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Wave-number dependence of exciton longitudinal-transverse splitting was
considered in a previous paper, where a microscopic calculation of the electron-
hole exchange interaction was shown to account for experiment on CuCl. In this
paper, macroscopic approach, based on considerations on the dielectric function,
is taken to the same problem. For exciton with finite wave number, it is necessary
to distinguish between longitudinal and transverse oscillator strength; the former
is proportional to the longitudinal-transverse splitting of exc1ton Equivalence of

the two approaches is proved.

§1. Introduction

Recent two-photon Raman scattering experi-
ment permitted determination of exciton disper-
sion relation for wave number K up to as
large as 1/10 of the Brillouin zone boundary. In
Cu(l, the observed dispersion relation revealed
a strong wave-number dependence of the
separation of longitudinal and transverse
exciton energies.” The observed longitudinal-
transverse splitting (L-T splitting) 4;(XK) can
be put in the form

22

A (K)=A411(0)+« 3

(L.1)

with 4; (0)=5.7 meV and the non-dimensional
parameter o= —0.12. On account of negative
o, the splitting decreases with increase in K.
For example, it is reduced to 2.5 meV at K=
9x10°cm™!. In a previous paper,” micro-
scopic theory was developed to understand the
above wave-number dependence. In this paper,
we are going to approach the problem from
another, macroscopic, point of view.

The L-T splitting can be investigated in two
ways,
microscopic language, the L-T splitting is
caused by the exchange interaction between
electron and hole, as was first noted by Heller
and Marcus® for Frenkel exciton. The for-
malism can be transcribed to the case of
Wannier - exciton® by substituting Wannier
functions for the atomic wave functions. The
exchange energy takes the form of the dipole

microscopic and macroscopic. In.

lattice sum, as frequently met in lattice
dynamics. The L-T splitting 4, (K) computed
from the fcc lattice sum gave® o= —0.00049,
which is far smaller than the experimental
value. This disagreement means inadequacy
of the Wannier-function formalism to exciton
in CuCl. We have to use, instead, Bloch func-
tions in construction of exciton states. In the
Bloch-function representation, the exchange
interaction consists of analytic and non-
analytic parts.3:®7 It is this non-analytic part
that gives rise to L-T splitting for small K.

We therefore calculated® the non-analytic
exchange energy for finite wave vector K, using
appropriate Bloch functions obtained by means
of the k-p perturbation theory. To get the K2
term in eq. (1.1), it was necessary to invoke the

. third-order k-p perturbation. In that perturba-

tion process, mixing of the Iy valence
band—which lies below the top valence band
I'; by the spin-orbit splitting 1=71 meV—into

‘the I'; band turned out to be substantial

because of small energy denominator A. The
resulting value of « was? —0.29, in order-of-
magnitude agreement with experiment. In
this way, non-analytic part of the electron-hole
exchange interaction, combined with the k-p
perturbed Bloch functions, could explain the
observed L-T splitting.

The above calculation is direct and straight-
forward. Yet, it does not look simple on
account of the high—third—order of perturba-
tion. Hence, it seems desirable to consider the
problem from another standpoint. We shall

2194



1982)

investigate below the L-T splitting starting

from macroscopic considerations. We can
thus obtain further insight into the wave-
number dependent L-T splitting.

When a crystal is regarded as a macroscopic
continuum, its dielectric properties are de-
scribed by the macroscopic dielectric function
&(K, ). When we calculate ¢(K, w), we exclude
the non-analytic exchange interaction from the
Hamiltonian since it is a long-range interaction:
the macroscopic electric field produced by this
interaction is taken care of by the electric field
E that obeys the Maxwell equation.

Now the energy of longitudinal-mode exci-
ton is defined as the zero of the dielectric func-

“tion &K, w). As a result; the L-T splitting

becomes proportional to the oscillator strength
of exciton. The proportionality is established®’
for ordinary exciton with K=0. Its generaliza-
tion to finite wave vector K, with which we
shall begin §2 below, calls for a caution: For
finite K, dielectric function and oscillator
strength are no more isotropic tensors even in
an isotropic medium. We shall have to dis-
tinguish between the longitudinal oscillator
strength f; (K) and transverse oscillator strength
Ji(K). The L-T splitting 4, (K) is proportional
to fi(K), whereas f1(K) should be used in the
polariton dispersion equation.

Both f; (K) and f1(K) will be calculated up to
the K? term, using the explicit forms of the k- p
perturbed Bloch functions. To obtain the K?
term in the oscillator strength, second-order
k-p perturbation suffices, in contrast with the
third-order perturbation necessitated by the
calculation of exchange energy. f;(K) and f(K)
agree at K=0, as they should, but their K?
terms have opposite sign. Therefore, it is
essential to distinguish f;(K) from fi(K) to
explain the observed K-dependent L-T splitting.
The calculated f; (K) immediately gives 4;(K).
The result turns out to be the same as that
obtained” from the non-analytic exchange
interaction. Coincidence of the results of the
two approaches is obtained only as a result of
calculation at this stage (§2), but a proof will
be given of the equivalence of the two ap-
proaches (§3).

We shall assume isotropy of the crystal
throughout. This is permissible because both
the conduction band I'q and top valence band
I'; are spherical.
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§2. Oscillator ‘Strength and Longitudinal-
Transverse Splitting of Exciton with Finite
Wave Vector

In what follows, we consider the Z; exciton
of CuCl with small but non-vanishing wave
vector K. Various quantities will be expanded
up to second order in wave vector, when
necessary.

The translational mass of exciton My is
given by the sum of the electron mass m, and
hole mass m,. The energy of exciton is written
as

Ex(K) =ho(K) = Ex(0)+ h2K 22 M.

For vanishing wave vector K, isotropic
medium has an isotropic dielectric constant.
However, for finite K, we have dielectric
tensor®

&;;(K, 0)=er(K, 0)(0;;—5;5;) +e.(K, w)s;s,

2.1
dependent on the direction of K vector s=K/K.
The tensor ¢;; has two independent components,
transverse and longitudinal. Linear terms in
wave number (optical gyrotropy) vanish by
symmetry.

Similarly, oscillator strength tensor f;;(K)
can be expressed like eq. (2.1). It also has two
independent components, transverse oscillator
strength f(K) and longitudinal oscillator
strength fi(K). For frequencies @ near
resonance with exciton, they are related to the
dielectric function by®

wpf(K)
CO( K)Z _ wz H
(A=L,orT) (2.2)
where &, is the background dielectric constant.
The subscript A specifies the direction of

exciton polarization relative to the wave vector
K. “Plasma frequency” wp is defined by

g,(K, w)=¢g,+

wi=4ne?/me, 2.3)
where Q is the volume of unit cell.

Electromagnetic normal modes in the crystal
are determined by the Maxwell equation with
use of the dielectric function (2.1). We have
two kinds of solution.'® Transverse mode
satisfies

¢’ K?*|e’ =ex(K, o), 24

of which solution is called polariton. Longi-
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tudinal mode satisfies
& (K, 0)=0, (2.5)

i.e., energy of longitudinal exciton is given by
the zero of the longitudinal dielectric function.
From egs. (2.5) and (2.2), the L-T splitting is
-obtained

h
Ax(K)= 5 j,’{K)fL<K)

under the good approximation 4; (K) < hw(K).

For vanishingly small wave number K, we
need place no distinction between f; and f;.
For finite K, however, it becomes necessary
to draw a distinction between them. Transverse
oscillator strength fr(K) should be used in the
polariton dispersion equation (2.4). Longitu-
dinal oscillator strength f;(K) is proportional
to the L-T splitting of exciton. Since the exciton
energy hw(K), being on the order of a few
electron volts, has only a weak K-dependence
as a whole, the strong K-dependence of 4, (K)
in CuCl is a consequence of the K dependence
of fi(K).

We now proceed to microscopic calculation
of fi(K) and fi(K) up to the K* term. By
definition,!?) oscillator strength is written as

(2.6)

2
(A=L,orT) (2.7
in terms of the transition matrix element
M (K)=(K|M|0), (2.8)
1 . .
M= 5@ e’Er +eXp). 2.9

The original, symmetric, expression is used for
the excitation operator M. The ket |0) means
the ground state, and |1K) the exciton state
with wave vector K and polarization A. The
vector M,(K) has non-vanishing component
only in the direction A.

In the actual calculation, it is convenient to
fix the exciton polarization, say, in the z
direction, and choose the vector K either
perpendicular or parallel to the z axis. Then we
have

M (K)=
- \/%;A(kXCTkIMZIVTk—K). 2.10)

The factor /2 comes out of the spin-singlet

<zK|M,|0)
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construction of the exciton state. A(k) denotes
Fourier transform of the exciton envelope
function F(r), and N is the number of unit
cells. The bra and ket in eq. (2.10) stand for
the Bloch functions of conduction and valence
bands. The dependence of M (K) on K stems
from the dependence of the above interband
transition matrix element upon k and k—K. To
get the K? term in the oscillator strength, we
need to do second-order k- p perturbation. The
resulting Bloch functions contain various terms.
The dominant term possesses the spin-orbit
splitting A in the energy denominator. Other
terms may be neglected since their energy de-
nominators are on the order of the band gap
energy E,. In the notation of ref. 2, second-
order mixing of the |1/2) state (belonging to I'g
band) into |v,) prevails over the other terms.
The above interband transition matrix element
becomes then

(cik|M |v;k— K>
1 ’ P2 ’2 2 ’2
=ﬁ<slpzlz> 1+32E (kx +ky _Zkz) )
g

@2.11)

where k'=k—K, and

P=i(h/m)s|p.|z),

is the interband matrix element at k=0, that

appears in the perturbation process.

We use eq. (2.11) in eq. (2.10) and carry out
the summation over k, and then substitute the
result into eq. (2.7). The transverse and longi-
tudinal oscillator strengths thus obtained are

=101+ 3 () &), @
3f£ <ﬂ> K2] @.13)

-
SO = 33755 O

neglecting the weak wave-number dependence
of Ei(K). These two quantities agree at K=0,
as they should in a cubic crystal, but they have
different K? terms of opposite sign. When eq.
(2.13) is used in eq. (2.6), we obtain explicit
wave-number dependence of the L-T splitting.
Putting the result in the form (1.1), we have

8P’m
ALT(O)3)~E hz( ) .

HE)=f1 (0)[

where

(2.14)
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This expression for o coincides with that
obtained from an independent calculation of the
- non-analytic exchange energy (eq. (4.2) of

ref. 2). Substitution of appropriate values for

the parameters® in eq. (2.14) gives a=—0.29.
Equivalence of the two methods of calculating
the L-T splitting will be investigated in the
next section. In the present context, we should
like to stress the distinction of transverse and
longitudinal oscillator strength. If we er-
roneously use fr(K) of eq. (2.12) in eq. (2.6)
in place of f;(K), we have positive «, contrary
to experiment. The distinction is essential in
understanding the observed wave-number
dependent L-T splitting.

As for the transverse oscillator strength
fr(K), it appears in the polariton dispersion
equation (2.4). Its wave-number dependence,
however, does not significantly influence the
polariton dispersion relation. At K=1.5x 10°
cm™!, the K? term in eq. (2.12) occupies 2%,
of the total f;(K). Larger wave number raises
f1(K), but the increasing separation between
the photon and transverse-exciton branches
quenches their mixing. In fact, we analyzed the
experimental data of ref. 1, using wave-number
dependent f7(K). We found no definite necessity
of incorporating such wave-number dependence
within the experimental accuracy.

§3. Equivalence of Macroscopic and Micro-
scopic Approaches

In the preceding section, we calculated L-T
splitting of exciton using the relation (2.6)
derived on the basis of macroscopic considera-
tions. On the other hand, in microscopic terms,
L-T splitting is a consequence of the non-
analytic exchange interaction between electron
and hole. For K=0, equivalence of the two
approaches is established.®> We can generalize
the equivalence to finite wave number K: we
shall see below that the L-T splitting A4, (K)
calculated from non-analytic exchange interac-
tion can be written as eq. (2.6) for finite K.

The proof rests on the commutation relation

[A, e™"]=(h/m)K-M, (3.1
for one-electron Hamiltonian
A=p*2m+V(r).

The identity (3.1) is valid also for many-
electron Hamiltonian that contains electron-
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electron interaction. Hence we have the relation
ho(K){AK|eE (0> = (h/m)K - {AK|M|0>, (3.2)

for the matrix elements between the exciton
state |AK) and the ground state |0).

Non-analytic part of the electron-hole
exchange interaction is”

41'ce N,(K)*N,.(K)
KZ s

()= (33)

where
N,(K)={AK|e*"|0). (3.9

The interaction is screened by the background
dielectric constant ¢,. When eq. (3.2) is used in
eq. (3.4), we have

N(K)=

— K-M,(K). 3.5

1
ma(K)
Since the vector M,(K) lies in the direction of
exciton polarization A, the quantity N,(K)
vanishes for A=T (transverse polarization),

Ny(K)=0.

It is non-vanishing only for A=L (longitudinal
polarization),
Nu(K)=

M (K). (3.6)

(K )
Consequently, the L-T splitting arising from the

exchange interaction J™ is given by
4ne* Ny (K )2 dne*  h
ALT(K)_ st K2 st me(K)fL(K)a

. 3.7
where we used egs. (3.6) and (2.7). The result

(3.7) agrees with eq. (2.6).

The above proof shows that the L-T splitting
is intimately related to the longitudinal oscilla-
tor strength. It has nothing to do with the
transverse oscillator strength.

Equivalence of the two approaches tells us
that the L-T splitting may be calculated in
either way. In fact, in a previous paper, we
carried out a calculation of eq. (3.4), which
required third-order k-p perturbation. For the
sake of computational simplicity, use of eq.
(2.6) is favorable because the calculation of
Ji(K) requires k- p perturbation of lower order.
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