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ABSTRACT

Embedded visual assist systems are emerging as increasingly viable
tools for aiding visually impaired persons in their day-to-day life
activities. Novel wearable devices with imaging capabilities will
be uniquely positioned to assist visually impaired in activities such
as grocery shopping. However, supporting such time-sensitive ap-
plications on embedded platforms requires an intelligent trade-off
between accuracy and computational efficiency.

In order to maximize their utility in real-world scenarios, visual
classifiers often need to recognize objects within large sets of object
classes that are both diverse and deep. In a grocery market, simul-
taneously recognizing the appearance of people, shopping carts,
and pasta is an example of a common diverse object classifica-
tion task. Moreover, a useful visual-aid system would need deep
classification capability to distinguish among the many styles and
brands of pasta to direct attention to a particular box. Exemplar
Support Vector Machines (ESVMs) provide a means of achieving
this specificity, but are resource intensive as computation increases
rapidly with the number of classes to be recognized. To maintain
scalability without sacrificing accuracy, we examine the use of a
biologically-inspired classifier (HMAX) as a front-end filter that
can narrow the set of ESVMs to be evaluated. We show that a hi-
erarchical classifier combining HMAX and ESVM performs better
than either of the two individually. We achieve 12% improvement
in accuracy over HMAX and 4% improvement over ESVM while
reducing computational overhead of evaluating all possible exem-
plars.

1. INTRODUCTION

Vision assist systems (VAS) are of high utility and demand across
many domains such as retail, security, automotive. Recent work
has shown how wearable devices like Google Glass can be used
to assist users in cognitive decline [1]. A key component in such
systems is detecting important regions of interest (Rol) from the
scene and then classifying them accurately in real-time. For exam-
ple, a VAS designated to help a visually impaired person cross an
intersection would require the system to (1) detect objects of in-
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terest; (2) classify those objects as impeding car, traffic light, peo-
ple, obstructions; and (3) generate navigation plans for the user.
Given the scheduled tasks at hand, such a system imposes stringent
constraints on latency, accuracy, and energy; all of which are dif-
ficult for general purpose architectures to satisfy simultaneously.
Recently, hardware accelerators have shown significant ability to
meet these constraints albeit in a restricted environment [2, 3, 4].

The aim of this paper is to provide a scalable visual accelerator
framework flexible enough to be applied to various domains. We
focus on the application of visual recognition in a retail space to
highlight the efficacy of our design proposal. The key contributions
of this paper are:

e First, we discuss the trade-off in using a single level object
classification module in large scale real-world applications.
We also show the disadvantages of using a fine grained SVM-
based approach to tackle the same problem.

o We propose a multi-level hierarchical approach towards iden-
tifying objects of different shapes, sizes and variety.

e We then evaluate our design on a significantly large dataset
that captures the variance seen in a real world scenario.

o Finally, we suggest ways to enhance our visual assist pipeline
in terms of robustness, accuracy and data dependence.

2. RELATED WORK

There has been considerable activity in the hardware acceler-
ator space with regard to building ubiquitous real-time learning
machines. In [5], the authors propose an architecture for Con-
volutional Neural Networks (CNNs) and Deep Neural Networks

(DNNs5s) that minimizes memory transfers thus achieving high through-

put with small area, power and energy footprint. In [6], a multi-
FPGA emulation platform is evaluated for the purpose of detecting
and recognizing objects of interest using Saliency and HMAX re-
spectively. In [7], the authors propose a multi-core system with a
set of customized functional units tightly coupled to the pipeline to
speed-up computer vision algorithms. The impact of using a server
that uses a heterogeneous architecture to provide low power, high
throughput and application specific accelerators for large-scale recog-
nition is studied in [8].

Different kinds of datasets have been used to benchmark the per-
formance of these computer vision models. The Caltech dataset
consisting of 101 categories is a popular dataset used for evalu-
ating various object recognition models [9]. When evaluated on
this dataset, the HMAX model was able to achieve 56% accuracy.
While the Caltech 101 dataset is diverse in terms of the number of
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Figure 1: Feature-based Classification becomes more difficult as
the number of candidate classes increases

categories, it is not deep enough. For example, there are around 41
different birds and animals but when it comes to other categories, it
is hard to create a super-group for them. In the recent past, datasets
like PASCAL Visual Object Classes (VOC) Challenge [10] and Im-
ageNet [11] have become immensely popular too.

3. MOTIVATION

The human brain is in a continuous process of adaptive learning
based on the world it perceives. While the theory behind the human
brain is still an active thrust of scientific research, neuroscientists
are slowly pushing the envelope in understanding the actual work-
ings of this intricate part of the human anatomy. The human visual
system (HVS) is considered one of the better-understood pieces
in this massive network of neuronal activity. Computational al-
gorithms that model simple and complex cells of the visual cor-
tex have been developed and mapped to computers, thus making
them capable of emulating humans in processing visual informa-
tion. Although many cognitive tasks have been successfully ap-
plied to real-time systems in the recent past, the resources required
to accomplish this are very high compared to that used by the hu-
man brain. Thus, as the gap between state-of-the art neuromorphic
visual models and the way humans perceive the world gradually di-
minishes, the power and resources needed to actualize these models
in real-time dynamic autonomous systems become an increasingly
difficult challenge.

The HMAX model is one such hierarchical system based on the
ventral stream of the human visual cortex [12]. This model builds
a "bag of features" representation of an object by projecting an
image-pyramid through a feed-forward system of alternating lay-
ers of simple "S" cells and complex "C" cells. The image pyramid
structure provides scale invariance to the extracted features. The
simple cells in the hierarchy are responsible for recognizing key
aspects or features of the visual data. The cells of the S1 layer
are tuned to respond to edges tuned to a variety of orientations.
The cells of the C1 layer pool these responses across neighboring
scales. The S2 layer — the heart of the model — processes the results
of the C1 layer through a pre-learned dictionary of feature proto-
types which are far more descriptive than the simple edge features
detected by the S1 layer. Finally, the responses to each dictionary
feature are pooled across scales and orientations to produce the fi-
nal feature vector.

These features can then be used to train any desired classification
scheme for recognition of novel objects that appear during opera-
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Figure 2: Object Identification takes longer as number of Exem-
plars increases

tion. Regardless of the scheme used, the ability of a classifier to
discriminate amongst classes is reduced as the number of candi-
date classes increases. In a real-world system, the number of ob-
ject classes that may need to be identified is enormous, and despite
showing reasonable classification using HMAX features, the level
of overall accuracy leaves much to be desired in the context of a
day-to-day visual assist system where accuracies are expected to
be very high. Figure 1 shows the trade-off between accuracy and
scalability for the HMAX model. There is a steep roll-off in accu-
racy after 10 classes and then the model seems to stabilize after 30
classes. Even though HMAX may not be able to hit the exact target
class with sufficient accuracy, the resulting classification of HMAX
features can significantly narrow the field of potential targets.

The Exemplar SVM (ESVM) model uses the Histogram of Ori-
ented Gradients (HOG) feature as a building block. HOG is based
on gradient computation followed by a non-linear weighted voting
operation based on the gradient magnitude. Votes are accumulated
into orientation bins over local spatial cells. These cells are grouped
into blocks over which contrast normalization is carried out. The fi-
nal HOG descriptor is a vector of all components of the normalized
cell responses from all of the blocks in the detection window [13].
Each exemplar is essentially built by combining a number of these
HOG features together. The model is then formed by training a sep-
arate linear SVM for each exemplar (representation) in the training
set. Each of these ESVMs is thus defined by a single positive in-
stance and numerous negatives [14]. An ensemble of exemplars per
category can then be used to classify or detect a particular object.
This ensemble can at times get extremely large. Being able to clas-
sify a wide number of classes would require to pool over the entire
ensemble, which would entail a lot of time and/or resources. Fig-
ure 2 shows the trade-off between the time taken to classify/detect
an object and the number of exemplars per object category.

While there is still considerable research being carried out in the
computer vision fraternity to build more scalable and robust mod-
els, our focus here is to design a visual assist system that is able
to achieve high accuracy while still being able to classify a large
number of classes efficiently. We propose an architecture that mar-
ries the highly parallelizable HMAX with the immensely detailed
ESVM to establish a pipeline that can accurately classify a signif-
icantly large number of objects set in a real world scenario with a
high degree of accuracy.



4. SYSTEM ARCHITECTURE

Figure 3 illustrates the proposed hierarchical classification sys-
tem. Rol extraction is performed by a collection of segmentation
engines that are appropriate for the application domain. In the case
of visual assistance in grocery environments, Rol extraction may
be performed by saliency [15, 16, 17], objectness [18], and sym-
metry [19]. A fixed number of Rols are selected and prepared for
processing by the classification cascade. The selection scheme is
application-specific, however a useful scheme might be to select the
Rol that has the highest information-bearing potential once classi-
fied. For example, an Rol that exhibits a tall bottle-like silhouette
may be more informative, once classified, than an object that has
a short box silhouette. Under the assumption that there are fewer
locations in a grocery store that contain tall bottle-like objects ver-
sus short box objects, the selection scheme would choose the Rol
of the former in an effort to allow the classifier to quickly discrimi-
nate the scene location or context. Once selected, an Rol undergoes
pre-processing in preparation for evaluation by the first stage classi-
fier. In the proposed architecture, the first stage classifier, HMAX,
expects a fixed size window as input. To accommodate this, the
pre-processing stage performs image resizing as necessary.

HMAX performs the first stage classification and the reader is
encouraged to review [3] for details on the micro-architecture of
a digital accelerator. The primary architectural component in the
HMAX accelerator is a bank of streaming correlation engines that
accelerate the expensive S2 stage. In the S2 stage, a multi-scale and
multi-feature pyramid of the input image is correlated with a large
set —roughly 5000 — templates to produce an N-dimensional feature
descriptor of the input image. This descriptor is subsequently clas-
sified using a Regularized Least Squares (RLS) approach. Accel-
eration in the S2 stage is achieved by concurrently correlating each
template with several scale and feature images within the pyramid.
The correlation accelerator engine is duplicated to trade-off classi-
fication latency and on-chip resource utilization.

Once the C2 stage produces the N-dimensional feature descrip-
tor, a RLS classifier produces a C-dimensional score vector, where
C equals the number of classes under consideration. Each entry
C; in the vector represents the likelihood that the descriptor, and
the image from which it was derived, belongs to the 7' class. The
assignment of these scores requires that an offline learned coeffi-
cient matrix of dimension CxN is multiplied by the N-dimensional
descriptor. In total, C dot products between two N-dimensional
vectors are performed.

The second stage classifier consists of a bank of Support Vector
Machines. This work follows the ESVM classification approach
that achieves high specificity at the expense of execution latency.
For each class under consideration, the ESVM learning process
identifies E exemplary instances of the class in the training set.
These exemplars are representative instances of the class and col-
lectively define the positive models of the class. All other training
instances not belonging to the class under consideration, represent
the negative models. Determining if a novel object belongs to a
given class requires that for each exemplar in the class, a distance
function be computed between the object and the exemplar’s single
positive instance and its set of negative instances. In this work we
compute the L2 norm distance d between normalized HOG repre-
sentations of the input image and exemplar models. We employ
vector norm accelerators to compute:
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where a is the feature representation of the test object to be clas-
sified, p is the feature representation of the positive exemplar, n
is the feature representation of the negative exemplar and N is the
dimension of the feature.

S. RESULTS
5.1 Methodology

We evaluated our hierarchical object recognition model on a sig-
nificantly large and deep dataset consisting of images of products
one would typically come across in a grocery store. 87 products
categorized under eight shapes were listed. After we generated this
list, we used the Microsoft Bing Search API to download all the im-
ages. Each product class was manually pruned to remove images
that did not represent a good example of the given product. Any im-
age that either did not contain the example class, or contained the
example class with another example class (i.e. if an image of Tide
Laundry detergent also had an image of Gain detergent) was not
included. Post-pruning, approximately 7700 objects were available
to train HMAX and Exemplar SVM independently. Table 1 shows
the breakdown of different categories used in our evaluations. Fig-
ure 4 illustrates examples of exemplars pertaining to each category.
Row 1 shows exemplars from shape category box, condimental,
jug and bottle, while Row 2 shows exemplars from shape category
packet, bar, can and jar.

Shape Products
Bar 3
Bottle 8
Box 21
Can 23
Condimental 7
Jar 10
Jug 9
Packet 6
Total 87

Table 1: Grocery Database

5.2 Evaluation

To ensure that the training and test datasets were separate and
distinct, the test images consisted of rectangular Rols manually
designated in images captured from two different grocery stores.
These bounding boxes were manually annotated using the LabelMe
tool [20]. Approximately 800 images were used in the testing
phase. Figures 5 and 6 highlight the accuracies obtained using
HMAX and ESVM respectively. The total accuracy (total cor-
rect/total tested) for HMAX is around 47% while that for ESVM
is around 55%. Figure 7 provides the accuracy curve for HMAX-
top-K where K is number of categories that HMAX provides with
a confidence that the correct category is one of them. We choose
K=11 (HMAX includes the right category in the 11 categories sent
to ESVM 80% of the time). This relaxes the computational over-
head on ESVM considerably since now ESVM needs to evaluate
exemplars from 11 of the 87 categories. Figure 8 shows the accura-
cies obtained when using this joint-classifier approach. We obtain
a total accuracy of around 59% in this case which is around 12%
more than HMAX and around 4% more than ESVM. Note that the
performance of EVSM can be improved as more exemplars are ex-
tracted from a more expansive dataset. Here, the pre-classification
performance of HMAX ensures that the increase in exemplars is
not detrimental to the runtime performance of the system.
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Figure 5: HMAX Performance on Test Dataset

6. CONCLUSION

In conclusion, we show that multi-level filtering is 12% better
than HMAX and 4% better than ESVM individually. This multi-
level approach not only reduces computational overheads on ESVM,
but also allows for an opportunity to trade-off between resource uti-
lization and accuracy. Future work entails looking at a three-tier
approach to be able to distinguish between varieties of a particular
product. Evaluation of pre-filters based on feature extractors other
than HMAX must be explored as well. In addition, our evaluations
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Figure 6: Exemplar Performance on Test Dataset

on ESVM are conservative since we cap the number of exemplars
per product category to 40 in order to reduce the training overheads.
We also use a simple raw detection score to classify the category
rather than a more sophisticated normalization scheme across cat-
egories. Ways to improve the performance of ESVM to achieve
better accuracies are thus necessary but beyond the focus of this
paper. To the best of our knowledge, this is the first work that has
used a multi-level classification approach when confronted with a
real-world dataset that consists of deep and diverse object classes.
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