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Supplementary Figure S1 | Crystal structure of the conducting filaments in sputtered SiO2 

based devices. (a) TEM image of the conducting filament in a SiO2 based memory device used 

for SAED analysis. (b) Corresponding SAED pattern of the filament, which can be indexed with 

elemental Ag with fcc structure. (c) HRTEM image of a Ag nanoparticle in the filament shown 

in (a). Ag (111) planes can be clearly resolved. (d) Corresponding FFT results of the HRTEM 

image shown in (c). 
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Supplementary Figure S2 | Forming and filament growth in Al2O3 based devices. Resistive 

switching characteristics were studied in resistive memories based on Al2O3 films deposited by 

ALD. A single conducting filament was observed after the forming process, whose I–t curve is 

shown in the inset. The results obtained from Al2O3-based resistive switches are in line with 

those from sputtered SiO2, and the thinnest part of the filament is also at the dielectric/IE 

interface. The typical forming time in Al2O3 based resistive switches is ~200 s under an electric 

field of ~0.5 MV/cm. This electric field is relatively low compared with the electric field 

required to switch the a-Si based devices in a similar time (e.g. Fig. 3a). 
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Supplementary Figure S3 | EDS spectrum of the conducting filament in a-Si based devices. 

The composition of the conducting filaments was studied by EDS. The rectangular box in the 

inset indicates the region of interest used for EDS analysis. The presence of Ag was clearly 

detected in the conducting filament region, verifying the composition of the filament. The signals 

of Si and N come from the a-Si layer and the SiNx membrane, while other signals such as C and 

O may originate from surface adsorptions of the TEM specimen. 
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Supplementary Figure S4 | Filament growth dynamics in a-Si based memory devices. 

Supplementary Figure S4 shows a schematic of the filament growth model in dielectric-based 

memory devices with low cation mobility (e.g. in the case of a-Si). During the filament growth, 

the Ag cations are initially created and injected into the dielectric film from the anode 

(supplementary Fig. S4a). Driven by the electric field the cations then move towards the cathode. 

However, due to their low mobility, the cations can only travel a short distance (supplementary 

Fig. S4b) before becoming reduced by the incoming electrons (supplementary Fig. S4c). Since 

the Ag cations are reduced near the anode, the created metal nuclei share similar (positive) 

electrostatic potential as the anode and become an extension of the anode. This explanation is 

consistent with data obtained from in-situ TEM (Figs. 5c-5d) and ex-situ observations (Figs. 3, 
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supplementary Fig. S5). The process can then be repeated, as new Ag ions are created and 

injected from the tip of the extended Ag anode and become reduced nearby, as shown 

schematically in supplementary Figs. S4d-S4f. These processes therefore lead to a gradual 

filament growth from the active electrode to the inert electrode, as observed experimentally.  
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Supplementary Figure S5 | Step-by-step filament growth. (a) SEM image of the as-fabricated 

planar resistive switch based on a-Si. (b) Growth of an incomplete conducting filament after 

forming. (c) When a positive bias was applied again on the Ag electrode, the conductance of the 

device was increased for a second time. SEM imaging of the device shows an extension of the 

previous filament toward the Pt electrode.  
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Supplementary Figure S6 | Resistive switching and filament growth in sputtered SiO2. 

Supplementary Figure S6 shows a typical forming I–t curve and the resulting conducting 

filaments obtained in a sputtered SiO2-based device. The device was fabricated on a Si substrate 

with a 120 nm thick high-quality thermal SiO2 layer. In agreement with the TEM results in Fig. 1, 

the partially formed conducting filaments suggest that the filament growth direction in sputtered 

SiO2 based devices is from the inert electrode to the active electrode and the thinnest region of 

the filament is at the inert electrode interface. It is noteworthy to point out that some of the 

partially formed filaments also showed dendrite structures with branches pointing toward the 

active electrode, which is again consistent with the results in Fig. 1. 
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Supplementary Figure S7 | Resistive switching in thermal SiO2. Planar resistive switching 

devices were also fabricated on high-quality furnace-grown amorphous SiO2 films. These control 

experiments showed that devices based on dense, thermal SiO2 could not be formed in 4,000 s 

under a high electric field of 1.2 MV/cm, in contrast to typical conditions of 20 s, 0.4 MV/cm 

used for sputtered SiO2 based devices or 500 s, 0.8 MV/cm used for a-Si based devices. This 

experiment shows the choice of the dielectric has a very large impact on the forming process and 

the filament formation critically depends on the cation mobility in the dielectric film. In this case, 

the thermally grown SiO2 film has a very dense structure which effectively blocks the migration 

of Ag ions and impedes the formation of conducting filaments. The more defective structures in 

sputtered SiO2 and ALD Al2O3 films are beneficial for ion diffusion and are thus favorable for 

filament growth. 
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Supplementary Figure S8 | In situ TEM observation of filament dissolution in vertical 

Ag/a-Si/W devices. (a) I–t characteristics during the erase process of a vertical Ag/a-Si/W 

device. (b-f) In-situ TEM images of the device corresponding to data points b-f in (a). The re-

deposition of Ag atoms at the Ag electrode during erase is visible from b-f. These observations 

are in agreement with the findings from planar devices (e.g. Fig. 1) that the dissolution of 

filament is from the inert electrode to the active electrode. 

 


