J. Am. Ceram, Soc., 74 [10] 2630-33 (1991)

Journal

The Preference of Silicon Carbide for Growth in the Metastable

Cubic Form

Volker Heine*!

Max Planck Institut flr Festkérperforschung, 7000 Stutigart 80, Federal Republic of Germany

Ching Cheng* and Richard J. Needs

Cavendish Laboratory, Madingley Road, Cambridge, England CB3 OHE

A paradox is discussed concerning the growth of SiC poly-
types from the vapor or the melt, based on recent ab initio
quantum calculations of the relative energies of several poly-
types in bulk. Why does the cubic (3C) structure grow in
preference to all others, although the calculations indicate it
is not the stable phase at any temperature? This can be ex-
plained from the calculations, with some further approxi-
mations, as due to the constrained equilibrium when adding
one atomic double layer at a time to the growing crystal in
the hexagonal direction without allowing rearrangement of
the lower layers. The differing roles of donor and acceptor
impurities are also discussed, with donors being found to
favor the cubic structure. [Key words: silicon carbide, crys-
tal growth, crystal structure, calculations, stability.]

I. Introduction

HE purpose of this paper is to discuss the paradox of why

SiC grows in its metastable cubic phase. Why does it ap-
pear not to crystallize directly into the stable structures, one
or other of the (2)/3) family of polytypes (in the Zhdanov'
notation)? We will discuss this question in the light of some
recent quantum-mechanical energy calculations.”™ Our treat-
ment may be the first application of such calculations to a
question in crystal growth.

As is well-known, SiC exists in many polytypes, namely the
cubic zinc blende structure () (or 3C}, the wurtzite structure
(1) (2H), and the polytypes (2) (4H) and (3) (6H) with many
intermediate phases such as (23) between these last two. All
the structures consist of nearly identical SiC atomic double
layers, each of which can be stacked in two orientations,' des-
ignated as ¢ = =1, on the laycr below (Fig. 1). Recent very
careful quantum-mechanical calculations®™* have computed
the relative energies of the main polytypes with the results
shown in Fig. 2. We shall not be concerned here with the very
small (free) energy differences between (2), (3) and their inter-
mediate polytypes which have been discussed elsewhere:™”’
for present purposes we treat the whole (2)/3) family of poly-
types as having necarly enough the same (free) energy. The
main point of Fig. 2 is that the cubic (w) and wurtzite (1)
structures have significantly higher energy than the (2)/3)
polytypes at temperature 7 = 0 K, and the phonon free en-
ergy® at higher 7 and the small relaxations of the interplanar
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spacings® do not alter that picture. Incidentally, Fig. 2 also
shows that the overall energy scale in SiC is similar to that for
Si: the collapse of all the energy differences is not the origin
of polytypism in SiC (unlike ZnS*). The energy differences in
Fig. 2 include the effects of relaxation of the interlayer spac-
ing from the cubic value which occurs in the noncubic poly-
types.® We should point out for readers not familiar with such
calculations that their validity has been widely accepted when
applied to energy differences between similar structures, e.g.,
the forces giving phonon frequencies which can be checked
by experiment.® There seems no reasonable doubt that neither
the cubic nor the wurtzite structure is ever the stable phase of
perfect pure SiC. This is consistent with modern experiments
which indicate that (3) is the stable form at high 7T (see, for
example, Refs. 10 to 12 and other authors cited there) and
probably (2) at low T with calculations suggesting some other
intermediate polytypes being stable phases in between.”’
(However see Ref. 13 for some contrary indication.)

The paradox is that SiC appears to prefer to grow in the
cubic form, more than in any other, in spite of the fact that
this is never the stable structure. The cubic form is so com-
monly observed that in the past it was often supposed to be a
stable phase at some T: see, for example, Fig. 4 of Ref. 10 and
references there. More to the point, recent work indicates
that the cubic form is the structure that first grows whether as
crystals"™"" or whiskers,"* from the melt or from the saturated
vapor."” The more complex {2)A3) polytypes appear to form
subsequently by a solid-state transformation. Of course, crys-
tal growth is not an equilibrium structure. Nevertheless it is a
bit surprising. (We ignore the wurtzite form (1) which only
grows under unusual conditions," consistent with its having a
much higher energy as seen in Fig. 2.) We shall discuss this in
Section I and show that the quantum-mechanical calcula-
tions® do shed some light on this. They were carried out for

Fig. 1. Stacking of identical atomic double layers of SiC in two
orientations, labeled + and — according to the direction of the
bond in the layer.
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AU/mev  Si SiC AU/ keal mol™! functional theory, and the most careful sampling of k-points
in the Brillouin zone (see Refs. 2 and 3 for details). The val-

B (D ﬂO 3 ues of the parameters are™ (in meV per SiC pair of atoms)

' Jy =440, J,= =256, J;= 005 K = —045
10 - ( 1 > ! " 2 g K >

—402 (&)
5L (2) =— 101 These numbers have been refitted to the calculations of
(3)y— : Ref. 3, taking into account that the (1122) structure® was cal-
0 (o0) {OO)-—= (2>+(3) 0 culated only to a lower level of convergence than the other

Fig. 2. Computed relative energies AU for some polytype struc-
tures of Si and SiC. The structures (2) and (3) for SiC have equal
energy within the accuracy of the calculations. Left scale: meV per
SiC or Si; pair of atoms. Right scale: kcal/mol for SiC or double-
{nolqu(%r gi. (1 eV = 23 kcal/mol.) Results for SiC and Si from the J,
in Ref. 3.

bulk SiC structures and hence cannot be applied strictly to a
surface,” but if one just proceeds with the simplest obvious
assumptions one immediately obtains the result that thc ma-
terial should always grow in the cubic form.

As a separate issue we consider in Section III the differing
roles of electron and hole carriers from donor and acceptor
impuritics, based on ideas of electronic structure.”™ Electrons
are expected to favor the cubic structure, with holes having a
more minor effect. This is consistent with the observation
that nitrogen under high pressure can induce the transforma-
tion from (3 to (»)," nitrogen bcing a known donor."” Thus
stray donor impuritics may be an additional reason for the
growth of the cubic structure.

Neither of these stories constitutes a conclusive theory.
They arc put forward as plausible interpretations of the ob-
served facts in the light of recent computations and as pointers
to future avenues of research. They appear sufficiently prob-
ablc that at least one may say there is no mystery about SiC
growing in the mctastable cubic structure rather than the
equilibrium phase(s). Most theories and calculations are con-
structed with a particular end in view, and in choosing what
to look for one puts in to some degree the answer one wants.
However, the calculations cited here were all for the bulk
structures, with no thought about surfaces or crystal growth.
To that extent the prescent considerations are an unplanned
and unbiased byproduct. We put them forward herc because
the computational capabilities to follow up most of them still
lie some years in the future, c.g., the energy of a surface layer
in contact with a melt.

II. Growth of the Cubic Phase

As already remarked, we can consider an arbitrary poly-
type as consisting of identical SiC atomic double layers (here-
after referred to as “layers”). Each layer can be stacked in two
different orientations on the one below, which we designate
for the nth layer by the symbol o, = =1. For example, the
two common structures (o) and (3) arc as follows:

{0y = .. +++++... or

B) = bbb @

The energy of the structure can be written'”
U= Z[Eﬂ - JlUn(TnJrl - ]’.’Una-n+2 - -,3‘711(TU+3
n

- K(rno'nHO-IHZ(T/z-H] (2)

where interactions beyond the third nearest layer are ne-
glected. The values of the parameters were fitted to the total
encrgies computed for five different polytypes.” The calcula-
tions were carried out with modern norm-conserving pseudo-
potentials, a basis set of about 2500 plane waves for cach
Bloch electron wave function, the usual local density approxi-
mation for exchange and correlation in the context of density

polytypes. We have estimated the energy it would have at the
higher lcvel by adding in the average of the convergence cor-
rections found for the (1) and (2) structures, and then refitted
all the constants. They should be taken as superseding all
previously published values.” The differences from the pre-
vious values®* are part of the computational uncertainties.
The small quantities J; and K are very uncertain except for
order of magnitude and probably sign.

Let us apply this formalism (2) blindly to a semi-infinite
crystal (i.e., a crystal with a surface), leaving a critique until
later. We can write down from Eq. (2) the extra encrgy AU
(owew) for adding one new layer specified by o, on top of the
previous surface layer specified by o, without allowing the
underlying layers designated by o._,, o2, ctc., to change.
We obtain

AI-/(a-ncw) = E() - J*Uncwa'.\ (4)
where
J* =1 + Low, + oo, + Koo, (5)

as can easily be verified by inserting Eq. (5) into Eq. (4) and
noting o> = 1. Clearly the value of J* depends on thc orien-
tations of the underlying layers s — 1 and s — 2. The point
about Eq. (5) is that (with positive J;) the valuc of J* ranges
between the maximum and minimum values

Ji £ (o] + |15 + [K]) (6)
which with the values (3) become (in the same units)
J*(max) = 7.47, J*(min) = 1.33 (7

The crux of our argument is now as follows. We sec from
Egs. (7) that J* is always positive. Applicd to Eq. (4) this
means that the new layer will always go down oriented parallel
to the previous surface layer. Here we assume that the crystal
grows by adding ncw SiC atomic double layers in the ¢ (hexag-
onal) direction. We also assume a new layer orients itself such
as to minimize its encrgy, with the constraint that the under-
lying layers are not allowed to anneal to some new global
cnergy minimum. If the process is continued, clearly all layers
will have the same orientation and we have built up the cubic
polytype, irrespective of the original substrate or occasional
accidental misorientations. This is what we set out to show.
Our concept of the constrained cquilibrium is completely
analogous to the spinodal condition in Refs. 12, 20, and 21.

Is our argument a matter of the accident of numbers? Not
entirely. Let us start from the experimental fact of the exis-
tence of what we have called the (2)43) family of polytypes,
all of which we therefore supposc to have very ncarly the
same encrgy. This multiphase degencracy®™ occurs from
Eq. (2) when™

J[ +2]2—3]3—4K =) (8(1)

with

1
]j<—"2‘(./|—K), ]1>0 (8b)

The fact that SiC, rather than somc other compound, is near
this degencracy is of course a numerical accident (although it is
also part of a wider trend”?): it implies that conditions (8) are
ncarly satis{ied. If wc simplify the argument by dropping the
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small long-range corrections Jy and K, the conditions (8) re-
duce to

Ji+2hL,=0, J,<0 9)
We then have from expressions (6) and (9)
JEmin) = J, = |Jo| = (J, + 2J2) + |[Jo| = |/ (10)

Since the term in parentheses in Eq. (10) is ncarly zero from
the degeneracy condition (9), we deduce from Eq. (10) that
J#(min) is necessarily positive, leading to the growth of the
cubic form as argued before. The argument hinges on the co-
efficient of J, being 2 in Egs. (8) and only unity in Eq. (5).
This comes about because there are two second-neighbor in-
teractions across a boundary between + and — layers whereas
only one interaction is involved in adding a new layer at a
surface (Fig. 3). Incidentally we can relate the cnergy of the
cubic structure (o) in the same way to that of the polytypes,
say the phase (3). We have™!

2
Ueo) = UG) = =S (1 + 21> = 315 = 4K) = 45 = 4K

an

Again the term in parentheses is nearly zero if the condition
(8a) is necarly satisficd and the other two terms arc relatively
small longer-ranged corrections. Thus the frcc cnergy differ-
ence which would drive the reconstruction of the cubic phase
is significant, but on a smaller scalc relating to more distant
neighbors (J5, K) than the /* (5), (10) of order J, which con-
trols the orientation of the new layer. This is all just a general-
ization of the well-known multiphasc degeneracy (9) in the
ANNNI model.*

We see therefore that our conclusion about the growth of
the cubic phase is “robust” in the sense that it does not de-
pend critically on the numerical values of the J,. Indeed as
the argument of Egs. (8) to (11) shows, it does not depend on
calculations at all, although pcople might find it less convinc-
ing without the numerical backup. This is shown further by
writing from Eq. (10)

1
THmin) = Z-[EQ) = E@)] - [E(*) = EQ)]

+ [terms in J1, K] (12)

Thus J*(min) is inevitably positive if we belicve that E(1) lies
much higher than E(«) and E(3) and that the longer-range
couplings J3, J, are small compared with J,, J,.

Our argument can also be seen from a different perspec-
tive. The MAS-NMR data,” the relaxation of the interatomic
spacings,”*® the interplanar interactions,’ and the interatomic
force constants for atomic displacements® all bear witness to
the fact that the orientation of one atomic double layer exerts
a noticcable influence to a distance of about three double
layers. This is discussed in Ref. 17 and elsewhere »**% Qur
present argument in Egs. (8), (9), (10) rests on the fact that
2|J,| is approximately equal to Jy, i.e., that the orientational
intcraction between fourth-neighbor bonds is substantial and

r-——
et --- ....+--/(\+)
I | Lo J
@) (b)

Fig. 3. Competition between nearest layer J, interactions (curved
full line) and second nearest J» interactions {(straight dashed box):
(a) at a boundary between + and — stacking in bulk material, and
(b) when an extra layer (bracketed) is added at a surface on the
right. In case (a) there are rwo second-neighbor interactions in-
volved, but only one in (b}, thus accounting for the terms 2J; and J»
in Eqs. (8a) and (6), respectively.
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comparable to that between second-neighbor bonds. Thus we
see that the long-range nature of the effects manifests itself
also in connection with crystal growth. However, it is not
possible to draw a more direct or quantitative connection be-
tween, for example, the observed relaxation of the inter-
atomic spacings®** and the present energetic considerations,
except to say that both follow from our calculation of the
electronic structure.

We must now return to the two caveats. A careful analy-
sis'” of Eq. (2) shows that it is valid only for an ideal infinite
solid. For a slab of finite thickness or a semi-infinite solid
with a free surface there arc additional terms, first from the
existence of the termination and second from any relaxation
effects which there may be there. Shaw'”?® has derived the
terms due to the surface by considering a finite slab of four
layers and expressed them as cnergy differences between dif-
ferent stacking structures. Similar arguments can be applied
to our case of a semi-infinite solid. The termination correc-
tions are in principle nonzcro (they are small higher-order
differences'”*") even for an ideal unreconstructed surface.
However, in the case of growth from the mclt, the original
argument of Egs. (4) to (10) based on Eq. (2) again becomes
correct if we assume there is no surface reconstruction and if
we can approximate the effect of the liquid as the mean of all
possible solid structures of o = 1 and o = —1 layers: such an
averaged solid with its lack of orientation but local tetrahedral
bonding may not be a bad equivalent to the liquid. In growth
from the vapor, the main surface reconstruction energy does
not affect the discussion because it is a constant, moving for-
ward as cach layer is added. But the reconstruction can also
modify the value of J,, etc., for the surface layer.

III. Donor and Acceptor Impurities

The band gap of SiC is 2.39 ¢V for the cubic form and
3.1 = 0.1 for the (2)A3) polytypes." To see the effect of this
substantial difference of 0.7 ¢V we need to consider the band
offset between, say, cubic and (3) SiC in the ususal sense of
semiconductor heterojunctions.

The band offset has been calculated between the two ex-
treme forms (1) and (o) of SiC, with the result indicated sche-
matically in Fig. 4. There is almost zero offset between the
tops of the valence bands and almost the whole of the differ-
ence in the band gaps appears as a large offset between the
conduction bands. This is also consistent with the fact that
the state at T at the top of the valence band is exactly the
same for all tetrahedrally bonded structures in a chemical
tight binding picture.”® On the other hand, the conduction
bands arc more sensitive to the detailed structure'® and pre-
sumably account for the difference in band gap. Thus we ex-
pect Fig. 4 to represent qualitatively also the band offsets
between cubic SiC and the (2)A3) polytypes.

E X
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gap
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SO TR (= <)) Ay 1 (oo
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Fig. 4. Form of band offset between (1) and () forms of SiC (afer
Ref. 9). The valence bands line up with a very small offset of (b).
The case of (2)A3) polytypes and the (o) structure is assumed to be
similar with the difference of 0.7 eV in the band gap appearing
mostly in the conduction band offset. In that case electrons {donors
will strongly favor the (=) structure while holes (acceptors} will
have a small effect.
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We can infer from Fig. 4 that electrons in cubic SiC have
about 0.7 €V lower energy than in the (2)/3) SiC polytypes,
whereas for holes there is little difference. Lct us assume that
the chemical bonding energy of an ionized donor is the same
in cither structure because of the local similarity. Then the
whole impurity atom, electron plus ionized donor, also has
0.7 eV lower energy dissolved in the cubic form, while for ac-
ceptors the difference is small. In the crystallization process,
this difference will act as a driving force favoring the growth
of the cubic form, equal to an energy difference of 0.7 €V per
donor incorporated into the crystal.

We conclude that donors favor cubic SiC whereas acceptors
have little influence. The magnitude of the effect is esti-
mated as follows. The energy difference between cubic SiC
and the (2)A3) polytypes is 1 meV per SiC pair of atoms®
whereas onc donor contributes a difference of 700 meV. A
donor concentration greater than 1 in 1400 atoms would
therefore result in the cubic form having the lower energy.
This is consistent with the transformation of {3) to () under
a high pressure of nitrogen" which is a donor.” The numbers
must only be taken as an order-of-magnitudc estimate. We
believe this band offset effect must be larger than any inher-
ent difference in the heat of solution AG of the impurity in
the polytype. For the latter effect to be comparable we would
have to have AG, — AGjy of order 0.7 eV where A and B refer
to cubic and (3) material: this seems to us unlikely in view of
the close similarities between the polytypes.

Incidentally, similar considerations apply to the equilibria
between (2), (3) and more complex polytypes. The difference
in band gap between (2) and (3) is 240 meV whercas the free
energy differences™ in the pure form are of order 0.1 meV
per atom.

We conclude that donor concentrations (atom fractions) of
order 107° or more shift the equilibrium significantly in favor
of the (3) form, which may account for some of the impurity
effects observed.

We can apply similar considerations to comment on the
growth of the wurtzite (1) structure. It is not understood why
this form of SiC grows at all, since it has a substantially
higher energy (Fig. 2). It appears to be stabilized by acceptor
impurities. Our present argument of Fig. 4 means that donor
impurities would destabilise the wurtzite structure by 0.9 ¢V
per donor compared with acceptors. It is therefore hardly sur-
prising that the impurities mentioned (aluminum and boron)
are indeed acceptors.'®*"?

Finally, we might wonder about deviations of the Si/C ratio
from stoichiometry. No calculations have been carried out but
the dominant effect would presumably be a linear interpola-
tion of the J,, K between those for Si and SiC, respectively.
Then one can casily infer from Fig. 2 that an excess Si con-
centration at least of order 20% would be needed to make the
cubic form stable. We therefore do not believe this effect to be
significant in reasonably purc material.

IV. Conclusions

The main conclusion is that a simple model can make it
plausible why SiC most commonly grows in the cubic struc-
ture even though this is not the structure of lowest energy.
Based on calculations and the bulk energies of different poly-
types, one can formulate the energy difference —2J* of a new
atomic SiC bilayer going down with bonds pointing in the
same (“staggered”) or opposite (“eclipsed”) orientation. The
crucial point of the argument is that J* is necessarily positive,
resulting in the cubic structure, if we assume a constrained
equilibrium for thc added layer. By this we mean it goes down
in the orientation of lower energy, without allowing the lower
layers to rearrange to some global minimum energy. The
model envisages the crystal growing by adding successive lay-
ers in the ¢ (hexagonal) direction, and assumes that surfacc
effects do not destroy the positive sign of J* deduced from
bulk energies. It is not necessary to suppose a whole layer to
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be completed before the start of the next onc: the argument
applies to the initial island layer formed on the surface from
which the rest of the layer grows.

A separate conclusion concerns the different roles of donor
and acceptor impurities. Electronic structure calculations
show that the valence band offsct between diffcrent poly-
types is small, so that there are large offsets between the con-
duction bands corresponding to the differences in band gap.
In consequence acceptors will not favor any particular poly-
type (from this effect), whereas donors will favor the polytype
with the smallest band gap. This is the cubic form, or among
the (2)/(3) family of polytypes the (3) structure.
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