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Electronic hopping is commonly treated as occurring between localized states that are so widely
separated that the motion is limited by the electronic transfer energy linking the sites. Then, the jump
rate is usually assumed to fall exponentially with increasing intersite separation. However, this ap-
proach is inappropriate in many situations where the separation between the hopping sites is small
enough that electronic carriers adiabatically follow the atomic motion. For adiabatic motion, the jump
rates are essentially independent of intersite separation. Here the low-temperature ac conductivity for
adiabatic small-polaronic hopping between close pairs of sites is calculated presuming a distribution of
local site energies. Low-temperature relaxation of each such carrier is assumed to occur primarily
through the emission of a very-low-energy acoustic phonon. For small-polaronic hops, low-temperature
one-phonon emission rates are extremely slow. Dispersion of the transition rates arises from the depen-
dence of the relaxation rates on the energy separations between the sites. In the low-temperature limit,
the polarization conductivity is proportional to both temperature and frequency. Above this low-
temperature limit, the severity of this temperature dependence increases with increasing temperature. In
this higher-temperature regime, the temperature dependence of the conductivity also decreases as the
frequency is increased. These results are in accord with observations in many systems with hopping con-
duction, including those for which there is explicit evidence of adiabatic small-polaronic hopping (e.g.,
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p-type MnO, boron carbides, and many transition-metal-oxide glasses).

I. INTRODUCTION

Phonon-assisted electronic hops may be divided into
four categories. These four categories result from the
two pairs of complementary regimes that define the elec-
tronic and vibrational dynamics associated with a jump.
First, a hop is either small-polaronic or nonpolaronic.
Second, a hop is either adiabatic or nonadiabatic. Taken
together these two dichotomous situations define four
distinct types of electronic hops: adiabatic or nonadiabat-
ic small-polaronic hops as well as adiabatic or nonadia-
batic nonpolaronic hops.

A small-polaronic hop is one that involves at least one
small-polaronic state, an electronic state with a strong
net electron-lattice coupling. Since an electronic state is
generally strongly coupled only to vibrational modes with
wavelengths that exceed the electronic state’s spatial ex-
tent,! 3 a severely localized electronic state has a strong
net electron-lattice coupling strength. By contrast a non-
polaronic hop involves only nonpolaronic states, states
with weak net electron-lattice coupling strengths. Non-
polaronic hops exclusively involve large-radius electronic
states, states that encompass very many atoms. The
atomic transition-metal-ion states between which hop-
ping occurs in transition-metal-oxide glasses are small po-
laronic.* However, the large-radius shallow donors and
acceptors in silicon and germanium are nonpolaronic. '3

The temperature dependences of the hopping mobility
at high enough temperatures distinguish small-polaronic
hops from nonpolaronic hops. At temperatures above a
fraction (=1) of the characteristic phonon temperature,
small-polaronic hops predominantly involve the absorp-
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tion and emission of very many phonons.>*> Small-
polaronic hopping yields thermally activated mobilities
with activation energies that typically lie between 0.1 and
1 eV. However, nonpolaronic hops, dominated by the ab-
sorption or emission of a single phonon, have jump rates
that only increase linearly with temperature in this tem-
perature regime."”? In other words, the “differential ac-
tivation energy” associated with nonpolaronic hopping
rises to a value in this temperature regime that is only the
thermal energy kg T, where kj is the Boltzamnn constant
and T is the temperature. Thus, the temperature depen-
dence associated with the hopping mobility, at say room
temperature, indicates whether the hopping is small pola-
ronic or nonpolaronic. With this criterion, hopping ob-
served above cryogenic temperatures is typically small-
polaronic hopping.5 8

As the temperature is lowered below this “semiclassi-
cal” thermally activated regime, the temperature depen-
dence of a small-polaronic jump rate becomes progres-
sively milder.?> This “multiphonon freeze-out”
phenomenon provides a non-Arrhenius temperature
dependence that is qualitatively similar to that often as-
cribed to variable-range hopping.” Generally, the freezing
out of multiphonon processes and the percolative aspects
of hopping in a disordered material act in tandem and
produce similar effects.” Frequently, the temperature
dependence of the dc conductivity is nearly independent
of changes that should affect percolative aspects of hop-
ping (e.g., altered disorder or dimensionality).'® One then
infers that the multiphonon-freeze-out phenomenon is
the dominant effect at the temperatures where this behav-
ior is observed.!!

Adiabatic hops occur between sites between which the
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electronic transfer energy is sufficiently large that the
electron carrier  can always follow atomic
motions.*> 7812714 Typically for small-polaron hops the
electronic transfer energies required for adiabaticity must
only exceed a characteristic phonon energy.> !> Nonadia-
batic hops occur between sites for which the electronic
transfer energies are much smaller. Thus, nonadiabatic
hops must usually transcend large intersite distances.
Several methods permit distinguishing adiabatic from
nonadiabatic small-polaronic hopping. Consider small-
polaronic hopping at “high temperatures” (> phonon
temperature/3), where the mobility jg>» 71214

Hae=1(qVphonon? > /kg Texp( —E , /kgT) P . (1)

In Eq. (1), g is the carrier’s charge, vpyonon 1S the charac-
teristic phonon frequency, r is the characteristic intersite
jump distance, E , is the mobility’s activation energy, and
P is the probability that the charge carrier will follow the
atomic motion so as to produce a hop. For adiabatic
jumps, P=1. However, for nonadiabatic hopping P <<1.
As illustrated in Fig. 1, hopping passes from adiabatic to
nonadiabatic as the intersite separation is increased.
Since the factor qvphononrz/kﬂ T is typically 0.1-1.0
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FIG. 1. P, the probability of an electronic hop given a coin-
cidence event, is sketched against the ratio of the intersite sepa-
ration, r, to the characteristic radii of the two sites involved in a
hop, a. For short hops the electron adiabatically follows the
atomic motion resulting in P becoming nearly independent of .
For long hops the electronic hopping is nonadiabatic as the
electron tunnels too slowly to adiabatically follow the atomic
motion. P then depends strongly on r.

cm?®/Vs,%” preexponential factors of the mobility Eq. (1)
that are measured to be about 0.1-1.0 cm?/V's imply
that P=1. That is, in these instances, adiabatic hopping
is indicated. Alternatively, values of preexponential fac-
tors that are much smaller than 0.1-1.0 cm?/V's imply
nonadiabatic hopping. A second means of determining
whether hopping is adiabatic or nonadiabatic is to deter-
mine whether there is a strong pressure dependence of
the preexponential factor of the mobility. The only very
strong pressure dependence of the preexponential factor
is that of the factor P when the hopping is nonadiabatic,
i.e., when P <<1. Finally, for hopping between dopants
the absence or presence of a strong dependence of P on
the average intersite separation indicates adiabatic or
nonadiabatic hopping, respectively.

These tests of adiabaticity confirm that adiabatic hop-
ping typically predominates. For example, measurements
of the conductivity and Hall mobility in boron carbides
and in MnO imply that the hopping is adiabatic since P is
estimated to be close to unity.'>'® Evidence of adiabatic
hopping in boron carbides also comes from the negligible
dependence of P on hydrostatic pressure. This very weak
pressure dependence is inferred from the pressure depen-
dence of the dc conductivity.!” The weak pressure depen-
dence of the transient carrier mobility of some molecular
systems also indicates adiabatic hopping.'® In some
molecularly doped polymers, analysis of the dependence
of the transient mobility on the average interdopant sepa-
ration implies adiabatic hopping for average interdopant
separations below 35 A." In boron carbides, adiabatic
hopping is also implied by the jump rate being indepen-
dent of the average separation between the presumed
hopping sites, icosahedral carbon atoms.?*?!

This paper addresses the low-temperature ac adiabatic
hopping conductivity in disordered systems. In disor-
dered hopping systems the relatively facile motion of car-
riers within ‘‘polarization centers” provides a source of
ac conductivity.*?72* Centers that polarize in response
to an applied electric field with rates comparable to that
of the applied frequency w contribute to the ac conduc-
tivity at that frequency.“‘zz*24 In this sense the ac con-
ductivity measures the density of polarization centers
within which carriers respond at a given frequency.

At low temperatures the polarization occurs predom-
inantly via hops that require only (temperature-
independent) spontaneous emission of phonons.**' By
contrast, the low-temperature dc conductivity is deter-
mined by “difficult” hops that require the absorption of
vibrational energy to facilitate motion between regions of
easy motion. Such hops become progressively slower as
the temperature is reduced. For this reason, the ac con-
ductivity rises above the dc conductivity when the tem-
perature is low enough. Thus, the ac conductivity is ob-
served at low temperatures.

Despite the hopping within polarization being faster
than that which limits the dc conductivity, at the low fre-
quencies of such measurements ( < 10° Hz) the relaxation
rates for the polarization centers are only ~w.*?*~2* To
obtain such small relaxation rates, the predominant hops
within polarization centers must be very slow. Such slow
adiabatic hops can occur if the energy differences be-
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tween the hopping sites of the polarization center are
very small. In particular, low-temperature rates of
small-polaronic hops in which few phonons are emitted
become extremely small because of their suppression by
the small-polaron factor exp(—2S), with S >>1, in con-
ventional small-polaron notation.>%%710:13

Thus, the ac conductivity for adiabatic small-polaronic
hopping motion is ascribed to polarization centers
formed by charged carriers that move between nearly de-
generate localized states. Because sites that are especially
close to one another share a common environment, such
pairs are especially likely to be nearly degenerate with
one another. Figure 2 illustrates polarization centers
formed by pairs of sites that occur among a random dis-
tribution of localized states. These pairs of sites are con-
sidered two-site polarization centers, since the energies of
the two sites of these polarization centers are closer to
one another than are those of the sites that limit the dc
transport. That is, dc transport requires hopping away
from these polarization centers. As illustrated in the
lower portion of Fig. 2, such hops require the absorption
of relatively large amounts of energy. Thus, in this
scenario, as the temperature is lowered, phonon absorb-
ing hops are suppressed, freezing out the dc transport.
However, since the ac conductivity is not limited by
phonon-absorption processes, it survives.

In Sec. II, the contribution to the ac polarization con-
ductivity of a carrier that hops between the two sites of a
two-site polarization center is calculated. In Sec. III, a
formal expression is found for the net ac conductivity
arising from the adiabatic hopping of polarons among
sites with a distribution of energy levels. The relaxation
rate for low-temperature acoustic-phonon-assisted hop-

FIG. 2. In a two two-site polarization centers among a ran-
dom distribution of sites, depicted as solid dots, are highlighted
by being enclosed within circles. In b the energy levels of the
sites of these two centers and of an intermediate (high-energy)
site are shown. The horizontal line depicts the chemical poten-
tial u. The dashed arrows indicate that dc transport requires
hopping to an intermediate site with higher energy.
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ping between pairs of states is determined in Sec. IV. The
calculation is completed in Sec. V when the rate derived
in Sec. IV is combined with the formal expression found
in Sec. III. The calculated ac conductivity rises sub-
linearly with applied frequency and rises with an increas-
ingly strong temperature dependence as the temperature
is raised. These behaviors are similar to those measured
in very many systems, including those in which adiabatic
small-polaronic hopping has been firmly established.
Some examples of systems in which the ac conductivity
measured at low temperatures is similar to that calculat-
ed here are the transition-metal-oxide glasses and the bo-
ron carbides. The physical arguments and results are
summarized in Sec. VI.

II. MODEL: A TWO-SITE POLARIZATION CENTER

Here, the ac conductivity is modeled as arising from
polarization centers comprising two sites between which
a carrier adiabatically transfers in response to an ac field.
The two-site picture should give at least a qualitative ac-
count of the effect of polarization centers on the ac con-
ductivity.

The two sites that share the single carrier are denoted
as sites 1 and 2. The local ground-state energies associat-
ed with a small polaron occupying either of these sites are
€, and &,, respectively. With the polaronic transfer ener-
gy associated with moving a small polaron between the
two sites being denoted as 7,, the two eigenvalues of the
eigenstates of the pair are (g,+¢,)/2+{[(g;—¢;)/2]?
+tp2]” 2, For adiabatic polaron hopping t, is indepen-
dent of the intersite separation. Its adiabatic value is
=~V EyhVhonon/ T €xp(—S).>%

In terms of the average energy of the pair
e=(g;+¢,)/2 and the energy difference between the two
sites A=g,—¢,, the eigenvalues of the pair are €+6§/2,
where 8/25{[(51—52)/2]2+t;'}1/2. The occupation
probabilities of these two states p, and p, are also denot-
ed by the subscripts 1 and 2, since these state occupation
probabilities correspond to the site occupation probabili-
ties in the limit of £,—0. The master equation for the
rate of change of p, and p, is

ap,(2)/3t=p,(R(2—1)—p,(1)R(1—2)
=R(2—>1)—p,(D[R(1>2)+R(2—>1)], (2

where R(2—1) and R(1—2) are the rates for transitions
between states 1 and 2. The conservation of probability
condition p,+p,=1 has been used in obtaining the
second equality of Eq. (2). This differential equation is
readily solved to yield the relaxation from an initial value
P1(0) to the equilibrium value p,( o ):

p1()=p (= )+[p(0)—p,()]exp(—t/T), (3)
where
1/7=R(1-2)+R(2—1), 4)

and the condition of detailed balance in equilibrium
P1(©)R(1—-2)=p,( )R(2—1) has been used.
To calculate the frequency-dependent conductivity,



9422

consider the turning on of an electric field parallel to the
two sites of the pair at # =0. The imposition of the elec-
tric field E alters the energy difference between sites 1
and 2 from A (=¢g,—¢;) to A+gER, where R is the sepa-
ration between sites 1 and 2. The imposition of the small
electric field shifts the equilibrium occupation probability
for the carrier occupying site 1 from its value without the
field (at # =0) to that with the field (at t = )

p1(0)—p (0 )=—(3p,/035)(386/9A)gER
=sech’(88/4)(A/8)BgER /8 , (5)
where
p1=1/[exp(Bd/2)+1] . (6)

Here B is 1/kpT with kp representing the Boltzmann
constant and T representing the absolute temperature.

The polarization current density for motion of a carrier
between a pair of sites in the volume V after the field is
applied at t =0 is

J(t)=—(gR /V)3dp,(t) /0t
=(gR /V1)[p,(0)—p,(c0)]exp(—t/7)
=E(Bq*R*/8VT)(|A] /8)sech®(38 /4)exp(—1t /7T) .
(7)

Then, taking the Fourier transform of both the current
and the electric field, the real part of the polarization
conductivity from a pair of sites is found to be

O pairl@)=Re[J(0)/E(0)]
=(Bg’R*w/8V)(|A|/8)
Xsech!(B8/4){o7/[1+(w7)*]} . (8)

It is noted that the ac conductivity of the pair Eq. (8)
vanishes both when the energy difference A vanishes and
when A, and hence 8, approaches infinity. As noted pre-
viously,* the first situation occurs because the charge
transfer that accompanies a transition between states 1

J

cosh(36/2) T
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and 2 is |A| /6.2 The polarization conductivity also van-
ishes as 86— o, since the ability of the electric field to
alter the polarization falls with the extent of the preexist-
ing polarization.

ITII. ac CONDUCTIVITY

To obtain the net polarization conductivity, the contri-
butions of all polarization centers in the solid must be
summed. To begin, the number of polarization centers
whose two sites have an average local energy € lying be-
tween € and €e+de and an energy difference lying be-
tween A and A+dA is written as Vp,(e,A)dedA. The
subscript 2 on p,(g,A) is employed to emphasize that this
function has the dimensions (energy) *(volume) ! rather
than that of the density of states, (energy) ™ '(volume) !
For example, if a density of sites #n has a Gaussian distri-
bution of energies with a rms spread of W, for any pair
of sites one has p,(g,A)=(n/27W?*exp{—[e?
+(A/2)* /W2,

A transition between states requires that one of the two
states be initially occupied while the other is initially
unoccupied. For states labeled as 1 and 2 the probability
of one and only one of the two sites of a pair being occu-
pied is given by the  occupancy factor,
P,.=f(1—f,)+f,(1—f,). The occupancy factors f,
and f, are taken as Fermi functions to ensure that the
carriers do not doubly occupy a state. The energies of a
carrier in states 1 or 2 are then written as €—8/2 or
e+8/2, respectively. After some algebraic manipula-
tions, one obtains

P, =cosh(B6/2)/{2cosh[Ble—8/2—pn)/2]
Xcosh[B(e+8/2—pu)/2]}
=cosh(36/2)/{cosh[B(e —u)]+cosh(B8/2)} , 9)

where p is the chemical potential for the carriers. Sum-
ming up over all polarization centers the net real part of
the polarization conductivity becomes

T pot@)=(g* (R0 /8) [ dA(|A]/8)

In writing this equation, it is presumed that the relaxa-
tion time for charge transfer between the two sites of a
center, T, is not a strong function of their average energy,
€.

To carry out the integrations of Eq. (10), some
simplifications are now made. First, it is anticipated that
the principal contributions to the Be integral will occur
when ¢ is close to u. This presumption is based on the
observation that the two energies of the two sites of the
pair must straddle u for only one of the sites to be occu-
pied as T—0. Then, presuming p,(g,A) to vary slowly
with € when ¢ is in the vicinity of u, p,(€,A) is replaced
by py(u,A) in the integrand. Noting that the integrand
falls off exponentially for large values of |B(e—u)|, the

cosh®(88/4) [1+(wT)?

]fd([3£)pz(s,A)/{cosh[B(s—,u)]+cosh(38/2)} . (10)

f

range of integration of B¢ may be extended to be from
— o to . Carrying out this procedure yields a known
integral.?’” Performing the integration and rearranging
terms yields a simple result,

[ 7 d(Be)py(e, M) /{cosh[Ble—p)]+cosh(B8/2)}
zpz(,u,A)f_oc dx [cosh(x)+cosh(B88/2)] !

=p,(1, A)(BS)csch(B8/2) . (11)

Inserting Eq. (11) into Eq. (10) and employing identities
of hyperbolic functions yields another expression for the
polarization conductivity:
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Tpoll@)=(gX R o) [ dApy(n,A)

x BlA|coth(B86/2) 2wt
16 cosh*(88/4) 1+(wr)®

(12)

The occupation probability and polarizability of a
given two-site center produce the SB-dependent factor in
the integrand of the integral in Eq. (12). This factor rises
from a value of zero at A=0 to a maximum and then falls
exponentially within increasing & as exp(—p56/2). The
final factor in the integrand of the integral in Eq. (12) is a
dynamic factor that describes motion between the two
sites. This factor achieves its peak value of unity at the
value of A for which wr=1. The temperature depen-
dence of apol(a)) arises both, explicitly, from the -
dependent factor and, implicitly, from the dynamic factor
through the temperature dependence of . With the pri-
mary contributions to 0 ,,(w) coming from the vicinity of
©T=1, one can interpret the polarization conductivity of
Eq. (12) as being the product of the carrier’s charge g, its
“mobility”” when it moves between sites at the frequency
0,g{R*)w/kyT, and the density of polarizable centers
at temperature T that can respond at frequency w:

|Alcoth(B6/2) 20T
16 cosh’(86/4) 1+ (w)?
dcoth(B8/2) 2wt
8cosh?(B6/4) 1+(wr)?

(13)
In obtaining the second line of Eq. (13), (1) it is noted that
7 is an even function of A; (2) it is presumed that p,(u,A)
depends only weakly on A within the regime of principal
importance in the integration; and (3) the integration
variable is converted from A to &, noting that
dA/36=8/A. A factor of 2 is introduced with this
change of variable because 8 is an even function of A.
Consider the frequency dependences of o, (®) of Eq.
(12). If the frequency is sufficiently high so that o7>>1
throughout the region in which the remaining factors of
the integrand are appreciable, there is negligible frequen-
cy dependence of 0, (w). Alternatively, if the frequency
is sufficiently small so that wr <<1 throughout the region
in which the remaining factors of the integrand are ap-
preciable, o (@) is both relatively small and proportion-
al to w? These limits, where either or>>1 or wr<<1
throughout the entire integration region, essentially
reproduce the limiting results for a single pair, Eq. (8).
However, if the domain of integration includes values of
|A| for which wr~1, an intermediate frequency depen-
dence is obtained.

npairs(a), nN= fdApz(,U«,A)

~py(,0) [ d8

IV. LOW-TEMPERATURE RELAXATION RATE

To proceed further, an expression for the relaxation
time, 7, as a function of 8 must now be introduced. As
discussed in the introductory section, the low-
temperature low-frequency ac conductivity due to adia-
batic small-polaronic hopping in disordered materials is
dominated by very slow transitions that arise from hops
between sites of nearly equal energy. Thus, 7 of Eq. (4) is
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evaluated with transition rates appropriate to low-
temperature adiabatic small-polaron transitions for
which § is sufficiently small that the predominant transi-
tions occur with the absorption or emission of only a sin-
gle acoustic phonon of energy §.°

The relaxation time 7 is associated with transitions be-
tween states 1 and 2. However, states 1 and 2 , |1) and
|2), may be expressed as superpositions of (orthogonal-
ized) localized states associated with the carrier residing
on either site 1 or site 2, ¢; and ¢,. In particular,

[1)=C7 ¢,+C5 ¢, (14a)

and
2)=C}¢,+CSé,, (14b)

where the minus sign corresponds to state 1 and the plus
sign to state 2. For this two-site problem, the expansion
coefficients are

T S— (15a)
V/ (21, +(8+A)
and
Cy= _ oA (15b)
V(21,2 +(8+A )

Since the dominant phonon-assisted transitions be-
tween nearly degenerate states at low temperature involve
the emission or absorption of long-wavelength acoustic
phonons, the deformation-potential model can be em-
ployed. That is, the electron-lattice interaction energy
for a carrier at position r is written as

V(r)=iEpV'#/2psV 3V ql[bexplig-r)—c.c.],  (16)
q

where Ej is the deformation-potential energy, p in the
solid’s density, s is the longitudinal sound velocity, ¥V is
the solid’s volume, and b is the annihilation operator for
a phonon of wave vector q. The matrix element of V(r)
between states 1 and 2 is then evaluated to yield

QI =C{Ci (Vg +CFC5 (¢, Vd,)
=(tp/8)[<¢llV|¢l)_(¢2| Vigy)]
=(t,/8)(¢,|V|¢;)[1—expliq-R)] . 17

In the first line of Eq. (17) the customary step of neglect-
ing terms involving matrix elements of the electron-
lattice interaction between different localized states is em-
ployed."? In the limit of long-wavelength phonons the
orthogonality of the local (Wannier) wave functions en-
sures that these terms vanish. In obtaining the second
line of Eq. (17) the products of the expansion coefficients
have been evaluated. In obtaining the last equality, R is
defined as the position vector from the centroid of site 1
to that of site 2. Evaluation of the matrix elements of Eq.
(17) is completed by noting that the only factor in the de-
formation potential that depends on the electron’s posi-
tion is exp(iq-r). Matrix elements of this factor are
essentially unity when the wavelengths of the involved
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phonons exceed the radii of the localized states:
(¢,lexpliq-T)|¢;) =~1. This situation prevails for the sit-
uation of interest here: hops between nearly degenerate
severely localized small-(bi)polaronic states induced by
the absorption or emission of very-low-energy acoustic
phonons.

Having determined the matrix elements of the defor-
mation potential, the rate for a transition from state 1 to
state 2 with the emission of a single acoustic phonon of
energy 6 can now be obtained from the golden rule.
After some algebra one obtains

R cmission(8)=(12E}, /mps*#*)8[ 1+ N(8)]

X |1 (18)

_ sin(8R /#is)
(8R /#s) |’

where N(8) is the number of available phonons of energy
5. With N(8) being taken to be the thermally available
number of phonons,

_ exp(—p8/2)
N(®) 2sinh(36/2) ° 19

The transition rate of Eq. (18) is similar to that ob-
tained by Miller and Abrahams for a hop between shal-
low impurities induced by the emission of an acoustic
phonon.! A correspondence can be made to the result of
their problem by replacing (1) the adiabatic small-
(bi)polaronic transfer energy #, of Eq. (18) with their elec-
tronic transfer energy W; and (2) the energy difference be-
tween states 1 and 2, § by their difference between site en-
ergies |A|. However, while Miller and Abrahams consid-
er nonadiabatic hopping between widely separated large-
radius localized states, the concern of this paper is adia-
batic hops between close pairs of severely localized states.
Hence, while Miller and Abrahams take SR /#is >> 1, the
opposite limit is considered here: 8R /#is << 1. In this sit-
uation, Eq. (18) may be rewritten as

R . _ 3_exp(Bd/2)
emlssmn(s) RO(S/ﬁwD) ZSlnh(BS/Z) ) (20)

where R,=wpm(qpR)[(1,Ep)/Ms*(#iwp)’] and M
=6m’p/ (qp)’ is the mass of a unit cell in the Debye ap-
proximation with g, being the Debye wave vector. Since
E,~E}/Ms* S~E,/fw,, and t}:(ha)p )2Se ~25, one
has Ry~wp(gpR )*(Se ~5)?, where S >>1 for small pola-
rons.

The transition rate for the complementary phonon-
assisted process, phonon absorption, may be obtained
from the emission rate of Eq. (20) by using the principle
of detailed balance: simply multiplying Eq. (20) by the
factor exp( —8):

3exp(—B86/2)
2sinh(B8§/2) °

The relaxation rate 1/7, defined in Eq. (4), is the sum of
the rates of Egs. (20) and (21):

1/7=R (8 /#iwp ) coth(B8/2) . (22)

Rabsorption(a)zRO(a/th) (21)

As expected of hopping processes, the relaxation rate
of Eq. (22) rises with increasing temperature. At
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sufficiently low  temperatures, where [(36/2>1,
coth(38/2)=1. Then, the relaxation rate approaches the
temperature-independent rate associated with the spon-
taneous emission of an acoustic phonon. At higher tem-
peratures, where 38/2 < 1,coth(36/2) =2kgzT /8. Then,
the relaxation rate becomes simply proportional to the
temperature as absorption and stimulated emission of
low-energy acoustic phonons contribute almost equally to
the relaxation rate. Equation (22) also indicates that the
relaxation rate becomes progressively slower as the ener-
gy disparity 8 is reduced. This phenomenon occurs be-
cause the density of states of the low-energy acoustic
phonons that are capable of facilitating a transition falls
as § is reduced.

V. DENSITY OF POLARIZATION CENTERS:

npairs(wy T)

The low-frequency polarization conductivity essential-
ly measures the density of polarization centers that can
respond at temperature T to frequency w, np,i(w,T).
For hopping systems at low temperatures one generally
finds that n ;. (0, T) rises with increasing temperature at
a rate that falls with increasing frequency.

Proceeding to calculate n,; (0, T) from Eq. (13), it is
first noted that the dynamic factor 2w7/[1+(w7)?] is
peaked about wr=1 and that 7 depends on 8. Therefore,
the dynamic factor is peaked about the value of 6 corre-

T T e

0.8+

0.6

Dynamic factor

0.4

0.2

0.0

FIG. 3. The Gaussian approximation to the dynamic factor
given by Eq. (23) (dashed curve) is compared with the exact re-
sult (solid curve) in the low-temperature regime where 7~ '« §°
and x =6/8,.
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sponding to w7=1, defined as §,. Expanding the dynam-
ic factor about its peak value one obtains

201
1+ (w7)?

where f=0(w7)/36 evaluated at wr=1. In general, f
may be written as —n /8, where n is a function of tem-
perature and §, is a function of both @ and temperature.
In the low- and high-temperature limits of Eq. (22) these
functions are very simple. For example, at low tempera-
tures where B8,/2> 1, one readily finds from Eq. (22)
that f~—3/8, and 8,xw!’>. Alternatively, when
B8y/2 <<1 one finds from Eq. (22) that f~—2/8, and
8oxw!’2. Here, interest will focus on the low-
temperature limit, although f shall be written as —n /§,
for generality. In Fig. 3, the Gaussian approximation to
the dynamic factor, given by Eq. (23), is compared with
the exact result in the low-temperature regime where
7 1«83, This approximation is seen to be reasonably
good.

The remaining factor of the integrand of Eq. (13) is
(8/8)coth(B6/2)sech?(B8/4). At low temperatures
where B6/2>>1 this factor may be approximated as

J

~exp[ —fA8—8,)%/2], (23)
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(8/2)exp(—pB56/2). Presuming that the principal contri-
butions to the integral of Eq. (13) occur at such values of
B3, the integral may be approximated as

npairs(w’ T)z[pz(y,O)/Z]
X f:dﬁ 8 exp(—B56/2)
P
Xexp[ —nH8—8y)2/2(8,)],  (24)

where it is noted that the minimum value of & is 2¢,,.
Introducing the change of variable x =8 /8, transforms
Eq. (24) to

npairs(w’ T)= [Pz(#,0)5%/2]
X f2rp /sodx x exp(—B¢x /2)
Xexp[ —n(x —1)*/2] . 25)

The product of the exponential factors of the integrand
of Eq. (25) is peaked at a value of x that shifts from unity
to smaller values of x as B8 is increased. This effect is
evident upon completing the square of the arguments of
the exponentials contained within the integrand of Eq.
(25):

R pairs(@, T)=[p(11,0)83 /2 Jexp| —(380/2)+(380/2)2/2n2]f; L5 dx x exp{—n’[x —1 +(B8,/2n2)?/2]} . (26)
p’ 0

The integral of Eq. (26) can be evaluated with changes of variable to z and z?, where z=(n/V2)[x —1+(B8,/2n?)]

and zo=(n /V'2)[2t, /8,—1+(B8y/2n?)]:

N pairs(@, T)=[p,(11,0)83 /2 lexp[ —(B8,/2)+ (B8 /2)* /2n?)

X 1 [ “d(z2/nPexp(—z)+[1—(B8,/2n2))(V2/n) [ " dz exp(—2?)
EN %0

=[p,(1,0)83/2]exp[ —(B8y/2)+ (B8 /2)* /2n?]
X {(1/n®)exp[ —(29)21+[1—(B8y/2n?) ]V 7 /2n%erfc(zy)} . Q7

At low temperatures, with z, being large, z,V 7 exp[(zy)*]erfc(zy)=~1—1/2(z,)%.?® Using this relation and the

definition of z,,, Eq. (27) becomes

M pairs(@, T)=[p,(11,0) /21(8¢/n)exp[ — (25)* —(B8/2) +(B8(/2)* /2n?]

[1—(B8y/2n2)] ,
X{1l+——F[1—1/2
A L1120

=[py(11,0)/2](8,/n)exp{ —(n?/2)[1—(4t, /8,)+(2Bt, /n*)—(2t, /8,)*]}
p P p

o 1/2(z¢)*+(2t, /84)/[(B8y/2n*)—1]
1+(2t,/8,)/[(B8y/2n?)—1]

Presuming that ¢, (generally < 107 3%wp ) is much smaller
than any other physical parameter in Eq. (28), Eq. (28) is
simplified by letting z, —0. Then, Eq. (28) reduces to

npairs(wy T)z pz(,u,O)(So/nzo )Zexp( “n2/2)/4
(kpT)?
[1—(2n%ky T /8,)]?

~2p,(u,0) exp(—n?/2) .

(29)

(28)

Equation (29) may be obtained more directly from Eq.
(25) if its integral is evaluated in a less general and
methodical manner. In particular, in this more direct ap-
proach, the focus on small values of x is anticipated as
exp[—n*x —1)?/2] is replaced by exp(—n?/2)
Xexp(n2x) in the integral’s integrand. In addition, the
lower limit of integration of the integral is set equal to
zero. Direct integration of the simplified integral then
immediately yields Eq. (29).
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Multiplying 7p,i(0,T) contained in Eq. (29) by
g’ (R w/kyT yields an expression for the low-
temperature low-frequency polarization conductivity that
may be expressed as

(@/@o)(T/Ty)
([1=(T/ToNwo/w)/"]?

Upol(ﬂ))zo'o » (30)

where two constants are introduced:
00=29*(R*)p,(11,0)wpkp Toexp(—n?/2)
and
(@o)"/Ty=2nkpo'" /8, .

Here w, and T, serve as nonindependent scale factors for
the frequency and temperature. Note that §, generally
rises with . In particular, in the low-temperature re-
gime, n =3 and §, is proportional to ®'/3. Thus, the tem-
perature and frequency dependences of the denominator
cause 0, (@) to manifest a progressively weaker rise with
increasing temperature as o is increased. As the temper-
ature is lowered sufficiently, the conductivity becomes
simply proportional to both temperature and frequency.
These findings are illustrated in Fig. 4, where
logo[opoil@) /0] of Eq. (30) is plotted against T, /T for
four values of w/w, where n is its low-temperature value,
3. The plots of Fig. 4 are in qualitative agreement with
measurements in systems for which there is evidence that
adiabatic small-polaron or small-bipolaron hopping

occurs.z’29
3F T
/o =1000
2} -
0/ =100
\

logyo [Gpol(w)/do]

To/T

FIG. 4. The normalized polarization conductivity of Eq. (30)
with n =3 is plotted against the dimensionless reciprocal tem-
perature T, /T at reduced frequencies of w/wy=1, 10, 100, and
1000.

VI. SUMMARY

For many, if not most, systems with small-polaronic
hopping the intersite separations are sufficiently small
that the hopping is adiabatic. In this adiabatic regime,
the small-polaronic jump rates are insensitive to intersite
separations. As the temperature is lowered, dc conduc-
tion in disordered systems with adiabatic polaronic hop-
ping is progressively suppressed as carriers find it increas-
ingly hard to negotiate diffusion-limiting difficult hops
that require the absorption of athermal amounts of vibra-
tional energy. However, since ac conduction does not re-
quire carriers to perform these difficult hops, the ac con-
ductivity is generally very much larger than the dc con-
ductivity at low temperatures.

In many systems, such as transition-metal-oxide glasses
and the boron carbides,*?*’ the low-temperature low-
frequency ac conductivity is associated with a very small
fraction (e.g., 0.1%) of the carriers that contribute to the
dc conductivity. For this reason, the ac conductivity
may be viewed as arising from isolated polarization
centers. A polarization center is a rare cluster of sites
among which carriers can move with relative ease. In
particular, the energy differences between a center’s sites
cannot be much greater than kzT. That is, the polariza-
tion centers are composed of sites whose energy levels are
nearly degenerate with one another. Since pairs of sites
that are unusually close to one another tend to experience
nearly equivalent environments, such pairs of sites natu-
rally form polarization centers.

Since the energy differences between the sites of the po-
larization centers are much lower than the Debye energy,
relaxation can occur with the emission or absorption of
only a single acoustic phonon. In fact, for low-
temperature small-polaronic hopping between nearly de-
generate states, hopping is predominantly due to the
emission or absorption of only a single low-energy acous-
tic phonon.?

Since the low-frequency ac conductivity measures the
carriers’ response at rather low frequencies ( < 10° Hz),
the carriers of the polarization centers must move be-
tween nearly degenerate sites at these very low frequen-
cies. That is, the relaxation rates must be very much
lower than vibrational frequencies. For small-polaronic
hops, the rates for single-phonon emission are especially
small. In particular, the rates for low-temperature
single-phonon hops of small polaronic carriers are pro-
portional to the factor exp(—2S), the so-called band-
narrowing factor of small-polaron theory.>>> Typically,
S is at least 10. Thus, this factor reduces the low-
temperature rate for a small polaron’s emission of a single
phonon by at least nine orders of magnitude
[exp(—20)=2.5X10"°] from that associated with hop-
ping between shallow-impurity centers (where S—0). "2
It is for this reason that the adiabatic hopping of small
polarons and small bipolarons can account for the low-
frequency ac conductivity observed at low temperatures.

The presence of disorder produces a distribution of en-
ergy differences between the sites of polarization centers.
This spread of energy differences A produces dispersion
of the relaxation rates. The polarization conductivity is
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the sum of contributions that arise from polarization
centers with different energy differences. The net polar-
ization conductivity, given by o (w) of Eq. (30) and il-
lustrated in Fig. 4, rises with increasing temperature.
This temperature dependence also decreases as the fre-
quency is increased. In the low-temperature limit the po-
larization conductivity is proportional to both tempera-
ture and frequency. These results are in accord with ob-
servations in many systems with hopping conduction, in-
cluding those for which there is other evidence of adia-
batic small-polaronic hopping.

These findings are obtained with very general con-

siderations. The generality of the theory is compatible
with is predictions’ consistency with experimental obser-
vations of dissimilar systems for which there is evidence
of adiabatic small-polaronic hopping.
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