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We calculate the binding energy of a hydrogenic donor impurity in a rectangular
parallelepiped-shaped quantum dot (QD) in the framework of effective-mass envelope-function
theory using the plane wave basis. The variation of the binding energy with edge length, position of
the impurity, and external electric field is studied in detail. A finite potential model is adopted in our
calculations. Compared with the infinite potential model [C. I. Mendoza et al., Phys. Rev. B 71,
075330 (2005)], the following results are found: (1) if the impurity is located in the interior of the
QD, our results give a smaller binding energy than the infinite potential model; (2) the binding
energies are more sensitively dependent on the applied electric field in the finite potential model; (3)
the infinite potential model cannot give correct results for a small QD edge length for any location
of the impurity in the QD; (4) some degeneracy is lifted when the dot is no longer cubic. © 2007

American Institute of Physics. [DOI: 10.1063/1.2734097]

I. INTRODUCTION

The Stark effect of an impurity state in a quantum dot
(QD) is a major subject for QD physics and applications.'
Kane presented a scheme for implementing a quantum-
mechanical computer2 in which information is encoded into
the nuclear spins of donor atoms in doped silicon electronic
devices. Logical operations on individual spins are per-
formed using externally applied electric fields, and spin mea-
surements are made using currents of spin-polarized elec-
trons. The realization of such a computer is dependent on
future refinements of conventional silicon electronics.

The ground state and the first excited state of an electron
in a QD may be employed as a two-level quantum system
(qubit). An electromagnetic pulse can be applied to drive an
electron from the ground state to the first excited state or to
a superposition state of the ground state and the first excited
state. To perform a quantum-controlled NOT manipulation,
one may simply apply a static electric field by placing a gate
near the QD.” The same scheme can be implemented using
the ground state and the first excited state of an impurity
electron in a QD.

The effective-mass envelope-function approximation is
suitable for calculating impurity states in nanostructures”
since it can be carried out on a personal computer and can be
widely applied in the design of various photoelectric devices.
In the framework of effective-mass envelope-function
theory, calculations of electronic states usually adopt the
variational method for a hydrogenic donor impurity in
QDs.”™® Other approaches have been adopted in quantum
wells’ and QDs.lO’11 Juang and Chang showed Stark shifts
were enhanced in finite barrier quantum wires.'> Cruz and
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Calder investigated theoretically the tunneling effect on the
intersubband optical absorption in a quantum well structure
subjected to an external electric field perpendicular to the
layers.]3 Gangopadhyay and Nag calculated QD energy lev-
els with finite potential barriers in the shape of a cube or a
parallelepiped.14 Califano and Harrison showed that the en-
ergy eigenvalues of cubes were equal to those of cuboids of
the same volume.'” A connection rule between the ground
state energies was found which allows the calculation of the
energy levels of pyramidal QDs using those of cuboids of
suitably chosen dimensions, whose solution requires consid-
erably less computational effort.'® Within a finite potential
well model, the impurity binding energy in the absence and
in the presence of confined LO-phonon interaction in a cubic
QD were calculated by Amrani et al. using a variational
approach.I7 Assaid et al. studied theoretically the quantum
size, impurity position, and electric field on the energy of a
shallow donor placed anywhere in a GaAs spherical QD in a
uniform electric field.'® The polarizability was estimated by
Messaoudi et al. for a shallow donor confined to move in a
QD with a uniform magnetic field using the Hass variational
method in the case of an infinite and a finite barrier
potential.19 It was found that the finite barrier-height effect
was important for high fields and large QDs.

Sahoo and Ho presented an accurate numerical calcula-
tion for the energy levels and resonance widths of the quasi-
bound states of a confined hydrogen atom in an isolated QD
subjected to an external electric field.” Resonance positions
and widths were reported for a wide range of dot sizes to
demonstrate that Stark resonances in a confined hydrogen
atom lead to interesting phenomena as a consequence of the
quantum confinement of the atom, contrary to the Stark ef-
fect on free atoms.

Movilla and Planelles reported numerically calculated

© 2007 American Institute of Physics
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ground state and binding energies of a hydrogenic donor im-
purity confined within a spherical QD surrounded by air or a
vacuum. Finite spatial steplike potentials allowing the elec-
tronic density to partially leak outside the QD were
considered.”

Friesen developed an effective-mass theory for substitu-
tion donors in silicon in an inhomogeneous environment.
Valley-orbit coupling was included perturbatively. The Stark
effect in Si:P was specifically considered. Unexpectedly, the
ground state energy of the donor electron was found to in-
crease with electric field as a consequence of spectral nar-
rowing of the ls manifold.*

Recently, Mendoza et al” reported a detailed variational
calculation of the binding energies of hydrogenic impurities
in a cubic QD as a function of both the impurity position and
an applied electric field. He found that the binding energy of
the impurities is highly dependent on the impurity position,
and the electric field splits the energy of the impurities at
points in the box which are equivalent in the absence of the
electric field. When the impurity is located in the upper half
of the cube and the field pushes the particle downward the
binding energy decreases, and the Stark shift exhibits a mini-
mum. However, they adopted an infinite potential model in
their calculations and only studied the case of equal edge
length (cubic QDs).

In this paper, we study the binding energy of a hydro-
genic donor impurity in a QD with an applied external elec-
tric field in the framework of effective-mass envelope-
function theory using the plane wave basis. A finite potential
model and different edge lengths of the QD are considered in
our calculations.

Il. THEORETICAL MODEL

Throughout this paper, the units of length, energy, and
external electric field are given in terms of the effective Bohr
radius a"=%’€/ mZez, the effective Rydberg constant R"
=ﬁ2/2m2a*2, and F'=e/2ea"?, respectively, where m:, €, and
e are the effective mass, dielectric constant, and charge of an
electron, respectively.

For a hydrogenic donor impurity located at 1,
=(x9,y0,20) in a QD with an applied external electric field,
the electron envelope-function equation in the framework of
the effective-mass approximation is

2a

A—

|r—r0| +V(l')—F'I' lr//n(r):Er?lrlfn(r)’ (1)

where A=—/dx*—P/dy*=P13%, r=(x,y,z), and |r—ry|

=\(x=x0)2+(y=y)2+(z—z)2. n=0,1,2,... correspond to
the ground, first excited, second excited,..., states, respec-
tively. The external electric field F can be along any direc-
tion for different values of 6 and ¢: F=(F,,F,.F)
=(F sin fcos ¢,F sin fsin ¢,F cos §) in the standard
spherical coordinate representation. The quantum confining
potential energy of an electron in a rectangular
parallelepiped-shaped QD is
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V(r)

0 for|x|<WJ/2, [y|<WJ/2  and||<W,/2
Vo for x| >W,/2, or|y[>W,/2 orlz|>W/2,
(2)

where V|, is the band offset of the electron, and W,, Wi, and
W, are the edge lengths of the QD along the x, y, and z
directions, respectively.

In Eq. (1), @ of 0 and 1 correspond to the absence and
presence of donors in the nanostructure. The binding energy
of the hydrogenic donor impurity ground state is categori-
cally calculated by the following equation:

E,=E)—E). (3)

It should be pointed out that our calculation has been
simplified by considering the same effective-mass values in
the dot and in the barrier. In fact, the effects on effective-
mass mismatches include two aspects. The first is the effect
on the electron states. The second is the effect on the impu-
rity states. Our previous calculations indicated that the
effective-mass mismatch only affects the high excited states
and very weakly affects the ground and low excited
states.>*2® The impurity binding energy is weakly affected
by the effects on the effective-mass mismatches.”’

Using the plane wave method, we deploy the electron
wave function™

x,y,2)

1

- 2 Coun ei[(kx+nXKX)x+(ky+nyKy)y]+ (kz+nsz)z],
VLLL e

yhzngnyn,

(4)

where L,, L, and L, are the edge lengths of the unit cell
along the x, y, and z directions of the coordinate system,
respectively. K,=2#/L,, K,=2m/L,, K.=2m/L,, n,e{-m,,
woomy, nye{-my,...,my}, and n e{-m,,...,m}. The
plane wave number is n,, =nmnmn.=2m+1)(2m,+1)(2m,
+1), where m,, my, m, are positive integers. We take L,
=L,=L,=L=Wp,+2.5a", K=K ,=K,=K, and n,=n,=n,
=15 in the following calculation, > where Wnax 18 the maxi-
mum edge length of the QD. The previous calculated results
indicate that the energy levels almost do not depend on the
value of k,, k,, and k, if we take the above edge lengths of
the unit cell.*** Therefore, we can simply let k,=k,=k,=0
in the following calculations.

The matrix elements for solving the electron energy la-
tent root of the impurity states can be found from Egs. (1)
and (4). The matrix elements contain four parts. The first part
includes the matrix elements of the kinetic energy term A,

[(01,K)? + (0, K + (2,710,118, 10O (5)

The second part includes the matrix elements of the do-
nor potential energy term —2a/|r—r

bl
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(6)

The above integral cannot be evaluated directly. We replace
it by [(0r2dr[37d$[] sin 6d0, where 4mry/3=L% When the
impurity is not located at the center of the QD, the approxi-
mation is somewhat crude. However, the errors are very
small for large enough L, as can be checked by comparing
our results with that of Ref. 11. Now, the second part of the
matrix elements can be approximatively written as

_ 3_015 5 5 4 6a[cosgA20) -1]
Yy T2 oA

n.n
rg X
X (1= 8y 1 &y 1 6, 1 )expliK[(n, — n.)xo

+ (ny - n;))’O + (nz - nz’)ZO]}7 (7)

with

A= K\J’/(nx - n;)z + (I’ly - n)',)z + (l’lZ - nz')z,
and

1 forn,=n
8y ={0 ol (8)
n orn, #mn,,
where u represents x, y, or z, respectively.
The third part of the matrix elements is deduced from the
quantum confined potential V(r),

VO((SI‘I n'(sn n'5n n — SxSyS7)» (9)
e Yy T <
with
_ W, /L for n,=n,
# Usinlw(n, —n )W, LY w(n, - n,) forn,#n,.

(10)

The fourth part of the matrix elements is deduced from
the electric field energy —F-r,

)2
where
exp(iu(k,+n, K
i = SR ) (12)
VL,
and
0 fornM=n/'L
n' |\uF |n'Y=1i _1\(n,n!) 13
<"“|'u M| W = D)7 forn, #n,. (13)
2m(n,—n,)

The electronic states in the QD can be calculated from
Egs. (5), (7). (9), and (11).
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FIG. 1. (Color online) The binding energy of the ground state as a function
of the QD edge length W, with no external electric field and with the donor
located at the QD center. The solid, dashed, and dotted lines correspond to
changing W, while fixing W, and W, (W,=W,=a"), simultaneously chang-
ing W, and W, (W,=W,) while fixing W, (W.=a"), and simultaneously
changing W, W‘., and W;, respectively.

lll. RESULTS AND DISCUSSION

In the following sections we will give some numerical
results of the binding energy for a hydrogenic donor impurity
in a QD with the conduction-band offset V,=40 R".

Figure 1 shows the binding energy of the ground state as
a function of the QD edge length W, with no external elec-
tric field and with the donor located at the QD center. The
solid, dashed, and dotted curves correspond to changing W,
while holding W, and W, fixed (W,=W,=a"), simultaneously
changing W, and W, (W,=W,) while holding W_ fixed (W,
=a"), and simultaneously changing W, W,, and W, respec-
tively. From this figure, we find four crossing points A, B, C,
and D. Point A corresponds to the impurity binding energy of
a cubic QD with edge length Wx=Wy=Wz=a*. Point B cor-
responds to the edge length Wy for which the impurity has
the same binding energy for (Wg, Wy, W) and (Wy, Wy, a"),
where (W,,W,,W,) indicates that the edge lengths of the
rectangular parallelepiped-shaped QD along the x, y, and z
directions are W,, Wy, and W,, respectively. Point C corre-
sponds to the edge length W, for which the impurity has the
same binding energy for (W, W, W) and (We,a",a”), and
point D corresponds to the edge length W, for which the
impurity has the same binding energy for (Wp,W,,a”") and
(Wp,a",a"). These phenomena show that the binding energy
has the same value for two edge length values besides the
curve peaks. From this figure we also find that the critical
edge lengths corresponding to the maximum binding energy
are the smallest, middle, and largest for the solid, dashed,
and dotted lines, respectively. In the infinite potential
model,” the binding energy curves do not exhibit those
peaks. Rather, the binding energy becomes infinite as the QD
edge length decreases to zero.

The greatest difference between the finite and the infinite
potential model is whether the wave function can penetrate
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1.0 15 2.0 25 3.0
(W, a*, a¥)
(W, W, a%)
(a*, a*, W)
(a*, W, W)
(W, W, W)

FIG. 2. (Color online) The same as Fig. 1 but with external electric field
F,=10F * (6=0) and with the donor located at the center. The curves 1, 2, 3,
4, and 5 correspond to the variation of the binding energy of the ground state
with W, while W, =W, =a", W,, W, (W,=W,) while W,=a", W, while W,
=W,=a" (dotted curve), W, and W, (W,=W,) while W,=a" (dashed curve),
and W, and W, and W, (WX=W>.=WZ), respectively.

into the barrier region. This is the reason that the curves in
Fig. 1 have peaks in our results. The three edges of the QD
of point A in Fig. 1 are the same length a”. The lengths of
one, two, and three edges are greater than a” for the curves to
the right of point A, so the wave functions are squeezed
weakly, strongly, and more strongly and the binding energies
slowly, quickly, and more quickly decrease as the transverse
coordinates increase for the solid, dashed, and dotted curves,
respectively. If the transverse coordinates are smaller than
that of point A, then one, two, and three edge lengths de-
crease as the transverse coordinates decrease, and the wave
functions are squeezed along one, two, and three directions,
so the binding energies increase slowly, quickly, and more
quickly for the solid, dashed, and dotted curves, respectively.
However, if the binding energies pass the peaks, the binding
energies will slowly, quickly, and more quickly decrease for
the solid, dashed, and dotted curves, respectively. This is
because the wave functions more intensively penetrate into
the barrier along one, two, and three directions for the solid,
dashed, and dotted curves, respectively.

Figure 2 is the same as Fig. 1 but with an external elec-
tric field F,=10F" (#=0) and with the donor located at the
center. The curves 1, 2, 3, 4, and 5 correspond to the binding
energy of the ground state when varying W, while W =W,
=a’, when varying W, and W, (W,=W,) while Wz=a*,'when
varying W, while W,=W,=a", when varying W, and W,
(Wy,=W,) while W,.=a" and when varying W, and W, and W,
(W,=W,=W,), respectively. The external electric field can-
cels the degeneracy between 1 and 3 (dotted curve), and
between 2 and 4 (dashed curve). Compared with Fig. 1, we
find that the external electric field moves the peaks toward
larger edge lengths while simultaneously lowering the bind-

J. Appl. Phys. 101, 093716 (2007)
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FIG. 3. (Color online) The integrated probability density P(z) with the
donor located at the center and WX.=W).=WZ=a* for an external electric field
F.=0 (solid line), 7.5F" (dashed line), and 10F" (dotted line).

ing energy. The crossing points between the different curves
in this figure can be explained similarly as in Fig. 1.

The integrated probability density P(z)
=12 T2 | o(x,y,2)[?dxdy is drawn in Fig. 3 with the do-
nor located at the center and WX=Wy=WZ=a* for applied
external electric fields F,=0 (solid line), 7.5F" (dashed line),
and 10F" (dotted line). This figure indicates that the ground
state wave function can clearly penetrate the barrier if the
electric field is greater than the critical value of 7.5F". If the
electric field is smaller than 10F", the ground state wave
function does not clearly stride over the side of the supercell.
So, our model is effective if the applied external electric field
is smaller than 10F".

Figure 4 illustrates the binding energy of the ground
state as a function of the magnitude of an electric field in the
z direction with the impurity located at various positions in a
cubic QD (points a, b, b’, b", c, ¢’, and d) which are shown
in the inset of the figure. The edge length is taken as W,
=W,=W,=da" (for GaAs a" is about 10 nm). The dotted

0.0 25 5.0 75 10.0
*
F, (F%)
FIG. 4. (Color online) The binding energy in positions a, b, ¢, and d as a

function of the magnitude of the electric field in the z direction, for W,
=W,=W,=a". The dotted curves are the results of Ref. 23.
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FIG. 5. (Color online) The binding energy in positions a, b, ¢, and d as a
function of cubic QD edge length (W,=W,=W,) for zero external electric
field. The dotted curves are the results of Ref. 23.

curves are the results of Mendoza er al. with the infinite
potential model.” Comparing our results with those of Men-
doza, the following differences can be found: (a) if the im-
purity is located in the interior of the QD (for example, at the
center, curve a), our finite potential model gives a smaller
binding energy than that of the infinite potential model for
any electric field; (b) if the impurity is located exactly on the
QD border, the two models give very close binding energies
for zero electric field; (c) the binding energies are more sen-
sitively dependent on the applied electric field in our finite
potential model; (d) when the electric field is greater than
about 7.5F", the binding energies quickly decrease to 1R"
except when the impurity is located at point »”. This is be-
cause the electric field pushes the impurity wave function
into the barrier material. When the electric field is greater
than about 7.5F", almost the whole wave function is located
in the barrier material, so the binding energy is close to the
binding energy of bulk material (1R"). However, the electric
field pushes point b” impurity wave function into the interior
of the QD, resulting in a binding energy somewhat greater
than R".

Figure 5 indicates the binding energy for positions a, b,
¢, and d as a function of the cubic QD edge length (W,
=W),=WZ) for zero external electric field. The dotted curves
are the results of Mendoza et al.* From this figure we find
that (a) the infinite potential model cannot give the correct
results for a small QD edge length for any location of the
impurity in the QD; (b) for any finite edge length, the bind-
ing energies gotten from the infinite potential model are
greater than the results of our finite potential model if the
impurity is located at the QD center; (c) if the QD edge
length is greater than a”, the two models give very close
binding energies when the impurity is located at one of the
QD sides.

Figure 6 is the same as Fig. 4, but with F=F_=10 F".
The binding energy degeneracy between positions b, b’, and
b" and between ¢ and ¢’ is canceled by the applied external
electric field. Compared with the results of the infinite poten-
tial model (Fig. 6 of Ref. 23), two differences can be found
besides those appearing in Fig. 6. First, the binding energy of

J. Appl. Phys. 101, 093716 (2007)

05 10 15 20 25 3.0
W =W =W_(a")
X y z

FIG. 6. (Color online) The same as Fig. 4, but with F=FZ=10F*, and in-
cluding additional points b’ (dotted curves), b”, and ¢’ (dashed curve).

b" is always greater than that of the center position a in our
finite potential model. But for the infinite potential model,
the binding energy of a is greater than that of »” for small
QD edge lengths. Secondly, the crossing points that are
found between the binding energies of » and b’ (dotted
curve) and between ¢ and ¢’ (dashed curve) in our results do
not appear in the infinite potential model.”

The method presented in this paper can be easily used to
calculate how the impurity states change with the direction
of an external electric field. Figure 7 shows the impurity
binding energy as a function of the external electric field for
a cubic QD with edge length ¢ with an impurity located at
the center of the QD. The solid and dotted curves indicate the
results for an electric field along the diagonal (6= ¢p=m/4)
and z directions (6=0). From this figure, we find that if the
external electric field is greater than SF”, the binding energy
sensitively depends on the electric field direction. For QDs
of other shapes (with lower symmetry than a cubic QD), the
impurity states will be more sensitively dependent on the
external electric field.”®

0.0 25 5.0 75 10.0
F (F)

FIG. 7. The impurity binding energy as a function of external electric field
for the a” edge length and the impurity located at the center of the cubic QD.
The solid and dotted curves indicate the results for an electric field along the
diagonal (6= ¢p=m/4) and z directions (6=0).
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TABLE 1. The binding energies of the six symmetry points. The coordinates and energy are in units of R* and
a”. The edge lengths of the QD are W,=0.5a", Wy= la®, and W,=1.54".

Coordinates (0.25,0,0) (-0.25,0,0) (0,0.5,0) (0,0.5,0) (0,0,0.75) (0,0, -0.75)
E, for F=0 5.06 5.06 3.93 3.93 3.28 3.28
E, for F.=10F" 4.54 4.54 3.58 3.58 2.09 4.76

Some degeneracy is lifted when the dot is no longer
cubic. Table I shows the binding energies of the ground state
for the six symmetry points located at the centers of the six
QD faces. The edge lengths of the QD are W,=0.54", w,
=1a", and W,=1.54". The coordinate values of the six points
are indicated in the brackets. For the cubic QD, the binding
energies of the six symmetry points are equal. For a rectan-
gular parallelepiped-shaped QD, however, the binding ener-
gies are only equal for the face-to-face points. The binding
energies’ degeneracy will be lifted for the two face-to-face
points along the z direction if a static electric field is applied
along that direction.

It must be pointed out that the application of the electric
field can also produce quasibound states.*?* We will con-
tinue to research this topic in our following work.

IV. CONCLUSION

In summary, we have calculated the binding energy of a
hydrogenic donor impurity in a rectangular parallelepiped-
shaped QD in the framework of effective-mass envelope-
function theory using the plane wave basis. The finite poten-
tial model was adopted in our calculation. Compared with
the previous infinite potential model, some results were
found. The calculation method presented in this paper can be
easily used to calculate how the impurity states change with
the direction of the external electric field. Our calculated
results are useful for the application of QDs in photoelectric
and electronic devices.
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