Energy Efficient Special Instruction Support in an
Embedded Processor with Compact ISA

Dongrui She
Eindhoven University of
Technology, The Netherlands

d.she@tue.nl

ABSTRACT

The use of special instructions that execute complex oper-
ation patterns is a common approach in application spe-
cific processor design to improve performance and efficiency.
However, in an embedded generic processor with compact in-
struction set architecture (ISA), such instructions may lead
to large overhead as: i) more bits are needed to encode the
extra opcodes and operands, resulting in wider instructions;
1) more register file (RF) ports are required to provide the
extra operands to the function units. Such overhead may
increase energy consumption considerably.

In this paper, we propose to support flexible operation
pair patterns in a processor with a compact 24-bit RISC-like
ISA using: 4) a partially reconfigurable decoder that exploits
the locality of patterns to reduce the requirement for opcode
space; 1) a software controlled bypass network to reduce the
requirement for operand encoding and RF ports. We also
propose an energy-aware compiler backend design for the
proposed architecture that performs pattern selection and
bypass-aware scheduling to generate energy efficient codes.
Though proposed design imposes extra constraints on the
operation patterns, the experimental results show that the
average dynamic instruction count is reduced by over 25%,
which is only about 2% less than the architecture without
such constraints. Due to the low overhead, the total energy
of the proposed architecture reduces by an average of 15.8%
compared to the RISC baseline, while the one without con-
straints achieves almost no energy improvement.

Categories and Subject Descriptors

B.1.4 [Control Structures and Microprogramming]:
Microprogram Design Aids; C.1 [Processor Architectures];
D.3.4 [Programming Languages]: Processors

General Terms
Algorithms, Design

Keywords

Reconfigurable architecture, special instruction, low power,
code generation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CASES’12, October 7-12, 2012, Tampere, Finland.

Copyright 2012 ACM 978-1-4503-1424-4/12/09 ...$15.00.

Yifan He
Eindhoven University of
Technology, The Netherlands

y.he@tue.nl

Henk Corporaal
Eindhoven University of
Technology, The Netherlands

h.corporaal@tue.nl

Figure 1: Special operation patterns

1. INTRODUCTION

Embedded systems, especially the ones in mobile devices
like smart phones, are becoming more and more important
in everyday life. The rapid development in embedded pro-
cessors enables such devices to run high performance ap-
plications like wireless communication and high definition
video codecs. However, power efficiency is becoming the
bottleneck in high performance embedded system design,
especially for those ones that run on limited power sources
like batteries. Moreover, high power dissipation makes the
chip’s thermal design more difficult.

Many applications contain frequently executed operation
patterns in the data-flow graphs (DFGs), like the ones shown
in Fig. 1. In this work, special instructions are defined as
instructions that execute such patterns. When properly uti-
lized, special instructions are able to dramatically reduce the
number of instructions and communication in the datapath,
which have great impact on both performance and energy
consumption. In application specific instruction set proces-
sor (ASIP) design, it is common to synthesis instruction sets
that support such patterns in the targeted applications to
achieve better performance and energy efficiency [15, 18, 23].
In this paper, we tackle the problem of integrating flexible
special instruction support in an embedded generic proces-
sor with a compact instruction set architecture (ISA). Most
previous works focused on improving the performance [18,
19]. Apart from performance improvement, the main fo-
cus of this work is on energy efficiency of the processor for
different types of applications. In most mainstream pro-
cessor architectures, only few number of such patterns are
supported, as supporting arbitrary operation patterns in a
generic processor incurs large overhead. From an energy
efficiency point of view, the overhead is mainly caused by:

e More bits in the instruction to encode opcodes for all
possible patterns and extra operands in the special in-
structions. It results in wider instruction, and the in-
struction fetch consumes more energy, even when a
normal instruction is fetched. In a compact RISC ISA
like the ARM Thumb [5], this problem is more serious
as the number of bits in the instruction is very limited.

e More ports in the register file (RF) to provide sufficient
data bandwidth for the special function units. A RF
with more ports is much less energy efficient. Also,
even the normal instructions need to pay the extra
cost. Methods like register file clustering [14] or FU
internal registers [23] are able to partially solve the
problem. But such methods usually lack flexibility and
often lead to very complex code generation.

To achieve high energy efficiency, the support for special in-
structions needs to have low overhead, while still being able
to support applications from different domains. In this pa-
per, we propose a schema for integrating special instruction
unit (SFU) into a RISC-like embedded processor with 24-
bit instruction width. The SFU supports flexible operation
pair patterns. To integrate the SFU into the RISC datapath
with minimum overhead, we use:

e A partially reconfigurable decoder that allows low over-
head reconfiguration for each kernel to use its specific
patterns. As a result, no extra bits are needed for the
special instruction opcode.

e A bypass network in the datapath that is exposed to
software, thereby reducing the requirement for both
operand encoding and register file ports.

The use of a reconfigurable decoder and an explicit bypass
network imposes some constraints on the special instruc-
tions the processor can execute, e.g., at least one of the
operands of a three-input special instruction has to come
form the bypass network. A compiler backend is designed to
generate energy efficient code for the proposed architecture.
The compiler selects patterns and performs bypass aware
scheduling to utilize the SFU and explicit bypass network. A
bypass aware DFG transformation is introduced to improve
both bypassing and special instruction generation. Experi-
mental results show that for a set of benchmarks form differ-
ent domains, the proposed architecture achieves an average
of 25% reduction in dynamic instruction count, which is only
2% worse than the architecture without constraints on the
special instructions. As for energy consumption, the pro-
posed architecture achieves an average reduction of 15.8%,
while the unconstrained architecture only reduces 1%. The
key contributions of this paper are:

e We propose an architecture that supports flexible oper-
ation pairs in a processor with a compact 24-bit RISC-
like ISA. The proposed architecture has a partially re-
configurable decoder and a software-controlled bypass
network, allowing the processor to support operation
pairs without increasing the instruction width or num-
ber of register file ports. The proposed architecture is
implemented in synthesizable Verilog RTL.

e A compiler backend is designed for the proposed ar-
chitecture. It is capable of utilizing the SFU and the
explicit bypass network to generate energy efficient tar-
get code. A complete compiler for the target architec-
ture is implemented based on the LLVM framework.

e Comprehensive and detailed experimental results demon-

strate that the proposed architecture and compiler are
able to improve the energy efficiency significantly.

The remainder of this paper proceeds as follows: Section 2
describes the DFG patterns we consider in this work and the
design of the SFU that executes such patterns. The pro-
posed integration of SF'U into the processor datapath with
explicit bypass is depicted in Section 3. Section 4 introduces
the compiler backend design for the proposed architecture.
Detailed and comprehensive results that demonstrate the

effectiveness of the proposed design are given in Section 5.
Section 6 discusses related work. Finally, Section 7 con-
cludes our findings and discusses future work.

2. OPERATION PATTERNS AND SPECIAL
FUNCTION UNIT

Each basic block of a program can be represented by a
data-flow graph (DFG) G(V, Eq, Ey), where:

e V is a set of nodes. Each node in V represents either
an actual operation or a live-in variable (register file
or immediate). In this work, we assume that the oper-
ations in V' can be directly mapped to a function unit
(FU) in a typical RISC processor.

o E, is a set of directed edges. An edge e = (u,v) repre-
sents that node v consumes the output of u, i.e., there
is true data dependency between u and v.

e Ey is a set of directed edges. An edge e = (u,v) rep-
resents that there is false/output dependency between
node v and u.

For a basic block, the DFG is a directed acyclic graph (DAG).
A special operation pattern is defined as a subgraph of a DFG
that contains more than one basic operation. Fig. 1 shows
some examples of these patterns. Compared to a combina-
tion of basic operations that performs the same computa-
tion, executing a special operation pattern using a special
instruction has a few advantages:

e Fewer instructions are needed to execute the opera-
tions, resulting in less control overhead.

e The communication between operations can be done
within the FU, which is usually much more efficient.

For a certain application, some special operation patterns
appear frequently. In application specific instruction-set
processor (ASIP) design, a common approach for improv-
ing performance as well as energy efficiency is to synthesize
special function units that support these patterns [15, 18, 23,
26). Different from the work of ASIP design, the goal of this
work is to support special operation patterns in a RISC-like
generic processor, without introducing heavy modification
to existing architecture and code generation framework. In-
stead of trying to support arbitrary operation patterns, we
focus on a specific type of operation pattern, namely, oper-
ations pairs. The definition of the operation pair pattern,
as well as motivation of choosing such patterns are given
in Section 2.1. The design of a special function unit (SFU)
that provides flexible support for these patterns is depicted
in Section 2.2. In Section 2.3, we analyze a set of kernels
based on the patterns supported by the proposed SFU.

2.1 Operation Pair Patterns

In this work, we want to integrate the support for spe-
cial operation patterns without major modification to the
original RISC architecture. A RISC processor typically has
two read ports and one write port (2R1W). Though there
are some other possible sources for input operands, like im-
mediate field and bypass network, the number of source
operands cannot grow dramatically without heavy modifi-
cation to the instruction format. The same holds for the
destination operand. In addition, the number of arbitrary
operation patterns in different applications is huge. The FU
that supports all these patterns is likely to be very com-
plex and inefficient. So in this work, we focus on operation
pair patterns, i.e., patterns with two operations a and b that
meet the following criteria:

____ Control Signals Source Operands

‘SeLZ Opc_2 Sel_1 Opc_1! |_A B [

B B ,,E‘ e

Arithmetic Logic Shift MUL
T 3 o

isolate _t_ + +

Arithmetic Logic Shift

| |]
sel v

Figure 2: Special function unit

Kernel ‘ Description ‘ Domain
FIR 5-tap finite impulse response filter Image
Histogram 256-bin histograming Image
YUV2RGB YUV to RGB color space conversion Image
IDCT 2D 8x8 Inverse cosine transformation Image /Coding
MatVec Matrix vector multiplication General
CRC Cyclic redundancy check code calculation | Network/Storage
DES The Data Encryption Standard algorithm Security

Table 1: Kernel description

e There is true dependency between a and b: (a,b) € Eq4.

e There are at most three input operands. More for-
mally, for a set of edges P that contains all edges to a
or b in E4 except (a,b), we have |P| < 3;

e At most only one of a and b has consumer outside the
pattern, i.e., at least one of the following holds:

— Theresult of a is only consumed by b: {(a, ¢)|(a,c) €

Eg4,c # b} = (. If this constraint is met, only b
may have consumers outside the pair pattern.

— b has no consumer: {(b,c)|(b,c) € Eq} = 0. If
this constraint is met, only a may have consumers
outside the pair pattern.

e There is no path from a to b in G other than (a,b). So
combining them does not create cycles in G.

Integrating such patterns in a RISC processor is relatively
easy: we only need to supply one more source operands than
for a normal operation.

2.2 Special Function Unit Design

The design of our special function unit is shown in Fig. 2.
The SFU supports two levels of basic operations. To avoid
introducing large area and timing overhead, only one multi-
plier is included in the SFU, which is put in the first level.
The design of the SF'U allows almost arbitrary combinations
of operation pairs that satisfy the constraints in Section 2.1.
When fully decoded, an 18-bit control signal is needed for
the SFU to execute one special operation. To improve the
energy efficiency of the SFU, operand isolation is used to
isolate each sub-function-unit. So a unit only toggles when
it actually needs to perform computation, thereby reducing
unintended circuit activities.

As shown in Fig. 2, the SFU can be pipelined, or partially
pipelined, which allows architectures with SFUs to reach
high frequency if necessary.

2.3 Application Analysis

We analyzed seven kernels listed in Table 1, which come
from various application domains. In total, 35 distinct pair

If B is not commutative

® ® O®R ®& ®
(») ()
() ()

® RF/bypass
(D) immediate

Figure 3: Cases for the same pattern that need dif-
ferent coding
Total || Hist | FIR | IDCT | Y2R | MatVec | CRC | DES
35 2 3 9 9 11 9 12

Table 2: Kernel pattern statistics

patterns that can be supported by the SFU are needed for
these kernels. The number of patterns can grow much larger
if more applications from different domains are included.
In addition, to generate a valid special instruction from an
operation pattern, more information needs to be encoded,
e.g., if there is immediate and whether the immediate is for
the first or the second operation. Fig. 3 shows an example of
a three input operation pair that requires different control
coding. When all these factors are considered, the total
number of different special instruction patterns can easily
grow to way over one hundred.

However, if we look into each individual kernel, we can
see that the number of patterns used in one kernel is much
smaller than the number of total patterns. Table 2 shows
the statistics of pattern matches in the seven representative
kernels from different domains. The statistics show that it is
possible to exploit the temporal locality of patterns to reduce
the number of patterns a processor needs to support during
the execution of an application or a kernel. Findings in [17,
26] also lead to similar conclusion. This observation can
be used to guide the design of efficient special instruction
support in processors, which is discussed in Section 3.

3. INTEGRATING SFU INTO PROCESSORS

WITH COMPACT ISA

In this work, a 4-stage RISC processor with a 24-bit in-
struction set architecture (ISA) is used as the baseline. The
key features of the baseline architecture are described in Ta-
ble 3. Most instructions are three-address instructions: two
source operands and one destination are encoded. Fig. 4
depicts the datapath of the baseline processor.

In the baseline architecture, the major limiting factors of
integrating the SFU introduced in Section 2.2 are:

Instruction width 24 bits
Pipeline stages 4
Register file 32bx 32, 2R1W
Opcode 6 bits
Immediate 8 bits

Table 3: Key features of the baseline ISA

OperandABypass

—>

IN09X]—» €«———op09aQ

>

am

'«

Operand 1 Operand 2 Operand 3]

J3—>'«———opoosq——»

> '«——oInoex

<gM

Figure 5: SFU datapath without constraints

e After adding the basic integer and control operations,
only less than 16 opcodes are left in the opcode space.
e At most 3 bits can be used for encoding the extra

operand in three-input instructions, which are not enough

for a register index.

e The 2R1W RF cannot provide enough operand band-
width for the SFU.

A straightforward solution to these problems is to increased
instruction width and number of RF ports. To accommo-
date the extra opcodes and register index, at least additional
7 bits are needed (5 bits for the third register operand, 2 bits
for extra opcodes). As a result, the width of the instruction
memory increases to 32 bits. In addition, the RF needs to
have three read ports (3R1W) in order to provide sufficient
bandwidth for the SFU. The resulting datapath is shown in
Fig. 5. To avoid high area overhead, the multiplier is ab-
sorbed into the SFU. Based on the estimation of CACTI [6],
the energy consumption of each access to the instruction
memory is increased by 10% to 30% depending on the size
and configuration. And based on the implementation result,
the energy consumption of the RF is also increased by 12%
due to the extra read port. Since both instruction mem-
ory and register file are among the most frequently used
components in a processor, an architecture with such large
overhead is unlikely to be energy efficient.

To improve the energy efficiency, such overhead have to
be mitigated. In this work, we propose an energy efficient
support for the SFU by using: i) a partially reconfigurable

‘ Opcode] Operand Info I
| I_{

Operand Selection]
T | |

] ¥ E0 B
i | DO
: ~— 7
1 m CEIE
|| ignals

y 3 SFU

18bx8 Reconfigurable
Pattern Table

Figure 6: Partially reconfigurable SFU decoder

decoder that exploit the locality of the operation patterns
to reduce the opcode encoding requirement;) a software-
controlled bypass network that exploit the processor pipeline
to reduce the operand encoding and RF port requirement.
Section 3.1 and Section 3.2 describe the details of the par-
tially reconfigurable decoder and the software-controlled by-
pass network, respectively. Section 3.3 depicts how the SFU
is integrated into the baseline processor.

3.1 Partially Reconfigurable Decoder for SFU

As discussed in Section 2.3, a key observation is that al-
though a large number of patterns are needed to cover the
operation patterns in different applications, only a small
number of such patterns are active in one kernel, i.e., in
most kernels, the operation patterns have good locality. To
utilize such locality, this work introduces a partially recon-
figurable decoder for the SFU.

Fig. 6 depicts the structure of the reconfigurable decoder
for the SFU. The center of the decoder is a look-up-table
with eight entries, called pattern table. Each entry in the
pattern table stores an 18-bit control signal required by a
special instruction. Since the table only has eight entries,
the free opcodes in the opcode space can be used to address
it. When a special instruction is fetched, the decoder reads
a pattern table entry and uses it to control the SFU; when
a normal instruction is fetched, the decoder proceeds as a
normal RISC decoder, and the pattern table is clock gated
to eliminate unnecessary accesses.

The pattern table is visible to the software. So when dif-
ferent operation patterns are needed, the software can re-
configure the SFU decoder by writing extra control signal
needed by these operations into the pattern table. By en-
abling the reconfiguration of the pattern table, the processor
is able to use all the operation patterns supported by the
SFU. And since in most cases the operation patterns have
good locality, the overhead of reconfiguration is very low.

3.2 Explicit Bypass

In a typical pipelined datapath of a processor, like the
one in Fig. 4, there is a bypass/forwarding network, whose
primary function is to avoid pipeline stalls caused by data
dependencies. A side effect of such a network is that many
operands can be read from the pipeline registers instead of
the RF. There are two types of RF access elimination:

e Bypassing: the result of an operation can be read from
the pipeline register before it is written back to RF;

e Dead writeback elimination: if all uses of a variable are
bypassed, its writeback is no longer necessary.

However, in conventional processor architectures, such by-
passing network is invisible to software, which makes it dif-
ficult to eliminate RF accesses: i) bypassing requires RF

mul 13, 15, r10 |Feteh| | F%

‘MUL‘ ‘wﬂs

mul r4, r6, r11 ‘Fetch‘ F'::drﬁ ‘ MUL 1| | W4
add 17, 13, r4 Fetch| | 2 |3 ADD |y | w2
sw r7, 0(r2) ‘Fetch‘ ‘ mdye L{ sw ‘ ‘ ‘
mul -, 5, r10
Explicit b d mul --, r6, r11
xplicit bypass code add --, EX, WB
sw EX, 0(r2)

Figure 7: Reduce RF accesses via explicit bypass

mul r3, r5, r10
mul r4, r6, r11 mul r3, r5, r10 mul --, r5, r10
add r15, r3, r4 mul-add r15, r6, r11, r3 mul-add --, r6, r11, EX
mul r3,r7,r12 mul-add r15, r7, r12, r15 mul-add --, r7, r12, EX
add r15, r15, r3 swr15, 0(r2) sw EX, 0(r2)
sw r15, 0(r2)
SFU with unconstrained SFU with explicit
RISC RF accesses bypass
2R1W RF 3R1W RF 2R1W RF
5 RF Writes 3 RF Writes 0 RF Writes
12 RF Reads 10 RF Reads 7 RF Reads

Figure 8: Special instruction example

indexes to be checked before decode stage, which may in-
crease the critical path of fetch stage or results in an extra
pipeline stage;) dead writeback elimination is impossible
unless liveness information is explicitly encoded in instruc-
tions. In this work, we propose to use a bypass network that
is controlled by software, i.e., the bypassing information is
statically encoded in the instructions. Fig. 7 shows an ex-
ample of reducing RF accesses via explicit bypassing. Apart
form reducing the total number of register accesses, explicit
bypassing helps integrating the SFU without increasing in-
struction width and RF ports in two ways:

e Encoding a bypass source uses fewer bits than an RF
index, as the number of bypass sources are much fewer
than the number of registers in RF (4 vs. 32).

e Fewer RF ports are required when some operands are
bypassed.

By imposing the constraint that at least one of the source
operands in a three-input special instruction has to come
from the bypass network, the special instructions can be
encoded in the 24-bit instruction, and there is no need to
increase the number of RF ports. Fig. 8 shows an example of
special instructions. In processor with unconstrained SFU,
the number of instructions is reduced from 6 to 4, at the cost
of increasing the number of read ports of the RF from 2 to
3. In a processor with explicit bypassing, the same code size
improvement can be achieved even when there is a constraint
that at least one of the operands comes from the bypass
network. And with such a constraint, the requirements for
the instruction bits and RF port are reduced.

3.3 Integrating SFU into Processor Datapath

We propose an architecture that is able to support all
the operation pair patterns of the SFU described in Sec-
tion 2.2, by employing the partially reconfigurable decoder
and explicit bypass network introduced in previous subsec-
tions. Fig. 9 shows the datapath of the proposed processor
architecture. Note that because there are input registers for
each FU, the result of one operation is stable at the output
port of the FU until the next operation that uses the same
FU comes. So it is possible to use the output of each FU as

¥ v v v Y v ¥
{ Operand 1 } { Operand 2 } { Operand 3 }
—1

&bt ad

<—3IN09X]—»'«——BP0ds—»

o

3

"

[S]

I

|

|

|

|

|

|

|
GM*I

«

Figure 9: SFU datapath with constraints

a separate bypass source, which increases the possibility of
bypassing. Compared to the one with direct SFU support
(Fig. 5), the proposed architecture imposes extra constraints
on the special instructions it can execute:

e For a three-input special instruction, at least one of the
source operands has to come from the bypass network.

e At most eight special instruction patterns are active
at the same time. To support different patterns, the
program needs to reconfigure the pattern table.

With these constraints, the proposed architecture is much
more energy efficient: instruction width remains 24 bits in-
stead of 32 bits and the RF is 2R1W instead of 3R1W. To
use explicit bypass without changing the normal instruction
format, part of the RF address space is used for the bypass
source. As a result, the number of registers in the RF re-
duces from 32 to 28. The effect of a smaller RF is mitigated
by the explicit bypassing, as it eliminates the necessity of
allocating registers for short-live variables in many cases.

The introduction of a pattern table and an explicit by-
pass results in extra context when exceptions happen. The
pattern table can be handled in a similar fashion as general
purpose registers. For explicit bypass, it is required that
the processor saves the complete state for the execute and
writeback stages of the pipeline. This can be done using
a scan-chain that automatically saves/restores the registers
when exceptions happen. Since the number of registers is
small, the overhead in area and response time is small.

4. CODE GENERATION FOR SPECIAL IN-
STRUCTIONS

The compiler in this work is implemented based on the
open-source LLVM framework [3]. Fig. 10 shows the back-
end compilation flow for the proposed architecture. The in-
put of the backend is a low-level intermediate representation
(IR), which is basically RISC assembly with virtual regis-
ters, embedded with control-flow and data-flow information.
Since the proposed architecture only has small modification
to the original RISC architecture, most part of the compiler
can simply reuse the same passes as a compiler for RISC
architecture. The main difference is that the backend needs
to be aware of the explicit bypass network and has to uti-
lize the special function unit (SFU). The selection of pair
patterns for generating special instructions is described in
Section 4.1. Section 4.2 discusses the changes in instruc-
tion scheduler and register allocator due to explicit bypass.
A transparent DFG transform that improves bypassing and

Front/Middle-end
Low Level IR
v

Pair Pattern Set Bypass and Break
Selection Invalid Instructions
v
Bypass DFG ‘ Register Allocation | Y
Transform
Schedule
Schedule Affected
Backend ‘ Emit Tarlget Code |
v

Figure 10: Compiler backend flow

helps the selected patterns to meet the architectural con-
straints, is described in Section 4.3.

4.1 Pair Pattern Selection

To use the SFU, the compiler needs to choose pairs of DFG
nodes that can be used to generate special instructions, i.e.,
the pair pattern selection. The first step of pair pattern
selection is to find all the node pairs whose patterns are
supported by the SFU in the data-flow graph (DFG) under
the constraints described in Section 2.1. A set containing
all these node pairs is obtained by a scan through all nodes
in the DFG, M. Each pair in M is called a match. The
matches that are obviously not going to meet the operand
bypass constraint, e.g., the ones with three non-constant
live-in variables, are excluded from M.

The next step is to choose a subset S of M for generating
special instructions. Obviously each DFG node should only
be used by one pattern in S, as duplicating DFG nodes only
results in extra energy consumption in the pair patterns. A
match interference graph Gr(V, E) can be built:

e V is a set of nodes representing all possible matches.

e FE is a set of undirected edges. (u,v) € E means that
match v and match v share a common DFG node. So
u and v cannot be selected simultaneously.

An example of match interference graph is given in Fig. 11:
on the left is a DFG with four possible matches; on the right
is the match interference graph of the four possible matches.
S should be an independent set of Gy, i.e., nodes in S are
pair-wise non-adjacent in GG;. The objective here is to find
as many pairs as possible, which is essentially to get the
mazimum independent set (MIS) of Gy, i.e., the independent
set with maximum cardinality.

Though MIS is NP-complete in general, the minimum de-
gree heuristics performs very well for sparse and bounded
degree graph [2]. In the DFG pair pattern selection, many
nodes in the match interference graph have the same degree,
which results in many ties in minimum degree selection Since
in the proposed architecture, only limited number of oper-
ation patterns are supported without reconfiguration, the
pattern frequency is used to break the ties. The algorithm
used for pattern selection is depicted in Algorithm 1. The
algorithm yields {1,3} for the example in Fig. 11, which is
the MIS of the interference graph.

4.2 Instruction Scheduling and Register Allo-
cation

A list scheduler is used to perform basic block level schedul-

ing. In the proposed architecture, the total number of phys-

ical registers are reduced as part of the RF address space is

1, 2, 3: mul-add
4: add-add

Possibl;ékmatches

Interference graph

Figure 11: Operation patterns matches

Partial Schedule

Current Schedule Ready List
mul r3, r5, r10 mul 15, r7, 127

add r9, r3, r4
add r7,r8,r12

+ 3 r4 * 3 14

mul r3, r5, r10 mul r3, r5, r10
add --, 18, r12 add --, r8, r12
mul r5, ALU, 127 add r9, r3, r4

I'r5, WB, 127
add r9, r3, r4 1\1 mulrS, WE,

Balance between bypass

Greedy bypass and register pressure

Figure 12: Bypass and register pressure trade-offs

used by bypass sources. So although explicit bypass elimi-
nates the need for many temporary registers, it is still very
important for the compiler to make sure that register pres-
sure stays low. When the list scheduler greedily chooses the
node with maximum number of bypass, the register pres-
sure may go up. Fig. 12 shows an example of how a greedy
bypass scheduler may increase the register pressure. In this
work we use a scheduling algorithm which is similar to the
integrated prepass scheduling (IPS) [1]. Depending on the
register pressure of the current partial schedule, The sched-
uler switches between between two policies: @) choose the
node that maximizes bypassing, or i) choose the node that
minimizes register pressure. The details of the scheduling
algorithm is given in Algorithm 2. The register pressure
threshold can be chosen based on the estimation of avail-
able registers for the basic block. The register allocation is
done with a graph-coloring algorithm. The register alloca-
tion is almost the same as the one used for a RISC processor,
except that small constant values (ones that can fit in the

Algorithm 1: Pattern Selection

: Match interference graph of the basic block M(V, E)
and pattern frequency Fj

Output : Set of pattern matches S in which nodes do not
interfere with each other

Input

15+ 0

2 while M # () do

3 D <« {d|d € V,Pu € V : degree(u) < degree(d)}

a if |D| =1 then

5 | n <« D[0]

6 else

7 Q + {qlqg € D,u € D : Fy(Pat(u)) > F,(Pat(q))}
8 // Pick the first one if () has more than one node
9 n < Q0]
10 end
11 S« Su{n}
12 Remove n from M, along with all its edges and neighbors
13 end

instruction immediate field) in special instructions are not
always re-materialized to immediate filed when it results in
an instruction with two immediate values, which is invalid.

After the scheduling, a scan through all instructions is
preformed to check for invalid special instructions, i.e., the
instructions that do not meet the constraints given in Sec-
tion 3.3. If a special instruction is found to be invalid, the
checker decomposes it into normal instructions. Due to the
nature of explicit bypassing, this transformation does not
increase register usage. Then the compiler collects pattern
informations and decides where to insert the reconfiguration
codes. In this work, there are two possible scenarios:

e If the number of patterns used in a function is less
than or equal to the pattern table size, all patterns are
loaded at the entry block of the function.

e If the number of patterns used in a function exceeds the
pattern table capacity, the compiler tries to perform re-
configuration before entering each intensive loop. The
loop information can be obtained through static esti-
mation or profiling.

When both ways fail to accommodate all used patterns, the
compiler selects the most frequently used patterns. And a
special instruction whose pattern is not in the pattern table
is decomposed to two normal instructions. When there is a
function call, the pattern table becomes part of the context,
and needs to be saved like the general purpose registers.
When compiler optimization is enabled, the frequently called
simple functions usually get in-lined. So we expected the
reconfiguration overhead to be negligible in most cases.

As shown in Fig. 10, whenever a code transformation
changes the schedule, the bypass status of each instruction
needs to be updated, so the same check needs to be per-
formed. The process terminates: in the worst case, the loop
stops when all special instructions are decomposed to nor-
mal instructions. In practice only one or two iterations are
sufficient in most cases.

Algorithm 2: Basic Block Scheduling

Input : DFG G(V, Eg4, Ef) and register pressure threshold ¢,
Output : The schedule of the DFG T : V +— N

1 // Set number of cycles based on conservative estimation

2 R+ 0 // Ready set

3 L+« 0 // Live variable set

a S+ 0 // Set of scheduled operations

5 c+ 0

6 while |S| # |V| do

7 if |L| < t, then

8 | o+« find node with. max bypass (R, T)

9 else

10 o < find_node_reduces_max register_pressure (R,
T, L, G)

11 end

12 for s € {ulu € V, (0,u) € EqU Ef} do

13 if s is enabled by o then

14 | R« RU{s}

15 end

16 end

17 for p € {ulu € V, (u,0) € Eq} do

18 if o is last use of p then
19 | L+« L\{p}

20 end

21 end

22 if o has value output then
23 | L+« Lu{o}

24 end

25 S+ Su{o}

26 Tlo] + ¢

27 R+ R\ {o}

28 c+c+1

29 end

Order: p,ct, c2
(c1 is basic op)

Order: p1,p2, ¢

Order: p,c (p2 is basic op)

Figure 13: DFG clustering for explicit bypass

4.3 Bypass-Aware Graph Clustering

Whether an operand is bypassed or not depends on the
schedule distance between the producer operation and the
consumer. In the proposed architecture, bypassing not only
affects the number of RF accesses, but also decides whether
a special instruction is valid. To better utilize the explicit
bypass, and more importantly, to reduce the number of spe-
cial instructions invalidated by the scheduling, we introduce
a bypass aware DFG transformation before the scheduling.
The basic idea is to cluster a set of nodes if the nodes can
be scheduled in such a way that:

e All the intermediate results are bypassed.

e Register pressure does not increase.

e Combining these nodes does not result in a cyclic de-
pendency.

However, to find arbitrary subgraphs that meet these con-
straints is difficult as the number of possible subgraphs grows
exponentially with the number of nodes. In this work, we in-
troduce fixed patterns that meet the constraints and can be
scheduled easily. We choose the patterns shown in Fig. 13, as
they are easy to match and common in DFGs from different
applications. The order in of each pattern in Fig. 13 rep-
resents the internal order of the nodes in the cluster, which
satisfies the afore-mentioned constraints. The clustering can
be done iteratively until no more transform is possible.

The transformation described in this subsection is trans-
parent to the scheduler. After the graph clustering, the
scheduler can schedule the resulting graph as if it is a normal
DFG. After the scheduling, a valid schedule of the original
DFG can be produced by expanding each clustered node to
the internal list of DFG nodes.

S. EVALUATION AND ANALYSIS

Table 4 presents the architectures used in the experiments.
The proposed architecture, i.e., with partially reconfigurable
decoder, explicit bypass network, and constrained special in-
struction patterns (see Section 3.3), is called SFU-24. And
the architecture that integrates SF'U without the constraints
in SFU-24 is called SFU-32. The datapaths of the baseline,
SFU-32 and SFU-24 are shown in Fig. 4, Fig. 5 and Fig. 9,
respectively. All three cores are implemented in Verilog RTL
and synthesized with TSMC 90nm low power library at 1.2V
and typical case. Clock gating is used to minimize dynamic
power consumption. The core energy consumption is es-
timated with the backend information and real toggle rate
generated by post-synthesis simulation. The area and energy
consumption of the memory are estimated with CACTTI [6],
using 90nm low operating power technology. Table 5 shows
the energy model of the memory used in the experiments.

5.1 Area and Frequency

The implementation results of the three architectures are
shown in Table 6. The increase in the core area is under-

Architecture ‘ Baseline ‘ Unconstrained SFU Proposed

(Base) (SFU-32) (SFU-24)
Instruction Width 24 bits | 32 bits [24 bits
Instruction 12kB 24-bit [16kB 32-bit [12kB 24-bit
Memory 4k words

Data Memory 16kB 32-bit

Register File 32bx 32 32bx 32 32bx28
2R1W 3R1IW 2R1IW

SFU Patterns 0 128 8

Table 4: Configuration of different architectures

Memory | 16kB 32-bit | 12kB 24-bit

Energy per
access (pJ)

15.38 11.62

Table 5: Memory energy consumption

standable and expected, as the SFU, as well as its decoding
part, are much more complex compared to simple FUs in
RISC. The core area of SFU-32 is slightly larger than SFU-
24 as it needs to support more patterns in the decoder. The
difference in memory area between SFU-32 and SFU-24 is
significant. This is caused by the instruction memory since
SFU-32 uses 32-bit instructions, while SFU-24 uses 24-bit
instructions. In all, the SFU-32 pays a very high price in
terms of area. In contrast, the proposed SFU-24 realizes the
special instruction support with a relatively small overhead.
In particular, it does not increase the memory area, which
is the dominant part in many modern processors.

The reduced maximum frequency of SFU-32 and SFU-24
is mainly caused by the un-pipelined SFU, which has two
levels of sub-function-units. It can be mitigated by intro-
ducing a pipeline stage in the SFU, though the trade-offs
are out of the scope of this work. In this work, we use the
un-pipelined SFU in both SFU-32 and SFU-24.

5.2 Energy Consumption

Table 1 lists the benchmarks used in the experiments.
These kernels are from various application domains. The
code for the proposed SFU-24 is generated by the compiler
described in Section 4. For SFU-32, the code generation
process is almost the same as SFU-24, except that all the
constraints on operand bypassing and opcode space are re-
moved, and no reconfiguration code is generated. All bench-
mark programs are compiled with maximum optimization
enabled (-O3). Table 7 shows the absolute results of the
baseline processor. The memory energy in the table includes
both instruction memory and data memory. The energy
consumption of each kernel is calculated by multiplying the
number of cycles with the average energy (i.e., core + mem-

Architecture [Base [SFU-32 [SFU-24
Normalized Core Area 1 1.309 1.268
Normalized Memory Area 1 1.154 1
Maximum Frequency 450MHz | 325MHz | 325MHz

Table 6: Implementation result comparison

Kernel Simulated Average Core Average Memory

Cycles Energy per Cycle | Energy per Cycle
Histogram 21547 11.05pJ 16.10pJ
FIR 40973 18.41pJ 16.24pJ
IDCT 2303 17.93pJ 14.56pJ
YUV2RGB 43032 17.88pJ 13.82pJ
MatVec 3729 13.27pJ 14.00pJ
CRC 162017 12.73pJ 11.82pJ
DES 857130 14.89pJ 14.64pJ

Table 7: Results of the baseline architecture

WBase OSFU-32 ®SFU-24

Histogram FIR IDCT YUV2RGB MatVec CRC DES G-Mean

Figure 14: Dynamic instruction count (overhead in-
cluded)

1.10
1.05
1.00
095
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50

BBase OSFU-32 BESFU-24 -

YUV2RGB MatVec CRC DES G-Mean

Histogram FIR IDCT

Figure 15: Normalized memory energy consumption

ory) per cycle. In the remainder of this sub section, we
normalize all results to the baseline.

Fig. 14 shows the normalized dynamic instruction count
of the three different cores. Including the overhead of re-
configuration, SFU-24 achieves a reduction of 25%, which is
only 2% worse than SFU-32. When the instruction width
is factored in, as shown in Fig. 15, the memory energy con-
sumption of SFU-24 is much less than SFU-32. Though
the number of fetches is reduced dramatically, SFU-32 only
achieves 3.5% average memory energy reduction due to in-
creased instruction width. In 4 out of 7 benchmarks the
energy consumption actually goes up. In contrast, the pro-
posed SFU-24 is able to directly convert the reduction in
instruction count into memory energy saving. An average of
21% saving is observed.

Fig. 17 shows the normalized core energy consumption.
Comparing to the baseline processor, the proposed SFU-24
reaches a maximal core energy reduction by 21.5% in the
FIR case, and by 11.2% on average. The main contribu-
tions of energy reduction are from: 1) reduced RF access
energy; 2) reduced datapath and control path overhead due
to merged operations.

On the other hand, the SFU-32 increases the average core
energy by 0.3%. And it performs very bad in two cases: FIR
and IDCT, in which the core energy increases by over 8%.
The explicit bypass network is an important contributing
factor in this huge difference. As show in Fig. 16, the number
of accesses to the RF in SFU-24 is significantly reduced. In
addition, the RF in SFU-24 has less ports than the one in
SFU-32. As a result, the core of SFU-24 consumes much
less energy compared to SFU-32, for which in both FIR and
IDCT, a degradation of over 5% is observed.

Fig. 18 shows the normalized total energy consumption.
The proposed SFU-24 reduces both the memory and core
energy, and it achieves an average saving of 15.8%. It reaches
a maximal of 33.1% energy saving in CRC. While the total
energy saving of SFU-32 is only 1.1%.

These results show that although the use of SF'U is able to
significantly reduce the dynamic instruction count, directly
putting the SFU into a generic processor without any con-
straint does not result in an energy efficient architecture.
The proposed architecture with a partially reconfigurable
decoder and an explicit bypass network is able to reach a
balance between the energy efficiency and the flexibility of

OWrite ®Read

Figure 16: Normalized number of RF accesses
1.15

1.10 W mBase OSFU-32 BSFU-24 —
105 [l
1.00
0.95
0.90
085
0.80
075
0.70
Histogram FIR IDCT YUV2RGB MatVec CRC DES G-Mean

Figure 17: Normalized core energy consumption
1.10
1.05
1.00
095
0.90
0.85
0.80
0.75
0.70

W Base OSFU-32 mSFU-24

Histogram FIR IDCT YUV2RGB ~ MatVec CRC DES G-Mean

Figure 18: Normalized total energy consumption

the SFU, and it results in an architecture with high energy
efficiency and good performance.

6. RELATED WORK

The use of complex operation patterns, called instruction
set extension (ISE), is common in instruction set synthesis
for ASIP design [15, 18, 23]. There are also studies trying
to integrate such ISE in general purpose architectures [19,
20, 21], most of which focus on improving the performance.

The data bandwidth from the register file to the FUs is an
important constraint in ISE design [13]. Leupers et al. in-
troduced special register file called internal registers (IR) for
the special instruction units [23]. The IR is an effective way
of implementing application specific special instruction, but
it lacks flexibility and complicates the code generation as the
registers and FUs are no longer orthogonal, i.e., an FU can-
not accesses arbitrary registers. Karuri et al. proposed RF
clustering in single issue processor to mitigate the register
file port pressure in ISE in ASIP design [14]. While reducing
port pressure, the RF clustering, which is similar to what is
used in clustered VLIW architectures, also makes the code
generation much more complex. Pozzi and lenne exploited
the fact that pipelined SFUs do not need all operands in the
same cycle to distribute register file accesses across multi-
ple cycles [4]. This cannot be applied to the SFUs that are
similar to the one used in this work. Utilizing the bypass
network has been proven to be an efficient way to increase
operand bandwidth and reduce register file energy in dif-
ferent types of architectures [7, 10, 12, 24]. Jayaseelan et
al. proposed explicit forwarding to reduce register file port
pressure and operand encoding cost for application specific
ISE in a RISC-like datapath, which resembles the idea of
explicit bypass in this work [21]. However the power model

used in [21] only considers the consumption of the register
file, which is over-simplified for a complete processor design.
The overall energy efficiency of the proposed architecture is
not clear. Cong et al. proposed shadow registers to solve the
operand bandwidth issue for supporting special instructions
in a configurable processor [11]. The shadow registers are
similar to explicit pipeline registers, but have more flexibil-
ity. To avoid dramatical increase of control bits, the shadow
registers are hash-mapped, which may be less efficient in
terms of energy. In this paper, we explored the trade-offs in
utilizing bypass network for energy efficient ISE in a generic
processor with compact ISA and presented detailed and re-
alistic results. The proposed solution achieved high energy
efficiency while maintaining the generality of the baseline.

In ASIP designs, dynamic instruction set configuration
is often used to optimize the resource usage. The rotat-
ing instruction set processing platform (RISPP) uses a run-
time reconfigurable instruction set to enable the reuse of
resources for special instructions in ASIP [16]. Huynh et al.
proposed dynamic instruction set configuration for a flexible
reconfigurable custom instruction unit, addressing the trade-
offs between area, performance and reconfiguration cost [9].
Some recent works proposed integration of special instruc-
tions for a relative wide range of applications. Clark et al.
proposed integration of a configurable compute accelerator
(CCA) into a general-purpose processor [19, 20]. The archi-
tecture of CCA is relatively complex and it requires up to 4
inputs and 2 outputs, as its main objective is improving per-
formance. The control part of CCA is designed to be trans-
parent such that the code can be executed with or without
CCA. Woh et al. proposed AnySP, a wide SIMD signal pro-
cessor targeting wireless and multimedia applications [17].
In AnySP the idea of operation pairs is similar to the SFU
design in this work, and the operand problem is partially
solved by introducing an extra small RF. In PEPSC, an ar-
chitecture designed for efficient scientific computing, Dasika
et al. proposed a FPU that is capable of executing up to
five back-to-back operation [8]. In this work we exploited
the locality of the special operation patterns in designing
a partially reconfigurable decoder to achieve energy efficient
integration of SFU into a RISC processor with compact ISA,
which allowed the proposed architecture to improve energy
efficiency substantially in different domains.

Selection and scheduling for special instructions is one of
the most important parts in code generation for ASIP and
many reconfigurable architectures. Kastner et al. proposed
an algorithm for generating special instructions in a system
with reconfigurable fabrics [22]. Guo et al. proposed a graph
covering algorithm for code generation of Montium reconfig-
urable processor [25]. Park et al. presented a greedy algo-
rithm for increasing the bypassing in a RISC processor [24].
In [21], integer linear programming (ILP) is used to perform
bypass aware scheduling in a processor with application spe-
cific ISE. The proposed algorithm inserts register copying
instructions to meet the special instruction constraints.

In this work, we proposed a novel architecture that uses
special instructions to improve the energy efficiency of a
generic processor with a compact ISA. Two major issues:
1) opcode and operand encoding; i) operand bandwidth to
SFU are solved by using a partially reconfigurable decoder
and explicit bypass network.

7. CONCLUSIONS AND FUTURE WORK

Integrating a special function unit (SFU) that executes
complex operations into a generic processor for energy ef-
ficiency is not easy, as special instructions may incur large
overhead, especially when the ISA is a compact one. This

paper introduced an architecture for integrating SFU that
supports flexible operation pair patterns in a generic proces-
sor with a compact ISA. A partially reconfigurable decoder
and a software-controlled explicit bypass network are used
to: 1) encode extra opcodes and operands in the limited
instruction coding space; ii) supply sufficient data to the
special instructions without increasing the number of reg-
ister file ports. We presented a compiler backend design
for the proposed architecture. The compiler is able to uti-
lize the SFU and the explicit bypass network to generate
energy efficient code. Results including benchmarks from
different domains demonstrate that the proposed architec-
ture and compiler are effective: average dynamic instruction
count is reduced by over 25%. The total processor energy
consumption is reduced by 15.8%.

Further trade-offs between performance, energy and area
are possible when extra pipeline stages in the SFU are intro-
duced. Future work also includes supporting more complex
patterns, and exploring the trade-offs between the complex-
ity of the SFU and the energy efficiency of the processor.

8. ACKNOWLEDGMENTS

This work is supported by the Dutch Technology Founda-
tion STW, project NEST 10346, and the Ministry of Eco-
nomic Affairs of the Netherlands, project EVA PID07121.

9. REFERENCES

[1] J. R. Goodman and W. Hsu. Code scheduling and
register allocation in large basic blocks. In Proceedings
of the 2nd International Conference on
Supercomputing, pages 442—-452, 1988.

[2] M. Halldérsson and J. Radhakrishnan. Greed is good:
approximating independent sets in sparse and
bounded-degree graphs. In Proceedings of the 26th
Symposium on Theory of Computing, pages 439—448,
1994.

[3] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis &
transformation. In Proceedings of the 200/
International Symposium on Code Generation and
Optimization, pages 75—86, 2004.

[4] L. Pozzi and P. Ienne. Exploiting pipelining to relax
register-file port constraints of instruction-set
extensions. In Proceedings of the 2005 International
Conference on Compilers, Architectures and Synthesis
for Embedded Systems, pages 2—10, 2005.

[5] ARM Ltd. ARM Thumb Instruction Set.
http://www.arm.com/.

[6] CACTTI. cacti 5.3, rev 174.
http://quid.hpl.hp.com:9081/cacti/.

[7] D. She et al. Scheduling for register file energy
minimization in explicit datapath architectures. In
Design, Automation Test in Europe Conference
Ezhibition 2012, 2012.

[8] G. Dasika et al. PEPSC: A power-efficient processor
for scientific computing. In Proceedings of the 2011
International Conference on Parallel Architectures and
Compilation Techniques, pages 101-110, 2011.

[9] H. P. Huynh et al. An efficient framework for dynamic
reconfiguration of instruction-set customization. In
Proceedings of the 2007 International Conference on
Compilers, Architecture, and Synthesis for Embedded
Systems, pages 135-144, 2007.

[10] J. Balfour et al. An energy-efficient processor
architecture for embedded systems. Computer
Architecture Letters, 7(1):29-32, 2007.

[11] J. Cong et al. Architecture and compilation for data
bandwidth improvement in configurable embedded
processors. In Proceedings of the 2005 International
Conference on Computer-Aided Design, pages
263270, 2005.

[12] J.Balfour et al. Operand registers and explicit operand
forwarding. Computer Architecture Letters, 8(2):60-63,
2009.

[13] K. Atasu et al. Automatic application-specific
instruction-set extensions under microarchitectural
constraints. In Proceedings of the 40th Design
Automation Conference, pages 256—261, 2003.

[14] K. Karuri et al. Increasing data-bandwidth to
instruction-set extensions through register clustering.
In Proceedings of the 2007 International Conference
on Computer-Aided Design, pages 166—-171, 2007.

[15] K. Karuri et al. A generic design flow for application
specific processor customization through
instruction-set extensions. In Proceedings of the 9th
International Workshop on Embedded Computer
Systems, pages 204-214, 2009.

[16] L. Bauer et al. Rispp: Rotating instruction set
processing platform. In Proceedings of the 44th Design
Automation Conference, pages 791 —796, 2007.

[17] M. Woh et al. AnySP: anytime anywhere anyway
signal processing. In Proceedings of the 36th
International Symposium on Computer Architecture,
pages 128-139, 2009.

[18] N. Clark et al. Processor acceleration through
automated instruction set customization. In
Proceedings of the 36th International Symposium on
Microarchitecture, pages 129-140, 2003.

[19] N. Clark et al. Application-specific processing on a
general-purpose core via transparent instruction set
customization. In Proceedings of the 37th International
Symposium on Microarchitecture, pages 30-40, 2004.

[20] N. Clark et al. An architecture framework for
transparent instruction set customization in embedded
processors. In Proceedings of the 32nd International
Symposium on Computer Architecture, pages 272-283,
2005.

[21] R. Jayaseelan et al. Exploiting forwarding to improve
data bandwidth of instruction-set extensions. In
Proceedings of the 43rd Design Automation
Conference, pages 43-48, 2006.

[22] R. Kastner et al. Instruction generation for hybrid
reconfigurable systems. ACM Trans. on Design
Automation of Electronic Systems, 7(4):605-627, 2002.

[23] R. Leupers et al. A design flow for configurable
embedded processors based on optimized instruction
set extension synthesis. In Design, Automation and
Test wn Europe, 2006, pages 581-586, 2006.

[24] S. Park et al. Bypass aware instruction scheduling for
register file power reduction. In Proceedings of the
2006 Conference on Language, Compilers, and Tool
Support for Embedded Systems, pages 173—181, 2006.

[25] Y.Guo et al. A graph covering algorithm for a coarse
grain reconfigurable system. In Proceedings of the
2003 Conference on Language, Compiler, and Tool for
Embedded Systems, pages 199-208, 2003.

[26] P. Yu and T. Mitra. Characterizing embedded
applications for instruction-set extensible processors.
In Proceedings of the 41st Design Automation
Conference, pages 723-728, 2004.

