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Low-temperature photoluminescence
studies of In-rich InAIN nanocolumns
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High-quality In,Al; N (0.71 <x;,<1.00) nanocolumns
(NCs) have been grown on Si(111) substrates by rf-plasma-
assisted molecular-beam epitaxy (rf-MBE). Low-temperature
photoluminescence (LT-PL) spectra of various In-rich InAIN
NCs were measured at 4 K and single peak PL emissions
were observed in the wavelength region from 0.89 pm to
1.79 pm. Temperature-dependent PL spectra of Ingg,AlgosN

1 Introduction InAIN alloys are attractive for poten-
tial applications to devices such as light emitters and detec-
tors, working in the wide photon energy range from
0.63 eV to 6.2 eV, viz., from infrared to ultraviolet [1—4].
As the lattice parameter of In,Al; N can be matched
to that of GaN at x=0.15-0.18, the lattice-matched
GaN/InAIN system has been employed for the fabrication
of distributed Bragg reflectors (DBRs) [5]. For high-In-
composition InAIN, however, few studies have been repor-
ted [6—8] and the poor optical quality of the InAIN due to
its immiscibility caused almost no photoluminescence [9,
10]. Moreover, the growth of self-organized bottom-up na-
nocrystals is well known as a method of achieving high-
quality crystals with ease [11, 12]. In addition, InAIN ten-
ded to grow a columnar structure although the growth was
aimed at a film [13, 14]. Therefore, it is reasonable to grow
a columnar InAIN nanostructure by design. So far, we have
reported the growth of In-rich InAIN nanocolumns (NCs)
on Si(111) substrates by rf-MBE [15]. In this Letter, the
optical properties of the In-rich InAIN NCs are discussed
in detail on the basis of the LT-PL measurements.

2 Experimental section The samples were grown by
rf-MBE in the growth temperature range of 370—-500 °C
under nitrogen-rich condition; the composition of In was
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NCs were studied and the so-called “S-shape” (decrease—
increase—decrease) PL peak energy shift was observed with
increasing temperature. This shift indicates the carrier local-
ization induced by the In segregation effect and is different
from the anomalous blue shift frequently observed in InN
films and nanowires with high residual carrier concentra-
tions.
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controlled by changing the beam supply ratio of In to Al.
The details of the growth procedure are described in Ref.
[15]. Figure 1(a)—(c) show cross-sectional and top view
SEM images of In,Al; N NC samples with different aver-
age In contents of (a) 0.92, (b) 0.81, and (c) 0.71. The
amount of xj, was estimated by X-ray diffraction (XRD)
using Vegard’s law. The InAIN NCs were grown along the
c-axis, standing independently, having a diameter of 40—
130 nm and a length of 0.7—1.1 um. The PL spectra of
In,Al,_N (0.71 <x<1.00) NCs were evaluated at 4 K
under a cw Nd: YAG laser excitation at 532 nm. In the ex-
periment, a liquid helium cryostat was employed and the
signals were collected by off-axis parabolic mirrors fo-
cused into a monochromator and detected by a liquid-
nitrogen-cooled InGaAs array detector.

3 Results and discussion Figure 2 shows the 4 K
PL spectra of the In,Al, N NCs with different In composi-
tions, where the PL peak energies were 0.692 eV (1.79 um
in wavelength) for the x=1.00 sample, 0.954¢eV
(1.30 um) for x=0.89, 1.21 eV (1.02 um) for x=0.80 eV
and 1.39¢V (0.892 um) for x =0.71. The emission of
In-rich InAIN NCs covered the wide spectral region in the
optical communication wavelength range of 1.3—1.7 um.
The inset of Fig. 2 shows the dependence of LT-PL peak
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NCs [(a) x = 0.92, (b) x = 0.81, and (c) x = 0.71].

energy on xp,. The peak energies were fitted using the ex-
pression

E,(x) = xE,(InN) + (1 - x) E,(AIN) = bx(1-x). (1)

Here, we used the low-temperature band gap energy of
AIN (6.25 eV) [16]. The best-fitted curve, which is shown
in the inset of Fig. 2, was achieved with the bowing pa-
rameter b of 4.08 eV. This b value lies between 3.0 [17]
and 4.7 eV [18] obtained from the optical absorption data,
and is also in good agreement with the first-principles
calculations of 3.46—3.67 ¢V [19] and 4.09 ¢V [20]. The
LT-PL spectral linewidth of InAIN NCs is plotted using
open triangles as a function of In composition in Fig. 3, in
which the data of InAIN [5, 21—-24] and AIN [25] films re-
ported in the literature are also included. The solid curve
was obtained from the alloy broadening model [26—29]
expressed as

dE _
o, =0.41-2~/2In2 - *1=x)

k Vexc

where dEy/dx is the variation of the band gap energy
of InAl_N and k=6/(3/2-3%a’cy) is the cation
density in a wurtzite lattice, calculated using the lattice
constants ag) = 0.3112(1 —x) + 0.3545x and ¢, = 0.5703x
+0.4982(1 — x) [16]. Ve = (4/3) mrj indicates the exciton
volume; the Bohr radius of an exciton rg is calculated us-
ing the dielectric constant g(x) = 8.0x + 6.3(1 — x), the elec-
tron effective mass m/my=0.085x + 0.48(1 —x) and the
hole effective mass my/my=0.42x + 3.3(1 —x), changing
from 6 nm in InN to 0.8 nm in AIN. Note that we assume a
relatively small dielectric constant and a relatively large
effective mass for InN to fit the linewidth of Ing;3AlysoN
reported in Ref. [5]. The calculated alloy broadening
value is maximized at x=0.18, while the experimental
PL-FWHM value decreases monotonically with x. The
difference between the calculated and experimental
PL-FWHM values is much larger in the xj, region lower
than 0.18, while a certain discrepancy occurs in the xj, re-
gion higher than 0.18. Thus, the experimental spectral
broadening cannot be explained only by the statistically
random alloy disorder, suggesting the existence of an addi-
tional inhomogeneity in the In composition, like wire-to-
wire and interwire In fluctuation observed in InGaN nano-
wires [30].
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Figure 2 PL spectra of In,Al; ,N NCs at temperature of 4 K. The
inset shows the variation in PL peak energy as a function of In
composition x (0.71 < x < 1.00).

The InggAlgosN NCs were grown at temperatures of
480 °C, 460 °C, and 420 °C under nitrogen-rich condition. A
high V/III ratio was applied for high growth temperature to
suppress phase separation. The average diameter, length and
density of NCs at 480 °C, 460 °C, and 420°C were
(43nm, 0.9 um and 2.5 x 10’ cm™), (80 nm, 1.1 um and
2.7%x10° em?) and (63 nm, 0.7 um and 6.5 x 10° cm ™), re-
spectively. With increasing growth temperature, the PL peak
energy decreased remarkably from 0.972 eV to 0.775 eV
and the PL-FWHM at 4 K decreased from 158 meV to
93 meV, although all the three samples had the same In con-
tent. The red shift in PL peak energy indicates the decreased
residual carrier density and the suppressed Burstein—Moss
band filling effect. The narrowing in the PL linewidth ob-
served with increasing growth temperature suggests the sup-
pressed spatial In composition inhomogeneity.

The temperature dependence of the PL spectrum of the
Ingg,AlposN NCs grown at 480 °C was evaluated in
the range from 4 K to 300 K, as shown in Fig. 4(a). An
“S-shape” PL peak energy shift (decrease—increase—
decrease) was observed with increasing temperature; this
phenomenon has frequently been reported in Ga-rich
InGaN [31], InGaN/GaN quantum wells [32, 33] and
In-rich InGaN [34]. It has been explained in terms of band
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Figure 3 PL FWHM of In,Al; ,N NCs as a function of In com-
position x (0.71 <x <1.00). This figure includes the AIN and
InAIN film data reported by other groups.
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Figure 4 (a) Temperature dependence of PL spectra, (b) peak
energy, and (c) linewidth of Ing 9, AlgosN NCs grown at 480 °C.

gap shrinkage due to lattice dilation and carrier recombina-
tion dynamics using the model of band-edge carrier local-
ization caused by In compositional fluctuation. The PL
peak energy versus temperature plot is shown in Fig. 4(b),
where the solid line indicates the curve of the PL peak en-
ergy calculated using Varshni’s equation [35]:

2

aTl (3)
T+p
where Ep(0)=0.775¢eV, a=0.09 meV/K, and =535,
which are linearly interpolated between those of InN [36]
and AIN [16]. Note that the PL peak energy shifted basi-
cally toward the low energy side (red shift) from 0.775 eV
to 0.766 eV, having a small S-shape shift with increasing
temperature, contrary to the anomalous blue shift often ob-
served in InN films [3] and nanowires [37], which was caus-
ed by high residual carrier density (>6 x 10'®cm ) [38].
The linewidth of the PL spectrum increased monotoni-
cally with respect to the temperature [see Fig. 4(c)], simi-
larly to that observed in the case of an InGaN single quan-
tum well (SQW) emitting violet/blue light, which has a
localization depth smaller than that of the SQW emitting
green/red light [33]. The temperature dependence of the PL
linewidth was fitted using the formula [39]

7op

eh(uLO/kBT -1 >

EPL (T) EPL (0)

=y +y,T+ @)
where 7 is the temperature-independent component of the
linewidth and . and y, are the exciton acoustic-phonon
and exciton LO-phonon coupling constants, respectively.
The best fitted experimental curve provides the values
of 75=93meV, p.=130peV/K, and px,=129meV,
where the LO-phonon energy of InggAlggN is assumed
as fioo =76 meV, with a linear interpolation between
the values of InN and AIN. The obtained y,. value is
larger than those reported for GaN (28 peV/K) and AIN
(57 peV/K) [25], which indicates the dominance of acous-
tic phonon scattering in linewidth broadening with increas-
ing temperature, or the linear temperature dependence
similar to that observed for InN epilayers with relatively
low carrier densities (0.4—2.7 x 10'® cm™) [40].
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4 Conclusion We have performed LT-PL measure-
ments of In-rich InAIN NCs grown on Si(111) by rf-MBE.
Strong PL intensities were observed in the wavelength
range from 0.89 pm to 1.79 um at 4 K (0.71 < xp, < 1.00),
which covers the whole optical communication wavelength
range. The temperature dependent emission shift of PL
intensity was evaluated for Ingg¢yAljosN NCs grown at
480 °C. The PL peak energy shift, known as the “S-shape”
PL peak energy shift, was observed with increasing meas-
urement temperature, indicating carrier localization attrib-
uted to indium segregation. There was no anomalous blue
shift often observed in InN films and nanowires with high
residual carrier concentrations. The temperature dependen-
ce of PL linewidth was also investigated by using a widely
used theoretical model. It was found that acoustic phonon
scattering is a dominant factor of the linewidth broadening
with increasing temperature.
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