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Electron Emission wn Intense Electric Fields.
By R. H. Fowrer, F.R.8,, and Dr. L. NORDHEIM.

(Received March 31, 1928.)

§1. Introduction.—The main features of the phenomenon of the extraction
of electrons from cold metals by intense electric fields are well known, and
an approximate theory of the effect was first developed by Schottky.* More
recently the experimental data have been much improved, notably by Millikan
and Eyring,t and Millikan and Lauritseni. The theory has been considered
afresh by 0. W. Richardson§ and by Houston|| working with Sommerfeld.
Tt seems to us, however, that there is still room for improvement in the theo-
retical exposition and its correlation with the experiments. Neither 0. W.
Richardson nor Houston really treat the theory in the simple straight-
forward way which is now possible in the new mechanics, using the revived
electron theory of metals which we owe to Sommerfeld. Again, while Millikan
and Lauritsen seem to have established quite definitely the laws of dependence
of the emission on the field strength F, they speak of the implications of their
result in a way which is hard to justify and might in certain circumstances
prove to be definitely misleading.

Millikan and Lauritsen show that a plot of log I, where I is the current,
against 1/F yields a good straight line whenever the experimental conditions
are sufficiently stable. At ordinary temperatures these currents are completely
independent of the temperature. The formula for these currents is

1= Ce ¥, (1)
which is, of course, indistinguishable from
' I — CF2e= ¥, )

Millikan and his associates have also shown that as the higher temperatures,
at which ordinary thermionic emission begins, are approached, the strong field
emission does become sensitive to temperature and finally blends into the

thermionic.

* Schottky, © Z. f. Physik,” vol. 14, p. 80 (1923).

+ Millikan and Eyring, ‘ Phys. Rev.,” vol. 27, p. 51 (1926).

1 Millikan and Lauritsen, * Proc. Nat. Ac. Sci.,” vol. 14, p. 45 (1928).
§ 0. W. Richardson, ‘ Roy. Soc. Proc.,” A, vol. 117, p. 719 (1928).

| Houston, ‘ Z. . Physik,’ vol. 47, p. 33 (1928).
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On the strength of these facts they suggest that perhaps there may exist 4
general formula for the current

L= A (T + cF)? g-0i0+et), )

valid over wide ranges of temperature (T) and field strength. This formulg
is, of course, correct for large T and small F and also for large F and small T,
At intermediate strengths it does not appear to have been tested quantitatively
and therefore yet awaits experimental and theoretical investigation. On one
other deduction, however, they lay great emphasis, and this we find liable to
mislead. They assert that a distinction should be drawn between the electrons
which can function as thermions and the ordinary conduction electrons which
yield the emission at great field strengths and are absolutely independent of
the temperature.

In this paper, therefore, we extend the results of Nordheim* to include the
effect of an external field using the same methods and the same underlying
picture of the metal (Sommerfeld’s). We establish the formula (2) independent
of T at low temperatures in agreement with experiment. We fail to find any

theoretical justification for (3), though, of course, some justification may exist.

Combining our results with those of Nordheim we show that Sommerfeld’s
picture of a metal yields the formula both for strong fields and for thermionic
emission. A single set of free or conduction electrons distributed according
to the Fermi-Dirac statistics suffices for both purposes. It is for this reason
that we take exception to the statements of Millikan and Lauritsen recorded
above. We gladly admit that everything they say can be reconciled with our
theory, but only by a forced interpretation of their statements which we
consider lay the emphasis wrongly.

Our calculations are closely allied to some recent work by Oppenheimert on
the hydrogen atom in an external electric field. Oppenheimer notices that
his work has a bearing on the emission of electrons in strong fields, but he does
not pursue the matter further. For our purposes the calculations can be shorn
of irrelevancies and made so much simpler that it is worth while attacking the
problem de novo.

§ 2. The Refleciion of Electrons at a Potential Jump when an Electric Field
acts on one Side.—In the paper quoted Nordheim has calculated exactly the
reflection or emission coefficients for electrons of given energy W incident from
the left on a surface at which their potential energy is suddenly increased by

* Nordheim, ‘ Z. f. Physik,’ vol. 46, p. 833 (1928).
1 Oppenheimer, ‘ Phys. Rev.,” vol. 13, p. 66 (1928).
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nt C, fig. 1 (1). The problem is one-dimensional, and W is the kinetic
';m_amou ) -

it of the electron’s motion normal to the surface of the metal. The rest
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i ité kinetic energy is irrelevant to the problem. He has shown further that
":he results are only slightly modified by modifying the form of th.e step., e..g.,
by slightly rounding oft the corners. We shal% here calculate in a s1.mﬂar

the emission coefficients for electrons of given energy Wh.en a umfor?n
L 1 field acts, so that the potential energy of the electrons is as shown in
eXtelmﬁ) The co;ner at the top will, of course, really be rounded off in both
:ﬁc&gs-es (]:y' the image effect. This will seriously alter the emission ooefﬁcienvt
for non-zero external field for electrons of incident energy nearly equal to W.
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7 exist, We shall see, however, that this modification is unimportax}t in cale.ulating th;
rfeld’s ‘strong field emission at ordinary temperatures. T}'le potejntlal energies rounde
mionic off by the image effect will be somewhat as shown in fig. 2.
ording
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sorded ¢
th our ‘_\j;J i
ch we
. ii)
T on ® Fic. 2. (
i that
> does In order to study the emission through the potential energy step of fig. 1
shorn ‘we have only to solve the wave equations '
B Py (W —ChFa)y =0 (>0, S
da?
Field Ph oWy =0 (2<0), ®)
y the da?
from subject to the conditions thati¢ and d/dz are continuous at z =0 and that
d by

for >0 { represents a stream of electrons progressing to the right only. The

. d 'b o
- Constant « is defined by 2 = Srtn B2, (6)
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“ ( At all ordinary and low temperatures practically all the electrons are so distri.
' | buted according to Sommerfeld’s formula (see equation (19)) that W <C, so
| that we have to discuss the case in which we pass through a zero of the
coefficient of . ‘

|

I Write

| ; I -
t \

) (R =y
then equation (4) becomes

d*y

E@‘é = y“l’ =0, »
of which the solutions are expressible in terms of Bessel’s functions™ of order , :,

b=y Ty (B9 (1)

We require that solution which for large x (i.e., y) represents a wave travelling
to the right. Therefore {

I $=+/y HY (39), (8)
where H® denotes the second function of Hankel. For large y |

CAFL D g

b () e ®

Observe that as y —> @

(W—C+Fz)} o’
where A, A’ are constants and v is the velocity of the electrons. Hence the ;
density of the electron stream behaves as it should. :

For z < 0 we take

We have now to study what happens to H(f) as we pass back to z =0
from large o through the zero of y. There is no real ambiguity, for ¢ is repre-
sented by a power series of integral powers of y. 1In order, however, to use

the normal asymptotic expansion for Hf) (24*), which is valid in the range

— 2m <arg (1) <7,
~ we must take for negative y

* Tor all formulee used here involving Bessel’s functions, see Watson, ¢ Bessel’s Function_s.“
They are easily found so that it is unnecessary to give detailed references. :
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> distri-
<G s0
of the

and this convention we shall use throughout. At 2 = 4 0 we then find

0 — W R e — W
= (S e 1 (e e/ B (S5 ).

@)0:%<C FW> et (k2R )} H()( —VHQK\/F(O;“))

_ <C___—‘1; W\f (CE) i (C — W)t H ( —iri ?K\/FK (C— WY ) (12)

These values are to be equated to the values of ¢ and 0/dx for = — 0 derived
from (10).

Since the only quantity of physical interest is |a|2/|a’ |2, which determines
the emission coefficient, we can simplify the resulting equations by omitting
any common factor real or complex which is thereby absorbed in both «

order 4,
(M 3
avelling

(8) . and o’. We shall write also
ey (S = g
3 K F »

50 that Q is real and in practice large. Further,

daP

H(“)" —5m o ;‘rrL
(i Q) = e

(7 Q).

The equations of continuity of ¢ and d{/dz can therefore be reduced to

mee the N
nee ey ot =W (CZV HP Q) (19)
F
] —atd
(10 Wt O
(YT e + S evE B )] 0

yx =0 .
By the definition of the functions of Hankel we can express H(f) (e7™Q) in
terms of the real functions T.; (Q) by the equation

s Tepre-
', to use

1ge 1
Ol Q) = — rI 1(Q) + e T (Q))- (15)
- Let us now write
L . . I,...é + 6§wi II% 16
OC+7IB"— I_%—{—C‘}"il.}.’ ( )
nctions.

‘Where o and § are real. Let us also write D (W) for the fraction of W electrons
VOL. CXIX.—A. N
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penetrating the boundary peak and emerging under the influence of the external
field F. Then by solving (13) and (14) and using (15) and (16) we find

_lalr—la
[al®

b (W)

(S W‘)% P

- C—Wy C—W B} 1 { C_wWy: C—W }
1 1 el
{W < 7t v W T aw b )t VE
Tt remains to calculate o and B. It is easily verified that

e V3 LI —T4'1)
2 (I + L2+ 2L
The numerator is the Wronskian of Bessel’s equation of purely imaginary

argument and we have exactly

2 sin 3w
=Q

LIy — 1,1 =

For the denominator we can use the asymptotic expansion, Q being large. The

denominator is
Jsin 3B @ Q)P § 25

so that
B €23,
In evaluating « we can use asymptotic values throughout and find « = 1.
Thus with sufficient accuracy
I/C == W>% -2Q
4 T 1/ Fe

k/O—W> 1 9 O—W>"} C—W }2-
Wi ) Em ) tyE
By considering the relative numerical order of the various terms in the denomi-
nator it is ab once found that those independent of « are dominant. ~There-

fore we find with sufficient accuracy on inserting the value of Q

amn

D (W) =

D (W) = 4 {W (CC— W)t 6—4K(C-W)'3/3F. (18)

§ 8. The Complete Electron Emission from a Cold Metal—The number of
electrons N (W) incident on a surface of unit area per unit time with a kinetic
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ergy W normal to the surface has been evaluated by Nordheim* according
+o Sommerfeld’s theory. He finds

| A dremkT + /W —
N L7 L |

N (W) 73 \—7T },
where )
L

external
1d

(19)

— dy
)=, (20)

Tl
1o
<

Ko and . is the usual parameter of the electron distribution in the Fermi-Dirac

statistics equivalent to the thermodynamic partial potential of an electron.

Hence the current I is given quite generally by

’ 4 mekT (© W — p.>

1= D (W)L aw, 21
e |, DN (21)

where ¢ is the electronic charge. For all low and ordinary temperatures the

integrand of L {(W — p)/&T} is only sensible when (W — u)/AT 4~y <Oand is

then unity. Thus at such temperatures a sufficient approximation to

FI L {(W — w)/kT} is w — W when W <y and otherwise zero. The reason

for the sufficiency of this approximation is that in actual cases W and y are

aginary

in general very large compared with kT. Since y is considerably less than C,
we may then use (18) for D (W) and find

__16mme
3

e. The

“wh C—W) (p—W) o~ 4k (C—WYi3F Ty

0

I=

Since the exponent in the integrand is still very large for the largest values of
W, it is easy to evaluate this integral to a sufficient approximation. We find,
using (6) and putting C — p =y, that

1

. € “‘j er —4,«)(2‘/31“. (21)

T Omh (y 4+ )

17 The y of this equation is necessarily and exactly the thermionic work function.f
- If, for convenience of discussion, we express I in amperes per square centi-
metre of emitting surface, u and y in volts and F in volts per centimetre, and

lenomi- insert numerical values for the other constants, we find

There- I1—6-2 % 107 _i___ine—z'l""WX%/E, (22)
o+

A We are now in a position to compare the theory with the experimental facts.
We_} see at once that 1 is of the correct form by comparison with (1) or (2). We
have not calculated explicitly the temperature effect on (22), but it is easy

(18)

1ber of
kinetic

* Nordheim, loc. cit., formula (11).
1 Fowler, ¢ Roy. Soe. Proc.,” A, vol. 117, p. 549 (1928)..
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to see that it is very small at ordinary temperatures. Formula (22) refers
strictly to the limit T = 0, but it is a valid approximation so long as, let us say,
w/kT is very large. Now wis of the order of 5 volts and T is 86 X 107°T
in the same units. This is sufficient to guarantee the observed independence ]
of T for all ordinary temperatures. _

The form of the exponent */F is interesting, but there seems no possibility ]
at present of any experimental test of the form.

We come now to the absolute value of the exponent. For the metals com-
monly experimented with we may take y* = 10, and we can take the exponen-

tial factor nearly enough to be 1070/,

This will make the emission begin
to be sensible for fields of rather more than 107 volts/cm. The emission would
be already very large for fields of the order 10® volts/cm. These values are
higher than those commonly derived from experiments, which are commonly
taken to indicate measurable emission for values of F about 10° voltsjem.
The absolute determination of F is, however, very difficult, owing to the very
large effect of minute surface irregularities or peaks near which we shall find
larger values of F than those derived from the geometry of the apparatus.
There is also the possibility of sensitive spots on the surface with a reduced
value of 3. An investigation by Rother* seems to support this view, for
he finds that after very careful preliminary heat treatment an F as large as
107 volts/em. is required to extract a reasonable current. It seems fair to
conclude that the phenomenon of electron emission in intense fields 18 yet
another phenomenon which can be accounted for in a satisfactory quantitative
manner (at least in broad outline) by Sommerfeld’s theory.

§ 4. Additional Caleulations.—1t is not difficult to show generally, by com-
parison with Jeffreys't asymptotic solution of a similar equation, that for
values of W not too near C the exact form of the potential peak and the rounding
off at the top will not seriously affect the emission coefficient D (W). Our direct
calculation for this very simple case is therefore sufficiently typical. For the
Q of an exact solution has to be replaced by A

Kr (V — W)t da,

where V is the potential energy of the electron at any point and o and 7y
are the points at which V — W vanishes. The integration range is shown in
fig. 3. Tt is at once clear that, provided the shaded area is reasonably large,
modifications in the contour near the peak are unimportant.

* Rother, ¢ Ann. der Physik,” vol. 81, p. 316 (1926).
1 Jeffreys, ¢ Proc. Lon. Math. Soc.,” vol. 23, p. 428 (1924).
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) refers We pass on to an outline of the calculations necessary to establish the form

us say, of the combined thermionic and strong field emission. In the first place, if

10—°T S
andence c %
/
ssibility "L/
F1a. 3 ,

ls com-
tponen- W >, the calculation of D (W) can be carried out exactly as in Nordheim’s
n begin, aper, and we find
\ would | D (W) = W (W — O . (23)
- [WE+ (W — C)'P + [F /(4 {W — C})]
amonly From this formula it is easily verified that the term in I is quite unimportant
1bs/cm. in ordinary cases, and the emission can be calculated as if F=0.
ae very Near the peak itself, when W is nearly equal to C, neither formula (18) nor
all find (23) can be strictly used, and D (W) will depend essentially on the exact form
iaratus. of the potential energy curve. All we can say at present is D (W) = 0 when
educed W = V,.x, the maximum ordinate, at which in general the tangent will be
ew, for horizontal, and that for other neighbouring values of W D (W) is of the order of §.
arge as We can now break up the range of integration of W in the general formula
fair to (21) into four parts as in fig. 4. We can see at once that of the total emission
is yet -
sitative "
ST
hat for J %Ii
unding -
v direct
for the Fie. 4.

T, and Ty represent fairly accurately the purely thermionic and purely strong

 field emission respectively. In I. (which, however, is unimportant), a more

accurate value of L {(W — p)/kT} must be used than in Iy, and both I.
and fﬂ‘ and Iy, depend essentially on both T and F. Calculations for the field of
S 1 fig. 1 are not of sufficient importance to give in detail, but they give no combined
7 large, result of the form (3) nor any grounds for expecting such a result for any natural

modification of the field.
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