首 页 >> 上架新书
Computational methods for electromagnetic and optical systems
[2011-12-14]

Computational methods for electromagnetic and optical systems

索书号 O441/J37

Machine generated contents note: 1.1.Introduction --
1.2.Fourier Series and Its Properties --
1.3.Fourier Transform --
1.4.Hankel Transform --
1.5.Discrete Fourier Transform --
1.6.Review of Eigenanalysis --
Problems --
References --
2.1.Introduction --
2.2.Transfer Function for Propagation --
2.3.Split-Step Beam Propagation Method --
2.4.Beam Propagation in Linear Media --
2.4.1.Linear Free-Space Beam Propagation --
2.4.2.Propagation of Gaussian Beam through Graded Index Medium --
2.5.Beam Propagation through Diffraction Gratings: Acoustooptic Diffraction --
2.6.Beam Propagation in Kerr-Type Nonlinear Media --
2.6.1.Nonlinear Schrodinger Equation --
2.6.2.Simulation of Self-Focusing Using Adaptive Fourier and Fourier-Hankel Transform Methods --
2.7.Beam Propagation and Coupling in Photorefractive Media --
2.7.1.Basic Photorefractive Physics --
2.7.2.Induced Transmission Gratings --
2.7.3.Induced Reflection Gratings and Bidirectional Beam Propagation Method --
2.8.z-Scan Method --
2.8.1.Model for Beam Propagation through PR Lithium Niobate --
2.8.2.z-Scan: Analytical Results, Simulations, and Sample Experiments --
Problems --
References --
3.1.Introduction --
3.2.Maxwell's Equations --
3.3.Constitutive Relations: Frequency Dependence and Chirality --
3.3.1.Constitutive Relations and Frequency Dependence --
3.3.2.Constitutive Relations for Chiral Media --
3.4.Plane Wave Propagation through Linear Homogeneous Isotropic Media --
3.4.1.Dispersive Media --
3.4.2.Chiral Media --
3.5.Power Flow, Stored Energy, Energy Velocity, Group Velocity, and Phase Velocity --
3.6.Metamaterials and Negative Index Media --
3.6.1.Beam Propagation in NIMs --
3.7.Propagation through Photonic Band Gap Structures: The Transfer Matrix Method --
3.7.1.Periodic PIM-NIM Structures --
3.7.2.EM Propagation in Complex Structures --
Problems --
References --
4.1.Introduction --
4.2.State Variable Analysis of an Isotropic Layer --
4.2.1.Introduction --
4.2.2.Analysis --
4.2.3.Complex Poynting Theorem --
4.2.4.State Variable Analysis of an Isotropic Layer in Free Space --
4.2.5.State Variable Analysis of a Radar Absorbing Layer --
4.2.6.State Variable Analysis of a Source in Isotropic Layered Media --
4.3.State Variable Analysis of an Anisotropic Layer --
4.3.1.Introduction --
4.3.2.Basic Equations --
4.3.3.Numerical Results --
4.4.One-Dimensional k-Space State Variable Solution --
4.4.1.Introduction --
4.4.2.k-Space Formulation --
4.4.3.Ground Plane Slot Waveguide System --
4.4.4.Ground Plane Slot Waveguide System, Numerical Results --
Problems --
References --
5.1.Introduction --
5.2.H-Mode Planar Diffraction Grating Analysis --
5.2.1.Full-Field Formulation --
5.2.2.Differential Equation Method --
5.2.3.Numerical Results --
5.2.4.Diffraction Grating Mirror --
5.3.Application of RCWA and the Complex Poynting Theorem to E-Mode Planar Diffraction Grating Analysis --
5.3.1.E-Mode RCWA Formulation --
5.3.2.Complex Poynting Theorem --
5.3.2.1.Sample Calculation of PuWE --
5.3.2.2.Other Poynting Theorem Integrals --
5.3.2.3.Simplification of Results and Normalization --
5.3.3.Numerical Results --
5.4.Multilayer Analysis of E-Mode Diffraction Gratings --
5.4.1.E-Mode Formulation --
5.4.2.Numerical Results --
5.5.Crossed Diffraction Grating --
5.5.1.Crossed Diffraction Grating Formulation --
5.5.2.Numerical Results --
Problems --
References --
6.1.Introduction to Photorefractive Materials --
6.2.Dynamic Nonlinear Model for Diffusion-Controlled PR Materials --
6.3.Approximate Analysis --
6.3.1.Numerical Algorithm --
6.3.2.TE Numerical Simulation Results --
6.3.3.TM Numerical Simulation Results --
6.3.4.Discussion of Results from Approximate Analysis --
6.4.Exact Analysis --
6.4.1.Finite Difference Kukhtarev Analysis --
6.4.2.TM Numerical Simulation Results --
6.5.Reflection Gratings --
6.5.1.RCWA Optical Field Analysis --
6.5.2.Material Analysis --
6.5.3.Numerical Results --
6.6.Conclusion --
Problems --
References --
7.1.Introduction --
7.2.Rigorous Coupled Wave Analysis Circular Cylindrical Systems --
7.3.Rigorous Coupled Wave Analysis Mathematical Formulation --
7.3.1.Introduction --
7.3.2.Basic Equations --
7.3.3.Numerical Results --
7.4.Anisotropic Cylindrical Scattering --
7.4.1.Introduction --
7.4.2.State Variable Analysis --
7.4.3.Numerical Results --
7.5.Spherical Inhomogeneous Analysis --
7.5.1.Introduction --
7.5.2.Rigorous Coupled Wave Theory Formulation --
7.5.3.Numerical Results --
Problems --
References --
8.1.Introduction --
8.2.RCWA Bipolar Coordinate Formulation --
8.2.1.Bipolar and Eccentric Circular Cylindrical, Scattering Region Coordinate Description --
8.2.2.Bipolar RCWA State Variable Formulation --
8.2.3.Second-Order Differential Matrix Formulation --
8.2.4.Thin-Layer, Bipolar Coordinate Eigenfunction Solution --
8.3.Bessel Function Solutions in Homogeneous Regions of Scattering System --
8.4.Thin-Layer SV Solution in the Inhomogeneous Region of the Scattering System --
8.5.Matching of EM Boundary Conditions at Interior-Exterior Interfaces of the Scattering System --
8.5.1.Bipolar and Circular Cylindrical Coordinate Relations --
8.5.2.Details of Region 2 (Inhomogenous Region) Region 3 (Homogenous Interior Region) EM Boundary Value Matching --
8.5.3.Region 0 (Homogenous Exterior Region) Region 2 (Inhomogenous Region) EM Boundary Value Matching --
8.5.4.Details of Layer-to-Layer EM Boundary Value Matching in the Inhomogeneous Region --
8.5.5.Inhomogeneous Region Ladder-Matrix --
8.6.Region 1 Region 3 Bessel-Fourier Coefficient Transfer Matrix --
8.7.Overall System Matrix --
8.8.Alternate Forms of the Bessel-Fourier Coefficient Transfer Matrix --
8.9.Bistatic Scattering Width --
8.10.Validation of Numerical Results --
8.11.Numerical Results, Examples of Scattering from Homogeneous and Inhomogeneous Material Objects --
8.12.Error and Convergence Analysis --
8.13.Summary, Conclusions, and Future Work --
Problems --
Appendix 8.A --
Appendix 8.B --
References --
9.1.Introduction --
9.2.Case Study I: Fourier Series Expansion, Eigenvalue and Eigenfunction Analysis, and Transfer Matrix Analysis --
9.3.Case Study II: Comparison of KPE BA, BC Validation Methods, and SV Methods for Relatively Small Diameter Scattering Objects --
9.4.Case Study III: Comparison of BA, BC, and SV Methods for Gradually, Stepped-Up, Index Profile Scattering Objects --
9.5.Case Study IV: Comparison of BA, BC, and SV Methods for Mismatched, Index Profile, Scattering Objects --
9.6.Case Study V: Comparison of BA, BC, and SV Methods for Gradually, Stepped-Up, Index Scattering Objects with High Index Core --
9.7.Case Study VI: Calculation and Convergence Analysis of EM Fields of an Inhomogeneous Region Material Object Using the SV Method, Δepsilon = 1, α = 5.5, Λ = 0, Example --
9.8.Case Study VII: Calculation and Convergence Analysis of EM Fields of an Inhomogeneous Region Material Object Using the SV Method, Δepslon = 0.4, α = 5.5, Λ = 0 Example --
9.9.Case Study VIII: Comparison of Homogeneous and Inhomogeneous Region Bistatic Line Widths --
9.10.Case Study IX: Conservation of Power Analysis --
Appendix 9.A: Interpolation Equations