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1. Introdoetion

The methods of quantum feld theory applied to the many body problems
have had an extensive success in the last years®®. The application of these
methods to spin systems raises difficult problems, which, since the pioneering
work of F. J. Dyson®, have been the subject of many publications. Among
other methods*®®, one should cite particularly the double time temperature
dependent Green's function method™®?, which has been successfully applied
to the ferromagnetic problem!® iy,

To study the properties of spin impurities in metals, it has appeared useful
to develop a perturbation theoretic method analogous to the Feynman graph
technique'*®. The main difficulty rises from the fact that Wick’s theorem®™
is not valid for spin operators, because the commutator of two S operators
is not a C number, but an operator. It is possible though to formulate a
theorem very similar to Wick's theorem and to develop the corresponding
diagram technique.

The purpose of this paper is to prove the modified Wick's theorem, to
introduce the corresponding diagrams and to illustrate the technique by a
simple example. Applications of the method presented here to physically
interesting cases will be the subject of separate publication!?,

2. Generalized Wick’s Theorem for Spin Operators
In time dependent perturbation theory, cne is lead to evaluate quantities
of the type!:
OIT{A#B(t) - - PlEadHDY
where T is the time ordering operator, A(f:) --P({n) are operators written in
a suitable interaction picture

Alty= "t go=1%0!
and 0> is the ground state of S5
Wick’s theorem then allows to transform the time crdered product into a
sute of normal products, the expectation value of which is particularly simgple
to calculate.
Let us consider now a system of interacting spins ', &%,-.-87; the
simplest way to define the free Hamiltonian &% is to introduce a static
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homogenous magnetic field in z directien. Then

S =S

S = — pgH 35"

S = F(8, 8% 8%) .
%7 is the spin-spin interaction and is supposed to be a4 polynomial expression
in the Sif, S, Sif operators. From now on all operators are supposed to be
written in interaction picture.

One defines then as the normal product of a set of S5 operators the set
for which the S, operators atand on the left, the S_ operators in the middle
and the S, operators on the right (the place assigned to the S. operators is
of course arbitrary but must be fxed in order to have definite rules). The
contraction of two S operators, i.e. the difference between the time ordered
product and the norma} product, is given by

s e QPO O — )
§i{t}$§'(t’)xSi(t}ﬁ(t' LY
51(t)§:’(t’): S (AR E)nn

(1)

Note that S: is independent of time as an operator but that the time
variable is necessary to indicate the ordering of the operators in the set.

If one tries to transform explicitly a given set of 5 operators into a
normal set by using the commutation rules (1), one sees that one given operator
can be the subject of many contractions. In order to formaulate the theorem,
one must introduce S operators depending on many “ time variables”, namely
S_(t; t1- - tmy and S:(£75 87, In this, # is the only true time variable; the dummy
time variables f-- - tm and ', ' are merely indices; they “ remember ” preceding
coniractions.

The generalization of equations {1

SITi(t; foo - -tm)gf’(t’ Y= S b bt ) — D (2

together with the definitions
Sa(t; H==5:{)
S_(H =8 {i.e. m=10)
explain by themselves how the dummy time variables are constructed.  S_{f;
L) is defined as symmetric in the dummy time variables, whereas S.(¢';¢")
is noi symmetric.
Trronem: The time ordered product of a set of S operalors is gqual fo

the sum of the normal products of all sets of operators one can construct by
contracting parts of the initial set in all possible ways, including the set without

§
i
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contraction. These novmal products ave multiplied by the scalar JFactors—defined
by (8y—whick occur in the contractions leading to them.

In general, theve are many different scalar factors to the same operator
set, but each different scalar factor must occur only once, even if there are

topologically different coniractions leading to it. In this we suppose all time
variables to be different.

Before proving the theorem, it may be useful to illustrate it by a simple
example, e.g. the set SHHSV (S ().
The construction of the different terms is done in the two columns below:

Possible set {in normal form) Contractions leading to them
SEEHSE (1 SHE)

SY@HSM ST#)SHY
STES 8 S¥UE NSt
(2 + r
SEBS Wt SYHSE (@
l_._m_MMJ

St )

{ k(4 )S“(t)S“”(t")
S+ {t )S"‘mS"”(t“)
L..,_._.m_.m_,l

We get therefore
TISTUISHHST (1 1= SE NS (¢ )SHD)
SIS (WSt~ t Yo 31 W}
+S;‘S;"{_~,Eeilwﬂg(t"—B'>?y(t”wf')§nu%n}
+Sf{m26‘”ﬂ”“"""’?ﬁ‘(f”"f')%f*n*h'ﬁ(f'*f'}5nn'—ﬁ(t~f')z?(t~z")5w}.
Note that the dummy time variables have been dropped in the final expression.

One can explicitly check that this formula gives the right value for ali
possible orderings of the times ¢, £, .

To illustrate the second part of the theorem, let us consider the set
STHOSHESH & .
The contractions

(z)S“’(t )S””(t“) and s (z)s’“(t )S"”(t "

lead to the same Scalar factof and must therefore not give rise to two different
terms.

3. Proof of the Theorem for the Simplest Sets

The proof of the theorem follows the line of a classical proof of the
Wick’s theorem!'®,
Let us consider a normal preduct of p operators

St Seltm)S Ut i - Em) oS (g Logge - 1055
Seltmiiet; bnrian) - Selts; i)
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and let us multiply it from the right by an operator Sltps1) with -
bops <Brp £ for all 7, m, k. : (3

The indices m in 5™ have been dropped for simplicity.

Lemma: The product
SHE)- « - Sulte; 15)S(per) . (4)

is equal to the sum of the normal products of all sels of operators ome can
construct by contracting S(tp.s) with the other operaiors in all possible ways,
except one which will be specified later, including the sel without contraction.
The normal products ave mulliplied by the scalar factors defined by (2) which
occur in the comtractions leading to them. Each different scalar factor fo ¢
specific set must occur only once.

Note that not all contractions have tc be considered but only those
generated by S(fs1). The exception will be specified during the proof.

Proof. There are three cases to consider:

(a) S(ipﬁ}xSZ(tpH)
In this case the product (4) is already under normal form and the lemma is
obviously right, since all contractions of Si{tpe1) with S- or S, operators contain
s-functions which are identically zero because of (3.
(b S(fp-é—l)zs—(tﬁﬂ)
The proof proceeds as follows:

I; analysis of the non-zerc ferms predicted by the lemma,

1. explicit transformation of the product (4) in a sum of normal products

and comparison of the result with the terms predicted by the lemma.

1. TFollowing coniraction systems are to he considered:

i) contraction of S-(fp:1) with an S.{t) is identically zero because of
condition (3);

iy contraction of S_(p4:) with an Sutmiieo iy, j4p ) Produces an S.(fapi;tmiirs)
which can be contracted with an S: or an S: operator;

iii) comtraction of S {fppa;tmiire) with an Si(f) is identically zero, because
of (3);

iv) contraction of S (fpeiitmeirsy with an  Sdllmeierifpa; +5) produces an
S»(tﬂ+1;fM+5+stm+j+f) .

Proceeding the same analysis until ail S, operators have been contracted,
one sees that the only non-zero contractions are repeated contractions of
the S_(f.1) operator with S. operators. All different systems of repeated
contractions will be generated by choosing all possible different subsets of
the S: set and contracting them with S (fns:). Since by definition S. is
symmetric in the dummy time variables, one can see from rules (2) that the
order in which the contractions are performed in a given subset has no
influence on the final result and therefore each different subset must give rise

to only one term.
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One can express the result by writing

Syt - Salts; f;)s-—(twi) o
:S»r(fl)' < Sulfmgg; ﬁn%g‘ ‘e .tiﬂ”ﬂj*&-’}Lﬁ{Sﬁ(an; tmaira® > Emagra);
Sz(fm+a‘+r§ﬁn—1—j+r)‘ - Selmaiesitn el
where L{AWD; Sellmeior; s -} Is a symbol represesnting the sum of all
different possible subsets of the S: operators multiplied by the scalar factors
coming from the repeated contractions of S_{f..) with the complementary
subset, and multiplied from the left by the operator A(f); the reason why A(f)
is written instead of S_ will be clear shortly.

II. Since in the case considered the operators S; and S_ play ne role in
the explicit transformation of (4) into a normal produci, one needs only
consider the product

Seltmsson; tmrivn)e - Sello (S (oys) .
If only one operator S: is present, one has

Sz(tp; t;)s-(t'p-g-i): S—(tp-;.})Sz(t;p; t;) "}"Sm(tp-}-l 3 t:ﬂ){wﬁ(tpw tﬁ+1)}
= LS (o ) Seltes to))

which is in agreement with the lemma. Strictly speaking, one should not
include #-functions nor dummy time variables in the expression constructed
in this way. since one merely uses ordinary commutation rules. They are
written down to show in a ¢learer way the identity of the results with those
predicted by the lemma.

One supposes now the lemma to be correct for k S.-operators present and
proves it for B+1. Then

Silbpwito—r) -+ SelE; 108 {foy1)
=8 tpn; t;..k}L_{S-—(tpi“l; foorsa)s Sillo tir; t;#ﬁ-r}‘ ‘ 'Sz(tpﬂk-{—f;t;—k-t—f)}
s, @7 f=l (6)
:LJSZ(va—Fc;talowk)s~(fp+1§ bphzer - 'fpmfcw);Sz(tp—kw;f;—ki—r}‘ o}
SL_{SW(tp-‘-I;tp—-k-{-a' - t:o—k+q)sz(p_k;f;—k);Sz(tP~k+?‘;t;~k+T>’ ) }
+L—ES—(?:17+1;$:D—?¢+S' ' ’tﬁ—m-qf?ﬂmk){”“ﬁ(t;fk “'fm-i}};SZ(f:D—?ci—r;t;—-k%'r)‘ : ] . ( 6 )
Considering a set of two objects, say @ and &, one can explicitly construct
all subsets, namely
@ a b a b (7
where ¢ is the empty subset. If one adds a third object, ¢, then the subsets
of the set ¢ & ¢ are

a b ab
¢ ac be abe.

One sees that to construct these subsets, one must add to the preceding
subsets, given by (7}, those obtained by joining ¢ to them. This can be
proved to be true when one goes from k£ to B+1 objects.

It follows that
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(6):L——{S—(tp+l;tp~k+s‘ " tp—-hq}',SZ(fp»-fc-w;t;m’chr)' I
s, g, v=0
This proves the lemma in this case.
(e) Sltpy)=S8{tp1)
The analysis proceeds as under (b):
1. Let us examine first the different systems of contractions which give
non-zerc contribution:
i) repeated contractions of Si(tp.1) with S, operators. This kind of contrac-
tion system is completely similar to the one analysed above for the case
S.{tps1). These contractions merely reproduce the operator Siltpe1).

ii) contraction of Si{fz:s) with S (tninither-- b, This produces an
operator Sitp.1;tmsx) which can be contracted with an S:. or an 5.

operator.

iif) the contraction of Si(fp.:;fmis) with an S.(t) is identically zero because
of condition (3);

iv) contraction of Sx{tpi1;tmee) With an So{tmpsithss - < foh®) gives an operator
S-(brssiber+ bmvs Tpra);

v) contraction of this S-(fmie)fmisr = ters) Operator with an S, operator is
identically zero because of (3).

vi) further contractions of S_{fmiaifmie - -lpss) With S. operators must he
explicitly excluded at this point. The reason why these contractions
have to be ruled out in the lemama will be clear below.

The non-zero contraction systems predicted by the lemma are therefore
the following:
{1] multiple contraction of S.(fp:1) with S. operators,
[2] contraction of the resulting S.{fz+:) with an S.. operator,
[3] coatraction of the resulting S: operator with an S_ operator.
These contractions are not all different from zero; if one orders the S-
operators so that
tm+:i<fm+_f'-l< b <tm+1 y ( 8)
then mon-zero contractions are obtained by contracting Seltpss i tmsr) with So
operators which follow S_(fmsk;fmes- ) in the set.
One can express the contractions described under [2] and [3] by
Sf(f‘mi’i;ﬁn-%l' me)e 'Sw(tfw:’;ﬁnw' ' ')S+(tp+l)
=St OS(mat s brt 20+ Slfmags i )
+ Ekiﬁik){IZS»«(tw; Porr Selfprr; trste)
ik

+ 2 gl 1 S (tmpistmsi - NS-tmroi s tost) (9)
# ‘i;?ﬂ‘;
where {J means that in the product the terms % and s have to be omitted,
i ks
and p and g are defined by ‘
)= — 2gitatsin sty +08(fmo i~ bop ) ek Epet) - ~19(1f;“,?f;;k-—t%;)
gk, )= —(tnsb—tme)P(R) .

.
|
.
§
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One can express the contraction described under {1] by
Sz(fm+j‘+i ; t:warr—j—*rl} e Sz(iﬁ > ﬁa)sz*(tp-:-l)
=Sitpe ) LadSaltmiia; ﬁw;p‘—t—l) ERRIN ¢ P ﬂr)}
where 7., represents the sum of all different possible subsets of the S.
operators multiplied by the scalar factors coming from the repeated contrac-
tions of S.(tm.) with the complementary subset.
Then
(=S8 (£ S:{tm)Se (tpe)S(Emat; bsreer Yo Slbmess bt g YL {Selbmpssn s Ema g or) o}
+ 8 (8 Sa(dm) % e [{ S_(tmes; tmra 1Seltnsn; bma) L fSeltmo gt B ion) )
1k

+S+<t‘) S-@—(fm)k%g(k, S}{Iz:\s‘v(fmna-i N f:»;wlr-,;“’)}sv(fmirs 3 t}n+s”' tPJri)L%{SZ(thrf%i B isfmﬂ—j%l)' }

i3k 8

(10

II. Asin case (b), the lemma is proved to be correct by expiicit transforma-

tion of the product (4) into a sum of normal products. In a first step, one

can write, as proved under (b}
Sty 'SZ(tp§f;)S+(tp+1) o
=S (0) S misiturse  Ear S ) L (Sellmsgiritnran)e o}

Since the S; and S5:; operators play no role in the following, one needs

only consider the product

S {tmsa; b 'tiffﬁl oo S (bmpssbmage ’tii’?i?)&(tw) . 1
The lemma is obviously right for j==1. Let us consider the case j=2. In this
case,
(D=8 {tps)S_Umsr: bmrrr - )S-(mpaibmrar )
A4S (fmy2; i'.lvnﬂ S {Ep s b )P
FS (st Gsae o 3Sellprts Emas)2)
“E*S—(fm.:rz ) ﬂn:,‘z' . f;p+1>g{}., 2) B (12)
The result one can obtain by explicit construction is not unique. To
obtain the result predicted by the lemma one needs first commute the S.
operators so that condition {(8) is satisfied.

To prove the lemma, one proceeds again by induction: supposing the
lfemma to be true for j=#—1, one proves it for j=r. Then

S—(tnstitmiz ) - Slbmaribmars + 3S4ltpas)
=8 (bmit) by .);a%zp(k){ HASu(me;ﬁnH‘ S NSeEpar; Emse)
d ik
i3
+S_(tmi1; ﬁa-’rl‘ -3 2 gk, sl {{S—(fml;-i;flmﬂ NS e tper)
Bk
'E‘Sf(thri;tlnﬁH' : ‘)S+(tﬁ+1>34(fm+2§t}m+z‘ ) 'S—(tmw;ﬁnw‘ ). (13)

The first two terms are already under normal form. The last term is equal o
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S (fpa S (mst trre ) o Sllmari s o)+
"H?‘}@)Sz(fp%l;:’»Lm+1)s—-—(fﬂx+2§ ﬁm\,-kﬁ’ b } - 'S-—(tm+r;ﬂﬁ+fr' ) ) . (14}
To put the second term of (14) in normal forms, one must push S; on the
right step by step. Each step will produce two terms; a term without
contraction whereby S. is a step further on the right and a term containing
the contraction with ome of the S_, Written shortly the procedure is the
following:

S{NS(2)S-(3)- -+
=S (2)S(15(3) - - +S(AFH(1S-3) -

S (2SBSAD+ + SLS DS+ + 5SS -

and so on. At the end,

(14)= 8 {tpe0S-(bmit3 Emar )+ Sellmeribmar*)
T BS (Emaz i Brae ) oS- lbmare - Ehebns 3Sullnasi i)
+ ?_:_;ﬁg(l, 5}{ }{\Swumi-'i;ﬁ%ﬂ’ ' '}}S»(fm-;-s;ﬂnJrs‘ : ‘iﬁ+i> - (15}

i3
Adding (15) to the first two terms of (13) then gives

S-k(fp+1>s—(fM+-1 3 t}nvl—l‘ ’ ) * -Su(fm,w;ﬁﬂ_{..}' ‘ )
+ ,,%p(k){ ‘ITASA(tmm;tEHw NSl ot s P}

4

+;§$g<k’ i HS—(fm-'ri;ﬁnH‘ o )}S—(tM+s; ﬁnﬂ coobpyr) -

kT i, ks

Multiplying this equation from the left by the S.(t) - operators and {rom
the right by LdSd{tnesriitnrsasy- -1 clearly gives the same result as predicted
by (10} and achieves the proof of the lemma.

4. Proof of the Theorem—General Case

Since the thorem is valid for the simplest sets, namely the single operators
5.0, S.(fH) and S.t), one can suppose it right for % operators present and
prove it for k+1 operators.

One must prove that the expression

TS - - S{tesa)}

will be given by the sum of the normal products which can be generated by
21l possible confractions,

For any ordering of the times #i---fsy: there will be an earliest time
which is denoted by fr41. Then

TS - St )t ="TISU) - - - SUDISrar)

Since the theorem is supposed to hold for % operators, this expression
is equal to a sum of normal products multiplied from the right by S(fs.) and
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each of these normal products satisfies the conditions of the lemma {conditions
(3. One can therefore transform each term into a sum of normal products,
and the whole sum will be under normal form. To prove the theorem, one
must prove:
{a) that all possible systems of contractions predicted by the theorem
are effectively constructed:
{(b) that no term occurs twice.

{a) Clearly any contraction system of the k-1 operators can be constructed
by contracting first the %k operators hetween them and then contracting the
{k+13"* operator with some of the contracted operators. Al possible contrac-
tions of the % operators are present because the theorem is supposed to he
valid for & operators, and, but for the exception the role of which will be
made clear below, all contraction systems dependent on S{(#.1) are present in the
sum, and therefore any system of contraction can be explicitly constructed.
(b} One has to prove now that the same term never occurs twice in the
expansion constructed above. Since the theorem is supposed to be true for
k operators present, all terms of the expansion of T{S(4)---S(#)} are different.
On the other hand, the terms generated by the lemma from one specific normal
product of the % operators are all different. The only case therefore where
doubie terms could be produced would be the case whereby one of the terms
generated by S(fx.1) from one specific normal product is equal to a term
generated from ancther specific normal product; in another words, one of the
contractions generated by S{}i.) must be eguivalent to a contraction between
the k first operators. Let us consider again the three cases:
1] Slerd=8lter)
Only one term is non zero, so the case is trivial.
[21] SUeer)=85_(ferr)
Non zero systems of contractions are repeated contractions with S.
operators. They involve therefore the variable fr.1 at each step in
an essential way and canmnot be eguivalent to a contraction between
the £ other operators.
I?}l S{fk+1>:S+(tlc+1> .
Referring to the cases analysed under {¢) during the proof of the
lemma, cases i) to v) are excluded for the same reason as under [ 21.
The contractions described under vi) do not involve the variahle
fe1in an essential way. They can be generated by first contracting
a S (tmisitmier++) with S operators independent of S.(fw.s) and then
contracting with S«{fee:fusr), namely

n?-(fm-é-r;f'lm-g-r' " ‘)' " '-S;L(fm—lrs;f}mfs" - ')' " ‘sz{fpf-q;t;;mq)‘ ‘ 'S‘_}_(tk_'.;}

[

:5} (f%kriﬁnw}—r‘ ) ) : ‘S_w(th?f}M-s' DR SZ(tprf;Gi;f—q)‘ ’ 'S+(fk+l) -
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This explains why these contracfions have to he explicitly excluded in the
lemma and shows that all systems of contractions predicted by the theorem
are effectively present in the expansion. This completes the proof of the
theorem.

In spite of the heavy complications which occur in the proof, the theorem
is 2 natural generalization of Wick's theorem and +his allows for a graphical
representation of the different contractions compietely similar to the Feynman
diagram technique. This is done in the next section.

5. Diagram Technique and Calculation Rules

Apart from the expansion theorem, no special difficuity arises in the
perturbation theory. Two points however must be kept in mind:

(a) Permutations of the time variables in
T{S¢7 () - S8 (e}

generate ferms of the expansion theorem which can be automatically taken
into acceunt by multiplying by a factor p!/r where is the number of time
permutations which do not generate new terms in the expansion'®; in usual
theory » is generally ignored because it is always equal to one for diagrams
connected to external lines. In this theory, » is often different from one,
hecause, as seen above, it happens that topologically different contractions
lead to only one term in the expansion. “This occurs when S, or S.. cperators
are repeatedly contracted with S: operators.

() Because of rules (2) the value corresponding to a given contraction is not
independent of the other contractions occuring in the same diagram.

To introduce diagrams in a clear way, the best perhaps is to choose a
simpie Hamiltonian, say

S = 5 SIS — [ SIS —J R SLST
g i FFEr
= A 4+ B (16)

and to give the rules for the caiculation of the Green’s function defined
by :

Dt —1")== —iJ{T SHOSTE N
where | is the ground state of 2%+

A. Graphology.

(i) to each S operator associate a point in the plane;

(i) to each SJ,“S'_ contraction associate the line given in Fig. la;
{iify to each $+Sx contraction associate the line given in Fig. 1b;

(iv) to each S_.$z contraction associate the line given in Fig. 1c¢j

(v) draw a wavy line between operators connected by &7,
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) BN = S
b) 5 S,
SIS .
d) N M P NN
Fig. 1. Symbols used in the diagrams to represent spin contractions:
(a} S%SL contraction (c) Swﬁg contraction
(b) S-I-Sz contraction (d) ?_ﬁ’ interaction line

No C(mfusmn can arise between S+Sz and S Sz lines, because

they are connected in different ways in the d;agrams

B. Caleulation rules.

To calculate the p* order contribution to Duw(F—£):

(i) draw all possible non-equivalent connected diagrams containing p intera-
tion vertices which start with ST(#) and end with S™(#). To have a
non-zero expectation value, all S, and S. operators have to be contracted;
this is not true for the S; operators.

(ii) to each Sf(t }S” {t;t1---fn) contraction associate a factor

2B €IE Y V(b ) Bt
(iii) to each S“(z‘”'t) V() contraction, associate a factor
o Bt Yo
{iv) to each Sf(t';tl»--tm)SE(f”;t) contraction, associate a factor
L | N @(t _ t’ )5"1’” ,

{v) to each interaction line associate a factor i/,

{(vi} divide by a factor », which is defined by the number of repeated
contractions of S, and S. operators with S; operators.

(vii) sum over the 2f internal indices and integrate over the p internal time
variables.

(viii) inciude the right power of {0]5:0%, keeping in mind that S, is “destroyed”
when contracted.

o) i
Ry ot

S. Sy
Fig. 2. The two diagrams drawn in the figure have identical meanings.

Following points may be useful;
(a) “Non-equivalent diagrams” means “non equivalent under time permuta-
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tion”. This qualification depends on the interaction Hamiltonian, and dia-
grams which are non-equivalent for a given Hamiitonian can well be

equivalent for another.
{(b) Since an $.5- contraction produces an S; operator, each $+ISu line (figure

1a) can be contracted with an Sy or an S.. operator (figure 2).
(e} Each S_.Sﬁ line can have many incoming S. 5. lines but only one outgoing

line.
(d) There must be no closed loop of 8. lines (Fig. 3).

£
-

Pany
Ay

Fig. 3. Example of a diagram with closed locp of S“?"f iines. This kind

of diagram is meaningless.

6. Simple Applicatiion

As a simple application of the rules stated above, let us prove to first
order (the result is known to be correct in all orders) that this type of
interaction gives nor shift nor broadening to the resonance line induced by
a homogenous alternating magnetic field perpendicular to the z-axis. This
resonance line is essentially given by Imﬂ}_} Danr(@)®.

To zero-th order:

Dgw((ﬂ) i E;E;Tﬁm

where @ is the Larmor frequency and S is equal to —<{01S:105.
To first order:

The possible connected diagrams are drawn in Fig. 4 and Fig. 5. Quite
happily, most of the diagrams give zero contribution hecause the terms S787

do not occur in the Hamilfonian.
Only diagrams a, b, ¢, d of Fig. 4 and diagram a of Fig. 5 give non-zero

contributions:
From Fig. 4:

ac=2i] S Sdmm_ FY (e 20 (1Y B S
nfy’
Y ]Né‘mfﬂ(f—«t’)e**"”t!“"‘”(S;)zgdt;ﬁ(tr—t’) (a7

where <Sz>§<0k8z10>.
Similarty:

bt ds= -4 NG 2 — t’}e“i‘"ﬂ‘t"‘:”{SQ*Sdh{——ﬁ(tiw 0. (18

E ;gs
.
|
.
-
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IR
L T
AN

i}
h)

a)

3

> 1 > 1
1

g}

Fig. 4. Diagrams constructed from Fig. 5. Diagrams constructed from
part A of the Hamiltonian g’ part B of the Hamiltonian 2’
(Eq. 16)). {Eq. (16).

The sum of (A7) and (18) gives
(A7) (18)= i [ Nbpar 8t £ Y- oit=1 S, 5 E— F)
From Fig. 5
aﬁlf 2 Jgnzngﬂj’ﬂ’Sdti‘leuimﬂ(tl_:,}uime(tmti}?}(fl_‘t’)?ﬁ(t*fi)

245]1151(1iwf’)e‘we“‘*”(tmf’xsz)z . 19
1t foliows that
%} (A7 4-18)+19% =0 ,

The technique presented in this paper has been used in the problem of
the resonance of spin impurities in metals'™®. Other problems, as well as the
extension of this method to finite temperature, are under study.

The author wants te acknowledge invaluable discussions with Professor
S. Keide and wants fo thank the Swiss National Foundation for the grant
that made possible this research,
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