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Circularly polarized light is utilized in various fields ranging from 
3D displays to technologies involving effective spin sources in spintron-
ics (1) and information carriers in quantum computation (2), as well as to 
induce exotic quantum phenomena such as the Floquet topological state 
(3, 4). There is a strong demand for circularly polarized light sources 
having both compactness for achieving a high level of integration and 
electrical controllability of the polarization. However, currently available 
light sources are incapable of meeting these requirements; for instance, 
optical filters (composed of a polarizer and a quarter-wave plate) require 
mechanical movement to change the polarization, spin light-emitting 
diodes (LEDs) (5) do not work without an external magnetic field, and 
metamaterials (6) or chiral polymer LEDs (7) can produce only a fixed 
circular polarization with a specific material configuration. Circularly 
polarized luminescence from solids is known to be a consequence of 
direct-gap interband transitions of electrons from the conduction band to 
the valence band with a total angular momentum shift of ±1. Thus, in 
order to achieve electrical controllability of the polarization of the lumi-
nescence, the minimum requirement is that these transitions must be 
associated with a degree-of-freedom that responds to an electric field. 

Transition-metal dichalcogenides (TMDs), especially in the mono-
layer limit, is a promising candidate for such devices since two interband 
transitions are associated with not only the spin degree-of-freedom but 
also the momentum degree-of-freedom (8), which is indeed related to the 
electrical current. Monolayers of TMDs consist of a triangularly aligned 
transition-metal (typically Mo or W) plane sandwiched by two triangu-
larly aligned chalcogen (typically S or Se) planes. Each metal atom is 
surrounded by six chalcogen atoms, forming a trigonal prismatic struc-
ture (Fig. 1A). Monolayer TMD shares many properties with graphene-
like materials with different A- and B-site atoms in which inversion 
symmetry is broken (9). In monolayer TMD, electron and hole valleys 
exist at K and K’ points in the hexagonal Brillouin Zone, leading to a 
direct-gap semiconductor nature (Fig. 1B). Because the electronic states 
of the two valleys have different chiralities due to the inversion asym-
metric crystal structure, interband transitions at K and K’ points are al-
lowed for σ+ and σ- circularly polarized light, respectively (valley 

circular dichroism) (8). These features 
are suppressed in bulk single crystals 
because the inversion symmetry is re-
covered whilethe band structure change 
from direct gap to indirect gap (10). 

Circularly polarized photolumines-
cence (PL) from TMDs has been exper-
imentally observed for monolayers (11–
15) and for biased bilayers (16) when 
they were pumped with circularly po-
larized incident light. Here, we report 
current-induced circularly polarized 
electroluminescence (EL) from p-i-n 
junctions in monolayer and multilayer 
tungsten diselenide (WSe2) (17). More-
over, the polarization was found to be 
electrically controllable by changing 
the current direction. 

P-i-n junctions were formed using 
an electric-double-layer transistor 
(EDLT) structure with WSe2 thin flakes 
having thicknesses of 0.6–2.6 nm as the 
channel material (18). Since TMD-
FETs show ambipolar transistor behav-
ior (19–24), controlling the potential 
difference between the gate, source, and 
drain electrodes enables simultaneous 
accumulation of both electrons and 

holes inside the channel (Fig. 1C), leading to light emission from the p-i-
n junction, as demonstrated in organic ambipolar FETs (25, 26). EDLT-
induced carriers in the channels can be electrostatically fixed when the 
device is cooled down under such bias conditions, forming a bias-
independent p-i-n junction (Fig. 1D) (19). 

EDLT has an additional benefit of eliminating the strong limitation 
of monolayers (27–30). Naively thinking, multilayers (bulk material) are 
not suited for realizing circularly polarized EL. The restored inversion 
symmetry suppresses valley circular dichroism. In addition, multilayers 
are indirect-gap semiconductors, where the conduction band minimum 
and the valence band maximum locate at T and Γ points, respectively 
(10). EDLTs can overcome these difficulties. First, the gate electric field 
breaks the inversion symmetry (16, 24). This recovers the peculiar fea-
tures of monolayers, including valley circular dichroism (16). Second, 
because EDLTs produce an electric field one order of magnitude strong-
er than conventional FETs do, drastic band modulations occur: the va-
lence band top is replaced by K points, and the energy difference 
between T and K points of the conduction band gets smaller (24). By 
combining these band structure changes with the large carrier accumula-
tion capability of EDLTs (~1 × 1014 cm−2), not only holes but also elec-
trons can populate the K points. Therefore, multilayers under an ELDT 
operates in a similar manner as monolayers (24). 
Typical transistor characteristics of our WSe2 EDLTs are displayed in 
Fig. 1E (transfer curve) and Fig. 1F (output curve), showing clear ambi-
polar operation. The carrier density and carrier mobility are estimated to 
be of the order of 1013 cm−2 and 102 cm2/Vs, respectively. As demon-
strated in Ref. 19, we controlled VG and VDS to drive our transistor into 
the ambipolar region in the output curve measurement (Fig. 1G, red 
curve) and cooled it down to 160 K to freeze the gate dielectric, forming 
a bias independent p-i-n junction. IDS showed a contrasting response at 
160 K, with a clear rectifying operation (Fig. 1G, blue curve). The recti-
fication was further confirmed by a log-scale plot shown in Fig. 1H. 

When the WSe2 p-i-n junction was forward biased, clear EL was ob-
served, as shown in Fig. 2A. To enhance the EL efficiency, all spectra 
were recorded at 100 K unless otherwise specified. Two features should 
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Tungsten diselenide (WSe2) and related transition metal dichalcogenides (TMDs) 
exhibit interesting optoelectronic properties due to their peculiar band structures 
originating from the valley degree-of-freedom. While the optical generation and 
detection of valley polarization has been demonstrated, it has been difficult to 
realize active valley-dependent functions suitable for device applications. We report 
an electrically switchable circularly polarized light source based on the material’s 
valley degree-of-freedom. Our WSe2-based ambipolar transistors emit circularly 
polarized electroluminescence from p-i-n junctions electrostatically formed in 
transistor channels. This phenomenon can be explained qualitatively by the 
electron–hole overlap controlled by the in-plane electric field. Our device 
demonstrates a route to exploit the valley degree-of-freedom, and the possibility to 
develop a valley-optoelectronics technology.  o
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be emphasized. First, all EL spectra showed net circular polarization. 
The degree of circular polarization, defined as η = (I(σ+) – I(σ-)) / (I(σ+) 
+ I(σ-)), reached as high as 45% (device #1 at 40 K), which is compara-
ble to that of PL from monolayers (12–14). Second, such circularly po-
larized EL was clearly observed even in multilayer samples (devices #2, 
#3, and #5), as explained above (18). The EL intensity increased with 
increasing bias voltage (Fig. 2B). The total intensity depended linearly 
on the forward current (Fig. 2C), whereas η and the external quantum 
efficiency (EQE) showed smaller current dependence (Figs. 2, D and E). 
The EQE value depended on the samples and ranged from 2×10−5 to 
6×10−4, which is larger than that of the emissions from contact Schottky 
diodes (27), possibly due to the location of the emission zone in our 
devices, which is away from the contacts. 

Figure 2A indicates that the EL spectral shape depended on the sam-
ples, and all of them can be considered as a superposition of exciton 
emission around 1.66 eV (by comparing with the PL spectrum in Fig. 
2F) and trion emission at lower energies, which have been observed in 
PL from electrostatically charged TMDs (14, 15, 31). The variation of 
the trion emission energy can be ascribed to the difference in doping 
concentrations among the samples (14). The emission type is expected to 
be controlled by carrier injection into the i-region (18). 

Figure 3A shows the EL spectra of a single device for two opposite 
current directions. Because the ionic liquid freezes at 100 K, the source 
and drain biases were exchanged after the device was warmed up to 220 
K, followed by another cooling before the next EL measurement (32). 
Importantly, the circular polarization was reversed when the source–
drain bias was exchanged. This is the first demonstration of electrical 
control of circularly polarized luminescence. The EL spectral shape was 
also changed from an exciton-dominant one to a trion-dominant one, 
possibly due to the difference in doping profiles between the two bias 
directions (18). 

According to the band structure of monolayer TMDs (Fig. 1B), cir-
cularly polarized luminescence only occurs when K and K’ valleys make 
inequivalent contributions. Here, we suggest a possible model from the 
viewpoint of semi-classical transport theory (33), which gives infor-
mation of the carrier distribution under an electric field. Under a static 
electric field, the hole distribution shifts parallel to the field in the mo-
mentum space, whereas the electron distribution shifts to the opposite 
direction. As a result, the electron–hole overlap shown in Fig. 3B differ 
between the two valleys (valley overlap polarization, VOP) because the 
carrier distributions in TMDs are not isotropic due to trigonal warping 
(34). VOP provides an intensity difference in the luminescence from two 
valleys, leading to circularly polarized luminescence. The above scenar-
io is widely applicable to TMDs which have two isolated anisotropic 
valleys with different chiralities. In addition to the observations in WSe2, 
circularly polarized EL has also been observed in MoSe2 and MoS2 (18). 

A numerical calculation was performed based on this model (18). To 
understand the carrier distribution in the momentum space, we combined 
the Boltzmann equation (33) and the charge distribution equation for a p-
n junction (35) (for simplicity, a p-n junction model was used rather than 
a p-i-n junction). The effects of excitons and trions were ignored since 
we are only interested in the asymmetry. As shown in Fig. 4A, the band 
dispersions, especially that of the valence band, is anisotropic due to 
trigonal warping (34). When an in-plane electric field is applied, the 
charge distribution is shifted from its equilibrium position (Fig. 4B). 
Importantly, the consequent electron–hole overlap differs between K and 
K’ points giving rise to VOP. Simulated luminescence spectra from K 
and K’ points, corresponding to σ+ and σ-, respectively, are shown in 
Fig. 4C. The obtained polarization is qualitatively consistent with the 
experimental results. 

Since trigonal warping is related to the crystal symmetry (Ĉ3), this 
scenario indicates that η and the luminescence intensity are quite sensi-
tive to the relative angle between the crystal orientation and the field 

direction, exhibiting three-fold symmetry with respect to the rotation of 
the electric field direction, as clearly shown in the simulated results in 
Fig. 4D. Hence, if the current path is not perpendicular to the contact, η 
do not completely reverse its sign when the electrodes are exchanged as 
shown in Fig. S6. On the other hand, this feature will enable fine tuning 
of η by using a multi-terminal device to apply biases in directions that 
are non-parallel to the p-i-n junction (Fig. S7). To maximize the lumi-
nescence intensity, the degree of polarization (value of η), and the polar-
ization tunability (tunability of η), it will be necessary to improve the 
device fabrication processes to accurately align the crystal orientation 
and electrode configuration. 

Circularly polarized EL is a direct indication of the breakdown of 
valley symmetry. In our experiment, this was induced purely by the elec-
tric field, and we had to go beyond linear response theory to understand 
this phenomenon; for example, we were not able to explain this by the 
valley Hall effect (8). Therefore, we proposed a model that incorporates 
non-linear processes from the carrier distribution shift which becomes 
asymmetric due to trigonal warping, leading to VOP. 

Owing to their spin-valley coupled band structure (8), TMD-based 
spin LEDs can also exhibit circularly polarized EL. However, such de-
vices cannot work without an external magnetic field (1). Our results, on 
the other hand, provide a new direction in the quest for electrically 
switchable circularly polarized light sources, and extend the functionali-
ty of valley-based optoelectronics. 
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Fig. 1. Electric double layer transistors in action. (A) Crystal structure of monolayer TMD. (B) Illustration of the band structure of 
monolayer TMD. (C) Device structure of TMD EDLT under ambipolar charge accumulation. (D) Schematic band structure of EDLT-
induced p-i-n junction under equilibrium. (E) Transfer curve (IDS vs. VG) of monolayer WSe2 EDLT. (F) Output curve (IDS vs. VDS) of 
WSe2 EDLT. (Inset) Typical optical micrograph of the device. (G) I–V characteristics of WSe2 EDLT at 220 K and 160 K, which are 
higher and lower than the glass transition temperature of DEME-TFSI, respectively. Illustrations show charging status at 220 K. (H) 
Log |IDS| vs. |VDS| plot of the blue curve in G. 
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Fig. 2. Circularly polarized electroluminescence. (A) Polarized EL 
spectra from five devices. Spectra of device #1 were measured at 40 K. 
(Inset) Optical micrograph of device #2 and CCD image of EL. The yellow 
dotted curves denote WSe2 thin flakes. (B) Voltage dependence of EL 
spectra of device #5. (C) Current dependence of total EL intensity 
extracted from Fig. 2B. (D) Current dependence of EL polarization 
extracted from Fig. 2B. (E) Current dependence of external quantum 
efficiency extracted from Fig. 2B. (F) PL spectrum of monolayer WSe2 
pumped by a He-Ne laser (1.97 eV). 
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Fig. 3. Electrical control of circularly polarized emission. 
(A) Circularly polarized EL spectra from device #4 for two 
opposite current directions schematically indicated in the 
upper illustration. Lower illustrations represent the 
contribution to EL from two valleys. (B) Schematic 
illustrations of electron and hole distributions shifted by the 
electric fields originating from the built-in potential. Red and 
blue lines represent contours of electron and hole 
distributions, respectively. Orange and green areas represent 
the electron–hole overlap for K and K’ valleys, respectively. 
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Fig. 4. Simulation of circularly polarized electroluminescence. (A) Schematic band structure around K point. kx and ky are 
measured from K point. (B) Color plot of charge distribution for electron at conduction band (fc) and hole at valence band (fv) around 
K point. Dotted lines denote kx = 0 and ky = 0. (C) Simulated EL spectra from K point (σ +) and K’ point (σ –). (D) η vs. electric field 
direction. The angle θ is measured from the kx direction. VOPs are shown in top illustrations for three electric field directions along 
Γ-K (θ = 0°), Γ-M (90°), and Γ-K’ (180°). 


