude A#;. For the kth Fourier component,

Tg
Aty = 2J At(y)cos(2kfyy)dy (1.105)
0

Each +n Fourier component has an angle of diffraction, 6" = sin™' (sin  + 2nzf, /)
They are the +nth order of diffracted waves. Only those with ‘Gi”‘ < /2 are propagat-
ing waves.

Plane wave analysis provides a simple way to understand grating diffraction. Note
that the direction of the nth-order diffracted wave is dependent on B, which is propor-
tional to the optical frequency ®, or wavelength. This is known as the dispersion of the
grating diffraction. Different orders of diffraction will have different angles for the
diffracted beam. Some orders of diffraction may be cut off.

1.6 Pulse propagation of plane waves

When the amplitude of the plane wave is time dependent, the wave is a pulse. Let there
be a plane wave pulse in the z direction, polarized in the x direction,

E, = Eyi, = A(t)e Pl@)2g/ooti, (1.106)
Here, in order to emphasize the dispersion effect, we have written § as f(w). Atz =0,
E, = A(t)e*™! (1.107)

A(t) can be represented by its Fourier transform pairs,

+o +o0
Fu(f) = J A(t)e ™ dt,  A(r) = J Fu(f)e 7 df (1.108)

Here F is the component of 4 at frequency f. Therefore, at z =0,
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32 Optical plane waves in unbounded medium

00

E(z=0)= J Fu(f)e gy (1.109)

—00

It is a sum of plane waves at different frequencies f, — f. Each component at f, — f
propagates with a different £ to the position z. Therefore, at z

—+o0
E((z) = J FA(f)e*j/f(ﬁmif)ze*ﬂﬂ(/éﬁf)ldf (1.110)

Usually, f, — f << f,. Therefore, S(f) can be represented by its Taylor’s series,
o’p

B =80+ |0 () + |55 (P - I

When the second- and higher-order terms can be neglected, we obtain

—+o0
E, — JFA(f) 72(8) oz g2t | @Iz iot (1.112)

—00

where

ve = 0w /0f|;, (1.113)

is known as the group velocity.
In a realistic situation, pulse distortion is important if the distance of propagation is
very long and the pulse duration of 4(?) is short. If the group velocity is independent of £,

the quantity &> 7(%) 107 can be factored out of the integral. The pulse is then propagated to
z without distortion, i.e. A(¢) is unchanged. The only change is a change of the phase of
E, from e /" which equals 27(0f/ dw)|;,z. Otherwise, there will be distortion, or
change of A(#). Clearly, when higher-order terms in Eq. (1.111) cannot be neglected,
there will be additional distortion.

Chapter summary

Basic plane wave analysis is presented. A plane wave is the simplest rigorous solution of
Maxwell’s equations. Yet it can be used to illustrate many basic concepts in optics.
Under appropriate circumstances, an optical ray could be represented locally approxi-
mately by a plane wave. Optical properties such as reflection, refraction, and focusing
can also be derived from plane wave analysis. The plane wave presented here shows how
the traditional analysis is related to Maxwell’s equations. However, much more complex
analyses are required for optical components design and image transfer [5]. Traditional
optics is better suited for these applications. On the other hand, plane wave analysis
shows optical properties that are not emphasized in traditional optics. These include the
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References 33

dependence of refraction on polarization, the differentiation between the amplitude
(including phase) and intensity of the wave, the importance of change in polarization,
the phase interference effects, etc.

Sophisticated engineering analytical techniques can be illustrated by plane wave
analysis. Concepts such as evanescent waves are introduced. Thin refractive compo-
nents are representable by a transparent medium with phase variation. Grating diffrac-
tion is presented as another example of how phase variation can be used to understand
simply a complex phenomenon.

Note that, an arbitrary optical field can be represented by summation of plane waves in
the form of Fourier transformation, which is the basis of optical signal processing.
Representation of an arbitrary radiation pattern by superposition of plane waves is also
probably the simplest form of modal analysis in which the modes are just the plane
waves.

Plane wave analysis is also an important vehicle to learn the basic mathematics of
wave solutions. For example, there are always two independent solutions, the forward
and the backward waves, and two mutually perpendicular polarizations for each direc-
tion of propagation. Optical interactions in all components are analyzed by matching the
boundary conditions at the interfaces.
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2  Superposition of plane waves
and applications

The basics of many applications such as anti-reflection and reflection coatings, beam
splitters, interferometers, resonators, holography, and planar waveguides, etc. can be
analyzed by superposition and multiple reflections of plane waves. These analyses
demonstrate the usefulness of simple plane wave analysis in another dimension. This
is the focus of Chapter 2.

However, there are many shortcomings of plane wave analysis. It does not provide a full
characterization of many applications because it ignores lateral variation of beams that
occur in real components. For example, the consequence of the finite size of the beam is not
included in plane wave analysis. Other analytical tools such as Fourier transform and
convolution theory also cannot be presented by plane wave analysis. Laser cavity modes
and Gaussian beams are not plane waves. These analyses are presented in Chapters 3 and 4.

2.1 Reflection and anti-reflection coatings

Reflection and transmission of plane waves at a dielectric interface can often be
increased or reduced by coating the surface with transparent dielectric layers that
have appropriate refractive indices. It is an anti-reflection coating when it is designed
for maximum transmission and a reflection coating when it is designed for maximum
reflection. It is a beam splitter when a specific ratio of reflected and transmitted
intensities is required for some applications.

Consider an x-polarized plane wave propagating in the +z direction in a medium with
refractive index n;. If this wave is incident perpendicularly onto another unbounded
medium that has a refractive index n, at z > d, the reflection I';, and transmission 77, of
this plane wave at the boundary is given by Eq. (1.64) in Section 1.3.1 as:

ny
b= 2
I =—-7t, T, =——5; (2.1)
1422 142
ny ny

The magnitude of the transmitted and reflected waves in Eq. (2.1) can be changed by adding

layers of transparent materials with appropriate refractive indices in front of medium #2.
Let us consider a single transition layer of a transparent dielectric material that has a

refractive index #n, and thickness d. It is placed from z =0 to z = d in front of the medium
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2.1 Reflection and anti-reflection coating 35
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Figure 2.1  Anti-reflection and reflection coatings. A coating with index n;, is placed between z=0 and z = d.
The incident and reflected waves in medium #1, the forward and backward waves in the coating,
and the transmitted wave in medium #2 are shown.

Coating, n=n;

with n,, as shown in Figure 2.1. Let there be an x-polarized wave for z <0, incident on the
interface along the z direction. Its x-y-z variation is:

E; = Ee P, (2.2)
H = [2Ee (23)
11; = I i Ly .

For simplicity, the time variation of e/*is not shown here explicitly.
There will also be a reflected wave in z <0,

E, = RE"P7j, (2.4)

H, = —\/iREie*’ﬁlziy (2.5)
H, u iy

There are two plane waves in the transition layer in 0 <z < d, a forward wave and a
backward wave.

E, = (F'e P74+ EPePi)i, (2.6)
H, = [UE ez — pretibe)i, (2.7)
H=\[ iy

There is a transmitted wave in the unbounded medium with refractive index n, atz > d.
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36 Superposition of plane waves and applications

E, = Eoe’fﬁz(z’@il (2.8)
H, = %Eoe*fﬂz@*d)il (2.9)

In order to meet the boundary conditions at z = 0 and at z = d, it is required that

. 1 1 .
E;+RE;=E +E’ —(E —RE)=—(E —E" (2.10)
Z Z,
ElePd 4 ghetibd — Zl(Efe*j/”’d B Ebe+jﬁ,d) _ ZLE" (2.11)
2

t
Z z
zo= " =t =t a2y
& €1 & Zr Zi m

The solution of £ and E” in Eq. (2.11) is:

-
Eh ) - Eb .
ﬁe’zﬂ"j = o Z, or 7= e 7dr, (2.13)
ny
Lm
n
th—l n;——rzta Tt2— 750 F12‘|‘Tt2:1 (2~14)
n n
From Eq. (2.10),
Ty + Tpe 2 215
o 1 + rltrtze_jzﬂld ( ’ )
- 5
n
F1t=1 nlz—rtl, Tlt:j’ Fy+Ti =1 (2.16)
T "
E, TTy _ipd
E 14 Iy, Tpe/25d A (2.17)
If we choose 7, and d such that
n, = \/niny and 7P =_1 (2.18)
Then
M _T_ 2 p_0, E,=4jE (2.19)
n n; ny

In this manner, we have obtained an anti-reflection coating that has no reflection in
medium #1 and 100% transmission into medium #2 at a specific wavelength, at which d
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2.2 Fabry-Perot resonance 37

is equal to % of the wavelength. Identical results are obtained when the electric field is
polarized in the y—z plane. Note that for a given d the anti-reflection effect is wavelength
sensitive. As the wavelength deviates, the reflection will increase and the transmission
will decrease. Thus there is an effective wavelength range of the anti-reflection coating.

In reality, there may not be a coating material that has exactly the required n,. The
wavelength range within which anti-reflection, reflection, or beam splitting is required
for different applications may also need to be decreased or increased. Therefore, multi-
ple layer coatings are used in most commercial devices. However, the basic principle is
demonstrated by the above example. In a similar manner, coatings can be applied to
enhance reflection or to split the incident beam into desired ratios of reflected and
transmitted beams. Beam splitters can also be designed for beams incident at specific
incident angles.

Note that the analysis presented here is similar to impedance transformation analysis
of microwave transmission lines. The differential equation for E and H is identical to
that for V and I of microwave transmission lines [1]. In microwaves, anti-reflection is
called impedance matching.

Many of the analytical techniques developed for microwaves are also very useful for
optical analysis, especially when we need to analyze multi-layer transitions. It is
important for optics engineers to understand transmission line methods. However, a
detailed discussion of that is beyond the scope of this book.

2.2 Fabry-Perot resonance

2.21 Multiple reflections and Fabry—Perot resonance

Although plane waves propagating between two boundaries have already been analyzed
in the previous section by matching the total fields at the boundaries, an alternate way to
analyze it is to consider an incident plane wave multiply reflected and transmitted at the
two boundaries. Much more physical insight on resonance could be gained by present-
ing this alternate approach.

Let us first consider a plane wave incident on the first boundary at z = 0, without
considering the second boundary at z = d. This incident wave E; would excite a reflected
backward wave E,; in medium #1 and a transmitted forward wave /| in the transition
medium. Let the boundary at z = 0 have a reflection coefficient I'j, and transmission
coefficient Ty, for the incident wave. The x-y-z variations without showing the time
variation &/’ are:

E, = T Ee i, ford>z>0,  En =T Ee"i, forz<0  (2.20)

This boundary will have reflection coefficient I';; and transmission coefficient 7}, for any
plane wave incident on it in the reverse direction from the transition medium.

As F/| propagates to z = d, it excites a reflected wave E_”] in the transition medium and
a transmitted wave E,; in medium #2. Let the boundary at z = d have reflection
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38 Superposition of plane waves and applications

coefficient I';, and transmission coefficient T,, for any forward wave propagating in the
transition medium. Then we obtain:

E, = Tp(T\EePd)e i for z>d (2.21)

E} =To(TyEe )P =Di for 0<z<d (2.22)

The reflected wave E_bl propagates back to z = 0 and excites another transmitted
backward wave E,, in medium #1 and a reflected forward wave £/, in the transition

medium.
Ey =Tyl (TyEePi)e Pl e for 0<z<d (2.23)
EY =Ty Tp*(Ty Ee P)e Wide T EDi for 0<z<d — (224)
Ep = TuTp(Ty Ee 7)o Pl (2.25)

As F/, reaches z = d, it excites a forward E,, in the transition medium and an E”, in
medium #2.

Ep = To(TuTnTyEe d)e D for z>d (2.26)

As E’, reaches z = 0, it excites a forward E'5 in the transition region and an E,; in
medium #1.

E;s = Tulul (T Ee Pit)e ¥hde TiPzi for 0 <z (2.27)

Consequentially, the forward and the backward waves in the transition medium
continue to generate backward reflected waves at z < 0 and transmitted output waves
atz>d. The amplitudes of the total forward and backward propagating waves are related
to the incident wave by:

E, _ipd _2pd 2 2 4pd Ty, Tpe
7= TuToe P4 TuToe 4 Ty Tole M 4 ) = e g (2.28)
for z>d,
E, _ 1 I+ l"tze’fz/”rd
Zr_r o T Toe72bd = - 2.29
E 1+ Toplidae | — T Tpe2d 1 —T,Tpe72hd ( )
for z <0, and
E 1 E? e/
i\ O 2.30
E; "1 -TuTped> E — 121 T Tpebd (2:30)

for0<z<d.

When the I's and 75 in Egs. (2.14) and (2.16) in the previous section are used in Eqgs.
(2.28) and (2.29) the solutions of E,, and E,. become identical to the results in Egs. (2.15)
and (2.17) of the previous section. However, the above results are more general. They
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2.2 Fabry-Perot resonance 39

also apply if the boundaries are partially reflecting mirrors. Note that, the reflection
coefficients, I, and transmission coefficients, 75, at the two mirrors are related by

IF'y+Ty=1, Tp+Top=1, TI'y=-Ty, I'y=-Ipn (2.31)

When the mirrors have high reflection coefficients, Eq. (2.30) shows that the forward
and backward plane waves in the transmission medium can be very large whenever
e 2Pl At the wavelengths and separation of the mirrors, d, that satisfy this condi-
tion, the round-trip phase shift 0 of the plane wave is 2qr. This means that the multiply
reflected forward and backward waves in the transmission medium reinforce each
other. The stored energy of the plane waves becomes very high for a small incident E;.
The optical component is said to be in resonance at these wavelengths.

2.2.2 Properties of Fabry—Perot resonance

So far, only a formal analysis has been presented. In order to understand the physical
significance of E,, and E,, let us consider a case in which medium #1 and medium #2 are
identical, the mirrors are symmetrical, and I's and 7% are real.

T,=Ty=T, Ty=Ty=T, R,=T12=T2° T,=T ="" (232

R,, and T,, are the optical power reflection and transmission coefficients of the
mirrors.

The time-averaged incident and reflected powers in medium #1 and the transmitted
power in medium #2 are:

1 )
Pi = n \/gEiEi * (233)
2 Vu

1 » 4R,,sin®(B.d
P = —nl\/g e B, .)2 EE (2.34)
2 “ (1 —=Ry)" + 4R,sin” (B,d)

1 ) 1—R,)*
Po = —-nm \/87 (2 ) ) E,'Ei* (235)
2 (1 —Ry)" + 4Rysin”(B,d)

Since the sine function is nonlinear, P, remains very small at wavelengths other than the
resonance wavelengths. When R, is close to 1, P,/P; is close to 1 within a narrow
wavelength range from the resonance wavelengths at which 6 = 2f8,d = 2gn (¢ = any
integer).

For a given d, resonance occurs at frequencies f, such that

q qco
= = 2.
Ja 2d\/equ 2n,d (2.36)

The separation of adjacent resonance frequencies, known as the free spectral range
(FSR) of the Fabry—Perot resonance, is
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40 Superposition of plane waves and applications

1

Af, = —fr = 2.37
f‘] f;]+1 ﬂi Zd\/@ ( )
If we let Ad = 6 — g, then T can be expressed as
P, 1 —R,)
T:F: ( ) e (2.38)
" (1=R,)* +4R, (sinT)
T'is at its maximum when Ad = 2¢u; it drops to /2 when
2 2 (1=R,)’
A6° = (0 — gm) %T (2.39)
The reflected power P, is
46\
p 4R,,sin (7)
= (2.40)
P;

5
! (l—Rm)2+4Rmsin2<75>

If we let w,, be the center of the resonance frequency, w, = gr/2./uéd, and ¢ = any
integer, then the half linewidth Aw in which 7 drops to % is

1 —Ru)ec,
mrtt

Figure 2.2 shows the ratio of P,/P; in Egs. (2.33) and (2.35) for a typical Fabry—Perot
resonator as a function of §,d for several R,,. Clearly the resonance can serve as a very
narrow band filter when the reflectivity of the mirrors is high.

There are two ways to measure the quality of the resonance. A measure commonly
used to gauge the resonance in the optics literature is the finesse, F, which is the FSR
divided by the full line width. Using the half linewidth Aw in Eq. (2.41), we obtain

F= (1\/5#7';;;) (2.42)

In engineering applications, a measure commonly used to gauge any resonator
characteristics is the Q factor. It is defined for any resonator without any excitation as

energy stored
? power dissipated

O=o (2.43)
The bandwidth is related to Q by Aw = w,/Q.

For the Fabry—Perot resonator under consideration, its homogeneous solution consists
of plane waves inside the resonator reflected back and forth between mirrors, and

partially transmitted at each reflection. For a plane wave with electric field amplitude
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Figure 2.2 Ratio of transmitted to incident power in a typical Fabry—Perot resonator with different reflectors.

E, its time-averaged stored energy per unit area is (¢,/2)EE*d. When it reaches the

mirror, the time-averaged transmitted power per unit area is 1/27,,1/ (¢;/p)EE*. The
ratio of energy stored/power loss is n,d /Ty, c,,. As the plane wave is reflected in each trip
at the two mirrors, this ratio is repeated. Therefore the total ratio of energy stored/power
loss is also n,d/T,,c,. The Q and the bandwidth of the resonator at resonance are

n.d A Tnco
w =
Tnco nd

Comparing the bandwidth shown in Eq. (2.41) and Eq. (2.44), they agree with each
other when the reflectivity R, is high.

Fabry—Perot resonators are important in many applications, such as scanning inter-
ferometry and wavelength filtering. Fabry—Perot resonance properties that are com-
monly used in optics are line width, finesse, and free spectral range. The quantities
commonly used in engineering are free spectral range, line width, and Q factor. These
properties depend only on the reflectivity of the mirrors and the separation distance d in
the lossless plane wave approximation. In reality, they may also be affected by the
propagation loss of the medium and the diffraction losses.

0=ow, (2.44)

2.2.3 Applications of the Fabry—Perot resonance

Fabry—Perot resonance has many applications, such as spectrometry, wavelength filter-
ing, loss measurement, and time delay. However, different applications utilize different
features of the resonance.

(a) The Fabry—Perot scanning interferometer
The operation of prism spectrometers discussed in Section 1.3.4 depends on the dispersion
of the refractive index of the material; they have low spectral resolution. The operation of
grating spectrometers discussed in Section 1.5 depends on the dispersion created by
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42 Superposition of plane waves and applications

diffraction of the optical beam by the periodically reflecting or transmitting grooves. The
angular separation of diffraction angle at different wavelengths can be increased by
reducing grating periodicity, i.e f,. Thus, grating spectrometers have much higher spectral
resolution power than prism spectrometers. However, their resolution is still limited due to
the finite size of the grating and the divergence of the optical beam.' In a Fabry—Perot
spectrometer, the separation distance d between the two mirrors is varied mechanically.
The maximum transmission of the incident radiation with different wavelength compo-
nents will occur at different d when f;, = q/2d, /et = qc,/2n,d. As d is scanned,
the variation of f, is df, /éd = —qc,/ 2n,d?. The linewidth of transmission,
Aw = Tyc,/v/Rund, at each transmission peak is very narrow at large d. Thus, scan-
ning Fabry—Perot spectrometers can offer very high spectral resolution, for example,
they are commonly used to measure the spectral distribution of multi-mode lasers.
However, when the incident radiation contains a range of spectral components wider
than the free spectral range, transmission peaks of different order ¢ will occur within the
same range of d.

Note also that at incident angles # different than the normal incidence, the
Fabry—Perot resonance peak will occur at f, = ¢q/2d cos@,/eu = qc,/2n,d cos 6.
Thus, for a divergent incident beam and for a given d, the transmission peak of
the same frequency component will appear at different 6, caused by the different
orders g. If a lens is used to focus the output beam, the output will appear as concentric
circles.

In retrospect, while the prism spectrometer is the simpler tool to fabricate, it has a low
resolution. Grating spectrometers can be designed to provide very high resolution. Both
of them are used commonly to measure inputs with wide spectral content. Scanning
Fabry—Perot spectrometers are useful for resolving closely spaced spectral components
such as those emitted from a multi-mode laser. However, overlapping transmission of
different orders of q within the scanning range needs to be resolved for inputs that have
spectral contents wider than the free spectral range.

(b) Measurement of refractive properties of materials
From Eq. (2.37), it is clear that the refractive index n, of the transmission medium
between mirrors is related to d and the free spectral range of Fabry—Perot resonances by
n = ¢,/2Af;d. For a given d, if the frequencies of adjacent resonance transmission
peaks can be measured accurately, one can obtain an accurate evaluation of the refractive
index n, of the medium between mirrors by Af;. Note that the accuracy of this measure-
ment is independent of the reflectivity R,,. Therefore, it can be used to measure the
refractive index of any material, even if the reflectivity between medium 1 and the
transition medium is low or moderate.
When the transition medium has loss, f, = f,. —jp,,- Eq. (2.28) becomes

! The divergence of an optical beam that has a limited beam size will be discussed in the next chapter.
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2.3 Reconstruction of propagating waves 43

Eo . . . Tltthe_ﬂ/ade_j/}/rd
=0 = T, Tpe P + T Tpe P 4 T2 T2 7 4 ] = :
E, ~ DuTee P+ Talpe P04 T T e | = o e

(2.45)
When R,, and T, are real as shown in Eq. (2.32), the P, is

1 & T e
P, = _"1\/E (L) e EE;" (2.46)
2 “(

1 — Rye~%0?)? 4 4R, e 2Pudsin?(B,.d)

P, is amaximum at ,.d = gr, and a minimum at 8, d = (¢ + 1/2)x. The ratio of P, at
its maximum to P, at its minimum, called the contrast ratio, is
Po,max _ 1+ Rmeizﬁmd
Po,min 1 - Rn1e72’/;’“d

(2.47)

Therefore, for a known R,,, the contrast ratio can be used to determine £,,, i.e. the loss of
the refractive material.

(©) Resonators for filtering and time delay of signals
From Eq. (2.41), it is clear that if d is large and T, is small, the bandwidth of a Fabry—
Perot resonator can be made very small. Therefore it can be used as a filter. Although
plane wave Fabry—Perot resonators are too bulky to use for many applications, wave-
guide resonators have been used effectively as filters in other configurations.
It takes time for the stored energy in a resonator to decay, caused by dissipation. Thus,
the decay time of energy in the resonator, 7, is

d(stored energy)
dt

1 d/ Ty
= — (stored energy) = dissipated energy T= Q9 = /
T W,  Co/ny

(2.48)

In many applications, a time delay is used for signal processing. For example, a long
optical fiber is often used to delay a pulsed signal. The time delay that can be achieved by
propagating in a medium such as a waveguide (or fiber) that has refractive index n, and
length L is n,L/c,. In a Fabry—Perot resonator, an input signal pulse will be reflected
back and forth between mirrors. Therefore the output pulse, which is emitted later, is a
delayed signal. The output pulsed signals will decay in time. It is common to regard 7 as
the useful time period of signals. Therefore, the last useful output pulse would have
increased the delay time by 1/7,,,.

2.3 Reconstruction of propagating waves

When the intensity of the interference pattern between an object wave and a reference
wave is recorded as the index or transmittance variation in a recording medium, the
transmitted waves of another incident beam in the form of the original reference beam
through the recorded medium will then reproduce the original object wave and its
conjugate.* This is the basic principle of holography. It can be illustrated very simply
by plane wave analysis.

2 The principle is also applicable to recordings in reflection.
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Recording
medium
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Reference beam

(a) Holographic recording

Recorded medium

Illumination beam|

\\K‘
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—
9FX
CX
*| Transmitted beam

Conjugate beam

| Reconstructed object beam

(b) Holographic reconstruction |

Figure 2.3 Holographic recording and reconstruction of a plane wave. (a) The interference pattern of
the intensity of the object and the reference beam is recorded by the recording medium. (b)
Upon the illumination of a beam identical to the reference beam used in the recording
process in (a), the reconstructed object beam, the un-diffracted beam and the conjugate
beam are created.

Consider an object beam, 4,e "*2" ¢/, and a reference beam, 4,¢ “#:"¢/*'. Both are
polarized in the x direction. They are incident on a recording medium at z = 0, as
illustrated in Figure 2.3(a). The total electric field and the time-averaged intensity of the
incident and the reference beams are:
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2.3 Reconstruction of propagating waves 45

Et — (Aoe—jﬁ cos Huxxe—jﬂ cos H(,yye—_/'/ﬁ7 €08 0.2 + Are—j/} cos H,Xxe—j/;’ cos O,Jt,ye—j/} cos H,Zz)e/'wt (249)

1 Je
I == [-EE*
24/ u bt
% E{AOZ +Ar2 +A/élnAr[efjﬂ(cos 6,.—cos an)xefjﬂ(cos Ooy—C0S O, )y
u

+ e+j/)’(cos 6, —cos Qn,c)xeij/f(cos 0oy —cos H,y)y] }
(2.50)

Here, cos 0, cos 0,,, and cos 0, are direction cosines of the object beam with respect
to the x, y, and z axes. Similarly, cos 8., cos 0,,,, and cos 6,. are direction cosines of the
reference beam. A recording medium is placed at z = 0 to record /. Let the transparency
of the recorded medium, ¢, be proportional to /, i.e. #(x,y) = T,/. If an illumination plane
wave E;, = A3e7j/&'fej“”is incident on the recording medium as shown in Figure 2.3
(b), the transmitted wave ¢E;, is

1 Je . . o
lEm _ T07 7A,-,,e j/fcosé},xxe j/)’cos(fryye -jf cos O,

{AOZ + ArZ + AoAr [efjﬁ(cos 6,5 —cos Hm)xefjﬂ(cos 0oy —C08 6,y
+ eJrjﬁ(cos Opx—COS H,x)errjﬁ(cos 0y —cos (7‘,},)y] e]wt}
(2.51)

There are three output terms. The first term, which represents a transmitted illumina-
tion beam, is

Tol\/EA”(AOZ _|_AFZ)efjﬁcos(7‘,xxefjﬂcosHryyefjﬁcos(inze/wt (252)
2Vu”
The second term, which represents a beam identical to the object wave, called a

reconstructed wave, is

To l \/EAinAoArejﬁ cos ﬁmxefj/)’ cos 6‘,,),.ye7j/3’ cos 490zze/‘a)t (253)
2\Vu
The third term, which represents a beam tilted into a new direction with respect to the x

and y axes, called a conjugate beam, is

T() l \/EAmAOArejﬁ(cos 6,x—2cos er)xefjﬁ(cos 0,y—2cos 6,),.y)efj/>'cos @_.zejwt (254)

2\Vu

The conjugate beam has direction cosines cos 0., cos &, and cos 0., where cos 0., =

€05 0oy — 208 Oy, €08 O, = €08 8,, — 208 8, and cos O, = \/1 — 0820 — c0s%0,,
In short, if the recording medium with transmittance, t(x,y), is illuminated by E,,, it

recreates the object beam and its conjugate. The relative magnitude of the transmitted

beams can be adjusted by the magnitude of A,, A,, and A;,. If there is more than one object
wave, then all the object waves will be recreated by E;,,. For example, the object waves can
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The cladding

n=n,

The waveguide
x=1

~a

n=ng

The substrate

Figure 2.4  Tllustration of a planar optical waveguide. The core with index n, has a planar surface parallel to the
y—z plane, placed between x = 0 and x = ¢. The substrate is below x =0. The cladding is above x =1.

be the Fourier components of a complex object. The same Fourier components are created
in the object and conjugate beams. This is the basic principle of holography.

24 Planar waveguide modes viewed as internal reflected plane waves

Optical planar waveguides can also be understood from the analysis of plane wave propaga-
tion in multi-layered media. A typical optical planar waveguide is illustrated in Figure 2.4. It
has a high-index layer, n,, surrounded by a cladding with index n. and a substrate with index
ng. The width of the middle waveguide layer, the cladding and the substrate, extends to both
v =00 and z =4o0. The thickness of the substrate and cladding also extends to infinity in the
x direction. If we analyze the optical plane waves, propagating in a multi-layered media such
as that shown in Figure 2.4, we find that there are three typical cases.

241 Plane waves incident from the cladding

Consider a plane wave that is incident obliquely on the layered structure shown in
Figure 2.4 from x > 7. Let us assume the plane wave is polarized in the y direction.’ It
propagates in the x—z plane in a direction that makes an angle §; with respect to the x axis

3 For an electric field polarized in the plane of incidence, there will be a similar set of equations. However, the
boundary conditions at z=0 and z = ¢ will lead to a different set of solutions than those shown in this section.
In this case, the magnetic field will be in the y direction. In Chapter 6, we will show that these solutions are
the TM modes.
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2.4 Planar waveguide modes viewed as internal reflected plane waves 47

in various layers. The angle, 8;, will be different in different layers where j designates the
layer with index n;. For example, the incident plane wave in the cladding with index 7,
will have a functional form,

Eiil _ Aefjnck sinf, ze+jn(.kcos H[xl-l (255)
k is the free space propagation constant, k = 27/4,. There will be a reflected wave in the
cladding, excited by the incident wave,

Erclil :Aejnckcos@trcwefjncksmb‘czefjnﬂkcosb‘ﬂ(xft)i (256)

There will be a forward transmitted wave in the waveguide layer excited by the incident
wave,

Eﬁvl iy — Ae Jnck cos 6, tTcwefjnzk sinf, zefjnzk cosb (x—1) iy (257)
The continuity of the tangential electric field demands that n;ksin 8; = nyksin 8, at the
boundary x = ¢. The amplitudes A4,,. and A4,, including their phase, will be given by 4
and the reflection and transmission coefficients at x = #. When the transmitted wave Ej,
reaches x =0, it excites a transmitted wave in the substrate £/, and a reflected wave E,., in
the waveguide.

P in.k cos 0. t ,—jnykcos Oxt ,—jngk sin g z +jnsk cosb x -
A iy (2.58)

Erwliy :Arwe—jnzksinﬁzze—jnzkcosélzxiy (259)
The boundary condition at x = 0 is nyksinf; = nyksin 6,. The amplitudes A4, and A4,,, are
given by A4j, and the transmission and the reflection coefficients at x = 0. All the
reflection and transmission coefficients at the x = ¢ and x = 0 boundaries are given in
Section 1.3.1. Similar to the discussions presented in Section 2.2.1, for waveguide
structures with n; < ng <n,, there will be multiple reflected and transmitted waves. In
addition to the multiple forward and backward waves in the waveguide, the total
reflected waves in the cladding and the total transmitted waves in the substrate are
also the sum of the waves after each reflection and transmission.

Note that at the maximum incidence angle 6. =z/2, the maximum 6, is
02 max = sin”! (nc/n2). In a typical waveguide, n > ng > n.. Thus, for any plane wave
incident from the cladding, all the plane waves in the waveguide layer have angle
0, < O;max- The transmitted wave in the substrate will have 6, limited to
0, = sin~ (n./ny).

When

2npkcosbrt + ¢, + ¢, = 2qm, (2.60)

where ¢ is an integer, and the multiply reflected and transmitted waves in the waveguide
layer will be in phase with each other. Here ¢,,. and ¢,,, are the phase angles of T',,. and
I',,, for this polarization of the electric field at the waveguide-to-cladding and the
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48 Superposition of plane waves and applications

waveguide-to-substrate interfaces. At these specific angles of incidence, similar to the
Fabry—Perot resonance the sum of the waves in the waveguide layer could have very
large amplitude.

2.4.2 Plane waves incident from the substrate

Similarly when there is a plane wave incident on the waveguide from the substrate side,
there will be a transmitted and a reflected beam in the waveguide and a reflected beam in
the substrate at the x = 0 interface. The 6, can vary within the range 0 < 6, < 7/2.
However, there are two different cases.

(a) Incident plane waves with sin"'(n. /ng) < 0, <m /2
Let the incident wave have 6, such that sin '(n, /n,) < 6, < « /2. Since in most
waveguides, n. < n; <n,, the plane wave in the cladding is an evanescent wave. At the
0, limit, the plane waves in the waveguide have 6, = +sin~! (ng/n2). Moreover, at the
discrete incidence angles in which the condition in Eq. (2.60) is satisfied, there will be
resonance in the waveguide, as discussed in the previous section.

(b) Incident plane waves with 0 < @, < sin_l(nc /ng)

If the incident angle 6, is small enough such that 0 < 6, < sin™" (n¢/ny), there will also be
transmitted waves in the cladding. The transmitted plane waves in the cladding have
n.sinf, = ngsinf;. The solutions will be similar to those shown in Egs. (2.55) to (2.59)
with the subscript ¢ replaced by the subscript s and vice versa. The resonance condition
for the waves in the waveguide will be the same as that given in Eq. (2.60). Other
properties of the reflected and transmitted waves will be similar to those discussed in
Section 2.4.1.

Note that, at the same 6, 0, and 05, the plane wave solution for incident wave in the
substrate with 0 < 0, < sin™' (n./ny) discussed here and the plane wave solution for
incident wave in the cladding with 0 < 0. < n/2 discussed in Section 2.4.1 constitute two
equivalent but independent solutions* of Maxwell's equations. The solutions could have
the same 0 values, they are degenerate. Any linear combination of these degenerate
solutions is also a plane wave solution at the same angles. This feature is utilized in
Chapter 6 to give the air modes.

24.3 Plane waves incident within the waveguide: the planar waveguide modes

When 7, < n, <n,, there is no solution at 6, > sin~'(ny/n,) for plane waves incident
from either the substrate or the cladding. However, if there is a plane wave with
6, > sin"!(ny/n,) already excited in the waveguide there will be multiply totally
internally reflected plane waves at both the x = 0 and x = ¢ boundaries. The sum of the
plane waves, reflecting back and forth between the interfaces at x = 0 and x = ¢ are the
sum of the solutions of the Maxwell’s equation that satisfies all the boundary conditions.

4 The equivalent solutions have the same angles 6, 6;, and 6,, and the same resonance condition.
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2.4 Planar waveguide modes viewed as internal reflected plane waves 49

However, the sum of all the multiply reflected waves is zero because of the cancellation
of the phases e /"k212¢050> There is only one exception. When the condition in Eq.
(2.60) is satisfied, all the waves then add to each other. Therefore there is a solution of the
Maxwell’s equation only when the resonance condition is satisfied. Each of these
solutions is a discrete planar waveguide solution of the structure. There are only finite
and discrete values of 8, that satisfy Eq. (2.60). Let us designate the mth discrete 6, at
resonance to be 0, m=0,1,2,3 ...

2npkcos Ot + ¢, + ¢, = 2(m + Dz (2.61)

The mth reflected plane waves in the waveguide will be’:

E,=A (efjm(ankcos HmH»lﬂwc‘Fwwv)e+jkl12kCOS Omax efjm(2n2kcos Ont+9,c+,05) efjnzkcos (9,,,x)

% e—jknzsin Oz (262)

Here |I'| for total internal reflection is 1. From Section 1.3.3(b), we got two
separate ¢ answers for the electric field polarized perpendicular to the plane of
incidence and for the electric field polarized in the plane of incidence. The ¢ for
these two cases are

_1 —2nyc08 0, n,2sin0,, — n.2

. = tan 2.63

PLwe ny2c0s26,, — (ny2sin’6,, — n.2) (263)
-2 0,/ ny2sin%6,, — ng?

0 = tan ™! 2NV I T S T (2.64)
ny%c0s26,, — (ny%sin“0,, — ng?)
_2 c em (’2 i 20,” - 2

0 ppe = tan™! e IV R S0 T T T2 (2.65)
n.2cos20,, — (n2sin”6,, — ny?)
_2 s 0711 52 i 29m - 2

0z = a1 211s€0S ng2sin ny (2.66)

ng2cos?0,, — (nszsinzﬂm —np?)

Therefore, radiation in two different polarizations will have two different sets of
solutions.

In short, planar waveguide modes are modes excited within the waveguide layer at
resonance values of 0, where 6 > sin™ ' (n,/ny). Note that the direction of propagation of
the planar waveguide mode is z. There is no energy directed in the y direction. There are
two separate cases. For an electric field polarized along the x axis, there is a set of
modes satisfying Eqs. (2.61), (2.63) and (2.64). Although the total electric field is
perpendicular to z, the total magnetic field has components in both the y and the z

5 The waves in the waveguide at these discrete 6,, values of #, cannot be excited by an incident propagating
wave from either the cladding or the substrate.
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50 Superposition of plane waves and applications

directions; therefore these modes are called TE modes. For an electric field polarized in
the plane of incidence, there is a set of modes satisfying Eqs. (2.61), (2.65) and (2.66).
These modes have a magnetic field in the x direction, perpendicular to the propagation
direction z, but the electric field has components in both the y and z directions; thus they
are called the TM modes.

All planar waveguide modes have evanescent fields in the cladding and sub-
strate. Therefore, even if there is scattering or absorption in the cladding or the
substrate, they still have low propagation losses in the z direction. Planar
waveguide modes cannot be excited by a propagating plane wave in the cladding
or the substrate.®

244 The hollow dielectric waveguide mode

Different than the planar waveguide, the hollow dielectric waveguide has the
same material geometry as the planar waveguide shown in Figure 2.4, except n,
and ng are both considerably larger than n,. The solutions presented in
Sections 2.4.1 and 2.4.2(b) are applicable. However, the hollow dielectric wave-
guide refers to the situation where the excitation takes place inside the waveguide
layer. When the excitation of the waves takes place inside the waveguide, there
will be multiple reflected plane waves back and forth between boundaries inside
the waveguide, and there will also be corresponding radiated waves in the clad-
ding and in the substrate that are propagating away from the boundaries. No
matter what the indices of the layers, whenever 2nykcos 8,,¢ + ¢,,. + ¢,,, = 2m= the
multiply reflected E,,, and transmitted Eg, in the waveguide layer will be in phase with
each other. Thus we again have resonance of the multiply reflected and transmitted
waves in the waveguide.

The reflection coefficients from the waveguide to the cladding and substrate at
the x = ¢t and the x = 0 boundaries will depend on the polarization of the electric field.

They are
ny cos @, — n, cos 6, 1y cos Oy — n, cos O
Tiwe = T = 2.67
e, c0s 6, + n, cos O b cos 0 + ny cos O, (2.67)
1, cos 0y — ny cos b n.cos 8, — ny cos b,
s = r = 2.68
/s c0s 0 + na cos O /e L cos 6, + my cos 6, (2.68)
The resonance condition is
2nykcos Ot + ¢, + ¢, = 2mn (2.69)

Note that the transmission coefficients to the propagating wave in the cladding and the

substrate are related to the reflection coefficients by

© Planar waveguide modes can be excited from plane waves in a prism that has an index > .
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ne
Tiwe=14+T1we, Tiws=14T 1y, T//wc = I’l_
2

(14T /) (2.70)

(1 + FLWU)?

J— ns
T//ws — a

If n. and ng are significantly larger than n, then the reflection coefficients in Egs. (2.67)
and (2.68) can be large, and the transmission coefficients will be small. Similar to the
resonance effect discussed in Sections 2.4.1 and 2.4.2, it means that when the reflection
coefficients I',,. and I',,; are large, the total field in the waveguide is much larger than the
fields in the cladding and the substrate at resonance. The excited field at resonance will
propagate in the z direction with just some radiation loss. Since the lowest n, is the free
space, such a waveguide structure used at resonance is called a hollow dielectric
waveguide.

In summary, the planar waveguide structure shown in Figure 2.4 could be analyzed
simply by plane wave analysis. How such a structure functions depends on the excitation
of modes. (1) For incident beams in the cladding or the substrate, there are the usual
reflected and transmitted beams. As we have shown in Section 2.1, one can use it to
control reflection or transmission. There are also the resonances at specific 0, angles.
(2) When n. < ng <n, and 6,, > sinfl(ns/nz), there is a non-zero solution only if the
resonance condition is satisfied. The mth solution satisfying the resonance condition is
the planar waveguide mode. It can only be excited from inside the waveguide. (3) If
ny << ng and n., waves excited within the waveguide layer at the resonance angle
propagate as hollow dielectric modes.

Although the solutions of guided-wave modes propagating in a planar wave-
guide are obtained here by plane wave analysis, the total field of the guided-wave
mode is no longer a TEM wave propagating in the z direction. For the electric
field polarized in the y direction, we have the TE modes. The magnetic field has
components in both x and z directions. For the magnetic field in the y direction, we
have the TM modes. In other words, even though the plane wave analysis provided
us with a solution, the properties of the waves can best be described in terms of
modes. In Chapter 5, these modes and their interactions will be analyzed again by
modal analysis. The modal analysis is used in Chapters 6, 7 and 8 to analyze
devices based on the mutual interactions of modes. These tasks cannot be accom-
plished by plane wave analysis.

Chapter summary

The interference effects caused by superposition and multiple reflections of plane waves
could be used very effectively to analyze and understand the gist of many applications.
They include anti-reflection coatings, beam splitting, reflection coatings, the Fabry—
Perot resonance, modes in planar waveguides, holography, various applications of the
Fabry—Perot resonance, etc.
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52 Superposition of plane waves and applications

The analyses demonstrated the importance of the concept of superposition of
waves. Pedagogically, it is interesting to note that the plane wave analysis has already
yielded the modes in a planar waveguide. Yet, many properties and application of the
waveguide devices can only be discussed effectively by modal analysis, not by plane
wave analysis.

If we combine the discussions in Chapters 1 and 2, we see that plane wave analysis
could be used as a first approximation to analyze many applications. It is important to
note that plane wave analysis can be applied only to material structures with a planar
boundary. The full analysis of these applications in the non-planar configurations of
realistic components requires the use of diffraction or modal analysis that will be
presented subsequently in this book.

Reference

[1] David M. Pozar, Microwave Engineering, John Wiley & Sons, 2005, Chapter 4.
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3  Scalar wave equation and
diffraction of optical radiation

For analysis of optical radiation propagating in realistic components that have finite
boundaries and an optical radiation beam that has lateral variation, plane wave
analysis cannot be used. Maxwells equations with appropriate boundary conditions
should be used. However, rigorous analysis using vector Maxwells equations plus
boundary conditions is very complex and tedious. Even if we find the solutions they
might contain fine features (such as the fringe fields near the aperture) that are often of
little or no significance for practical applications. In many cases, we need only a simple
solution that can give us the main features (i.e. the amplitude and phase variations) of
the dominant electromagnetic field at a distance moderately far away from the input
aperture. We do not need to know the near field close to the aperture.

When one deals with radiation fields that have slow transverse variations and that
interact with devices that have overall dimensions much larger than the optical wave-
length A, the fields are often transverse electric and magnetic (TEM). In TEM waves,
both the dominant electric field and the dominant magnetic field polarization lie
approximately in the plane perpendicular to the direction of propagation. The dominant
electric and magnetic fields are also perpendicular to each other. The polarization does
not change rapidly while the radiation propagates in an isotropic medium within
moderate distances.! In this case, we usually need only to solve the scalar wave
equations to obtain the amplitude and the phase of the dominant electric field along its
polarization direction. The dominant magnetic field can be calculated directly from the
dominant electric field. Conversely, we can also first solve the scalar equation of the
dominant magnetic field, and the electric field can be calculated from the magnet field.

The condition under which the scalar wave equation is applicable will be discussed in
Section 3.1. To find the solution of the scalar wave equation, commonly known as the
Kirchoff’s integral, involves a lot of mathematical details. A discussion of its derivation
will divert our attention from the application of Kirchoff’s integral. Therefore it is
presented separately in the Appendix. Kirchoff’s integral is presented in Section 3.2
without derivation. In the rest of the sections in this chapter we will focus on the
applications of Kirchoff’s integral. These applications lead directly to the traditional
Fresnel and Fraunhofer diffraction patterns that determine the resolution of telescopes
and microscopes, as well as to laser cavity modes and Gaussian beams described in
Chapter 4. In addition, various mathematical techniques can be applied to the

' In birefringent media such as crystal, the polarization of electric field rotates.
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54 Scalar wave equation and diffraction of optical radiation

Kirchhoff’s integral. For example, under certain circumstances, the incident and dif-
fracted fields are related by Fourier transform. Therefore, analytical techniques based on
Fourier analysis, such as convolution, are applicable.

3.1 The scalar wave equation

The simplest way to understand why we can use a scalar wave equation is to consider
Maxwell’s vector wave equation in a homogeneous medium without free charge car-
riers. It can be written in terms of the rectangular coordinates as:
2 1 0°E . , :

Vg—gﬁzo, E = Eiix + Eyiy + E:i: (3.1)
If £ has only one dominant component, for example E, i,, then E, and E. may be
neglected. The unit vector i, does not have to be displayed explicitly. In this approxima-
tion, the resultant equation is a scalar wave equation for E,. Alternatively, the dominant
component may be £, and E, and E. can be dropped from Eq. (3.1).

In short, for TEM waves with constant polarization, we usually describe the dominant
electromagnetic (EM) field by a scalar function U that is proportional to the dominant
electric field without specifying explicitly its polarization.” In a homogeneous medium
without free carriers, U satisfies the scalar wave equation,

) 1 &

VU_?WU_O (3.2)
In our presentation here, U is the instantaneous complex amplitude of the transverse
electric field in its direction of polarization. U varies slowly in the transverse direction
within a distance comparable to the wavelength. The dominant magnetic field can be
calculated directly from the dominant electric field. From a different perspective, when
we use the scalar wave equation, we have implicitly assumed that the curl equations in
the Maxwell’s equations do not yield significant magnitudes of electric field in other
directions. There are other views of what constitutes U. In books such as that of Born and
Wolf, Principles of Optics, it is shown that U can also be considered as a scalar potential
for the optical field. In that case, electric and magnetic fields can be derived from the
scalar potential [1].

Both the scalar wave equation (3.2) and the boundary conditions have been obtained
from Maxwell s equations. If U represents the dominant electric field, the continuity of
electric field is equivalent to the continuity of U across the boundary. The continuity of
the magnetic field across the boundary is equivalent to the continuity of the normal
derivative of U. In other words, the boundary conditions in vector Maxwell's equations
are replaced by boundary conditions of U (i.e. the continuity of U and the normal
derivative of U) across the boundary.

2 All detectors convert the optical power into electrical current. In electromagnetic field theory, we learned
that/ = l/Z\E\Z/\ /1, /¢, where E is the transverse electric field. In optics, U is usually normalized (i.e. |U] is
just proportional to the magnitude of the transverse electric field) such that UU" is the intensity.
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3.2 The solution of the scalar wave equation 55

Note that U is only a solution for a given polarization of TEM wave. There are always
two independent solutions representing fields in orthogonal polarizations. For each
polarization, there are forward and backward waves that are two independent solutions.

For wave propagation in a complex medium, Eq. (3.2) can be considered as the
equation for propagation of TEM waves in the local region. In order to obtain a global
analysis of wave propagation in a complex medium, solutions obtained for adjacent local
regions are then matched in both spatial and temporal variations at the boundaries of
local regions.

For cw single-frequency radiation with a harmonic time variation, we usually write:

U(x,y,z;t) = Ulx,y,z)e/ (3.3)

Here U(x, y, z) is complex, i.e. U(x,y,z) has both amplitude and phase. Consequently U
satisfies the Helmholtz equation,

VU+KEU=0 (3.4)

Here, k = w/c = 2n/A; ¢ = velocity of light =1/, /éi. The boundary conditions are the
continuity of U and the normal derivative of U across the discontinuity.

3.2 The solution of the scalar wave equation: Kirchhoff’s diffraction integral

Let us consider a radiation Uj, incident on an opaque flat screen X at z = 0 that has a
limited open aperture Q. The screen extends to infinity in both x and y directions. The
volume of space beyond the screen and the aperture is enclosed by a spherical boundary
at z>> 0 with a very large radius R. Figure 3.1 illustrates the configuration. When the U
within this enclosed volume does not have any optical radiation source, U satisfies the
radiation condition at the spherical boundary [2].

ou
LimR(—+/jkU | =0 3.5
Lim ( o T/ ) (3:5)
Here, 0/0n means the derivative normal to the boundary.

In most cases, we know the input U;, at z = 0 within the aperture Q. We like to
calculate U for an observer located at a position r,,, some distance away from the Q. In

the appendix, U at r,, is shown to be related to Uy, as’:

j e_.fkrol
Ulry) =1 ”U,,, e osadyidyy (3.6)
- A Yol
Q
Here r; is any position x; and y; in the aperture at z = 0, and

Fol = \/ (x, — xl)z + (o — y1)2 + z,2. The integration is carried over the entire aper-

ture Q. a is the angle of r, with respect to the z axis.
3 This result has also been derived from Huygens’ principle in classical optics.
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56 Scalar wave equation and diffraction of optical radiation

»/‘
Vs

Figure 3.1  Geometrical configuration of the aperture and the semispherical volume for the Kirchoff’s
integral. The radiation is incident on X, which has an aperture Q. The very large hemisphere with
radius R is connected to X. The coordinates for the observation point r, are x,, y,, and z,.

In a paraxial approximation, the observer position (x,,y,,z,) is in a direction not far
away from the center direction of propagation and the observer is located at a distance
reasonably far from the aperture, i.e. a~ 180 and |[Fo1| = |2o| = p. Then, under the condi-
tion of paraxial approximation, o is now approximately a constant in the integrand of Eq.
(3.6) over the entire aperture Q, while the change of p in the denominator of the
integrand also varies very slowly over the entire Q. Thus, U can be simplified further
to yield:

U(Z Ep) = /1;] ”Uine_jk’”‘dxldyl (37)
“ Q
Note that k = 27/A is a very large quantity. A small change in r,; in the exponential can
significantly affect the value of the integral. Thus r,; in the e 7¥! factor in the integrand
cannot be simplified, while the p factor in the denominator of the integrand can be
considered as a constant in the paraxial approximation.

Both Egs. (3.6) and (3.7) are known as Kirchhoff’s diffraction formula. In the case
of paraxial approximation, limited aperture and large r,;, Eq. (3.7) yields the same
result as Eq. (3.6). However, Eq. (3.7) is more commonly used in engineering
literature.

Note that, in order to calculate U at r, we need to know Uy,(x,y,0) in the aperture.
Strictly speaking, when U is incident on the aperture, it creates a U,,(x,y,0) that includes
the incident U plus the fringe fields created by the induced currents on the screen. For
example, the screen could be made of metal. There are induced currents at the rim of the
aperture. However, the fringe fields are weak for large apertures. They are near-fields
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3.2 The solution of the scalar wave equation 57

that decay rapidly.* Therefore, we assume U (x,»,0) 2 Uy, (x,»,0) in many optical
applications.”

3.2.1 Kirchhoff’s integral and the unit impulse response

Eq. (3.7) is sometimes presented in a different format for engineers. Let

—/ —jkror _
e = b= 3 - e - ) (8)

Then, we can write U in a different format,

Utr,) = [[Uc0, 0l =), (0 = o). 2l (3.9
Q

In this format, U at r, and U at (x,y,z = 0) are related by a transform relation through 4.
If U(x, y, 0) is a unit impulse 8(x,y) (i.e. a point source), then the U(r,) obtained from the
integration is approximately /4 for large apertures Q. Thus, the /4 function is known as the
unit impulse response function.

The expression h(x —x,, y—V,, z—=z,) has the same format as the electrical impulse
response in system analysis. U (x, y, 0) is just the source excitation at the z= 0 plane. “h”
determines completely U(x,,y,,z,) from any input U(x,y,0). Eq. (3.9) is the foundation of
many pattern recognition, filtering, and optical signal processing techniques.

Note that unit impulse techniques used in system analyses usually use integrals
within —o and +oo limits of integration, while the limits of integration in Eq. (3.9) are
determined by the aperture size. Nevertheless, much can be learned from those techni-
ques, especially when the aperture is large. Furthermore, as the integrand in Eq. (3.9)
can also be written as a product of “h(x,x,,y,y,)U(x,y,0)” and an unit step function of x
and y representing Q, the limits of integration can be extended to +o.

3.2.2 Fresnel and Fraunhofer diffractions

In Eq. (3.7) or Eq. (3.9), we note that binomial expansion may be applied to p as follows:

(20 —2)* (3.10)

1
=d [1 + P (x> + o> — 2xx, — 2y, + x* + »*) + higher-order terms} .

Here, d =z, — z, and in paraxial approximation, d >> |x, — x| and |y, — y|.
If d is sufficiently large so that we can drop the higher-order terms, we obtain from
Eq. (3.10):

4 See Section 1.1.5(c).
> This is the major difference between microwaves and optics. The induced fields are often important in
microwaves, because of the much larger ratio of wavelength relative to the aperture size in microwaves.

Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:45:58, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781139871419.004


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.004
https://www.cambridge.org/core

58 Scalar wave equation and diffraction of optical radiation

—7 . o Xo2 +y02 2 y? o -~ Wo
Ulr,) = ﬁ effkde’fkT” [U(z = 0)612”W} e 2t e 2k dxdy . (3.11)
Q

This is known as the Fresnel diffraction integral, which describes diffraction effects.
If d is so large that the term involving (x> + y?) can also be neglected, then we obtain
even a simpler diffraction integral,

ro®r0”

U(r,) = %e*fkde*f 2 ”U(z = 0)e™?mrie 2 i dxdy . (3.12)

Q

This is known as the Fraunhofer diffraction integral of the far radiation field. Note that U as
a function of x, and y, is approximately a Fourier transform of U as a function of x and y.
1t is important to note the implications and the differences of the results shown in Egs.
(3.10) to (3.12). (1) The major physical difference in Fresnel and Fraunhofer diffraction
formula is the distance from the aperture. When the condition for Fraunhofer diffraction
is met, U(r,,) and U(z=0) are related by a Fourier transform integral with finite limits of
integration. Therefore, mathematical techniques in Fourier analysis could be used to
analyze U(r,). (2) The preceding result is valid only if the radiation condition and the
condition for paraxial approximation could be satisfied. (3) When Uy, is incident on the
aperture, part of the incident beam U,, is blocked by the screen X, which has the aperture
Q. Therefore the power carried by the diffracted beam is reduced from the power of the
incident beam by the screen.

3.2.3 Applications of diffraction integrals

There are many applications that could be analyzed by Fraunhofer and Fresnel diffrac-
tion integrals. There are numerous examples given in existing books. Only a few
applications are presented below to demonstrate the use and the significance of diffrac-
tion integrals.

(a) Far field diffraction pattern of an aperture
Far field diffraction from a uniform U, incident on a rectangular aperture is the simplest
example to illustrate the significance of Eq. (3.12).
Let the radiation Uj, be a plane wave in the z direction that has amplitude A4. It is
normally incident on an opaque screen at z = 0 that has a rectangular open aperture with
dimensions, 2/, and 2/,, in the x and y directions, i.e.

X

U(x,y,z=0) = Arect (;) rect (%) (3.13)
y

where

rect(y) =0 for [y])1,

rect(y) =1 for |¢]|<1 (3.14)

Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:45:58, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781139871419.004


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.004
https://www.cambridge.org/core

3.2 The solution of the scalar wave equation 59

Figure 3.2  Geometrical configuration of a rectangular aperture. The radiation U is incident on a rectangular
aperture Q2 on an opaque screen, which is the x—y plane. For a far field, 7, is far away with large z,
coordinates. In the paraxial approximation, |z,| >> |x,|and [y,|.

Figure 3.2 illustrates the geometric configuration. Substituting U(x,y,z=0) into Eq.
(3.12), we obtain:

_ieikd g —js5(xo>+y0%) 22 o e o e
U, yord) = 2 3; ” {Ae_j"zzdz}eﬂ”(i_d)xeﬂ”(i_d)ydxdy. (3.15)

When d is very much larger than the aperture, so that

lxz + ly2

kZd

(1 (3.16)

. x2+y2 .
then e 727~ =2 1. Since

I, e 2u(5)k _ g=i2n(4)h _ j2sin [27[(%) lx]

e27(8)xdx = - = (3.17)
J, 27 (35) 27 (3)
we obtain the far field U from Eq. (3.17) as,
4jekd g inglxo’ +37) (2Lx,\ . (2L,
U(xp,¥0,d) = g Al sinc d sinc —7 )
where (3.18)
. sinzx
sinc(x) =
X

U is the classical Fraunhofer diffraction pattern of the rectangular aperture for a plane
wave normally incident on the aperture. There are four comments. (1) The Fraunhofer
diffraction pattern is ignored in geometric or ray optics because the transverse amplitude
and phase variations are not important in those applications. The ray optics approxima-
tion corresponds to the situation where one is interested only in U as x,/d and y,/d — 0 in
Eq. (3.18). (2) Uin the far field has a spherical phase front centered about z = 0. Whether
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60 Scalar wave equation and diffraction of optical radiation

this phase variation is important or not depends on the application. Unlike microwaves,
the electric field cannot be detected directly in optics. Detectors and films only measure the
intensity of the radiation. Thus the phase information is not important for most classical
optics applications, such as imaging. However, the phase information becomes very
important for a number of applications that involve wavelength selection, signal proces-
sing, interference, and diffraction. For example, when laser radiation is used to illuminate
an image pattern, there are many speckles created by interference effects of small
irregularities. This is the primary reason why laser light is not used for photography.
(3) The effect of the phase of U can also be detected by its interference with another U' or
by diffraction effects of U with a medium that has an interference pattern, such as
holography. (4) Besides the main radiation lobe within angle o from the z axis that has
oy 2x,/d < A/2l, and a,2y,/d < 1/2l,, there are side lobes with secondary peaks
at2lx,/Ad =n+1/2 and 2Ly,/Ad =n+1/2 wheren= 1, 2, 3,. .. In some appli-
cations the side lobes are very important.

When the input is a plane wave incident on the screen in the y—z plane at an angle 6
with respect to the z axis,

U(x,y,z=0) = Ae 0% pect (7) rect (“;) (3.19)
x v

The far field is

4jie g s’ +207) (2 N (2L,
U(xo,0,d) = T Al sinc 7(sm6—g> sinc d (3.20)

Therefore the diffracted wave is a wave with its main lobe in the direction x,/d = sin 6.

(b) Far field radiation intensity pattern of a lens
If a point source is placed at the focus of a lens with infinite aperture, it creates a plane
wave at the output of the lens. When the lens has a finite size, the output is equivalent to
having this plane wave to pass through an additional aperture, as discussed in (a).
The intensity [ at x, and y, for a point source placed at the focus of a lens with a
rectangular aperture is:

4411 21 2Ly, \1°
7 _ * _ xty . xAo ) . Yo ) 21
(x0,0) = UU [ g smc( d )smc( d )] (3.21)

Figure 3.3 illustrates / as a function of x, when y, = 0. Clearly [ is inversely
proportional to d*, as we would expect for a divergent wave. The intensity / has a
major radiation loop directed along the direction of propagation of the incident beam. /
also has minor radiation loops in x directions when x,,/d = (3/2)M/1,, (5/2)A/1,, etc., and in
y directions when y,/d = (3/2)A/l,, (5/2)A/1,, etc.
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Figure 3.3  Diffraction pattern of the plane wave passing through the rectangular aperture Q in Figure 3.1.

In optics, the minimum diffraction beam width of the major loop is defined as the
angle 6 between the direction of propagation and the first zero of /. Thus, for a
rectangular aperture, the beam widths, 0, and 0, are:

A
=37
and 3.22
i 3.2
Y21,

The preceding discussion in the rectangular coordinates demonstrated clearly the char-
acteristics of the diffracted far field without complex mathematics. In practice, the
apertures are round. For circular apertures with radius 7/, similar results have been

described in classical optics books using cylindrical coordinates and Bessel functions.®
In that case the beam width of the main radiation loop is given by [1]:
0. =0.621/r (3.23)

As aresult, Eq. (3.23) is commonly used to specify the angular resolution of a lens. It is
also applicable to mirrors. The difference in the results derived from circular and
rectangular apertures is minor.

The diffraction beam width at the far field is often used to characterize the output
radiation from many instruments without a detailed discussion of the beam pattern.
For example: (1) the output from a laser is frequently described in trade brochures by
its far field radiation beam width; (2) for communication among distant stations or

® The mathematics is much more complex for the calculation. It does not lead to any new insight. Therefore it
is not presented in detail in this book.
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62 Scalar wave equation and diffraction of optical radiation

imaging using telescopes, the far field pattern specifies the angular resolution of the
telescope obtained through a lens or mirror; (3) the diffraction limited beam width is
used to estimate the resolution limit in instruments such as spectrometers.

We should be careful about using the far field radiation formula in practical situations
because a far field pattern is applicable only if Eq. (3.16) is satisfied. For example, for a
lens aperture 1 mm wide and a point source at 1 um wavelength placed at the focus of the
lens, the Fraunhofer diffraction formula is not valid until the distance of observation is
30 meters or larger.” Such distances are often not available in indoor laboratories. Often,
what we observe in the laboratory is the Fresnel diffraction pattern.

It is interesting to note that when a plane wave (microwave) is incident on a metal
screen with a very small rectangular opening that has a size comparable to wavelength,
the emerging wave is no longer a TEM wave, and Maxwell s equations need to be used,
not Kirchhoff's integral. The radiation field created by the induced current on the edges
of the opening needs to be included. As the opening is increased, the far field radiation
field contribution from the induced current is decreased.

(c) Fraunhofer diffraction in the focal plane of a lens
A lens is a very common optical component. In imaging, the diffraction effect yields a
finite spot size. The Fraunhofer diffraction in the focal plane of a lens is presented below.
In addition to the diffraction limit of the spot size, there is a Fourier transform relation-
ship between the incident field and the field at the focal plane. It is used in many signal
processing functions, for example spatial filtering [3].

Consider a plane wave incident normally on a lens at z = 0. A plane aperture is
placed immediately after the lens. Let the focal length of the lens be z,. Then, from
Section 1.3.5 (b), the transmitted U(r,) for a pane wave normally incident on the lens
placed at z = 0, without any limitation on the aperture size, will be focused onto a spot
at r, = zpi;. The output from the lens, before the aperture, is a convergent wave. The
lens, the focus, and the aperture are illustrated in Figure 3.4.

The spherical wave emerging from the lens can be expressed for 0 <z, <z, as

e+jkr20

U=4 Yo = |Q — r_o‘ = \/(x2 _XD)Z + ()’2 _yo)Z + (22 —20)2 (324)

20
Note that the + sign in the exponential combined with the ¢"* time variation represents
a convergent wave. U immediately after the lens is given by Eq. (3.24) where
X, =X, ¥, =, andz, = 0. When an aperture Q is placed after the lens at z = 0, U at
(X0, Vo, 2,) for z; >z, > 0 is given by Eq. (3.7).

—jA .
U(X0:Y0,20) = /lzzjr ) “e’f"("””“)dxdy (3.25)
Q

7 Tt will be shown in Chapter 4 that the far field condition for the Gaussian modes of a laser is much less
stringent than the condition in Eq. (3.16).
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Figure 3.4  Tllustration of a spherical wave incident on a plane aperture Q. The incident wave is a converging
spherical wave focused at (x,, 1, z5). It passes through an opening aperture Q of an opaque screen,
which is the x—y plane. r, is the observation point.

Here, the coordinates in the aperture (xy, yi, z) in Eq. (3.7) are replaced by (x, y, z) in
Eq. (3.25). Using paraxial approximation and binomial expansion, and noting that the
aperture is in the (z = 0) plane, we obtain:

k X02+ 02 x2—|— 2 XoX + Y, XX +

k(rot — r21) = klzo — 23] + Yo' X2+ _k[ Yoy _xpx+yay]
2 Z, Z z, 2

2 212 2 5712

x4 )? )624-),2+ 1[(xo—x) +(yo—y)} +1[(x2—x) +(y2_y)}

3 Z, Z 4 Zp3 4 2,3

+ other higher-order terms

(3.26)
For sufficiently large z, and z»,
2 21?2
[0 =07 + 000 = 3)’] )
g 203 << Zim
max
and (3.27)
2
k|G =) + (02 =)
= 3 << 2rm,
8 z

max

the terms in the curly brackets and other higher-order terms can be neglected.
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22

—id —jk(zo—22) o/ (Xaz?o) Zl L oLl (2h?) j2r|ie—2 |y jor|de—22

Jae € © Jilzz | ) 2w\ | 2w |y

7 € e e dxdy.
2220

Q

U(xoaymzo) -

(3.28)

When z, & z,, the term in square brackets involving “Zio — %” in the above integral is 0.
Therefore the radiation in the focal plane of the lens is a Fourier transform of the input
with the limits of integration given by the aperture Q. When Q is very large, it
approaches a ¢ function in the x—y plane centered at z = z,.

Two conclusions can be drawn from this result. (1) Eq. (3.28) is the same as the result
obtained for Fraunhofer diffraction in the far field expressed in Eq. (3.12), except for the
constant 4/z,. The finite beam width implies that there will be a finite-sized focused spot
for a plane wave input. From Eq. (3.23), the circular spot size is 0.61f, /nr’. Note that,
in the literature, NA = f/nr'is commonly known as the numerical aperture of the lens, and
n is the refractive index of the medium in the focal plane. f72r'is known as the F' number
of the lens. In other words, the resolution limit of a microscope is approximately AF. (2)
If a thin transparent film with amplitude and phase transmission #(x, y) is placed before
the aperture and the lens at z =0, then U at the focal plane for a normal incident uniform
plane wave is:

—jde " (152

U(xmymZZ> = 2 JJ l(x,y)eﬂﬂ(%)xeﬂ”(i%)ydxdy (329)

Q

Az 0

This is an important result. It states that when the limits of integration are large, U at the
focal plane z, = z, is essentially the Fourier transform of ¢ at z = 0. The spatial Fourier
frequencies of the Fourier transform are f;, = x,/1z, andf, = y, /7z,.

The usefulness of this result can be illustrated by two simple applications:

(1) In the first application, a student wants to measure the far field radiation pattern of a
laser. It is not necessary for him to actually do the measurement at a distance far
away. All he needs to do is to use a camera focused to o. At the focal plane of the
lens, he obtains the far field pattern.

(2) The second application is a spatial filter that can be described as follows. Let us
consider two optical lenses with focal length f. Let the lenses be placed in series
and perpendicular to the optical axis. They are separated from each other by a
distance 2f. If the size of the lens is sufficiently large then the integration limit in
Eq. (3.28) can be approximated by oo. Now consider the optical signal processing
set up shown in Figure 3.5. Let U be a normally incident plane wave. The field at
the focal plane of the first lens is the Fourier transform of the transmission of the
transparent film, #, placed in front of the first lens. When this radiation is
transmitted through an aperture placed at the focal plane of the first lens, the
higher Fourier frequencies are blocked by the opaque portion of the aperture.
Thus the U obtained after the second lens is —tU filtered through a low-pass
spatial frequency filter. Such a setup has many applications. For example, when
a laser mode passes through optical instruments, it frequently is perturbed
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Figure 3.5 Spatial low-pass filtering of an optical wave. A transparent film with transmission function
t(x, y) is placed in front of an ideal lens with focal length f. A spatial filter which consists
of an opaque screen with a pin-hole aperture is placed at the center, a distance f from the
lens at the front. A second lens with focal length f'is placed a distance f from the spatial
filter.

because of imperfections or defects in the optical elements. A setup such as that
shown in Figure 3.5 (without the transparent film ¢ and with a pin-hole aperture)
is commercially sold as a spatial filter to clean up the effects of perturbations or
defects, which typically produce higher spatial frequencies than the laser mode.

(d) The lens viewed as a transformation element
A simple alternative way to consider a thin lens is to represent it by its transmission
function ¢, as discussed in Section 1.3.5(b). Thus, for any U passing through a thin lens
without any aperture, we can now multiply the incident U on the lens by a phase
function,

f = t,e/ ) (3.30)

to obtain U immediately after the lens.

We emphasize that this is a thin lens approximation. Only an ideal lens can be
represented by Eq. (3.30). A practical lens will have other higher-order phase shifts,
which are considered to be distortions from an ideal lens. Although we have derived this
result only for a thin spherical lens, it is used to represent any ideal compound lens
where fis the focal length.

3.24 Convolution theory and other mathematical techniques

A major difference between the traditional optical analysis used for imaging and
diffraction and engineering optical analysis of TEM waves presented here is the analysis
of the transform relationship between the incident and the diffracted fields in various
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66 Scalar wave equation and diffraction of optical radiation

applications. In order to illustrate further the engineering analyses, the following
examples are presented.

(a) The convolution relation

The convolution relation allows us to simplify the calculation of the integral in Eq. (3.29)
into two simpler parts.

Let the incident U in the example to be an optical wave with complex functional
variation instead of a simple plane wave. The integral given in Eq. (3.29) is then the
Fourier transform, F, (with limits of integration at o) of the product of two functions,
RR = rect(x/ly) rect(y/l,) and U(x, y, z = 0). RR is the single rectangular aperture in
Figure 3.2.

Let us designate the Fourier frequencies to be:

fi=22 and f, =22

Ad Ad
400400
Let  Fre(f'x.f'y) = J J rect (;) rect (IZ) e 2/ Xt 2mhY dx dy
x ¥
o 31
o (3.31)
Folfefy) = | [Uleyz = ojererse s acay
Then, according to convolution theory,
i 2,2 ot
— — ke e ’ ' ’ ’
Ue) = e ™5 | [ Fulfl ) Folh £ 5~ £) 8648 (332

Frr and Fy, are likely results that we already have. Thus we can obtain U at r,, from the
known results by convolution.

(b) Double slit diffraction
Let us consider the diffraction pattern of a double slit, fromy =h -1, toy =h + [, and
fromy=—h—1[,toy=-h+ 1. The incident U is a plane wave (U = 4) propagating in the
+z direction.
Using superposition theory and the convolution relation, we obtain immediately the
diffraction pattern to be:

. —ZA] —jkd —jkxnz +v02 Yo
Ulr,) = Td e /e W COS {2n<id>h}
+oo +oo ’
J J rect (;) rect (%) e 727(8)xe 727 (50 vy, (3.33)
X y
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3.2 The solution of the scalar wave equation 67

The cosine function expresses the interference effect of the diffracted radiation from the
double slit.

(©) Diffraction by an opaque disk
Let us consider the diffracted field when the screen is an opaque obstacle such as a
finite-sized disk Q2. We can express any opaque aperture Q as £ — (X — Q), where X is
the entire z = 0 plane. “X — Q” is the complimentary aperture of Q. Therefore we can
rewrite Eq. (3.12) as

—j . -X02+v(;2 :n, XXo :n. Wo
U(r,) = Une(r =r,) — i—cjlle_-/kde_fk—m ” Une(z = 0)e 2746275 dxdy | (3.34)
I-Q

(d) The Fresnel lens

Let us consider next a refractive Fresnel lens. This lens does not have a spherical
surface. The configuration of a Fresnel lens is illustrated in Figure 3.6. It has a material
structure that has a sectional continuous profile. For the first segment, the surface
profile is such that from the center » = 0 to a radius 7, the phase shift is described in
Eq. (3.30). However, this surface stops at » = r; when the phase shift is 2z, i.e. when
r2/f=2. A new segment of the surface starts at ; with 0 phase shift. This second
segment of the surface will give a phase shift proportional to “(+?/4f) —2.” The second
surface segment stops at r, when 7,%/Af= 4. The third segment starts at 7, with 0 phase
shift. These segments continue until the shortest length of segments, r; — r;_;, reaches
the resolution limit of the fabrication technology. Figure 3.7 illustrates the phase shifts
along the radial direction .

When one calculates the diffraction pattern of the Fresnel lens, the Kirchhoff’s
integral will be performed over each segment of continuous phase shift zone separately.
The sum of all the diffraction integrals gives U(r,). The insertion of ¢*"* (n = any
integer) to any integrand does not change the value of the integral. We can easily show
that for any normally incident plane wave, U given by the Kirchhoff’s integrals for the
Fresnel lens behaves identically to any thin spherical lens with the same focal length.
The difference between the spherical lens and the Fresnel lens lies in the higher-order
terms of the phase shifts, which we neglected in the first-order approximation. For
oblique incident radiation, the diffraction pattern of the segments yields distortions.

(e) Spatial filtering
As a final example, let us consider an example in Goodman’s book [3]. A plane wave
with amplitude 4 is incident normally on a transparent film at z = 0, followed immedi-
ately by an ideal thin lens with focal length £, as shown in Figure 3.8. The film is placed in
a square aperture (d x d) centered at x = y = 0. The electric field transmission ¢ of the
transparent film is:
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68 Scalar wave equation and diffraction of optical radiation
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Figure 3.6  Thickness variation in a Fresnel lens.

7
I'e

I's

Iy

r3

ra

ry

|

DT

Phase shifts (radians)

Figure 3.7  Phase shifts in a Fresnel lens.
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t(x,y) = =[1 + cos (2zHx)] rect (d;Z) rect (d)/;E) (3.35)

Here H >> (1/d). A spatial filter screen is placed at the focal plane of this lens.
The screen is opaque in two regions: (1) |x| < //2 and [y| < I/2 for the inside region
and (2) |x| > [ and |y| > [ for the outside region. The spatial screen is shown in
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Figure 3.8 Tllustration of an example of spectral filtering in the Fourier transform plane. A
transparent film with transmission function #(x, y) is placed in front of an ideal lens
with focal length f'at z = 0, followed by a square aperture (d xd). A spatial filter is placed
at z = f. A second lens with focal length f is placed at z = 2f to reconstruct the filtered
light.

Figure 3.9. A second lens with focal length f is placed at a distance f behind the
screen.
At z = f, the incident field on the screen is:

| ﬂl ) d/2 dj2

ide W e (" 1 1, 1
U(x1 Vi 7f) —JjA¢€ Zf J E |:1 + Ee/27rH»c 5 e jZon] 61271( )xeﬂn( )ydxdy
—d/2—-d/2
P . (mxid . x . . (myid
ide e jk( +7) ) sm(nll} ) sm( ( l}) ) sm( (H_/7> ) sm(nll} )
24f FE AN ™ )
Af 27r< lf> 2F<H_/i,_f> if
(3.36)

Thus there are three radiation peaks in the x; direction, at x; = 0, x; = AfH, and
x1 = —AfH. The width (defined by the first zero of the field) of the peaks in the x
direction is Af/d centered at the peaks. All radiation peaks in the y direction are
centered about y; = 0 with width Af/d. However, the transmission range of the screen
in the x direction at z = fis //2 < |x;| < I. Thus the peak centered about x; = 0 is
always blocked by the screen. In order for the two side peaks to pass the screen, we
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Fig. 3.9

Scalar wave equation and diffraction of optical radiation
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The optical spatial filter in Figure 3.8. It is opaque for
|Xiland|Y;| < I/2 and |X||and |V;] > [

need //2 < fAH < I. In order for the main lobe of the two side peaks to pass through
the screen, we need
Af

,IHf+7 (l(zAHf—%

: (3.37)

Since the peaks are centered in the y direction at y; = 0, the transmission of the screen is
effectively from y; = —/ to y; = . If we approximate the transmitted radiation field by
deleting the term representing the peak centered about x; = y; = 0, we obtain the
diffracted transmitted radiation after the screen to be:

.k(x2+v2) ! Sin (7[}/’]d>
e —— oo,
_Aeijzkf? ;) 7 J )/}f e*jk% efszizlj/‘) 61271 (ﬁ)yl dy,
2 zZ— 21
ey ﬂ&f

. X1
[ |sin|z|——H |d
Af Tk «"2”(A<zx—r>)x1
27 e dx;

U'(x,p,/) =

e e

(3.38)
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Chapter summary 71

When this diffracted field passes through the second lens at z = 2f, the exponential term

I
in front of the integral, efjkﬁ, is canceled by the quadratic phase change of an ideal

2,.2
=
lens, e/ 7, for z > 2f.

The integration is quite messy in the general case. However, the answer is
simple for the following special case. Let Af/d be small (i.e. the width of radiation
peaks is narrow), and let the dimension / be such that at least the main lobe
of the two side peaks passes through the screen at z = f Then
sin (zy; /Af/d)/(zy1/Af) is large only for y; < Af/d, and its peak value is proportional
to d. Within such a small range of yy, the three exponential terms in the above y integral
can be approximated by constant values at y; &~ 0. This means that
e 2 /2f o=k [2(z~f) g fhn1 /2(z=f )y o |

Similarly the three exponential terms in the two x; integrations can be approximated
by x; = A Hf and by x; = —1 Hf, respectively.

Therefore, immediately after the second lens at z = 2f, we have the following field.

Lo 2nyid
—de R S\ T .
2/12f2 Y1 1

paras
-1 if

! sin[n(j{—l - H>d}
o IKPH b J / | (3.39)
i

. X1
~1/2gin {n(— + H)}
oM H gk H Af dny
x|
Z 2r( —+H
/ n(ier )

If the second lens has a sufficiently large size, the diffraction effect due to the finite
size of the second lens can be neglected. The far field diffraction pattern will be
given by two beams, one beam propagating as e 7“¢/*” and the second beam
propagating as ¢ ¢ 7/ The incident beam propagating along the z axis has been
filtered out.

The example is presented here to demonstrate the mathematical complexity of the use
of Kirchoff's integral. It will be compared with the use of the Gaussian beam in
Chapter 4.

U”(x27y27 2f) =

Chapter summary

Diffraction analysis of optical waves is the forte of traditional optics. There is no need to
present any extensive discussion of diffraction optics in this book. However, the limita-
tion and the theoretical basis of diffraction analysis are not always clearly understood. It
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72 Scalar wave equation and diffraction of optical radiation

is shown here that the scalar wave equation can only be used to analyze TEM optical
radiation. Under the TEM approximation, Kirchhoff's integral can be used to calculate
the propagation of any incident radiation through various instruments, without solving
Maxwells equation separately each time.

In addition, it is shown here that, for single-frequency radiation such as laser
radiation, the format of Kirchhoff's integral allows us to apply mathematical techniques
to relate the diffracted field to the incident field. For example, under certain circum-
stances, the incident and diffracted fields are related by Fourier transform. Many
engineering analytical techniques based on Fourier analysis, such as convolution,
become applicable. Signal processing applications such as spatial filtering are based
on the transform relations of the optical fields.

Natural light has many frequency components with random relative phases among
them. Many effects, such as the Fourier transform relationship, convolution, spatial
filtering, etc. depend on the phase relations. Thus, these effects will not be observed in
general for natural light. On the other hand, techniques such as Kirchoff's integral are
still applicable to each frequency component. Conclusions such as diffraction-limited
focus spot size and far field beam width are valid. Even Fabry—Perot resonance could
still be observed when the frequency range of the natural light is narrow. Since there are
already many excellent books that discuss the optics of natural light, the diffraction of
natural light is not presented extensively in this book.
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4  Optical resonators and Gaussian
beams

Although diffraction analysis of many applications has already been presented
extensively in the literature, laser and Gaussian beam analysis has not been
emphasized much in traditional optical books. Laser analysis is the focus of
the first part of this chapter; Gaussian beam analysis is the focus of the second
part.

There are three reasons to present analysis of laser cavities and Gaussian beams.
(1) Much of the optical applications today use laser radiation. Understanding of laser
modes is very important. For example, analysis of laser cavities allows us to appreciate
the difference between longitudinal and transverse modes. It shows us that laser modes
are Gaussian. (2) In laser cavities, Kirchoff's diffraction analysis yields the character-
istics of the modes. From that discussion, we can appreciate that diffraction and modal
analysis are closely related. (3) The Gaussian modes can be used to represent any TEM
wave. It is an important analytical technique in itself.

Although Gaussian modes were derived from the analysis of laser cavities in the first
part of Chapter 4, they are also a direct solution of Maxwell’s equations. Gaussian
modes also constitute a complete set. It means that any TEM radiation can be repre-
sented as a summation of Gaussian modes. The propagation of a Gaussian beam
through any component with a large enough aperture retains the Gaussian form. It
simply suffers a loss of power due to diffraction. Therefore, its propagation
through various components can be analyzed without carrying out the messy diffraction
integrals used in Chapter 3.

It is well known that the basic solid-state and gas laser cavities consist of two concave
end reflectors that have the transverse (or lateral) shape of a flat disk or a part of a large
sphere. The reflectors are separated longitudinally by distances varying from
centimeters to meters. The size of the end reflectors is small compared to the separation
distance, but still very large compared to the optical wavelength. Thus, the cavity modes
are resonant modes of TEM waves, bouncing back and forth between reflectors. They
can be analyzed by means of Kirchhoff’s integral. Laser cavities are sometimes called
Fabry—Perot cavities because of their similarity to Fabry—Perot interferometers,
discussed in Section 2.2." This is the case for solid-state and gas lasers, but not for
waveguide semiconductor lasers. Scalar wave equation analysis is not able to analyze

! However, Fabry—Perot interferometers have distances of separation much smaller than the size of the end
reflectors; therefore, diffraction loss is negligible.
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S(x.y.2)

/
(x=0,y=0,z=-d/2) 7/

/ (x=0,y=0,z=+d/2)

,
a4
Figure 4.1 Tllustration of a laser cavity. A confocal cavity has two spherical end reflectors, S and S". The
reflectors have a square aperture, 2a % 2a. The spherical center of the S surface is at the center of S,
with radius b. The spherical center of the S’ surface is at the center of S, also with radius 4. The

focus of both the S reflector and the S’ reflector is at the center of the opposite mirror; p is the
distance from a point on the S surface to a point on the S’ surface.

waveguide laser cavities that have dimensions of the order of optical wavelength. The
fields in waveguides are not transverse electric and magnetic.”

4.1 Integral equations for laser cavities

Consider a typical laser cavity as shown in Figure 4.1. Let the y-polarized electric field
on the §'mirror be £,'(x’, y) and the electric field on S be E,(x, y). The diffracted electric
field £, (x, y) on the S mirror can be calculated by Kirchhoff’s integral from £, on §".
Similarly, the diffracted E,"" on S’ can be calculated from £, on S.

" k(I +cosd) o
E\(xy) = JTG ME y(x',y")ds
2
and (4.1)
oo jk(1 +cosb) _,
E ,(x',y) = JTe /k"Ey(x,y)d.
s

P(x,y,z) is a point on S, P'(x,),z) is a point on S’, and p is the distance between P and

P,p= \/(x —x')? 4 (y = )* + (z — 2)*. If we have a symmetric pair of mirrors and if
the cavity supports a stable mode, then £, and E,,'must eventually reproduce each other,
except by a complex constant v, i.e.:

2 Surface emitting semiconductor lasers also have TEM cavity modes. Their end reflectors are much smaller
than solid-state and gas lasers. The distance between reflectors is comparable to wavelength. In this
configuration, diffraction loss is negligible, so surface emitting laser cavities are also not analyzed by
means of Kirchoff’s integral.
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4.2 Modes of confocal cavities 75

"

yE,=E} and yE,=E,

Jk(1 4 cos0')

e—jk/)E! r7 /ds!7
4mp V' (X', )")

VEy(x,y) = J
2
jk(1 + cos 6)

yo e’jk/]Ey(x,y)ds

VE'y(x’y’) = J
N

E, and E', have the same x and y functions.

Any stable resonant mode of the cavity must satisfy Eq. (4.2). Conversely, any solution
of Eq. (4.2) is a resonant mode of the cavity. The field pattern of the resonant mode of the
laser was found first by Fox and Li [1]. They calculated numerically the diffraction integral
on a computer, starting from an assumed initial mode pattern on S. The resultant electric
field pattern on the opposite mirror S" was then used as E, in the diffraction integral to
calculate the field on S after a round trip. This process was iterated back and forth many
times. Eventually, stabilized mode patterns (i.e. mode patterns that differ from each other
only by a complex constant after one diffraction) were found. In the next section, we will
first discuss in detail the analytical solution of the integral equation for a specific cavity
configuration, the confocal laser cavity. We will then extend the analysis of confocal
cavities to other non-confocal cavity configurations. All the modes discussed in this
chapter are “cold” or “passive” cavity modes, meaning that there is no gain in the material.

4.2 Modes of confocal cavities

Consider the resonator shown in Figure 4.1. In a confocal resonator, there are two identical
spherical mirrors with radius b, symmetrically placed about the z axisatz =+ d/2 (d = b
in confocal cavities). In order to take advantage of the simplicity of mathematical analysis
in rectangular coordinates, both mirrors are assumed to have a square shape (2a x 2a in
transverse dimension).? The size of the mirror is small compared to the separation distance,
i.e. d>> a. While the centers of the spherical surfaces are located atx=y=0and z=+d/2,
the focal point of both mirrors is at x =y =0 and z = 0; hence it is called the confocal cavity.
We will analyze the confocal cavities following Boyd and Gordon [2].

4.21 The simplified integral equation for confocal cavities

Since a << d, 0 = 0 and cos @ = 1 in Eq. (4.2). Thus Eq. (4.2) for an electric field
polarized linearly in the y direction can be simplified as:

j roL —J 1 34,
1B ons = (1) [ [ B e axay. @3)

—a —a

3 The shapes of actual mirrors are round.
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76 Optical resonators and Gaussian beams

Here, p is the distance between P and P’ on the §'and §' surfaces. Clearly £, on S and S’
must be identical. Equation (4.3) is an integral equation for E,. It is well known
mathematically that, like differential equations with appropriate boundary
conditions, such an integral equation has independent eigenfunctions and eigenvalues.
If we can find these independent solutions, we have found the modes of the confocal
cavity.

The §'and S surfaces are described by:

d x!2+y12
N/ I NG W B
273 oy g
4.4)
d X%+ 37 (
B2 _ 2y
23 oy 2d

When e 7* is simplified by binomial approximation and when the higher-order terms
are neglected, we obtain

N p x!Z +y12 x2 +y2 N (x2 +X’2) + (yZ +yr2) —2xx — Zyyv
o 2d 2d 2d
xx"+ '
~d-—
d

(4.5)

When z and z" are on § and §’, d is used to approximate the (z — z') term in the
denominator. Note that the quadratic terms x> + x? /2d and Y242 /2d in the second
square-bracketed term of the binomial series expansion are canceled by the quadratic
terms x'2 + /2d andx* +)?/2d in the round brackets, created by the spherical
surfaces of the confocal resonator. This coincidence gives us a simplified expression
for p. When higher-order terms are neglected, E), at (x, 3, z) on S is related to £, at (x', y,
z") on §' by a simplified equation:

+a +a
yEy(xayaZ”l)ﬂs = (/{_dejkd> J J Ey(x’ay,vZ’)|l)nS'ejk(”dW) dx'dy’ (46)

Neglecting the higher-order terms in the binomial expansion is justified when a?/bi <<
(bla)*.

If we compare Eq. (4.6) with the diffraction integrals for Fraunhofer diffraction in the
Jocal plane of a lens, we see that the relation between E, on S and E, on S’ is again a
Fourier transform with finite integration limits, a. There are known mathematical
solutions for such an integral equation. This is really the secret of the simplicity of a
confocal cavity and the reason we started the cavity analysis with it.
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4.2 Modes of confocal cavities 77

4.2.2 Analytical solutions of the modes in confocal cavities

If we let £, on § be described by F(x)G(y), then the integral equation for £ and G is:

+a +a je*jkb e
O-lo-mFl(x)GmO/) — J J T F[(X')Gm(y’)ej( b )dx!dyr, (47)

—a —a

Here y is represented by o,0,,. When we make the following change of variables,

a2k VA VA

A=——, X=""x and Y=-—y
b a a
we obtain

VA +VA

je 7 XX’ YY'

016, F1(X) G, (Y) = 5 Fi(X")e™ dx’ G, (Y)e/"dy". (4.3)
T
VA VIN

This is a product of two well-known identical integral equations, one for X and one for Y.
In order for both of them to be satisfied for all X and ¥, each integral equation must
be satisfied separately. Slepian and Pollak [3] have shown that the /th independent
solution to

. +VA
Fi(X) = Fi (X" dx 4.9
o) = L (X (49)
—VA

is

X oA
FI(X):S();(A,\/—K)', and Xl:,/7ﬂR0]<1>(A,1), 1=0,1,2,... (4.10)

So; and Ry, are, respectively, the angular and radial wave functions in prolate
spheroidal coordinates, as defined by Flammer [4]. Thus the eigenvalues and eigenfunc-
tions of Eq. (4.9) are:

) 2A i
510w = jAine " = 7R01(1)(A, DRow (A, 1) jmHH ek

and (4.11)

X
Ey = Ulm(xvy) = So/ A>; Som A7§

with [, m=0, 1, 2, 3... According to Slepian and Pollak [3], the R and S functions are
real. It confirms that the mirrors are surfaces of constant phase of E,.

For each mode, as it propagates from one mirror to the other, its amplitude changes by
Xmand its phase changes by je /%>, For a given transverse /th and mth mode, there are
resonances at those frequencies when kb = gr.
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Figure 4.2  Sketch of transverse field distribution of lower-order modes in confocal resonators. The arrows are
used to indicate the electric field patterns of various low-order TEM,,, modes on the mirror. The
direction of the field is shown by the direction of the arrows and the magnitude of the field is
indicated by the size of the arrows.

It is interesting to recognize that we have obtained cavity modes as solutions of
diffraction integrals without the use of any modal expansion concept. Yet, once we
know the existence of these modes, we realize that the laser properties are best described
by modes. In other words, diffraction analysis of laser cavities has led us directly into the
modal concepts.

4.2.3 Properties of resonant modes in confocal cavities

Many conclusions can be drawn from the solution of the fields in the cavity discussed in
Section 4.2.2 above. Seven properties of the resonant modes of the confocal cavities are
presented below.

(a) The transverse field pattern
We normally designate the resonant modes as TEM;,,, modes, which have the transverse
variation given by U,,. Figure 4.2 illustrates the transverse field distribution of lowest
order TEM,,, modes in confocal resonators. There is also a set of TEM modes for an
electric field polarized in the x direction.

Note that the Ith order mode will have | nodes or zeros in the x direction, while
the mth order mode will have m nodes in the y direction. This information is
important. It allows us to experimentally identify the mode order by examining its
intensity pattern. For a given transverse TEM,, mode, the cavity resonates at
frequencies whenever kb= qmu. The modes of the same transverse TEM),,
pattern that have different resonance frequencies are known as the longitudinal
modes.

Downloaded from https:/www.cambridge.org/core. New York University, on 21 Apr 2017 at 14:34:39, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139871419.005


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.005
https:/www.cambridge.org/core

4.2 Modes of confocal cavities 79

(b) The resonance frequency
At resonance, the phase shift after each round trip of propagation in the z direction must
be integers of 2z. Thus resonance in the z direction occurs only at discrete wavelengths
Aimg that correspond to various values of ¢ multiples of 2.
nf@+(m+l)7r =2qm (4.12)
Almg

Here m, [, and ¢ are all integers. From here on, we designate modes belonging to
different / and m as transverse modes and modes belonging to different ¢ longitudinal
modes. Note that, lower-order transverse modes have small integers or 0 for m and /,
while g may be a very large number, up to millions, for long cavities.

In summary, the resonance frequency f,,, for a given order of mode, designated by
[, m, and ¢, is:

ﬁquﬁ(2q+z+m+1) (4.13)

where c is the velocity of light in the cavity.

From Eq. (4.12), we see that the TEM,,, modes are degenerate with respect to / and m.
Degeneracy means independent modes with the same / + m value, but different / and m
values, will have the same resonance frequency. As we will show in the next section,
such degeneracy does not exist in non-confocal cavities. In principle, degenerate modes
may resonate at the same frequency. However, we usually do not want more than one
mode to resonate at the same frequency because it creates uncertainty in the modal
content of the total field. The mode degeneracy is a disadvantage of confocal resonators.
Therefore confocal configuration is not used in practical lasers.

TEM,,, modes that have adjacent longitudinal mode orders, i.e. ¢ and g + 1, will have
resonance frequencies separated by ¢/2b. “2b/c” is the round trip propagation time for a
wave front to travel around the cavity. Thus the frequency spacing of the longitudinal
modes is controlled by the mirror separation between the reflectors and the velocity of
light. For cavities filled with dielectric that has refractive index n, the resonance
frequency separation of the adjacent longitudinal modes will be 2bn/c, where ¢, is the
velocity of light in the free space.

(©) The orthogonality of the modes
U, is a set of orthogonal functions, i.e.

[T (2 (2 () 0 (s [ [t =

a —a

(4.14)

when m #m'or n# n'. Therefore these modes are orthogonal modes.* Moreover, it can be
shown mathematically that eigenfunctions of the integral equation of the form given in
Eq. (4.3) always form a complete set.

4 Orthogonality of modes can be proved in general only for cavity medium without loss.
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80 Optical resonators and Gaussian beams

The orthogonality relation is very helpful in expanding any arbitrary electric
field U(x, y) in terms of U,,.” For example, for any field U in the cavity, we can write

U= amUn (4.15)
L.m

Then, because of the orthogonality relation,

U U;mdx dy
(4.16)

Am =

Upp? dx dy

:[(%g Q‘%Q
é%a é%&

There are many important applications of the orthogonality properties of modes.
When an input radiation is coupled into an optical component that has TEM,,,
modes, the input radiation U,, can be written as a summation of TEM,,, modes. For
example, if U is symmetric in x and y, the coupling between TEM,,, mode with an
odd value of | or m and any symmetric input radiation will be zero. In another
example, we may be interested in the power of a given U. The intensity of U is
proportional to UU'. Since U, is orthogonal, the total power is

+a +a +a +a
[ [ oU*dxdy = amam™ | [ UmUmw*dxdy. In other words, the total power
—a —a Im —a —a

is just the sum of the power in each mode.

(d) A simplified analytical expression of the field
For x and y <<gq, U,,, can be approximated by the product of a Hermite polynomial and a
Gaussian envelope,

C[0/2) + {m/2+ 1], (VA

VAN a(ei?)/di
Eyim = Un(x, = - ey
vim = Uin(x.) T+ D0(m+ 1) a a )¢

(4.17)

Here, I is the usual gamma function, and Hermite polynomials are tabulated in many
physics and mathematics books.

H()(x) = 1,
Hl (x) - va
Hy(x) = 4x* -2

(4.18)

3 Any arbitrary TEM field polarized in the y direction can also be expressed as superposition of other complete
set of modes, such as plane waves or spherical waves. The selection of what specific form of modal
expansion to use will be based on the configuration of the device and mathematical convenience, such as
the availability of expressions for the modes.
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4.2 Modes of confocal cavities 81

For /=m =0, the lowest order Hermite polynomial is just 1. Thus the TEM,, mode is just
a simple Gaussian function. An /th-order Hermite polynomial is an /th order algebraic
polynomial function. Thus, it will have / zeros. Even-order modes will be even functions
while odd-order modes will be odd functions. At large x and y values, polynomials are
weakly varying functions, while the exponential function dominates the amplitude
variation. The envelope of all TEM,,, modes is a Gaussian function that is independent
of the mode order, / and m. Thus they are known as Gaussian modes.

(e) The spot size
The radius at which the exponential envelope term falls to 1/e of its maximum value at
x=0and y =0 is the spot size @ of the Gaussian modes on the mirror. At this distance
=5

from x = 0 and y = 0, the intensity falls to 1/ ¢? of its maximum value. Therefore, for all
TEM,,, modes, the spot size on the mirror is:

o = /bijx (4.19)

S

Note that the spot size on the mirror is independent of the mode order, / and m. It is
controlled only by the radius of curvature of the confocal mirror.

® The diffraction loss
There is a fractional energy loss per reflection, yp. It is commonly called the diffraction
loss per pass (i.e. the loss from propagation of the wave front from one reflector to the
second reflector and back again) of the TEM,,,, mode. It means that the diffracted field of
the first mirror is only partially captured by the second mirror. Because of this loss, the
magnitude of the eigenvalue y,, is less than one. There are two ways to calculate yp.

)

1 = 1= ol (4.20)

(2) We can calculate y,, from the ratio of the energy captured by the mirror to the total
energy in the E field at the mirror. i.e.:

I E(x,p,2) dxdy
= 1— =2 (4.21)
| [ 1E(x,y,2)[dxdy

—00 —00

Here E is given in Eqn. (4.17) and Q is the aperture representing the mirror. Figure 4.3
shows yp for several lower-order modes of the confocal resonators, obtained by Boyd
and Gordon, as well as the yp, obtained by Fox and Li in their numerical calculation for
two flat mirrors. This is a very important result. (1) Note that TEM,,,, and TEM,,,,,-
modes have the same diffraction loss (i.e. the diffraction loss is independent of the
longitudinal mode order). The diffraction loss increases, in general, for higher-order
transverse modes. Note also that the diffraction loss varies rapidly as a function of a/b.
In lasers, we like to have just a single TEM oscillating mode most of the time. If the
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Diffraction loss per reflection
Figure 4.3  Diffraction loss per pass for the lowest-order mode of a plane parallel cavity and for lower-order
modes of confocal cavities: a is the mirror size and b is the mirror spacing. The pairs of numbers

under the arrows refer to the transverse mode order / and m of the confocal cavity; # is the
refractive index of the material between reflectors.

diffraction loss is sufficiently high for higher-order modes, they will not oscillate.
Controlling the diffraction loss by the aperture size is a very important technique in
laser cavity design. (2) Note that, in conventional Fabry—Perot interferometers, a/bJ. is
much bigger than those used in laser cavities shown in Figure 4.1. Therefore diffraction
loss is insignificant for many modes in Fabry—Perot interferometers.

(g The line width of resonances

In Section 2.2.2, we showed that the line width of Fabry—Perot resonance depends on the
reflectivity of the mirror. In laser cavities, even for mirrors with perfect reflectivity, there
will be diffraction loss. When we include the diffraction loss, the equivalent power
reflectivity of a mirror is the material reflectivity of the mirror multiplied by yp. For a
given total reflectivity, the line width of a given mode can be obtained from Eq. (2.41).
The higher-order transverse modes will have much larger line width. Longitudinal
modes of the same transverse order will have the same line width.

Knowing the properties of laser modes has many practical applications. For example:
(1) It allows us to identify experimentally the modes that we are observing. (2) The
minimum spot size of a laser beam is the beam waist of the Gaussian modes. (3) It allows
us to understand the difference between transverse and longitudinal modes and their
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4.2 Modes of confocal cavities 83

resonance frequencies. (4) It shows us how to control the diffraction loss of different
modes by varying a’/b. Laser oscillation occurs in any mode whenever the gain exceeds
the loss. (5) In order to have only a single-mode oscillation, one must control the
diffraction loss and the mirror separation d such that only one transverse and one
longitudinal mode has a diffraction loss profile that satisfies the oscillation condition
within the gain profile. The higher-order modes do not oscillate because their loss
exceeds the gain.

Cavities for surface emitting semiconductor lasers also have TEM modes. Thus they
can also be analyzed by scalar wave equations. However, they usually have transverse
dimensions much larger than the separation of reflectors. Diffraction loss is not an
important issue in these cavities. Instead, how to obtain high reflectivity in the
reflectors becomes a major concern. Note that since the separation of reflectors is
so small the Fresnel and Fraunhoffer approximations of Kirchhoff's integral are not
applicable.

424 Radiation fields inside and outside the cavity

Inside the cavity, the internal field U can be obtained by applying Kirchhoff’s diffraction
formula to U on the mirror. If the mirror is partially transmitting, there will also be a
radiation field outside the cavity.® Since U must be continuous across a partially
transmitting surface, the propagation of U outside the cavity can also be calculated by
Kirchoff’s diffraction formula from U on the mirror. The result is

2 Tlm/2)+ r/2) + 1] x 2
Eylm(xa Vs Z)_Al+§2 l"(m_|_1)r([—|—l) H, bi 1+§2
2
REN N D Y
2
b &

xexp| —jRk|=(1+&)+

T

1+80b
(4.22)

Here 12 = x> +)?, & = 2z/b, tan® = (1 — &)/ (1 + &), and 4 is the amplitude.
Eq. (4.22) implies that the amplitude spot size at any z is

% Since the transmission is usually low, the outside field will have much smaller amplitude than the internal
field.
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b 2
=4/=—(1 4.23
o) = \50+8) (423)
The intensity of the radiation is proportional to EyEy*, thus the intensity falls to

1/e* of its maximum value at the edge of the spot. Clearly the minimum spot size

w, is at z = 0.
[bA
= /= 4.24
Wy b ( )

The Gaussian beam at z = 0 is known as the beam waist. Note again that, at large x and y,
the amplitude variation will be dominated by the exponential function, instead of any
polynomial function dependent on / and m. Thus the spot size is independent of the order
of the mode.

Three important examples of how to use the above results are given here.

(a) The far field pattern of the TEM modes
From Eq. (4.23), we can calculate w,/z for very large z. This w/z ratio is the radiation
beam width 6,,4 of the TEM modes in the far field,

A A 122
Oraq = ‘[an71 ( ) ~ =1\/— (4~25)
W, Tw, b))

If we compare this far field beam width, /7w, , with the beam width, /21, or A/21,,, of a
plane wave incident on a rectangular aperture, given in Eq. (3.22), we see immediately
the similarity between them. However, in the case of Eq. (3.22), we defined the radiation
intensity beam width by the first node of the radiation intensity; here we define the
radiation beam width when the intensity falls to 1/¢* of its maximum.

(b) A general expression for the TEM,,, Gaussian modes
We can now rewrite E,, ;, given in Eq. (4.22) in a form that has clear physical meaning
for different parts of the expression, as follows:

Y

@ 2 ] e () e
E'lm — Eo :Hl [ﬂ (Z)‘| Hm [Q (Z)] e :2( )e TR\ 2Ry efjkz+_]<l+m+l)77 (426)
w w w

Here, E, is just the amplitude, a constant, and

n=tan"'(z/z,) (4.27)
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4.2 Modes of confocal cavities 85

The three exponential terms in the above expression have different physical meanings.
(1) The first exponential term exhibits the Gaussian envelope amplitude variation at
any z. This is the most commonly cited property of laser cavities. Because of this term,
the laser modes are also known as the Gaussian modes. (2) The second exponential term
exhibits the quadratic phase variation (i.e. the spherical wave front) with a specific radius
of curvature R(z) at each z value. Note that at z = £ d/2, R is just the curvature of the
confocal reflector, as we would expect. Atz =0, i.e. at the beam waist, the mode has a
planar wave front, as well as the smallest spot size. (3) The third exponential term
expresses the longitudinal phase shift in the z direction. The phase shift is important in
determining the resonance frequency.

Note that the electric field distribution of any TEM,,, mode is independent of the size
of the reflector. The Gaussian beam already includes the diffraction effect without
explicitly invoking Kirchoff’s formula. Only the diffraction loss is dependent on the
reflector size.

The amplitude variation of the intensity is the main concern of conventional optics.
Since U'U is the intensity, we are not concerned with the phase variation of U in many
applications. However, in laser optics, the quadratic phase variation is also important.
Forexample: (1) high coupling efficiency between a specific laser mode and the mode of
another optical component requires good phase matching, as well as amplitude
matching of the two modes, (2) phase variations are important in analyzing the diffrac-
tion pattern; (3) as the laser light encounters a lens, the quadratic phase variation of the
lens will control the focusing of the laser radiation.

(c) An example to illustrate confocal cavity modes
Consider a confocal cavity with end reflectors separated by 30 cm and @ = 0.5 mm. The
medium between the mirrors is air, i.e. n = 1. The wavelength is 1 um. The reflectors are
99% reflection and 1% transmission in intensity. The confocal resonator modes will have

a beam waist size on the mirror, \/bA/z = 0.3 mm, which is independent of and much
smaller than the mirror size. The mode pattern in the x and y directions will not be
dependent on the mirror size.

The mode pattern will depend only on the mode order, / and m, and bA. According to
Eq. (4.23), the radiation field of the mode assumes its far field pattern when 4z%/b* >> 1.
The beam divergence angle at the far field is given by Eq. (4.25) as 1/21/z b, which is
1.5 m radians and independent of the mode order. Notice that the condition for the
far field is different than the far field condition for Kirchhoff’s diffraction given in Eq.
(3.16). The Fraunhoffer condition requires a much longer distance to satisfy.

The diffraction loss per pass will depend on the mode order, / and m. For this cavity
a’/bi = 0.83. From Figure 4.4 the diffraction loss for the TEM,o mode is approxi-
mately 107> per pass. The diffraction loss per pass for the TEMy, or TEM;, mode
jumps to 2 x 10 %, while the loss per pass for the TEM,; mode is 5 x 10~2. The mirror
size, a, is much larger than the spot size. The mode pattern in the x and y variations are
the same. According to Eq. (4.21), the diffraction loss per pass will be independent of
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86 Optical resonators and Gaussian beams

whether the mirrors are square or round in the cross section, as long as the area of the
mirror is approximately the same. Since the transmission is 1%, the total loss per pass
is 1.1 x 1072 for the TEMyo mode, 3 x 10 2 for the TEMy; or TEM;, modes, and
6 x 10 2 for the TEM,; mode. Notice the sensitivity of the diffraction loss per pass to
changes in a?/bA. In order to get much larger loss per pass for the TEM;, TEM;,, or
TEM,; mode, it is necessary to reduce the mirror size, a. At @ = 0.525 mm, the total
losses for these modes are: 1.02 x 1072, 1.5 x 1072, and 2 x 10 2. The increase of total
loss per pass for the higher-order modes will be much less significant for the larger
mirrors. A favorite practical trick to increase the differential losses of the higher-order
modes is to put an aperture in front of the mirror to reduce “a.” In other cases, the
effective “a” of the cavity may be limited by other considerations such as the size of
the laser tube.

4.3 Modes of non-confocal cavities

In this section, modes of non-confocal cavities with arbitrary spherical end reflectors at
a given distance of separation will be found by identifying them with the modes of a
virtual equivalent confocal cavity as follows. (1) We will first show that the reflectors of
any given confocal resonator can be replaced by other reflectors at various locations
that have an appropriate radius of curvature. Such a replacement will not change the
resonant mode pattern. We call this technique the formation of a new cavity for known
modes of confocal resonators. (2) We will then solve the inverse problem: how to find the
virtual equivalent confocal resonator for a given pair of non-identical spherical mirrors
at a given distance of separation. (3) Once we have found the virtual equivalent confocal
resonator we will obtain the properties of the modes of the original resonator, such as the
field pattern, diffraction loss, resonance frequencies, etc. from the modes of the virtual
resonator. (4) We will illustrate how to find the modes in non-confocal cavities via an
example.

4.31 Formation of a new cavity for known modes of confocal resonator

Let us first examine closely the consequence of the confocal resonator modes found in
Section 4.2. Eq. (4.26) implies that there is a constant phase surface for any resonator
mode whenever x, y, and z satisfy the condition,

2
——— = constant 4.28
T (4.28)
It is clear that if a reflector with curvature R(z) is placed at this z position to
replace one of the confocal mirrors at z = +d/2, we will still have the same
Gaussian transverse mode as the original confocal cavity. The frequency at
which resonance will occur will be shifted because # is a function of z, and the
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*
Beam waist at z=0, |
flat phase front, R=co |

|
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Spherical wave front with radius R,

_/,/-/' \/ Sphérical wave front with
: radius R,

i Confocal cavity, reflectors at z= £ z,,
| B=22z,

Figure 4.4 Tllustration of constant phase fronts of the modes of confocal resonators. The confocal cavity is
shown as two spherical reflectors at z = +z,,. The radius of these confocal spherical reflectors is 2z,,.
The modes of the confocal cavity have a spherical wave front inside and outside the cavity.
Outside, a spherical wave front (dashed curve) is shown to have a radius of curvature R,. Inside, a
spherical wave front (dotted curve) is shown to have a radius of curvature R;. The waist of the
modes (solid line) is at z = 0; the modes have a flat wave front at this position.

round trip distance of propagation will be different than that of the original
confocal resonator. However, the transverse mode variation will be the same.
The spot size on this mirror at z is given by the @ in Eq. (4.27). The diffraction
loss per pass will depend on the size of the reflectors.

In other words, a new optical cavity can be formed with mirrors at z; and z,, provided

202 202
Rl =z +— and R2 =z +— (429)
21 23
The transverse /m modes of the original confocal resonator are also modes of this new
cavity. The resonant modes of the new cavity will have the same transverse field
variation as the modes of the original cavity. The diffraction loss of the modes will be
the same in the original cavity and in the new cavity when the mirror size varies
proportional to  (z). Figure 4.4 illustrates the surfaces of constant phase at two z
positions. Note that one of z; and z, can have a negative value, producing a negative R,
which means we have a curved mirror at z < 0 bending toward z = 0. As Iz,| or Izl
becomes very large, IRl and IR,| become approximately the same as |zl or Iz,l, i.e. the
surface of constant phase is approximately the same as a spherical wave originated
fromz=0. As Izl or Iz,| becomes very small, |R;lor IR, becomes very much larger than
lz1l or Iz5l. At z = 0, the surface of constant phase is a plane.
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88 Optical resonators and Gaussian beams

4.3.2 Finding the virtual equivalent confocal resonator for a given set of reflectors

If there are two mirrors with curvatures R, and R,, separated by a distance D, we can find
z7 and z, to fit Ry and R, according to Eq. (4.29) as follows:

R 1
le—li— R12—4ZU2
2 2
4.30)
Ry, 1 (
Zzz—zﬁ:— R22—4202
2 2

Here, + z, are the positions of the mirrors for the virtual equivalent confocal
resonator that will have the same transverse modes. However, we still need to
determine z,,.

In order to find z,, we shall first observe some important conditions for z,. Assuming
z, > z;, we obtain,

R R 1 1
D=2z —z = 72— 71:|: E\/R22—4202:F§ R12—4Z()2 (431)
Rearranging terms and squaring both sides to eliminate the square root, we obtain,

2 = DR = D)(Rs = D)(Rs — Ry = D) (4.32)
(R, — Ry — 2D)

Clearly z, must be a positive quantity in order to obtain real values for the equivalent
confocal resonator position.

Eq. (4.32) allows us to calculate z, with a real value only when the right-hand side is
positive. The requirement for the right-hand side to be positive imposes also certain
conditions on R;, R,, and D as follows. Let us assume that R; is negative at negative
zy. Then, we must have:

D(|Ri| = D)(|Rz| = D)(|R1| + |R2| — D) > 0 (4.33)

There are only two ways to satisfy this condition. (1) 0 < D < IRl or IR,|, whichever is
smaller. (2) IR{+IR,l > D > IRyl or IR,|, whichever is larger. Condition (1) can be
expressed as 0 < (1 — D/IR{)(1 — D/IR,l). Condition (2) can be expressed as (1 — D/
IR 1)(1—D/IR,l)< 1. Hence the criterion for the existence of a resonator mode, equivalent
to a confocal resonator mode with z, given in Eq. (4.32), is

0< (1 —“%) (1 —%) <1 (4.34)

If we plot this equation in a rectangular coordinate system with the two axes as
D/IR,l and D/IR,|, then the boundary of the product to be zero consists of two straight
lines, D/IR{| =1 and D/IR,| = 1. On the other hand, the boundary of the product to be 1
is a hyperbola in this coordinate system. Figure 4.5 shows this plot. The shaded
regions show the combinations of R, R,, and D that satisfy the inequality in Eq.
(4.34). Resonators with these combinations are called stable resonators. The regions

Downloaded from https:/www.cambridge.org/core. New York University, on 21 Apr 2017 at 14:34:39, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139871419.005


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.005
https:/www.cambridge.org/core

4.3 Modes of non-confocal cavities 89
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Figure 4.5 The stable and unstable regions of laser cavities. The straight lines are the plots of the lower limit
of Eq. (4.34), and the hyperbola is the plot of the upper limit. The shaded region (i.e. the stable
region) shows the D/IR ;| and D/IR,lvalues that satisfy Eq (4.34). In this region, modes have low or
modest diffraction loss per pass. Cavities in the high loss region do not have D/IR,l and D/IR,!
values that satisfy Eq. (4.34). It is called the unstable region.

outside of the shaded regions are called unstable resonator regions. The confocal
resonator configuration has D = |R| = IR,|. Thus the confocal resonator can easily be
pushed into the unstable region by a slight misalignment of the cavity. In reality, the
assumptions used in our diffraction loss calculation breakdown near the boundaries of
stable and unstable regions. More precise calculations show the diffraction loss
increases rapidly from the stable to the unstable configuration. There is no sudden
change in diffraction loss from the stable to the unstable configuration. Unstable
resonator modes not only exist, they are used often in very high-power lasers so that
optical energy is not concentrated in a small physical region to avoid material damage
by the high electric field.

In summary, when the given R, R,, and D satisfy the stability criterion, Eq. (4.34), z,,
z1, and z; are determined from Eqgs. (4.31) and (4.32). z, provides us with the specifica-
tions of the virtual equivalent confocal resonator. Note that the + sign in Eq. (4.31) give
us two answers for z; and for z,. The correct choice is the one that gives the correct D.

433 A formal procedure to find the resonant modes in non-confocal cavities

A formal procedure can now be set up to find the resonant modes in non-confocal
cavities for a given set of reflectors, according to the analysis presented in the
previous subsection. We will first test the stability of the given R; R, and D
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90 Optical resonators and Gaussian beams

according to Eq. (4.34). For stable cavities, we will find the field pattern, the diffraction
loss and the resonant frequency of their resonant modes by the following seven steps:

(1) Calculate z,, z;, and z, from Egs. (4.31) and (4.32). “z; and z,” determine the center
position (i.e. the z = 0 plane) of the equivalent virtual confocal cavity. “z,” determines
the separation and the radius of curvature of the equivalent virtual confocal cavity.

(2) The minimum spot size of all modes atz=0is w0 = \//z,/7.

(3) The spot sizes on the two reflectors are: -’

w =
—=sl =

1+ (z1/2,)?, and ® =0 1+ (22/20)° (4.35)

0

(4) Let the size of the two mirrors be @, and a,. In order to calculate the diffraction loss
of a non-confocal resonator, we first find the equivalent sizes of the virtual confocal
mirrors with areas, aeq,lz and aeqﬁzz, which will be proportional to a,” and a,°. The
proportionality is the ratio of the areas of the spots on the actual mirrors to the areas
of the spots on the equivalent confocal resonator. The confocal resonator with a.q
and a.q » will have the same diffraction loss as the actual cavity with a; and a,. Using
Eq. (4.35) as the guide, we obtain

Aog1 = (\/EQ )al/g 1and Qegr = <\/§Q )az/g , (4.36)

(5) For symmetrical cavity, the diffraction loss per pass is calculated directly from the
confocal resonator with size a.q. For asymmetrical cavities, the diffraction loss per
pass is the average of the diffraction losses. The averaged diffraction loss per pass for
the cavity is ¥ of the sum of the diffraction loss for the two different virtual confocal
cavities, one with mirror size a.q,; and the second one with mirror size a@cq.

(6) In general, the resonance wavelength, 4;,,,, is determined by

(22D /dimg) = qr + (I +m+ 1)(tan"'z2 /2, — tan"'z, /z,) (4.37)

The differences in resonance frequency for different longitudinal order ¢ and
transverse order / and m are:

ﬁvquJrl _fl,m,q = C/2D,

4.38
ﬁ’.,m’,q _fl,m,q = ( )

C T 122 121 , ,
— | =-—tan = —tan — |(I'—I+m' —m
27D \ 2 Z, Z, ( + )

Note again that the difference in resonance frequency for two adjacent longitudinal
orders is just 1/7'where 7'is the round trip propagation time inside the cavity, 7= 2D/c.
If the cavity is filled with a dielectric that has an index of refraction n, T=2nD/c. The
transverse modes are still degenerate. All modes that have the same / + m order will
have the same resonance frequency.

(7) Practical resonators do not use end mirrors with square cross-sections. It is clear
from the previous discussions that the mode patterns (i.e. the Hermite polynomials
and the Gaussian envelope) will be affected only by the curvature and the position of
the reflector, not by the shape of the cross-section, e.g. whether it is square or round.
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4.4 The propagation and the transformation of Gaussian beams 91

Thus the modes derived for the square mirrors are equally applicable to the round
mirrors. From Eq. (4.21), it is clear that the diffraction loss per pass depends
primarily on the area Q of the mirror. Round or square mirrors with the same size
are likely to have the same diffraction loss per pass. Thus Figure 4.4 is also used to
estimate the diffraction loss for round mirrors.

434 An example of resonant modes in a non-confocal cavity

Let us consider a semi-spherical cavity that has one flat reflector with a; =2 mm and one
spherical reflector with radius of curvature R, = 0.7 m and a, = 0.6 mm, separated by a
distance of D = 30 cm. The wavelength is 1 pm. The medium between reflectors is air.
Clearly, the stability criterion in Eq. (4.34) is satisfied so that we can find the modes and
their diffraction losses by means of the virtual equivalent confocal cavity. Following the
process outlined in Section 4.3.3, we obtain the following results.

For the equivalent virtual confocal cavity, z, = [D(R, — D)]l/ 2=0.346410 m, z, = 0,
z, = 0.3 m. Notice that there are two solutions for z, given in Eq. (4.32). The correct
solution is the one that yields z, — z; = D.

The spot sizes are w, = 0.332063 mm, w,; = 0.332063 mm, and w,, = 1.32288 x
0.332063 = 0.439278 mm.

The appropriate sizes of the equivalent confocal reflectors for the calculation of
diffraction loss are: acq; = 2.82843 mm, a.q> = 0.641427 mm.

For reflector #1, a*/2z,4 is 11.5. For reflector #2, a*/2z,/ is 0.59. Therefore, the
diffraction loss per pass of the TEM obtained from Figure 4.4 for the flat mirror is
negligible, while the diffraction loss per pass for the second mirror is 5 x 107>, The
averaged diffraction loss per pass for the cavity is 2.5 x 10>. The averaged diffraction
loss per pass for the TEMy; mode will be approximately 5%.

In this section, we have not only shown how a non-confocal cavity can be analyzed,
and designed from confocal cavity analysis. We have also shown important properties of
non-confocal resonators, such as the stability diagram in Figure 4.5. The understanding
of these properties allows us to determine the stability of any cavity configuration
without detailed analyses.

From the discussion presented in Section 4.2.4, we observe that the Gaussian mode
pattern also extends to the outside of non-confocal cavities. This is a very important
result. It means that any Gaussian beam propagating through different environment
remains a Gaussian beam.

4.4 The propagation and the transformation of Gaussian beams
(the ABCD matrix)

There are many forms of the solutions of Maxwell s equations in the literature, such as
plane waves, cylindrical waves, spherical waves, etc. These solutions have been used to
analyze radiation fields propagating in different components whenever it is appropriate.
The Gaussian beam is one of them.
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92 Optical resonators and Gaussian beams

Gaussian modes were shown in the last section to form a complete set. Any
radiation field can be represented by a summation of Gaussian modes. The advantage
of the use of a Gaussian beam to represent approximately any radiation field is that
fields propagating through reasonably large apertures retain the same functional
variations, except for a reduction in their amplitudes. Thus the wave equation is
satisfied, and the diffraction effect is accounted for without the use of Kirchoff's
diffraction integral. Furthermore, we will show in the following section that
Gaussian modes are also natural mathematical solutions of Maxwell’s equations
without solving the scalar wave integral equation and without the existence of a
cavity [5].

441 A Gaussian mode as a solution of Maxwell’s equation
Consider, Maxwell’s equations,
V xh=¢%y Vxe=—u"/, Ve(e)=0 (4.39)

In the most general case & can be a function of (x,),z). From V x V X e, we obtain
Y Fe_ y(l,v (4.40)
e —gu—=—-V|—-¢e-Ve .
€ H By e

If Ve_Le (such as the ¢ variation in an optical fiber) or if Ve is small, we can then replace
the right-hand side with 0. If we further assume the time variation to be ¢, then the
equation for the electric field is:

Ve + K (r)e =0,
where k% (r) = w? /ue(r) (4.41)

When the medium is homogeneous, £ is a constant. Note that Eq. (4.41) is similar to
Eq. (3.4).
Let E be a linearly polarized field and,
E(x,y,z) = y(x,y,z)e 7" (4.42)

We will now show below in five mathematical steps that, in a homogeneous
medium, the circular symmetric y has a functional form identical to that of Gaussian
modes.

(1) Substituting Eq. (4.42) into Eq. (4.41), we obtain in a cylindrical coordinate with

Ow/06 = 0:
Vtzt// - 2jka_l// = 0)
Oz
where , , , (4.43)
V= v o o 0 10 0

o2 o2 rar T a2
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(2) Let

- {p(2)+ %rz}

w=e (4.44)

Substituting this functional form into the equation, we obtain

3% - 2,0 (1 op

This equation must hold for all values of ». Thus, the terms involving different
powers of » must vanish simultaneously, i.e.

1 0 /1 0 —j
—+—(-] =0 d —p=—= 4.46
¢ oz <q> LM Ty (446)
(3) Let 1/g = (dS/dz)/S, then the equation for S is d* S/dz* = 0. The solution for S is
obviously,
S=az+b,and qg=S/(dS/dz) =z+b/a=z+q, (4.47)
Substituting this solution to the equation for p(z), we obtain
op / (@)= —jmn(1+= (4.48)
- = - z)= — — .
0z a0 / 9o

(4) The objective of finding the solutions for p and g is to show that y has the functional
form of a TEM, Gaussian beam. Substituting ¢, by a new constant g, = jme,/1, we

obtain
—In| 1- iz jtan~! 4z
—jp(2) 70, 1 70,
el = ¢ = e

1+ (1222 /m2w,*)

(4.49)

Jkr?

2
) iz 2
—jkr? "\ 7o, .
2(-+40) o A B

(S = € (5]

(5) Substituting the above results into the expression for y, we obtain an expression for
E identical to the TEMyy mode in Eq. (4.26) of Section 4.1,

2
_r
—jkr?

2
1 w02 |:1+ |:mi;2:| :| ) |:]+ 2\ 2
E e €

Two . : nfl Az
— ( Az ) :|e—_]kzejta (7[(002) (450)
V1t (7 2 /70,4

In summary, a Gaussian beam is a natural solution of Maxwell’s vector wave
equations with Ve L e or Ve = 0. We have only derived the Gaussian mode for a
homogeneous media. Yariv showed in his book that when &*(r) = k* — k k, #* in an
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94 Optical resonators and Gaussian beams

inhomogeneous graded index medium, the solution of Eq. (4.43) for a circular
symmetric mode is still a Gaussian beam [5].

4.4.2 The physical meaning of the terms in the Gaussian beam expression

We note that, for a given Gaussian mode, we can describe its functional variation at
various values of z by

L2
k3

E = A(x,y)e e l)e :

V2x V2y
0| 06

(4.51)
A(x,y) = E,H,

Here, the coordinate z starts at the beam waist where the spot size is w, . The E given here
is taken from Eq. (4.26) -

The first term, 4, describes the x and y variation (i.e. the field pattern) of E. At two
different z positions, z; and z,, the 4 function will be the same. A(x,y) is different for
different / and m orders of the mode.

The second term, e %%, and the third term, ¢ 7=, are simple functions of z. They specify
the phase of the beam as the beam propagates from one z position to another. They are
independent of x and y. p is dependent on the mode order, / and m.

‘ @, Jj(I+m+1)tan™! (7:;)22)
e — = ¢ = (4.52)

Thus, “p + kz” determines the phase of £ at different z.

The 1/q term carries the most important physical meaning of the Gaussian beam. This
term has a real part, which specifies the curvature of the phase front, and an imaginary
part, which specifies the Gaussian variation of the amplitude at any z. To be more

specific,
1 1 ;2
—=— 4.53
TR e (4.53)
¢ is independent of the mode order, / and m.
g will be different at different z positions,
1 1
-= (4.54)
q z+4qo
From Eq. (4.54), the g values at two z values are related to each other by
q(z2)—q(z1) = 2221 (4.55)
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4.4 The propagation and the transformation of Gaussian beams 95

In the following sub-sections, 4.4.3 to 4.4.9, how a Gaussian beam propagates
through various components will be presented. This will demonstrate clearly the
advantage of using Gaussian beams to analyze propagation of waves with diffraction
loss.

44.3 The analysis of Gaussian beam propagation by matrix transformation

It is important to note that as a Gaussian beam propagates, E is always given by
Eq. (4.51). The relationship between ¢g(z;), call it g1, and g(z»), call it g», is linear.
Instead of writing the Gaussian beam as a function of coordinates x, y, and z,
we may write the relation between ¢; and ¢, in the formal form of a linear
transformation,

_Aq1+ B

=1 = 4.56
Cq1+ D ( )

q2
where A =1,B=2,—2z;, C=0,D =1, q; = q(z1), and ¢> = q(z;). In other words,
q» is transformed from ¢, by a linear transformation with the above ABCD
coefficients.

A linear transformation relationship also exists between ¢ values for Gaussian
beams transmitting or reflecting from various optical components. When a
Gaussian beam is incident on an ideal thin lens, we have learned from
Eq. (3.30) that the transmitted field immediately after the lens, E,, is related to
the incident field E;,. by the transmission function of the lens, which is a quadratic
phase shift, i.e.

E, = Einee 70 = ge ke ir@e ()" (4.57)

Therefore, the transmitted beam will have the same form as given in Eq. (4.51). Let ¢; be
the g parameter before the lens and ¢, the ¢ parameter after the lens. g5 is related to ¢, of
the incident beam by

1 I 1

—=——= 4.58
@ q f (4.58)
When we separate the imaginary and the real part of Eq. (4.58), we obtain
1 1 1
= —=——= 4.59
(€25 w1, R2 R] f ( )

It implies that the spot size is not changed by transmission through a thin
lens. However, the radius of curvature of the phase front is changed according to
Eq. (4.59). We conclude that ¢, and ¢, are again related by Eq. (4.56) with 4 = 1,
B=0,C=-1/f, and D = 1. p does not change when the beam propagates through a
thin lens.

If the lens has a finite aperture, the transmitted Gaussian beam will have
the same functional variation as for an infinite aperture. However, the amplitude
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96 Optical resonators and Gaussian beams

Table 4.1. The ABCD transmission matrix for some common optical elements and media.

Transformation description Figure Matrix
out
in | e

Homogeneous medium: 1 d
length d ! ! 0o 1

e d

7 'z,

Thin lens:

in out 1 0
Focal length f —7 | ™ -1,

U f

(f> 0, converging;

f< 0, diverging)

Dielectric interface: in/"/otlt 1 .

Refractive indices

| Lo
n ny ny
ny, ny
Spherical dielectric interface: /out

D _

in \ 1 0
Radius R “=R np=ny m

m Ny n,-R ny
Spherical mirror: in ~

1 0
Radius of curvature R _ ou -2 "
R™ R

will be reduced. The reduction in amplitude will be identical to the amplitude
reduction calculated from the diffraction loss per pass caused by the same
aperture.

The ABCD transformation method is applicable to propagation of Gaussian modes
through many optical elements. The ABCD transformation coefficients of various
optical components, such as those shown in Table 4.1 are also given in other text-
books [5]. It does not include the diffraction loss.
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4.4 The propagation and the transformation of Gaussian beams 97

If a Gaussian beam propagates through more than one optical component, the
q parameters at various positions can be determined by ABCD transformations in
succession. For two successive transformations:

Arq2 + B> A1q1 + By

- — = = thus
E Cq2 + Dy 7 Ciq1 + Dy

o = (4145 + B2Cy)q1 + (4281 + B2Dy) _ Ag, + B
(41Cy + C1D3)q1 + (B1Cy + D1 Ds) Cq1 +D

(4.60)

The ABCD coefficients for g5 in terms of ¢, in the above equation are simply the
coefficients obtained by multiplying matrix A; B; C; D; by matrix A, B, C, D,, as
follows:

A B Az Bz Al Bl
= X (4.61)
C D C2 D2 C] Dl

After the Gaussian beam has propagated through many optical components, this
matrix multiplication process can be repeated many times to obtain the ABCD coeffi-
cients for the total transformation matrix.

q of the final output Gaussian beam is related to the input ¢ by Eq. (4.56) where the
ABCD coefficients are given by Eq. (4.61). Thus the ABCD coefficients are called the
ABCD transformation matrices. It can be shown that any ABCD matrix is a unitary
matrix, i.e. AD — BC = 1. It is important to keep in mind that the order of multiplication
must follow the order in which the Gaussian beam is propagating through various
elements. It cannot be taken for granted that permutation of the order of matrix multi-
plication will give the same result.

p changes only when the z position changes. Therefore when the TEM,,, mode
passes through any component that has zero thickness, such as a thin lens, p does
not change. After the mode has propagated through many elements and distances,
the new p is obtained by using the distance of propagation as z. A(x,y) does not
change.

444 Gaussian beam passing through a lens

Consider a Gaussian beam at A =1 pm with @, = 0.4 mm at z = 0. It propagates through
a thin lens with /=2 mm at z = 0.1 m. Let us find the field pattern at z = 0.1 m after the
lens.

There are two ways to find the answer: (1) We can find the answer using Eq. (4.26).
The given Gaussian beam has z, = 71'&2 /A =0.502665m. From Eq. (4.26),
we also know the field pattern for any TEM,,, mode incident on the lens at z = 0.1 m.

It has a Gaussian amplitude variation with @ = 0.407839 mm, a radius
of curvature for the phase front R = 2.62662 m, and a phase shift given by # = 0.1964
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98 Optical resonators and Gaussian beams

radians. According to Eq. (4.57) the radiation field emerging from the thin lens will have
the same phase and amplitude variation. However, the radius of curvature for the phase
front will now be Rf/(R — f), which is 2.00152 x 10> m. We would intuitively expect
such an answer because the lens should create a focused spot near its focal plane. (2) The
answer could also be obtained very quickly from the ABCD matrix transformation as
follows:

1
e 0= <1 1l
X

B 1 0.1
¢ D 0.002 0 1

—500 —49
At z =0, q is jkw?¢/2, which is j0.502655. Therefore at the exit plane of the lens,

1 Cqy+D —500(j0.502655) — 49  —131.231 — j0.502645

¢ Aqi+B  j0.502655+0.1 0.262662
= —499.619 — j1.91366.

Here the real part of 1/g is 1/R, while the imaginary part —A/zw”. Note
that the complete expression of the field is given in Egs. (4.51) and (4.52) with this ¢
value.

44.5 Gaussian beam passing through a spatial filter

Let us reconsider the example in Section 3.2.4(e) when the incident beam is a
Gaussian beam. The ABCD transformation matrix method lets us find the
main propagation characteristics of the incident beam without any integration.
We will need to perform integration only when we want to know the diffraction
loss.

Figures 3.8 and 3.9 have already illustrated the geometrical configuration of this
spatial filtering set-up. Let the incident beam be a TEMy Gaussian beam incident on the
film at z = 0. The incident beam is:

. . L2
E—= Eoe*jkze*jp(z)e—.ikm

The beam waist is at z = 0 with spot size w,, @, << d. Notice now the effective beam
size is controlled by , and not by d. Therefore,

1 72

4o ko,

2
Ford > w,, the aperture size d does not change the functional form of the Gaussian beam. It
introduces a reduction of the amplitude because of the diffraction loss caused by the
aperture. At z = 0, immediately after the film with the transmission function ¢ in
Eq. (3.35), we obtain
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4.4 The propagation and the transformation of Gaussian beams 99

PN
E = _E,e /e e
2 o

2

+ lEaejzﬂeriszeiIP(Z)e_J o
i
+1Eoe*j2”er*jkze’fp(z)e e (4.62)

4

Each of the three terms in the above expression is still a Gaussian beam. The first term
is the same as the incident Gaussian beam with half the amplitude. For AH << 1,
e/?™*¢ 7% {5 a propagating beam in the x—z plane at an angle —6 with respect to the
z axis where sinf = AH. Similarly, the third term is a propagating beam in the x—z plane at
an angle 6 with respect to the z axis. For small 6, the three beams are still approximately
Gaussian beams in their three respective directions of propagation, i.e. the z axis, the +60
axis and the —6 axis. Therefore, we will treat them as three separate Gaussian beams
along those directions.
After the lens at z = 0, we have

E = 1 E e /*e e
2

o2

247

1 o ,
+ ZEge’/kZe’/P(Z)e’ﬂ”H"e (4.63)

2
1 . . gy
4 —Eoe sze A]p(z)e+127ere

where
111 — (ko2 )*f + 2k, S
I =t )-’; J zf (4.64)
@ 90 f (kwo?)” + (2f)
In front of the screen at z =, the three beams are:
el
E — 1 E, e e P =
2
2
+ lE e—.ﬂ?fe—.fzﬂHXe—jp(Z:f)e 0 (4 65)
4 o .

L2
1 —jkf A+i2m Hx ,—jp(z=f) 7Jk%
+ ZE”e T etmmittePE=l g
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100 Optical resonators and Gaussian beams

where

B 27 11 ke, 1 )2
e T A A T e

(4.66)

Here R, is the curvature of the Gaussian beam and w, is the spot size at z = f.
Therefore,

Af

T,

Rz :f and wy = (467)
This means that the curvature of the beam is f'and that the spot size is proportional to
flw,. This result fits our intuition since we expect an ideal lens to focus a plane wave
into a spherical wave with a focused spot size proportional to the focal length
and inversely proportional to the incident beam size. For small 6, we have approxi-
mated the distance along the respective directions of propagation by z in this
calculation.

The centers of the three beams are at z =0 and z = +6f =~ +1Hf. The beam centered at
z =0 1is always blocked by the screen. In order for the two beams in the +6 directions to
pass, we need

SR (- 2

W, W,

AHf + (4.68)
This is the same result we obtained in the example in Section 3.2.4(e).

When the two transmitted beams travels to z = 2f, in front of the second lens, the ¢
parameter of the Gaussian beams is g3, where

frw,? 11 2
= = ST d —=-— _ 4.69
B=q+f g3 kg — 2f an| [ kog (4.69)
After the lens, the parameter ¢, is
1 1 1 2j
—_—=———= / (4.70)

q4 B q3 f T kwoz

Therefore we get back two original Gaussian beams, now propagating in the 6 direc-
tions with the same spot size. There will be some diffraction losses associated with the
aperture and the screen.

Comparing the solution presented in this section with the solution presented in
Section 3.2.4(e), the Gaussian beam analysis is much simpler.

4.4.6 Gaussian beam passing through a prism

A thin prism is illustrated in Figure 4.6. Let the prism be made of material with refractive
index n at wavelength 4. Let the prism axis be the x axis and the base of the prism be
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Prism
pbea
Input Gaussian - Qutput Gaussian
beam .
-
> -
__________ *zZ
——————— (n=1)a
e e F1rT = NSRS L iy A >
———————— z

Figure 4.6  Illustration of a Gaussian beam passing through a prism. The phase shift of an optical beam passing
through a thin prism can be represented as a phase shift equivalent to tilting the wave from the
direction of propagation in xyz coordinates to a direction in x'y’z’ coordinates. The tilt angle is (n — 1)a,
where 7 is the index of prism material at the wavelength and « is the vertex angle of the prism.

parallel to the y axis. The prism has a wedge angle a. The vertex of the prism is placed at
x =h and z= 0. Let a Gaussian beam

i (xz 2)

Eine = A(x,y)e e 7@ e " (4.71)

be incident on the prism. The symbols in the expression for the incident £ have already
been defined and explained in Eq. (4.51).

Similar to a thin lens, discussed in Section 4.4.4, there is a phase change for any
beam propagating through a thin prism. For the geometry shown in Figure 4.6, the
phase change from any incident beam to the outgoing beam can be derived from
phase changes of small optical rays passing through the prism at different x
positions. The transfer function ¢ for any beam passing through a thin prism was
discussed in Section 1.3.4 (c) for plane waves. It is:

t = efjk(nfl)a(hfx) (472)

Here we have assumed that the beams are located well below x = / so that the diffraction
from the prism vertex atx = 4 can be neglected. a is small so that sina = a. Therefore, the
output beam will be

(247

Eous = A(x,y)e 40012 Ine)g g b (4.73)
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102 Optical resonators and Gaussian beams

If we define a new set of coordinates, x’ and z’, such that they are rotated from x and z by
an angle (n — 1)a, as shown in Figure 4.7, where

x' =xcos[(n—1)a] —zsin[(n — )a] =x —z(n — 1)a (4.74)
z' =xsin[(n — 1)a] + zcos[(n — 1)o] 2x(n — 1o+ z '
then we can rewrite £ approximately as:
v ik iy )
Egu = Ae =1tk k' o=ip (@) ¢ /ey (4.75)

Here, we have neglected terms involving o, and we have made the approximation
p(z)2p(z’)andg(z) 2 ¢q(z"). The term e "% is just a constant phase factor.
Therefore E,, describes approximately a Gaussian beam propagating in the new z’
direction without any change of Gaussian beam parameters. Since n is wavelength
dependent, the direction of the output beam will be wavelength dependent, as we
would expect for chromatic dispersion. However, because of the change in direction
of propagation there is no simple way to express the transition as an ABCD
transformation. When the beam size becomes comparable to the size of the prism,
there will be diffraction losses. The diffraction loss can be calculated according to
Eq. (4.21). When there is diffraction loss the coefficient A in Eq. (4.75) will be reduced
accordingly.

4.4.7 Diffraction of a Gaussian beam by a grating

Diffraction of a plane wave by a grating was discussed in Section 1.5. Analysis of
the diffraction of a Gaussian beam is similar to that. However, the analysis
now includes the effect of the finite size of the optical beam. Let there be a
transmission grating with its transmission function ¢ identical to that used in
Section 1.5.

At . At .
t = t,(1 + Atcos2afyy) = t, + 1, Eeﬂ’ffgy +1, 73—/2@ (4.76)

Let there be an input Gaussian beam,

(2 402)

Eine = A(x,y)e e ) e 7 (4.77)

The output beam is

x2 +y2)

At . At . . ) et
Eout = tnA'(xvy) (1 + 767]27?&)/ + EeﬁZnﬂfj}) eijkzei]p(Z)e " e (478)

There are three terms in Eq. (4.78). The first term is a Gaussian beam in the direction
of the z axis. The second term is a diffracted Gaussin beam in the direction of (9“, called
the +1 order diffracted wave where 8! = sin™! (2zfy/p). The third term is a diffracted
Gaussian beam in the direction of 971, called the —1 order diffracted wave where
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Curved
mirror

Lens with focal length f

‘ Focused spot

—J 10 mm

Y

v

Figure 4.7  Tllustration of a Gaussian beam focused by a lens. The laser is oscillating in the TEM, mode of the
cavity. The laser radiation from the flat reflector needs to be focused to a spot 10 mm beyond the
lens. The Gaussian beam transformtion technique is used to find the optimal focal length of
the lens.

0! = sin'(—2xf, /). A’ will be proportional to 4. The proportion will be determined
by the diffraction loss, which can be calculated from Eq. (4.21). Diffraction by gratings
of different groove periodicity and shape can be analyzed in a similar way to the
discussion using Eq. (1.103).

4.4.8 Focusing a Gaussian beam

Intuitively, we know that in order to focus a beam to a distance d away from a lens or
mirror, we use a lens or a mirror with a focal length of d. The smaller the value of d, the
smaller the focused spot. However, we will always wonder whether the focusing will be
affected by the characteristics of the Gaussian beam or by the location of the lens. It is
also instructive to see how the focusing of a Gaussian beam can be analyzed by the
ABCD transformation method. This analysis will allow us to calculate the value of fthat
will yield the smallest focused spot at a given distance away and the size of the focused
spot.

Figure 4.7 shows a laser oscillating in the TEM,, mode and a lens focusing the laser
mode. w, of the TEM oscillating mode is 1 mm on the flat mirror located at z = 0. Let
the wavelength be 1 um. A lens of focal length fis used to focus the laser beam to a
distance 10 mm after the lens.

For a semi-spherical laser cavity the beam waist of the resonant mode is on the flat
mirror. The Gaussian beam parameter, g, of this oscillating mode at z = 0 is

1 1

—=—j- 1 /meter 4.79
e F (479)

The lens is located at z = 0.5 m away. The Gaussian beam parameter at z = 0.5 m, ¢, is
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1 0.5 T
— g +05=jr+05 « —— _j 4.80
o= / @ 2105 ‘2 +(05) (4.80)

Immediately after the lens, g3 is

1

6]3_

%_l] _j% (4.81)
2+ (0.5)° S 7+ (0.5)

We still have a Gaussian beam after the lens. At the intended focusing position,
1/q4 = 1/(g3 + 0.01). We obtain the smallest focused spot if the Gaussian beam
waist is located at that position. Therefore the correct f for us to use is the f value
that will yield a zero for the real part of 1/g4. In other words, g4 must be imaginary, or
the real part of ¢3 should be —0.01. the numerical solution of that condition yields f'=
0.00999516 m. In order to obtain the spot size at the focus, we need to find the
imaginary part of 1/g4. Note that Im[g4] = Im[qs]. Substitution of the f value into
1/g5 yields a spot size of 9.88 um at the focus. Clearly, a change in the position of the
lens or in the Gaussian parameter q; will change very slightly the desired f'value to use.
On the other hand, if we reduce the distance of the focused spot to the lens, we will
obtain a smaller focused spot size.

449 An example of Gaussian mode matching

Let there be a Gaussian beam with parameter ¢, at location A. Let there be an optical
instrument that requires a Gaussian beam with parameter g, at location B, as illustrated
in Figure 4.8. A lens with focal length f'is placed at specific distance d from A to match
the Gaussian beam with g, at A with a Gaussian beam with g, at B. We can find fand d by
the ABCD transformation method as follows.

Lens with focal

length f

L. d .|

| |
Gaussian | i Gaussian
beam with | beam with
parameter qaL i parameter qj,

: 4

! '

A B!
= | | =

| L
Figure 4.8 Matching a Gaussian beam at A to a Gaussian beam at B. A lens can be used to match a Gaussian
beam at A to a different Gaussian beam at B. The Gaussian beam transformation technique can be

used to determine the position and the proper focal length of the lens.

v
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4.4 The propagation and the transformation of Gaussian beams 105

We know g, is related to g, as

_ (Qa +d)f
S = (qa+d)

q. and g, have two differences, the difference in the real part (i.e. the curvature of the
Gaussian beam wave front) and the difference in the imaginary part (i.e. the Gaussian
spot size). We have two algebraic equations for fand d that can be easily obtained from
Eq. (4.82) to match the two differences in g, and g, Michael Spurr and Malcolm
Dunn [6] have shown that high school geometry can be used to solve these algebraic
problems arising from Gaussian beam optics.

+(L—d) (4.82)

4.4.10 Modes in complex cavities

When there are many optical elements in a cavity, the ¢ parameter of the Gaussian beam
at different positions in such a cavity can be found by considering the transformation of g
after a round trip in the cavity.

Let the g parameter at any point in the cavity be g,. The final g parameter after a round
trip is (Aq, + B)/(Cq, + D). For a stable mode in the cavity, it must also be the original ¢;.
Thus the equation for g; is:

Ags + B
= At (4.83)
Cqs + D
This is a quadratic algebraic equation for 1/¢,. The solution is
1 _D-a W=D+ p-a  jsing
¢ 2B B - 2B B (4.84)
D+ 4
where cosY = ——
2
We learned earlier that
1 1 A
— == —j— (4.85)
qs R Tow?

For a stable resonator, R is the radius of curvature of the spherical phase front, and w is
the spot size. Therefore the magnitude of cos & must be less than 1, or

D+ 4
2

‘ <1 (4.86)

For simple cavities, Eq. (4.86) is identical to Eq. (4.34). [(D+A4)/2 | =1 is also represented
by the boundary between stable and unstable regions shown in Figure 4.5.

Once g at various positions in the cavity is known, we can find the position at which ¢
is purely imaginary. This position is that of the origin of the z axis, i.e. z = 0, for the
virtual equivalent confocal resonator. At this position, the beam waist is w,. The Imth
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Figure 4.9 Tllustration of a Gaussian mode in a ring cavity. In a ring cavity, the resonant mode is the
recirculating mode that reproduces the field pattern with integer multiples of 2z phase shift
after a round trip of multiple reflections. The optical path of the recirculating mode is shown by the
block arrows. The Gaussian beam parameters values of ¢ before and after each reflector are also

shown.

mode of the equivalent virtual confocal resonator is given by Egs. (4.51) and (4.52) in
terms of these coordinates and the complex ¢ values. The phase shift for the round trip
propagation depends on the mode order, / and m, and the total distance of propagation
from z = 0. The resonance frequency is determined by the wavelength at which the round
trip phase shift is 2z. The diffraction loss per pass of each optical element encountered in
the round trip path can be calculated by the same procedure as we have used for
reflectors in non-confocal resonators at the end of Section 4.2.3.

4.4.11 An example of the resonance mode in a ring cavity

A ring cavity is illustrated in Figure. 4.9. There are three flat mirrors at A, B, and C,
separated by a distance d between A and B. C is separated from A and B by 2d. A lens
with focal length 1 m is placed midway between mirrors A and B. The recirculating
resonance mode is the mode that starts with Gaussian parameter ¢, at mirror B, is
reflected by mirrors C and B, is transmited through the lens, and propagates back to
mirror B. Let d = 1 m and 4 = 1 pm. We can find the recirculating resonant modes
and the diffraction loss per pass from the ABCD transformation matrix method as

follows.
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Chapter summary 107

The transformation matrix M from ¢, to ¢; at mirror B through g3, g4, and g5, in the
counterclockwise direction in Figure 4.9 is:

YT O TR
M= 201 1 2 (4.87)
0 1 A 0 1
Ford=1and f=1,
o
2 4
M= 7 (4.88)
1 _
2
If we require that g; = ¢ in a round trip, we have
1 n 11
gy +—
o=2—7 (4.89)
—q2 — 5

Therefore

1 8 V20

a:—ﬁi]T (4.90)
The values of 1/q at each mirror tell us the curvature and the spot size of the Gaussian
beam at that mirror. We can obtain the diffraction loss per pass of each mirror from the
mirror size and the spot size. In particular, g5 is imaginary. Thus we know that the beam
waist of the recirculating resonant mode is at mirror C. The size of the beam waist, @, at
mirror C is determined by the value of ¢;. From w, we obtain z, of the equivalent
confocal resonator mode.

Chapter summary

Diffraction analysis presented in Chapter 3 is the mathematical base used to analyze
large laser cavities. The result of the analysis of laser cavities showed us various
properties of laser modes. It is interesting to note that although the modes are the result
of diffraction analysis, laser properties can much better be understood in terms of the
modal description. There is not clear-cut boundary between diffraction analysis and
modal analysis. The important considerations in analyzing any application are the
geometrical configuration of the device and the most appropriate way to analyze the
fields in that configuration.

The laser cavity analysis yielded a set of Gaussian modes. Once we have the Gaussian
modes, we can use them to represent any optical radiation, whenever it is appropriate.
The advantage of representing the radiation beam by a Gaussian mode is that the
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108 Optical resonators and Gaussian beams

diffraction loss through components with limited aperture is taken care of without the
use of diffraction integrals. Several examples of how to use Gaussian mode analysis in
applications have been demonstrated. Please note that the use Gaussian beam analysis
is still limited to TEM waves.

References

[11 A. G. Fox and T. Li, Resonant modes in a maser interferometer, Bell System
Technical Journal, 40, 453, 1961.

[2] G.D.Boyd andJ. P. Gordon, Confocal multimode resonator for millimeter through
optical wavelength masers, Bell System Technical Journal, 40, 496, 1961.

[3] D. Slepian and H. O. Pollak, Probate spheroidal wave functions, Bell System
Technical Journal, 40, 43, 1961.

[4] C. Flammer, Spheroidal Wave Functions, Stanford University Press, Stanford, CA,
1957.

[5] A. Yariv, Quantum Electronics, John Wiley & Sons Inc., New York, 1989,
Chapter 6.

[6] M. Spurr and M. Dunn, Euclidian light: high-school geometry to solve problems in
Gaussian beam optics, Optics and Photonic News, 13, 40, 2002.

Downloaded from https:/www.cambridge.org/core. New York University, on 21 Apr 2017 at 14:34:39, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139871419.005


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.005
https:/www.cambridge.org/core

5  Optical waveguides and fibers

Kirchoff's integrals cannot be used to analyze optical waves in waveguides and fibers
because they are not TEM waves and there are significant variations of the electro-
magnetic field in the transverse direction within distances comparable to or smaller than
the wavelength. For electromagnetic analysis of guided-wave structures, Maxwell's
vector equations plus appropriate boundary conditions need to be used to find the
modes in these devices. Opto-electronic devices also function via the interaction of
these modes. For these reasons, modal analyses are presented in Chapters 5 to 8.
Chapter 5 focuses on the modes of optical fiber and channel waveguides. Chapter 6
presents the methods that analyze the mutual interactions of modes. Passive and active
devices are discussed in Chapters 7 and 8. Many of the theoretical methods in optical
guided-wave analysis are very similar to those used in microwaves.

From another perspective, modal analysis, plane wave, and diffraction integral
analysis are all analyses based on Maxwell s equations. There are also other solutions
of Maxwell’s equations in the literature, such as cylindrical and spherical waves. They
are just different ways to analyze optical fields demanded by different device config-
urations. The more complex the configuration, the more complex the mathematical
analysis. What form of analyses should be used is determined by what is the most
appropriate one to use.

5.1 Introduction to optical waveguides and fibers

Optical waveguides and fibers are made from dielectric materials. They have a high
index core surrounded by lower index cladding or substrate. The transverse dimensions
of the core are comparable to or smaller than the optical wavelength. Guided electro-
magnetic waves propagate in and around the core. A typical optical fiber and a typical
channel waveguide are illustrated in Figure 5.1.

Guided-wave modes are solutions of homogeneous Maxwell’s electromagnetic equa-
tions in waveguide structures that have a constant cross-section and infinite length in the
direction of propagation. The modes of optical fibers and waveguides are the focus of
discussion in this chapter. Homogeneous solution means that these are the propagating
electric and magnetic fields that satisfy the differential equations and the appropriate
boundary conditions in the absence of any radiation source. What modes are excited is
determined by the input radiation.
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Figure 5.1  Tllustration of a step-index optical fiber and a ridged channel waveguide. (a) The round optical
fiber has a high-index core in the center, surrounded by a low-index cladding. It is shown in
cylindrical coordinates. (b) The channel waveguide core consists of a high-index planar
waveguide and a high-index ridge. The ridge plus the planar waveguide is ¢ thick and W wide.
There is a substrate under the core and a cladding surrounding the core on top.

Modal analyses are used in microwaves as well as optics. However, there are important
differences between optical and microwave waveguides. In microwaves, we usually have
closed waveguides inside metallic boundaries. Metals are considered to be perfect con-
ductors at most microwave frequencies. Figure 5.2 illustrates a typical microwave rec-
tangular waveguide, which is surrounded by metallic walls. The boundary condition at the
metal surface is that the tangential electric field is zero. Microwaves propagate within the
metallic enclosure. In such closed structures, we have only a discrete set of waveguide
modes. At optical wavelengths, we avoid the use of metallic boundaries because of their
strong absorption of radiation at optical frequencies. All optical waveguides are open
dielectric waveguides. Two examples have been illustrated in Figures 5.1(a) and 5.1(b).

There are at least three differences between microwave and optical waveguide
analysis.

(1) The mathematics of finding the modes is more complex for open waveguides. In
fact, there exists no analytical solution for three-dimensional open-channel
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5.1 Introduction to optical waveguides and fibers 111
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Figure 5.2  TIllustration of a rectangular microwave waveguide. Within the metallic walls, it has lateral
dimensions of 2¢ in the x direction and 2 in the y direction. The waveguide is oriented along
the z direction.

waveguides or graded-index fibers. We only have analytical solutions for the modes
of the round step-index fiber shown in Figure 5.2(a) and the planar waveguides
shown in Figure 2.4. Numerical analysis or approximation methods must be used to
analyze the modes of optical waveguides.

(2) Modes in microwave waveguides do not have an evanescent tail. In open dielectric
waveguides, the discrete optical guided-wave modes have an evanescent field out-
side the core region (the core is often called vaguely the optical waveguide). The
evanescent tail ensures that any perturbation of the mode from any structural change
several decay lengths away is small. Since propagation loss of the guided-wave
modes is caused often by scattering or absorption, it means the attenuation rate of the
guided mode will be very low as long as there is little absorption or scattering in or
near the high-index core. Thus optical fibers are used for long-distance communica-
tion. Yet, significant energy is still carried in the evanescent field near the core. This
evanescent field may be used to achieve mutual interactions with other radiation
fields. For example, the evanescent field is used to operate devices such as the
dielectric grating, the distributed feedback laser, and the directional coupler.

(3) Inaddition to the guided modes that have discrete eigenvalues, there is an infinite set
of continuous modes in open waveguides in optics. Only the sum of both the discrete
and continuous modes constitutes a complete set of functions. It means that,
rigorously, any arbitrary incident field should be expanded mathematically as a
summation of this complete set of modes. At any dielectric discontinuity, the
boundary conditions of the continuity of electric and magnetic fields are satisfied
by the summation of both the guided-wave modes and the continuous modes. In
other words, continuous modes are excited at any discontinuity in optics. Energy is
radiated away from the discontinuity by the continuous modes. In microwaves, only
discrete modes are excited at any discontinuity.

Because of the differences between the optical and microwave waveguide structures,
the calculation of their modes also differs.
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112 Optical waveguides and fibers

Finding the modes analytically in realistic channel waveguides and graded optical
fibers is mathematically too difficult to obtain. Hence only the modes of planar wave-
guides and step-index fibers are presented in this chapter.

The plane wave analysis in Section 2.4 has already given the solutions for a planar
waveguide. However, it is difficult to use plane waves to describe the properties of the
waveguide modes and to see how modes could be used to analyze devices. For example,
properties such as the othogonalilty of the modes could not be understood easily by
plane waves. Thus modal analysis of planar waveguides is presented in this chapter. The
TE and TM modes of planar waveguides and their properties are presented in detail in
Sections 5.2 to 5.5. Modes of channel waveguides are discussed in Section 5.6 by means
of an approximation technique called the effective index method. Modes of optical fibers
are discussed in Section 5.7.

Although the configurations of planar waveguides and step-index fibers are very
simple compared to those of the actual devices, the properties of the modes of these
simple structures illustrate clearly the properties of optical guided waves in general. The
modes of these simple structures also serve as the basis for the approximate analyses to
be presented later to analyze realistic devices such as directional couplers, resonators,
modulators, and filters in channel waveguides.

Modal analysis of planar and channel waveguides has been presented in many
existing books. However, these discussions do not emphasize the implications of the
approximation methods, the mutual interaction properties of the modes, and the effect of
the excitation of modes.

5.2 Electromagnetic analysis of modes in planar optical waveguides

5.2.1 The asymmetric planar waveguide

A typical uniform dielectric planar waveguide has been shown in Figure 2.4. For planar
waveguides, the core, the cladding, and the substrate are all uniform and infinitely wide in
the y and the z directions. The core typically has a thickness, #, of the order of a wavelength
or less, supported by a substrate and covered by a cladding (or air) many wavelengths (or
infinitely) thick. The refractive index of the waveguide core, n,, is higher than the indices
of the surrounding layers, n. of the cladding (n. = 1 for air) and n, of the substrate. All
layers have the same magnetic permeability 4, and the time variation is ¢/,

Since the structure is identical in any direction in the y—z plane, we could choose the +z
axis as the direction of propagation in our analysis without any loss of generality. For
planar modes, we further assume 0/0y = 0. This assumption on the y variation applies in
Sections 5.2, 5.3, and 5.4.

5.2.2 Equations for TE and TM modes

When we substitute 6/0y = 0 into V x E and V x H in Maxwell’s equations, we obtain
two separate groups of equations.
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0E, OE 0H, O0H,
Y% _uoH,Jot, T = —uoH.Jor, S Y o, Jor
oz N / Ox HOH./ Ox 0z e0ky/
and (5.1)
0H, oH, OE. OE,
— —¢dE,/0t, =2 = ¢dE,/dt, _ O L0H, ot
oz~ COE/0t 5 m =800t H =T = nOH, [0

Clearly, E,, H,, and H. are related only to each other, and H,, E,, and E. are related only
to each other. Since the direction of propagation is z, the solutions of the first group of
equations are called the TE, transverse electric, modes. The solutions of the second
group of equations are the TM, transverse magnetic, modes. In other words, all planar
waveguide modes can be divided into TE and TM types.

Since ¢ is only a function of x, the z variation of the fields must be the same in all layers.
This is the consequence of the continuity of £, or H,, for all z. For TE modes, the transverse
electric £, in Eq. (5.1) can now be written as a product of a function in y and a function in z,
ie. Ey(x,z) = E,(x)E,(z). When all these considerations are taken into account, we obtain:

[aa—; + (coz,us (x) — ﬂ2>]Ey(x) =0 (5.2a)

(5.2b)

B—; + ﬂz} E,(z)

Similar equations exist for TM modes.

Mathematically, Eq. (5.2) and its equivalent for TM modes are second-order differ-
ential equations. All the TE modes form a complete set of TE eigenfunctions, meaning
that any arbitrary electric field polarized in the y direction with 8/0y =0 can be
represented as a summation of TE modes. Similarly, all the TM modes form a complete
set of TM eigenfunctions, meaning at any arbitrary electric field polarized in the x
direction with 0/0y = 0 can be represented as a summation of TM modes. Any radiation
field with arbitrary polarization needs to be decomposed first into TE and TM compo-
nents, and then analyzed.

5.3 TE modes of planar waveguides

The planar TE modes (i.e. modes with 8/dy = 0) in the planar waveguides are eigen-
solutions of the equation

? fod )
a2 + ﬁJr w e (x) | Ey (x)Ey(z) = 0
e(x) = nle, x>t
= m?e, t>x>0 (5.3)
= nszeo 0 Ex
ho_ 0B i
wu 0z wu O0x
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114 Optical waveguides and fibers

Here, ¢, is the free space electric permittivity. The boundary conditions are the continuity
of the tangential electric and magnetic fields, £, and /., at x = 0 and at x = £. The continuity
of H_ is equivalent to the continuity of 0E,,/Ox. Note that when E,, is known, H, and H. can
be calculated directly from E,. Thus only E, is shown explicitly in the following sections.

5.3.1 TE planar guided-wave modes

Egs. (5.2) and (5.3) suggest that the solution of E(x) is either a sinusoidal or an
exponential function, and the solution of E,(z) is e/ . Guided by the discussion in
Section 2.4, we look for solutions of E,(x) with sinusoidal variations for ¢ > x > 0 and
with decaying exponential variations for x > ¢ and x < 0. In short, we obtain the following
functional form for a forward propagating E,(x,z). The subscript m stands for the mth
order solution of Eq. (5.3).

En(x,2) = En(X)En(z) = Ay {sin(hut + ¢, )e P60 e Pz x>¢

En(x,2) = En(X)En(2) = Ay {sin(hyx + ¢,,) }e 7P >x>0

Ep(x,2) = En(x)En(z) = Ap {sing,e™ fe 0>x

where, in order to satisfy Eq. (5.2) (5.4)
Bulk) = (pu/k)? = nc
Bl 0 + (/)2 = n?

(ﬂm/k)z - (qm/k)z = ns2

Eq. (5.3) is clearly satisfied by E,,, in all the individual regions. Note that the continuity of
E, is automatically satisfied at x = 0 and x = ¢. In order to satisfy the H. magnetic
boundary conditions at x = 0 and x = ¢, A,,, ¢,,, and p,, must be the mth set of the root of
the transcendental equations, which are also called the characteristic equations,

tan[(h,, /k)kt + ¢, = — hw/pm and tand, = h,/qum (5.5)

For a given normalized thickness ¢, there are only a finite number of roots of the
characteristic equations yielding a discrete set of real values for 4, p,,, and g,,. For this
reason, the guided-wave modes are also called the discrete modes. They are labeled by the
integer subscript m (m =0, 1, 2,....). The lowest-order mode with m = 0 has the largest
value, o> f1 > 2> fs. . . and hy < hy < h,. .. Moreover, one can show that the number of
times that sin (4,,x + ¢,,) is zero is m. Thus, we could identify experimentally the order of
the mode by the number of zeros in its intensity pattern. The f,/k value is called the
effective index, n.g;,, of the mode. The velocity of light in the free space divided by
effective index 7,4 is the phase velocity of the mth-order guided-wave mode. The expo-
nential decay rate of any guided-wave mode in the cladding and the substrate is determined
by the index of the surrounding layer (either at x > ¢ or at x < 0) and the £, /k value of the
mode. Lower-order modes will have larger effective index and faster exponential decay.

The lossless TE planar guided-wave modes are orthogonal to each other and to any
other TE or TM modes of the same waveguide [1,2]. It is customary to normalize the
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5.3 TE modes of planar waveguides 115

constant 4,, so that a unit amount of power (1 W) per unit length in the y direction is
carried out by a normalized mode. Thus,

+0
1
 Re J EnHon"dx| = (8, /Zw,u)JEnEm*dx . (5.6)

—00

From this condition, we obtain

4op 1l 1 !
4,0 = —— ——I———H} 5.7
5.3.2 TE planar guided-wave modes in a symmetrical waveguide

In order to visualize more easily why there should be only a finite number of modes, let
us consider the example of a symmetrical waveguide. In this case, n. = ny,=n and p,,, =
g The quadratic equations for 4,, and f,, and the transcendental equation in Eq. (5.5)

now become
(—k> + (—k) = n? —n’ (5-8)

and
hﬂ‘l
h 2
m _ pm
o] ()] = e, 59)
"o
Since
kt
2tan 5
tan | 2 b ) RV (5.10)
k|2
1 — tan? n | K
2
Eq. (5.9) can be reduced to two equations,
hm \ kt DPm/k P B\ kt Pm
t Dmy T = h ot 2= = =2 5.11
w|(2)2] = e ()3 - e
or
hm \ kt hm/k - I\ Kt Pm
t — = = - h ——cot||{—|=| = =— 5.12
w|(5)2) = e e ()3T e
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If we seek graphical solutions in the coordinate system of p,,,/k and 4,,/k, they are given
by the intersections of one of the two curves described by the equivalent tangent
equations, either Eq. (5.11) or Eq. (5.12), and the quadratic equation,
(hw /) + (pm k) = % — 1.

In summary, there are two sets of equations. The solutions for the first tangent
equation (3.11) and the quadratic equation (5.8) are known as the even modes because
they lead to field distributions close to a cosine variation in the film. They are symmetric
with respect to x = t/2. The solutions from the second tangent equation (5.12) and the
quadratic equation (5.8) are called the odd modes because the fields in the film have
distributions in sine variations. They are anti-symmetric with respect to x = t/2.

It is instructional to examine the even modes in detail. If we plot the quadratic
equation of &,,/k and p,/k in Eq. (5.8), it is a circle with radius (n,>— n*)"?. The
curve describing the tangent equation in Eq. (5.11) as functions of #4,,/k and p,,/k
will be obtained whenever the left-hand side (LHS) equals the right-hand side
(RHS) of the tangent equation. The RHS is just p,,/k; the LHS has a tangent which
is a multi-valued function. It starts from 0 whenever (4,,/k)kt/2 is 0, z, or mz. It
approaches + or — infinity when (%,,/k)kt/2 approaches +z/2 or —z/2, or (mm + 7/2)
or (mr — w/2), where m is an integer. The curves representing these two equations
are illustrated in Figure 5.3. Clearly there is always a solution, as long as n, > n,
i.e. there is an intersection of the two curves, no matter how large (or how small)
the circle (i.e. the n, value). This is the fundamental mode, labeled by m = 0.
However, whether there will be a solution for m > 1 depends on whether the radius
is larger than 2z/kt. There will be m = j solutions when the radius is larger than 2;z/
kt. When the radius of the circle is just equal to 2jz/kt, the value for p/k is 0. This is
the cut-off point for the jth ( > 1) mode. Notice that sy < iy < h,... and Sy > S >
p> >... m is called the order of the mode.

The odd modes are solutions of Egs. (5.8) and (5.12). The solutions of odd modes can
be obtained similarly to the even modes in Figure 5.3. However, since Eq. (5.12)
Cm+ )z

kt

mm . .. . .
hm/k = 7R Therefore there is a minimum value of n,2—n? below which the circle

contains a cotangent function, p,,/k is zero when A, /k = and +oo when

given in Eq. (5.8) does not intercept the curve representing Eq. (5.12).

There are two conclusions that can be made: (1) There is a minimum ny?

—n?, below
which there is no solution of the odd mode for a given z. (2) For a given ¢ and 1,2 —n?, the
value of 4,,/k for the mth odd mode is larger than the mth even mode. Therefore the value
of f8,,/k (or nz,,) for the mth even mode is larger than for the mth odd mode.

If we list all the modes in descending order of the values of n,; then the lowest-order
mode that has the largest n.4is the m = 0 even mode, followed by the m = 0 odd mode,
the m = 1 even mode, the m = 1 odd mode, etc. Note that the number of x positions at
which the electric field E is zero for the first mode (m = 0, even) is zero, one for the
second mode (m = 0, odd), two for the third mode (m = 1, even), three for the fourth
mode (m = 1, odd), etc. If ny> — n? and ¢ are sufficiently small, there is only a single
mode, the m = 0 even mode.
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P 2
(—’"J + [p_/;n] =n2-n% ny,>>n

>r|§'

Figure 5.3  Illustration of the graphical solution for 4, and p,,, for even TE guided-wave modes in a
symmetrical planar waveguide.

The symmetric waveguide is not a realistic waveguide. Its analysis is presented here
because the mathematics is simple to understand, and the consequence of the various
aspects of the modal characteristic can be easily shown.

5.3.3 The cut-off condition of TE planar guided-wave modes

In order to have an mth-order mode in an asymmetric planar waveguide, there are two
conditions that need to be satisfied. The first condition is: n, > n, and n... Let us assume n, >
ng > n.. For a given set of n, the second condition is that there is a minimum thickness,
called the cut-off core thickness ¢,,, that will permit the mth solution of Eq. (5.5) to exist.

At the cut-off thickness of the mth mode, ¢, = 0, S,,/k = ny, h,,/k = (n22 - nsz)l/z, and
@n = £(m+1/2)x. Thus the cut-off thickness can be calculated from Eq. (5.5) to be:

ktyy = { (m + %)n — tan"'[(m® — n,%)/(ns® — ncz)]l/z}(nzz —n )7 (5.13)

The thicker the core, the larger the number of guided-wave modes the waveguide can
support. For all guided-wave modes above the cut-off, n, > 15,,/kl > n,.

Note that, in symmetric waveguides, the cut-off condition is different from the condition
shown in Eq. (5.13) for asymmetric waveguides discussed above. For symmetric wave-
guides, there is always an even m = () mode. There is no cut-off condition for the even
m= 0 mode. In asymmetric waveguides, there is a cut-off condition below which no mode
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Figure 54  n.;values of TE,, modes in epitaxially grown waveguides on InP substrates.

exists. In many applications, a single-mode waveguide is required. In that case, t and the
indices of the layers are controlled so that only one mode exists in the waveguide.

5.3.4 An example of TE planar guided-wave modes

Figure 5.4 shows the effective index, n.4= B,/k, of TE,, planar guided-wave modes in
epitaxially grown waveguides on InP substrates as a function of the waveguide thickness 7,
where n, = 3.10, n, = ng, + An, and n. = 1. The abscissa is &z in units of . An, i.e. n, — n,
depends on the alloy composition of the epitaxially grown layer. Curves with circles, o,
are for An = 0.10; curves with crosses, x, are for An = 0.05, curves with solid dots, *, for
An =0.025, and curves with triangles, A, for An =0.01. The (a) curves are for TE, modes,
(b) curves are for TE,, (c) curves for TE,, (d) curves for TEs, and (e) curves for TE4. These
curves are taken from Figure 1.5 of another book of mine [3]. At large k7, n.zincreases
monotonically toward n,. At the cut-off, all modes have n,; = n;. n.; for higher-order
modes is always smaller than n.zfor lower-order modes. For a given thickness ¢, there are
more modes for waveguides that have a larger An. For k# < 1.8z, the waveguide has only
the TE, mode for An = 0.1, 0.05, and 0.025. Notice that we have real eigenvalues for £, 4,
p, and g. Since £ is real, these modes propagate in the z direction without attenuation. The
fields of these modes are evanescent in the air and in the substrate.

Physically, as we have discussed in Section 2.4, the electric field of the mth TE guided-
wave mode inside the core is just a plane wave (with the electric field polarized in the
v direction), totally internally reflected back and forth from the two boundaries at x = 0 and
x = t. Its propagation direction in the x—z plane makes an angle 6,, with respect to the x axis.
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5.3 TE modes of planar waveguides 119

B, = mksinb,,, h, = nkcos0, (5.14)

Since 6, is a very small angle, the magnetic field of TE modes is polarized predomi-
nantly in the x direction with a small component in the z direction.

5.3.5 TE planar substrate modes

As we have discussed in Section 2.4, when ng > |f/kl > n., the electric field has an
exponential decay for x > ¢, and sinusoidal variation within the core and in the substrate.
The plane waves in the core are totally internally reflected at the boundary x = ¢. The
plane waves in the substrate are propagating. These are the substrate modes. From Eq.
(5.3), we obtain the following expression for TE substrate modes:

EO)(x,z;8) = AY sin(ht + p)e P> e x>¢
EO)(x,z;8) = A sin(hx 4 ¢)e /¥ t)x)0 (5.15)
E(J) (x7z;ﬂ) = [C(S)efjpx + C(S)*e+jpx]efjﬁz 0 2 X
with
(h/k)* + (B/R)* = mj
(B/K)” = (o/k)’ = n (5.16)
(p/k)* + (B/k)* = n
tan[(h/t)kt + ¢] = —h/p (5.17)
and
CY =AY [sing + j(hcos p/p)] /2. (5.18)

C® and A® are normalized so that

(/2000 [ B9 5,5 B (5 )0x = olp — ) (5.19)

which requires
cWcwr = 2£ 5.20
o (5.20)

Unlike guided-wave modes, which have n, > |B,,/kI> ng> n. and discrete values of B,,,
the B, p, h, p, and ¢ of the substrate modes have a continuous range of values that satisfy
the above equations within the range ny > |p/kl > n.. Thus, these modes are continuous
modes, they are orthogonal to each other and to the guided-wave modes.

5.3.6 TE planar air modes

In Section 2.4, we have shown that there are two equivalent independent solutions of
Maxwell’s equations corresponding to either waves incident from the cladding with
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incident angle 6.<m/2, or waves incident from the substrate with incident angle
0< 0, <sin! (n¢/ns). At any specific .. and 6, such that . sin 8, = n, sin 6;, the two
independent solutions are equivalent in 6. and 6. By linearly combining the two
independent equivalent solutions one can obtain two orthogonal independent modes
for each set of propagation constants. These orthogonal modes propagate in both
substrate and cladding. They are known as air modes in the literature because the
cladding medium is often the air.

For symmetrical structures, i.e. n; = n., these two orthogonal modes represent odd and
even linear combinations of two equivalent solutions, one solution consists of plane
waves incident from the cladding and the second solution consists of plane waves
incident from the substrate. For asymmetrical structures, such as the one shown in
Figure 2.4, the x variations are more complex than just odd and even combinations.
Nevertheless, there are still two orthogonal modes for each set of propagation constants,
these two modes differ from each other by a 7z/2 phase shift of the sinusoidal variations in
the x direction in the film, which has the index #,.

The mathematical expressions for E,, of the air modes that satisfy Eq. (5.3) are:

E'(x,z;8) = {D'e 770" 4 Dreetiol—1)}eih= x>t

E'(x,z;8) = A'sin(hx + ¢)e/F? t>x>0

E'(x,z;8) = [C'eP* 4 Cetir¥|e = 0>x (5.21)
for the first set

and
E"(X,Z;,B) _ {Duefjg(xft) _’_Du*eﬁ»ja(xfl‘)}efiﬂz x>t
T .
" . — "o - —jpz
E"(x,z;8) = A" sin hx+q)+2 e t>x>0 (5.22)
E"(x,z; ) = [C”e’j’”‘ + C”*e*j”x]e’jﬂz 0>x
for the second set
with

(B/k)* + (a/k)* = n?
(B/R)* + (h/k)* = ny? (5.23)
(B + (p/k)* = n®
Imposing the boundary conditions at x = 0 and x = ¢, we obtain:
C' = A'[sing +j(hcosg/p)]/2

h
D' = A'|sin(ht + ¢) +j— cos(ht + ¢)| /2 (5.24)
o

For the second set of modes, A", C", and D" are obtained when ¢ is replaced by ¢ + /2 in
the above equation. For both sets of modes, a continuous range of solutions of p, g, f, and
h exist, where n. > |f/kl > 0. All modes form an orthogonal normalized set,
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meojEmzwm“szszawtwﬂ (5.25)
(B/20p) J E”(x,z;ﬁa)E”*(x,z;,Bb)dx = J(p” — p?) (5.26)
<Mmij&mmeLm%w=o (5.27)

Air modes are also orthogonal to substrate and guide wave modes.

54 TM modes of planar waveguides

The planar TM modes are eigensolutions of the wave equation (with 6/dy = 0 and &/
time variation):

& &,
a2 Tap T ep| Hy(x)Hy(z) =0
, (5.28)
o % B - h
Y we(x) 0z T we(x) ox

where &(x) is the same as given in Eq. (5.3). Or, in a manner similar to Eq. (5.2a), we can
write,

ot (et ) ) = 0 (529

TM modes are similar to TE modes. The main difference between TE and TM modes is
the polarization. In lossless waveguides, all TM modes are orthogonal to each other and
to TE modes [2,3].

5.4.1 TM planar guided-wave modes

Like the TE modes, the y component of the magnetic field for the nth TM planar guided-
wave mode propagating in the +z direction is:

H,,(x,z) = Hy(x)Hyu(z) = B, {sin(h,t + gon)e’p"<x’t>}e’j/”"2 x>t
H,y(x,2) = Hyy(x)Hyn(2) = By sin(h,x + ¢,)e 7* t>x>0 (5.30)
H,,(x,z) = Hyy(x)H,,(z) = B, {sin @, &9 Ye Pz 0>x
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with

(ﬁn/k)z - (pn/k)z = ncz
Bu/K)> + (ha/K)* = na? (5.31)
(ﬂn/k)z - (qn/k)z = nsz

Continuity of the tangential electric field requires that 4,, g,, and f, also satisfy the
transcendental equation,

2
ng\ " hy

and tang, = <> o (5.32)

n

n2h,

n22pn

tan[(h, /k)kt + ¢,] =

TM,, modes are given by the nth solutions of Eq. (5.29). The magnetic field is in the y
direction. The dominant electric field is in the x direction.
TM modes are orthogonal and normalized:

~+00 o0
1 B 1
—~R H,E.,, dx| = 22 | HyuHy" — dx = 0y 5.33
2°¢ J ” 20 J T e(x) (5:33)

From this condition, we obtain:

(5.34)
All TM modes are orthogonal to all TE modes [1,2].

5.4.2 TM planar guided-wave modes in a symmetrical waveguide

It is instructive to see what happens to the TM modes in a symmetrical waveguide, i.e.
n. =ny=n. In this case, p,, = q,. The quadratic equation for %, and S, and the transcen-
dental equations now becomes

n*h,
hn>2 ) =t = Kh) } o
— ) +(=) =m”—n" and tan|(— |kt| = ———"— (5.35)
(k (k) 2 k w2h,

2
1—
(”22}7'1)

As we have seen in the case of TE guided-wave modes in symmetrical waveguide
structures, the above tangent equation is equivalent to two equations,

hy\ kt n’h, [k h, n2%pn/k
t — = =- d t — |kt| = 5.36
anK’f) 2} npufk anKk) } n*hy [k (3:362)
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5.4 TM modes of planar waveguides 123

or,

n? (h, h,\ kt DPn n* (h, h,\ kt P

These equations again point to the existence of two orthogonal sets of modes. They are
either even or odd with respect to #/2. The n =0 even TM mode has no cut-off thickness .
These equations are very similar to the equations for the TE modes, except for the ratio,
(n/nz)z, which is always smaller than 1. Therefore, for the same order (i.e. m = n), the p,,
values of the TM modes are slightly smaller than the p,, values of the TE modes for the
same thickness ¢ and indices.

5.4.3 The cut-off condition of TM planar guided-wave modes

Again, for a given normalized thickness £z, there is only a finite number of discrete
modes, labeled by the subscriptn (=0, 1, 2,...), where ho< h; <h, <hs...and ny > o>
P1> B> Ps. . > n,. At the cut-off of each mode, 5, = nsk and g,, = 0. The cut-off thickness
for the nth TM mode for the asymmetric waveguide is:

2 2 2
172 ng™ — He

kt, = { nm+ tan” 3 (m? — n2) "2 (5.37)

n2 \| m? —ng?
Note that the cut-off thickness #, for TM modes is always larger than the cut-off
thickness ¢,, for TE modes of the same order.

In many applications we want a single-mode waveguide so that there cannot be any
conversions into higher-order modes. Since TM modes have a larger cut-off thickness, it is
possible to design the asymmetric waveguide with appropriate n,, ng, n., and t so that only
the lowest-order TE mode can exist." On the other hand, in other applications, we may want
to have two or more modes interacting with each other. In that case the indices of the layers
and the thickness t are controlled to yield the desired number of guided-wave TE and TM
modes. Note that TE and TM modes have perpendicular polarizations. Thus the total
electric field in the TE polarization direction is not affected by the TM modes. Conversely,
the total electric field in the TM polarization direction is not affected by the TE modes.
Please also note that, in a multi-mode waveguide, the properties of the component are
governed only by the modes excited in the waveguide.

54.4 An example of TM planar guided-wave modes

Figure 5.5 shows the effective index n.; i.e. B,/k, of TM,, planar guided-wave modes in
epitaxially grown waveguides on InP substrates as a function of the waveguide thickness,
t, where ny = 3.1, n, = ng+ An, and n. = 1. This figure is taken from Figure 1.6 of my book,
published by Cambridge University Press [3]. The abscissa is 7 in units of 7. An, i.e. ny —
n,, depends on the alloy composition of the epitaxially grown layer. Curves with circles, o,
are for An = 0.10; curves with crosses, x, are for An = 0.05; curves with solid dots, *, for

! Notice the difference between the symmetric and the anti-symmetric waveguides.
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Figure 5.5 1.y values of TM,, modes in epitaxially grown waveguides on InP substrates.

An=0.025; and with triangles, A, for An=0.01. The a curves are for TMy modes, b curves
are for TM,, c curves are for TM,, d curves are for TM3, and e curves are for TM,. At the
cut-off, all modes have n.4= n,. n.4for the higher-order modes is always smaller than n.4
for lower-order modes. For a given thickness, ¢, there are more modes for waveguides that
have a larger An. For kt < 0.6x, there is no TM guided wave. Thus a single-mode
waveguide has only the TEy, mode. For k&t < 1.9z, the waveguide has only the TM,
mode for An = 0.1, 0.05, and 0.025. Because of the dependence on (ns/nz)2 and (nc/nz)z,
which are always smaller than 1, f/k of the TM modes is usually slightly smaller than the
corresponding TE modes. Like the TE modes, the exponential decay rate of any guided-
wave mode is determined only by the index of the layer (either at x > ¢ or at x < 0) and the
Bk value of the mode. The velocity of light in free space, ¢, divided by n,4is the phase
velocity of the guided-wave mode. For the same polarization, lower-order modes will
have a larger effective index and faster exponential decay. The most important difference
between TM and TE modes is, of course, the polarization of the optical electric field.

545 TM planar substrate modes
For the substrate TM modes, the y component of the magnetic field is:

HY (x,z;8) = BY sin(ht 4 ¢)e P1e b= x>t

. 5.38
HY (x,z;8) = B sin(hx + ¢)e 7+ t>x>0 (5.38a)
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5.4 TM modes of planar waveguides 125

HY) (x,z;8) = [DWe#r* 4 D) e tipx]|e—i- 0>x
B 2h .
Di — sing +j [ Beost (5.38b)
2 ny%p
tan[(h/k)kt + ¢] = — neh (5.38¢)
B ny’p '

D and B are obtained from the orthogonalization and normalization conditions,

+o0

oo | oW ) ) ax = oo - ) (5.39

From Eq. (5.39), we obtain,

we ng?
pr

B, b, h, p, and ¢ have a continuous range of solutions within the range, n; > |5/kl >n,.

DO plx —

(5.40)

5.4.6 TM planar air modes

There are again two orthogonal TM air (or cladding) modes for each set of propagation
constants. For the first set of modes,

H'(x,z;p) = {E'e 06— 4 Er[etiot-0]}e#z x>¢

H'(x,z;8) = B'sin(hx + p)e 7~ x>0 (5.41)
H'(x,z;8) = [F'e "~ 4+ F"(e"rr)]e /= 0>x
And, for the second set of modes,
H'"(x,z;p) = {E ne—jolx—t) 4 fm [e+ja(x7t)]}efj[)’z >t
H"(va;ﬁ) — B"sin hx_|_¢_|_g e Jpz t>x>0 (5.42)
H"(x,z;8) = [F"e P* + F"(etr*))e 7= 0>x

For both sets of orthogonal modes, a continuous range of solutions of p, g, 5, and 4, exist
where n. > |f/kl > 0. For the first set of modes, the continuity of the electric and magnetic
fields at x = 0 and x = ¢ requires:

1 hn2cos(ht
E' ==—B' sin(ht+¢)+jw
2 ony?
i (5.43)
1 hng
Fr=2pdsing 4 ;M c089
2 p np?

For the second set of modes, ¢ is replaced by ¢ + /2 in Eq. (5.43).
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Similar to Egs. (5.24) to (5.27) in Section 5.3 for TE modes, TM air modes are
orthogonal and normalized. They are also orthogonal to TM substrate and guided-wave
modes, and to all TE modes.

5.4.7 Two practical considerations for TM modes

(1) The effect of metal electrodes. Often, metallic electrodes are fabricated on top of the
n. layer intended for applying a DC or RF electric field to the opto-electronic device.
Since the electric field is polarized predominantly in the y direction for TE modes
and in the x direction for TM modes, the difference in the polarization of the optical
electric field may make a difference to the attenuation of the guided-wave mode in
the z direction caused by the metal electrode. For example, when there is metallic
absorption, the TM modes have higher attenuation.

(2) Scattering or absorption losses. Scattering or absorption loss in cladding or substrate
usually does not significantly affect the mode pattern. However, at the scattering
centers, radiation modes are excited. The radiation loss will cause attenuation as the
mode propagates. Figures 5.4 and 5.5 demonstrated clearly that the higher-order
modes have lower f/k values, and the evanescent decay in the cladding and substrate
layers will be slower for higher-order modes. When there are scattering centers or
absorption losses in the substrate or cladding, the evanescent decay is slower, and the
attenuation rate larger. For this reason, higher-order guided-wave modes often have
larger attenuation rate. Thus TM modes may have higher scattering loss.

The distinction between TE and TM modes is very important in applications. TE
modes are excited by input radiation that has an electric field polarized in the y
direction. TM modes are excited by input radiation that has an electric field polarized
in the x direction. Most waveguide structures support both types of modes. The perfor-
mance of the devices depends which modes have been excited.

In ideal straight waveguides, the electric fields of TE and TM modes do not interact
with each other except at discontinuities or defects in the waveguide. At each defect or
discontinuity, we need the sum of all TE and TM modes to satisfy the boundary condition.
Thus TM as well as TE modes may be excited by the incident mode (or modes) at any
defect or discontinuity. The scattered modes constitute the scattering loss.

5.5 Guided waves in planar waveguides

There are various applications, such as the Star coupler, acousto-optical scanner and
RF spectral analyzer [4], that use planar waveguides. It is important to learn about the
properties of generalized planar guided waves, how they focus or collimate and how to
excite them in various configurations.

5.5.1 The orthogonality of modes

The orthogonality condition is important to analyze how modes function and interact in
a waveguide.
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When there are several modes propagating in the waveguide,

E=Eq +Eiy, E,=Y n,E,, E.=Y» nEn (5.44)

N, and #,, can be obtained from the orthogonality condition by

+o0 o0
ﬁm * w *
Ny = —Zw,u E,E,"(x)dx n, = _Zﬁ,, e(x)E E," (x)dx (5.45)

The total power carried by the modes is:

00

1 * * * *
ERe J(EYHX +Ex HY)dx = ;”mnm +;7/1n’7n . (546)

—00

In other words, the total power is just the sum of the powers carried in each mode.

5.5.2 Guided waves propagating in the y—z plane

In Sections 5.3 and 5.4, we have presented the analysis of the planar modes when
they propagate in the direction of the z axis. In reality, planar modes for a waveguide
structure such as that as shown in Figure 2.4 can propagate in any direction in the
y—z plane with the same x functional variation, £,,,(x) in Eq. (5.4) for TE modes and
H,,(x) in Eq. (5.30) for TM modes. For a planar guided-wave mode propagating at
an angle 6 with respect to the z axis, E,,,(y,z) or H,,(yz) will have a z variation of
e /merk(©s0)z and a y variation of e 7*r¥n%) For such a planar guided wave, there is
no variation of the field in the direction perpendicular to the direction of propagation
in the y—z plane.

5.5.3 Convergent and divergent guided waves

There can be superposition of TE,, modes propagating at different 8 angles to form
diverging or focusing waves in the y—z plane with identical x variations. Similarly, there
can be superposition of TM,, modes propagating at different 8 angles to form diverging
or focusing waves in the y—z plane with the same x variation. Notice that, for TE modes,
the electric fields are polarized in the y—z plane perpendicular to their direction of
propagation and the dominant magnetic field is polarized in the x direction.
Conversely, for TM modes, the magnetic fields are polarized in the y—z plane perpendi-
cular to their directions of propagation, while the dominant electric field is polarized in
the x direction. What TE or TM mode will be excited depends on the polarization and the
xyz variation of the incident field.

Superposition of planar guided waves with the same E,,(x) or H,(x) that propagate in
different € directions in the y—z plane can yield very complex field variations in the y—z
plane. For example, a planar E,,,(x) beam propagating in the z direction with a finite beam
width 2/, can be written as
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E, = AE,,(x)rect <Iy> e ke (5.47)

Vv
rect(t) =1 for |7|<1 and  rect(zr) =0 for [¢[>1
The rect function can be expressed by Fourier transform as

+o0

E,(f) = J rect (i) e /2 dy (5.48)

—+o00

rect(%) = J F,(f,)e 7™ df, (5.49)

X
—00

Substituting Eq. (5.49) into Eq. (5.47), we obtain

+oo
E, = AE,(x) J Fy(fy) [e 72 ¢ imank] d, (5.50)

—00

This means that £, is made up of a summation of planar £,,(x) modes propagating in
directions with amplitude F(f,) and e /"n[ sin Oy variation in the y direction where

2
6 = sin”! (%) (5.51)

In other words, the beam will diverge as it propagates. The beam divergence will be
determined by F(f}).

5.5.4 Refraction of a planar guided wave

There are refractions in planar waveguides. Let there be a straight junction of two
waveguides at z = z,. When a planar TE guided-wave mode E,, at the 6,, direction of
propagation is incident on the second planar waveguide, it excites transmitted TE
discrete and continuous modes in the second waveguide. The mode, E;, that has the x
variation closest to the E,,(x) variation will be the dominant mode excited in the second
waveguide. The direction of the propagation of the E; guided-wave mode 6, will be
determined by the direction of the incident radiation beam through a relationship similar
to Snell’s law in free-space optics,

Heff m SN Oy = Mgy j SIN Gy (5.52)

In other words, when continuous modes are neglected, Snell’s law is directly applicable
using the effective indices. For example, a prism for a planar waveguide can be made by
simply depositing an extra high-index layer on top of the waveguide cladding in the
shape of a triangle. However, the change in direction of propagation is small because the
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difference between n,;,, of the original waveguide and 7,4 of the guided-wave mode
under the prism is small.

5.5.5 Focusing and collimation of planar waveguide modes

Similar to the focusing of a plane wave by a lens discussed in Section 1.3.5, any guided

wave that has an x variation of the mth order mode and a variation e 7"/ »¥V>*+2in the
y—z plane is an outgoing wave cylindrically radiating away from z =y = 0. Conversely, an

) 2 2 . . . . . . .
e /e mk /Y2 variation will represent an incoming cylindrical wave focused atz=y=0.
When z is large,

2

VETE = 4L (5.53)

2z

Let there be a planar mth-order guided-wave mode propagating in the forward z

kz

direction that has e 7"#/"** variation at z < —f. When its phase front is modified by the

factor, e /"m0 /2) at z = £ it will be converted into a cylindrical guided wave focused
at y =z = 0. In other words, an ideal lens with focal length fwould transform any input
guided wave by multiplying its amplitude variation by a phase factor e /e wk(7/20),

Conversely, when the phase factor etinernk(?/2) g applied at z = f to an outgoing
cylindrically divergent guided wave originating from z = 0, the resultant amplitude
variation is e 7"/ which is a planar guided wave in the +z direction. In other words,
an outgoing divergent cylindrical guided wave is also collimated by a lens. Needless to
say, for any lens or guided-wave beam of finite size, there will be diffraction effect due to
the limited aperture, such as those discussed in Sections 3.2.3 and 5.5.3.

There are several ways to obtain a guided-wave lens, including the Luneberg lens, the
geodesic lens, and the Fresnel diffraction lens.

(a) The Luneberg lens

A generalized Luneberg lens in three dimensions is a variable-index, circular, symmetric
refracting structure that reimages two objects to each other. Luneberg and other
researchers have analytically determined the refractive index distribution that will
give a diffraction limited performance. Using the dispersion relation of the waveguide
(i.e. nq4 vs thickness), the analysis has been extended to the required variation of the
thickness profile of the waveguide that will yield a waveguide lens [4]. A Luneberg lens
has been fabricated by depositing lens material on a planar waveguide through a shaped
mask. However, it is difficult to achieve the prescribed effective index distribution.
Consequently it has not been used in practice.

(b) The geodesic lens
When a planar waveguide is fabricated on a substrate with a contoured surface, propaga-
tion of a guided-wave beam will follow the contour. Let there be a contoured depressed
area. Guided-wave beams propagating through the depressed area in different paths will
experience different phase shifts produced by the different path lengths. Figure 5.6
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Figure 5.6  Cross-sectional view of a geodesic lens.

shows a waveguide on a substrate that has a spherical depression on its surface. R is the
radius of curvature of the surface depression and 26 is the vertex angle subtended by the
arc of depression. It has been shown that a guided wave propagating in the z direction

through the depression will have an additional quadratic phase variation e*f”*’ff'-"”‘"’i,
where
Rsind
= - 5.54
J 2(1 — cos ) (5:54)

Therefore, a plane guided wave will be focused at a distance fafter the lens. Conversely,
a cylindrical guided wave originating at a distance f before the lens will be collimated.
This is known as a geodesic lens. Since all spherical lenses have spherical aberrations,
research has been conducted to use aspheric rotationally symmetric depression to correct
them [4]. A numerically controlled, precision lathe has been used for diamond tuning the
required surface contour on a y-cut LiINbO; substrate, followed by Ti-diffusion, to make
a geodesic lens on a LiNbO; waveguide with =2 cm [4].

(©) The Fresnel diffraction lens
In Luneberg and geodesic lenses, the argument in the expression of the quadratic phase

shift for a lens, /" #* (é) , exceeds multiples of 27 as Iyl increases. It is well known that
a phase shift of 2nz is identical to a 0 phase shift. Curve (a) in Figure 5.7 shows the
normal quadratic phase shift for a lens. Curve (b) shows only the value of the phase
shift that exceeds 2nz. Clearly, the multiplication of the amplitude and phase of a

2 Note that fis independent of effective index or wavelength. It depends only on the geometry.
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Digital approximation of the quadratic phase shift — the Fresnel lens. (a) Quadratic phase shift of
an ideal lens. (b) Phase shift of an analog Fresnel lens. (c) Phase shift of a digital Fresnel lens.

guided wave as a function of y by a phase shift shown in either (a) or (b) has the same
effect. In other words, a component that provides the phase shift shown in (b) will also
serve as a lens with a focal length f. Curve (c) shows a digitalized approximation of (b)
in which any phase shift from 0 to z is approximated by z, and any phase shift from z
to 2z is approximated by 0. The zones in which the sectional change of phase shift
is applied to an incoming guided wave are called the Fresnel zones. The digitalized
change of phase for an incident planar TE, guided wave has been obtained by
depositing rectangular pads of high-index materials with length L in the zone pattern
on a planar waveguide [5]. The focusing effect of such a lens could also be viewed
as the diffraction effect of the zone pads. Thus it is also known as a Fresnel
diffraction lens.

A Fresnel lens is much shorter than a Luneberg or a geodesic lens. However, for large-
angle oblique incident or divergent waves, the zone structure gives a phase shift distorted
from that described in (c) of Figure 5.7.

Grating diffraction of planar guided waves

Gratings can be fabricated on waveguides by etching the grating pattern either onto
the cladding layer or onto the core. It can also be obtained by depositing a material
that has the grating pattern onto the waveguide. An ideal etched or deposited grating
would have a periodic rectangular spatial profile for the grooves, which have
permittivity ¢, periodicity 7, groove width o, and thickness d (illustrated in
Figure 5.8). The grooves are located from x = H — d/2 to x = H + d/2, with length,
W. Tt can be described mathematically by Ae, which is the spatial variation of the
permittivity on top of a waveguide with a core from x = 0 to x = ¢ and cladding from
x=ttox=H-d?2.
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Figure 5.8  Tllustration of a deflection grating on a planar waveguide. The input wave is incident at the normal
direction. The deflected waves are at angle +60,;. The inset shows the matching of K, B;, and Bq.

w
. kT —y x—H 2t
Ae(x,y,2) = Ae(x,y)Ae(z) = zk:(s — &) )rect 5 rect | — rect W2 (5.55)
2 2 2

where
rect(z) =1 for |7|<1 and rect(z) =0 for [¢[>1]

Here ¢, is the free-space permittivity. For gratings with rectangular grooves, A¢(x,),z) =
Ag(x)Ae(y)Ae(z).

Ag(y) causes a y variation in which the mth planar waveguide mode under the grating
grooves has n',,, different than that of the waveguide without the grating groove. Thus,
we have

, kT —y
Aney(y) = Z(n eff m — Neff,m)TeCt 5 (5.56)
k e
2

For a forward mth guided-wave mode in the +z direction incident on the grating,
Ae~/"rmP? | the phase is modified as it transmits through the grating.’ The phase

3 From a strictly theoretical point of view, the incident mth mode will excite the mth mode in the grating
section, plus other substrate and air modes of the same polarization. When the groove depth, d, and the
refractive index of the grooves are not very large, very few substrate or air modes are excited.
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5.5 Guided waves in planar waveguides 133

change for the part of the guided wave without the groove is jney ,, W, while the phase
change for the part of the guided wave with the groove is jn'sy W . Therefore the
transmitted wave will have a phase variation that is a function of y,

Eaut — Ae+'in‘ff'mkWe_'iAn‘ff (y)kWe—jngﬁ‘,me (5 ) 57)

It is well known that any periodic function of y can always be represented by its Fourier
series. Since the grating in Figure 5.8 is an even function of y, we have

T
1 2 2 2w
Angy(y) = T Anggy(y)dy + 7 JAne_ff (v)cos Ty dy | cos T v+
0
4 4
Anqﬁr(y)cos%ydy cos%y—&- (5.58)

6 6 .
Anegr (y)cos %y dy | cos 77[)/ + higher orders

NI

NN
N T N o—m

Since AngrkW is small, we can express e /4nr )W by its Taylor’s series,

T T
1 2 2 2
T JAnqﬁ(y)dy + T JAneff(y)cos Tﬂy dy | cos %y
0 0
2 t 4 4
e hng 0) — 1 — kW { += Aneff(y)cos—nydy cos —ny
T * T T
0
2 t 6 6
+— JAneff (v)cos >y dy | cos o y + higher orders
T * T T
0
(5.59)
The first term of the Fourier series is a constant. The cosine in the second term can be
written as:
el P
jkW[Anoe T 4 Ange erl. (5.60)
T
1 2
Any = — | Angg(v)cos 2 dy (5.61)
T : T
0

Therefore the transmitted wave has many terms. The first term is an mth guided-wave

wT
. . . + = .
mode in the +z direction. The second term has e 7"7»<¢”~ ' T~ variation in the y—zplane.
This second term represents two planar guided waves propagating in the +6, directions
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with respect to the z axis where 6, = sin~'(2z/T) ey mk).There are also higher-order
terms with declining magnitudes at angles +6; = sin”' (2Kx/ Tno k), where K = 2,3
. The analytical results presented here are applicable to both TE and TM modes.

5.5.7 Excitation of planar guided-wave modes
Planar guided waves can be excited by two different ways:

(1) End excitation. In this case an abruptly terminated planar waveguide with polished
end surface is illuminated by an external incident beam. At the vertical end surface
of the waveguide the incident tangential electric field E;,. excites various modes in
the waveguide via the continuity condition,

+o0

Eine = Eineor(0) Eune(0)ix + Eineos(¥) Euney )iy Z AEn( J en() AL

+oo
+Z ApEy(x) J F,-nc,y([v)e“z”ﬁ‘y dfi, + TM and TE substrate and air modes
m

—00

(5.62)

where Fj,.(f,) is the Fourier transform of Ej,.(y) in the y direction similar to Eq.
(5.45). A, and A4,, are determined from the orthogonality relations similar to those
shown in Egs. (5.44) and (5.45).

(2) Prism excitation. In this case a prism with refractive index larger than the
refractive index of the core is placed close to the core. The bottom prism
surface is parallel to the top surface of the core with a low-index gap between
them. Because of the gap, an incident wave in the prism at the appropriate
angle will be internally reflected at the bottom surface of the prism with a
propagation constant in the z direction equal to n.4,,k. When mechanical
pressure is applied so that the gap between the prism and the cladding is
less than the decay length of evanescent tails of both the incident beam and
the mth-order mode of the waveguide, optical energy is transferred from the
prism to the mth mode of the waveguide. When the size of the input beam
illuminating the bottom surface of the prism is adjusted appropriately, the
energy transfer from the incident beam to the mth order mode is maximized
[6,7]. Note that planar guided waves can be selectively excited by the prism,
while several modes are often excited simultaneously by the end excitation
method.
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5.5.8 Multi-layer planar waveguides

In practice, epitaxial growth of III-V semiconductor materials on InP or GaAs is often
used to create multiple-layer waveguides. These layers have different refractive indices.
Let the substrate with index 7, at x < x,, be labeled as the zeroth layer. There are N layers
on top. Each layer is located from x; ; <x <x;. It is labeled as the jth layer, with index ;.
For planar waveguide modes, Eqgs. (5.1) and (5.2) still apply. Thus we still have TE or
TM modes with e ##»* variation in the z direction. For TE modes, E(x) in the jth layer for
the mth mode in the x direction is:

Epj(x) = [An€" + By je 7] (5.63)
At the boundary x = #;_;, the boundary condition requires:

AmJe/hmﬂjJ _i_Bmljefjhm:/l/fl :AmJ_]e/hmj—ltj—l _i_Bmlj_lefjhm.,’fll/fl

jhmJAm.jejhm'ft/;l _jhmJBm.jeijhm:/t,;1 :jhmd?lAm.jfle]'hm’ff]t’;1 _]‘hm.jlemJ*leijhm"'flt’;]
(5.64)

The TE modes are obtained from the solution of these equations. Note that when
the index n; of the jth layer is low, %,,; may be imaginary. It means the field in the
jth layer is exponentially decaying in the x direction. Similar comments apply to
TM modes.

Modes of multi-layer planar waveguides are usually calculated by numerical
methods.

5.6 Channel waveguides

Channel waveguides are used in devices such as directional couplers, Y-branch
splitters, waveguide lasers, guided-wave modulators, waveguide photo-detectors,
waveguide demultiplexers, ring resonators, and waveguide filters. Most channel
waveguides are microns wide and a few centimeters long. Because of the complexity
of the geometry of the dielectric boundaries, there is no analytical solution of the
modes of a channel waveguide. There are only approximate solutions [8] and
computer programs such as Rsoft BeamProp© or the Finite Element Method that
can simulate the modes[9]. The guided-wave modes can also be obtained by an
approximation method called the effective index method. Discussions of channel
waveguides using the effective index analysis will be the focus of discussion in
this section.

The properties of the channel guided-wave mode that are most important in these
applications are n.g the attenuation rate, the polarization of the modes that have been
excited by the incident radiation, and the decay rate of the evanescent tails.
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Figure 5.9 Tllustration of the index profile of two examples of channel waveguides. (a) A diffused waveguide.
The illustration shows only a uniform index variation in the core instead of a graded index
variation. (b) An etched channel waveguide. The ridge is W wide. The thickness of the planar
waveguide and the ridge is .

Channel waveguide devices often involve one guided-wave mode interacting with
another guided-wave mode through their evanescent tails. These interactions and the
applications resulting from these interactions will be analyzed in detail in the next three
chapters.

Channel waveguides are often fabricated either by diffusion or by micro-
fabrication procedures, such as etching, from planar waveguides. A realistic
diffused waveguide would have a graded variation of index from the core to the
cladding. Comparing to etched waveguides, the advantage of diffused channel
waveguides is that there is very little scattering loss at the boundaries. The cross-
sectional index variation of an idealized diffused waveguide is illustrated in
Figure 5.9(a). It shows only a core with a constant index. Figure 5.9(b) illustrates
an etched channel waveguide in which the thickness of the core in the cladding
region has been reduced. The waveguide shown in Figure 5.9 (b) is also called a
ridge waveguide. Ridge waveguides are used because the roughness of the etched
surface produces a large scattering loss. The thinner the ridge, the lower the total
scattering loss. Sometimes, a ridge waveguide is also formed by depositing a ridge
on top of the core. In both cases, the center core of the channel waveguide is
located at W/2 > |yl.

5.6.1 The effective index analysis

Consider the rectangular channel waveguides in Figure 5.9(a) and (b), where there is a
rectangular core region in the y direction, |y 1< /2, and a cladding region, Iyl > W/2. Let
us assume that the planar waveguide in the core region has only one mode in the
x direction, the TE; mode. In Section 5.3.1, the propagation of the TE, planar

Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:50:16, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781139871419.006


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.006
https://www.cambridge.org/core

5.6 Channel waveguides 137

guided-wave mode in the core region along its propagation direction z is given by e*/#»*
where By/k is its effective index, 7,1. In the ridge waveguide shown Figure 5.9(b), there is
also a planar TE, guided-wave mode in the cladding region. Let the effective index of
the TE, planar guided-wave mode of the structure in the cladding region be n,,. Since the
high-index layer is thicker at |yl < w/2, n .y > ne1 > nes >n,. In the channel waveguide
shown Figure 5.9(a), there is no guided-wave mode in the cladding region. There are
only continuous substrate and air propagating modes for 1yl > /2.

In the channel waveguide shown in Figure 5.9(b), the planar guided-wave mode
in the Iyl < W/2 core region can propagate in any direction in the y—z plane. Let
us consider a planar guided-wave mode TE, propagating in a direction that makes
an angle 0 with respect to the z axis. Its propagation constant in the z direction is
ne1k cos 0. If § is so small that ., cos 0 > n.,, where n,, is the effective index of the TE,,
mode outside the ridge, this planar guided wave will be totally internal reflected
repeatedly at the |y| = W /2 boundaries. At any arbitrary J, the sum of all the reflected
waves is zero because of phase cancellations. The sum of all the reflected core planar
guided waves would only yield a non-zero solution when the round-trip phase shift of
total internal reflection is a multiple of 2z. It happens only at specific values of J.
Thus the allowed specific values of J depend on n., W, and the phase of the
reflection coefficient at the |y| = W /2 boundaries, which in turn depend on n,, 1.,
and the polarization. These totally internally reflected planar waveguide modes in the
core constitute the channel guided-wave modes. The lowest-order mode (i.e. the zeroth-
order mode) in the y direction has a round trip phase shift of 2z, and the nth order
mode has a round-trip phase shift of 2(n + 1)z. Consequently the field of the zeroth-order
mode (rn = 0) has no node in the y direction in the core. The nth-order mode has n
nodes. If W is sufficiently small, then we would have only a single mode in the y
direction in the core. Since the lowest order mode in the x direction is the TE,
mode, the lowest-order mode of the channel waveguide is called the TEq, mode.
Similarly, the nth totally internal reflected TE,, mode yields the TE,,, modes in the
channel waveguide.

The effective index method is just a simplified method to match the boundary condi-
tions, thereby determining approximately & for the discrete modes of the channel
waveguides.

Consider now the mathematical details of effective index analysis. Let the TE,
electric field of the reflected planar waveguide mode have amplitude 4. At the Iyl =
W72 boundaries, the tangential electric and magnetic fields need to be matched. The
dominant component of the electric field is approximately perpendicular to the
boundaries. A small component is in the z direction. This component has an
amplitude 4 sin d. It is tangential to the |[y| = W /2 boundaries. The magnetic field
has two components, H, and H,. The dominant tangential field of the core planar
guided wave is H,. At the |yl = W/2 boundary, we need to match the magnetic field
H, and the z component of the electric field of the core and cladding modes of the
planar waveguides.
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138 Optical waveguides and fibers

Let the x variation of the mode in the core region be the TE, mode. The mode
in the cladding region that matches closely the x variation of H, and E. in the core at
the 1yl = W/2 boundary, is the H, and E, of the cladding TE, planar guided-wave mode. If
we neglect the continuous modes in the x direction, which will be excited at the
boundaries, we only need to match the amplitude and phase of the tangential compo-
nents of the TE; mode on both sides of the boundary as a function of y and z.

In order to satisfy the boundary condition for all z values, the z variation of this
cladding guided-wave mode must be equal to e 7"***%_If we let the y variation of the

TE, cladding guided-wave be e 15, y must now satisfy the equation,
Y = ng? — ng?cos?d (5.65)

y is imaginary when n, cos d > n.;. An imaginary y represents an exponentially decay-
ing cladding guided-wave in the y direction, not a propagating wave.

The equation for H, and the boundary conditions of the continuity of the amplitude and
phase of H, and the z component of the electric field here is similar to the equation and
boundary conditions of an equivalent TE plane wave polarized in the y direction (with H,
in the x direction and &/dx = 0) bouncing back and forth between the y boundaries and
propagating in the z direction. The equivalent TE plane waves and the configuration of the
boundaries are illustrated in Figure 5.10. In this case, the equivalent plane wave in the
core has index n,, and the equivalent plane wave in the cladding has index n,,.

In short, the mathematics used here for analyzing the total internal reflection of a core
planar guided wave in the y direction is approximately equivalent to analyzing a total
reflection of the equivalent TM plane wave propagating in the y—z plane at angle ¢ with
respect to the z axis where the magnetic field H, is polarized approximately in the x
direction and electric field E is in the z direction. The equivalent material refractive

X

Direction of propagation
>

A z

— ;
]

y=-Wi2 y= W2
plane plane

Figure 5.10 Tllustration of the TM wave used in the effective index approximation.
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5.6 Channel waveguides 139

indices are n,; and n,.,. In other words, we can use the TM planar guided-wave mode
equation for a symmetric waveguide in the y direction, i.e.

Hr(z) — Aefjﬁa cos 0z
2

e + w’e(y)u — By*cos’d | Hy(y) = 0 (5.66)
e(y) =eong?  j=1lor2
j OH((2) —j OH,
= d EZ =
7 wely) oz an we(y) oy

Note that the equivalent plane wave has no x variation.* The boundary conditions are the
continuity of H, and E. (or 0H,/dy) at y = £W/2. The nth solution of this equation will
yield the effective index and the y variation of even channel guided-wave mode TE, ,,
that we are looking for.” Note that the channel waveguide is now symmetric with respect
to y = 0. As we have discussed in Section 5.4.2, there are even and odd solutions of
Eq. (5.36). The total of all the even and odd modes constitutes all the channel waveguide
modes. This is the effective index method.

Although the TE, mode is used in the preceding discussion, the result is applicable
to any TE,, mode in the core. The most important quantity to be obtained is the effective
index, i.e. the B, ,/k or n,, .;cosd,, of the TE,,,, mode of the channel waveguide in the
z direction. Knowing this effective index, we know both the 0 in the core and the
exponential decay constant y in the cladding. Since o is very small, the channel
guided-wave mode obtained from the TE core planar guided mode is still approxi-
mately a y-polarized TE mode propagating in the z direction. The x variation of E,, for
Iyl < W/2 is approximately the same as the core planar guided-wave mode TE,,.

Similarly, a channel guided-wave mode with approximately TM polarization can be
obtained from TM planar guided-wave modes in the core and in the cladding region. In
that case the equivalent TE guided-wave equation will be used to find the effective index
of the channel waveguide mode and the y variation.

Notice that we no longer have pure TE or TM modes. We have basically TE- or TM-
like modes. These modes are called hybrid modes. Note also that the effective index
approximation did not give us a complete solution for the x variation of the electric field
near the boundaries. In order to satisfy the boundary conditions accurately, many other
modes, especially the substrate and air modes, need to be involved. The electric and
magnetic fields of these substrate modes will exponentially decay in the y direction, even
faster than the planar guided-wave mode in the cladding.

The ngy of the channel waveguide mode calculated by the effective index method is
reasonably accurate when modes are well above the cut-off and when the field variations
of the mth order modes inside and outside of the core are close. No matter how accurate

# The x variations of the core and cladding modes have been taken into consideration by the use of the effective
indices n,.; and n,;.

> Note that the TE,,, channel waveguide mode is still polarized predominantly in the y direction in the y—z
plane.
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140 Optical waveguides and fibers

the result, the simple effective index analysis provides much insight about properties of
channel guided-wave modes.

For the waveguide shown in Figure 5.9(a), there is no planar waveguide mode
in the cladding. The x variation of the tangential field of a core planar guided
wave propagating at angle 6 must be matched by the summation of the continuous
cladding modes at |yl = W/2. Since n,jcosod > ngand n., all continuous modes decay
exponentially away from the [yl = /2 boundary. The core planar guided wave is again
totally internally reflected back and forth. The sum of all the reflected core planar guided
waves would yield a non-zero solution only when the round trip phase shift of total
internal reflection for specific values of ¢ is a multiple of 2z. These special sets of
totally internally reflected core planar waveguide modes constitute the channel guided-
wave modes. However, in this case, we only know the 7, of the core TE planar guided-
wave mode. We do not know n,, outside the core. Since a combination of substrates
and air modes must be used to match the x variation of the core guided wave at
y = £W/2, the equivalent value of n.,, should be somewhere between n. and the
substrate index n;. The best equivalent index 7., to be used for the cladding region
in the TM equation in y will depend on the profile of the core TE mode. For a core guided
wave with a substantial evanescent tail in the x direction in the substrate, we may
use the substrate index. Fortunately, for well-guided channel modes in the core, the
solution of n.;and the y variation is not very sensitive to the value of n,, used for the
calculation.

Clearly, the accuracy of the effective index method may not be very good for such a
structure.

5.6.2 An example of the effective index method

Consider first a GaAs planar waveguide with n, =3.27 and n, =3.19, and = 0.9 ym in
the core region operating at 1 = 1.5 pm. This waveguide is exposed to air with n.= 1. The
GaAs layer has been partially etched away at |yl > W/2, W= 3 pm. In the lateral cladding
region, ¢t = 0.6 um. We would like to find the effective index and the field of the lowest
order TE-like channel waveguide mode.

The first step of our calculation is to find the effective index of the TE, planar
guided wave in the core region at /2 > |yl and in the cladding region at [yl > W/2.
From Eq. (5.5), we find the TE planar guided-wave modes for the core and the
cladding regions, n,; =3.223 and n,, = 3.211. According to Section 5.4.2, we solve
the following equations to obtain the lowest-order symmetrical channel waveguide
TEoo mode, which is polarized approximately in the y direction:

N A AN
tan |:(h n/k) 2:| = ;1;2}17'”/](7 (k) + <k> = nglz — nezz (567)

The solution is (h'¢/k) = 0.1795, which gives n.40=3.218 and p'y/k = 0.2121. The field
distributions are approximately
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Ey
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= A singe?* cos(h'gy)e "ok for x<0, y<|W /2|
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(5.68)

Here ¢g, g0, ho, and po are parameters of the planar guided-wave TE, mode in the
core (given by Eq. (5.4) with £, = 3.223k). Since we do not know in detail what the
radiation modes are, we cannot find the field distributions accurately in the cladding
regions (x > ¢, Iyl > W/2) and (x < 0, Iyl > W/2) from the effective index method. A
reasonable estimation is that the fields near Iyl = W/2 have an x variation similar to
the field pattern of the TE, mode in the core in the x direction.

5.6.3 Channel waveguide modes of complex structures

An important assumption made in the effective index method is that the field variations
in the x direction in the cladding and core regions near the boundaries in the y direction
are similar. In an actual multi-layer channel waveguide, the material indices and
thicknesses may eventually vary considerably in the y direction. Thus the pattern of
the planar waveguide mode may also vary considerably at different y locations. In this
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142 Optical waveguides and fibers

case, the entire waveguide may then be approximated by sections of local waveguides in
the y direction. Each local planar waveguide section has constant cross-sectional index
variation that is slightly different than its neighboring section. The local planar wave-
guide may have multiple modes. For TE modes, the local £.(x) and H,(x) for TE,, modes
in a given local section are matched at the y boundaries by the similar £, and H, of the
TE,, mode in its neighboring sections by the effective index method. The effective index
of the total composite mode is determined from the equations obtained from all the
boundaries. For such structures, numerical simulation is usually employed to determine
the mode patterns and the n.4

5.7 Guided-wave modes in optical fibers

Optical fibers are used for low loss transmission of optical signals, often over
long distances. There are already many books that discuss the modes of various
optical fibers[1]. We will not repeat those discussions here. Guided-wave modes
in round, step-index optical fibers are presented here for three reasons: (1) They
are the only analytical solutions of optical fibers. (2) The properties of all the
optical fibers can be discussed using these solutions. (3) The presentation of the
analytical solution allows us to understand the discussions of optical fiber modes
in the literature. However, step-index fibers are not used in practical
applications.

The cross-section of a step-index optical fiber with uniform cladding and core
has already been shown in Figure 5.1(a). The core has radius a. The core index n,
is larger than the cladding index n,. In contrast to channel waveguides with
rectangular cross-sections, there are analytical solutions of guided-wave modes in
single-mode step-index fibers because of its cylindrical symmetry. Although the
field distribution and the effective index (especially the dispersion) of modern
graded index fibers used in communication systems are different than those of
the step-index fibers, step-index fiber modes are used here to demonstrate many
properties of the modes of round fibers.

5.7.1 Guided-wave solutions of Maxwell’s equations

The vector wave equations obtained from Maxwell’s equations in a homogeneous
medium with refractive index » are [1]:

(V24 k)E=0 and  (V2+n’k*)H =0 (5.69)

In addition, we have the curl equations relating £ and H. If we assume that guided-wave
modes have e 7 variation along the z direction, which is also the fiber axis, then in the
cylindrical coordinates we have:
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0? 10 0 1 & 0?
V=Vi4+zs= |- |p=| +5=5| +=5
[ t}—’_@zz pop pap +p2692 —’_6227

(5.70)
(VA+kHE. =0, (V2+k)H. =0,
ktz _ n2k2 _ '82
The remaining transverse components of the fields are related to E, and H, as follows:

J OE, wudH,
b=V % s
t p P

j |BOE.  OH,

E - 2 |
YT TR ey T
(5.71)
. 2
j |wen® OFE; OH.
H, == —
Pk p 09 p op |’
j ,0E. [pOH,
He = — X =4z
f i2 weYn Er +,0 29
The solutions of Eq. (5.70) are:
E, = AJ, (kap) cos(m@) and H, = BJ,(kap) sin(mb),
5.72
kn = \/nlzk2 _[),2 ( )
for a > p, and,
E. = CH,, ¥ (jkop) cos(m@) and H, = DH,, " (jkap) sin(m0), (5.73)
5.7

Jko =\ B — m?k?

for p > a. Here n, is the refractive index of the core, and n, is the refractive index
of the cladding. There is a second set of solutions in which E, has the sin(m6)
variation and H, has the cos(m#) variation. J,, is the Bessel function of the first
kind and order m,; H,,® is the Hankel function of the second kind of order m; and
m is an integer. Similar to the guided waves in planar and channel waveguides, the
Hankel function gives an exponential decay as p—oo in the cladding. £, E, H),
and Hy are obtained from E, and H, from Eq. (5.71). Continuity of E,, H,, E,, and
Hy at p = a yields the relationship among A4, B, C, and D coefficients and the
characteristic equation that determines the discrete values of f for the mode. Note
that since the fields decay exponentially in the radial direction in the cladding, the
thickness of the cladding does not affect the solution, as long as it is sufficiently
thick. The effective index, n.; of the mode is f/k. Similar to the channel
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144 Optical waveguides and fibers

waveguide modes, each mode has a cut-off condition. The higher the order of the
mode, the larger the value of kav/n 2 — ny? for the cut-off.

In many ways, the step-index fiber resembles a planar waveguide wrapped around
cylindrically. However, because of the cylindrical geometry, the mathematical expres-
sions appear to be more complicated.

5.7.2 Properties of the modes in fibers

It is interesting to note that the axially symmetric modes have m = 0. In that case, we have
again TE (with non-zero H., Ey, and H,, called H,, modes) and TM (with non-zero £,
Hy, and E,, called E,, modes) modes. However, the lowest-order mode that has the
largest decay constant in the cladding, jk,, is not an axially symmetric mode. The
lowest-order mode is the HE;; mode, which has m = 1 and the lowest-order radial
solution of the characteristic equations. For m # 0, the modes lose their transverse
character. They are known as hybrid modes. There is no cut-off for the HE;; mode. In
HE- modes the longitudinal electric field is bigger than the longitudinal magnetic field.
There are also EH- modes, in which the longitudinal magnetic field is dominant. The
TM (i.e. E,,) modes are the axially symmetric members of the HE— family of modes.
The H,, modes are the axially symmetric members of the EH— family of modes.

For weakly guiding modes, A = (n; — nz)/ny is small compared to unity. The
characteristic equation for HE,,, modes is:

Jm (k[l a)
In—1(kna)

Hm(z) (jk,za)

k _m VTR
na Hm—l(z)(iktZa)

= (jkpa) (5.74)
where the subscript p refers to the pth root of the above equation. The characteristic

equation for EH,,,, modes is:

Hm+2(2) (jkt2a)

Jm+2 (ktla)
Hyyi1?) (jkpa)

kia
" Jmv1(kna)

= (jkna) (5.75)
Both the HE- and HE— modes exhibit nearly transverse field distribution. The long-
itudinal components have a phase shift of 7/2 with respect to the transverse components;
they remain small compared to the transverse field. The characteristic equation for HE,,,,
modes is the same as the characteristic equation for EH,, , , modes. Therefore, for
weakly guiding fibers, any HE;,; , mode is degenerate with EH;_; , modes (i.e. they
have the same propagation constants or effective index).

When we linearly combine the degenerate HE,, , and EH,_; , modes together, we
obtain the linearly polarized LP;, mode, which has the same effective index as the
HE;1, , mode. The LP;, mode has only E, and #,, in the core and cladding, it is nearly
uniformly polarized over the fiber cross-section. The LP; mode is just the HE;; mode.
Each LP mode occurs in four different versions, two orthogonal directions of polariza-
tion, each with cos /6 and sin /0 variations. Figure 5.11 shows the phase parameter B as a

function of fiber parameter V = ka+/n% — ny? for low-order LP;, modes, taken from
Unger’s book [1].
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—V

Figure 5.11 The phase parameter B of propagating modes in step-index, round fibers. The phase parameter B is
related to the effective index nof the propagating modes,B = (nZ; — n3)/(n — n3). It is shown
as a function of the fiber material parameter V, V' = ka+/ n% — n%, for lower-order LP modes in the
weakly guiding fibers. The figure is taken from reference [1] with copyright permission from
Oxford University Press.

5.7.3 Properties of optical fibers in applications

There are very few devices made from fibers. The most prominent devices are the fiber
lasers, fiber optical amplifiers, directional couplers, and grating filters.® Optical fibers
are used primarily as transmission lines for optical pulses, often over many kilometers of
distance. As the optical pulse propagates, its pulse width widens, and its polarization
changes. Therefore, the properties of modes in fibers that are most important to fiber
communications are the number of propagating modes, the attenuation rate of the
modes, the dispersion, the polarization of the excited mode, and the change of the
state of polarization as the mode propagates. In addition, there are applications of
short fibers in instrumentation, where multi-mode fibers are used, and the important
considerations are not the modal analysis but the physical features of the fibers.

The wavelength dependence of the material absorption requires long-distance optical
fiber networks to operate at approximately 1.3 and 1.55 um wavelengths. In order to
minimize dispersion, most fiber transmission lines use single-mode fibers. Only the HE;

¢ See Chapters 8 and 9 for discussions of waveguide gratings, filters and directional couplers. The optical fiber
devices operate very similarly to the waveguide devices.
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146 Optical waveguides and fibers

mode exits in these fibers and there is no mode interference. However, even in single-mode
fibers, there is dispersion because of two effects: (1) The solution of nyyin Eq. (5.70)
depends clearly on A. This is called the modal dispersion. (2) n; and n, also have slightly
different values at different wavelengths. This is known as material dispersion. As we
discussed in Section 1.6, dispersion causes the pulses of optical radiation to spread after
propagating a long distance in the fiber. It limits the data rate that can be transmitted
through the fiber. Thus, some single-mode fibers are designed so that material and mode
dispersion cancel each other at a specific wavelength, such as 1.3 or 1.5 um. These fibers
are called zero-dispersion fibers. The effects of dispersion after a certain distance of
propagation can also be canceled by propagating in the next section of fiber which has
opposite dispersion. This technique is known as dispersion compensation.

The polarization of the propagating mode is determined by the excitation source.
However, any cylindrical fiber is degenerate in two orthogonal polarization directions.
Any minute changes in uniformity caused by factors such as bending and stress cause the
polarization of the radiation to rotate randomly in the fiber as it propagates. Polarization-
maintaining fibers remove this degeneracy by means of intentional strain or ellipticity of
the cross-section. The polarization of the radiation is maintained as it propagates.

5.7.4 The cladding modes

There are also cladding modes in optical fibers, corresponding to the continuous
substrate and air modes in the planar and channel waveguides. They are excited
whenever there is a defect, bending of the fiber, or dielectric discontinuity.
Cladding modes are solutions of the boundary value equations. Their effective
indices are less than n,. These modes do not exponentially decay away from the
core. A typical single-mode fiber has a core about 10 pm in diameter, while the
cladding has a diameter of the order of 100 um. Thus there are many propagating
cladding modes, with the effective indices very close to each other, resembling a
continuous mode distribution. In the absence of the exponential decay, cladding
modes have high attenuation. Their amplitude is very small at distances far away
from the discontinuity. Cladding modes are utilized in short fibers used for
instrumentation, but little modal analysis is required for these applications.

Chapter summary

Modes of optical fibers and waveguides are presented in this chapter. Because of the
complex mathematics, only the analytical solutions of modes in round, step-index fiber
and planar waveguides have been presented in detail. These solutions demonstrate not
only the mathematical techniques for finding the modes, but also important properties of
the guided-wave modes, namely the effective index, the evanescent decay of the modes in
the cladding, the othorgonality of modes and the dispersion. Since there are no analy-
tical solutions for modes in channel waveguides, these modes are discussed using the
effective index approximation.
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The discussions in this chapter demonstrate clearly the advantages and necessity of
modal analysis.

Although the methods to solve the modes of fibers and channel waveguides are similar,
their applications are not. In long-distance optical-fiber transmission lines, the low
attenuation and the dispersion of the optical pulses are most important. Therefore,
dispersion in fibers is important to understand and to discuss. In opto-electronics,
devices are short. The performance of devices depends on the interaction of the excited
modes in channel waveguides. Therefore, how to understand and control the mode
pattern (using the effective index and the evanescent field), the orthogonality of
modes, and the excitation of modes becomes most important. These modal properties
of channel waveguides are used to discuss modal interactions and device properties in
Chapters 6, 7, and 8.
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6 Guided-wave interactions

The operation of many photonic devices is based on the interactions among optical
guided waves in channel waveguides. We have already discussed the modes of individual
fiber and channel waveguides in Chapter 5. From that discussion, it is clear that
approximation methods need to be used to obtain the modes of channel waveguides.
How to analyze the interactions of these modes is the focus of this chapter, much of this
analysis is also based on approximation methods.

There are three types of guided-wave interactions that are the basis of the operation
of most photonic devices: (1) The adiabatic transition of guided-wave modes in
waveguides (or fiber structures). In these devices, the cross-section of the waveguide
at one longitudinal position is transformed gradually to a different cross-section at
another longitudinal position as the modes propagate. An example of this type of
device is the symmetrical Y-branch that splits one channel waveguide into two
identical channel waveguides (see Section 6.7.2). (2) The phase-matched interaction
between guided-wave modes of two waveguides over a specific interaction distance.
A well-known example of photonic devices based on this type of interaction is the
directional coupler in waveguides (or fibers, see Sections 6.3.4 and 6.6). (3)
Interaction of guided-wave modes through periodic perturbation of the optical wave-
guide. An example of this is the grating filter in channel waveguides (or optical fibers,
see Section 6.3.3).

In this chapter, we first introduce two techniques that can be used to analyze
approximately the interactions of weakly coupled guided waves. These are perturbation
analysis and coupled mode analysis [1,2]. They are most accurate when the mutual
interaction is moderate. Following that, analysis of coupled waveguides by super modes
of the total structure is presented. The super mode analysis allows us to view the
interactions among both weakly and strongly coupled waveguides from another point
of view. It also allows us to understand the properties of strongly coupled waveguides
such as the Y-junction and the Mach—Zehnder interferometer, even without the exact
knowledge of the profile and the effective index of the modes. Much of the discussion in
this chapter is taken from my earlier book [3].

In guided-wave devices, radiation modes are excited at any dielectric discontinuity.
Rigorous modal analysis of propagation in a waveguide with varying cross-section in
the direction of propagation should involve, in principle, all these modes. However,
radiation modes usually fade away at some reasonable distance from the discontinuity.
They are important only when radiation loss must be accounted for. Thus in the

Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:47:33, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781139871419.007


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.007
https://www.cambridge.org/core

6.1 Review of properties of the modes in a waveguide 149

discussion of guided-wave interactions in this chapter, radiation modes such as the
substrate and air modes in waveguides (and the cladding modes in fibers) are not
discussed.

6.1 Review of properties of the modes in a waveguide

In order to simplify our discussion, the formalism of modal equations and the properties
of the guided-wave modes are summarized first.

In any waveguide (or fiber) that has a transverse index variation independent of z
(i.e. independent of its longitudinal position), the electric and magnetic fields, £(x,y,z)
and H(x,y,z), can be explicitly expressed in terms of the longitudinal (£., H,) and
transverse (E,H,) fields as follows:

E = [Exl.x + Eyiy] + Eziz = Et + Eziz = E(xvy)e_jﬂzeij

ﬁ = [Hxix + Hyiy] + szz = ﬂt + Hziz = ﬁ(x7y)e_jﬂzejwta

0 0 0 0
_ ; ; | = iy 6.1
\Y axgx+ay1y +3 thraZLZ’ (6.1)
Vi x E, = —jou:i., Vi x H, = jwe(x, y)E:L,

VX E;i; 7]ﬁlz X Et = 7ja)/uﬁz;

vt X Hziz _]‘ﬁiz X Ht :ng(xvy)Et

Equation (6.1) implies that the transverse fields can be obtained directly from the
longitudinal fields, or vice versa. One only needs to use either set of them to specify
the field.

The nth guided-wave mode, given by e, and 4, is the nth discrete eigenvalue
solution of £ and H in the above vector wave equation that satisfies the condition of
the continuity of tangential electric and magnetic fields across all boundaries. In view of
the properties of the modes discussed in Chapter 5, we expect the following properties
for the ¢, and 4, modes of any general waveguide with constant cross-section in z.

(1) The magnitude of the fields outside the higher-index core or channel region decays
exponentially away from the high-index region in lateral directions.

(2) The higher the order of the mode, the slower is the exponential decay rate of the
evanescent tail.

(3) The effective index ng, (Refn = B/k) is less than the highest index that is in the core
index and larger than the index of the cladding or the substrate. n.; is larger for a
lower-order mode.

(4) Most importantly, it can be shown from the theory of differential equations, that the
guided-wave modes of lossless waveguides are orthogonal to each other and to the
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150 Guided-wave interactions

substrate or cladding modes. Mathematically, this is expressed for guided-wave
modes as,

ﬂ(ét‘m xh,")-i.ds= J J (e, X b)) -idedy =0 for n#tm  (6.2)
S —00 —00

where the surface integral is carried out over the entire transverse cross-section with
integration limits extending to +co. ¢, ,, is the transverse component of e,,. Guided-wave
modes plus all the radiation modes constitute a complete orthogonal set of modes so that
any field can be represented as a superposition of the modes. Moreover, the channel
guided-wave modes are normalized, i.e.:

1 ( o
ERe JSJ(gt,n X ht,n ) ’ lzdS =1 (63)

For planar guided-wave modes, the modes are also orthogonal and normalized in x
variation, as shown in Eq. (5.6) of Section 5.3.1 and Eq. (5.33) of Section 5.4.1.
However, integration with respect to the y coordinate is absent. The normalization
means that the power carried by the mth normalized planar guided-wave mode is 1 W
per unit distance (i.e. meter) in the y direction.

6.2 Perturbation analysis

1t is difficult to calculate the modes of a complex waveguide structure. However, when an
original waveguide is perturbed by another object nearby, the perturbation analysis
allows us to calculate approximately the change in E and H of the guided-wave modes in
the original waveguide without solving Maxwell’s equations for the total waveguide
structure. Perturbation analysis is applicable as long as the perturbing object is either
small or at a position reasonably far away from the waveguide core so that the
evanescent tail of the mode for the original waveguides has decayed.

6.2.1 Derivation of perturbation analysis

Consider two waveguide structures that have the cross-sectional & variation of the core
shown in Figure 6.1(a) and (b). The original waveguide core is shown in Figure 6.1(a). The
original waveguide core plus a perturbation waveguide core are shown in Figure 6.1(b).
The two structures differ in the dielectric perturbation Ae shown in Figure 6.1(c), where
Ae(x,y) = €'(x,y) — &(x,»). Let £ and H be solutions of Eq. (6.1) of the previous section for
the original waveguide with index profile £(x,y) shown in Figure 6.1(a). Let £’ and H' be
solutions of Eq. (6.1) for the waveguide structure with index profile &'(x,y) shown in
Figure 6.1(b). Let us assume that E, H, and the guided-wave modes of the structure
in Figure 6.1 (a) are already known. The guided-wave modes of the original waveguide
in Figure 6.1(b) are the perturbation of the guided-wave modes of the structure in
Figure 6.1(a) due to Ae.

Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:47:33, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781139871419.007


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.007
https://www.cambridge.org/core
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£3 £3
@ @Z:EZ o
(a) (b) (c)

Figure 6.1 The index profile of a waveguide perturbed by Ae. (a) The permittivity variation, &(x,y), of
the original unperturbed waveguide structure. (b) The permittivity variation, &'(x,y), of the
perturbed waveguide. (c) The permittivity perturbation from the additional material, Ae, to
the original waveguide structure.

Mathematically, from vector calculus and Eq. (6.1), we know,

V-[E*X H +E'x H| = —jo A¢E* - E' (6.4)

Let us apply volume integration to both sides of this equation over a cylindrical
volume, V.

Jﬂv J[E x H'+E' x H*|dvdydz = —jw[” A¢E' - E*drdydz (6.5)

The cylinder has flat circular ends parallel to the x—y plane. It has an infinitely large
radius for the circular ends and a short length dz along the z-axis. According to advanced
calculus, the volume integration on the left-hand side of this equation can be replaced by
the surface integration of [E* x H' + E' x H*] on the cylinder. The contribution of the
surface integration over the cylindrical surface is zero because the guided-wave fields £
and E’ have already decayed to zero at the surface. For a sufficiently small dz, E* - E' is
approximately a constant from z to z + dz. Therefore, we obtain:

[ x 1 4 B By = (B % HY 4 Ex H)L) - 1,08

S

= —jo J]Asﬁ'-ﬁ*dS dz
N

Here S is the flat end surface of the cylinder oriented in the +z direction. In other words,

[[% B < H/ +E'x H/']-1.dS = —jo|| As(x,p)E'-E'dS  (6.6)
s

Mathematically, £” and H' can be represented by summation of any set of modes. They
can be either the modes of the structure shown in Figure 6.1(a) or the modes of the
structure shown in Figure 6.1(b). Both sets of modes, (e,;, /,;) and (e4’, hyx'), form a
complete orthogonal set. From the perturbation analysis point of view, we are not
interested in the exact fields or modes of the structure shown in Figure 6.1 (b). We
only want to know how the fields for the waveguide in Figure 6.1(a) are affected by Ae.
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152 Guided-wave interactions

In Eq. (6.6), let us express any component of £ and H' for the waveguide with core &,
in terms of the modes (e, A;;) as follows:

E/(x,y,2 ):Zaj() (x,)e 7,

"(x,p,z Zaj h,(x,y)e b= (6.7)

The radiation modes have been neglected in Eq. (6.7). Here, the subscript ¢ designates
the transverse component. The variation of the a; coefficient shows how E,"and H,' vary
as a function of z. Substituting Eq. (6.7) into Eq. (6.6), lettmg E,=e,,and H,=h,,, and
utilizing the orthogonality and normalization relations,' we obtain:

da
n ]Zam € F(Bu—PB)z

Cun =7 [[ A2 ey €,7)dS (63)

'S
This is the basic result of the perturbation analysis [3]. It tells us how to find the a;
coefficients. Once we know the a; coefficients, we know E,'(x,y,z) and H,'(x,y,z) for the
waveguide with core ¢;, perturbed by Ae. Please note that the results shown in Eq. (6.8)

do not tell us about the field around the waveguide with core &5 in Figure 6.1(b). It only
shows us how to evaluate the change in the fields of the waveguide with core &; as a
function of z in terms of its own modes.

6.2.2 A simple application of perturbation analysis: perturbation
by a nearby dielectric

In order to demonstrate the power of the results shown in Eq. (6.8), let us find the change in
the propagation constant S, of a forward propagating guided-wave mode caused by the
addition of another dielectric material with index ¢’ in the vicinity of the original waveguide.

Let the original waveguide be located at x = 0 and y = 0. The waveguide is
surrounded by medium with permittivity &;. The dielectric material with ¢’ is located
atoo>x>/[ and oo >y >—o0. L is located reasonably far away from the waveguide. Let
us apply this Ae to Eq. (6.8). If the original waveguide has only a single mode, ey then
we do not need to carry out the summation in Eq. (6.8). We obtain,

dao . @ 1 ' * /
PR 2“(8 —e1)ey ¢y’ drdy | = —jABay
L—x
or +00+00
ap = Ae—jAﬂz, Aﬂ :%(8! _ 8) J Jgo . go*dxdy
t —o
E/ = deg(x,y)e (6.9)

! The orthogonality relation has been proven only for modes in lossless waveguides. However, the modes are
often considered orthogonal in the literature, even when the modes are lossy.
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Figure 6.2 Mutual perturbation of two waveguides. (a) The permittivity profile of two well-separated
waveguides. (b) The permittivity of two waveguides, A and B, with core dielectric constants ¢, and
&, separated by a modest distance D. (c¢) The perturbation of &5 by &, of waveguide B for modes in
waveguide A. (d) The perturbation of &3 by &; of waveguide A for the modes in waveguide B.

Clearly f, for the guided mode ¢ is changed by Af. Notice that the perturbation analysis
does not address the field distribution in the region x > L. The perturbation analysis
allows us to calculate Af for the original waveguide mode without solving the differ-
ential equation of the waveguide with perturbation.

6.3 Coupled mode analysis

When there are two waveguides located close to each other within the evanescent tail
distance, coupled mode analysis allows us to calculate the amplitudes and effective
index of the modes in both waveguides due to the mutual coupling. Since it is a
perturbation analysis, it is good when the coupling among the waveguides is moderate.

6.3.1 Modes of two uncoupled parallel waveguides

Consider the two waveguides shown in Figure 6.2(b). Let the distance of separation D
between the two waveguides, A and B, be very large at first in Figure 6.2(a). In that case,
the modes of A and B will not be affected by each other. The modes of the total structure,
e, and Ay, are just the modes of individual waveguides, (ea,, #a,) and (ep,, hg,), or a
linear combination of them. The fields of the total structure can be expressed as the
summation of all the modes of the waveguides A and B.

E — E aAnQAne_]ﬂAnz + aBnane_]ﬂan
n

H = Z aAnhAne_jﬁA”Z + aB,,ﬁBne_jﬂB"Z (610)
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154 Guided-wave interactions

Here the “a” coefficients are independent of z. Because of the evanescent decay of the
fields, the overlap of the fields (ea,, /a,) With (eg,, hg,) is negligible, i.e.:

[[(ertn B )ids = 0 (6.11)
'S
In other words, modes in A and B are considered to be orthogonal and independent of
each other.

6.3.2 Modes of two coupled waveguides

When the two waveguides are close, but not very close to each other, perturbation analysis
is applicable. From the previous section, we see that the perturbed fields, £" and H’, can
again be expressed as a summation of (e 5, and e g,,) and (% 4, and 4 g,,) as follows:

E' = ZGAH (Z)gAneijﬂA"Z + agy (Z)ane*jﬂan
n
H' = 3" any(2)ha, e + ag, (2)hg, e 7o (6.12)

Here the “a” coefficients are functions of z. However, the effect of the perturbation
created by the finite separation distance D will be different for A modes and for B modes,
as shown below.

Let the two waveguides, A and B, be separated by a finite distance D, as shown in
Figure 6.2(b). For modes of waveguide A, the significant change from waveguide A
shown in Figure 6.2(a) is the increase of permittivity from &3 to &, at the position of the B
waveguide. This perturbation is shown in Figure 6.2(c). For modes of waveguide B, the
perturbation of the waveguide B is the increase of permittivity from &3 to ¢; at the
position of waveguide A. This perturbation is shown in Figure 6.2(d). Applying
the result in Eq. (6.8) to waveguide A and B separately, we obtain:

dCl n . j - z
d; == CAn,AnaAn + ; CBm,Ane/(ﬂA” Pron) aBm]
da . i — z
dZBn ==J [CBn,BnaBiz + ; CAm,Bnel(ﬂB" Fam) aAm‘|
where
w *
CAn,An = ZJJ(EZ - 83)[€An “€An ]dS
Sp
w *
Coman =5 || (62 = &3)lenn - €, 148
Sp
w *
CBupn = Zﬂ(gl —&3)[ep, - ep, 1dS
Sa
w
Canin =7 || (#1 = &3)lens, - €5, 1S (6.13)
S,
A
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6.3 Coupled mode analysis 155

Eq. (6.13) is the well-known coupled-mode equation [1]. It is used extensively to
analyze waveguide devices.

The physical meaning of the results expressed in Eq. (6.13) is that the amplitude of
mode propagation in A is affected by the presence of B and its modes. Conversely, the
amplitudes of modes propagating in B are affected by the presence of A and its modes.
Can.an (or Cg, g,) represents the effect on the propagation wave number (or effective
index) of the ey, (or ep,) mode due to the presence of the second waveguide. Cpg,, 4,
represents the effect on the amplitude ay, of A by the mode ag, excited in the second
waveguide (or ag, by a, of B by C 4, 5n)-

The change in amplitudes a4, and ag, and propagation wave numbers is obtained
without knowing the modes of the total composite waveguide A and B together. The C
coefficients are a measure of the coupling strength among modes.

There are number of ways in which Eq. (6.13) may be simplified: (1) If one is only
interested in the mutual interaction among the modes excited in the waveguides, the
effect of the change in phase velocity (i.e. the effective index) may not be important.
Then Ca,an o Cg,p, may not need to be calculated. (2) The example given in
Section 6.2.2 illustrates the case when Ca, A, cannot be neglected because ag,, is
zero. Here, Ca,, a, (or Cg, ,) is used to calculate the change of the propagation wave
number (i.e. effective index) of the modes just due to the presence of the second
waveguide. (3) When there are higher-order modes in waveguides A and B, there should
also be more terms, such as Ca, aj, Cingj Cij,an» and Ca; gy, in @ more precise analysis.
However, these C coefficients are even smaller than Ca, an Cinsn Cm.an A0d Caumpns
because of the orthogonality properties and the faster evanescent decay of the higher-
order modes. Therefore, those terms have not been included in Eq. (6.13).

6.3.3 An example of coupled mode analysis: the grating reflection filter

Grating filters are very important devices in wavelength division multiplexed (WDM)
optical fiber communication networks. In such networks, signals are transmitted via
optical carriers that have slightly different wavelengths. The purpose of a filter is to
select an optical carrier at a specific wavelength (or a group of optical carrier wave-
lengths within a specific band of wavelengths) to direct it (or them) to a different
direction of propagation (e.g. reflection) [4]. The desired characteristics of a grating
filter are: (1) High and uniform reflection of incident waves in a waveguide within the
selected wavelength band. (2) Sharp reduction of reflectivity immediately outside the
band. (3) High contrast ratio of the intensity of reflected optical carriers inside and
outside the band. In distributed feedback lasers, gratings are fabricated on channel
waveguides so that the forward and backward waves will be coupled and reflected to
form a resonator.

A grating reflection filter utilizes a perturbation of the waveguide by a periodic Ac.
The Ae couples the forward-propagating guided-wave mode to the reflected guided-
wave mode. Let us consider a grating layer which has a cosine variation of the dielectric
constant along the z direction, i.e. Ag(z), within a thickness d in the x direction and width
W in the y direction. It is placed on top of a channel waveguide that has thickness, .
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156 Guided-wave interactions

Alternatively, a periodic variation Ag(z) can also be obtained in the cladding of an optical
fiber by photo-refractive methods.

Let us assume that the waveguide has only a single mode. Mathematically, the
waveguide is perturbed by Ae where

Ae(z) = Agg cos(Kz) rect <M> rect (2—y) (6.14)
d w

It has a periodicity 7 = 2z/K in the z direction and a maximum change of dielectric

constant Agy. The Ae perturbation layer is centered at x = H in the cladding, where

H>1t+(d/2). This is a change in the cladding refractive index n. of the waveguide or

fiber. The above mathematical expression for Ae is a simplification from a realistic

grating. For example, an ideal etched grating may have Ae described by a rectangular
function of both x and z.2

Let the complex amplitude of the forward-propagating guided-wave mode be arand

the amplitude of the backward-propagating mode at the same wavelength a;. Then

the application of Eq. (6.13) to the fields in the waveguide within the grating section
from z =0 to z = L yields:

E [ (x,y,2) = lar(2)e ™ + ap(z)e e, o (x, )

d .

& _ jCyay — jCyprape

dz

day, . . 2Bz

o = JCmay —jCpare’™ (6.15)
Hid ¥

1 (esz + e—sz)

NS}

Z
(0] *
Cp=—Cp=—-Cp=Cy = 2 J JA30|€0 ~ey"|dxdy
H

_d _
2

5

There are minus signs on Cy;, and Cy,, because, in the normalization of the modes shown
in Eq. (6.2), i, is pointed toward the +z direction. i, for the backward wave is pointing
toward the —z direction. f, is the propagation wave number of the incident mode,
ﬂO = ne-ﬁ‘_’mk.

Clearly ayand a, will only affect each other significantly along the z direction when
the driving terms on the right-hand side of Eq. (6.15) have a slow z variation. Since the
perturbation has a coz(Kz) variation, the maximum coupling between a,and a, will take
place when K = 2f,. This is known as the phase matching (or the Bragg) condition of the
forward- and backward-propagating waves. When the Bragg condition is satisfied, the

2 The mathematical expression of Ae for rectangular grating grooves has been given in Egs. (1.103) to (1.105).
Any periodic Ae can be expressed as a summation of Fourier components of sinusoidal gratings. Thus the Ae
in Eq. (6.14) is just the fundamental component of all the Fourier components.
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K of the forward propagating mode

K of the backward propagating mode

“
K of the grating

Figure 6.3 Propagation wave vectors for forward and backward waves and the grating. The propagation wave
vectors of the forward and backward guided waves are shown as K vectors in the +z and —
directions. The & of the grating is shown as a bi-directional vector. Phase matching is achieved
when the magnitude of |x | is the sum of all the |K|.

relationship between f and K is illustrated in Figure 6.3, where S, of the forward- and
backward-propagating modes with e™? variations are represented by vectors with
magnitude S, in the +z directions. Since a cosine function is the sum of two exponential
functions, K is represented as a bi-directional vector of magnitude XK.

If we designate 4, as the free-space wavelength in which the maximum coupling takes
place, then the phase-matching condition is satisfied when K is given by:

B A7 nepy

K
Ao

(6.16)
Here n.y is the effective index of the guided-wave mode. When K = 2, the
terms involving Cy and Cp, in Eq. (6.16) will have negligible effect on the
magnitude of day/dzandda;/dz because of its sinusoidal variation in z. In com-
parison, the terms involving Cj; and C,r will have the dominant effect on
day/dz and day/dz because the z variation in the e¥?%7 term is cancelled by one of
the e*% terms.

Since S is inversely proportional to 4, Eq. (6.16) will not be satisfied simultaneously
for all § within the desired wavelength band. In order to analyze the grating properties as
a function of wavelength for a given K, we need to consider the solution of Eq. (6.16)
under approximate phase-matching conditions. Let

2, — K =6k (6.17)

Under this condition, we obtain from Eq. (6.16),
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158 Guided-wave interactions

daf -Cg Jokz
dz ) 2 e
and
dah _ 'Cg jokz
PR
where
H+$ ¥
< 2
C=2 | [acle,axdy (6.18)
4

Eq. (6.18) is known as the coupled mode equation between the forward and the back-
ward propagating modes. We know the solutions for such a differential equation are the
familiar exponential functions, ¢’ “and ¢’ 2. Specifically, the solutions of Eq. (6.18) for
the forward- and backward-propagating waves are:

ab(z) = Alefz + A2eyiz
. 2 -y z - —ytz
ar(z) = —]F[A1y+e Tt Ay e

g
Ok Ok
+ — - R
y J +0, v 75 0 (6.19)
2 2
_ Cg Ik
0= 2 2

The A4, and 4, coefficients will be determined from initial conditions atz=0and z = L.

For a grating that begins at z = 0 and terminates at z = L, the amplitude of as(z = 0) is
the same as the incident wave. The reflected wave in the input waveguide is equal to
ap(z = 0). The amplitude of the output wave at z> L is equal to a;(z = L), and a, must be
zero at z > L. Thus:

A2 = —A162QL
o % )
ap = —A4,2e sinh[Q(L — z)] (6.20)
4 O <‘)K ) 5
—jAlEe ’ j7K sinh(Q(L—z)) +Qcosh<Q(L—z))

g

At z =0, the ratio of the reflected power to the incident power (for J; < C,) is:
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2
lay(z = 0) () sinnor
las(z=0)"  Q*cosh’QL + (9 /2)’sinh*QL

(6.21)

At z = L, the ratio of the transmitted power in the forward propagating mode to the
incident power of the forward mode at z = 0 is:

ja(z=L)f _ o
las(z=0)>  Q%cosh*QL + (6;/2)*sinh*QL

(6.22)

Since |ay(z = L) +lap(z=0)]* = las(z = 0)|*, the conservation of power of the
incident, transmitted, and reflected waves is verified.

For a reflection filter, we want |a(z = 0)/as(z = 0)|* large within a desired band
of wavelength, and small outside this band. We also like to control the width of the
desired wavelength band. These features can be controlled by L, dg, and C,, of the
grating. Notice that la, (z = 0)| is larger for larger L and smaller dx/C,. At A= 14,, dx 18 0,
and the grating reflection is a maximum. The maximum possible value of
lay(z =0)/ar(z = 0) is 1. At Jg= C, Q is 0. When 0,>C, Q becomes
imaginary. When Q is imaginary, sinzQL = jsin|Q|L and coshQL = cos|Q|L. So
|ay(z = 0)/ag(z = 0)]> becomes oscillatory and decreases in peak values as o is
increased. Let A/, be the wavelength deviation form A, such that, when 4 = 4, = Ad,,
0 = 0. Then 2A/, is the pass band of the filter,

4r Co negy

e

(6.23)

In summary, K of the grating can be used to control the center wavelength A, at
which the transmission of the forward-propagating wave is blocked. Cq of the grating
is used to control the wavelength width AJ, within which effective reflection occurs.
The smaller the Cy, the narrower the range of transmission wavelengths. For a given
transmission range, L is used to control the magnitudes of the reflected and trans-
mitted waves. These are useful parameters for designing grating reflection filters.
Since the maximum reflection takes place at K = 4mngy [A,, which is known in the
literature as the Bragg condition, such a reflector is also called a distributed
Bragg reflector, DBR. If the Ae variation of the grating groves is not sinusoidal, as
shown in Eq. (6.14), any periodic Ae can be written as a summation of Fourier
components. The higher-order Fourier components will provide phase matching at
mK = 4nngy /Ao, m=2,3,4,...

Therefore higher-order Bragg reflection can take place at A,/m. However, the
higher the order, the weaker the diffraction, because the Fourier component is usually
smaller?

3 Sometimes the shape of the grating grooves is blazed to enhance diffraction of a specific order by increasing
the Fourier component.
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160 Guided-wave interactions

6.3.4 Another example of coupled mode analysis: the directional coupler

A directional coupler has an interaction region between two parallel waveguides (or
fibers). A prescribed fraction of power in waveguide A is transferred into waveguide B
within the interaction region and vice versa.

A top view of a channel waveguide directional coupler is illustrated in
Figure 6.4(a). Two well-separated waveguides are brought together into the inter-
action region by transition waveguides. After the interaction region, the two
waveguides are separated again via transition waveguides. Within the interaction
region, the waveguides are separated from each other by a distance D, which is
usually of the order of the evanescent decay length. Directional couplers could

|
|
|
Waveguide A I

| z

7=0 1z=W Gap D |
—, ———————— 7 -
|
1
| L
|
Waveguide B :
y !
(a) Top View of an Optical Directional Coupler
Mode A
Waveguide A )
D
Mode B \
Waveguide B )
(b) lllustration of Modes Outside of the Interaction Region
The Symmetric mode The Anti-symmetric mode
Waveguide A ) ) i z

Waveguide B IE D) ( :: T D

(c) Nllustration of Modes in the Interaction Region

Figure 6.4 Top view of a directional coupler and illustration of its modes. (a) Top view of a channel
waveguide directional coupler. The interaction region begins at z =0 and ends at z = I¥.
(b) Illustration of modes outside of the interaction region where the waveguides are well separated.
(c) Iustration of modes in the interaction region.
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6.3 Coupled mode analysis 161

also be obtained using two optical fibers or planar waveguides, provided there is a
similar coupling region.

Let the length of the interaction section be W. Clearly, Eq. (6.13) is directly applicable
to the modes of the individual waveguides in the interaction region. Outside the inter-
action region, the waveguides are well separated from each other without any further
interaction.

Let ex and eg be the modes of the two waveguides (or fibers) that are
interacting with each other through their evanescent field in the interaction sec-
tion. They have complex amplitudes, a, and ag. Let the two waveguides have
cores with cross-sections, S, and Sg, and dielectric constants, ¢, and eg. The
cores are surrounded by a medium that has dielectric constant ¢3. Let the coupling
region begin at z=0 and ends at z= ¥ as shown in Figure 6.4(a). For mathema-
tical convenience, the coupling is assumed to be uniform within this distance.
Application of Eq. (6.13) yields

% = —jCpaap(2)

% = —jCage ™ ay(2)

Cag = %Q(EA —&3)[eq - ep’]dS

Cpa = %g(‘gB —&3)[eg - €,7]dS

NS = fa — P (6.24)

Here, Cy and Cgp have been neglected because we are only interested in the change in
the amplitude of a, and ag produced by Cap and Cga. Solution of a4 and ag will depend
again on initial conditions.

Let the initial condition be a, = A and ag = 0 at z = 0. Then, we obtain

AB

2, 2 B 2

s A A
ap = Ae CcoS CBACAB + Tﬁ z *j > sin CBACAB + Tﬁ

A
CpaCap + 7ﬁ
LM, 2
—jCagA 2 A
ag = JTAB 5 [§ sin CBACAB + Tﬁ z
A

CeaCap + 7ﬂ

for0<z<WwW

(6.25)
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162 Guided-wave interactions

Similarly, if the boundary condition is ag = B and a5 = 0 at z = 0, we obtain:

‘Cox B +j%32 A 2
an = —JoBA > sin CaCag + Tﬁ z
A
CeaCaB + 7/))
AB
AB 2 - 2
%z AB . 2 . AB
ag = Be cos CaCaB + > z | +J 5 sin CaCag + >
A
CgaCaB + 7/3

for 0<z<W (6.26)

At z = W, the power transmitted from one waveguide to another and the power
remained in the original waveguide are obtained from ag and a,. Note that, unless
A =0, there cannot be full transfer of power from A to B. Substantial transfer of power
from A to B (or vice versa) at z= W can take place only when Af is small. Thus 5 = fg is
the phase-matching condition for maximum transfer of power. The C coefficients, W,
and A, control the power transfer from A to B and from B to A. When W is increased
beyond the length for maximum transfer of power, then a, and ag will exhibit oscillatory
variation as W is increased.

Usually, the directional coupler has two identical waveguides. In that case, Cgp =
Cag = C, and the ratio of lag/*/laAl* is the power distribution among the two waveguides.
At z = 0, let there be an input power /;, in waveguide A, no input power in waveguide
B. Then the output power /,,, in waveguide B after an interaction distance W is given
directly by Eq. (6.25). It is:

Low/lin = (6.27)

1 AR\
5 sin? C? + (ﬂ) w
2

Clearly the ratio 1,,/I;, can be controlled by W, C, and Af. C is determined by the
separation distance D and the evanescent decay of the modes involved. The maximum

C? + (A[)’/2)2W =r/2,3x/2, 57/2,.... If for any rea-
son W becomes too long or too short, 1,,, will oscillate between zero and the maximum. It
means also that, for a given W, the maximum 1,,, is obtained only at specific wave-
lengths. The value of W that equals n/2C is known as the coupling length of the
directional coupler. The bandwidth of 1,,, is determined by Af within the wavelength

1, is obtained whenever
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6.4 Super mode analysis 163

range between the wavelengths at which 1/ C? + (A/)’/2)2W =, 2x, 3w (i.e. I,,, = 0)

and the wavelengths at which 1,,, is maximum.

6.4 Super mode analysis

The operation of a number of devices such as directional and grating couplers was
analyzed in the previous sections by perturbation and coupled mode analysis. However,
the perturbation approach breaks down when the interaction is too strong. The alter-
native analysis of the operation of such a device is the super mode analysis of the total
waveguide structure.

What is a super mode? For infinitely long parallel waveguides with uniform cross-
section and distance of separation, the modes of the total structure are the super modes.
These super modes can be calculated only in limited cases. Quite often, we cannot
calculate the mode profiles and effective index of the super modes because the total
waveguide configuration is too complex. However, even in that case, we can still make
important conclusions about the properties of the device without knowing the effective
index and mode profile of the modes.

In short, super mode analysis is an analysis of waveguide devices based on the
interference of the modes of the total structure. It is different from coupled mode analysis
because it does not assume that the modes of the individual waveguides are just
perturbed by its neighbor. Therefore the super mode analysis is accurate when the
separation between waveguides is very small, or even zero. Viewing the devices from
the super mode point of view also sheds a different light on their operation than the
coupled mode analysis.

In the following sections, we will present first how to find the super modes of
two coupled waveguides. This will be compared with the modes obtained from the
coupled mode analysis so the differences and the similarities of the two approaches
can be clearly demonstrated. After that, three sample devices, the directional
coupler, the Y-branch coupler, and the Mach—Zehnder interferometer, are presented
to demonstrate the super mode analysis. Among these examples, the directional
coupler has already been presented in Section 6.3.4 using the coupled mode
analysis. Thus we can also compare the results of two different approaches. The
Y-branch coupler is an example that cannot be analyzed by coupled mode analysis.
The Mach—Zehnder interferometer is an example in which the simplicity of super
mode analysis is clearly demonstrated.

6.5 Super modes of two parallel waveguides

In order to understand the inter-relation between the super modes and individual modes
clearly, we first present a general discussion of super modes in the following two
subsections.
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164 Guided-wave interactions

6.5.1 Super modes of two well-separated waveguides

Consider the two waveguides shown in Figure 6.4(a) outside of the interaction region.
The distance of separation D between the two waveguides, A and B, is very large. In this
case, the fields of the total structure can be expressed as the summation of all the modes
of the waveguides A and B.

E — § aAngAne*]/”AnZ + aBngB”e*]ﬁan

n

H = Z annhp, € P07 4 ap,hy, e P (6.28)

Here the “a” coefficients are independent of z. Since there is evanescent decay of the
fields, the overlap of the fields (ea,, f1a,) With (eg,, /ig,,) is negligible, i.e.:

ﬂ (€pn X 1pp")i:dS =0
S

In other words, modes of A and B are considered to be orthogonal to each other. The
super-modes of the total structure, (e, A;,) and (e, h4,) are just linear combinations of
the modes of individual waveguides, (ea,,/14,) and (eg,,/p,), such that

1

2 (€an — €py) (6.29)

1
€n = 7§ (gAn + an) and € =
Note that for such uncoupled waveguides, the magnitudes of the modes, laa,, and lag,|,
do not change as the modes propagate. This is the same conclusion that we have reached
in Section 6.3.1.

6.5.2 Super modes of two coupled waveguides

When the distance of separation between the two waveguides is close, as shown in
Figure 6.2(b), we can use the effective index approximation or numerical methods to
find the super modes.

Consider a two-channel waveguide, as depicted in Figure 6.5. It is just a waveguide A
and a waveguide B coupled through a gap. Figure 6.5(a) shows the cross-sectional view
in the x—y plane, while Figure 6.5(b) shows the top view in the y—z plane. In this
illustration, channel A (or waveguide A) has core thickness #, and width W,, while
channel B (or waveguide B) has core thickness 3 and width Wg. The width of the gap
between two channels is G. The thickness of the waveguide core in the cladding region
and in the gap is f.. The substrate index is ng,;,, while the index of the core of the
waveguide is 7,,,.

According to the effective index method presented in Section 5.6.1, we first find the
effective indices of the planar waveguide modes for the channel A and channel B
waveguides separately, as we did in Section 5.2. For simplicity, let us assume that
there is only a single TE, mode in the x direction. Let the effective index for planar
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Waveguide A Waveguide B
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=
[ 4l
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y
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y = —(g/2) - W) y =(GI2) + Wy
y=-G2 y=G/]2
(a) Cross-sectional (b) Top view

Figure 6.5 The two-channel waveguide. (a) The cross-sectional view. The two parallel ridge waveguides,
with W, and Wy wide ridges, are separated by a gap G. (b) The top view.

mode in waveguide A be 7.4, the effective index for the planar mode in waveguide B be
n.p, and the effective index for planar mode in the gap and cladding regions be 7. The
lateral variation of the super mode in the y direction is then found by solving the
equivalent TM planar waveguide mode for H,:

*? 2

e(y) = em,?  j=A,Borc

0
6—50 for planar TM mode approximation (6.31)
X
J OH,
E, = 32
T we(y) oz (6:32)
—j OH,
= 6.33
we(y) Oy (6:33)

where the boundary conditions are the continuity of H, and E, at y = +|/G/2| and
y = £IW+(G/2)l; W= Wx or Wg.

The lowest-order super modes are illustrated in Figure 6.4(c). In the following
subsection, solutions of the super modes of two identical waveguides are obtained
explicitly. Super modes of two identical coupled waveguides have already been
obtained by the coupled mode analysis. It is instructional to compare the two results
side by side.
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6.5.3
(@

Guided-wave interactions

Super modes of two coupled identical waveguides

Super modes obtained from the effective index method

When channels A and B are identical in Figure 6.5, we let nop = n.g = ny, W= Wy
= Wg, and n,. = n,. The super modes are symmetric or anti-symmetric modes in the
y direction. The analytical expressions of the super modes in the effective index
approximation are:

(1) Symmetric mode:

+qz[y+(§+w)]

w
H, = Bcos |l > +ole

(6.34a)
B =@ = Kny? for yS—E—W
G+ W
H.,=Bcos|h | y+ J; -9
(6.34b)
G G
Bt ? =k for —|S+W|<ys—3
H, = B’[e*qzy + e+qzy]
B — @2 = k*ny? for —g <y< +g (6.34c)
G+ W
H, = Bcos |l |y — —g )
(6.34d)
for G <y< §_|_ /4
2 =72
w —42 {y— <% + Wﬂ
H, = Bcos h17+(/} e
(6.34¢)
G
for —+ W<y
2
where B and B’ are related by
w
B [eﬂhg + e+qz§} = Bcos [hl 5 (p} (6.35)
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6.5 Super modes of two parallel waveguides 167

®, q», and h; of the symmetric mode are obtained from the following transcendental
equations derived from the boundary conditions at y =+ |G/2l and at y = £ |W + (G/2)I:

h . w q2 w
n—lzsm (hl > + (p) = n—zzcos <h1 > + (p) (6.36a)
hi . w , G 4G
Bﬁsm (hl 5 (p) =B . |:e+422 —¢ ‘“2} (6.36b)
m*+ g% = (nl2 — 1122)k2 (6.36¢)

(2) Anti-symmetric mode

W +42 |:y+ (%Jr W):|
H, = —Bcos|n > +ople

(6.37a)
2 2 2.2 G
B —qr =knm for yS—E—W
G+ W
H.= —Bcos|h | y+ —; —
(6.37b)
G G
B +h?=n2* for — SHW |sys-3
H, = Br[e+qzy _ e*qz)’]
G G
f << _ (6370)
or Ty ErETt;
G+W
H, = Bcos |h | vy — —; + ¢
(6.37d)
for g <y< g + W
27772
w -0 [y((;Jr W)]
H, = Bcos hlE—Ho e
(6.37¢)
G
for EJr W<y

Where B and B’ are related by
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168 Guided-wave interactions

; w
B’ {e*‘hg - e*ng] = —Bcos {hl 5~ q)} (6.38)

o, hy, and g, of the anti-symmetric mode are solutions of the following transcendental
equations obtained from the boundary conditions:

h . (W 92 mw

Wsm (2 + (z)) = n—zzcos -5 +o (6.39a)

' q2 —g,G +g,8 _ hl . |74
B 2 [e ©3 4 qzz} = Bn1251n(h1 >~ q)) (6.39b)
h12 + qu = (n12 — nzz)kz (6.390)
For both symmetric and anti-symmetric modes, the dominant electric field E, is

related to H, by
.
Y n2we,
(b) Super modes obtained from coupled mode analysis

It is interesting to note that, in the coupled mode equations (Eq. (6.13)) the modes of the
total structure are just linear combinations of the modes of the uncoupled waveguides, e
and eg, which are illustrated in Figure 6.4(b).

This is the classical example of a pair of coupled identical waveguides.
Mathematically, in terms of Eq. (6.13), we have 5 =g, €a = €p, and Cap = Cgp = C.
Then, the solution of Eq. (6.24) is:

1 o 1 .
aa(z) = 3 (4 — B)e“ + 5 (4 + B)e /™
1 o 1 .
ap(z) =5 (B - A)e ¢ S+ B)e/©
w
C =7 [[(en = sn)les - e,lds (6.40)
S6

A and B are determined from the initial condition at z = 0. Substituting this result into Eq.
(6.12), we obtain:

R R I
E=pH B)[ﬁ

e —o|eip-0z L Lo ey |eiror
(en Bﬂe pc +ﬁ<A+B>[ﬁ<A+B>}e c

(6.41)

The symmetric combination, e, = 1/v/2(e, + eg), is a normalized symmetric eigen-
mode with f; = f+ C. The anti-symmetric combination, e, = 1/ \/E(g A —€p)s isa
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6.6 Directional coupling of two identical waveguides viewed as super modes 169

normallized anti-symmetric eigenmode with f, = f — C. The total electric field of two
identical waveguides is a superposition of two super modes, e, and e,. In other words,*

. 1 .
E'=—(A4—B)e,e P 4 —(4 + B)ee /P
= ( )—a \/j ( )—S

1
7
= Ase e " 4 A e (6.42)
When we compare the super mode result in (b) with the result in (a), we note the
similarity between two results. When the coupling is weak, the symmetric mode obtained
in (a) is approximately the same as e, + eg obtained in (b), while the anti-symmetric
mode obtained in (a) is approximately the same as e — ep obtained in (b). However, it is
much easier to obtain the results by the coupled mode analysis. On the other hand, the
mode profile and B, and S obtained from the coupled analysis are inaccurate when
the separation, G, of the two waveguides is small. The correct answer is given only by the
super mode analysis.

6.6 Directional coupling of two identical waveguides
viewed as super modes

The modes of individual isolated waveguides at z < 0 in the uncoupled region have been
illustrated in Figure 6.4(b). The symmetric mode e, is 1/v/2(es + eg), the anti-
symmetric mode e, is 1/ ﬂ(eA —eB). e, €, ea, and ep all have the same propagation
wave number (or effective index). There is no transfer of power from one mode to
another. The total field at any position z (e.g. W > z > 0) in the coupled waveguide
depends on the excitation. When the excitation field at z = 0 is symmetric in A and B,
only the symmetric modes exist. When the excitation field is anti-symmetric at z = 0,
only the anti-symmetric mode exists. The lowest order e, and ¢, in the coupled region are
illustrated in Figure 6.4(c). When there is only incident radiation to waveguide A and
there is no incident radiation to waveguide B at z = 0, both the symmetric and the anti-
symmetric modes exist with equal amplitude. The power carried in A and B for W>z>0
depends on the interference of the symmetric and anti-symmetric modes. At z > I, the
waveguides again become uncoupled, and powers in A and B remain the same as the
powers in A and B atz = W.

Let the difference in effective index for these two modes be An 4z at 0 <z < W. As an
example, let the excitation be A =1 and B =0 at z= 0. When AnzkW =z, the sum of the
symmetric and anti-symmetric modes will have no power in channel A at z = I¥; all the
power is in channel B. The minimum length at which complete transfer of power takes
place is called the characteristic length, which is W, = 7t/An€ﬁ-k.5 For z > W, the two
waveguides are well separated from each other. The power in waveguide A and B in

* It has also been shown by coupled mode analysis that when waveguides A and B are not identical, there are

also two modes. Their propagation wave numbers are: f = Bathy +1/CeaCas + (AB/2).

> From Eq. (6.41), it is clear that Anggof the symmetric and anti-Symmetric modes is equivalent to 2C in the
coupled mode analysis for weakly or moderately coupled directional coupler.
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170 Guided-wave interactions

those regions is independent of z. Therefore all the optical power P will remain in B for
z > W. The power in channel B oscillates as a sinusoidal function of An.;kW. The
maxima are at AngpkW = (2n + 1)r; the minima are at AngzkW = (2n + 2)r.

Compare this result with the results obtained in Section 6.3.4: the results are the same.
However, when the coupling is strong, the mode profiles and the C coefficient obtained
by the coupled mode analysis will be inaccurate.

6.7 Super mode analysis of the adiabatic Y-branch and Mach-Zehnder
interferometer

In the following subsections, a new concept, the adiabatic transition, will be introduced
first. The operation of the Y-branch splitter depends on an adiabatic transition and will
be discussed next. Lastly, the Mach—Zehnder interferometer, which consists of two
parallel waveguides connected to input and output waveguides by two Y-branch split-
ters, will be discussed.

6.7.1 The adiabatic horn

Consider the transition for a guided-wave mode propagating from waveguide C into
waveguide D, as shown in Figure 6.6(a), known commonly also as a waveguide horn.
Let waveguide C be a single-mode waveguide and waveguide D be a multi-mode
waveguide. As the waveguide cross-section expands, the second mode emerges at
z =z (i.e. there exists a second mode in the electromagnetic solution of an infinitely
long waveguide that has the greater width at z=z;). The third mode emerges at z =z, etc.
The transition section can be approximated by many steps of local waveguides that have
constant local cross-section within each step, as shown in Figure 6.6(b). At each junction
of two adjacent steps, modal analysis can be used to calculate the excitation of the modes
in the new step by the modes in the previous step. For adiabatic transition in the forward
direction, the steps are so small that only the same-order mode is excited in the next
section by the mode in the previous section. In other words, the overlap integral of the
lowest-order mode in the transmitted section to the same-order mode in the incident
section is approximately one, while the overlap integrals to other orders of modes in the
transmitted section to the incident order of mode in the incident section are approxi-
mately 0. In other words, a negligible amount of power is coupled from the input lowest-
order mode into higher-order modes and radiation modes. Similarly, if the waveguide C
can support multi-modes, only those modes excited in C will be transmitted into D.
Let us now consider a reverse transition from z > z3 to z = 0, where the incident field
excites several modes at D. D is a multi-mode waveguide; C is a single-mode wave-
guide. Whenever a higher-order mode propagating in the —z direction is excited at D, it
will not be transmitted to C. The power in this higher-order mode will only be transferred
into the radiation modes at the z position where this mode is cut off. Only the power in
the lowest-order mode at D will be transmitted to the lowest-order mode at C. An
important practical application of this result is that when an LED is used to excite a
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z=2

z=124
(a) The transition from a single-mode channel waveguide to
a multi-mode channel waveguide

(b) The step approximation of the transition

Figure 6.6  Top view of an adiabetic transition and its step approximation. (a) The transition from a single-
mode channel waveguide to a multi-mode channel waveguide (i.e. a waveguide horn). (b) The step
approximation of the transition. Within each local section of the waveguide the dielectric constant
profile is independent of z. The second mode exists for z > zj, the third mode for z > z,, and the
fourth mode for z > z;.

single-mode waveguide via a waveguide horn, the efficiency will be very low because
only the fraction of the power in the lowest-order mode will be transmitted. Note that if C
is also a multi-mode waveguide that supports the first m modes, only these m modes
excited in D will be transmitted into C without any loss of amplitude.

In an expanding adiabatic transition, only the lowest-order mode is excited in the
multi-mode output waveguide by the lowest-order mode in the input section, and there
is no power loss. Conversion of power into higher-order modes will occur when the
tapering is not sufficiently adiabatic or when there is scattering. The same conclusion
can be drawn for propagation of the lowest-order mode in the reverse direction, i.e.
from D to C. Power in higher-order modes will be dissipated before it reaches C.

6.7.2 Super mode analysis of a symmetric Y-branch

How a Y-branch functions depends on the modes that are supported by the waveguides
that make up the Y-branch. Two examples are presented here to demonstrate this effect.

(a) A single-mode Y-branch
A guided-wave component used frequently in fiber and channel waveguide devices is a
single-mode waveguide symmetric Y-branch. Its top view in the y—z plane is illustrated
in Figure 6.7(a). A single-mode channel waveguide is connected to two single-mode
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Yz=-L,

(c) The symmetric coupler in the reverse
direction

z=1Ly
(b) The step approximation of the 3 dB coupler
Figure 6.7 Top view of a symmetric Y-branch coupler. (a) A symmetric 3 dB coupler that splits the power in
the input channel waveguide at C into two identical channel waveguides at D. (b) The step

approximation of the Y-branch 3 dB coupler. (c¢) The reverse symmetric coupler that combines the
field from two input waveguides into a single-mode output waveguide at C.

channel waveguides at z = 0. It is symmetric in the y direction with respect to the x—=
plane. Atz > L, the two waveguides are well separated from each other. All waveguides
have identical cross-sectional index profiles in the x and y directions.

The practical application of such a device is to split the forward-propagating power in
the original waveguide at C equally into two waveguides at D. The symmetric Y-branch
functions like a 3 dB coupler from the input waveguide to the two output waveguides. In
an ideal adiabatic transition, the angle of the branching, 6, is sufficiently small that the
scattering and conversion loss from z = 0 to z = L, are negligible. Thus, losses are not
included in the following analysis.

The forward propagation of guided waves in an ideal Y-branch coupler can be
analyzed as follows. The input wave is a single TE, mode with amplitude a;, at z < 0.
Only the TEy mode is excited by any incident radiation. The waveguide width in the y
direction begins to broaden at z > 0. After z > z,, the waveguide (or the split waveguides)
has two modes. At z > z,, there are two waveguides. From z =z, to z = L, the two super
modes are the symmetric mode, 1/ \/§(eA + ep), and the anti-symmetric mode,
1/v/2(ea — eg). As the guided wave propagates from z < 0 to z = L, only the symmetric
mode is excited at each successive junction in Figure 6.7(b). No anti-symmetric mode is
excited in such an adiabatic transition. At z > L,, the coupling between the two
waveguides is zero. Thus the optical power in the input waveguide is split equally into
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6.7 Super mode analysis of adiabatic Y-branch and MZ interferometer 173

waveguides A and B. The amplitude of the modes in A and B are a and ag. In a lossless

Y-branch, the power is conserved. Thus |as| = |ag| = % |ain]

The reverse situation is shown in Figure 6.7(c). A radiation is incident backwards on
the Y-branch at z = D. If the incident field at z = L is symmetric, it will excite only the
lowest-order symmetric mode of the double waveguides. This symmetric mode is
transmitted without loss to the output waveguide at C as the TE; mode. However, if
the incident mode is an anti-symmetric mode, it will continue to propagate as the anti-
symmetric mode from z = —L, to its cut-off point. Just before the cut-off point, the anti-
symmetric mode has a very long evanescent tail, and its n,is very close to the effective
index of cladding or substrate modes. The anti-symmetric mode begins to transfer its
energy into the radiation mode in the cladding or the substrate. After the cut-off, there is
no anti-symmetric mode propagating in the device. Therefore, when the incident radia-
tion excites both the symmetric and anti-symmetric mode at z = L, the lowest-order
symmetric mode is transmitted to the waveguide at z < 0, and the anti-symmetric mode
any high-order symmetric mode is blocked.

(b) A double-mode Y-branch

In order to demonstrate the characteristics of Y-branch when there is a change in the
waveguide structure, let the input waveguide at z < 0 in Figure 6.7(a) have two modes. The
waveguides after z > z, are still single-mode waveguides. Let the two modes at z < 0 be the
lowest-order symmetric and anti-symmetric modes. In the case of a forward-propagating
Y-branch, if the incident radiation is just in the symmetric mode, it will be transmitted as the
symmetric mode at z = L, as discussed in the preceding paragraph. If the incident radiation
is just in the anti-symmetric mode, it will also be transmitted as the anti-symmetric mode at
z=L,. If both the symmetric and the anti-symmetric modes are excited at z = 0 they will all
be transmitted without any change in magnitude to z = L,. However, symmetric and anti-
symmetric modes have different phase velocities, i.e. ny; nqy is also a function of the
separation of the two waveguides, which is a function of z. As the modes propagate, their
relative phase will change. The profile of the total field at z = L, will depend on the relative
phase and amplitude of symmetric and anti-symmetric modes. Consequently, the power-
splitting ratio will depend on the design of the horn and the excitation.

In the reverse coupler shown in Figure 6.7(c), when the waveguide at z < 0 has two
modes, radiation in both the symmetric and anti-symmetric modes will be transmitted
without loss to z = 0. However, the total field pattern at z = 0 will be very different,
depending on the relative phase between them, which is the total cumulative phase
difference between the two modes from z =L to z = 0.

6.7.3 Super mode analysis of the Mach—Zehnder interferometer

The Mach—Zehnder interferometer, illustrated in Figure 6.8, consists of two symmetric
single-mode Y-branches (one is a forward-expanding Y-branch, the second a reverse Y-
branch) connected by two parallel propagating single-mode channel waveguides that are
well separated from each other. The objective is to control a specific fraction of the input
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B

Input | Input 5 The parallel Output 5 Output
waveguide| Y-branch propagation section Y-branch waveguide
|

iy

Figure 6.8  Top view of a channel waveguide Mach—Zehnder interferometer. Two isolated waveguides, A and
B, connect an input single-mode symmetrical Y-branch 3 dB coupler to an output reversed single-
mode symmetric Y-branch coupler. Waveguides A and B are well separated from each other. Only
the power in the symmetric super mode at the input of the output Y-branch coupler will be
transmitted to the single-mode output waveguide.

optical power to the output by controlling the propagation constant of one (or both) of
the connecting propagating waveguides.

Let the waveguides A and B in the parallel propagation section have modes, e, and e,
with amplitude (including phase), a, and ag. The incident radiation excites the funda-
mental symmetric mode in the input waveguide at z = 0. The incident radiation excites
the modes of individual identical waveguides in the propagating section, A and B,
equally in amplitude and phase, |aa| = |ag| = 1/v/2|a;,|. Since the connecting wave-
guides, A and B (located from z = L; to z = L;, + L,), are well separated, modes will
propagate in them without any interaction. If the refractive indices of the materials in A
and B differ, the magnitude of @, and ap will not change, but the phase of a and ap will
differ at z = L;, + L,,. If the relative phase between a, and ap at z = L, + L, is =, the total
incident mode to the output Y-branch is anti-symmetric: it excites only the anti-
symmetric mode. The anti-symmetric mode is dissipated into the substrate in the reverse
Y-branch. Thus the output power is zero. If the relative phase is 27, the symmetric mode
is excited at the output Y-branch. All the optical power is transmitted to the output. For
other relative phase differences between a, and ag, there will be a mixture of symmetric
and anti-symmetric modes excited. Only the symmetric mode excited at the reverse
output coupler is transmitted as the output. Therefore the amount of power transmitted to
the output waveguide can be varied from 0% to 100% by controlling the relative phases
of as and ag. This is the principle of the Mach—Zehnder interferometer.

Beside differences in phase, there can also be other differences between waveguides.
For example, waveguide B could have absorption such that ag =0 at z= L, + L,,. In that

1
case, |a,| = |a,| = 1/V2]aa| = 2 |ain|- Therefore only % of the input power is trans-

mitted to the output.
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Chapter summary

Three different analytical techniques that can be used to analyze interactions of guided
waves in devices have been presented. It is important to recognize the differences,
the similarities, and the limitations of these techniques. Four commonly used applica-
tions, the directional coupler, the waveguide Y-branch, the grating filter, and the
Mach—Zehnder interferometer have been used as examples to demonstrate these
techniques. It is interesting to note that how a waveguide Y-branch and a Mach-
Zehnder interferometer operate can by analyzed by the super mode analysis without
even knowing the effective index and the profile of the modes. These techniques will be
used again in Chapters 7 and 8 to analyze various opto-electronic devices.

References

[11 A. Yariv, Optical Electronics in Modern Communication, Oxford University Press,
1997.

[2] D. L. Lee, Electromagnetic Principles of Integrated Optics, John Wiley & Sons,
1986, Chapter 8.

[3] William C. C. Chang, Fundamentals of Guided-Wave Opto-Electronic Devices,
Cambridge University Press, 2010.

[4] D.C.Flanders, H, Kogelnik, R. V. Schmidt, and C. V. Shank, Grating filters for thin
film optical waveguides, Applied Physics Letters, 24, 195, 1974.

Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:47:33, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781139871419.007


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.007
https://www.cambridge.org/core

7  Passive waveguide devices

The passive waveguide (and fiber) devices used in optical communication are mode
transformers, power dividers, wavelength filters, resonators, frequency multiplexers,
and couplers. All these are optical devices. How these devices work is the focus of this
chapter. The guided-wave modes presented in Chapter 5 and the analytical techniques
presented in Chapter 6 will be used to analyze these devices. The performance of each
device will be evaluated in terms of its application.

In the next chapter, active waveguide devices will be discussed. Active devices
utilize other physical mechanisms, such as the electro-optical effect, the acousto-
optical effect, or the electro-absorption effect, to achieve their function. When we
discuss active devices it is also necessary to discuss these mechanisms. The electrical
properties of the devices using these mechanisms are as important as their optical
properties.

71 Waveguide and fiber tapers

Waveguide and fiber tapers are used to match the mode of one waveguide (or fiber) to the
mode of another waveguide (or fiber) that has a different configuration.

In a taper, the cross-section of a waveguide or fiber is adiabatically tapered to a new
dimension to transform the profile of the mode. The ideal taper has already been
illustrated and analyzed in Section 6.7.1. In realistic tapers, there will be conversion
losses into radiation or other guided-wave modes caused by fabrication defects. These
losses need to be minimized. The performance of a realistic taper is measured by how
efficiently the mode can be transformed.

7.2 Power dividers

In guided-wave and fiber optical systems, power dividers are used to distribute specific
[fractions of input power into different output channels. The input and output waveguides
(or fibers) are often interconnected to other waveguides (or fibers). The performance of
power dividers is measured by their desired output power distribution, wavelength
variation of the power distribution, physical size, and insertion losses, which include
the coupling loss to other input and output waveguides (or fibers). The commonly used
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7.2 Power dividers 177

power dividers are the Y-branch equal-power splitter, the directional coupler, the multi-
mode interference coupler, and the Star coupler.

7.2.1 The Y-branch equal-power splitter

An adiabatic symmetric single-mode Y-branch waveguide splits the optical power in the
input waveguide equally into two output waveguides. It is a 3 dB power splitter. In this
device, a single-mode waveguide is interconnected with two identical single-mode wave-
guides in a Y-branch configuration. In most applications, the input and output waveguides
are also coupled into other waveguide devices or optical fibers. The ideal device has already
been analyzed and discussed in Section 6.7.2 and illustrated in Figure 6.7. In any realistic
Y-branch coupler, there is an excess insertion loss caused by the power scattered into the
substrate or the cladding at the intersection region by the defects produced in fabrication
processes. There are also coupling losses to and from other waveguides or fibers. The
performance of any splitter is characterized by its total insertion loss and by the evenness of
its distribution of input power into the output waveguides (or fibers). Since the power
splitting ratio is independent of wavelength, and since the excess and propagation losses
vary slowly with wavelength, the characteristics of a Y-branch equal-power splitter are only
mildly dependent on wavelength. Conversely, a Y-branch coupler in the reverse direction
can also be used as a power combiner. Note that, in order to function as a 3 dB coupler for
all incident radiation, the input waveguide must be a single-mode waveguide. The effi-
ciency of the combiner in the inverse direction depends on the phase of excited modes.

7.2.2 The directional coupler

A waveguide directional coupler consists of two parallel waveguides, A and B, coupled to
each other in a coupling section W long. Within the coupling region, the guided waves in
the two waveguides interact with each other via the evanescent fields. The coupling
section is connected to waveguides in the input and output sections through transition
waveguides. Outside the coupling region, the input and output waveguides are well
isolated from each other, and the waveguides function as individual isolated waveguides.

An ideal channel waveguide directional coupler was discussed and analyzed in
Section 6.3.4 by coupled mode analysis and in Section 6.6 by super mode analysis; it
was illustrated in Figure 6.4. In most directional couplers, A and B are identical wave-
guides. There is input to only one of the waveguides. Let the input power be in the A
waveguide. From the coupled mode analysis point of view, A =0 between A and B. When
propagation and coupling losses are neglected and when there is no input power in B, 100%
of the input power to waveguide A is transferred into waveguide B for CW = (n + 1/2)x,
and all power is retained in waveguide A for CWW = nz. At appropriate value of CW within
nw < CW < (n + 1/2)x, any desired distribution of power in A and B can be obtained.
Conversely, if the input is in B, there is 100% transfer of power from waveguide B to
waveguide A when CW = (n + 1/2)x, and all power is retained in waveguide B when
CW = nz. In reality, there will be an insertion loss caused by the propagation loss and the
excess scattering loss produced by the defects created in the fabrication processes.
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178 Passive waveguide devices

In a more sophisticated operation, the directional coupler can also combine two inputs
into two outputs. If there are inputs to both A and B, the amplitudes of the modes
transferred to the outputs are superimposed. However, there will be interferences of the
modes in the output waveguides that depend on the relative phase of the inputs.

From the point of view of super mode analysis, any input radiation to the total
waveguide structure that includes both A and B excites the symmetric and the anti-
symmetric modes. As the excited modes propagate through the coupling region, they
interfere with each other because anti-symmetric and symmetric modes have different
effective indices. The output powers in A and B are determined by the sum of the
amplitudes (including phase) of symmetric and anti-symmetric modes at the exit of the
coupling section.

The directional coupler is a reciprocal device. Reflected optical power in the output
waveguides will also be distributed in the same ratio back to the input waveguides. Most
commonly, the fibers (or waveguides) at the input and output ends are match terminated,
meaning that no reflected power at the outputs will be reflected back to the input (or
inputs).

Since the coupling coefficient C and Af (or the n,4of the super modes) are dependent
on the wavelength, the distribution of power will depend on the wavelength.
Furthermore, when the coupling coefficient C or the Af (or An,g) is controlled electro-
optically, the outputs are a function of the applied electrical signal. Then the directional
coupler becomes a switch (or modulator), which will be discussed in Chapter 8.

Although the directional coupler discussed here uses two channel waveguides
coupled to each other side by side, there are also directional couplers using two
waveguides that are coupled vertically. In that case, the coupling region consists of
two waveguides fabricated on top of each other and separated by an isolation layer
between them.

In optical fibers, the directional coupler can also be made when the cladding is
partially removed to provide the coupling via the evanescent field. The length of this
interaction region and the proximity of fiber cores control the power splitting ratio
between the two fibers. The advantage of a fiber directional coupler is that there is no
need to couple the power in the input fiber into the output fibers, which may have
insertion loss.

Comparing the directional coupler with the Y-branch power splitter, it is clear that the
directional coupler is a more flexible device. The Y-branch is a 3 dB power splitter. What
fraction of the input power is split into the output waveguides in a directional coupler
can be easily varied. On the other hand, the Y-branch is easy to make. The operation of
the single-mode Y-branch power splitter is independent of wavelength, while the power
splitting in directional couplers is wavelength dependent.

7.2.3 The multi-mode interference coupler

A multi-mode interference coupler consists of a section of multi-mode channel wave-
guide, L long, abruptly terminated at both ends. A number of access channel waveguides
(usually single-mode waveguides) are connected to it at the beginning and at the end.
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Figure 7.1 A multi-mode interference coupler. (a) The top view of a 2 x 2 multi-mode interference coupler.
The multi-mode waveguide is L long and ¥ wide. (b) The effective index profile of the multi-mode

waveguide. (c) The field patterns (as a function of y) of the lowest-order modes of the multi-mode
section.

The modes in the multi-mode channel are excited by the radiation from the input access
waveguides. As they propagate to the end of the multi-mode channel, their relative
phases are shifted because of the difference of effective indices. The amplitudes of the
modes excited in the output access waveguides are determined by the interference
pattern of the modes after propagating L distance in the multi-mode channel. Such
devices are generally referred to as N X M multi-mode interference (MMI) couplers,
where N and M are the number of input and output waveguides, respectively [1].

Figure 7.1(a) illustrates a multi-mode interference coupler with two input and two
output access waveguides. The multi-mode section is shown here as a step-index ridge
waveguide with width, 7, and length, L. It is single mode in the depth direction x and
multi-mode (n > 3) in the lateral direction y. The objective of such a multi-mode coupler
is to redistribute the powers in the input access waveguides transferred into the output
access waveguides.

Let the multi-mode waveguide be a ridge waveguide, as shown in Figure 5.9(b). The
profile of the effective index of the planar TE, modes in the y direction is illustrated in
Figure 7.1(b). For the planar waveguide mode in the core (i.e. within the ridge), there is
just a single TE, mode in the x direction with effective index n,;. There is also a TE,
mode in the cladding with an effective index n.,; n.; > n.,. The channel guided-wave
modes in the core can be found by the effective index method discussed in Section 5.6.1
or by numerical methods. The field variation of the first few modes in the y direction is
illustrated in Figure 7.1(c).
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180 Passive waveguide devices

Before we discuss the interference pattern of the modes, let us discuss first the properties
of'individual modes. For well-guided modes, it has been shown in the literature [2] that the
solution of transcendental Eq. (5.66) of Section 5.6.1 can be approximated by

E,(y) = Aysin(h,y)

tan [(h,, /) kﬂ oo (7.1)

where W, is the effective width of the ridge, W, > W. W, is illustrated in Figure 7.1(c). It
is usually taken to be the effective width of the lowest-order mode m = 0 in the x
direction and n = 0 in the y direction. Therefore, we can represent the modes approxi-
mately by Eq. (7.1) with

(n+ D=
hy = ————
We
and (7.2)
(n+1)*7A
[”0;12 = ne’k* — hn27 Bon Znerk — W

In Eq. (7.2), the propagation constants of the various-order modes have a quadratic

dependence on n. By defining L, as the beat length (i.e. the propagation length in which

the phase difference of the two modes is ) between the n =0 and » = 1 modes, we obtain

T n(n+2)x

Ly=——o, Bo— B, = ——

Bo — B 0 3.

Let us examine the total field of all the modes. Let there be N modes in the multi-mode

channel. The y variation of any input field at z = 0, E;,(y,z = 0), can be expressed as the
summation of the E,, modes. Thus,

(7.3)

n=N—-1

En(y,0) = Y CE,(y)

n=0

n=N—1 /n(n+2)n:z} (74)
Ey(,z) = Z CE (el e /P
n=0
E,(y) = A4, sin(h,y)
Any input field at z = 0 will be repeated or mirrored at z = L, whenever
n(n42)m
e Lo (75)
or
J (n+2)7[L
e U= (—1) (7.6)
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When the condition in Eq. (7.5) is satisfied, the field at z= L is a direct replica of the input
field. When the condition in Eq.(7.6) is satisfied, the even modes will have the same
phase as the input, but the odd modes will have a negative phase, producing a mirrored
image of the input field. For the 2 x 2 coupler shown in Figure 7.1(a), this means that
power in input A will be transferred to output C when Eq. (7.5) is satisfied and to output
D when Eq. (7.6) with odd # is satisfied."

More general analysis of the mode interference pattern can be obtained as
follows. Egs. (7.1) and (7.2) show that the y variation of the field of a well-
guided multi-mode channel-waveguide mode resembles the lowest-order sine
terms of a Fourier series in y within the period from y = -W,/2 to y = +W,/2.
There are only a finite number of sine Fourier series terms representing the
modes. In order to analyze the more complex interference patterns, let us now
extend the expression for the modes to outside of the range —W,/2 to W,/2 in a
periodic manner so that we can take advantage of our knowledge of the
Fourier series. Since these modes have a half-cycle sine variation within —#¥,/2
<y < W,/2, the extended mode in -3W,/2 <y <-W,/2 and in W,/2 <y < 3W,/2 should
be anti-symmetric with respect to the mode in —W,/2 <y < W,/2. A similar extension
can be made beyond y > [3W,/2l. Consider now the total extended field over all y
coordinates, including the periodic extension of the fields outside the multi-mode
waveguide region. The extended input field from all the input access waveguides
(periodically repeated outside the region from y = —W,/2 to W/2) can then be
expressed as a summation of these Fourier terms. Eq. (7.4) shows that the relative
phase of the Fourier terms dependent on L. Different multi-fold images in the y
direction at the end of the multi-imode section can be formed by summing these
phase terms with different L. As an example, let us consider L = 3pL,/2, where p is an
odd integer. Then

Ei =3 GEW) + > (=) CiEn(y)
neven nodd (7 . 7)
P

= k.0 + 2y n0)

The last equation represents a pair of images of £, in quadrature, with amplitudes 1/+/2,
at distances z = 3L, /2, 9L, /2, .... The replicated, the mirrored, and the double images
of Ey at various z distances are illustrated in Figure 7.2. Clearly, for a 2 % 2 coupler, we
have a 3 dB power splitter from input B into output waveguides, C and D, at z = 3L,/2
and atz=9L,/2. We transfer the power from B to C (called the cross-state) whenz=3L_,
and from B to D (called the through-state) when z = 6L ,.

The preceding discussion is for an ideal M X N interference coupler. A realis-
tic 2 x 2 InGaAsP MMI cross-coupler has been made with W = 8 um and

! Note that a two-mode interference coupler is identical to a two-waveguide directional coupler with zero gap
of separation. Therefore it can also be analyzed by super mode analysis. This concept can also be extended to
the MMI coupler.
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Figure 7.2  Images of the input field at various distances in a multi-mode interference coupler. The input field
is shown at z = 0. It can be decomposed into a summation of modes. Each mode has a different
phase velocity. The total profile of the summation of these modes will yield a two-fold image of the
input atz=1.5 L, and at z=4.5L,, a mirror single image at z=3L,, and a direct image at z = 6L,.

L = 500 pm, which gives excess loss of 0.4 to 0.7dB and an extinction ratio of
28 dB, and a 3 dB splitter with L = 250 pm and imbalances between C and D well
below 0.1 dB [1].

The actual design of an MMI coupler must take into account the number of input and
output access waveguides, the number of modes in the multi-mode waveguide, the
relative phase and amplitude of the incident modes in the input access waveguides,
and the position and width of access waveguides. Compared with directional couplers
and Y-branch couplers, the MMI coupler is very compact. It allows M x N coupling.
However, it can only redistribute the power at specific ratios. An MMI coupler is likely to
have more insertion loss, and the division of power into the output waveguides is not
flexible.

724 The Star coupler

The diffraction of the radiation from an input channel waveguide mode into a planar
waveguide produces a broadened beam in the planar waveguide as the planar guided-
wave propagates. When there are N output channel waveguides placed at the end of the
planar waveguide section, the input power is distributed into the output waveguides.
This is the basic principle of a Star coupler.

If there are N such input ports and N output ports, the Star coupler is an N X N power
distributor. It is used in the wavelength division multiplexed (WDM) fiber optical
systems. An example of a Star coupler is illustrated in Figure 7.3 [3].

The Star coupler consists of two arrays of N uniformly spaced identical ports fed into
the planar waveguide in the horizontal direction. Each port is a TEqg, mode channel
waveguide which has a width “a.” The planar waveguide also supports a TE, mode that
matches the TE, channel waveguide mode in the vertical direction. Ports (i.e. ends of
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Figure 7.3  The Star coupler. (Taken with permission from Ref. [3] with permission from IEEE.)

R

channel waveguides) in each array are located on a circular arc with radius R. There are
two circular arcs facing each other. One for the input ports, and one for the output ports.
The center of the circle of the array on the left is at O’, which is also the middle of the
circular arc for the array on the right. Conversely, the center of the circle on the right is at
O, which is also the middle of the circular arc or the array on the left. In other words,
these are confocal circular arcs. The center position of the kth port on the left arc is given
by RO, , and the center position of the jth port on the right arc is given by RO, ;.
The power entering the single-mode planar waveguide region (from any one of the 2N
waveguides) will be diffracted and propagated in the horizontal plane of the
planar waveguide. Waveguides on the opposite circular arc are excited by this planar
guided wave.

The objective of the Star coupler is to maximize the power transfer from any one of
the channel waveguides in the left array to the waveguides in the right array. Ideally,
there is no power loss and the power from any input waveguide is divided uniformly into
the N output channels. In that case the transfer efficiency will be 1/N. However, this is
difficult to achieve in practice. In this section we will analyze the diffraction of the planar
TE, guided-wave mode. In particular we will calculate the field at the output array
produced by the radiation from a given channel waveguide in the input array. We will
calculate the excitation of the mode of the channel waveguide in the output array by this
field, thereby determining the power transfer from the input channel to the output
channels.

The incident field at each port is the mode of the input channel waveguide. Let us
assume here that the E), of the guided-wave mode for all input and output channels in
the horizontal plane is w(y) or w(y"), where y (or )') is the coordinate along the left (or
right) circular arc, as shown in Figure 7.3. The transmission between any two ports
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(i.e. channel waveguides), i.e. from the P port on the left circular arc centered about 4, 4
to the P’ port on the right circular arc centered about §,;, is determined by: (1)
calculating the generalized planar guided-wave field at y' = R@" diffracted from P, and
(2) calculating the coupling of that field into the waveguides at P’.

In order to calculate the field radiated from P to RG’, we note that the distance between
v and y' in the first-order approximation of the binomial expansion is

p= \/[Rcos 0" — (R — Rcos 0)]* + (Rsin 0’ — Rsin 0)*
>~ R— Rsinf'sinf = R — ROO'. (7.8)

Thus, for any large fp, the field produced by P at P’ is;

. 0okt
BR0Y) 2\ |2t [y rae R (19

0o k=35

Here, we have assumed that the field for the kth port is confined approximately within the
waveguide, as shown in the inset of Figure 7.3. Note that the phase factor, —jn 4R, is
now a constant on the circular arc on the right. The positioning of the ports on confocal
circular arcs serves the function of creating a constant phase factor, —jn sR, similar to
the spherical reflectors in a confocal resonator in three dimensions.” The relation
between E,(RO') and y(R0) is related by an integral resembling Fourier transform as
follows.
Using a change of variable, u = 2R/a(0 — 6, ), we obtain:

nef]-RHO_k@’
o
AT Nefy —jn,, ’
Ey(RG ):a ﬂ—Re J /]kRe (D(RH)
where, (710)
neal
+1 +j27
(R@’)—lj e )
=R Y 2

-1

Since y(au/2) is identical for all the waveguides, the ¢ factor is independent of 0y 4. E),
is only dependent on the center position RO, of the input channel through the factor

. Tefr RO 10
2n————

Let the total £, at RO’ be expressed as a summation of the fields of all the channel
guides, w,(RO'), on the right circular arc array plus the stray guided-wave fields in the

2 The confocal mirrors in the confocal resonator of laser cavities in Chapter 4 also allowed us to simplify the
diffraction integral equations.
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gaps between channel guides, {(RA'). Let us assume, as an approximation, that there is
negligible overlap among all y; and {. Then

E,(RO'") = Z by (RO') + {(RO'). (7.11)

Here, y(R0") is the y centered about 6,; Multiplying both sides by wj*(RH') and
integrating with respect to R’ from —oo to +oo, we obtain:

30j+35 00j+5%
JEy(RQ’)y/(RH’)RdH'%bj J|q/(R9’)|2Rd<9' (7.12)
S0j=3R b0, 2%

Utilizing once more the change of variable, u' = 2R/a(0" — 6,'), we obtain,

+1 2

4
R |5 [ o+ rew,)[aw| - [%|¢<Reo,k)|2|¢<ReaJ>|j, (7.13)
—1

or

dnga®  |o(RO..)| | 0(RO,))| .
;> = '111’: +|1( Ol o)) . (7.14)

a 2
J ‘w(zu +R907k>‘ du
1

Since the power contained in the total E, is proportional to J\Ey|2Rd0, which is

approximately equal to Z |b,-|2J lw|*Rd6, Ib,* is the power transfer from the channel

waveguide centered at 0, ; to the channel waveguide centered at 0, ;.

In an actual Star coupler, R, N and “a” are designed to optimize the power
transfer. C. Dragone and his colleagues have optimized the design, which
gives 0.34(1/N) to 0.55(1/N) of the input power to any one of the output
channels [3].

In summary, comparing the Star coupler with the Y-branch coupler, the direc-
tional coupler, and the MMI coupler, it is clear that the power in any one of the N
input ports in the Star coupler is always distributed as evenly as possible to all the
N output ports with equal phase. It works in both the forward and the backward
directions. The insertion loss and the uniformity of the output power distribution
are the major issues in its performance. On the other hand, the Y-branch single-
mode coupler achieves even distribution of power for one input waveguide coupled
to two output waveguides, i.e. it is only a 1 x 2 coupler. Its insertion loss can be
very small, and the balance of output power is very good. Although the Y-branch
coupler can be repeated to obtain 1 x 2 N coupling in the forward direction, then
the total device will be long. The directional coupler is a much more flexible 2 x 2
coupler that can split the input power at any ratio into the output channels in both
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the forward and backward directions. It can also be fabricated in fibers. However,
it is wavelength dependent. The MMI coupler is the smallest N x M coupler. It can
transfer the input power into the output waveguides only at fixed ratios, dictated
by the various image patterns. Its insertion loss is an issue. It is also wavelength
dependent.

7.3 The phased array channel waveguide frequency demultiplexer

In wavelength division multiplexed (WDM) optical fiber systems, optical radiations at
different wavelengths from an input waveguide need to be directed into different output
waveguides.

Let us consider a component called a PHASAR demultiplexer [4]. In this device,
two Star couplers discussed in Section 7.2.4 are interconnected by an array of identical
channel waveguides, each with length L;, as shown in Figure 7.4(a). On the input side
of the first Star coupler, only the kth waveguide (i.e. the transmitting waveguide) on
the input side is excited. All other input waveguides have zero power. The electric field
of the input transmitting channel waveguide at the kth position will create a field
distribution E,(R6") at the output circle in the first Star coupler. If all the interconnect-
ing waveguides have equal length, and if the stray fields, , in the gap between channel
guides are small, a field distribution identical to £,(R06) in the first Star coupler will be
created on the input side of the second Star coupler. By reciprocity, this field distribu-
tion on the input side of the second Star coupler will create a field distribution on the
output side, which excites only ;. at the position of the kth output waveguide and not
elsewhere. In other words, the power in the kth transmitting waveguide of the first Star
coupler will now be transmitted exclusively to the kth output channel of the second
Star coupler. The situation does not change if the lengths of the interconnecting
waveguides between the two Star couplers differ from each other so that the phase
shift between adjacent interconnecting waveguide is 2z, i.e.

27 Nefy
A

2 eJf ,c
(L —Li_y) = %m:zn (7.15)

Here, ngp. is the effective index of the channel waveguide. The physical AL required to
meet this condition will depend on 4.

Let the spacing between adjacent channel waveguides be d, (d, = RAa) in the first Star
coupler. Then, according to Eq. (7.10) of Section 7.2.4, E,, (created by the field of the kth
channel waveguide in the input array) at the center of the mth waveguide in its output
circular array, has the phase

e]'27L'$(kdot)(mzlot) (7.16)

kRAa and mRAa are the center angular positions of the kth and mth channel waveguide in
the input and output array of the Star coupler, as shown in Figures 7.3 and 7.4(b). k and m are
integers, ranging from —(N — 1)/2 to (N — 1)/2. n.y is the effective index of the planar
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channel
waveguides
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Receiving waveguides
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Array Input aperture
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N Focal line
da
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Tl ‘\\ s the focal line)

Receiver

Image plane waveguides

(b)

The PHASAR demultiplexer. (a) The layout. (b) Geometry of the Star coupler on the receiver side.
This figure is taken from Ref. [4] with permission from IEEE. The two Star couplers are connected
by an array of interconnecting channel waveguides that have different lengths. Optical radiation
from the input waveguide is transmitted to the interconnecting waveguides by the input Star
coupler. The input radiation to the output Star coupler will have phase shifts controlled by the
wavelength, as well as by the length increments of the interconnecting waveguides. The objective
is to create an appropriate phase shift so that radiation at different wavelengths is transmitted to
different output waveguides of the output receiver Star coupler.

waveguide mode in the Star coupler. If the excitation changed from the Ath waveguide to the
(k + 1)th waveguide, the difference in £, caused by this change is just a phase difference,
mAp = 2n(RAc)(nyy /A)(mAa), at the center of the mth waveguide. Conversely, when the
radiation in the array of input waveguides in the second Star coupler has a total £), field that
contains this extra phase factor mAg for each input waveguide, m =—(N—1)/2 to (N—1)/2,
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188 Passive waveguide devices

the total radiation will be coupled to the (k+1)th output waveguide instead of the kth output
waveguide.

The central idea of this demultiplexer is that, when the kth waveguide is the output
guide at 4; and when the appropriate phase shift mAg is obtained as the wavelength is
shifted from 4, to 1,, we will have shifted the output from the kth waveguide to the (k+1)
th waveguide at 4,.

Let the difference in length of the adjacent interconnecting waveguides be AL. The
mth interconnecting waveguide has a length mAL longer than the waveguide at the
origin. Now consider in detail the second Star coupler at two different wavelengths, 1,
and 4,. Let the output channel be the kth waveguide at ;. This extra phase factor mAg
(which is needed to shift the output to the (k+1)th waveguide) will be obtained at A, when

2 RAo  d, Nere \ (ALY 1

mAg . e o(Af)MAL,  or AR (neﬁ‘ ) (Aa)fz (7.17)
Here, fi = c/A1, f> = c/A>, and Af=f; — f>. The ratio of d,/Af is called the dispersion of the
interconnecting waveguides. In practice, there may be optical carriers at a number of
close, equally spaced wavelengths, A1, 15, 45. . .. .. (i.e. Af= constant), in the transmitting
channel. When the above dispersion relationship is satisfied, optical carriers at different
wavelengths are transmitted to a different output waveguide. This device is called a
PHASAR wavelength demultiplexer in WDM fiber systems.

The use of the confocal circular arc configuration of channel waveguides to distribute
the power with equal amplitude and phase to the output ports and the use of channel
waveguides with unequal length to control the phase distribution are clever uses of the
waveguide properties to achieve frequency demultiplexing. The properties of the chan-
nel waveguides important to this application are n.g., the uniformity of nyg., and the
length variations of different channels and the attenuation of the waveguides. The major

limitations of the performance of a Star coupler are the insertion loss and the degree of
the uniformity that can be achieved.

74 Wavelength filters and resonators

7.4.1 Grating filters

The most commonly used wavelength filter or deflector is a periodic grating. There are
two types:

(1) Gratings with periodic variation of dielectric constant or reflectivity transverse to
the direction of propagation of the incident optical radiation. Within this category,
grating diffraction of plane waves was discussed in Section 1.5. Deflection of an
incoming planar guided wave into different directions was discussed in
Section 5.5.6. They all operate in a similar manner: the incident radiation is
diffracted into different directions that correspond to different orders of diffraction.
The direction of a given order of diffracted radiation depends on the periodicity of
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the grating grooves and the wavelength of the radiation, known as the dispersion of
the grating. Large dispersion of these transverse gratings yields reasonably high
sensitivity to wavelength variation. The distinct features of this type of grating are:
they operate within fairly large range of optical wavelength. The transverse gratings
are used commonly in instruments such as grating spectrometers, beam scanners,
etc. There is no resonance effect.

(2) Gratings with periodic variation of dielectric constant in the direction of propagation
of incident optical radiation. Longitudinal grating diffraction in channel waveguides
was discussed in Section 6.3.3. In this case, the grating functions like a reflection
filter, known as a distributed Bragg reflector, DBR. The center frequency of reflec-
tion is determined by the periodicity of the grating shown in Eq. (6.16). The
reflection coefficient is high within a narrow band of frequency that is controlled
by the magnitude of the periodic grating perturbation C, and the length of the grating
L. Longitudinal gratings can also be made in optical fibers [5].

Although the analyses of both types of gratings are similar, how to utilize the
diffraction effect is very different. One is for deflection of radiation into different
directions, utilizing the dispersion properties. The other is to obtain very narrow band
filtering. Very narrower band wavelength filter DBR grating reflectors can be obtained
by using small Cq and long L.

7.4.2 DBR resonators

When two identical longitudinal grating reflectors are placed consecutively on the same
waveguide separated by a distance, d, the guided-wave mode reflected back and forth
between the DBR reflectors behaves like a Fabry—Perot resonator at optical wavelengths
close to the wavelength that satisfies the Bragg condition. In order to analyze such a
resonator, we note that the reflection coefficient I of a DBR is given in Eq. (6.21). Ithas a
phase ¢. Since there are two identical DBRs, the resonance condition is

28,d + 2¢p = 2nm (7.18)

Like any Fabry—Perot resonator, if d and I" are large, the resonance will have a much
sharper frequency response than the DBR reflector itself. The frequency response of all
Fabry—Perot resonators is similar for the same I" and d. Fabry—Perot resonance filtering
of the plane waves is presented in Sections 2.2.1 and 2.2.2. Properties of Fabry—Perot
resonators presented in Section 2.2.2 are applicable to DBR resonators.’

743 The ring resonator wavelength filter

Channel waveguides can also be made into a ring (or loop), as illustrated in
Figure 7.5(a). Resonances in an isolated waveguide ring occur at frequencies, w, when
the phase shift of a guided-wave mode after one round of propagation is a multiple of 2z,

3 A single grating with appropriate Sod can also resonate. When such a resonator is used in semiconductor
lasers it is known as the distributed feedback (DFB) lasers.
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Channel waveguide ring

Straight
waveguide

%/l
te :

A
Input ** Coupling B Output
region

(a) (b)

Figure 7.5 Ring resonators. (a) An isolated ring resonator. (b) A ring resonator coupled to a straight input—
output waveguide. The coupling region is L. long.

@ (27R) = 2nx (7.19)
where R is the radius of the ring. The Q-factor and the finesse of the resonator are
affected by the propagation loss of the guided wave. However, the ring resonance
cannot be utilized in applications unless another waveguide is coupled to the ring. A
ring resonator coupled to a straight waveguide via a variable-gap directional coupling
interaction is illustrated in Figure 7.5(b). The coupling region is L. long. The
coupling changes the losses of the resonator, as well as providing input and output
to the ring.

In order to analyze the resonator shown in Figure 7.5(b), how the ring resonator and
the straight waveguide are coupled needs to be discussed first. Then the resonance
condition and the finesse and Q of the resonator, which are affected by the coupling,
can be analyzed.

(a) Variable-gap directional coupling

Directional coupling between two adjacent waveguides was discussed in
Section 6.3.4 for a constant coupling gap. Directional coupling between two
waveguides with a variable coupling gap can be approximated as a cascade of
short, local directional couplers that has a constant coupling gap within each local
section.

Results obtained in Egs. (6.25) and (6.26) for two coupled waveguides could be
rewritten in matrix form for the jth local section with constant coupling gap as
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by;
by

alj
@)

—K 1l (7.20)

:”j’cj

where ay; and by; are the complex amplitude of the guided wave at the input and
output of the local straight waveguide, while a,; and b,; are for the local ring
waveguide. #; and x; are the abbreviated expressions of the results given in these
two equations.

At the junction of the next section a1 = by; and a1 = by;. Therefore, the
effect of the variable coupling for the total coupling region L. can be expressed as
a matrix,

t k
—k* t*

which is the product of all these [#; x;] matrices.”

In Figure 7.5 (b), A marks the beginning of the coupling region and B marks the end of
the coupling region. The distance between A and B of the coupling region is L..
The length of the isolated waveguide in the ring is D. The incident optical guided
wave in the straight waveguide is shown to have complex amplitude @, at position A
before the coupling. The exit optical wave in the straight waveguide is shown to have
complex amplitude b; at position B. The complex amplitude of the guided wave in
the ring resonator is a, at A and b, at B. a4, a,, b;, and b, are related by the variable

coupler as
bi| t K ||a
by| = =k #|la (7.21)
Where
k' 1t =1 (7.22)
(b) The resonance condition of the coupled ring

For the guided wave propagating from B to A in the ring, the distance of propagation is D
in the isolated waveguide of the ring. Therefore

ay = bye Pe ekl — p,e=®Pe=10 (7.23)

Where 6 = ngrkD. a is the attenuation coefficient of the guided-wave mode and n4is
its effective index. Note that, from Eq. (7.21), b, = —k*a; + t*a, where ¢ = |¢|&/%. Thus
the phase shift for one round of propagation is @ + ¢,. Similar to the discussion of the
resonance condition expressed in Eq. (7.19), resonance for CW radiation at a single free-
space wavelength 4, now occurs when 6 + ¢, = 2nx, which is:

4 Alternatively, the coupled mode equation can be solved with a variable coupling coefficient C.
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192 Passive waveguide devices

2angy (D + L)

0o + 0,22 =2nn (7.24)

(c) Power transfer

The power transmitted from the input guided-wave a; to the output is |b; /a; |2, and the
power transmitted from the input guided-wave a, to the recirculating guidedwave in the

ring is |a2 /a|* They have been calculated from Eq. (7.22) by Yariv [6] to be:

bi[? ey |t|> — 2¢~P|t|cos(0 + ¢,) (7.25)
a 1+ e_zaD|,|2 —2e~*Plt|cos(0 + o,)

2 —2a 2
af e 2P (1 — |¢|) (7.26)
at] ~ 1= 20 Pldeos(0+¢,) + o201

At resonance, cos(0 + ¢,) = 1. by /a;|* drops to zero when e~? = |¢|, known as the
critical coupling condition. At critical coupling (i.e. e *” = |¢|), there is perfect destruc-
tive interference between the guided wave in the output waveguide coupled from the
ring and from the input. The amplitude |a,/a; |2also soars rapidly to a high value near
resonance. Its maximum value at resonance is

a_ZZ |l|2

(7.27)

Al 1 — |t

(d) The free spectral range and the Q-factor
The free spectral range FSR of adjacent resonances at wavelengths, 4,, and 7,41, is
FSR 2en (7.28)
=Wpp] — Oy = ———— .
! ney (D + Le)
As the wavelength changes, “6 + ¢, deviates from its resonance condition by
Nerr (D + L) (00 — w,
A0+ g D L)l ) (7.29)

c
As A(0 + ¢,) increases, |b; /a;| will increase and |a,/a; | will decrease. If there is critical

coupling, |ay/a;|* drops to half of its maximum value when

U=l e
ney D] neyDlt|

(7.30)

Here Aw is defined as half the linewidth when the intensity drops to ' of its maximum.
Again, we can calculate the Q factor of the resonator to be

@0 _ wonerDlt|

Q:_

7.31
24w 2C|K|2 ( )

Assuming that since L. << D, the finesse of the ring resonator is approximately
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_ Onl = On |t

F 2
2o (1 |P)

(7.32)

High Q or high finesse depends on the ability to achieve small a in the ring. There are
usually two major factors that may contribute to the propagation loss: (1) the scattering
and absorption loss of the channel waveguide and (2) the radiation loss of a curved
waveguide.

The radiation loss of a curved waveguide

In a straight channel waveguide, the guided-wave mode can be considered as planar
guided waves totally reflected at the lateral boundaries of the core. There is an
evanescent field in all the cladding regions because f. (i.e. n.gkz) in the direction of
propagation is so large that the propagation wavenumbers of the fields in the lateral
directions in the cladding are imaginary, as they are required by the continuity of the
fields in the longitudinal direction. Total internal reflection has zero propagation loss
in the cladding regions, as long as the propagation wavenumbers in the lateral
directions, f, and f3,, are imaginary. When the waveguide has curvature p, the lateral
region outside of the curved waveguide fans out. The electromagnetic field in the
expanded lateral region propagates with a new expanded coordinate in the z direction,
which increases as the distance from the waveguide increases. At some distance away
from the waveguide, S of the fields in the lateral direction outside the curve no longer
needs to be imaginary in order to meet the continuity condition of n.4kz. At this point,
the fields become propagating waves and energy will radiate away. The total internal
reflection will now have a radiation loss. The smaller the curvature, p, the larger the
radiation loss. Unger has presented clearly an analysis of the radiation loss in a curved
planar waveguide [7]. His analysis shows that the radiation loss from a curved planar
waveguide increases exponentially as kp is decreased. Kominato et al. have shown
experimentally that the radiation loss increases dramatically in their waveguides for a
bending radius if less than 4 mm [8].

The propagation loss

There are two kinds of propagation loss in waveguides: absorption loss and scattering
loss. Volume scattering is usually caused by defects in materials, while surface
scattering is caused by defects on the interface created during processing. Low-loss
straight channel waveguides have been made in LiNbO; waveguides by diffusion.
However, the propagation loss of curved LiNbO; waveguides is generally unknown.
Absorption loss occurs in semiconductors due to dopands and free carriers. Although
absorption in intrinsic semiconductors can be kept very low, substantial surface
scattering loss occurs quite often in channel waveguides in high refractive index
crystalline medium because of the defects produced in the fabrication processes. For
this reason, low-loss semiconductor waveguides are usually ridged waveguides,
discussed in Section 5.6. Surface scattering loss is especially high in curved
semiconductor waveguides because etching tends to follow crystalline orientation,
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194 Passive waveguide devices

thereby creating large defects along the curved boundary. Low-loss ring resonators
have been made primarily with doped silica waveguides on Si substrates.

There are many similarities between the ring resonator and the Fabry—Perot
resonator. Assuming that the reflectivity, R, in the Fabry—Perot resonator and the
coupling, k, in ring resonators are independent of frequency, both Fabry—Perot and
ring resonatos have many sharp resonances that are equally spaced in frequency.
However, there are four important considerations: (1) In order to get the same Q, D of
the ring resonator can be much smaller than the L of the Fabry—Perot resonator. It is
hard to get very long low-loss waveguides for Fabry—Perot resonators. It is easy to get
a low-loss silica waveguide ring within a ring. Extremely high Q has been obtained in
silica ring resonators. (2) The radiation loss of channel waveguide ring resonators
increases with decrease in the radius of curvature. Therefore, large ring size needs to
be used to obtain very high Q. (3) The FSR, i.e. the separation of the adjacent
resonances, is usually much larger in Fabry—Perot resonators than in ring resonators.
Kominato et al. have shown that a finesse, F, larger than 30 has been obtained in ring
resonators made from GeO,-doped silica waveguides with a ring radius of 6.5 mm at
A= 1.55um [9]. However, the FSR of their resonator is only 5 GHz. (4) Techniques
such as double ring resonators need to be employed to achieve a wide FSR [10].
A double ring resonator with 100 GHz of FSR and F > 138 was demonstrated by
S. Suzuki et al. [11].

744 The ring resonator delay line

When a pulsed optical signal is injected into the input waveguide of a ring resonator, it is
coupled into and recirculated in the ring. The optical signal pulse is transmitted periodi-
cally to the output, whenever it reaches the output port. Therefore, there are delayed
output optical signals at multiple-delay time intervals of (D + L.)/v, in ring resonators).
For low-loss resonators, the output pulses will be repeated many times. If there are n,
output pulses and if the last pulse is used for signal processing, then the total available
time delay of this pulse from the input pulse is 7, times the single time delay interval of
the resonator.

Note that the time response of a resonator is related directly to the
frequency response of the resonator (e.g. FSR) discussed in the previous section.
It is well known that when there are N outputs at discrete frequencies separated at
equal frequency intervals 0w around a center frequency w,, we obtain
mathematically,

+(N-1)/2
E = Z Ae]’(wu+n(5a)+(ﬂ)t — Ae/®otel?

-(N=1)/2

in(Ndwt/2
sin(Ndwt/2) (7.33)
sin(dwt/2)
where A4 and ¢ are amplitudes and phases of all the outputs. » identifies the individual
field at frequency, w, + ndw and varies from —(N — 1)/2 to +(N—1)/2 for odd N. E is now
periodic in ¢ with period 7 = 27 /dw.
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Chapter summary

Passive optical waveguide devices are used to transform the mode profile from one
location to another, to divide optical power from various input ports into output ports, to
split optical power into different outputs at specified distribution ratio, to redirect
optical energy according to its wavelength, to filter optical signals according to
wavelength, to create resonances that have very narrow bandwidth, and to provide
time delays of signals. Although resonance, beam splitting, and wavelength filtering
functions can also be obtained by plane wave and TEM wave devices, the performances
of the waveguide devices are much superior. The analyses presented in this chapter let us
understand how the performances of these devices are controlled by various design
factors. The analyses are equally applicable to channel waveguides and to optical fibers.
Note that waveguide devices can only be analyzed by the modal analyses presented in
Chapters 5 and 6.
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8 Active opto-electronic guided-wave
components

Opto-electronic components are optical devices driven by electric signals or converters
of optical signals into electrical signals. The operation of these devices depends on
various electro-optical effects. In order to discuss these devices, it requires not only
optical analysis, but also the analysis of the electro-optical processes and their rf circuit
response. Performances of these components should also be evaluated from both optical
and electrical points of view.

The most well-known electro-optical effect is probably the amplification of optical
radiation by stimulated emission of radiation. When the amplification exceeds the losses
and the outputs in a cavity, laser oscillation is obtained [1]. Any discussion of laser
oscillators can be divided into two parts: the amplification process and the laser cavity.
In gas and solid-state lasers, amplification is obtained by optical pumping or electrical
discharge. In semiconductor lasers, the amplification of the guided wave is obtained via
current injection in a forward biased p-n junction. When end reflections (or feedback) are
absent and when there is a net gain, a laser amplifier is obtained [2]. Cavity analyses are
optical; the analysis of optical cavities for solid-state and gaseous lasers was presented in
Chapter 4. The waveguide cavity using DBR reflectors was discussed in Chapter 6. In a
waveguide laser oscillator, distributed feedback resonance of a grating is also used to
form the cavity. However, the discussion of the amplification processes involves exten-
sive knowledge of physics.

The second well-known electro-optical effect is the detection of optical radiation by
photo-generation of carriers. When optical radiation is incident on a semiconductor with
photon energy greater than the semiconductor bandgap, electrical carriers are generated
by absorption of the radiation. Photo-generated carriers in a reverse biased p-i-n junction
are then collected and transmitted to the external circuit [3]. In the surface normal photo
configuration, the optical radiation is absorbed in the absorbing layer of a reverse-biased
diode. The optical analysis of the detector is simple. It consists of the plane wave
propagating through a p-i-n diode that has absorption layer. In waveguide photo detec-
tors, the optical radiation is incident onto and absorbed by a waveguide that is also a
reverse-biased diode. The absorption takes place over the length of the waveguide [4].
Optical waveguides were discussed in Chapters 5 and 6. The analysis of the transport of
photo-generated carriers and their transit times in p-i-n structures requires analysis of
semiconductor devices.

In semiconductor lasers and photo-diodes, discussion of carrier injection, stimulated
emission, recombination, and carrier transport in semiconductor junctions requires

Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:50:31, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781139871419.009


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.009
https://www.cambridge.org/core

8.1 The effect of electro-optical 197

extensive review of semiconductor-device physics. Such a discussion is beyond the
scope of this book and there are already many books on lasers and detectors [5,6,7].
Therefore, semiconductor lasers and photo detectors will not be discussed here.

Besides lasers and detectors, the most common electro-optical effects used in active
opto-electronic guided-wave devices are the change of the absorptive or refractive
properties of materials created by an applied electrical or acoustic signal. For example,
in Mach—Zehnder interferometers or directional couplers, the electro-optical change in
susceptibility is utilized in order to operate them as modulators or switches. How we
analyze modulators and switches is the focus of the discussion in this chapter.

8.1 The effect of electro-optical y

Let us first understand the effect of Ay.
Propagation of any guided wave is affected by the susceptibility, y, of the material. In
general, y is complex,

x=x"—ix" (8.1)

In a homogeneous lossless isotropic material without any electro-optical effect, we have
assumed in previous chapters that

£=y,60 =N, of y,,=n*> and y,"=0 (8.2)

When there is an electro-optical effect, Ay is produced by the applied electric signal. Ay
has a real part Ay' and an imaginary part Ay

Ay = Ax' —jAx" (8.3)
If there is Ay, the susceptibility is changed from y,, to y.,
€= Yoo = (X, + Mx)eo = nPe, + (Ax)es (8.4)
In general, y,, = xeo — JjiX oo, thus the real and the imaginary part of y,, are

Yoo =n*+Ay' and b, = Ay" (8.5)

8.1.1 Electro-optic effects in plane waves

If Ay is created by the electric field of a DC or low-frequency rf signal whose spatial
field variation is much slower than the dimensions of the opto-electronic device, then
Ay is considered to be uniform at any instant of time within the device. For a plane
wave propagating in the z direction in a material that has a uniform susceptibility y.,,

E(z,1) = Ee/(@ko?) (8.6)
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198 Active opto-electronic guided-wave components

A ’ . A n
keo = O\/lyEe0 = @ luonzgo {(1 + 252> —-J <2§2>:| (8.7)

Therefore,
E(z,t) = [Eei‘”te_j”’\/“f'"—zeuz] e/ ””"zg”z%ze*@z (8.8)
and
1) =¢ﬁ_gﬂ)w<z, P % o (8.9)
g: —al, with a= %@Ax” (8.10)

Therefore, if there is Ay', a plane wave exhibits an additional electro-optical
phase shift, o,/ui,&,(Ay'/2n)z. The effect of Ay" is different. When Ay" is positive, the
N

intensity, I, of the plane wave is attenuated by e~ + -. When Ay" is negative, I is
amplified.
8.1.2 Electro-optic effects in waveguides at low frequencies

Similarly, the electro-optical Ay' and Ay" in the material creates a change in the effective
index and an attenuation of the guided-wave mode. At low frequencies, Ay varies
uniformly in time across the entire device. In order to calculate rigorously the effect of
the electro-optic Ay on guided-wave modes, n” in Eq. (5.1) of Section 5.1 of guided-wave
modes and other equations need to be replaced by n* + Ay' — jAy". However, to find the
modes and n g with the modified n is a major undertaking. If the modes of the waveguide
without the electro-optic effects are already known, the effect of Ay' and Ay" can be
calculated much more easily as perturbations of the original guided-wave modes by Ay’
and Ay". The perturbation analysis will be used in this chapter.

(a) Effect of Ay’

For analysis of modes involving Ay', let us consider that there is a change in index from n
to n + An, then

1
(n+An)> =n® + Ay’ or An= e (8.11)
n
If the change in An covers the entire profile of the mode, then the result given in Eq. (8.8)
applies directly to guided-wave modes.
However, the rf or DC electric field that creates Ay may only exist within a region
smaller than the size of the guided-wave mode. Then, we describe An by:
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8.1 The effect of electro-optical 199

An(x,y) = An, g(x,y) (8.12)
The guided wave will now have a z variation,

Ae—./”e/fﬂ<yz _.fA”efj*’/}nze.jwt (8 1 3)

From the perturbation analysis in Eq. (6.8), we obtain

wne,

B Angy = An, J g(x,y)(em*en” )dxdy (8.14)

electro-optic region

Since e,, is normalized,

e Py ([ .
Zmlo | o e, *dxdy = 1
200u JJe_ Em XY

” g(x,y)em*en” dxdy

nAno electro-optic region

Aneg m = Iy Tw=

(8.15)

00 o0

J J em*en’ dxdy

—00 —00

I'y, is known as the overlap integral (or filling factor) of the electro-optic effect. Note
again that the primary effect of Ay’ is to create a phase shift of the guided wave after
propagating a distance z.

(b) Effect of Ay"’
In the absence of Ay", the nth mode of the waveguide propagating in the z direction was
expressed as

anefjnéf//.n/;ozeja” (816)

If Ay" is uniform over the entire profile of the guided-wave mode, then the result in Eq.
(8.8) again applies.
If Ay"(x,y) exists only in a portion of the waveguide, we will have

Ax"(x,y) = Ay g(x,)

The effect of the change in susceptibility on the guided-wave mode can again be
calculated by perturbation analysis. According to Eq. (6.8), we have

da, Aw, Ao, o Y ' .
dZ - _TGnv 2 —ZSUAXG ‘ JJ ' g(xay)(e_” eL)dXdy (817)
activeregion
Aan
a, =Ae 2° (8.18)

In view of the normalization of ¢, we can rewrite the expressions into the form:
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|| stelenesas

active region

=

o0

Ao, TAa, b,

2 2 2ny

LAY, D= (8.19)

I',, is the overlap integral (or filling factor) of Ay" in the active region for the nth mode.
Note that according to Eq. (8.19), the transmission of the guided wave after a distance L
is T = e %Le TA%L 1f there is residual propagation loss, a, includes all the residual
attenuation that already existed in the absence of the modulation electric field.

8.2 The physical mechanisms to create Ay

Ay is produced by the electro-optical effects of the rf electric field. Several physical
mechanisms that create Ay are presented here.

8.2.1 Ay

The most commonly used electro-optical effect to obtain Ay'is the linear Pockel s effect.
An electric field F is applied to the electro-optically active material by the electrodes
fabricated on the waveguide. Ay'is proportional F. The specific relation between F and
Ay' depends on material and the configuration of the device. The most common wave-
guide materials that have been used include LiNDOj;, polymers, and I[I-V compound
semiconductors.

Electro-optic materials such as LiNbOj are often birefringent. In birefringent materi-
als, the optical displacement D is no longer parallel to the optical electric field E. Any
birefringent material has principle crystalline axes, x, y, and z. Along the principle axes,
D and E have a matrix relationship:

D, n2 0 0 ||E:
Dy, |=¢]|0 n? 0||E (8.20)
D, 0 0 n?l|lE.

For each plane wave propagating along a given direction of propagation s
(s = Sxix + 5,0, + s:i;), there are two independent solutions in which D and E are
parallel. One is an extraordinary wave that has D, = n.E,. The second is an ordinary
wave thathas D, = n,E,. Both“D, and E,” and “D, and E,” are perpendicular to s. The

solutions of D, E, e,, and n,, for the ordinary and extraordinary plane waves are obtained
from the following equation for any specific direction of s [8, 9]:

1 [D> D D?
— — =1 8.21
E*D |:nx2 n,? N n ] (8.21)
D,? D,? D.? L
If we let ED = X2, E'yQ = Y2, and ED = 72, Eq. (8.21) is simplified to:
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8.2 The physical mechanisms to create Ay 201

Xy 7
ﬁ+ﬁ+n—zz—l (8.22)
Eq. (8.22) is referred to in the literature as the index ellipsoid because it has the form
of an ellipsoid that has axial lengths, n,, n,, and n, in the (x, y, and z) coordinates. As an
example, for a plane wave propagating in the x direction and polarized in the y direction,
D, = n,E,. For a plane wave in the x direction and polarized in the z direction,
D, = n,E,.
When an external field F is applied to the material, its effect can be expressed as a
change of the index ellipsoid. Since F may not be parallel to the crystalline axes x, y,
and z, the change of index ellipsoid is expressed in general as:

1 1 1 1 1 1
—+A| S| | X+ | S+Al 5| [P+ S+A 5] |22
n2 n? n,? n2 n.2 2

1 2 3
1 1 1
n n n
4 5 6
A(1/n?),are related to F through an electro-optic tensor of the material,
1
2
1 r r2 || |Fy
: ( )
/2 21 T I3
1
=
n*/, r31 I3 133
! = *|F, (8.24)
A < —2> r41 T4y 43
n=/ 4
1 sy Fs2 753
Al =
<n2> 5
1 Tel Te2 Te3|| |£:
(),

The analysis of plane wave propagation in anisotropic media has been presented in a
number of references [8,9]. The r;; coefficients of different materials are also given in
these references. In general, calculatlon of the electro-optic effect in waveguides due to
Fis very complex. Fortunately, the optical waveguides and F in commonly used devices
are oriented along only specific directions of crystalline axes in LiINbO;, polymers, and
III-V semiconductors. In these devices, calculation of Ay’ as a function of F is not
difficult. In order not to side track from the main objectives of the chapter, only a
discussion of Pockel’s effect along these special directions is presented here.
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Figure 8.1 Commonly used waveguide and electrode configurations in LiNbOs. (a) A diffused
waveguide on z-cut substrate. (b) A diffused waveguide on x-cut substrate. The direction

of propagation is in the y direction. The rf field produced by the electrode is oriented in the z
direction in the core of the waveguide.

(a) The LiNbO; waveguide

LiNbO; waveguides are usually fabricated on x-cut or z-cut substrates with propagation
in the y direction of the crystal [10]. Figure 8.1 illustrates these two types of waveguide.
Figure 8.1(a) shows a diffused waveguide on z-cut LiNbOs. In order to take advantage of
the large electro-optic coefficient, 733, F in the waveguide applied by the electrodes is
oriented predominantly in the z direction. Let us assume for this discussion that F is
uniform in the region occupied by the guided-wave mode. Therefore, F, = F, = 0, and
the crystalline x, y, and z axes are still the axes of the index ellipsoid with the applied F.
Plane waves propagating in the y direction with both D and £ polarized in the z direction
will have n = n,', while plane waves with x polarization of D and E will have n=n,". In
these two polarizations, D is parallel and proportional to £. From Eqs. (8.23) and (8.24),
we obtain the following »,' and n,"

1 ~12 1, 1 ~12 1,
ng = <n—g + F33Fz> >~n, — 5"81’33FZ7 ny = (n—az + V13Fz> >~n, — E”DVISFZ
(8.25)

Since, like plane waves, modes in waveguides also have a dominant electric and
magnetic field polarized perpendicular to the direction of propagation, the n," and n,’
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obtained for the plane waves can be used to represent approximately the electro-optical
change in material index for the guided waves in the same polarization.

For waveguides on z-cut substrates shown in Figure 8.1(a), guided-wave modes
propagate in the y direction. The TE modes have a dominant optical electric field
polarized in the x direction, while the dominant optical electric field in the TM modes
is polarized in the z direction. D and E are parallel to each other for the dominant electric
field in these two cases. Therefore, in the scalar approximation of the wave equation and
for uniform F across the waveguide, the effective index of the TE modes can be
calculated approximately by using n,’, while the effective index of TM modes can be
calculated approximately by using 7,

A diffused waveguide on x-cut substrate is shown in Figure 8.1(b). For waveguides
along the y direction on x-cut substrates, the TE modes have the dominant electric field
polarized in the z direction, and the TM modes have the dominant electric field polarized
in the x direction. £ applied from the electrodes is predominantly in the z direction. In
this case, the effective index of TE modes for uniform F can be calculated using »,’, and
the effective index of TM modes can be calculated using »,'.

In summary, in order to maximize the electro-optic effect, F is applied in the z
direction to TE modes in x-cut LINbO; and to TM modes in z-cut LiNbO;. It is also
clear that any change from these two cases, for example, an addition of F in addition
to F, may require us to find the x', y', and z' axes and then the new D, and D,. The
analysis of the effective index of the guided modes would then be much more
complicated.

(b) The polymer waveguide

For polymer waveguides, the vertical direction in which the poling field is applied is
usually defined as the z direction. The x and y axes are then in the plane parallel to the
substrate. Material properties are symmetric in the x and y directions. The non-vanishing
elements of the electro-optic tensor are ryi3 = ra3, 14 = rsy, and r33[11]. The largest
electro-optic coefficient is r33. In order to maximize the electro-optic effect, F is usually
applied in the z direction by the electrodes. The analysis of the electro-optic effect of TM
modes is identical to that of the z-cut LINbO; with F'= Fi, and a different 735 coefficient.
On the other hand, the TE modes will not have any electro-optic effect. The value of the
r33 coefficient will depend on the polymer material engineering. The reported 733 is
much larger than that of LiNbO3, making polymers very attractive for electro-optic
applications. For example, r33 = 130 pm/V may be anticipated. In comparison, 733 =30.8
pm/V in LiNbO;. The challenge for polymer waveguide research is to obtain a material
that has a high glass temperature, a low propagation loss, and a large electro-optic
coefficient, simultaneously [12].

(©) The III-V compound semiconductor waveguide
GaAs or InP has r4; = rs5; = 763. All other ;; are zero. In such a material with cubic
crystalline symmetry, n, = n,, = n_. = n,,. Therefore the equation of the index ellipsoid for
all II-V compound semiconductor materials is:
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X2+ Y24+ 272
ng

+2r) (FLYZ + F,ZX + FXY) = 1 (8.26)

In GaAs, n,=3.6 and r4; = 1.1 x 10 '? m/V at the 0.9 pm wavelength, and n, = 3.3 and
r=143x 102 m/Vat 1.15 pm wavelength. Similar values of n, and r4; have been
reported in other I1I-V compound semiconductors. As an example, for a rf electric field,
F, in the z direction, we obtain

X2+ Y24+ 72
;f + 2ry F.XY = 1 (8.27)

no
Letz" =z, v/2x" = x + y and v/2y" = —x + y, then the index ellipsoid in x”, y", and z"
is:

1 "2 1 "2 1 n2
n—02+l”41Fz X + —2*1’41Fz Y +FZ =1 (8.28)

nO 0

For plane waves propagating along the y" axis, the major and minor axes of the ellipse
for D and E are the x"’ and the z" axes. Their n values are:

ForD//E//z"axis n=n, (8.29)
1
ForD//E//x"axis n=n =n, — §n03r41Fz (8.30)

For waveguides fabricated on z-cut substrates' and oriented in the y”" direction, as shown
in Figure 8.2, the electric field is obtained by applying a electrical voltage across the i
layer in a reverse biased p-i-n junction. Since the intrinsic layer is usually very thin, the
electric field can be very high for a given voltage applied to the electrode. Let us assume
again that the electric field is uniform in the intrinsic electro-optic layer. The effective
indices of TE modes are found by perturbation analysis usingn = n, — 1/2 n, ra1 F, for
the intrinsic layer. TM modes have no electro-optic effect. Since Eq. (8.26) is symmetric
in x, y, and z, this result is applicable to x-cut or y-cut samples with electric field in the x
or y directions.

No matter what material, F, and waveguide configuration, are used, the electro-optic
effect produces a Ay' and An g of the guided-wave mode. After propagating a distance z,
Anyy produces a phase shift Ag in the guided-wave mode where Ap = Angy o /1,802
The relationship between Ay' and F depends not only on the material properties, but also
on waveguide and electrode configurations.

! Typically semiconductor waveguides are fabricated by epitaxial growth of the core and cladding layers that
are parallel to the substrate surface. In order to apply the rf electric field most effectively, the core layer is
usually an i layer sandwiched between n- and p-type semiconductor layers, and a reverse-biased voltage is
applied to the p-i-n junction. Electrical voltage is applied across the ground and the signal electrodes. Thus /'
is usually in the direction of the cut of the sample. The channel ridge waveguide is often formed by etching.
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Figure 8.2 Examples of an electro-optic waveguides on III-V semiconductors. The ridged channel
waveguide on the z-cut substrate is oriented along the y"” direction, which is 45° from both
the x and the y axis. The high-index intrinsic core of the waveguide is sandwiched between a
p-doped and an n-doped semiconductor. A reverse bias is applied from the electrodes to the i
layer through the p-i-n junction.

8.2.2 Ay in semiconductors

In order to understand Ay" in semiconductors, a brief discussion of the absorption
properties of semiconductors is presented here.

(a) Stimulated absorption and the bandgap

Absorption of optical radiation in semiconductors can be understood most easily
through the following abbreviated description of the process.

In semiconductors, electron and holes undertake stimulated emission and absorp-
tion. How such carriers are generated, transported, and recombined has been dis-
cussed extensively in the literature [13,14]. We note in particular that they occur in a
periodic crystalline material. The energy levels of free electrons and holes are
distributed in bulk crystalline semiconductors within conduction and valence
bands. Within the conduction band and the valence band, each energy state has a
wave function of the form

Ye(r) = uck(r)e’™”

where ucy () has the periodicity of the crystalline lattice. The energy of electrons in the
conduction band for a state with given k (in the parabolic approximation of the energy
band structure) is
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12 k[
E.(|k]) — Ec =—— 8.31
()~ Ec =5, (831)
A similar expression is obtained for energy levels in the valence band,
2 k[
Ey(lk|) —Ey = ———. 8.32
b(l) — By = =51 (8.32)

E is the bottom of the conduction band and E,is the top of the valence band. m, and m,
are, respectively, the effective masses of the electron and the hole. E¢- — E-is known as
the bandgap, E,,,,, of the material, E,,, = E-— Ey: There are no energy levels between the
conduction and valence bands in pure bulk semiconductors. There are a large number of
energy levels per unit energy range within each band. Absorption or emission can take
place only between states in these two bands. The number of energy levels per unit range
of E, (or E},) (defined as the density of states) increases rapidly as “E,— E.. (or E,— E})” is
increased. Thus the absorption increases very rapidly for radiations with photon energy
above the bandgap. The specific distribution of energy levels (i.e. m,, m;, and the
parabolic approximation) depends on the material. Because of other issues, such as
phonon interactions and electric-field-induced exciton effects, the variation of absorp-
tion near or below the band edge as a function of optical wavelength is rapid, but not
abrupt.” In any case, whenever there is a change of bandgap (created by F), there is a A"
for any radiation that has a photon energy just below the bandgap.

To maximize Ay", the photon has an energy just below the bandgap. Since the
absorption of a photon depends on the availability of energy states, the photon absorp-
tion depends on the changes in the bandgap and the energy states due to F. This is known
as the Frantz—Keldish effect in bulk semiconductors. Much research has been devoted to
create material structures that will have energy states that provide a more rapid
variation of the absorption of the phonon with the applied F. The most effective method
to do that is to obtain a material which has a quantum-confined Stark effect, QCSE.

(b) The quantum-confined Stark effect, QCSE
In order to understand QCSE, we must first understand quantum wells and their energy
levels. We then need to understand the exciton absorption of these quantum wells,

followed by how they can be utilized to obtain a rapid change in Ay" by an applied
electric field F.

Energy levels in quantum wells

A quantum well double heterostructure in semiconductors consists of a thin layer of
material, called the well, that has a smaller bandgap, £, sandwiched between materials
with a larger bandgap, Eg, called the barrier. These layers are typically III-V group
semiconductors with different compositions that are grown epitaxially on a lattice
matched to the GaAs or InP substrates. The thickness of the well Ly is typically 50
to 150 A. The barrier is just thick enough (e.g. 50 to 100 A) to isolate the wells.

2 This is known in physics as the Erbach tail.
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Figure 8.3 Potential energy diagrams, energy levels, and energy states in quantum wells. (a) At zero
electric field. (b) At a bias electric field.

Figure 8.3(a) shows a typical one-dimensional potential diagram of the conduction and
valence bands as a function of thickness position x at zero applied electric field. At the
interface of the well and the barrier, there are discontinuities in the conduction band edge
AEc and the valence band edge AEy; AE- + AEy = E, — Er Quantum mechanical
calculations of energy states in such potential wells yield discrete energy levels, E,, for
electrons in the conduction band and discrete energy levels, E;, for holes in the valence
band [15]. In the example illustrated in Figure 8.3(a), £, is the lowest-order energy level
for electrons in the conduction band. The energy state for this energy level is illustrated
as .. Some holes in the valence band have a heavier mass, called heavy holes, and some
holes have a lighter mass, called light holes. The highest hole energy in the valence
band is usually for heavy holes. Only Ej;,; and its energy state vy, are illustrated in
Figure 8.3(a). Other higher electron levels and lower hole levels such as E,, and Ej;; are
not shown here. The energy states ¥ demonstrate that electrons and holes in a quantum
well are confined in the thickness direction that we designated as the x direction.
A multiple quantum well (MQW) structure consists simply of multiple of quantum
wells separated by barriers.

Exciton transitions and absorption

E, and E), are the only energy levels of the electrons and holes in the thickness, x,
direction. The total energy of electrons and holes is the sum of their energy in the x
direction, i.e. £, + Ej, and the energy of an electron-hole pair in the y—z pane, E,.. In
order to understand the energy of the electron—hole pair in the y—z plane, let us consider
first the energy of an electron—hole pair in three dimensions in bulk semiconductors.
When electron—hole pairs are created by absorption of a photon, they are initially close
to each other. In bulk semiconductors, such electron and hole pairs will experience
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Figure 8.4  Absorption spectra of InAsP/GalnP multiple quantum well at different bias voltages.

mutual three-dimensional Coulomb forces similar to those present in a hydrogen atom.
The energy of such an electron—hole pair is lower than the energy of free electrons and
holes; this electron—hole coordination gives rise to a set of energy levels (called exciton
levels) just below the bandgap. The exciton spectra in bulk materials have been directly
observed only at very low temperatures. The situation is different in quantum wells. In
the y and z directions of the quantum well, electrons and holes are also subject to periodic
potentials and forces in a bulk crystal. The quantum confinement in the x direction
increases the binding energy of the exciton. Therefore exciton transitions are directly
observable at room temperatures.

Exciton absorption in quantum wells (i.e. Ay'") has been observed directly at room
temperatures and under applied electric fields. The stimulated transition of heavy hole
excitons takes place at photon energy just below E,; — E};,;. The solid curve in Figure 8.4
shows the TE polarized absorption spectrum of an InAsy4Py¢(93 A thick wells)/
Gay 13Ing g7P(135 A thick barriers) multiple quantum well (MQW) at zero applied
electric field [16]. The heavy hole exciton transition has a transition wavelength
shown as 4., with a line width J,,,. For this sample the half width at half maximum
Jexo 18 6 meV. A second transition with a less distinct absorption peak due to a light hole
can also be seen in this figure at A = 1.250 um.

Note that the absorption coefficient o will be dependent on the polarization of the
electric field because the matrix element’ for any induced transition between an electron
and a hole is polarization dependent. For a TE guided wave in the y—z plane, its electric

3 The transition probability of any two energy states is proportional to the matrix element of the applied
radiation.
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8.2 The physical mechanisms to create Ay 209

field is polarized in the y—z plane. Its absorption coefficient will be the same as a for a
plane wave propagating in the x direction. For TM modes in a waveguide oriented in the
y—z plane, its dominant electric field will be in the x direction, and it will have a different
value of a.

The quantum-confined Stark effect (QCSE)

Under the application of an electric field in the x direction, the potential wells are tilted as
shown in Figure 8.3(b). The quantum mechanical solution for the energy values in the
quantum well indicates usually a reduction in £, — E},;,;. Therefore, the exciton absorp-
tion line at £, shifts normally toward longer wavelengths (i.e. the absorption peak is at
smaller photon energy), known as a red shift. Occasionally the shift in a specific
potential well configuration may be toward a shorter wavelength, known as a blue
shift. This is the quantum-confined Stark effect (QCSE) [17, 18, 19]. Note also that
as the potential wells are tilted, the wave functions of energy states for electrons and
for holes are also shifted to the opposite side of the quantum well, as illustrated in
Figure 8.3(b). Since the amplitude of the stimulated absorption between the two energy
states depends on the matrix element of the electric dipole connecting v, and wy;, the
shift of energy state function to the opposite side of the quantum well will produce a
reduction of the exciton absorption as the electric field is increased.

The QCSE, the reduction in the absorption coefficient at the exciton peak a,, and the
broadening of the exciton line width J,,, are clearly demonstrated experimentally for a
specific sample in Figure 8.4 as the applied voltage is increased. In this case, the electric
voltage shown in the figure is applied across a reverse-biased p-i-n junction that has an
i-layer approximately 0.5 pum thick (containing 21 periods of quantum wells and
barriers). Therefore the electric field F in units of V/cm applied to the quantum well is
approximately 2 x 10* times the applied voltage divided by the thickness of the device.
In this figure, the laser radiation at wavelength A,,., is detuned from the exciton peak at '
= 0 by Adgero- As the QCSE increases, the absorption coefficient in the MQW for Aj,4e,
shown in Figure 8.4 will first increase when A4, > 0 and then decrease when Al <0, as
F is increased. When the electric voltage is changed from 0.5 V to 1.5 V, the
change in absorption coefficient at Aj,s; shown in the figure is Aa =2 4000 cm. Thus,
Ao/AF 22200 x 10/V.

Figure 8.5 shows the measured QCSE and the calculated shift of E.; — Ej;,; of the
sample used in Figure 8.4. The discrepancy has been attributed to the variation of the
exciton binding energy as the applied electric field is varied. Figure 8.6 illustrates Ao at
different detuning energy and reverse biases that can be obtained in this sample. Note the
importance of small d,,, and appropriate choice of detuning energy and reverse bias in
order to maximize Aa for a given AF.

QW structures became a reality because the epitaxy technology in material growth
provided the means for control of the quantum well layer thickness and the smoothness
of the interfaces up to atomic-level accuracy. Quantum wells and barriers are always
parallel to the surface of the substrate. The direction of the applied electric field needs to
be perpendicular to the substrate surface. The most effective way to apply such an
electric field is by fabricating a p-i-n structure parallel to the substrate surface where the
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Figure 85 Quantum-confined Stark effect of the E.;—E,;, transition versus the electric field. The scattered
signs are experimental data. The solid curve is calculated theoretically using the effective width
model. Taken from ref. [15] with permission from X. Mei.
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Figure 8.6  Change of absorption coefficient at different detuning energy and reverse biases. Taken from ref.
[15] with permission from X. Mei.

MQW constitutes the i layer. In a reverse-biased p-i-n structure, the electrical field is
predominantly perpendicular to and focused in the i layer. This is the way in which a is
obtained in Figures 8.4, 8.5, and 8.6; it is a for the TE polarization. Note that the
measured « is the averaged absorption coefficient of the entire MQW layer. For a given
electric field, the actual absorption takes place only in the well, not in the barrier.
Therefore Ao/AF is increased by using a thinner barrier layer. The minimum barrier
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8.3 Active opto-electronic devices 211

thickness will be governed by the decay of the energy state functions, y, and y;, in the
barrier. The conventional guideline is that the barriers be thick enough so that the energy
states of adjacent wells will not significantly interact with each other.

QCSE provided the largest Ay" that can be obtained by a given F. Figure 8.4 demon-
strated the change of absorption coefficient by QCSE in a specific sample for a specific
photon energy. Quantum wells can also be designed to provide a more rapid change in
the absorption coefficient for other photon energies. The goal of the quantum well
material design is to maximize Ay'/F. The goal of the electrode design is to maximize F.

In this section, several common physical mechanisms for obtaining Ay have been
presented. It is important to know how these mechanisms function so we can analyze the
operation of active components. How to obtain maximum Ay' or Ay’ for a given F and
how to maximize F for a given rf signal power are clearly issues of individual design.
Discussion of different designs is beyond the scope of this book. In the rest of this
chapter, discussions of active components will be presented only in terms of a given Ay’
or Ay".

8.3 Active opto-electronic devices

Commonly used electro-optical active components that will be presented here include
the phase modulator, the directional coupler modulator/switch, the Mach—Zehnder
modulator, and the electro-absorption modulator.

8.3.1 The phase modulator

The phase modulator is a very simple device. Phase modulation of the guided wave is
obtained whenever an electric field is applied to a waveguide fabricated on electro-optic
materials. Ay'is created by the electric field.

Let there be a change of the material index,

An(x,y) = An,g(x,y) (8.33)

An creates An,gfor the guided wave; this guided wave propagating in a waveguide now
has the phase variation,

AenerPor g iMnefoz gt (8.34)
In Eq. (8.15), it has already been shown that
ﬂ g(x,y)enen” drdy
Ane]fm _ nAn,, rm7 rm _ electro-optizoreiion (835)
J J em*en’ dxdy

—% —®©
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Figure 8.7  An x-cut LiNbO; phase modulator.

Therefore the electro-optic effect has created a phase shift, An.;f,L, where L is the

length of the waveguide. Figure 8.7 illustrates a phase modulator on x-cut LNbO;.
Note that the F that created the An is produced by the voltage, ¥, applied to the

electrodes. A crude approximation to estimate F for a given ¥ on the electrode is:

F.=— (8.36)

where d is the separation of the electrodes. In reality, calculation of ¥ by V can be
complex; nevertheless, F'is proportional to V. Therefore, we can replace d by d4

Note that the performance of a phase modulator will be measured by the voltage
required to achieve a given Ag. The larger An,, of the material and I, the larger is An 4
The smaller d,, the larger is F/V. The longer L, the lower the required F for a given
Angy.

The electrodes shown in Figure 8.7 are just a portion of the rf circuit, driving the
modulator. In order to discuss the modulator performance as a function of the rf
frequency, we also need to know how V is produced by the rf source through the
electrical circuit. For our discussion here, let us consider the simplest case. The electrode
is represented electrically by a capacitance, C. It is connected in parallel with a matching
resistance, R, to match the rf signal source. The combination of R and C is driven by a
current source that is represented by i, in parallel with an internal resistance, R;. Since
the impedance of C is inversely proportion to frequency, ¥ across the electrode drops to

V5 from DC to w,. when w,. (RRS /(R+ RS)) C = 1. w. is known as the bandwidth of the

modulator. In other words, the performance of the modulator is measured not only by the
phase shift that can be achieved by a given rf input power, but also by its RC bandwidth.

8.3.2 The Mach-Zhender modulator

The Mach—Zhender (MZ) interferometer has already been discussed in Section 6.7.3.
When there are shifts of phase, Ap, of the guided wave in arm A and Agg of the guided-
wave in arm B, there is a relative phase difference of the modes at the end of the arms,

Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:50:31, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781139871419.009


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.009
https://www.cambridge.org/core
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Ap = Ap, — Agg. Note that as Ag is varied, the sum of the guided waves in the two arms
at the input of the Y-branch coupler is

(W + &y )e 7% = [Cy, + w) + D(w, — w)]e %

The amplitude, C, of the symmetric mode (w,, + ;) is
1
C= 5(1 + cos Ap —jsin Ag)

Only the symmetric mode is transmitted to the output of the Y-branch. The anti-
symmetric mode is dissipated. Therefore, the amplitude of the guided wave in the output
waveguide is C. As an example, when the relative phase shift is 7, the amplitude of the
output guided wave is 0; when the relative phase shift is 0, the output is 1. The output
optical power is proportional to C>.

Whenever an MZ interferometer is fabricated on an electro-optic material that
yields An, each individual arm of the interferometer functions as a phase modulator,
discussed in the previous section. The phase of the guided wave propagating for a
distance L,, in the arm is Ap = Angyf, L,. Angyis given in Eq. (8.35). It is proportional
to the applied voltage, V. In single-arm modulators, an electrode such as that shown in
Figure 8.7 is applied to just one arm. In push—pull modulators, electrodes are applied to
both arms. In this case, the voltage applied to the two sets of electrodes is reversed,
thereby doubling Ag.

The performance of a Mach—Zehnder modulator is be measured by the voltage
required to achieve a given depth of modulation.* The larger An, of the material and
[, the larger is Angy The smaller d,, the larger is £/V. The longer L,, the lower the
required V to obtain a given Ag. However, the capacitance, C, representing the electrical
behavior of the electrode is proportional to L,/d,. It is larger for larger L, and smaller d..
The MZ modulator will have the same RC-limited bandwidth as the phase modulator.

8.3.3 The directional coupler modulator/switch

Directional coupler is discussed in Sections 6.3.4, 6.6, and 7.2.2, and illustrated in
Figure 6.4. Let us consider a directional coupler that has two identical waveguides
coupled together in the interaction region from z = 0 to z = ¥, as shown in Figure 6.4. In
order to operate a directional as a modulator or switch, the waveguides are fabricated on
electro-optical material. Electrodes such as those used in phase modulators are fabri-
cated on waveguides in the interaction region to obtain An.; in the waveguides. As
shown in Egs. (6.25) and (6.26), when the power is incident to one waveguide the output
in the other waveguide P,,, is proportional to

4 Note that, although A is linearly proportional to ¥, the output power of an MZ modulator is not linearly
proportional to Ag. In digital applications, the desired modulation depth is determined by the required on/off
ratio of optical power. In analog applications, the modulator may be biased at a specific V'pc in addition to the
signal, V;r. The desired modulation depth is determined by the rf-modulated optical output variation that
satisfies the linearity requirement.
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. AR
Py o< sin’ \/ CpaCap + (f) z,  AB=Ps—Pp = (nega — negn)p,

(8.37)

At different AB values, P,,, varies from P, =0, when Cga Cap + ((A,b’ / 2)2> =0 (or nr)
to P,, =1 when CgaCap + ((Aﬂ /2)2) = 72 (or (2n + D)/2), Just like the phase
modulators, n.44 and n,4p are proportional to the voltage applied to the electrodes on
waveguide A and waveguide B. Reverse of the voltage will reverse Aneﬁc5

Such a directional coupler is a switch when the input is incident to one waveguide and
the output is taken from the other waveguide. It is a modulator when the input power is
incident to one waveguide and the output power is taken from the same input waveguide.
Note that the electric field, F, and the voltage, ¥, on the electrode will vary as a function of
the rf frequency in the same manner as the phase modulator discussed in Section 8.3.1. The
smaller d,, the larger is F/V, and the larger is its electrical capacitance, C. Similar to the
phase modulator, there is an RC-limited bandwidth of the directional coupler or switch.

8.34 The electro-absorption modulator

Figure 8.8 illustrates an EA waveguide modulator. It shows a ridged waveguide on an InP
substrate, where the waveguide core consists of a quaternary InGaAsP layer sandwiched

' Ridge for lateral optical confinement !

Electrodes

p-doped InP contact

Electro-absorption
layer

S

GaAsInP waveguide core

InP substrate

Figure 8.8  An electro-absorption modulator.

3 From the point of view of super mode analysis, the applied voltage changes Anggk of the modes in the
coupled waveguides.
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among lower-index InP layers in the vertical direction. A ridge is etched on the top
cladding layer to provide the mode confinement in the lateral direction. Within the
cladding layers above the core, there is an EA layer, which is a QCSE layer, discussed
in Section 8.2.2. In order to provide a large electric field from a given applied voltage, the
EA layer is the intrinsic layer of a reverse-biased p-i-n diode. In addition to the electrode
on top of the EA layer, the n layer under the QCSE layer serves as the bottom electrode. It
is connected electrically to the electrodes on the sides via the n layers.

As we apply a voltage, ¥, to the electrodes, it creates Ay"(x,y) via QCSE. As shown in
Egs. (8.18) and (8.19), the amplitude of the guided wave is reduced by this Ay”. V'
consists of a DC bias voltage V), and an rf voltage ¥, Thus a DC attenuation of the
guided-wave a;, is created by V), in addition to the attenuation Aa,, created by V.

Let the amplitude be a,, at z = 0, then

o Aapl on
a,(z=1L) = ane_% =a,e” e (8.38)

Aay 1s the attenuation due to V3, and Aa,, is the attenuation due to V.,

Aa,(or Aoy) =T, Aa, = Po LAY, (8.39)
ey

The power carried by the nth mode of guided wave is reduced by e~ (A%+Am)L at the
output end of the modulator. This is the essence of an electro-absorption, EA, modulator.
The performance of the EA modulator is measured by the smallest AV, required to
achieve a given modulation of optical power. In digital applications, it is the total e*“" for
AV, that produces the on/off signal. For analog applications, it is the linear portion of
" /AV,* that is used for transmission of analog signals [10]. Note again that the
electrical circuit representation of the electrodes across a p-i-n junction is a capacitance
in parallel with a junction resistance. Therefore, similar to the phase modulator, the MZ

modulator, and the DC modulator, the frequency response is RC limited.

8.4 The traveling wave modulator

The discussions in Section 8.3 assume that Ay in the device is the same at any given
instant of time. When the wavelength of the rf signal is comparable or shorter than the
length of the electrode, the voltage- and current-induced modulation electric field F is no
longer the same across the device at any instant of time.

Usually the rf voltage is applied to the electrodes at the start of the electrode at z = 0.
The electrode is designed as an electrical transmission line. The rf voltage propagates as
a traveling wave on the electrode with’

Vrf(Z, t) = VUCOS(COmZ‘ — ngﬁ-,mkz) (840)

In a phase modulator, it produces an instantaneous An, that varies locally as

¢ ¥, is adjusted to maximize the linear variation.
7 This assumes that the microwave is a forward-propagating wave without reflection.
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1 .
Angg ,r(z,1) = EAanf[e’(‘“”’t_"fff #k) 1 complex conjugate] (8.41)

In the meantime, the optical wave propagates in the z direction with propagation
wave number n,k. An.4(z,) seen by the photons entering the waveguide in the mth
mode at z=0 is

Aney = Angy cos[@pt — (M — Ny m)kz) = Angy cos(wpt — onkz) (8.42)

where dn = n,, — nz,,. The electric field of the mth mode of the guided wave is:

) —j (Amy]lm” jcos(a)mt—énkz)dz)
E(x,y,z) = Aey(x,y)e "¢ 0 (8.43)

Therefore, the total phase shift Ap of the guided wave produced by the CW traveling
wave rf signal for a distance of L, is

L, . [ SnkL,
o ) sin{ ==

A¢ = Al’leffm J COS(COmt — 5nk)dz = Aneff,m Lp TkLp

o T2

Note that when the microwave equivalent index, n,,, matches the optical effective index
Nefm» then on = 0 and the Ap modulation is a constant at all rf frequencies. In that case,
large Agp can be obtained with large L,. However, Ap is sensitive to Jn at large kL,
When 0nkL,/2 = 1.4, Ag is reduced to 1/+/2 of its maximum value at w = 0.® Therefore,
the bandwidth of traveling wave modulation for a given Jn and L, is given in the
literature to be

cos(wy,t — onkL,) (8.44)

LyAw, = (8.45)

=
The smaller on is, the longer L, that can be used. The longer L,, the smaller
Angy required to yield a given Ag, and the smaller is the required rf modulation voltage.
There is no RC limitation of electrical bandwidth. However, the microwave is also
attenuated as it propagates. The attenuation increases as the rf frequency w,, is
increased.” Thus the microwave attenuation limits further both the effectiveness of
using large L, and the bandwidth of the modulator.

Traveling wave electro-absorption modulators can be analyzed in a similar
manner [10].

8 When onkL,/2 = 1.9, Ag is reduced to »2 of its maximum value at w,, = 0. If we use this criterion to define
bandwidth, we will get a slightly different answer, The bandwidth Aw will depend on how large the
maximum variation of Ay is allowed within the band.

° Typically a,ris proportional to /@ in the microwave transmission line.
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Chapter summary

Besides lasers and detectors, there are switches and modulators. They operate by an
electro-optical change of susceptibility. They can be classified into two categories: the
devices that utilize Ay' and the devices that utilize Ay". In order to discuss them together
systematically, the general effects of Ay’ and Ay" on plane waves and waveguide modes
are discussed first. The various mechanisms that produce Ay' and Ay" are presented next.
The operation of individual active devices using different physical mechanisms is then
analyzed. The electrical and optical performances of these devices are evaluated. At low
frequencies, the bandwidths of these devices are limited by the RC time constants of the
electrical circuit. At high frequencies, traveling wave modulators need to be used.
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Appendix Solution of the scalar wave
equation: Kirchoff’s diffraction integral

The Helmholtz equation plus boundary conditions for TEM waves with time variation
¢ in Eq. (3.4) is:

VU4 KU =0 (A1)

where, k = w/c = 2x/A. 1t is typically solved mathematically using Green’s function.

In the following, we will first present Eq. (A.2), which defines Green's function,
G. Then we will show how a solution of G will let us find U at any given observer
position (X,,Y,,2, ) from U and VU at the boundary. Using Green s function, we obtain
Kirchoff's integral. For known U on a planar boundary, Kirchoff's integral can be
further simplified.

The equation for Green’s function

Green’s function, G, is the solution of the equation,

VZG(an’yZ;XmJ’mZo) + k2 G=-90 (X — Xo,) 7y072720>

= (e r0). 2

Eq. (A.2) is identical to Eq. (A.1) except for the ¢ function. The boundary conditions for G
are the same as for U. ¢ is a unit impulse function that is 0 when x#x,, y#£y,, and z#z,,.
It tends to infinity when (x, ), z) approaches the discontinuity point (x,,,,z,). 0 satisfies the
normalization condition,

JJJ& (X = X0, Y — Yo,z — 2,) dxdydz = 1

-y

Vv

(A3)

where r = xi; + yi, +ziz, ¥y = Xoix + Yol + Zoi; and dv = dxdydz = r*sin 8drddde. Vis
any volume that includes the observation point (x,, v,, z,)-

Finding U from Green’s function, G

From advanced calculus, we learned that,

V- (GVU - UVG) = GV*U — UV*G. (A.4)
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4
X
57\
o1 =
r=Xiy + yiy+ zi, n

51

Io = Xolx + Yoly + Zolz
n

y

Figure A.1  Tllustration of volumes and surfaces to which Green’s theory applies. The volume to which
Green’s theory applies is ¥, which has a surface S. The outward unit vector of Sis n,  is
any point in the x,,z space. The observation point within Vis 7,. For the volume V", V; around 7, is
subtracted from V. ¥, has surface S, and the unit vector # is pointed outward from V.

Applying a volume integral to both sides of the above equation and utilizing Eqgs. (A.2)
and (A.3), we obtain

mv.(GVU — UVG)dv = H(Gﬂ VU~ Un-VG)ds

s
= J”[—szU—HcZUG—i- Ud(r—r,)]dv=U/(r,) (A.5)
Here, V is any closed volume (within the boundary S) enclosing the observation
point r,. n is the unit vector perpendicular to the boundary in the outward
direction, as illustrated in Figure A.1.

Equation (A.5) is an important mathematical result. It shows that, when G is known, U
at the position (x,,y,,z,) can be expressed directly in terms of the values of U and VU on
the boundary S, without solving explicitly the Helmholtz equation (A.1). Eq. (A.5) is
known mathematically as Green’s identity. The key is how to find G.

A general Green’s function, G

A general Green’s function, G' has been derived in many classical optics textbooks
[2]. Ttis:
1 e*jkrul

G=—
A 1y

(A.6)

! There are different Green’s functions, see [1].
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Appendix 221

where 7o) = [r, — 1| = \/(x — %) 4+ (y = yo)* + (z — z,)>. As shown in Figure A.1,
7,1 1s the distance between 7, and 7.

This G can be shown to satisfy Eq. (A.2) in two steps: (1) By direct differentia-
tion, “V>G + k* G” is clearly zero everywhere in any homogeneous medium except at
r=r,. Therefore Eq. (A.2) is satisfied within the volume V" which is ¥ minus the
volume ¥, (with boundary S;) of a small sphere with radius r, enclosing r,in the
limit as r, approaches 0. V7 and §; are also illustrated in Figure A.1. (2) In order
to find out the behavior of G near r,, we note that |G| — o, as r,; — 0. If we
perform the volume integration of the left-hand side of Eq. (A.2) over the volume
Vi, we obtain:

Lim m[v VG + KGldv = ” VG - nds

re—

" S

2n (/2 e*jkh-
:LimJ J [—2} r2sing dfdp = —1 (A7)
=0 Jo —r/2 Anr,

Thus, using this Green’s function, the volume integration of the left-hand side of Eq.
(A.2) yields the same result as the volume integration of the J function. In short, G given
in Eq. (A.6) satisfies Eq. (A.2) for any homogeneous medium.

From Eq. (A.5) and G, we obtain the well-known Kirchoft’s diffraction formula,

U(r,) = ”(GVU — UVG) - nds (A.8)
N

Note that, in this format, we need to know both U and VU on the boundary in order to
calculate its value at 7, inside the boundary.

For many practical applications, only U is known on a planar aperture, followed by a
homogeneous medium with no additional radiation source. In this case, calculation of
U(r,) can be simplified.

Green’s function for known Uin a planar aperture

Let there be an aperture on the planar surface z= 0. A known radiation U is incident on the
aperture Q from z < 0, and the observation point z, is located at z > 0. As a mathematical
approximation to this geometry, we define ¥ 'to be the semi-infinite space atz > 0, bounded
by the surface S. S consists of the plane z = 0 on the left and a large spherical surface with
radius R on the right, as R — oo. Figure A.2 illustrates the hemisphere.

The boundary condition for a sourceless U at z > 0 is given by the radiation condition
at very large R, as R — o [3],

oU
LimR( = +jkU | =0 A9
Lim ( o T ) (A.9)
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222 Appendix

Figure A2 Geometrical configuration of the hemispherical volume for Green’s function, G.
The surfaces to which Green’s function applies consist of 2, which is part of the
xy plane, and a very large hemisphere which has a radius R, connected with X. The
outward normal of the surface X and Q is —i.. The coordinates for the observation point r,
are x,, ¥, and z,.

The radiation condition is essentially a mathematical statement that there is no
incoming wave at very large R. Any U that represents an outgoing wave in the z > 0
space will satisfy Eq. (A.9).

If we do not know the VU term in Eq. (A.8), we need to find a Green’s
function that has G = 0 on the plane boundary (i.e. z = 0). However, we already
know the incident radiation for z < 0. We need only apply Eq. (A.8) to the
hemisphere S for z > 0. We note that any function, F, in the form of e7*/r, will
satisfy [VF + k> F = 0], as long as r is not allowed to approach 0. Thus we can
add such a second term to G given in Eq. (A.6). This satisfies Eq. (A.2) forz >0
as long as r never approaches 0.

To be more specific, let r; be a mirror image of (x,,V,,2,) across the z =0 plane at z < 0.
Let the second term be e /¥t /r;, where r;; is the distance between (x,),z) and ;. Since
our Green’s function will only be used for z, > 0, r;; for this second term will never
approach zero for z > 0. Thus, as long as we seek a solution of U in the space z > 0, Eq.
(A.2) is satisfied for z> 0. However, the difference is that the sum of the two terms is zero
when (x,),z) is on the z = 0 plane.

Let the Green’s function for this configuration be

1 [e/ko gk
4x

G (A.10)

ro1 ril
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Iy = Xoly + yoiy + 2,y
I = Xoix + yoiy_ Z,i,

I I=Xix+ yi, +zi,

Tin

Yo

y

Figure A.3  Illustration of r, the point of observation r, and its image r, in the method of images. For G,
the image plane is the x—y plane.

Here #; is the image of r, across the z = 0 plane. It is located at z < 0, as shown in Figure
A.3. G is zero on the x—y plane at z = 0. When this G is applied to Green’s identity, Eq.
(A.8), we obtain

U(rg):”U(x,y,z:O)%dxdy (A.11)

x

Here X refers to the x—y plane at z = 0. Because of the radiation condition expressed in
Eq. (A.9), the value of the surface integration over the very large semi-sphere enclosing
the z > 0 volume (with R—0) is 0.

For most applications, U # 0 only in a small sub-area of X, e.g. the radiation U is
incident on an opaque screen that has a limited open aperture Q, or if the incident
radiation has only a limited beam size X. In that case, —0 G1/0z at z, >> 1 can be
simplified. We obtain

e*jk?‘,,]
—VG -i; = 2cosa 1

(k) (A12)

TTro1

o is illustrated in Figure A.2. Therefore, the simplified expression for U is:

i —Jkro1
U(r_a):JEJJUer1 cos a dxdy (A.13)
Q

This result is also known as Huygens’ principle in classical optics.

Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:50:46, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781139871419.010


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.010
https://www.cambridge.org/core

224 Appendix

References

[1] William S. C. Chang, Principles of Lasers and Optics, Cambridge University Press,
2005.

[2] M. Wolf and M. Born, Principles of Optics, New York, Pergamon Press, 1959.

[3] J. A. Stratton, Electromagnetic Theory, New York, McGraw Hill, 1941.

Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 12 Nov 2017 at 04:50:46, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781139871419.010


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139871419.010
https://www.cambridge.org/core

	9781107074903
	a
	d
	1
	3
	34
	53
	73
	109
	147
	176
	196
	219

