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The do-hopping conductivity and thermopower is calculated for temperatures below half the 
Debye temperature OD. A percolation approach with multiphonon hoprates is used. Two sets of 
energetically overlapping states near the Fermi level are considered. The coupling to the phonons 
is assumed to be larger for the lower lying set of states. The resulting thermopower is negative and 
slowly varying with temperature, but bends down to higher negative values at low (z 0.18,) 
temperatures. The conductivity essentially follows a In u - T--1/4 law. The thermopower is much 
more stable with respect to changes in the density of states as compared to a model without multi- 
phonon effects. 

Die Gleichstromleitfiihigkeit und Thermokraft werden fur Temperaturen unterhalb der halben 
Debye-Temperatur 8D im Rahmen der Perkolationstheorie unter Beriicksichtigung von Multi- 
phononen-Hopraten berechnet. Es werden zwei Gruppen von Zustinden angenommen, die sich 
energetisch in der Nihe des Fermi-Niveaus iiberlappen. Die tieferliegende Gruppe ist stiirker an 
die Phononen gekoppelt. Es ergibt sich eine schwach temperaturabhiingige negative Thermokraft, 
die bei tiefen Temperaturen (z 0,18D) nach groBeren negativen Werten hin abknickt. Die hit-  
fihigkeit folgt im wesentlichen einem In u - T- 1/4-Verhalten. Die Thermokfaft reagiert sehr vie1 
schwacher auf hderungen in der Zustandsdichte als in einem Model1 ohne Multiphononen-Effekte. 

1. Introduction 

A large amount of transport data for amorphous germanium and silicon has been 
accumulated in the literature. It is widely believed that for low temperatures they 
can be interpreted in terms of Mott,’s variable range hopping model [l]. It can be 
stated, however, that a number of generally observed features has not been satis- 
factorily explained. 

Let us first consider the dc conductivity. It can usually be nicely fitted to Mott’s 
formula 

(r = a, exp [-($TI. 
For a constant density of states N, a t  the Fermi level E,, Mott obtains 

To = 18.1 (a3kNF)-1 , (2) 
where a is the decay length of the localized wave functions and k the Boltzmann 
constant. This model provides us with a number of well-known problems. Here we 
are concerned with the following: 

(i) Assuming that the density of states decreases upon annealing, To should increase 
as Nil. However, it is usually found that To is rather insensitive to annealing and 
sample preparation [2], i.e. to the density of states. 

(ii) Spin resonance measurements on evaporated and sputtered samples yield a 
density of unpaired spins ( 10le to 1020 /cm*) [3] which is much larger than the number 
of states deduced from (2), inserting the experimentally observed To [a]. Taking a 
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typical (a-Si) To = 1.8 x lo8 K, o = 5 A, and a band width of 0.5 eV, we get 4 x 
x lO18/cm3 spins provided that all these states are associated with an unpaired spin. 

Of course the constant density-of-states model has to be abandoned. Starting from 
hop rates [5, 61 (including electron statistics) 

Overhof and Thomas [7] have used a percolation approach [8] to calculate cr. (Here r 
is the hopping distance, Ei and E,  are the localized state energies.) For a special set of 
density-of-states functions, N ( E ) ,  a parallel shift of the In cr versus T-1/4 curves 
results as the number of states is decreased. To these density-of-states functions a 
number of spins would correspond, which is considerably larger than that calculated 
with a constant N,. 

This approach is based on hop rates which have not been proved to apply in the 
situation of hopping in amorphous semiconductors. Rather multiphonon hoprates 
have to be considered. Emin [9] has shown that the niultiphonon hoprate has itself 
a temperature dependence not unlike equation ( I ) .  However, in order to  obtain To 
from multiphonon hoprates in the region of experimental values, one has to  allow 
for rather high (8 to  lohzw,) polaronic binding energies [lo]. With Debye energies 
h o ,  of 5.6 x and 3.2 x 10-2eV for a-Si and a-Ge, respectively, this implies 
binding energies which in Si are nearly as large as half the gap. This is hard to  under- 
stand if we assume, as is usually done, the localized states to  derive from structural 
defects. So one has to conclude that the experimentally observed To is a t  least partly 
due to  statistics, i.e. to  percolation effects in the variable range hopping model. 

The dc conductivity alone does not seem to be a suitable means to test theoretical 
models. One should rather calculate the therniopower S and compare it to experimental 
data. Here the interpretation is also not yet clear. For our purpose let us consider the 
following problems : 

(i) In  the majority of cases a small negative value of the thermopower is found 
a t  low temperatures, varying slowly with T [ll, 121. In  the hopping model the sign 
of S is given by the sign of - ((d/dE) ( N ( E ' ) ) I E  = EF. It is then hard to understand why 
usually the density-of-states function N ( E )  has a positive slope a t  E,. We may state 
that S is much more insensitive with respect to changes of N ( E )  than a percolation 
approach with hoprates (3) would predict. 

(ii) For very low temperatures Lewis [11] reports a new behaviour of S in a-Ge. 
With decreasing T, S first is negative and nearly constant; a t  T NN 0.1 BD (8, Debye 
temperature) it bends down to larger negative values. Lewis based his interpretation 
on transport in a very narrow band (0.01 eV). This assumption seems to be rather 
artificial for amorphous semiconductors. 

For a better understanding of the above-mentioned problems we extend the per- 
colation approach of Overhof [ 131 by using multiphonon hoprates. We calculate u 
and S in the temperature range 0.16, & T 0.50,. We assume a density-of-states 
function similar t o  that employed in [7], which is composed of two sets of states which 
have different strengths of coupling to  the phonons. Within this model we are able 
to  understand the behaviour of S in Lewis' experiments. This model also explains the 
reduced sensitivity of S to  changes in N ( E )  in a large temperature interval. 
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2. The Multiphonon Hoprate 
We calculate the multiphonon hoprate starting from Emin's [9] expression. To 

facilitate t,he numerical effort, the calculations are done in frequency space [ 101 (see 
Appendix). Using exponential electronic wave functions, a = a (lattice constant 
a z 5 A), and r = lOa, we obtain hoprates v which are depicted in Fig. 1 for a binding 
energy E ,  = 5hwD. The binding energy in this case is given approximately by 

where y characterizes the strength of the electron-phonon coupling. 
In  analogy to (3) we write, including electron statistics; 

Since we are interested here in low temperatures, we approximate Eij + W (  A, T, E,) 
by the slope of In v versus T-l at T = 0.16, in Fig. 1: 

Eij + w(d, T ,  E,) x Eij + W&(d) - (6) 

wEb(d) = wEb(lAl) * (7) 

w E b ( l A l )  = WEb(o) / ( I d [ ) ;  f(') = '' ( 8) 

From equations (A 1) to (A 4) we see that 

For simplicity we write 

In Fig. 2 the dependence of WEb(0) on E ,  is shown. The dependence of W on A is 
depicted in Fig. 3 for two binding energies 5hw, and 2hw,. W serves as an additional 
activation energy, which is largest for hops between sites of equal energy and decreases 
rapidly with increasing energy separation. This will be shown to yield interesting 
results for the thermopower a t  low temperatures. -\I 
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Fig. 1. Multiphonon hoprate as a function of T-l  for different energy separation8 A .  Eb = 5tr0D, 

Fig. 2. Dependence of W,(O) on Eb taken from the slope of Fig. 1 at T = 0.16D 

Fig. 3. Dependence of W on energy separation A for E ,  = 5 h w ~  and E ,  = 2hwD 

O( = U, R = 1 0 ~ .  (1) A == -3, (2) -2 ,  (3) -1, (4) 0, (5 )  1, (6) 2, (7) 3 h ~  
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3. The Model for the Localized States 

A large body of experimental data for evaporated and sputtered a-Ge and a-Si 
can be interpreted assuming a double-peaked density-of-states function N(E) = 
= Nl(E)  + N2(E), E, being somewhere in the region of overlap of the two peaks 
[7, 12, 141. Spin density is usually rather high in these samples [3]. This suggests that 
the set of states peaked a t  a lower energy (Nl(E)) is due to singly occupied states, 
the set peaked at  a higher energy due to doubly occupied states of some defects. They 
are separat.ed by a positive intrasite correlation energy, and 

J N,(E) d E  = J N2(E) d E .  (9) 

Then it is natural to assume that the doubly occupied (N2(E)) states have a larger a 
and due to (4) smaller binding energies than the singly occupied states. 

To be consistent one also has to consider the different a in the tunneling factor 
exp (- 2rla). But since W is proportional to we can neglect the variation of the 
tunneling factor, always setting a equal to one lattice constant there. 

This model, however, is not a necessary ingredient of our theory. Any other model, 
where a lower lying set of states having a larger coupling to the phonons overlaps 
with a higher set of states, could be included into the calculation yielding the same 
answers for a and S. 

Since we are now considering two sets of states having different binding energies, 
we can no longer deal with only a single WE,(A). As a reasonable ansatz we take the 
generalized W,( A )  to be 

4. The Calculation of u and S 

We use Overhof's method [13] to calculate first the critical exponent 5 ,  from which 
we then obtain a and S. Introducing the equivalent resistor network [5], then in the 
framework of percolation theory all conductances on a critical path are smaller than 
exp ( -5 ) .  The critical path is formed if on the average a site has p bonds, i.e., p hops 
are possible away from an average site with r > exp ( - 5 ) .  We take p to be 2.6 [13]. 
The number of bonds of a given site i is 

where [ = 5 kT is the critical energy, which may be obtained by solving 

for a given temperature. It is easier, however, to calculate the temperature T for a 
given 5, since T appears only in the prefrtctors of the integrals. Once having deter- 
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mined T for a given 5,  we have immediately 

- 0 = exp (-A) 
0 0  

545 

(13) 

and S can be calculated by Overhof’s equations (6) to (12) [13]. 

6.  Results 
In Fig. 4 we show the model for the density-of-states functions used. The density- 

of-states at the Fermi level (near its minimum) is 8.5 x 1018/eV cm9 and 1.3 x 
x 1018/eVcmS for Si and Ge, respectively. Except at the lowest temperatures, the 
hopping conductivityfollowsequation (1) (Fig. 5) ,  To being x 7.0 X los 8 ,  (4.5 X 108K 
for Si, 2.6 x lo8 K for Ge). For a symmetric N ( E )  and a uniform binding energy for 
all states we get 8 G 0. I f  Eb is larger for the lower set of states than for the higher 
set, S is negative and JSI increases for decreasing T (Fig. 6). This reflects the fact 
that for decreasing temperatures, states belonging to the set with higher binding 
energy are frozen out and do not contribute to the transport. So, if T is low enough, 
only the higher peak in N ( E )  is effective with a large positive slope at  the Fermi level 
(thin line in Fig. 4). 

On the other hand, for symmetric E ,  but asymmetric N ( E ) ,  181 - T112 for T + 0, 
the sign being determined by the sign of -(d/dE) (N(E))lE=Ep. I f  both Eb and N ( E )  
are asymmetric, we get a superposition of both effects, i.e., S is slowly varying for 
higher T, but bends down at  a given characteristic temperature. It is interesting to 
note that the conductivity gradually deviatesfrom the familiar T-lI4 behaviour a t  the 
lowest temperatures. 
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Fig. 4. Symmetrical (dashed curve) and asymmetrical (solid curve) density of states. At low 
temperatures only the higher set of states 2 is effective, which has a large slope at E = EF = 0 

(thin) 

Fig. 5. Hopping conductivityversus T-lI4for:  WE^, = 0 . 7 h w ~ ,  WE,, = O . l h w ~ ,  N ( E )  symmetric 
(dashed curve); WE,, = 0.7ihw~ = W B ~ , ~ ,  N ( E )  asymmetric (dotted curve);  WE^, 1= 0 . 7 h ~ ,  
 WE^, = O . l h D ,  N(E)asymmetric (solid curve);  WE^, = 0 . 7 h w ~ ,  W E ,  = 0 . 3 5 h ~  ,N(E)  asym- 

metric (dash-dotted curve) 

Fig. 6. Thermopower results versus T. Symbols as in Fig. 5 
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I n  the light of our model, the result of Lewis can be easily understood. Assuming 
binding energies 7AwD = 0.22 eV and l h D  = 0.03 eV for the higher and lower set of 
states, a behaviour can be obtained that is quite similar to  that found by Lewis of 
a-Ge (solid line in Fig. 6). His a-Si results can be understood either by assuming a 
smaller asymmetry in the binding energies, or a larger asymmetry of N ( E )  (dashed- 
dotted line in Fig. 6). (Here we did not attempt to  fit the experimental data quanti- 
tatively. This could easily be done using different N ( E )  functions for Ge and Si.) 

To reproduce Lewis’ results within our model i t  is essential to consider two sets of 
states which overlap near the Fermi level, and to  make the natural assumption that 
the lower lying set of states is more strongly coupled to  the phonons than the higher 
one. (If the states below E ,  are associated with an  unpaired spin, then there should 
be a spin density of the order of several 1019cm-3 in our model.) The asymmetry of 
the electron-phonon coupling leads to a negative S. If this asymmetry is large enough, 
S is negative down to the lowest temperatures. This effect is rather insensitive to the 
form of N ( E ) .  With decreasing temperature, X is first slowly varying with T. At a 
given low T, which depends on the degree of asymmetry in the coupling, S rapidly 
goes to  larger negative values. The sharpness of this kink is determined by the slope 
of the contribution to  N ( E )  from the higher set of states. 

Our model is based on electron-phonon interaction with only acoustic phonons. 
As Gorham-Bergeron and Emin [ 151 have demonstrated, the additional coupling to 
the optical phonons does not lead to qualitatively different results for the hoprate, 
as long as the coupling to  acoustic phonons is not much weaker than to optical phonons. 
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Appendix 

Let us consider an electron hopping from a localized state to  another one, separated 
by a distance r and an  energy A = AG, interacting with acoustic phonons (Debye 
model: 0 5 Q = vq 5 con) via a deformation potential interaction characterized by 
a strength y .  Then the niultiphonon hoprate [9] can be calculated easily using the 
formula [lo] 

1 ,, = yw D ,-2?/u e-hC2/2kT e -2zx  r,(G) . 
n 

The n-phonon contribution (n > 1) is given by the convolution 

W D  

- “D 
rn(G) = J d w  rl(w) ,r,-,(G - w )  

and rl(w) is the interaction function 

v is the velocity of sound, 5 = 2nwD (Io/hwD)2, I.  is the electronic transfer integral, and 

@(q) = J eiqr l ~ ( r ) 1 ~  d37 (A 4) 
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Fig. 7. To as a function of E b  Emin’s [9] result. Higher curve Lorentz- 
ien, lower curve exponential P)(T) 

exp ( -2  Z) is the band-narrowing factor with 

221 = dw rl(w) cosh ~ ( ::T) * 

-*D 

For r > 5a (a is the lattice constant) the dependence of v on r is mainly through the 
factor exp (- %/a), and the coherence factor 1 - sin (wr/v)/(wr/v) in ( A  3) can well be 
approximated by unity. Since we do not know the magnitude of y and a, we use the 
polaronic binding energy 

as the physical parameter determining the strength of the interaction. For simplicity 
a is set equal to one lattice constant a (x  5 A). The electronic wave function q(r)  
enters the hoprate via a convolution of the Fourier-transformed lq(r)12. So it is clear 
that the details of cp(r) do not influence the hoprate significantly. To test the influence 
of ~ ( r )  we have calculated v for exponential as well as Lorentzian wave functions [ 161. 
We also have replaced rl(w) by the interaction function used by Emin [9], which 
assumes full strength of the interaction for phonons with frequencies up to 0.5hwD, 
and no interaction for larger w. 

I n  Fig. 1 we show v versus T-l for Eb = 5hw, and r = 1Oa. v deviates from a 
v x exp ( - d / k T )  behaviour for T 0.18,; it approaches this activated behaviour 
for larger A and/or lower T .  When the A = 0 data are plotted versus T-Il4, we can 
extract an effective To (valid for 0.18, s T s 0.5,8). These are plotted in Fig. 7 
as a function of Eb for Lorentzian and exponential Q)(r), and for Emin’s interaction 
function. There we have also indicated typical experimental To for a-Ge and a-Si. 
Since the To versus Eb relation seems to be rather insensitive to the specific models 
employed for the interaction function, we conclude that the experimentally observed 
To is not due to polaronic effects alone. (The inclusion of additional coupling to optical 
phonons by Gorham-Bergeron and Emin [ 151 does fit in with our results. Their data, 
however, fall outside the range of the binding energies considered here.) 
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