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1 Introduction

Location management and mobility management are
critical issues for providing seamless interactions and
ubiquitous computing for mobile users. As concluded
independently in several market surveys (ABI Research,
2004; Insight Research Corp., 2007), the worldwide
market for Location Based Services (LBS) is projected
to be $7∼$8 billion revenue over the next few years.
For more than a decade, researchers have proposed
and studied many different mechanisms for both
indoor and outdoor localisations, and the focus is
to find an efficient localisation technique that is accurate,
cheap, and is able to provide reliable services to common
users.

The underlying principle of most localisation research
relies on either range or angle measurements using a wide
range of technologies including:

• infrared (Want et al., 1992)

• ultrasound (Priyantha et al., 2000; Savvides et al.,
2001)

• vision (Krumm et al., 2000; Kais et al., 2004;
Agrawal and Konolige, 2006)

• Radio Frequency (RF) (Bahl and Padmanabhan,
2000; Ji et al., 2006; LaMarca et al., 2005; Cheng
et al., 2005)

• landmarks (Miller et al., 2006; Borkowski and
Lempiäinen, 2006; Yeluri, 2003; Russell, 1995).

Consequently, existing localisation systems can be
categorised according to many different criteria,
including communication techniques (centralised vs.
decentralised), technology parameters (time, angle,
signal signature, Cell-ID, and landmarks), environments
(outdoor, indoor, and underwater), security (secure vs.
open), localisation entity (mobile-based vs. network-
based), and many others. Among these localisation
systems, lateration (Caffery and Stuber, 1998; Lim
et al., 2006; Fontana et al., 2003; Cheng et al., 2004;
Youssef et al., 2006; Hightower and Boriello, 2001;
Sayed et al., 2005; Thrun, 2002; Elnahrawy et al., 2004),
triangulation (Niculescu and Nath, 2003; Sakagami
et al., 1992; Deng and Fan, 2000; Venkatraman
and Caffery, 2004), database mapping (Bahl and
Padmanabhan, 2000; Ji et al., 2006; Chen et al., 2006a;
LaMarca et al., 2005; Ladd et al., 2004; Krishnan
et al., 2004; http://www.skyhookwireless.com/;
Haeberlen et al., 2004; Cheng et al., 2005; Hatami
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and Pahlavan, 2004; Starner et al., 1998; Jenkin
et al., 1993; Abdel Aziz and Karara, 1971; Mesaki
and Masuda, 1992; Borenstein et al., 1996), and
dead reckoning (DR) (Roston and Krotkov, 1991;
Craig, 1986; Satthamnuwong, 2002; Gebre-Egziabher
et al., 2001) are the four principal localisation
techniques.

For indoor location determination, latest research
has shown great interests in Wi-Fi networks, where
Received Signal Strength (RSS) values (instead of
time or angles from proprietary hardware sensors)
are exploited for the location determination process.
However, Wi-Fi signals are noisy due to building
structures, multipath transmission delays, antenna
directions, people movement, and other environmental
factors such as temperature and humidity. Therefore,
reported accuracies from existing systems are not directly
comparable because the conditions under which the
tests were carried out could be very different. Thus very
limited testing cases and the lack of benchmark standards
have greatly restricted the evaluation of existing systems.
Consequently, despite advances in data processing
techniques and micro-sensor technologies, most indoor
localisation technologies are not well understood.

These challenges have been raised and researchers
have begun to develop benchmark theories (Wallbaum
and Diepolder, 2005) as well as common data
sets for all indoor systems (IEEE ICDM, 2007;
http://crawdad.cs.dartmouth.edu/index.php). It appears
that two different approaches would contribute to
this direction: First, analyse individual (environmental
and system) factor and develop a dependence formula
between each factor and the indoor system (Ji et al., 2007;
Chen et al., 2006b); and Second, integrate all factors in
a given environment and derive a theoretical limit, i.e.,
precision bound, that an indoor system might achieve in
that environment. The first method is valuable in that
it would produce standard and reproducible test beds
through which indoor location determination systems
would be evaluated. On the other hand, the second
method considers an indoor system and its deployed
building as an integral unit such that the performance of
the system would be evaluated by both the theoretical
precision bound and its actual achieved results in that
test bed.

This paper will analyse the performance impact of
representative indoor localisation systems from a broad
range of environmental factors, but the main focus is on
the second approach, and its contributions include:

• a theoretical precision bound for location
determination, through which the best performance
of an indoor system in a given building would be
determined

• a through evaluation of four indoor localisation
mechanisms according to commonly concerned
environmental factors (such as complex partitions,
sniffers deployment, and reference measurement)

using two very different buildings, including a
typical office building and a basement building

• a comparison study of various location searching
algorithms including MultiDimensional Scaling
(MDS) and lateration.

This paper focuses mainly on dynamic localisation
methods where no RSS values will be manually collected
across the building and no static data-training process
will be required before localisation. It will show that
although individual indoor mechanism and deployed
environments are two most important determination
factors for the performance of location determination,
indoor systems also depend on many other factors
including the system (sniffers) deployment method and
the selection of reference RSS measurements. Therefore,
the approach to identify and further to understand
those individual factors is a very complex task. Instead,
by using the precision bound to uniquely integrate all
impacting factors, this research presents a unique method
to evaluate all location determination systems.

The rest of the paper is organised as follows: Section 2
will briefly introduce unique properties of indoor
radio propagation; Section 3 will model the location
determination errors and derive the precision bound.
Section 4 will describe various dynamic localisation
mechanisms based only on RSS values; Section 5
introduces two test buildings, compares the system
performance from various perspectives, and evaluates the
theory of precision bound. Section 6 introduces related
research, and finally, Section 7 concludes the paper and
outlines future research.

2 Indoor radio propagation property

Indoor radio propagation poses a serious challenge
to location determination due to the harsh multipath
environment. The propagation behaviour changes at
different buildings or even within a single floor when
objects are added into the environment or when people
enter or move in the vicinity. As indicated in Rappaport
(2001), there are two methods to study the signal strength
for an arbitrary T-R separation distance:

• applying radio propagation models to simulate
local average received power

• designing high resolution devices and algorithms to
minimise power measurement errors resulted from
multipath waves at different amplitudes, phases, or
multipath delays.

Time-Of-Arrival (TOA)-based indoor location
determination belongs to the second technique that
measures or identifies the arrival time of the wave
with the strongest power, and it has been used in
many location determination systems. However, in
case of the existence of strong obstructions (such
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as multiple walls and furniture, or metallic objects)
between the transmitter and the receiver, radio waves
from other none-line-of-sight paths could be much
stronger than the wave from the direct path, thus this
‘undetected-direct-path’ situation will cause significant
error in indoor location determination. Unfortunately,
none-line-of-sight radio propagation is a common
phenomenon in indoor environment, and according to
Alsindi’s research (2004, p.82), the ‘undetected-direct-
path’ problem typically results an average of 8.5 metres
of range estimation errors, and it is NOT able to be solved
or even mitigated by simply increasing the bandwidth of
the signal transmission.

Therefore, this study will exploit the RSS from radio
propagation models or from the local measurement
average for indoor location determination, and the next
section will first analyse the precision bound for typical
location estimation.

3 Bounding localisation errors

3.1 The modelling of location errors

For a position P covered by three or more sniffers Oi,
(i = 1, 2, . . . , n), if each sniffer Oi is able to accurately
estimate its distance rtrue,i to the position P , then
P would be uniquely determined by the intersection
of three (or more) circles in a two dimensional space.
However, the distance estimation is not accurate in
general, and if the T-R range ri is given by:

ri ∈ [rtrue,i · (1 − δi), rtrue,i · (1 + δi)] (1)

where δi is the uncertainty of the radio range estimation
at sniffer i. Then the position P is determined by an
overlapping area formed by a set of ring surfaces with
radii of ri, (i = 1, 2, . . . , n) centred at those sniffers.
Suppose a ring surface from each sniffer composes a
point set {qr,i}, then the common area of those rings
determines an Uncertainty Area (UA) for the position P :

Sua,P = {qr,1} ∩ {qr,2} ∩ . . . ∩ {qr,n}. (2)

Figure 1 illustrates the scenario with three sniffers of
O1, O2, O3 and an interested position P . If there is
no measurement error, the true radio range of the
three sniffers would be ri, (i = 1, 2, 3), which uniquely
determine the position P . Considering measurement
errors, and let δi, (i = 1, 2, 3) denote range perturbations
of all three sniffers, the possible sensing area at each
sniffer would be a circular belt (or a ring surface
between radii ri · (1 ± δi), (i = 1, 2, 3), consequently, the
candidate location for the position P would be an area,
instead of a point, that is formed by the overlapping
of the three rings and is represented by the surface of
AEFCDA.

Clearly, different sniffers deployment methods will
generate very different UAs, and smaller and regular UA
will give higher confidence in the location determination.

Figure 1 Location error analysis

For example, Figure 2 shows two UAs for a same
position P using two different sniffers deployment
strategies. It shows that location estimation from the left
configuration (i.e., α = 30◦) is more precise.

Figure 2 Uncertainty area of two sniffers deployment
(see online version for colours)

Therefore, in order to improve the performance of
location determination, research may concentrate on two
different approaches: First) minimising the T-R range
uncertainty δ; and Second) optimally deploying sniffers
or even increasing the number of deployed sniffers on
the site. Obviously, the first approach is straightforward,
but it requires specialised hardware devices to measure
the time or angle of radio transmission; moreover,
as addressed in Section 2, even TOA at a high
bandwidth may not achieve accurate range measurement
because of multipath effects and obstructed line-of-
sight transmission (Alsindi, 2004). Therefore, indoor
localisation research is inherently imprecise in nature,
and the question is that whether it is possible to achieve
reasonable accurate location determination even with the
range uncertainty δ.

Pursing the second approach (i.e., sniffers deployment
strategy), Ji et al. (2007), addressed the potential
to improve the performance of indoor location
determination, and research results revealed that if a
position is surrounded by three nearby sniffers (ideally,
inside an equilateral triangle of three sniffers), then
the location estimation of that position is significantly
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better than other positions outside of the triangle.
Consequently, Ji et al. (2007) proposed a mesh-grid
deployment method such that every position inside the
building will be covered by at least three nearby sniffers
(i.e., full coverage). However, the study in Ji et al. (2007)
was only evaluated by the ARIADNE system (which
is a database mapping method), more importantly, the
achievable precision bound for a given uncertainty δ is
still not clear.

3.2 Precision bound

In Ji et al. (2007), the authors defined an average
uncertainty distance dε to measure the average distance
of all positions in the UA, and it is given by:

dε =

∑n
i=1

∑n
j=i+1 dij

n(n − 1)/2
(3)

where n is the total points in an uncertainty area UA,
and dij is the distance between two points i and j, (i, j ∈
[1, n], i �= j). For a given deployment for a floor plan,
the dε presents the average estimation error (or precision
bound) for that building. However, for a given range
measurement uncertainty δ from surrounding sniffers,
the question is how the precision bound should be
uniquely determined.

In order to analyse the precision bound, we take a
close look at the UA for the position P in Figure 1.
To simplify the analysis, let’s assume that the distance
measurement uncertainty δ from all three sniffers is
uniformly distributed, i.e., δ1 = δ2 = δ3. Therefore, if
sniffer O1 is the closest sniffer to the position P , then
from the figure, it is clear that the UA for position P is
mainly determined by sniffer O1, which is a ring surface
with radius between r1 (1 ± δ). The second sniffer O2
bounds the UA to a smaller space of ABCDA, and the
third sniffer O3 further fine-tunes the UA to an even
smaller space of AEFCDA. Therefore, if more sniffers
would be deployed while O1 is the closest sniffer to
position P and δ values are same for all sniffers, then the
UA will ultimately form a circular disk centred at P . Thus
this circle with radius of r1δ would define the bound of
UA for the position P .

Consequently, we define the precision bound as the
average distance of all candidate positions inside the
circle of radius r1δ. Detailed mathematical formulation
or calculation is beyond the scope of this paper, but
according to a geometric probability study by Dunbar
(1997) and Santalo (1977), the dε for any two points in a
s-dimensional ball is determined by:

dε =
s

2s + 1
βsR(x) (4)

where R(x) is the diameter, and βs is given by:

βs =




2(3s+1)((s/2)!)2S!
(s + 1)(2s)!π

for even s

2(s+1)(s!)3

(s + 1)(((s − 1)/2)!)2(2s)!
for odd s

. (5)

For a 2-dimensional disk or 3-dimensional sphere with
diameter of R(x) (which is 2r1δ in this example), the
precision bound dε is thus given by:

dε =




64
45π

R(x) =
64
45π

· (2r1δ) for 2D space

18
35

R(x) =
18
35

· (2r1δ) for 3D space
. (6)

Therefore, if the closest distance to a sniffer from
a location P is r1, and the distance measurement
uncertainty δ is same at all sniffers,1 then the
average location estimation error at P is bounded by
equation (6).

This paper will evaluate the localisation performance
of various mechanisms, and special interest will be in
the analysis of performance dependence on different
environmental and system factors, and the assessment
of the precision bound described in equation (6). We
first introduce different localisation methods in the next
section.

4 Dynamic location mechanisms

This section introduces basic algorithms of four dynamic
systems selected for this study. The Signal-Location Map
(SLM) is based on the ARIADNE system (Ji et al.,
2006), and the other three (indoor Radio Propagation
Modelling (RM), Signal Distance Mapping (SD) and
Distance Fitting (DF)) are mainly derived, respectively,
from existing systems including Lim et al.’s zero-
configuration system in Lim et al. (2006), Sánchez et al.’s
triangulation in Sánchez et al. (2006), and Smailagic
et al.’s CMU-TMI in Smailagic et al. (2001).

4.1 Signal-location map (SLM)

SLM is a database-based indoor system that uses
a two-phase localisation mechanism (Bahl and
Padmanabhan, 2000; Ji et al., 2006): Phase I is called
Map Generation, where RSS values at a grid of locations
on a plane (or 3-D space) are either manually measured
or theoretically estimated; then a signal-location map
that connects location coordinates and RSS values is
generated; and Phase II is the Location Search, where
current RSS measurement from a mobile is used to
search the signal-location map for the ‘closest’ hit.

The ARIADNE (Ji et al., 2006) is a representative
SLM system that dynamically generates signal-location
maps without manual measurements. ARIADNE used
the following radio propagation model:

P =
Nr,j∑
i=1

(P0 − 20 log10(di) − γ · Ni,ref − α · Ni,trans)(7)

where P is the power (in dB) at receiver, Nr,j is the
total number of rays received at the receiver j; P0 is the
power (in dB) at a distance of 1 meter; di, Ni,ref , and
Ni,trans represent transmission distance, total number
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of reflections and total number of walls passed by the
ith ray, respectively. γ is the reflection coefficient, and
α is the transmission coefficient. In the equation, site-
specific parameters (Nr,j , di, Ni,ref , Ni,trans) would be
derived directly by the ray tracing processing. For an
indoor system with at least three sniffers, the other three
parameters (P0, γ, α) would be determined, theoretically,
with only one SS measurement at a given reference
location.

Based on the model, a SLM could be built over a grid
of locations inside the building, therefore the location
search becomes a ‘trivial’ task. In this paper, a simple
least mean square method will be used to search the
location.

4.2 Indoor Radio Modelling (RM)

RM is one of the most important methods that builds
a relation between RSS values and the distance. For
more than a decade, many wonderful models have
been proposed and evaluated (Rappaport, 2001). When
considering large-scale attenuations, most researchers
model the radio propagation path loss as a function of
the attenuation exponent n, which is two for free space
but often statistically determined to provide a best fit
with measurement readings.

P (d)[dB] = P (d0)[dB] − 10 × n × log10

(
d

d0

)
(8)

where P (d) is the power at distance d to the transmitter
in metres; P (d0) is the power at a reference distance d0,
usually set to 1.0 metre.

It should be noted that many other advanced
models exist as well. For example, partition model
(Phaiboon, 2002; Bahl and Padmanabhan, 2000),
including ARIADNE in equation (7), reduces the path
loss effect from attenuation exponent by additional
consideration of attenuation effects from indoor
partitions, like walls and floors; and Site-specific model
(Hassan-Ali and Pahlavan, 2002; Lott and Forkel,
2001) exploits path loss from site-specific parameters
such as geometric structure, materials, and partition
thickness. Compared with the model in equation
(8), these models are more sophisticated, but they
generally adapt well to most building environments.
However, distance-SS relationship from these models
are not straightforward and computation is usually very
expensive. Consequently, many researchers (Mahtab
Hossain et al., 2007; Hills et al., 2004) still consider
equation (8) in their systems. This paper will also use this
model to derive the Transmitter-Receiver (T-R) distance.

4.3 Signal Distance Mapping (SD)

SD method is based on the concept that there exists an
immediate (or linear) relationship between a RSS value
and the geographic T-R distance, which can be expressed
as follows:

S · T = D (9)

where S is a m × n matrix of RSS values between m
sniffers and n reference locations. D is also a m ×
n matrix of geographic distance values corresponding
to RSS values in matrix S; and T is a n × n linear
transformation matrix that maps the RSS value to a T-
R distance by a scaling factor unique to a transmitter-
receiver pair.

With reference RSS measurements and known T-R
distance values among sniffers and reference locations,
matrix T would be easily obtained from equation (10).
Thus with the transformation matrix T , any instant RSS
measurement (Snow) would be translated into a T-R
distance (Dnow) transparently:

T = (S · ST )−1 · ST · D (10a)

Dnow = Snow · T. (10b)

This mechanism was reported by Gwon and Jain
(2004) and Lim et al. (2006). Originally, the SD method
considers only the RSS and T-R distance values among
a set of m reference APs, and therefore both matrixes
of S and D are symmetric square m × m matrixes with
zero diagonal entries. Clearly, for a complex indoor
environment, the modification in equation (9) would
provide a comprehensive map for the interested building.

4.4 Distance Fitting (DF)

The DF method is similar to the SD described
in the previous section. Different from the simple
linear relationship between SS and the distance, many
researchers believe that the SS-distance relationship
could be very complex. For example, Yin et al. (2005),
proposed a two-phase approach that is very similar to
SD, where a sophisticated function was used to map SS
values with the distance.

In order to better model the SS-distance relationship,
other researchers adopted a polynomial function. For
example, Smailagic et al. (2001) used the following
formula:

d = A · S2
i + B · Si + C (11)

where d is the transmitter-receiver distance
corresponding to the SS measurement Si; A, B, and
C are coefficients that are unique to the building
environment.

The DF method in this paper will also use equation
(11). Theoretically, for a floor plan with three deployed
sniffers, a single SS measurement from a given reference
position will generate three equations (with three
unknowns of A, B, C). If more reference positions are
available, average results would be used for the model.

4.5 Distance based location search

With distance values from a mobile client to a set
of reference positions using RM, SD, DF, or other
techniques, various methods can be exploited to find the
location X of the mobile. The most straight method is the
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lateration, where a linear equation (equation (12)) will
be easily derived and mobile’s location will be uniquely
determined.

AX = B

where: X = (AT
A)−1

A
T

B.
(12)

Alternatively, MDS could be used to determine the
location. Different from the lateration method, MDS
takes pair-wise distance values dij between the mobile
and reference positions (such as sniffers) and those
among all reference positions, then it generates a low
dimensional representation of position relationships such
that the distance values between objects (mobiles and
sniffers) fit as well as possible with the given measures
and estimates δij (from RM, SD, and DF). Basically,
MDS iteratively exploits the mobile’s position such that
the goodness-of-fit stress φ is minimal:

φ =
∑

[dij − δij ]2. (13)

Many software packages are now available for MDS, but
the application of this method in indoor research is not
still common. In this research, we will adapt this method
in indoor environment and will compare its performance
with the lateration.

5 Simulations and system comparison

5.1 Testing environments

Two very different buildings will be used in this study.

• The first building (Building I, see Figure 3) is from
Telcordia Technologies, and the data was initially
collected and reported by Pandey et al. (2005).
In this building, three sniffers, using IBM T30
ThinkPad with RedHat 9, were deployed.

• The second building (Building II, see Figure 4) is
the shop building from Auburn University. The

Figure 3 Building I (see online version for colours)

ground level is an underground floor and will be
used in this experiment.

As indicated in Figure 4, this ground floor includes
four (4) double walls (brick and concrete), five (5)
storage closets (for utility and emergency supplies), and
many construction columns. Room 101 is a computer
classroom, room 110 is a computer lab with metal
cabinets (1.0∼1.7 metres) around the room. Room 107,
109, 111 and 112 are classrooms and the rest are offices
or labs shared by graduate students. Typical office
includes computers, servers, as well as bookshelves and
cabinets of various sizes and materials. In this second
building, three (Deployment 1 in Figure 4) or five sniffers
(Deployment 2), using HP Pavilion V2000 laptops with
Linux Fedora II, were deployed.

Figure 4 Building II (see online version for colours)

As illustrated in Figures 3 and 4, Building I includes
thirty (30) data validation positions, and Building II has
twenty-two (22) data validation positions. To measure
signal strength, in Building I, 100 sample packets were
collected at each data validation position and the average
RSS values were used for location determination process.
The experiment was carried for six days in order
to evaluate the consistency of considered localisation
algorithms. Similarly, in Building II, we measured all
data packets in 10 seconds and we continued the
measurement for a period of four months.

5.2 Experimental strategy

In order to evaluate proposed localisation mechanisms,
data sets from both buildings (Figures 3 and 4) will be
similarly applied to each system. As shown in Table 1,
reference SS measurements of different configurations
will be used to determined average values of all
parameters for models in equations (7)–(9), and (11).
Later in Section 5.4, dependence on reference positions
will also be analysed.

For the location search, existing SS values will be
reapplied against the constructed maps or models for the
localisation process. For distance based methods, both
lateration and classical MDS methods will be used in the
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Table 1 Simulation strategies

Distance estimation
or map

construction

Location
search

Simulation
scenarios Sniffers

Ref. RSS
positions Sniffers Building

(A) 3 Varies 3 I and II
(B) 5 Varies 3 II
(C) 5 Varies 5 II

location search process. If five sniffers are deployed, the
location search will also optimally select three sniffers
(according to the SS values, scenarios (B) in Table 1) in
order to determine the mobile’s location, and the results
will be compared with those from other scenarios (i.e.,
(A) and (C)).

5.3 Simulations results

The results in this section are based on the simulation
scenario (A) (Table 1), where only three sniffers were
deployed in both buildings (Figures 3 and 4). We will first
introduce the map construction and distance estimation,
and then we will compare the performance of location
determination of all mechanisms.

5.3.1 Signal-location map construction using SLM

Using SLM model in equation (7), extensive simulations
were carried out for both data sets from the two
buildings in Figures 3 and 4. Similar to the ARIADNE
system in Ji et al. (2006), for each test run, only
one reference SS measurements was randomly selected
among all positions (30 and 22, respectively) to derive
the unknowns, then the results were plugged back to the
model to estimate RSS at all data validation locations.

Typical comparison results are shown in Figure 5.
The figure consists of three plots respectively for sniffers
A, B, and C (see Figure 3). For each plot, the x-
axis represents data validation positions and the y-axis
denotes the signal strength measured as Received Signal
Strength Indicator (RSSI). In the figure, the points with
symbol ‘�’ are the signal strength measurements and the
points with symbol ‘×’ denote the estimates.
This result is very similar to the ARIADNE system
in Ji et al. (2006), where Building I was used for the
study. It is clear that the indoor radio propagation model
in equation (7) provides reliable RSS estimates.

5.3.2 Distance estimation

Different from the simulation in previous section where
only one reference RSS was randomly selected in the
process, in order to derive unknowns for mechanisms of
RM, SD and DF, RSS values from all reference positions
would be used in the simulation in this section (Section
5.4 will study other settings where less reference positions
were selected in this process), then the average values

Figure 5 SLM RSS estimation for Building II (see online
version for colours)

of all parameters (i.e., P (d0), n in equation (8), T in
equation (10), and A, B, and C in equation (11)) will
be used in equations (i.e., equation (8), (10), and (11)) to
regenerate distance values (between sniffers and all data
validation positions). We summarise distance estimation
errors in Table 2.

Table 2 Distance estimation errors (Scenario A, metres)

Error in percentile

Mean error 50% 70% 85% 90%

Building I

RM 3.1 2.7 4.2 5.1 5.5
SD 2.4 1.6 3.0 3.9 4.5
DF 2.5 1.4 2.5 5.4 5.5

Building II

RM 4.7 2.7 4.8 7.6 10.2
SD 2.9 2.3 3.2 4.8 5.6
DF 3.2 2.7 2.8 5.2 5.8

In the table, the mean error is the average distance
estimation error in metres, and the error in percentile
gives the probability of each estimation when comparing
to the true distance result. It can be seen that all three
mechanisms provide relatively reliable distance estimates
for both buildings. Comparing the estimation for the two
buildings, it seems that Building I provides better results
for all three indoor systems.

5.3.3 Localisation results

Based on the signal-location map and the distance
estimates, the mobile’s location would be easily
determined. Table 3 gives the localisation results for all
mechanisms. In the table, the SLM method is based on
a map with grid resolutions of 1.5 × 1.5 in metres for
Building I and 2.0 × 2.0 in metres for Building II, in
addition, the results for both buildings are based only
on three (3) sniffers as indicated in Figures 3 and 4.
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Table 3 Location errors (Scenario A; meters)

Error in percentile

50% 70% 85% 90%
Mean
error

Building I

RM Lateration 5.5 4.0 8.2 9.8 10.8
MDS 4.4 4.2 5.2 5.7 6.0

SD Lateration 3.9 3.5 4.6 5.5 6.5
MDS 3.8 3.0 4.4 5.0 7.9

DF Lateration 6.7 6.0 8.3 13.8 14.5
MDS 5.8 4.0 6.8 10.2 12.0
SLM 3.7 3.5 4.6 6.2 6.7

Building II

RM Lateration 34.2 – – – –
MDS 11.2 8.0 12.8 20.3 21.3

SD Lateration 5.8 4.5 7.7 8.9 9.4
MDS 6.4 4.5 7.7 9.4 10.8

DF Lateration 9.3 7.5 11.3 12.4 14.8
MDS 7.6 6.5 8.2 12.3 13.2
SLM 4.1 3.7 6.3 7.5 7.8

From the table, it appears that for all localisation
mechanisms, location determination results for the
basement building (Building II) are not comparable with
those from Building I because of the severe multipath
radio propagation environment. This indicates that a
system that works well in one building may not equally
perform well in other buildings. Comparing the results
from two location searching algorithms, i.e., the MDS
and the lateration, it seems that the MDS method
would generally provide much better estimation than the
lateration method. And of all four indoor mechanisms,
SLM method and SD method perform better than
others.

5.4 Dependence on the number of deployed
sniffers and reference measurements

This section will study the systems’ dependence on the
number of deployed sniffers and the number of reference
measurements for all indoor mechanisms. The simulation
will be based on scenarios (b) and (c) as described in
Table 1, where only the basement building (Building II)
will be considered.

5.4.1 Number of deployed sniffers

With all five sniffers in Figure 4, simulation using SLM
gives 3.2 metres localisation errors. Compared with 4.1
metres with 3 sniffers, the performance improvement
with five sniffers is impressive. This shows that more
deployed sniffers provide better performance for the
database based method. This agrees with other research
results including Ladd et al. (2004), and Haeberlen et al.
(2004).

Similarly, for the other three methods (i.e., RM,
SD, and DF), when using five sniffers in Building
II (i.e., ‘Deployment 2’ with sniffers A’BCDE in

Figure 4), average distance estimation errors are similarly
determined. The results are compared with those from
three sniffers (from the previous section), and they
are given in Figure 6. The figure shows the distance
distribution probability (x-axis) with distance estimation
errors (y-axis) for all three mechanisms, the red lines with
‘+’ denote results with five sniffers, and the blue lines
with ‘o’ represent results from three sniffers. The legends
in figures also give average errors for each method.
It is interesting to see that more deployed sniffers do
not ‘significantly’ improve the accuracy of the distance
estimation when compared with the SLM method. For
all mechanisms, more deployed sniffers do provide
slightly better (or similar) results when distribution
probability is within 90%; at a larger probability, the
results become more complex, and estimation errors from
all five deployed sniffers seem to increase faster for both
DF and RM, resulting larger average errors eventually
(see the legends from the figure).

Based on the estimated distance values, the location
of the client could be determined using two different
techniques: using all five sniffers positions as reference
(scenario (C) in Table 1) or selecting only three best
reference positions from all five sniffers (scenario (B)). In
this paper, three closer sniffers’ positions were selected
(according to a stronger received signal strength from the
client), and the simulation results are given in Figure 7.
Table 4 further shows the average localisation errors for
both techniques (column 4 and column 5). Column 3
references the results from Table 3 (see Section 5.3.3).

It can be seen that while the deployment of
more sniffers would greatly improve the localisation
performance for the SLM mechanism, for distance-
based indoor systems (i.e., RM, SD and DF), the
performance impact from the number of deployed
sniffers is not straightforward. It appears that only
the SD method welcomes the extra deployed sniffers.
For other two methods (RM and DF), the averaging

Figure 6 Distance errors using different sniffers (see online
version for colours)
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Table 4 Dependence on the number of sniffers

Building II

5 Deployed sniffers

3 positions All 5 sinffers
3 Deployed
sniffers

RM Lateration 34.2 11.1 40.0
MDS 11.2 7.4 13.6

SD Lateration 5.8 4.4 4.6
MDS 6.4 4.5 4.6

DF Lateration 9.3 10.5 13.6
MDS 7.6 8.4 10.8
SLM 4.1 – 3.2

over all five sniffers may actually overshadow certain
critical location parameters (because of the imprecise
information) and therefore brings considerable errors to
the distance estimation and the location determination.
On the other hand, if five sniffers were used to
determine the parameter of the models, the selection
of three closer sniffers as reference positions in the
location determination process will help improve the
performance of all methods. This is verified in Table 4
between column 4 (3 selected positions) and column 5
(all 5 deployed sniffers).

5.4.2 Dependence on the number of reference
measurements

This section addresses the question whether multiple
reference measurements would yield better (both RSS
and distance) estimates that are closer to actual
measurements at data validation positions. We will first
consider the SLM mechanism and then discuss the
distance-based methods (i.e., RM, SD and DF).

• For the SLM system, the result is a bit of
interesting: one reference measurement triplet (from

Figure 7 Localisation errors using various ref. positions
(see online version for colours)

three sniffers) will yield estimates as good as
estimates from 2, 3, or 10 reference measurement
triplets. The results from both building agree well
with the ARIADNE in Ji et al. (2006).

• Different from the SLM approach, distance-based
mechanisms would require more validation
positions to be referenced in order to achieve
reasonable distance estimation performance (and
thus acceptable localisation results). Table 5 gives
the simulation results for the Building II, in the
table, the 2nd column indicates the distance
estimation errors (in metres) with all 22 validation
positions; the 3rd column shows the results with
only five selected reference positions which include:
point 1, 7, 10, 14 and 22 (see Figure 4); and the 4th
column gives the results with 10 reference positions
(point 1, 3, 5, 7, 8, 10, 12, 14 16, and 22). These
positions were selected in order to provide better
coverage for most representative locations for the
floor plan (Section 4.3). From the table, it can be
seen that the RM mechanism does not suggest
stronger dependence on the available reference
positions (which is similar to the SLM mechanism);
but the other two methods (DF and DF) obviously
requires more than reference positions, and the
more available reference positions (and more
deployed sniffers), the better the distance
estimation results. From the table, it seems that 10
reference positions would generate decent results
for SD method in Building II.

Table 5 Distance errors with different ref. positions

Number of validation positions
(for building II with 5 sniffers)

All 22 positions 5 selected 10 selected

RM 5.2 5.4 5.3
SD 2.6 19.7 2.8
DF 2.4 11.7 11.1

5.5 Precision bounds for testing buildings

To determine the achievable precision bound for a
location determination mechanism in both buildings,
the shortest distance r1 (see equation (6)) from each
data validation position to deployed sniffers were first
identified, then the average results for all data validation
positions are given in the second column in Table 6.
Accordingly, for a given range perturbation δ, the
precision bound dε of the location determination in these
buildings would be easily determined from equation (6)
and selected results with range perturbation δ of 20%,
30% and 50% of distance r1 are given in column 3–5 in
Table 6.

Considering the three distance-based location
determination mechanisms (i.e., RM, SD, and DF)
studied in this paper, achievable precision bounds of each
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Table 6 Precision bounds for both buildings

Range perturbation δ

dε 20% 30% 50%
Average
distance r1

Building I 8.50 1.54 2.31 3.85
(3 sniffers)
Building II 5.92 1.07 1.61 2.67
(3 sniffers)
Building II 4.78 0.87 1.31 2.17
(5 sniffers)

system could be determined by using distance estimation
errors (i.e., δ) from Tables 2 and 5, and the results (in
metres) are shown in bold in Table 7. Comparing the
localisation results from Tables 3 and 4 (which are also
given in column 4 in Table 7), it shows that all three
distance-based localisation mechanisms only achieve
64% at the best of the theoretical error limits (or bounds)
by the system, consequently, there are still a lot of space
for the future improvement.

Table 7 Precision bounds and localisation results

Building I – 3 sniffers
δ dε Results from Table V

RM 3.1 2.81 4.4
SD 2.4 2.17 3.8
DF 2.5 2.26 5.8
SLM 2.7 2.44 3.7

Building II – 3 sniffers
δ dε Results from Table V

RM 4.7 4.25 11.2
SD 2.9 2.62 5.8
DF 3.2 2.90 7.6
SLM 3.3 2.99 4.1

Building II – 5 sniffers
δ dε Results from Table VII

RM 5.2 4.71 7.4
SD 2.6 2.35 4.4
DF 2.4 2.17 8.4
SLM 3.3∗ 2.99∗ 3.2

The SLM method does not give direct distance
information for the location determination (and thus the
uncertainty value δ), consequently, in order to obtain a
rough precision bound for the SLM method, this study
first determined the difference of both measurement
RSS values and the distance values among all data
validation positions, then according to the actual RSS
estimation from the radio propagation model (for
example, Figure 5), range perturbation values δ would
be roughly estimated for both buildings. Note that this
processing technique did not consider the difference
between different propagation paths, and thus the range
perturbation δ is same for both configurations (i.e., no
dependence on the number of deployed sniffers in the
Building). In reality, more deployed sniffers may result

smaller range perturbation, and thus values of both the
δ and the dε with ‘*’ in the last row in Table 7 could be
much smaller.

Comparing the location determination results with
their corresponding precision bounds, it can be seen that
both SD and DF methods would potentially present
smaller bounds while the SLM and the RM methods
generate slightly larger bounds. Of all four methods
studied in this paper, it appears that only the SLM is able
to offer smaller location determination error which is
also much closer to the theoretical limit or the precision
bound.

Consequently, due to multipath radio propagation
and complex indoor environment, the performance of an
indoor system really depends on many factors including
building environments, number of available sniffers and
their deployment methods, the number of reference SS
measurements and their positions, and many others.
Moreover, for different localisation mechanisms, each of
these factors would pose unique effects to those indoor
systems, therefore it is very difficult, if not impossible, to
interpret these effects individually. From the analysis in
this section, it can be seen that the precision bound would
be able to connect or integrate these factors uniquely
and to offer a standard criterion that could be used
to evaluate each system. For a given indoor system in
a given floor plan, there exists a theoretical precision
bound that would provide an achievable limit for the
location determination, and both the precision bound
and its actual achieved localisation performance would
determine the potential of the system.

The SLM method appears to work better when
compared with other distance-based mechanisms, but
it should be noted that, as indicated in Table 7, this
method does not provide direct estimation for the range
perturbation (i.e., δ) and the estimation from multiple
reference positions does not give an optimal result. When
imprecise information (such as distance or RSS) must be
used in the location determination process, it seems that
the fingerprinting or the database mapping is capable to
identify a better match than that from distance based
mechanisms.

6 Related research

Many location determination systems have been
developed for the indoor environment, however, the
comparison study has been very challenging because
of the complexity of the indoor radio transmission.
Overtime, researchers have begun to analyse those
critical environmental factors that impact the indoor
system. For example, Ji et al. (2007) and Chen et al.
(2006b) studied the optimal mechanism of sniffers
deployment. Later Ji (2009), also reported the impact
of other factors (including the number of sniffers,
humidity, furniture, and other indoor partitions such
as supporting columns and grocery storage closet) to
indoor systems. However, impacts from those factors
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were not linked with each other and thus ultimate
effects to an indoor system in a given building are still
not clear.

In order to better understand an indoor system,
researchers also tried to develop benchmark standards
with the hope to contribute standard and reproducible
test beds. For example, Wallbaum and Diepolder
(2005) enumerated a list of factors that could impact
indoor localisation. The list covers virtually every
aspect of an indoor system, which includes building
environment, wireless equipment, data sampling method,
and evaluation techniques. However, the authors did not
prioritise or provide a way to standardise those factors,
and an effective benchmark standard is still not available.

Different from the benchmark approach, more
researchers took a more practical method which is to
apply common data set for the systems’ comparison
study. For example, the IEEE ICDM (2007) offered a
concrete data set for an academic building of 145.5 m ×
37.5 m, where a mobile’s location would be estimated
using current RSS values against those from nearby
reference locations. The released data set was collected
at a very fine resolution (1.5 m × 1.5 m) over a grid
of 247 units, however, it does not include either the
building structure or APs locations, and therefore this
data set is useful mainly for the evaluation of data
processing techniques such as classification and machine
learning. In addition, the CRAWDAD, a community
resource for archiving wireless data at Dartmouth
(http://crawdad.cs.dartmouth.edu/index.php), also offers
wireless trace data (indoor and outdoor using Wi-
Fi, Bluetooth, and cellular) from many contributing
locations for collaborative research in location
determination, routing algorithms, and communication
protocols. However, there are still not many valuable
comparison studies using one or more common data sets
in recent literature.

7 Conclusion

Using data measurements from two very different
buildings, this paper examined four dynamic indoor
localisation systems from several different perspectives
including signal-location map construction, distance
estimation, environments impacts, system deployment
mechanisms, reference measurements, and detailed
location searching methods. Research indicated that
these factors pose unique impacts to different localisation
mechanisms, and thus the effort to understand the
performance of various indoor systems by setting a set
of benchmark standards based on each individual factor
could be very difficult.

Consequently, instead of analysing individual
dependence between the location determination
performance and the environmental or system factors,
this research studied a theoretical location determination
limit and proposed a precision bound as a standard
criterion for the evaluation of various localisation

systems. Experimental results validated the precision
bound for all localisation mechanisms at both buildings,
thus this work provides critical insights to the research
in dynamic location determination.

From the study, this paper also indicated that
the signal-location map mechanism, a database-based
method, delivers better results and relies less on reference
RSS measurements. On the other hand, distance-based
systems present location estimates with less dependence
on the number of deployed sniffers, but they require large
number of reference signal measurements that should
be carefully selected across the building. This paper
also evaluated two distance-based searching algorithms
and results indicated that the multidimensional scaling
performs better than the lateration method in all
simulation evaluations. This suggests that better location
search algorithms are critical for robust location
determination.
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