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Materials and Methods 

Materials 

All the chemicals were used as received, including PbI2 (99%, Sigma–Aldrich), CH3NH3I 

(> 98%, Tokyo Chemical Industry Co., Japan), Titanium isopropoxide (99.999%, Sigma–

Aldrich), niobium ethoxide (99.95%, Sigma–Aldrich), nickel acetylacetonate (95%, 

Sigma–Aldrich), PC61BM (99.5%, Lumtec Co., Taiwan). Magnesium acetatetetrahydrate 

(99%), lithium acetate (99%) and super dehydrated solvents of dimethylsulfoxide 

(DMSO), toluene, chlorobenzol, acetonitrile, methanol and ethanol, were all purchased 

from Wako Co., Japan. 

Thin Film and Solar Cell Fabrication 

FTO glasses (Nippon Sheet Glass Co., Japan) with a sheet resistance of 8–10 ohm
−2

 and

an optical transmission of greater than 80% in the visible range were used. After 

thoroughly washing with cleaning fluid, deionized water, ethanol and acetone, the clean 

FTO glasses were placed on a hotplate at the temperature of 500 °C. 30 ml of an 

acetonitrile/ethanol (with 95: 5 volume ratio) solution of nickel acetylacetonate (or with 

15 mol% magnesium acetatetetrahydrate and 5 mol% lithium acetate) was sprayed within 

10 min by an air nozzle (with 0.2 mm caliber) onto the hot FTO glasses at a distance of 

about 20 cm above. The total metal ion concentration was set at 0.02 mol L
−1

. After 
spraying, the film was further treated at 500 °C for another 20 min to promote NiO 

crystallization. NiO film thickness could be tuned from 10 to 40 nm by varying the 

solution volume from 15 to 60 ml. After cooling, the NiO coated FTO glasses were 

transferred quickly to the N2 filled glove box for MAPbI3 perovskite layer deposition. 

The method for perovskite layer deposition was modified slightly from previous 

report(6):  first, a 80 μl 1.45 M DMSO solution of PbI2/MAI mixture was spread onto 

70 °C FTO glass (2.4× 2.4 cm
2
 in size); then, the spin–coater was started at a rotation 

speed of 1000 rpm for 10 seconds and 5000 rpm for another 30 seconds. 800 μl toluene 

was drop–casted quickly 10 seconds after the 5000 rpm spin–coating started. The 

perovskite films were then heated at 100 °C on a hotplate for 10 min. After cooling, a 

chlorobenzol solution of PCBM (20 mg ml
−1

) was spin–coated on top of the perovskite 
film at the rotation speed of 1000 rpm for 30 seconds. Subsequently, 100 μl TiOx 

precursor solution, containing titanium isopropoxide (or with 5 mol% niobium ethoxide) 

diluted in methanol with volume ratio of 1/200–1/600, was drop–casted slowly onto the 

surface of PCBM layer at the rotation speed of 6000 rpm. After the film was dried at 

70 °C for 10 minutes, 150 μl H2O/methanol mixed solution (with 1: 99 volume ratio) was 

drop–casted slowly at the rotation speed of 6000 rpm for 30 seconds, to promote 

hydrolysis of previously deposited titanium isopropoxide. The film was then dried at 

70 °C for 30 min to promote condensation of titanium hydroxide, leading to TiOx 

formation. At last, one batch of films were transferred to the evaporator chamber, 100 nm 

thick Ag contacts were deposited under high vacuum (< 3×10
–4

 Pa). For solar cell sealing, 
a cavity glass with UV glue on the edges was sandwiched with the front FTO glass with 

the active films in–between. After exposure to 300 W UV light for 15 seconds, the 

sealing process was terminated. All of these processes were done in glove box. 
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Characterizations 

SEM images were obtained by using a JSM–6500F field–emission scanning electron 

microscope. TEM observations were carried out on a JEM–ARM200F transmission 

electron microscope. For cross sectional observation of NiO films, the samples were 

prepared by using a FIB cutting technique. Electric conductivity of the charge extraction 

films (NiO based films on FTO glass, and TiOx based films on PCBM covered ITO glass) 

was investigated by using the contact–current mode of a scanning probe microscope 

(SPM; JEOL JSPM–5200). The XPS and UPS measurements were performed in a Kratos 

Ultra Spectrometer (AXIS–ULTRA DLD–600W) using monochromatized Al Kα X–ray 

photons (hv = 1486.6 eV for XPS) and a HeI (21.2 eV for UPS) discharge lamp. A 

Ecopia HMS 5500 Hall system was applied to measure the room–temperature 

conductivity and Hall coefficient (RH) by using the van der Pauw method with a 

magnetic field strength of 0.550 T, and the carrier concentration (n) was calculated 

according to the equations: |RH| = 1/ne, where e is the electrical charge of the electron. 

The UV–Vis spectra were measured on a Shimadzu UV/Vis 3600 spectrophotometer 

with an integrating sphere. The thickness of NiO based films was observed and measured 

by SEM. The thickness of TiOx based films (on top of PCBM covered ITO glasses) was 

measured by a Surfcom 1400A surface profiler (Tokyo Seimitsu Co. Ltd.) deducting the 

thickness of PCBM underlayers.  

The current–voltage characteristics were measured using a black metal mask with an 

aperture area of 0.09 or 1.02 cm
2
 under standard air mass 1.5 sunlight (100 mW cm

−2
,

WXS–155S–10: Wacom Denso Co., Japan). Monochromatic incident photon–to–current 

conversion efficiency (IPCE) spectra were measured with a monochromatic incident light 

of 1 × 10
16

 photons cm
−2

 in director current mode (CEP–2000BX, Bunko–Keiki). The

light soaking stability was tested in a solar cell light resistance test system (Model BIR–

50, Bunkoh–Keiki Co., LTD) equipped with a Class AAA solar simulator; <420 nm UV 

light was cut off with an optical filter. The time–resolved photoluminescence 

characterizations were done on an Edinburg FLS 920 (Edinburg90 Co. LTD), and the 

excitation was provided by a picosecond pulsed light emitting diode (EPLED-445) at the 

wavelength of 445 nm with pulse width of 95.3 ps. Transient photovoltage/photocurrent 

decay measurements were done on a home–made system. A white light bias on the 

sample was generated from an array of diodes. Red light pulse diodes (0.05 s square 

pulse width, 100 ns rise and fall time) controlled by a fast solid–state switch were used as 

the perturbation source. The transient photocurrent was measured using 20 ohm external 

series resistance to operate the device in short circuit. Similarly, transient photovoltage 

was measured using 1 MΩ external series resistance to operate the device in open circuit. 

The voltage dynamics on the resistors were recorded on a digital oscilloscope (Tektronix 

MDO3032). The perturbation red light source was set to a suitably low level to the white 

diodes array with light intensity equivalent to 100 mW cm
–2

 of a standard solar simulator.
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Fig. S1. 

(A) UPS and (B) UV–Vis spectra of the NiO based charge extraction layers with and 

without doping. NiMgLiO, NiMgO and NiLiO represent Mg0.15Li0.05Ni0.80O, 

Mg0.15Ni0.85O and Li0.05Ni0.95O, respectively. (C) UPS and (D) UV–Vis spectra of the 

TiOx based charge extraction layers with and without doping. (E) Summary on the 

calculated band edge positions of the charge extraction layers with respect to MAPbI3 

and PCBM.  

The work function, or Fermi level (EF) of the charge carrier extraction layers are 

obtained by subtracting the binding energies of the secondary electron cutoffs (in the 

range of 16–18 eV) from the excitation energy (21.2 eV) of HeI UPS spectra. The energy 
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Ni1–xLixO also has very high doping tolerance. The NiLiO alloy with “x” value up to 

0.25 has been reported without crystal structure change (48). Suitable Li doping could 

greatly enhance the conductivity of NiO, allowing Ni1–xLixO to be a candidate for a p–

type TCO material. The optimal “x” value for the highest conductivity as reported in the 

literatures is around 3–10% (49). In this work, x = 5% was selected as the target 

composition, in order to prevent too much change on EVB and Eg.  

5 

difference between the valance band maximum (EVB) and EF was derived from the low 

binding energy tails (in the range below 4 eV). Conduction band (ECB) edge values were 

obtained by adding the optical band gaps (Eg) to EVB. 

Both NiO and MgO exhibit rock–salt structures with a small (0.8%) lattice mismatch. 

The lattice constant for NiO and MgO is 4.177 Å and 4.213 Å, respectively. Therefore, 

solid solution of NixMg1−xO (x = 0–1) could be obtained as reported in the literatures. At 

the same time, according to Vegard's law, the band gaps of the NixMg1−xO alloys could 

be continuously tuned by varying “x”(38). The value of Ni0.85Mg0.15O determined from 

this work with a wider band gap and about 0.15 eV deeper valance band are consistent 

with the literature (37). 
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Fig. S2 

(A–B) Top view and (C–D) cross–sectional view of SEM images of MAPbI3 film on 

FTO glass. The average crystal size is about 300 nm and average film thickness is about 

300 nm. Therefore, the number of grain boundaries within the cross–sectional charge 

transport paths is small. (E–F) cross–section view SEM images of MAPbI3 films coated 

with PCBM layer. The average thickness of PCBM is 80 nm. The surface roughness 

becomes lower after PCBM coating.  
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Fig. S3 

Wide survey XPS spectra of (A) NiO film, (B) NiMgLiO film, with atomic ratios of Ni: 

Mg: Li = 81.2: 14.5: 4.3 calculated by the relative peak area/ sensitivity factor from the 

narrow scan data in (C); Wide survey XPS spectra of (D) TiOx film, (E) Ti(Nb)Ox, with 

atomic ratio of Ti: Nb = 94.7: 5.3 calculated by the relative peak area/ sensitivity factor 

from the narrow scan data in (F). 
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Fig. S4 

Cross–section view of (A–B) TEM images and (C–D) backscattered electron (SE(T)) 

SEM images of 20 nm thick NiO films on FTO glasses; the cross sectional samples were 

prepared by the special FIB cutting technique; from high resolution TEM image in (B), 

the crystalline lattice owing to NiO could be identified; the apparent contrast between 

FTO and NiO coatings could be clearly identified from the SEM images, demonstrating a 

highly compact and uniform overage of NiO on FTO. (E–F) top view SEM images of 

Ti(Nb)Ox coated MAPbI3/PCBM films on FTO glasses. The insets in (F) are EDX 

mapping results at the same SEM observed region, reflecting the uniform coating 

morphology and elemental distribution of the Ti(Nb)Ox layer.  

(C) (D)

NiO

FTO

Ti KNb L

(E) (F)



10 

Fig. S5 

SEM–EDX analysis results of a complete solar cell, demonstrating the layer by layer 

structure and NiMgLiO/Ti(Nb)Ox based charge carrier extraction layers that are present 

in the correct locations. (A) SEM image for EDX analysis; (B) EDX linear–scan analysis 

result: the peak of Pb is sandwiched between Ni and Ti, and the peak of Ti is sandwiched 

between C and Ag; (C) the overlaid EDX mapping results of Sn (from FTO), Ni (from 

NiMgLiO), Pb (from perovskite) and Ti (from Ti(Nb)Ox) elements. 

(A) (B)

(C)

glass Sn Pb
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Fig. S6 

Deconvolution of (A) Ni 2p3/2 and (B) O1s XPS spectra of NiO/NiMgLiO films, and (C) 

Ti 2p and (D) O 1s XPS spectra of TiOx/Ti(Nb)Ox films. The integrated areas of the fitted 

peaks are denoted in the corresponding brackets showing that the relative content of 

Ni
3+

/Ni
2+

 and Ti
3+

/Ti
4+

 are increased upon doping.
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Fig. S7 

Electrical measurement to check the pin–hole free morphology of the charge extraction 

layers. (A) The design patterns for the measurement: for NiO films, a high work function 

Au contact was used; while for TiOx films, the low work function Al contact was used, a 

PCBM under–layer was used to simulate the situation in real solar cells. (B) The I–V 

curves of different p–type film samples obtained by linear sweep voltammetry. (C) The 

calculated resistances of NiO films with different thicknesses from the slopes of the I–V 

curves for the parallel 4 samples on one substrate. (D) The calculated resistances of TiOx 

films with different thicknesses from the slopes of the I–V curves measured based on the 

design in (A). 

The increased resistance in comparison to bare FTO or bare PCBM are associated 

with charge extraction layers with different thickness. For the NiO–10 nm and TiOx–5nm 

films, their increased resistances are not proportional to their thickness, which is due to 

the presence of many pinholes inside the films leading to many short–cuts for charge 

leakage. This numerically electrical method is effective to judge the pin–hole density 

inside the blocking layers; the measurement results are consistent with the trend of the 

corresponding solar cells’ J–V curves. 
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Fig. S8 

Statistics on performance variations of the solar cells (aperture area: 0.09 cm
2
) based on

the charge extraction layers with controlled thicknesses (20 cells for each condition). (A) 

The undoped NiO layer thickness = 0, 10, 20, 40 nm, with fixed Ti(Nb)Ox layer thickness 

of 10 nm; (B) The undoped TiOx layer thickness = 0, 5, 10, 20, 30 nm with fixed 

NiMgLiO layer thickness of 20 nm. 
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Fig. S9 

Typical J–V curves of the solar cells (0.09 cm
2
) based on the charge carrier extraction

layers with controlled thickness. (A) The thicknesses of TiOx films varied from 0, 5, 10, 

20 to 30 nm and Ti(Nb)Ox films varied from 10, 20 to 30 nm, with fixed 20 nm NiMgLiO. 

The largely decreased current at the high voltage range of 0.7–1.0 V is due to poor 

electron extraction by the TiOx layer: for 5 nm TiOx film, the decreased current is due to 

insufficient coverage; while for TiOx films thicker than 10 nm, largely increased bulk 

resistance of TiOx becomes a hindering factor for electron transport; with the same 

thickness of 10, 20 and 30 nm, the doped Ti(Nb)Ox films performed better than the 

undoped TiOx films due to improved electron extraction, meanwhile the thickness 

increase of Ti(Nb)Ox films resulted in smaller performance decline. (B) The thicknesses 
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of NiO films varied from 0, 10, 20 to 40 nm and NiMgLiO film of 20 nm, with fixed 10 

nm Ti(Nb)Ox. The largely increased currents at the bias region NiO–0 nm and NiO–10 

nm samples are due to the short–cuts between perovskite and FTO, which is consistent 

with the TiO2 based PSC with porous blocking layer reported in (50).  
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Fig. S10 

Normalized IPCE spectra of the solar cells based on NiO charge carrier extraction layers 

with different thicknesses. Optical loss in the short wavelength region (<500 nm) 

increases as the NiO film thickness increasing, leading to lower IPCE in that region.  
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Fig. S11 

(A-B) The J–V curves of the PSC (0.09 cm
2
) with optimal charge extraction layers,

obtained at different scan directions and step widths (5 mV–70 mV), with fixed delay 

time of 50 ms. (B) is the enlargement of (A) in bias region of 0.9–1.3 V. (C) A histogram 

comparing the difference in the PCEs obtained from scanning in the forward and reverse 

bias directions at the step width of 10 mV, based on a set of data measured with 40 

different devices made from several batches. (D) The stead state Voc, Jsc and Pmax outputs 

of the solar cell in (A). The stable Pmax obtained at 0.95 V bias equals to 18.28% PCE of 

the solar cell, which is consistent with the J–V curves at small step widths (5–10 mV). (E) 

The stepwise J–V curves of the controlled solar cells with different interfacial conditions 

tested on an electrochemical workstation, with two opposite scan directions, step width = 

50 mV and delay time = 5000 ms. The J–V hysteresis phenomenon will be enlarged at 

this scan condition. This result illustrates the effect of the charge carrier extraction layer 

composition on the hysteresis behavior of the PSC. 
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Fig. S12 

A histogram comparing the difference in the PCEs of large area (1.02 cm
2
) solar cells 

obtained from scanning in the forward and reverse bias directions, at the step width of 10 

mV and delay time of 50 ms, based on a set of data measured with 30 different devices 

made from several batches. The average PCEs obtained from the two opposite scan 

directions are 15.97% and 16.36%, respectively. 
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Fig. S13 

The certified results from AIST with calibrated cell size of 1.017 cm
2
.
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Fig. S14 

Comparison of the perovskite layer degradation speeds (by monitoring color change from 

deep brown to light yellow and even transparent) without and with PCBM, Ti(Nb)Ox 

protection layers. The films were kept in the ambient air and room light condition.  

Bare perovskite film decomposed evidently after 24 hours, while PCBM and 

PCBM/Ti(Nb)Ox covered perovskite films require at least two weeks to show first signs 

of decomposition. After 2–3 weeks, the different decomposition speeds between PCBM 

and PCBM/Ti(Nb)Ox covered perovskite films are apparent from their color difference. 
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Fig. S15 

A batch of 10 large cells (1.02 cm
2
) with good sealing show similar PCEs degradation by

<10%, after exposing to full sunlight from a solar simulator for 1000 hrs at short–circuit 

condition: (A) the normalized PCEs, (B) a histogram comparing the difference in the 

PCEs before and after 1000 hrs light soaking. 

0 100 200 300 400 500 600 700 800 900 1000
0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
o

rm
a

li
z
e

d
 P

C
E

Time (hours)

(A)

14.0 14.5 15.0 15.5 16.0 16.5
0

1

2

3

4

C
o

u
n

ts

PCE (%)

initial PCE

after 1000 hrs light soaking

16.05%

14.64%

(B)



24 

Table S1. 

Summary on the landmark progresses on efficiency evolution of perovskite solar cells, 

the reported large size solar cells are included for better comparison to the present work.  

Cell Structure PCE (%) 
Area 

(cm
2
) 

Hysteresis 

(Yes/No) 

Certification 

(Yes/No) 
Reference 

c-TiO2/meso-Al2O3/MAPbI3/Spiro-

OMeTAD 
10.9 0.09 Yes No Science, 2012, 338, 

643 

c-TiO2/meso-TiO2/MAPbI3/Spiro-

OMeTAD 
14.14 0.209 Not stated Yes, from

Newport 

Nature, 2013, 499, 

316 

c-TiO2/MAPbI3–xClx/Spiro-

OMeTAD 
15.4 0.09 Yes No 

Nature, 2013, 501, 

395 

c-TiO2/meso-TiO2/MAPb(I1-

xBrx)3/PTAA 
16.2 0.16 No Yes, from 

Newport 

Nat. Mater., 2014, 

13, 897 

c-Y-TiO2/MAPbI3–xClx/Spiro-

OMeTAD 
19.3 0.1 Yes No Science, 2014, 345, 

524 

c-TiO2/meso-TiO2/meso-ZrO2/(5-

AVA)x(MA)1-xPbI3 /Carbon 
12.8 0.07  No Yes, from 

Newport 

Science, 2014, 345, 

295 

c-TiO2/meso-TiO2/(FAPbI3)1-

x(MAPbBr3)x/PTAA 
17.9 0. 09 No Yes, from 

Newport 

Nature, 2015, 517, 

476 

c-TiO2/meso-TiO2/(FAPbI3)1-

x(MAPbBr3)x/PTAA 
20.1 0.09 No Yes, from 

Newport 

Science, 2015, 348, 

1234 

c-TiO2/meso-TiO2/MAPbI3/Spiro-

OMeTAD 
19.7 0.125 Not stated No 

JACS, 2015, 137, 

869 

PEDOT: PSS/MAPbI3–xClx/PCBM 18.0 0.035 No No Science, 2015, 347, 

522 

c-NiOx/MAPbI3/PCBM/LiF 17.3 0.04 Not stated No Adv. Mater., 2015, 

27, 4013 

c-TiO2/meso-TiO2/MAPbI3/Spiro-

OMeTAD 
12.6 1 Not stated No 

Nano Energy, 2015, 

15, 670 

c-TiO2/meso-TiO2/MAPbI3/Spiro-

OMeTAD 

13.3 0.1 
Not stated No J. Power. S., 2015, 

277, 286 
10.4 10.1 

4.3 100 

c-TiO2/meso-TiO2/MAPbI3/Spiro-

OMeTAD 
10.5 10.8 Not stated No ACS Nano, 2015, 9, 

8420 

PEDOT: PSS/MAPbI3/PCBM/C60 10.9 0.95 No No Adv. Energy Mater., 

2014, 4, 1400345 

NiMgLiO/MAPbI3/PCBM/Ti(Nb)Ox 15.0 1.017 No Yes, from 

AIST 
The present work 
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Table S2. 

Photovoltaic performance metrics of the typical devices employing various combinations 

of charge carrier extraction layers with their J–V curves shown in Fig. 3A. The Rsh and Rs 

are obtained by linear fitting of the slopes for the J–V curves near the short–circuit 

condition and open–circuit condition, respectively.  

Interfacial Conditions Jsc(mA cm
–2

) Voc (V) FF PCE (%) Rsh (Ohm cm
2
) Rs(Ohm cm

2
)

NiO/TiOx 18.7 1.036 0.640 12.4 1978 7.38 

NiO/Ti(Nb)Ox 19.2 1.047 0.731 14.7 3597 5.43 

NiMgLiO/TiOx 20.0 1.074 0.768 16.5 2237 3.59 

NiMgLiO/Ti(Nb)Ox 20.4 1.083 0.827 18.3 5605 2.45 
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Table S3. 

Efficiency parameters of the perovskite solar cell from J–V curves obtained at difference 

scan conditions. The corresponding J–V curves are shown in Fig. S11A. 

Scan Direction Step Width (mV) Jsc (mA cm
–2

) Voc (V) FF PCE (%) 

From Voc to Isc 70 20.429 1.273 0.859 22.35 

20 20.427 1.167 0.836 19.92 

10 20.401 1.103 0.825 18.56 

5 20.387 1.096 0.823 18.40 

From Isc to Voc 70 20.399 1.080 0.823 18.14 

20 20.431 1.084 0.823 18.23 

10 20.411 1.083 0.827 18.29 

5 20.418 1.085 0.830 18.39 
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