首 页 >> 上架新书
Semiconductor gas sensors
[2014-01-15]

索书号 TP212.2/J11

Contents

PART 1 INTRODUCTION

Fundamentals of semiconductor gas sensors
N Yamazoe and K Shimanoe, Kyushu University, Japan
 - Introduction
 - Classification of semiconductor gas sensors
 - Resistor type sensors (1) Empirical aspects
 - Resistor type sensors (2) Theoretical aspects
 - Non-resistive sensors
 - Future trends
 - References

Conduction mechanism in semiconducting metal oxide sensing films: impact on transduction
N Barsan, M Huebner & U Weimar, University of Tuebingen, Germany
 - Introduction
 - General discussion about the sensing with SMOX gas sensors
 - Sensing and transduction for p- and n-type semiconducting metal-oxides
 - Investigations of the conduction mechanism in SMOX sensing layers: “operando” studies
 - Conclusion and future trends
 - References

Electrode materials and electrode-oxide interfaces in semiconductor gas sensors
S P Lee, Kyungnam University, Korea
 - Introduction
 - Electrode materials for semiconductor gas sensors
 - Electrode-oxide semiconductor interfaces
 - Charge carrier transport in the electrode-oxide semiconductor interfaces
 - Gas/solid interactions in the electrode-oxide semiconductor interfaces
 - Conclusion
 - References

PART 2 ADVANCED SENSING METHODS AND STRUCTURES

Recent trends in Silicon Carbide (SiC) and Graphene based gas sensors
A Lloyd Spetz and MAndersson, Linköping University, Sweden, and R Pearce, Linköping University, Sweden, and National Physical Laboratory, UK
 - Introduction
 - Background: transduction and sensing mechanisms
 - Recent material developments for SiC and graphene based gas sensors
 - Dynamic sensor operation
 - Novel SiC and graphene based sensor devices
 - Conclusion
 - References

Recent advances in wide bandgap semiconductor based gas sensors
F Ren and S J Pearton, University of Florida, USA
 - Introduction
 - Gas Sensing
 - Hydrogen Sensing
 - GaN Schottky Diode Sensor
 - Nanostructured Wide Bandgap Materials
 - SiC Schottky Diode Hydrogen Sensor
 - Wireless Sensor Network Development
 - Conclusion
 - Acknowledgments
 - References

Micromachined semiconductor gas sensors
D Briand, Ecole Polytechnique Fédérale de Lausanne, Switzerland, and J Courbat, Innovative Sensor Technology IST AG, Switzerland
 - Introduction
 - A brief history of semiconductors as gas sensitive devices
 - Micro-hotplate concept and technologies
 - Micromachined metal-oxide gas sensors
 - CMOS compatible metal-oxide gas sensors
 - Micromachined field-effect gas sensors
 - Trends and perspectives
 - Conclusion
 - References

Semiconducting direct thermoelectric gas sensors
R Moos and F Rettig, University of Bayreuth, Germany
 - Introduction
 - Direct thermoelectric gas sensors
 - Conclusion and future trends
 - References

PART 3 NANOMATERIALS FOR GAS SENSING

One- and two-dimensional metal oxide nanostructures for chemical sensing
E Comini, Brescia University, Italy
 - Introduction
 - Deposition techniques
 - Conductometric sensor
 - Transduction principles and related novel devices
 - Conclusion and future trends
 - References

Semiconductor quantum dots for photoluminescence based gas sensing
Z Zhao, M A Carpenter, and M A Petrukhina, University at Albany-SUNY, USA
 - Introduction
 - Quantum dot synthesis, surface functionalization and polymer encapsulation
 - Quantum dots for sensing – dependence of detection limits and selectivity on surface modifying ligands
 - QD-polymer system
 - QD-nanopore array system
 - Conclusion and future trends
 - Acknowledgments
 - References

Coated and functionalised single-walled carbon nanotubes (SWCNTs) as gas sensors
Y Battie, Université de Lorraine, France, and O Ducloux, ONERA, France
 - Introduction
 - Gas sensor architecture
 - Gas sensing mechanisms
 - Routes toward the sensor selectivity
 - Applications
 - Conclusion
 - References

Carbon nanotube and metal oxide hybrid materials for gas sensing
T Kerdcharoen, Mahidol University, Thailand and C Wongchoosuk, Kasetsart University, Thailand
 - Introduction
 -  Fabrication and synthesis of carbon nanotube – metal oxide sensing devices
 - Preparation of carbon nanotube – metal oxide sensing films
 - Sensor assembly
 - Characterization of carbon nanotube – metal oxide materials
 - Sensing mechanism of carbon nanotube – metal oxide gas sensors
 - References

Porous silicon gas sensors
V M Aroutiounian, Yerevan State University, Armenia
 - Introduction
 - Conductivity and capacitance sensors
 - Luminescence from Psi
 - Optical and photo properties of Psi sensors
 - Psi noise sensors
 - Different Psi gas sensors
 - Conclusion
 - References

PART 4 APPLICATIONS OF SEMICONDUCTOR GAS SENSORS

Metal oxide semiconductor gas sensors in environmental monitoring
R Binions, University of London and A J T Naik, University College London, UK
 - Introduction
 - Sensor synthesis methods
 - MOS in detecting environmentally important gases
 - Advances in carbon monoxide sensors
 - Advances in carbon dioxide sensors
 - Advances in nitrogen oxides sensors
 - Future trends
 - Conclusion
 - Sources of further information and advice
 - References

Semiconductor gas sensors for chemical warfare agents
D-D Lee and J-C Kim, Kyungpook National University, Korea
 - Introduction
 - Chemical warfare agents
 - CWA detecting techniques
 - Device Preparation
 - Sensing Properties
 - Conclusion
 - References

Integrated complementary metal oxide semiconductor-based sensors for gas and odour detection
P K Guha and S Santra, Indian Institute of Technology, India and J W Gardner, University of Warwick, UK
 - Introduction
 - Micro-resistive CMOS gas sensors
 - Micro-calorimetric CMOS gas sensor
 - Sensing materials and their deposition on CMOS gas sensors
 - Interface circuitry and its integration
 - Integrated Multi-Sensor and Sensor Array Systems
 - Conclusion and future trends
 - References

Solid-state sensors for carbon dioxide detection
G G Mandayo, CEIT-Ik4 and Tecnun, Spain and J Herrán,, Cidetec-IK4, Spain
 - Introduction
 - Electrochemical sensors
 - Impedimetric, capacitive and resistive sensors
 - Field effect transistor sensors
 - New approaches to enhance sensors performance
 - Conclusion and future trends
 - References