首 页 >> 上架新书
负折射和负折射率材料物理:光电性质和不同实现方法(影印版)
[2015-06-15]


索书号 O4/Z698/v.12

1 Negative Refraction of Electromagnetic and Electronic Waves in Uniform Media
Y.Zhang and A.Mascarenhas
1.1 Introduction
1.1.1 Negative Refraction
1.1.2 Negative Refraction with Spatial Dispersion
1.1.3 Negative Refraction with Double Negativity
1.1.4 Negative Refraction Without Left―Handed Behavior
1.1.5 Negative Refraction Using Photonic Crystals
1.1.6 nom Negative RJefraction to Perfect Lens
1.2 Conditions for Realizing Negative Refraction and Zero Reflection
1.3 Conclusion
References
2 Anisotropic Field Distributions in Left-Handed Guided Wave Electronic Structures and Negative Refractive Bicrystal Heterostructures
C.M Krowne
2.1 Anisotropic Field Distributions in Left―Handed Guided Wave Electronic Structures
2.1.1 Introduction
2.1.2 Anisotropic Green's Function Based Upon LHM or DNM Properties
2.1.3 Determination of the Eigenvalues and Eigenvectors for LHM or DNM
2.1.4 Numerical Calculations of the Electromagnetic Field for LHM or DNM
2.1.5 Conclusion
2.2 Negative Refractive Bicrystal Heterostructures
2.2.1 Introduction
2.2.2 Theoretical Crystal Tensor Rotations
2.2.3 Guided Stripline Structure
2.2.4 Bearn Steering and Control Component Action
2.2.5 Electromagnetic Fields
2.2.6 Surface Current Distributions
2.2.7 Conclusion
References
3 "Left.Handed" Magnetic Granular Composites
S.T.Chui,L.B.Hu,Z.Lin and L.ZhOU.
3.1 Introduction
3.2 Description of“Left―Handed”Electromagnetic、Waves:The Effect of the Imaginary Wave Vector.
3.3 Electromagnetic Wave Propagations in Homogeneous Magnetic Materials
3.4 Some Characteristics of Electromagnetic Wave Propagation in Anisotropic“Left―Handed”Materials
3.4.1 “Left―Handed”Characteristic of Electromagnetic Wave Propagation in Uniaxial Anisotropic“Left-Handed” Media
3.4.2 Characteristics of Refraction of Electromagnetic Waves at the Interfs|ces of Isotropic Regular Media and Anisotropic“Left―Handed”Media
3.5 Multilayer Structures Left―Handed Material:An Exact Example
Refefences
4 Spatial Dispersion,Polaritons,and Negative Refraction
V.M. Agranovich and Yu.N.Gartstein
4.1 Introduction
4.2 Nature ofNegative Refraction:Historical Remarks
4.2.1 Mandelstam and Negative Refraction.
4.2.2 Cherenkov Radiation
4.3 Maxwell Equations and Spatial Dispersion
4.3.1 Dielectric Tensor
4.3.2 Isotropic Systems with Spatial Inversion
4.3.3 Connection to Microscopics
4.3.4 Isotropic Systems Without Spatial Inversion
4.4 Polaritons with Negative Group Velocity
4.4.1 Excitons with Negative Efiective Mass in Nonchiral Media
4.4.2 Chiral Systems in the Vicinity of Excitonic Transitions
4.4.3 Chiral Systems in the Vicinity of the Longitudinal Frequency
4.4.4 Surface Polaritons
4.5 Magnetic Permeability at Optical Frequencies
4.5.1 Magnetic Moment of a Macroscopic Body
4.6 Related Interesting Efiects
4.6.1 Generation of Harmonics from a Nonlinear Material with Negative Refraction
4.6.2 Ultra-Short Pulse Propagation in Negative Refraction Materials.
4.7 Concluding Remarks.
References
5 Negative Refraction in Photonic Crystals
W.T.Lu.P.Vodo.and S.Sridhar
5.1 Introduction
5.2 Materials with Negative Refraction
5.3 Negative Refraction in Microwave Metallic Photonic Crystals
5.3.1 Metalllc PC ln Parallel―Plate Waveguide
5.3.2 Numerical Simulation ofTM Wave Scattering
5.3.3 Metallic PC in Free Space
5.3.4 High-Order Bragg Waves at the Surface of Metallic Photonic Crystals
5.4 Conclusion and Perspective
References
6 Negative Refraction and Subwavelength Focusing in TWO Dimensional Photonic Crystals
E.Ozbay and G.0zkan
6.1 Introduction
6.2 Negative Refraction and Subwavelength Imaging of TM Polarized Electromagnetic Waves
6.3 Negative Refraction and Point Focusing of TE Polarized Electromagnetic Waves
6.4 Negative Refraction and Focusing Analysis for a Metallodlelectric Photonic Crystal
6.5 Conclusion
References
7 Negative Refraction and Imaging with Quasicrystals
X.Zhang.Z.Feng.Y.Wang,Z.-Y.Li,B.Cheng and D.-Z.Zhang
7.1 Introduction
7.2 Negative Refraction by High―Symmetric Quasicrystal
7.3 Focus and Image by High-Symmetric (1)uasicrystal Slab
7.4 Negative Refraction and Focusing of Acoustic Wave by High―Symmetric Quasiperiodic Phononic Crystal
7.5 Summary
References
8 Generalizing the Concept of Negative Medium to Acoustic Waves
J.Li,K.H.Fung,Z.Y. Liu,P.Sheng and C.T.Chan
8.1 Introduction
8.2 A Simple Model
8.3 An Example of Negative Mass
8.4 Acoustic Double―Negative Material
8.4.1 Construction of Double―Negative Material by Mie Resonances
8.5 Focusing Effect Using Double―Negative Acoustic Material
8.6 Focusing bv Uniaxial Efiective Medium Slab
References
9 Experiments and Simulations of Microwave Negative Refraction in Split Ring and Wire Array Negative Index Materials,2D Split-Ring Resonator
and 2D Metallic Disk Photonic Crystals
F.J.Rachford.D.L.Smith and P.F.Loschiatpo.
9.1 Introduction
9.2 Theory
9.3 FDTD Simulations in an Ideal Negative Index Medium.
9.4 Simulations and Experiments with Split―Ring Resonators and Wire Arrays.
9.5 Split―Ring Resonator Arrays as a 2D Photonic Crystal
9.6 Hexagonal Disk Array 2D Photonic Crystal Simulations Focusing
9.7 Modeling Refraction Through the Disk Medium.
9.8 Hexagonal Disk Array Measurements―nansmission and Focusing.
9.9 Hexagonal Disk Array Measurements―Refraction
9.10 Conclusions
References
10 Super Low Loss Guided Wave Bands Using Split Ring Resonator.Rod Assemblies as Left.Handed Materials
C.M.Krowne
10.1 Introduction
10.2 Metamaterial Representation
10.3 Guiding Structure
10.4 Numerical Results
10.5 Conclusions
References
11 Development of Negative Index of Refraction Metamaterials with Split Ring Resonators and Wires for RF Lens Applications
C.G.Parazzoli.R.B.Greor and M.H.Tanielian
11.1 Electromagnetic Negative Index Materials
11.1.1 The Physics of NIMs
11.1.2 Design of the NIM Unit Cell
11.1.3 Origin of Losses in Left―Handed Materials
11.1.4 Reduction in Transmission Dne to Polarization Coupling
11.1.5 The Efiective Medium Limit
11.1.6 NIM Indefinite Media and Negative Refraction
11.2 Demonstration of the NIM Existence Using Snell's Law
11.3 Retrieval of geff and μeff from the Scattering Parameters
11.3.1 Homogeneous Efiective Medium
11.3.2 Lifting the Ambiguities
11.3.3 Inversion for Lossless Materials
11.3.4 Periodic Efiective Medium
11.3.5 COntinuum Formulation
11.4 Characterization of NIM8
11.4.1 Measurement of NIM Losses
11.4.2 Experimental Confirmation of Negative Phase Shift
in NIM Slabs
11.5 NIM Optics
11.5.1 NIM Lenses and Their Properties
11.5.2 Aberration Analysis of Negative Index Lenses
11.6 Design and Characterization of Cylindrical NIM Lenses
11.6.1 Cylindrical NIM Lens in a Maveguide
11.7 Design and Characterization of Spherical NIM Lenses
11.7.1 Characterization of the Empty Aperture
11.7.2 Design and Characterization of the PIM lens
11.7.3 Design and Characterization 0f the NIM Lens
11.7.4 Design and Characterization ofthe GRIN Lens
11.7.5 Comparison of Experimental Data for Empty Aperture.PIM.NIM.and GRIN Lenses
11.7.6 Comparison of Simulated and Experimental Aberrations for the PIM.NIM.and GRIN Lenses
11.7.7 Weight Comparison Between the PIM.NIM and GRIN Lenses
11.8 Conclusion
References
12 Nonlinear Efiects in Left-Handed Metamaterials
I.V.Shadrivov and Y.S.Kivshar
12.1 Introduction
12.2 Nonlinear Response of Metamaterials
12.2.1 Nonlinear Magnetic Permeability
12.2.2 Nonlinear Dielectric Permittivity
12.2.3 FDTD Simulations of Nonlinear Metamaterial
12.2.4 Electromagnetic Spatial Solitons
12.3 Kerr.Type Nonlinear Metamaterials
12.3.1 Nonlinear Surface Waves
12.3.2 Nonlinear Pulse Propagation and Surface-Wave Solitons
12.3.3 Nonlinear Guided WlaveS in Left―Handed Slab Waveguide
12.4 Second―Order Nonlinear Efietcts in Metamaterials
12.4.1 Second―Harmonics Generation
12.4.2 Enhanced SHG in Double―Resonant Metamaterials
12.4.3 Nonlinear Quadratic Flat Lens
12.5 Conclusions
References
Index