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A paradox is discussed concerning the growth of Sic  poly- 
types from the vapor or the melt, based on recent ab initio 
quantum calculations of the relative energies of several poly- 
types in bulk. Why does the cubic (3C) structure grow in 
preference to all others, although the calculations indicate it 
is not the stable phase at any temperature? This can be ex- 
plained from the calculations, with some further approxi- 
mations, as due to the constrained equilibrium when adding 
one atomic double layer at a time to the growing crystal in 
the hexagonal direction without allowing rearrangement of 
the lower layers. The differing roles of donor and acceptor 
impurities are also discussed, with donors being found to 
favor the cubic structure. [Key words: silicon carbide, crys- 
tal growth, crystal structure, calculations, stability.] 

I. Introduction 

H E  purpose of this paper is to discuss the paradox of why T S i c  grows in its metastablc cubic phase. Why does it ap- 
pear not to crystallizc directly into the stable structurcs, one 
or other of the (2)/(3) family of polytypes (in the Zhdanov' 
notation)? We will discuss this question in the light of some 
recent quantum-mechanical energy  calculation^.^^^ Our treat- 
ment may be the first application of such calculations to a 
question in crystal growth. 

As is well-known, S i c  exists in many polytypes, namely the 
cubic zinc blendc structure (M) (or 3C), the wurtzite structure 
(1) (2H), and the polytypes (2) (4H) and (3) (6H) with many 
intermediate phases such as (23) between these last two. All 
the structures consist of nearly identical S i c  atomic double 
layers, each of which can be stacked in two orientations,' des- 
ignated as u = ? l ,  on the laycr below (Fig. 1). Recent very 
careful quantum-mechanical  calculation^^-^ have computed 
the relative energies of the main polytypes with the results 
shown in Fig. 2. We shall not be concerned here with the vcry 
small (free) energy differences between (2), (3) and their inter- 
mediate polytypes which have been discussed cl~ewhcre:'-~ 
for present purposes we treat the whole (2)/(3) family of poly- 
types as having nearly enough the samc (free) energy. The 
main point of Fig. 2 is that the cubic (a) and wurtzite (1) 
structures have significantly highcr energy than the (2)/(3) 
polytypes at temperature T = 0 K, and the phonon free en- 
ergy' at highcr T and the small relaxations of the interplanar 
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spacings" do not alter that picture. Incidentally, Fig. 2 also 
shows that the overall energy scale in S i c  is similar to that for 
Si: the collapse of all the energy diffcrences is not the origin 
of polytypism in S i c  (unlike ZnS4). The energy differences in 
Fig. 2 include the effects of relaxation of the interlayer spac- 
ing from the cubic value which occurs in the noncubic poly- 
types.6 We should point out for readers not familiar with such 
calculations that their validity has been widely accepted when 
applied to energy differences between similar structures, e.g., 
the forccs giving phonon frequencies which can be checked 
by There seems no reasonable doubt that neither 
the cubic nor the wurtzite structure is ever the stable phase of 
perfect pure Sic .  This is consistent with modern experiments 
which indicate that (3) is the stable form at high T (see, for 
examplc, Refs. 10 to 12 and other authors cited there) and 
probably (2) at low T with calculations suggesting some other 
intermediate polytypes bcing stable phases in between.',' 
(Howevcr see Ref. 13 for some contrary indication.) 

The paradox is that S i c  appears to prefer to  grow in the 
cubic form, more than in any other, in spite of the fact that 
this is never the stable structure. The cubic form is so com- 
monly observed that in the past it was often supposed to be a 
stable phase at some T: see, for example, Fig. 4 of Ref. 10 and 
references there. More to the point, recent work indicates 
that the cubic form is the structure that first grows whether as 
crystals"'.'' or w h i ~ k e r s , ' ~  from the melt or from the saturated 
~ a p o r . ' ~  The more complex (2)/(3) polytypes appear to form 
subsequently by a solid-state transformation. Of course, crys- 
tal growth is not an equilibrium structure. Nevertheless it is a 
bit surprising. (We ignore the wurtzite form (1) which only 
grows under unusual conditions," consistent with its having a 
much higher energy as seen in Fig. 2.) We shall discuss this in 
Section I1 and show that the quantum-mechanical calcula- 
tions3 do shed some light on this. They were carried out for 
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Fig. 1. Stacking of identical atomic double layers of Sic in two 
orientations, labeled + and - according to  the direction of the 
bond in the layer. 
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bulk SIC structurcs and hcnce cannot bc applied strictly to a 
surfacc,I7 but if one just proceeds with the simplest obvious 
assumptions one immediately obtains the result that thc ma- 
terial should always grow in the cubic form. 

As a separate issue we consider in Section I11 the differing 
roles of electron and hole carriers from donor and acccptor 
impurities, based on idcas of electronic structure.".'x Electrons 
are expected to favor the cubic structure, with holes having a 
more minor effect. This is consistent with thc observation 
that nitrogen under high pressure can induce the transforma- 
tion from (3) to (m),"' nitrogen bcing a known donor.'" Thus 
stray donor impurities may be an additional reason for thc 
growth of the cubic structure. 

Neither of thcse stories constitutcs a conclusive theory. 
They arc put forward as plausible intcrpretations of the ob- 
served facts in the light of recent computations and as pointers 
to future avcnues of rcsearch. They appear sufficiently prob- 
able that at least one may say thcre is no mystery about SIC 
growing in the mctastable cubic structurc rather than the 
equilibrium phasc(s). Most theories and calculations arc con- 
structcd with a particular end in view, and in choosing what 
to look for one puts in to some degree the answer one wants. 
However, the calculations cited here were all for thc bulk 
structures, with no thought about surfaces or crystal growth. 
To that extent the prcscnt considerations are an unplanned 
and unbiased byproduct. Wc put them forward herc because 
the computational capabilities to follow up most of them still 
lie some years in the future, c.g., thc energy of a surface Iaycr 
in contact with a melt. 

11. Growth of the Cubic Phase 

As already remarked, we can consider an arbitrary poly- 
typc as consisting of identical S i c  atomic double layers (herc- 
after referred to as "layers"). Each layer can be stacked in two 
different orientations on thc one below, which we dcsignate 
for the nth laycr by the symbol v,, = i l .  For example, the 
two common structures (m) and (3) arc as follows: 

(m)  = ...+++++... or 

(3) = ...+++---+++---... (1) 

The energy of thc structure can be writtcn" 

U = C[Eo - Jigttcfz+i - J?v,Iu,r+z - .J?m,,v,,+; 
,1 

- K[r,,~,,+lu,,+zu,,+il (2) 
whcrc interactions bcyond the third nearest laycr are nc- 
glccted. The values of thc paramcters were fitted to the total 
encrgies computed for fivc different polytypes.' Thc calcula- 
tions wcre carried out with modern norm-conserving pseudo- 
potentials, a basis set of about 2500 plane waves for cach 
Bloch elcctron wave function, the usual local density approxi- 
mation for exchange and correlation in thc context o f  dcnsity 

functional theory, and the most careful sampling of k-points 
in the Brillouin zone (see Refs. 2 and 3 for details). Thc val- 
ucs of the parameters arc'.' (in meV per S i c  pair of atoms) 

Ji = 4.40, J 2  = -2.56, J 3  = -0.05, K = -0.45 
(3) 

These numbcrs have been refitted to the calculations of 
Ref. 3, taking into account that thc (1122) structure' was cal- 
culated only to a lower level of convergence than thc other 
polytypes. We have estimated the energy it would have at the 
higher lcvel by adding in thc average of thc convergcncc cor- 
rections found for the (1) and (2) structures, and then rcfittcd 
all thc constants. They should be taken as superseding all 
prcviously published The diffcrenccs from thc pre- 
vious values'.4 are part of the computational uncertainties. 
The small quantities J ;  and K are very uncertain except for 
order of magnitude and probably sign. 

Let us apply this formalism (2) blindly to a semi-infinitc 
crystal (ix., a crystal with a surface), leaving a critique until 
latcr. Wc can write down from Eq. (2) the extra encrgy AU 
(v,,cw) for adding one new layer specificd by on,, on top of thc 
previous surfacc laycr specified by u ~ ,  without allowing the 
undcrlying layers designated by u5-?, ctc., to  change. 
Wc obtain 

wherc 

J *  = J !  + J 1 m s ~ \ - j  + J~u,u . , -~  + K ~ , - , U , - ?  ( 5 )  

as can easily be verified by inscrting Eq. ( 5 )  into Eq. (4) and 
noting m5' = 1. Clearly the value o f  J "  dcpends on thc orien- 
tations of the undcrlying layers s - 1 and s - 2. The point 
about Eq. (5) is that (with positive J , )  the valuc of J* ranges 
bctwecn the maximum and minimum values 

J I  * ((J21 + IJ3I + /KI)  (6) 

which with thc values (3) bccome (in thc same units) 

J*(max) = 7.47, J+(min) = 1.33 (7) 

The  crux of our argument is now as follows. We see from 
Eqs. (7) that J *  is always positive. Applied to Eq. (4) this 
mcans that the new layer will always go down oriented parallel 
to the prcvious surface layer. Hcre we assume that the crystal 
grows by adding ncw S i c  atomic double layers in thc c (hexag- 
onal) dircction. We also assume a new layer oricnts itself such 
as to minimize its encrgy, with the constraint that thc under- 
lying layers are not allowed to anneal to some ncw global 
cnergy minimum. If the process is continued, clcarly all layers 
will have thc same orientation and we havc built up the cubic 
polytype, irrcspectivc of the original substrate or occasional 
accidental misoricntations. This is what we set out to  show. 
Our  concept of the constrained cquilibrium is completely 
analogous to the spinodal condition in Rcfs. 12, 20, and 21. 

Is our argument a matter of the accident of numbers? Not 
entirely. Let us start from the experimcntal fact of the exis- 
tcnce of  what we havc called the (2)/(3) family of polytypcs, 
all o f  which we therefore suppose to have very ncarly the 
same encrgy. This multiphasc degencracy2-5 occurs from 
Eq. (2) when" 

JI + 2J2 - 333 - 4K = 0 

with 

(8b) 

The fact that SIC, rather than some other compound, is near 
this degeneracy is of coursc a numerical accident (although it is 
also part of a widcr it implies that conditions (8) are 
ncarly satisfied. If wc simplify the argument by dropping the 

1 
2 

J? < --(.I! - K ) ,  JI > 0 
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small long-range corrections J 3  and K ,  thc conditions (8) re- 
duce to 

J ,  + 2Jz = 0, J z  < 0 (9) 

J*(min) = J 1  - lJzl = ( J ,  + 2 J 2 )  + 1J2/ = /JL/ 

Wc then have from expressions (6) and (9) 

(10) 

Since the term in parentheses in Eq. (10) is ncarly zero from 
thc degeneracy condition (Y), we deducc from Eq. (10) that 
JK(min) is necessarily positive, leading to the growth of the 
cubic form as argued bcfore. The argument hinges on the co- 
efficient of J2 being 2 in Eqs. (8) and only unity in Eq. ( 5 ) .  
This comes about because there are two second-neighbor in- 
tcractions across a boundary betwccn + and - layers whereas 
only onc interaction is involved in adding a new laycr at a 
surface (Fig. 3). Incidentally we can relate the cncrgy of the 
cubic structure (a) in the same way to  that of the polytypes, 
say the phase (3). We have’,7 

2 
3 

U(m) - U(3) = --(JI + 2J? - 3 J 3  - 4K) - 453 - 4 K  

Again the term in parentheses is ncarly zero if the condition 
(80)  is ncarly satisficd and the other two terms arc rclatively 
small longer-ranged corrections. Thus the free cnergy differ- 
encc which would drive the reconstruction of  the cubic phase 
is significant, but on a smaller scale relating to more distant 
neighbors ( J 3 ,  K )  than thc J* (5 ) ,  (10) of order J 2  which con- 
trols the orientation of the new layer. This is all just a gencral- 
ization of the well-known multiphasc degeneracy (9) in the 
A N N N I  model.’* 

We see thercfore that our conclusion about the growth of 
the cubic phase is “robust” in the sense that it does not de- 
pcnd critically on the numerical values of the J, , .  Indeed as 
the argumcnt of Eqs. (8) to (11) shows, it does not depend on 
calculations at all, although pcople might find it less convinc- 
ing without the numerical backup. This is shown further by 
writing from Eq. (10) 

1 
J*(min) = ;[E(l)  - E(3)] - [ E ( m )  - E(3)]  

4 

+ [terms inJ3,  K ]  (1 2) 

Thus J*(min) is inevitably positive if we believe that E(1) lies 
much higher than E ( m )  and E(3) and that the longer-range 
couplings J ? ,  J? are small compared with J , ,  J 2 .  

Our argument can also be seen from a different perspec- 
tive. The MAS-NMR data,’3 the relaxation of the interatomic 
 spacing^^^." the interplanar interactions,) and the interatomic 
forcc constants for atomic displacements’ all bear witness to 
the fact that the orientation of one atomic double layer exerts 
a noticcable influence to a distance of about three double 
laycrs. This is discusscd in Ref. 17 and el~ewhere.’.’.”~”.’~ Our 
present argument in Eqs. (8), (Y), (10) rests on the fact that 
21J2/ is approximately equal to .Il, i.e., that the orientational 
intcraction bctwccn fourth-neighbor bonds is substantial and 

r----1 
A 

. . .  * + + + - - -  . . . . . . . .  + - -T+, 
L---- J L - - - - - J  

Fig. 3. Competition between nearest layer . I ,  interactions (curbed 
full line) and second nearest Jz interactions (straight dashed box): 
(a) at a boundary between + and - stacking in bulk material, and 
(b) when an extra layer (bracketed) is added at a surface on the 
right. In case (a) there are  two second-neighbor interactions in- 
volved, but onlyone in (b), thus accounting for the terms 2.fZ andJ:  
in Eqs. (8a) and ( 6 ) ,  respectively. 

comparable to that between second-neighbor bonds. Thus we 
see that the long-range nature of the effects manifests itself 
also in connection with crystal growth. However, it is not 
possible to draw a more direct or quantitative connection be- 
tween, for example, the observed relaxation of the inter- 
atomic spacings”?? and the present energetic considerations, 
except to say that both follow from our calculation of the 
electronic structure. 

We must now return to the two caveats. A careful analy- 
sisI7 of Eq. (2) shows that it is valid only for an ideal infinite 
solid. For a slab of finite thickness or a semi-infinite solid 
with a free surface there arc additional terms, first from the 
existence of the termination and second from any relaxation 
effects which thcre may bc there. S h a ~ ’ ~ , ? ~  has derived the 
terms due to the surface by considering a finite slab of four 
layers and expressed them as cnergy differences between dif- 
ferent stacking structures. Similar arguments can be applied 
to our case of a semi-infinite solid. The termination correc- 
tions are in rinciple nonzcro (they arc small higher-order 
differences”,’) evcn for an ideal unreconstructcd surface. 
However, in the case of growth from the mclt, the original 
argumcnt of Eqs. (4) to (10) based on Eq. (2) again becomes 
correct if we assume thcre is no surface reconstruction and if 
we can approximate the effect of the liquid as the mean of all 
possible solid structures of m = 1 and c = -1 layers: such an 
averaged solid with its lack of orientation but local tetrahedral 
bonding may not be a bad cquivalent to the liquid. In growth 
from the vapor, the main surface reconstruction energy does 
not affect the discussion because it is a constant, moving for- 
ward as cach layer is addcd. But the reconstruction can also 
modify the valuc of J , ,  etc., for the surface layer. 

111. Donor and Acceptor Impurities 

The band gap of S i c  is 2.39 eV for the cubic form and 
3.1 ? 0.1 for the (2)/(3) polytypes.“’ To see the effect of this 
substantial difference of 0.7 eV we need to consider the band 
offset between, say, cubic and (3) S i c  in the ususal sense of 
semiconductor heterojunctions. 

The band offset has becn calculated between the two ex- 
treme forms (1) and (a) of Sic ,  with the result indicated sche- 
matically in Fig. 4. There is almost zero offset between the 
tops of the valence bands and almost the whole of the differ- 
ence in the band gaps appears as a large offset between the 
conduction bands. This is also consistent with the fact that 
the state at r at the top of the valence band is exactly the 
same for all tetrahedrally bonded structures in a chemical 
tight binding picture.18 On the other hand, the conduction 
bands are more sensitive to  the detailed structure” and pre- 
sumably account for the difference in band gap. Thus we ex- 
pect Fig. 4 to represent qualitatively also the band offsets 
bctween cubic S i c  and the (2)/(3) polytypes. 

....................... ....................... ....................... -h 

Fig. 4. Form of band offset between ( I )  and (M) forms of SIC (afer 
Ref. 9). T h e  valence bands line up with a very small offset of (b). 
The  case pf (2)/(3) polytypes and the (M) structure is assumed to be 
similar with the difference of 0.7 eV in the band gap appearing 
mostly in the conduction band offset. In that  case electrons (donors 
will strongly favor the (s) structure while holes (acceptors) will 
have a small effect. 
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We can infer from Fig. 4 that electrons in cubic S i c  have 
about 0.7 eV lower energy than in the (2)/(3) S i c  polytypes, 
whereas for holes there is little difference. Lct us assume that 
the chemical bonding energy of an ionized donor is the same 
in cither structure because of the local similarity. Then the 
whole impurity atom, electron plus ionized donor, also has 
0.7 eV lower energy dissolved in the cubic form, while for ac- 
ccptors the difference is small. In the crystallization proccss, 
this difference will act as a driving force favoring the growth 
of the cubic form, equal to  an energy difference of 0.7 eV per 
donor incorporated into the crystal. 

We conclude that donors favor cubic S i c  whereas acceptors 
have little influence. T h e  magnitude of the effect is esti- 
mated as follows. The energy difference between cubic S i c  
and the (2)/(3) polytypes is 1 meV per S i c  pair of atoms’ 
whereas one donor contributes a difference of 700 meV. A 
donor concentration greater than 1 in 1400 atoms would 
therefore result in the cubic form having the lower energy. 
This is consistent with the transformation of (3) to ( m )  under 
a high pressure of nitrogen“’ which is a donor.” The numbers 
must only be taken as  an order-of-magnitudc estimate. We 
believe this band offset effect must be larger than any inher- 
ent difference in the heat of solution AG of thc impurity in 
the polytype. For the latter effect to  be comparable we would 
have to  have AGA - AGB of order 0.7 eV where A and B refer 
to cubic and (3) material: this seems to us unlikely in view of 
the close similarities between the polytypes. 

Incidentally, similar considerations apply to thc equilibria 
between (2), (3) and more complex polytypes. The difference 
in band gap between (2) and (3) is 240 meV whercas the free 
energy differences’,’ in the pure form are of order 0.1 meV 
per atom. 

We conclude that donor concentrations (atom fractions) of 
ordcr or more shift the equilibrium significantly in favor 
of the (3) form, which may account for some of the impurity 
effects observed.”’ 

We can apply similar considerations to  comment on the 
growth of the wurtzite (I) structure. It is not understood why 
this form of S i c  grows at all, since it has a substantially 
higher energy (Fig. 2). It appears to be stabilized by acceptor 
impurities. Our  present argument of Fig. 4 means that donor 
impurities would destabilise the wurtzite structure by 0.9 cV 
per donor compared with acceptors. It is therefore hardly sur- 
prising that the impurities mentioned (aluminum and boron) 
are indeed  acceptor^.'^^^^^^^ 

Finally, we might wonder about deviations of the Si/C ratio 
from stoichiometry. No calculations have been carried out but 
the dominant effect would presumably be a linear interpola- 
tion of the J,, K between those for Si and Sic ,  respectively. 
Then one can casily infer from Fig. 2 that an excess Si con- 
centration at least of order 20% would be needed to make the 
cubic form stable. Wc therefore do not believe this effect to be 
significant in reasonably pure material. 

IV. Conclusions 

The main conclusion is that a simple model can make it 
plausiblc why S i c  most commonly grows in the cubic struc- 
ture even though this is not the structure of lowest energy. 
Based on calculations and the bulk encrgies of different poly- 
types, one can formulate the energy difference -2J* of a new 
atomic S i c  bilayer going down with bonds pointing in the 
same (“staggered’) or opposite (“eclipsed”) orientation. The 
crucial point of the argument is that J* is necessarily positive, 
resulting in the cubic structure, if we assume a constrained 
equilibrium for thc added layer. By this we mean it goes down 
in the orientation of lower energy, without allowing the lower 
layers to  rearrange to some global minimum energy. The 
model envisages the crystal growing by adding successivc lay- 
ers in the c (hexagonal) direction, and assumes that surfacc 
effects do not destroy the positive sign of J* deduced from 
bulk energies. It is not necessary to suppose a whole laycr to 

be completed bcfore the start of the next onc: the argument 
applies to the initial island layer formed on the surface from 
which the rcst of the layer grows. 

A scparatc conclusion concerns the different roles o f  donor 
and acceptor impurities. Electronic structure calculations 
show that the valence band offsct between diffcrent poly- 
types is small, so that there are large offsets between thc con- 
duction bands corresponding to the differences in band gap. 
In consequence acceptors will not favor any particular poly- 
type (from this effect), whereas donors will favor the polytype 
with the smallest band gap. This is the cubic form, or among 
the (2)/(3) family of polytypes the (3) structure. 
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