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ABSTRACT: Similar to carbon, several transition-metal
chalcogenides are able to form tubular structures. Here, we
present results from systematic theoretical investigations of
structural and mechanical properties of MoS2 and TiS2
nanotubes in comparison to each other, to carbon nanotubes,
and to corresponding experimental results. We have obtained
the nanotube’s Young’s moduli (Y), Poisson ratios (ν), and
shear moduli (G) as functions of diameter and chirality, using a
density-functional-based tight-binding method. Additionally,
we have simulated tensile tests by Born−Oppenheimer
molecular dynamics simulations. The influence of structural defects on the investigated mechanical properties has been studied
as well. As a result of the simulated stretching experiments, we found that TiS2 nanotubes can be stretched only half as much as
MoS2 nanotubes.

1. INTRODUCTION
Since their discovery in 1991 by Iijima,1 the interest in carbon
nanotubes (CNTs) has been growing continuously. One reason
behind this interest may be their exceptional electrical and
thermal properties:2 quasi-one-dimensional, electrical, and
thermal conductors constructed from CNTs should have
current-carrying capacities that are 1000 times higher than
those of copper wires. Another reason are the special
mechanical properties of CNTs: by showing Young’s moduli
of ∼1 TPa,3 their axial tensile stiffness is much higher than that
of every other (nano-) material. During the years following
CNT discovery, nanotubes consisting of many other inorganic
materials, such as boron nitride, transition metal sulfides, metal
oxides, and metal halides,4,5 have been synthesized. It is
assumed by now that nanotubes can be produced from any
material that has a layered bulk structure.
Examples for inorganic analogues of CNTs are tubes

consisting of tungsten disulfide (WS2) or molybdenum
disulfide (MoS2). WS2 nanotubes and fullerene-like nano-
particles, as the first inorganic analogues, were synthesized in
1992.5 Soon after, corresponding MoS2 structures were
produced as well.6,7 These two layered bulk materials and
their nanotubular structures have been found to be highly
related, for the metals are located in the same group in the
periodic table. In contrast to carbon nanotubes, WS2 and MoS2
nanotubes occur exclusively as multiwall nanotubes and are
open-ended. The synthesis is carried out either by arc
discharge8 or by the reduction of the corresponding transition
metal oxides (MoO3, WO3) with hydrogen sulfide.9,10

Currently, MoS2 as a solid-state or nanostructured material is
used as a lubricant and catalyst.11,12

Likewise, TiS2 is a layered bulk material. Subsequently, Chen
et al. synthesized TiS2 nanotubes for the first time in 2003.13,14

Because the bulk material can appear in two different crystal

structures with an octahedral or trigonal prismatic coordination
of the titanium atoms, nanotubes could be formed out of both
structures as well. Similar to MoS2 and WS2 nanotubes, TiS2
nanotubes have several potential applications: they are being
investigated as (lithium-intercalated) high-energy storage
systems, as cathode material in magnesium-ion batteries,15

and for catalysis.14

In recent years, the electronic and mechanical properties of
the inorganic nanotubes mentioned above were investigated in
detail experimentally as well as theoretically.16−24 For example,
the absence of small-diameter and single-wall MoS2 nanotubes
could be explained by a phenomenological model based on
atomistic quantum-mechanical calculations.25 In earlier studies,
it was reported that all MoS2 and TiS2 nanotubes are
semiconducting and the electronic properties are diameter-
and chirality-dependent.16,26,29,30 Additionally, chiral MoS2 and
TiS2 nanotubes show an intrinsic twist29,30 that slightly
stabilizes these structures. Furthermore, first calculations with
respect to the influence of structural defects on the properties
of such nanotubes have been performed.31

In this paper, we report and analyze the structural and
mechanical properties of TiS2 nanotubes. These are compared
to the corresponding MoS2 systems. Additionally, we present
new results on the influence of defects on the mechanical
properties of MoS2 nanotubes. Thereby, we will focus on the
mechanical behavior of individual single-wall nanotubes.
Although experimentally observed nanotubes seem to be
exclusively multiwalled, we restrict our study to single-wall
nanotubes for two reasons: first, the mechanical and electronic
properties of nanotubes are determined to a large extent by the

Received: January 20, 2012
Revised: March 23, 2012
Published: April 26, 2012

Article

pubs.acs.org/JPCC

© 2012 American Chemical Society 11714 dx.doi.org/10.1021/jp300709w | J. Phys. Chem. C 2012, 116, 11714−11721

pubs.acs.org/JPCC


strong covalent bonding within the single-wall tubes, because
the van der Waals interactions between the walls are only weak;
second, from a computational point of view, the system size
would increase dramatically for double-wall systems.
In contrast to the MoS2 system, theoretical studies on TiS2

are rare, e.g., investigations of structures, strain energies, and
electronic properties.26−29 To our knowledge, there are neither
experimental nor theoretical studies of the mechanical
properties of this material. Therefore, we have extended the
existing studies of TiS2 nanotubes by investigating their
mechanical behavior. At the same time, we have filled the
gaps in the studies of MoS2 nanotubes and performed similar
simulations for carbon nanotubes to be able to give a
comparative overview of the mechanical properties of both
inorganic materials.
A comparison of the results of our simulations with

experimental findings is, however, difficult. So far, the Young’s
moduli of individual WS2 nanotubes have been measured,15 and
simulations of the corresponding properties of MoS2 tubes
were performed. It was also possible to perform tensile tests of
individual multiwall WS2 nanotubes in experiments.32,33 Earlier
corresponding molecular-dynamics simulations32,33 and the
results presented in this paper are restricted to MoS2 single-wall
nanotubes only. Because tungsten and molybdenum belong to
the same group of the periodic table, they show a qualitatively
similar mechanical behavior, and experiments as well as
simulations of these two materials may be compared. We will
follow this route in the present publication as well.
In the following, we will focus first on the three elastic

constants (Young’s modulus, Poisson ratio, and shear modulus)
and, second, on the simulations of stretching experiments to
investigate the behavior of tubes under mechanical stress. The
influence of structural defects on the elastic constants and on
the results of the stretching experiments is briefly discussed for
the first time on an atomistic level.
This paper is organized as follows: in section 2 we describe

our computational method and derive the calculated elastic
constants. In section 3 we discuss structures and energetic
properties, the diameter- and chirality-dependence of the elastic
constants, the simulation of tensile tests, and the influence of
defects. The results are summarized in section 4.

2. COMPUTATIONAL METHODS
For the present study, we have utilized a density-functional
tight-binding (DFTB) method,3435 for the structural optimiza-
tion of the investigated nanotubes. It is based on the density
functional theory of Hohenberg and Kohn36 in the formulation
of Kohn and Sham.37 The Kohn−Sham orbitals ψi(R⃗) are
expanded in a set of atom-centered basis functions φj(R⃗). These
functions are determined by self-consistent density functional
calculations on the isolated atoms employing a large set of
Slater-type basis functions.
The effective one-electron potential in the Kohn−Sham

Hamiltonian is approximated as a superposition of the
potentials of neutral atoms. Moreover, only one- and two-
center integrals are calculated to set up the Hamilton matrix.
We have taken a minimal valence basis including the 2s and 2p
orbitals for carbon, the 3s and 3p orbitals for sulfur, the 4s, 4p,
and 3d orbitals for titanium, and the 5s, 5p, and 4d orbitals for
molybdenum. States below these levels were treated within a
frozen-core approximation.
To characterize the mechanical properties, three material

constants have been considered: the Young’s modulus Y, the

Poisson ratio ν, and the shear modulus G. The Young‘s
modulus has been calculated from the second derivative of the
total energy E with respect to the strain ε∥ at the equilibrium
volume V0:
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It indicates how much resistance a sample presents to its
deformation under uniaxial strain. Equation 1 additionally
contains the volume of the unstressed sample

π δ=V R L20 0 0 (2)

where δ indicates the thickness of the nanotube wall, and R0
and L0 are the radius and the length (per unit cell) of the
unstrained nanotube. For a carbon nanotube with its
monatomic wall, the value of δ is quite ambiguous. Therefore,
an area-based Young’s modulus YS was introduced,

38 in which
the volume V0 is replaced by the cross section 2πR0L0 of the
tube:
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However, in order to compare the calculated Young’s moduli
for carbon nanotubes with experimental values, δ is often
chosen as the van der Waals distance in the graphitic lattice
(≈3.3 Å39). For MoS2 and TiS2 nanotubes, the thickness of the
triple layer (δ = 6.147 Å) can be used. This value is
approximately the distance between the inner and outer
cylinders of sulfur atoms, considering the van der Waals radius
of sulfur.
As a consequence of the uniaxial elongation or compression,

the sample undergoes a deformation perpendicular to the
tensile axis (tube axis). The ratio of transverse contraction and
axial elongation is described by the Poisson ratio
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where ε|| is the externally imposed strain, ε⊥ the lateral
contraction, and L0 and R0 are defined as above.
The shear modulus is calculated similar to the Young’s

modulus as
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Here, τ and γ represent the shear stress and the resulting shear
angle. If the torsion of the tube is described by a shear of small
finite elements on its surface, the shear angle γ can be
substituted by an expression containing the torsion angle φ (eq
5). The corresponding GS values are calculated similarly to YS
as

δ=G G (6)

The Young’s modulus and the Poisson ratio were obtained by
optimizing the structures at different defined elongations with
the conjugate-gradient method. This could be realized by fixing
the cell parameter in the axial direction. The largest axial
deformations were approximately ±1%. For the calculations of
achiral nanotubes, the program package DFTB+40 with
rectangular periodic boundary conditions has been used. Chiral
systems and the shear moduli have been calculated using the
computer code Trocadero,41 which is able to consider helical
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boundary conditions and can treat chiral structures due to the
implementation of objective molecular dynamics.42−45 Both
computer programs contain implementations of the DFTB
method.
Tensile tests have been simulated by performing Born−

Oppenheimer molecular dynamics (MD) simulations with the
DFTB method using the Γ-point approximation within the
program package deMon.46 During the MD simulation, the
ends of the tubes were fixed within the periodic simulation box,
and a Berendsen47 thermostat (NVT ensemble, thermostat
time constant τ = 0.2 ps) was used to control the temperature.
All simulations were performed at T = 300 K. After each
equilibration (time step = 2.0 fs, equilibration time =1.5 ps), the
resulting structure was stretched by ΔL (in general 0.1 Å). The
stretched tube was taken as the initial structure for a following
MD simulation with the same set of parameters. This
procedure was repeated up to the rupture of the nanotube.
The resulting force was calculated as the first derivative of the
total energy with respect to the axial cell length. The tensile
stress σ was calculated from the ratio of force and cross section.
The elastic constants have been investigated also with respect

to the chirality of the tubes. Therefore, we define a tube family
as all nanotubes that are described by the integer denominators
(n,n), (n + 1,n − 1), ..., (2n,0). Thus, the (10,10) family consists
of the members (10,10), (11,9), (12,8), ..., (20,0), including a
zigzag, an armchair, and n − 1 chiral tubes that all have
approximately the same diameter.

3. RESULTS AND DISCUSSION

3.1. Structures. MoS2 and TiS2 belong to a class of
transition metal disulfides (TMS2) that form layered bulk
materials, in which the individual TMS2 layers are stacked. Each
TMS2 layer consists of three atomic layers in the order S−TM−
S. Within these layers, each transition metal atom is 6-fold
coordinated by sulfur atoms. There are two different
possibilities to coordinate the TM atoms in this environment:
(i) a trigonal prismatic coordination (layer group p6m̅2) and
(ii) an octahedral coordination (layer group p3m̅1), both
shown in Figure 1. In their bulk phase, these two structures are
labeled 2H and 1T, respectively. Whereas MoS2 exists as a
stable form in the 2H configuration only, TiS2 crystallizes in

both structures, whereby the octahedral coordination is
thermodynamically more stable.26,48 Although the labels 2H
and 1T refer to the bulk phase of the material, we will use them
to distinguish the monolayered structures in the following.
The lattice constants of the single monolayers were

calculated with the DFTB method to validate the parameters.
The results are shown in Table 1. The comparison with the

experimental values shows a very good agreement. Further-
more, we see from the total energies of TiS2 that the octahedral
coordination is indeed more stable than the prismatic one.

3.2. Strain Energy. Figuratively, the strain energy is a
measure of the work to roll up a layer to a tube, i.e., it is the
energy difference between the tube and the layer. The strain
energy (per atom) as a function of the tube radius R is given by
Estr = β/R2.51 The individual values of the strain factor β are
shown in Table 1. The value for MoS2 is in good agreement
with former calculations.25 For comparable radii, the strain
energies of both TiS2 structures are significantly lower than for
MoS2 tubes. The strain factors of all TMS2 nanotubes are much
larger than those of carbon nanotubes (for comparison, we
have calculated also the strain factor for carbon nanotubes as
βCNT = 2.2 eVÅ2/atom). This fact can partly be explained with
structural arguments: The carbon layer is a monatomic layer,
whereas the TMS2 layers have a thickness of three atomic layers
(S−TM−S, see inset of Figure 2). Consequently, the
(mechanical) work to bend the latter is larger leading to a
higher potential energy per atom in the system. Of course, also
the strength of the chemical bonds influences the value of β.
However, Figure 2 clearly shows that the chirality of the
nanotubes does not have any influence on the strain energy.

Figure 1. Structures of TiS2 monolayers of the 1T (left) and 2H
(right) TiS2 bulk phases. The titanium and sulfur atoms are shown as
purple and yellow spheres, respectively.

Table 1. Calculated and Experimentally Determined Lattice
Constants, Total Energies, And the Strain-Factor β
(discussed in section 3.2.) of the Three Investigated Layer
Structures

MoS2 (2H) TiS2 (2H) TiS2 (1T)

a (calcd) [Å] 3.273 3.178 3.313
a (exptl) [Å] 3.160249 − 3.40750

Etot [eV/atom] −58.72 −55.62 −55.81
β (calcd) [eV Å2/atom] 27.2 16.9 11.5

Figure 2. Strain energy as a function of the tube radius R for MoS2
(dotted black line) and TiS2 with prismatically (solid red line) and
octahedrally (dotted red line) coordinated titanium atoms. For
comparison, the calculated strain energies of carbon (solid black
line) nanotubes are shown additionally. Inset: (22,0) carbon and
TMS2 nanotubes for visualization of the wall thicknesses.
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3.3. Elastic Constants. In the following, we discuss our
results of the calculations of the elastic constants mentioned in
section 2. The elastic constants strongly depend on the tube
diameter for thin tubes with diameters lower than 4 nm. With
increasing diameter (>4 nm), the elastic constants approach
values corresponding to those of the infinite layer structures
(cf., Table 2).

Figure 3 shows the surface-based Young’s modulus YS of
different TiS2 nanotubes as a function of the tube radius R0.

The Young’s moduli of both TiS2 structures increase with
increasing tube diameter approaching the values of the infinite
layers (Table 2). We observe different curve progressions for
zigzag and armchair tubes, which are visible especially at small
tube diameters. The Young’s moduli of the chiral nanotubes lie
essentially in between these two limiting curves. For large
diameters, the Young’s moduli of all chiral and achiral
nanotubes approach the same values of the infinite layers.
In comparison to MoS2 (Figure 4 in ref 30), it turned out

that the Y−R curve progression for TiS2 (Figure 3) slightly
differs: the Young’s moduli of the MoS2 zigzag tubes are almost
independent of the tube diameter, whereas they are diameter-
dependent for the armchair tubes (increasing with increasing
diameter; see Figure 4 in ref 30); moreover, the splitting
between the Y−R curves of zigzag and armchair nanotubes is
larger for MoS2. The calculated asymptotic limit of the MoS2
Young’s modulus is approximately 230 GPa (YS ≈ 141
GPa·nm). This value is close to the experimental value for
bulk MoS2 (209 GPa52) and to the experimentally received
value of monolayered MoS2.

53 No experimental values are
available for TiS2. We add that we have observed a correlation
between the Young’s modulus and the band gap in all TMS2
systems: for comparable diameters, we find a larger Young’s
modulus for the tube with the larger gap.

In earlier studies,18,30,32,33 the mechanical properties of MoS2
nanotubes have been investigated. In addition, we present here
the calculated Poisson ratios, the stress−strain diagrams, and
the influence of defects on these properties. For the Poisson
ratios ν and shear moduli G, a similar splitting between zigzag
and armchair curves was obtained. As an example, we show in
Figure 4 the Poisson ratio as a function of diameter. For MoS2
nanotubes, the limit of the Poisson ratio for large diameters is
about 0.3; this corresponds to the value of the flat layer. As for
the Young’s moduli,30 the Poisson ratios of the zigzag MoS2
nanotubes are nearly independent of the diameter. In contrast,
the Poisson ratio of the armchair MoS2 tubes decreases with
increasing diameter, i.e., the transversal contraction decreases
with increasing tube diameter.
The shear modulus G describes the resistance of a sample

against a shear stress τ. The limits of the calculated shear
moduli for all investigated systems are summarized in Table 2.
The corresponding GS for TiS2 as a function of the radius R are
shown in Figure 5 (the corresponding diagram for MoS2 can be

found in ref 30). The respective location of the armchair and
zigzag GS−R curves is inverted compared to the corresponding
YS−R curves in Figure 3; that is, if the shear moduli of the
armchair tubes are larger than those of the zigzag tubes, it is
vice versa for the Young’s moduli. We find this for 2H MoS2
and 1T TiS2 nanotubes.

3.4. Simulations of Tensile Tests. The Young’s modulus
describes the linear response of a structure on an external strain
giving information only on deformations in the elastic region.

Table 2. Calculated Elastic Constants of TMS2 Nanotubes
with the Largest Diameters (8−9 nm), Considered in This
Worka

Y (GPa) YS (GPa·nm) ν G (GPa) GS (GPa·nm)

MoS2 (2H) 230 141 0.30 8830 55
TiS2 (2H) 272 167 0.16 102 63
TiS2 (1T) 228 140 0.11 96 59

aFor the calculation of Y and G, a value of δ = 6.147 Å has been used
(see section 2).

Figure 3. Young’s moduli of 1T (blue) and 2H TiS2 (black) nanotubes
as a function of the tube diameter.

Figure 4. Poisson ratio as a function of diameter for different zigzag
and armchair MoS2 nanotubes.

Figure 5. Surface-based shear modulus GS for 1T (blue, open
symbols) and 2H (black, filled symbols) TiS2 nanotubes.
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However, the nonelastic region up to the rupture of a structure
is also of interest. This information can be obtained by tensile
tests. In earlier studies,32,33 tensile tests were performed
experimentally on WS2 nanotubes, and the mechanism of
rupture was investigated by MD simulations on defect-free
MoS2 nanotubes. With this contribution, we complement these
studies by calculations of stress−strain diagrams for MoS2
nanotubes in comparison to the results of TiS2 and carbon
nanotubes. Additionally, we have studied the influence of
defects. For example, we show in Figure 6 the results of such

stress−strain simulations for ideal (14,14) armchair TMS2
nanotubes. All three systems show slight deviations from linear
curve progressions. It can be seen that 2H MoS2 nanotubes can
be stretched up to 16% of their original length before they
rupture. In contrast, TiS2 nanotubes rupture much earlier at
elongations of about 6−8% (cf., Table 3).

For the carbon nanotube, a rather large deviation from the
linear stress−strain behavior for small elongations and a much
higher tensile stress were obtained compared to those of the
TMS2 nanotubes. The reason for this behavior is the difference
in the bonding patterns: Whereas each TMS2 nanotube consists
of an atomic triple layer (S−TM−S), CNTs consist of a single
atomic layer only. Therefore, the axial elongation has a direct
influence on the C−C bond lengths, whereas the elongation of
TMS2 tubes first and foremost is based on the change of
bonding and dihedral angles. This leads, up to a certain level, to
smaller stress and a more elastic stress−strain behavior.

Furthermore, the significantly higher Young’s moduli of
carbon nanotubes explain the higher rupture stress, because a
larger Young’s modulus leads to a higher force necessary to
elongate the nanotube by the same distance. We find this
relation also within the same material: the Young’s moduli and
the rupture stresses of 2H TiS2 nanotubes are higher than
those of 1T TiS2 tubes.

3.5. Influence of Defects. Early experimental investiga-
tions of carbon nanotubes have shown that these often have a
high defect concentration, which strongly influences their
properties.54−58 Investigations showed that structural defects
reduce, for example, the Young’s modulus and the tensile
stress.56 In the present work, we have studied the connection
between different defects and the mechanical properties of
TMS2 nanotubes. To date, neither theoretical atomistic
investigations of the influence of defects on the Young’s
modulus nor simulations and analyses of tensile tests of
defected TMS2 nanotubes have been published. Exemplarily,
we have chosen a set of defects, which are shown and explained
in Figure 7.31

All these structures have been fully geometry-optimized for
both TMS2 systems. Depending on the defect, the initial
vacancy may be (partly) healed by stronger interactions of the
unsaturated edge atoms. This leads, for example, in case of a so-
called S2 defect, to shorter distances of the three neighboring
Mo atoms.
However, a significant change of the Young’s moduli and

Poisson ratios cannot be expected for long nanotubes with a
low defect concentration. On the other hand, the selected
defects may have a noticeable influence at high defect
concentrations. Therefore, we have focused especially on
these high concentrations, because the question of whether
the influence is large enough to be observed in experiments
could not be answered sufficiently yet. The results for a (22,0)
MoS2 nanotube are shown, for example, in Figure 8 and Table
4. At this level of concentration, small defects do not have any
significant influence on these properties, because a kind of self-
healing leads to an almost intact tubular wall (Figure 7); large
defects have a greater influence, because their extent prevents
their closure.
To compare the influence of the defects on the different

materials, we show in Figure 9 the changes in the Young’s

Figure 6. Stress−strain (σ−ε||) diagram for (14,14) TiS2 and MoS2
nanotubes obtained from MD simulations as described in section 2.
The corresponding stress−strain curve of a (14,14) carbon nanotube is
given for comparison. All curves are displayed up to the individual
points of rupture.

Table 3. Critical Stress−Strain Parameters of Armchair and
Zigzag TMS2 Nanotubes with Comparable Diameters

critical values
(rupture)

Y (GPa) R0 (Å) ε|| (%) σ (GPa)

MoS2 (2H) armchair (14,14) 209.7 13.0 15.9 29.1
zigzag (22,0) 236.6 12.0 15.4 31.6

TiS2 (2H) armchair (14,14) 266.2 12.6 7.2 16.9
zigzag (22,0) 254.1 11.6 6.1 15.5

TiS2 (1T) armchair (14,14) 219.2 13.1 7.8 15.3
zigzag (22,0) 219.7 11.9 6.1 11.4

Figure 7. Optimized structures of (22,0) zigzag MoS2 nanotubes with
different structural defects: (1) defect-free, (2) absence of an Mo atom,
(3) absence of an S atom from the inner cylinder, (4) absence of an S
atom from the outer cylinder, (5) absence of both S atoms, (6)
absence of three MoS2 units, and absence of one MoS2 unit oriented
(7) parallel and (8) perpendicular to the tube axis. In the following, we
consider defects 2−5 as small and defects 6−8 as large defects.
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moduli for (22,0) nanotubes with respect to the ideal tubes.
TiS2 nanotubes seem to be more sensitive to small defects than
MoS2 tubes. Furthermore, the Young’s moduli of CNTs show
the largest responsivity to small defects, which can be explained
by structurally hindered self-healing.

The calculated Young’s moduli and stress−strain behavior of
defect-free MoS2 nanotubes are in good agreement with the
experimentally determined values.32 For TiS2, no experimental
data is available. Larger deviations in comparison to
experimental data54−58 occur for carbon nanotubes. This raises
the following question: do the experimentally synthesized
inorganic nanotubes (MoS2, WS2) have less structural defects
than carbon nanotubes, or is their influence on the mechanical
properties simply below the accuracy of the measurement?
To answer this question, tensile tests of MoS2 nanotubes

with the above-described defects were simulated as well. The
results are summarized in Table 5. It is apparent that all defects

have a large influence on both the strain of rupture ε|| and the
rupture stress σ. This result indicates that the synthesized TMS2
nanotubes may indeed have a defect concentration smaller than
that of CNTs.

4. CONCLUSIONS
In this paper, we have presented a systematic theoretical
investigation of transition metal disulfide nanotubes and their
mechanical properties. We have employed a density-functional
tight-binding method, which allowed us to study large systems
with several hundred atoms. Two different materials have been
studied, TiS2 and MoS2, where for the latter, two different
configurations (2H and 1T) have been considered. Simulations
of carbon nanotubes have been performed for comparison.
We found the strain energy of all investigated systems to be

chirality-independent. Comparing the systems, it turned out
that all TMS2 nanotubes have larger strain energies than CNTs.
MoS2 nanotubes have the largest strain energy. On the basis of
the optimized TMS2 structures, we have calculated the Young’s
moduli, the shear moduli, and the Poisson ratios. For small
tubes (<4 nm), these strongly depend on the tube diameter.
With increasing diameter, these properties approach values
corresponding to those of the infinite monolayers. Additionally,
the elastic constants are chirality-dependent, and we observe
different curve progressions for zigzag and armchair tubes. The
elastic constants of the chiral nanotubes lie essentially in
between these two limiting curves. For MoS2, experimental
values are available52 and in good agreement with our results.
Additionally, tensile tests have been simulated up to the

rupture of the tubes. We found that MoS2 nanotubes can be
stretched up to 16% and TiS2 nanotubes up to 6−8% until they
break. In comparison, carbon nanotubes show a larger deviation
from linear stress−strain behavior and a much higher tensile
stress.

Figure 8. Influence of different structural defects on the Young’s
modulus (black dots, left ordinate) and the Poisson ratio (red
triangles, right ordinate) of a (22,0) MoS2 nanotube. The values of the
defect-free tubes, corresponding to defect 1 are shown as dashed lines.
The defects are labeled as in Figure 7. The exact values are given in
Table 4.

Table 4. Young’s Moduli and Poisson Ratios of a (22,0)
MoS2 Nanotube with and without Defectsa

defect Y (GPa) ΔY (%) ν Δν (%)

(1) no defect 236.78 0.274
(2) Mo 234.29 −1.05 0.275 0.49
(3) Sin 237.20 0.18 0.276 0.67
(4) Sout 236.70 −0.03 0.277 1.32
(5) S2 236.51 −0.11 0.276 0.85
(6) hole 228.40 −3.54 0.285 4.05
(7) MoS2

|| 232.56 −1.78 0.275 0.48
(8) MoS2

⊥ 234.01 −1.17 0.281 2.49
aThe defects are labeled as in Figure 7. The relative deviations are
given additionally.

Figure 9. Influence of different structural defects on the Young’s
modulus of (22,0) nanotubes of the investigated materials. The
diagram depicts the relative change of Y with respect to the defect-free
tube (ΔY). The defects are labeled as in Figure 7. The lines have been
added to guide the eye. Note that the defects 2−5 result in the same
structure for carbon nanotubes.

Table 5. Influence of Structural Defects (see Figure 7) on the
Strain of Rupture ε|| and the Rupture Stress σ of a (22,0)
Zigzag MoS2 Nanotube Obtained from the Simulation of
Tensile Tests

defect ε|| (%) σ (GPa)

(1) no defect 15.67 28.86
(2) Mo 10.68 21.92
(3) Sin 11.28 22.18
(4) Sout 10.39 17.68
(5) S2 10.99 21.24
(6) hole 7.09 13.53
(7) MoS2

|| 10.08 18.74
(8) MoS2

⊥ 9.50 18.72
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Finally, we have studied the influence of structural defects on
the elastic constants and the stress−strain behavior of the
nanotubes. Therefore, we have chosen a set of defects by
removing several atoms and calculated the respective proper-
ties. The consideration of the selected defects in the nanotubes
changes their Young’s moduli and Poisson ratios to different
extents.
For defect-free MoS2 nanotubes, we found good agreement

between the calculated and the experimentally determined
Young’s moduli and stress−strain behavior. By simulating
tensile tests with MoS2 nanotubes that exhibit structural
defects, we found larger deviations between the calculated and
experimental stress−strain behavior. This result indicates that
synthesized MoS2 nanotubes may have a defect concentration
smaller than that of CNTs.
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