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electric field along a channel are obtained.

The problem of analytic modeling of the current-

voltage characteristics of a field-effect metal-oxide—

- gemiconductor u*ansistor (MOST) has remained topical

for many years.® This has been due to, firstly,

the simplicity and flexibility of the analytlc approach

compared with the cumbersome computer calculations

and, secondly, the fact that a physically justified

analytic model is always the starting point of more
stailed numerical calculations. However, in spite

[ the large number of papers on analytic or numeri-

il-analytic modeling of a MOST, *»? there is as

no sufficiently simple approach which would

ovide a unified description of the operation of

'MOST throughout the full range of working gate

ages, ranging from the exponential subthreshold

of the current-voltage characteristic to the

and above-threshold operation, including

saturation effects and the transition from the

usion to the driftcurrent.

The current-voltage characteristic of a MOST

§ usually derived by direct integration of the expres-
n for the current, which implies physically the
mmation of an infinite number of series resistances
this is possible if we have information on the
ibution of the electric field, electrostatic poten-
, and carrier density throughout the channel

a transistor. This additional information requires
tion of the equation of continuity in its general
but this is usually not done. Therefore,
description is not complete and the final results
be obtained only if we use additional empirical

a priori information. We shall propose a con-

nt approach which makes it possible to derive
general expression for the current that deseribes
a unified manner the main electrical operating

pes of a MOST in a wide range of temperatures.
5 general expression is both compact and closed

1 convenient for practical applications.

When the parameters of a MOST are modeled,
are two aspects of the physics: electrostatics
the space charge layers controlling the carrier
ty in the channel and the transport conditions
the channel. In the case of the first aspect

5 found that the electrostatics of sufficiently
channels can be described fully by the Poisson
lion using the one-dimensional approximation
electrostatic potential ¢ measured downward

' the conduction band in the substrate and
expression for the carrier density (in the

of a p-type substrate, this expression describes
setrons).. In practice, it is necessary to know

e first two moments of the Poisson equation
a transverse coordinate. Allowing for natural
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The equation of continuity for the current is solved and used to obtain a simple compact expression for the
drain current in a metal-oxide-semiconductor transistor which provides a unified description of the gate and
drain characteristics of this device operating under subthreshold, weak or strong inversion, or saturation
conditions. An automatic allowance is made for the relationship between the diffusion and drift components
of the current. Quantitative criteria are derived for ensuring a particular type of operation when the values of
the input parameters are temperatures are varied. The distributions of the electrostatic potential and of the
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characteristics of a - f

boundary conditions and for the contact potential
between the semiconductor and metal ¢g, We obtain
the following two expressions:

N+Nux="vss+N4w+"- {1)
Ny At 2
Vp:?ms+% g :: S (d — z) pox () dz+ E_r;e' N W, (2)
L]
the first expression is the equation of electrical
neutrality and it relates the local surface charge
densities in the gate N, in the oxide Ngy =
d
Ep..{z)dz , in the surface states Ngg, in a deple-
o j!
tion layer NoW, and in an inversion layer n. Equa-

tion (2) gives the total potential drop over the

whole thicknessiof the structure: Vg — ¢pg =
s
i E_(r)dz. Here, d and W are the thicknesses of

0

the oxide and of the depletion layer, respectively;
Np is the acceptor concentration; Vg is the positive
voltage applied to ithe gate. Equations (1) and

(2) are written in the approximation of an abrupt
depletion layer; moreover, Eq. (2) ignores the
very small potential drop across the inversion layer,
so that the change in the potential across the de-
pletion layer is equal to the surface potential

$ = g = (2 me/eg)NAW2. As pointed out already,

a closed description in terms of the Poisson equation
requires generally an independent expression for
the density of freé carriers n and for the density
of the surface states Ngg. This is necessary be-
cause these guantities are governed by the internal
parameters of the problem (in particular, thermo-
dynamic parameters) and by the conditions at the
interface. We shall not consider the problem of

the surface states, but simply point out that the
general expression for the density of mobile elec-
trons in a channel is as follows in the case when
the statistics of the Boltzmann type, provided there
is no guantization and a static confining field is

applied:
T L
J’l-':ﬂ:.T\.'exp (Te?f)- {3}
Here, © < 0 is the chemical potential of electrons

which can be written

is the energy
%!e)ln(NAinj) is

for the quasiequilibrium case,

in the form ¢, = ¢—E i'Ze—UJB,
width of the band gap, vp = (k
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the position of the chemical potential in the sub-
strate measured from the middle of the band gap.
the average confining electric field fg is

F,=2‘—T(R+ZNAW), (4)

where 1 is the effective density of states in the
conduction band near the interface. It should

be pointed out that Egs. (3) and (4) are equiva-
lent, subject to our assumptions, to the familiar
exact solution of the one-dimensional Poisson equa-
tion,3 which is readily demonstrated by solving
the quadratlc equation derived from Egs. (3) and
(4) for n.

The transport description of the motion of

5 is given by the Boltzmann equation, but
need to derive the current-voltage charac-

¢ of a transistor it is sufficient to use the
and first moments of the transport equation
respect to the velocity. Under steady-state
ns in the case of long-channel transistors
moments are given respectively by the equa-
‘of continuity for the current (per unit length)

(5)
by the expression for the diffusion—drift current
o 6

ratio of the diffusion and drift parts of the

current (6) is generally speaking a function

the coordinate along the channel, whereas the

* total current remains constant. Using the Einstein

relationship, we can readily show that the ratio

of the absolute values of the diffusion and drift

components of the current can be expressed in

terms of a quantity x = |dz /d¢]:

dn dt H dy (1)
= |-

£ & |5 |-G

eD

’_.eD
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This guantity x shows how fast does the chemical

potential of electrons (and, consequently, the density

of electrons) change with the electrostatic potential

and it represents an internal parameter of the prob-

lem. We can find x making the usual assumption

that the main physical cause for the diffusion current.

in the channel is the electrostatic influence of the

space charge of the depletion layer on the carrier

density in the channel. Differentiation of Egs.

(1) and (2) with respect to the chemical potential

L (when the differential is understood to be the

change in a given quantity as a result of a shift

along the longitudinal coordinate) and ignoring the

change in the density of the surface states along

the channel, we readily obtain

l‘:n N ,IW

T 29
ldnfdl] *

iy (8a)
the expression for the derivative of the carrier
density with respect to the chemical potential differs
from the usual bulk Boltzmann equation and it can
be obtained from Egs. (3) and (4):

dn N (8b)
¥ =% ("‘" Ay N )

If we assume that the ratio of the diffusion to the
drift current varies weakly in at least a small part
of the channel and if we ignore the derivative
(dx/dy) ~ 0, we find that the equation of continuity
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(5) for the current of Eq. (6) can be reduced

to

It is convenient to rewrite the above equation intro

ing E(y) = d¢/dy, which represents a longitudinal
electric field in the channel, and bearing in mind
that dUd‘ﬁ o

Equation (9) is readily integrated:

E (0
EM-——“—"'- (10

1—'—8-}"l§ ) dy

Subject to the above assumptions, we shall now ass
¥

that Sx{y)dyg and x(0) = x. The integration con
o
stant E(0) in Eq. (10), which represents a longi-
tudinal field in the source region, can be found
from the natural condition
L
V.aSE(y]di'. (11
[
where L is the length of the channel and Vp is the
voltage applied to the drain. Hence, we readily

obtain
s [imem (-5 1)) (s
Then, Eq. (10) becomes
e (_%,) T (13
x 1—%[1-—-«;@(—-’;‘7—’1”

Integration Eq. (13) with respect to the coordinate,
we find the distribution of the electrostatic surface

potential along the channel satisfying the condition
¢(L) = ¢(0) = Vp, where

ln[i—— 1—axp —e—;;,l ;))]

The constancy of the current along the channel
(5) makes it possible to use simply Eq. (12) in
derivation of the current-voltage characteristic.
The total current of Eq. (6) in a channel of width
Z is given by the following expression derived
with the aid of Eq. (7):

(14
W —s0)=———

f=,%nnh;—*[a_up(_-}‘;°- 1)) (15)

Here, n and x are taken in the region of the source
and are independent of the drain voltage Vp.

Equation (15) together with Egs. (8) and (3)
provide a compact description of all the operating
regimes of a MOST. Under strong inversion condi-
tions (n > NAW) a large charge in the inversion la
is controlled mainly by the gate, it depends weakly
on Vp, and the electron density along the channel
(and, consequently, the chemical potential) is inde-
pendent of the change in the electrostatic potential

= (CokT/en) -+ 0. However, if xeVp/kT <1,
this potential varies linearly and the field is const
in a part of the channel where (xeVp/kT)(y/L) <«
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o the exponential function in Eq. (15)
quadratic term, allowing for the explicit
x given by Eq. (8), and bearing in mind
wve the threshold we have n = C, (Vg V)
n the familiar result!>*
eN W\ Vh
pc.,[(v =¥V, —(H‘ 2o ) 2 ]
, it should be pointed out that in the usual
Eq. (16) is obtained subject to a stringent
jon requiring that Vp « 2pg < 1 V and
in spite of this restriction, it is used to
2 the saturation regime. In fact, the condi-
saturation of the current above the thresh-
the inequality xeVp/kT > 1, which is opposite
condition of validity of Eq. (16). In the
on case Eq. (15) yields the following value
saturation current’
14y & 4 .ColY, -"r)'
I b LA eN W
e A 1w
in the subthreshold region when n < NAW,
> 1, the general expression (15) yields
erved exponential dependence *»*
kT ey — E /2 —elp
Dﬂﬂ:sxp (—_'_—k?' )

(16)
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tudinal field of Eq. (13) tends to zero over
part of the channel and the electrostatic

of Eq. (14) is practically constant, i.e.,
have the diffusion regime when the current
ndent of the drain voltage. The critical

| which the drift current begins to predomin-
the diffusion mechanism corresponds, in
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accordance with Eq. (15),
eters that xeVp/kT =~ 1.
the drain voltage and te
x in accordance with Eq.
quantity to a very large on ]
transition from the drift to the d C

and it describes the saturation effecu Fo

It therefore follows that Eq. (15) - together
with Egs. (8), (3), and (4) — represents a closed
set of calculation formulas suitable for the description
of the current-voltage characteristic of a MOST
throughout the full range of the electrical regimes.
The above treatment deals only with the electrical
model of the current-voltage characteristic of a
transistor omitting details of little importance such
as mobility, surface states, etc. Nevertheless,
our experience in modeling of real devices based
on the above approach demonstrates its flexibility
from the theoretical point of view and, which is
equally important in the applications, its simplicity
in practice.
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