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The influence of the crystal field on the Kondo effect in a magnetically non-dilute inter 
metallic compound is analysed. An expression for the resistivity vemus temperature is 
obtained. Some resistivity versus temperature curves are reported and discussed. 

L’influence du champ crietallin sur I’effet Kondo est analye& dens un composPl inter- 
mbtallique magnbtiquement non dilu6. Une expression est obtenue pour la rbistivitk en 
fonction de la temp6rature. Quelques courbes de rbsistivitR en fonction de la tempbratiire 
sont calculbes numhriquement et discut4es. 

1. Introduction 

The present article contains a detailed analysis of the temperature dependence 
of the resistivity within the Kondo side-band model [l]. A second order per- 
turbational calculation has been carried out in order to establish the effect on 
the resistivity of the scattering of the conduction electrons by magnetic ions 
subject to a crystal field. This calculation has been completed by a numerical 
study that has supplied a set of resistivity versustemperature curves. The numer- 
ical calculation has been performed assuming that the magnetic ion has a total 
angular momentum equal to 612 and it is under the influence of a hexagonal 
crystal field. The curves obtained show as a function of temperature either 
one or two maxima whose positions and widths vary as a function of the crystal 
field parameters and of the exchange constant proper to the curve under con- 
sideration. These maxima are in general the consequence of the existence 
of Kondo side-bands in the expression of the relaxation time of the conduction 
electrons as a function of energy. Kondo side-bands are obtained when the 
perturbation expansion is carried up to second order. A set of orystal field 
parameters can be chosen, however, in a rather narrow range such that a maxi- 
mum followed by a minimum can be obtained already as a consequence of 
first-order contributions. This first order effect adds up constructively in this 
range to Kondo side-band effects, and it will be discussed in some detail in 
the following sections. 

The results presented here can be applied in our opinion to magnetically non- 
dilute compounds. A question that arises of course is how does the correlation 
between the motion of different localized angular momenta influence the 
Kondo effect. In  agreement with the traditional molecular field theory we 
think we can neglect correlations when a material is paramagnetic. There 
may be valid reasons to do this. In the first place the present theory is meant 
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to be applied to rare-earth intermetallic compounds. The limited spatial ex- 
tension of the 4f electrons, as compared to the d electrons of the transition- 
metal ions, appreciably reduces the possibility of the existence of correlations 
in the rare-earth compounds. Furthermore in a compound the magnetic mo- 
menta are separated from each other by the non-magnetic anion, and thus 
random internal magnetic fields seem negligible. The present point of view 
is not in agreement with the opinions stated by other authors [2]. We expect 
the magnetic transition temperature in our systems to be smaller than the 
Kondo temperature, while the opposite is true for the alloys considered by 
the authors just cited. 

Besides this introduction, this article contains two other sections. Section 2 
contains the calculation of the resistivity as a function of temperature for the 
Kondo side-band model. It is an adaptation to our model of Kondo’s original 
calculation [3]. Section 3 of this paper contains a discussion of the numerical 
results. 

2. Description of the Model and Calculation 

The model to be considered consists of a gas of charge carriers and of a periodic 
array of spins. We shall indicate in this context with the word “spin” a total 
angular momentum. Indeed in the case of intermetallic compounds of the 
rare-earths the “spins” are total angular momenta that result from the L S  
coupling in the presence of the spin-orbit interaction. The spin-orbit inter- 
action is much larger than the interactions acting on the spins, so that the length 
of the spins can be considered a good quantum number. In  particular we are 
thinking for example of the cerium ion, which has a “spin” S = 512, and thus 
possesses six degenerate levels, which are labelled by the six values of the z- 
component S,  of the spin. The degeneracy is partially raised by the presence 
of the crystal field interaction : 

N is the number of spins present in the crystal. H,f is the crystal field Hamil- 
tonian proper to the symmetry of the site of a spin. We shall take the z-axis 
appearing in H,f as the axis of quantization for the spins S. Hmag is the un- 
perturbed Hamiltonian of the array of spins. It can be diagonalized and one 
obtains the energy levels Em (m = 1,2,  . . . , 6  for the cerium ion). We assume 
that no interaction is present between the spins, so that in particular no sponta- 
neous magnetization is expected. Our results should be applied only in the 
paramagnetic region. 

We shall now turn our attention to the charge carrier system. The charge 
carriers are described by creation and annihilation operators atr akt, a;+, ak4. 
k is the wave vector, and the arrow indicates the direction of the spin with 
respect to the z-axis. As the magnetic system is paramagnetic the charge car- 
riers of opposite spin reside in the same band. This band extends from -El to 
XI, where we have chosen EF = 0 as the zero of the energies. We shall also 
assume that the density-of-states function of the band is equal to a constant 

The eigenfunctions of the Hamiltonians now described are the product of 
a Slater determinant of keta Ik, t), Ik, 4) times a product of eigenfunctions 
[EL)  relative to the mth energy level of the rth ion. We shall take these eigen- 

Hmas = N H e f .  (1)  

n(EF)- 
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functions as the unperturbed eigen functions of the model under consideration. 
The perturbation Hamiltonian is the s-d Hamiltonian [4]  : 

H = - - 2 exp [C (k - k'). R,] x (;) kk'r 

x {sl (a&t akt - a&& ah$) + 8; at*& akt + 8: &t ak+} - (2)  
The matrix elements of the perturbation H between the above-defined un- 
perturbed states are 

(k, TJ. ; EL,, . . ., Eb;, . . ., EENl H' Ik, tJ.; E ; , , .  . ., EL,, . . . E&) = 

= - (;)(*I) exp [ k  (k - k) 9 Rr] ( E k l  8; I%,), 

= - (a) exp [i (k - k') - R,] (EL;/  S'_ IEL,), 

= - (5) exp [i (k - k') - R,I (%;I S: / E L ) .  

(3 a) 

N <"', .T; E' m,, . - E L  * - E2x:RI H'[k, J. ; Ehl,  - . ., EL,, . . . , Ern,) = 

(3 b) 

(k', 4 ;  EL,, . . ., E k , .  . ., EENl H' Ik, t ;  Eh,, . . ., ELr,. . ., EZN)= 

(3 c) 

These matrix elements are introduced in the following formula that gives the 
transition probability up to terms cubic in H : 

W (a + b) = W(l) (a -+ b )  + W(*) (a .+ b)  , 

W(')(U + b )  = - 6 (E ,  - E b )  HA,, H I ,  , (2hn) 
(a  + b )  = - 6 (E, - Eb) 2 ( [ H i ,  HL.b (Ea - EJ-'] + c.c.} . (4)  (2:) c+a  

We shall concern ourselves with the first terms in W, which are quadratic in 
H'. The W(l)'s are 
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In  the equations just written the summation over r is easily performed in view 
of the fact that the states \EL)  are the same for every r .  One can then omit the 
index r and one obtains 

W(1) ( k t  J , m + k't.1, TW') = r$)( gr Nd (Et--Er+Em-Em*) ] ( E m * \  Sz ]Em)le, ( 6 4  

W(')(kt,m + k'J., m') = 2n - 'Nd (Et--EF+Em-Em*) I(Em*\ S+ IErn)I2 3 (6b) ( h )(4 
W(1) ( k J ,  + k'f,m') = r ; ) ( g r N d  - (Et-Et.+ Em--Em*) J(Em*I 8- IEm)12. ( 6 ~ )  

These transition probabilities should finally be averaged over the occupation 
of the initial state Em and summed over the final states Em#:  

We shall now consider the contribution to the transition probability (4) from 
terms cubic in H .  The transition probability that an electron of wave vector k 
and spin up is scattered to a state of wavevector k' and spin up, is a sum of 
four terms, resulting from four different processes. This transition probability is 
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For T + 0 the summation over K” can be carried out in (8). Terms Ek + Em - 
- Em.. are neglected with respect to El. One sums further over m‘ and averages 
over the states Em. The following result is obtained: 

We shall now consider the transition probability that an electron of wave- 
vector k and spin up is scattered to a state of wave vector k’ and spin down. 
This transition probability equals 

W@) (kf, m + k’J, m‘) = 6 (Ek - EV + Em - Em,) 

By performing the summation over k ”  a t  T + 0 and by neglecting the energy 
differences between different levels as done above, and by finally averaging, 
one obtains 

Consider equations (9) and (ll), valid as T + 0. The interesting feature of 
these equations is the presence of logarithmic terms that diverge when the 
energy of the scattered charge carriers equals one of the energy differences 
between the energy levels of the scattering spins. These logarithmic terms 
converge to the usual In E term when the crystal field Hamiltonian (1) tends 
to zero. When, however, the crystal field Hamiltonian is not zero, the logarith- 
mic terms make the transition probability diverge a t  finite charge carrier 
energies. These divergencies we call Kondo side-bands. When T + 0, the 
summation over k” cannot be performed in closed form. As implied above, 
when T + 0 the Fermi-Dirac distribution function in (8) and (10) is step- 
88 phyaim (b) 4S/2 
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function and the sum over k" gives the logarithms of (9) and (11). Otherwise, 
at finite T, the summation over k' gives numerically a sort of smoothed-out 
logarithm, the smoothing taking place in an interval of length 2 T around 
the value of the energy for which the argument of the logarithm is zero. Equa- 
tion (8 )  and (10) are sufficient to  compute the resistivity of a paramagnet. 

In  the absence of spontaneous magnetization, as remarked above, the distri- 
bution function f k  of charge carriers with spin up is equa.1 to the distribution 
of charge carriers with spin down. The relaxation times for the two types of 
electrons are equal. The calculation of the resistivity can be copied from van 
Peski-Tinbergen and Dekker [a]. The change in the distribution function as 
a consequence of collisions is [4] : 

"1 = {- w (kt  * k't) f k  (1 - f k ' )  + w (k'f k t )  fk' (1 - f k )  - 
at COll 

- w ( k t  k$) f k  (1 - fk ' )  + w (k'f k4) fk'  (1 - jk)} - (12) 
By considering the principle of detailed balance in the absence of electric fields, 
and by introducing the deviation g k  from the equilibrium distribution function 
ft caused by the electric field F, one obtains the following: 

The deduction of (13) from (12) can be followed in detail in the reference cited 
above. When one substitutes the transition probabilities obtained above in (13) 
the desired expression for the relaxation time in the case of isotropic scattering is : 

1 1 1  - t, - t"' + t!"' ' 
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x ((Ern,,I Sa I E m >  (Ern, I S+ IErn,*> - <En*,l S+ \ E m )  (Ern,] Sz IEm**))]} * (14) 

When an  expression for the relaxation time is available, the conductivity is 
obtained by applying 

The whole calculation presented here is of course non-sensical, like all pertur- 
bation calculations, when l / ~ * )  > l/t!’). This is epitomized, as usual, by the 
fact that, for instance, 1 / r k  can become negative if J > 0. 

3. Numerical Calculation and Discussion of the Results 

I n  order to  obtain numerically the temperature dependence of the resistivity 
from equation (15), we have to specify in greater detail the properties of the 
scattering system. We have therefore to refer to  a particular intermetallic 
compound. We have chosen a hexagonal material containing Ce ions as tri- 
valent ions. It is well known that a hexagonal crystal field splits the six degener- 
ate levels of the Ce ion spin into three doublets that are eigenstates of S,: 
lf1/2), lf3/2), (f5/2>. We have performed the calculation of equation (15) 
considering the three doublets’ energies as parameters. We shall report the 
results obtained for a few particular choices of these parameters. 

The numerical calculations were performed on the Philips Electrologica X8 
computer of our laboratory. The computation of equation (15) a t  finite temper- 
atures requires a double integrat.ion, one over E k  appearing explicitly in (15) 
and one on the energy EL” of the intermediate state. In  order to  maintain our 
computing times within reasonable limits, we approximated the integrals on 
Er, in the following way: 

(16) 
that is, a “chopped” logarithmic function. We have computed the integral (15) 
exactly and checked that the approximation (16) is justified. 

The parameter (- J / N )  n(E,) has been given a maximum value of 0.1, 
which is a limit for the present perturbation theory because the terms l/~’i) and 
l / ~ z )  are of the same order of magnitude when (- J / N )  n(E,) is 0.1. The 
limits of the band, El and -E,,have been given the absolute value of loo00 OK. 

Fig. 1 shows a set of resistivity versus temperature curves. These curves 
refer to a situation in which the f3/2 doublet lies lowest and the f 1/2 doublet 
39. 
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Fig. 2. Q vs. 1' curves obtninecl Iiy setting. iii formulu 
(14), l/rr = I/zJ1) (curve a) and setting I / q  = 0.1 x 
x l/r$A) (currc h). The choice of euergy lcvcls is the 

samo ns in curve 3 of Fig. 1 

Pig. 1. Rexixtivity vs. temperature curves computed 
with the following choice of energy levels: curve a: 
(0.5, 50); curve b: (0,5,100); curve c: (0, 15, 100). 
Tile numbers in brackets express, in degrees Kelvin 
the encrgy of the levels f 5/2, f 3/E, 112, rcspectivelb 

Fig. 3. p vs. T curves computed with the following 
choice of energy levels (see caption to Fig. 1): 
(0,3,20). The parameter ( - J / N )  N E p )  has beeu set 
c qua1 to 0.06 for curve a and equal to 0.1 for curve b 

Fig. 4. p vs. T curves computed with the followiiig 
choice of energy levels (see caption to Pig. 1): 
curvea: (5,0,60); curve b: (5, 0,100); curve c: 

(5,0,200) 
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lies highest. The energies of these doublets chosen for the different curves are 
given in the caption of Fig. 1. In  each curve we see two maxima, whose position 
changes when the value of the doublets’ energy levels is changed. We have 
plotted in Fig. 2 the resistivity versus temperature curves that are obtained 
from first order processes only (setting I/+z) = 0)  and from second order pro- 
cesses only (setting 1/4l) = 0). From Fig. 2b we observe that the maxima in 
Fig. 1 are a consequence of the exietence of Kondo side-bands in the energy de- 
pendence of the relaxation time. Moreover the Kondo side-band effects are 
amplified by a first order effect which is visible in Fig. 2a in the form of a 
maximum a t  the place of the first Kondo side-band. This first-order effect is 
peculiar to the situation in which the f6/2 doublet is lowest and it appears 
only for certain choices of the doublets energy levels. It follows probably from 
a competing effect of elastic and inelastic first order processes. 

Fig. 3 gives an idea of the change of the resistivity behaviour as a function 
of temperature when the parameter (- J / N )  n(E,) is changed. We observe 
that by proper adjustment of this parameter the relative height of the two resist- 
ivity maxima can be modified within a certain range of values. It has to be 
noted that in this figure our arbitrary units scale of the e-axis is not the same 
one for case a) and case b). This follows obviously from the fact that the nor- 
malization factor ( J Z / N )  n(E,)’has been varied in the two curves. 

Fig. 5. P Vs. T Curves computed with the following Fig. 6. p vs. T curves computed with the following 
choice of energy levels (see caption to Fig. 1): curve a: 

(SO, 0, 9); curve b: (50,0,  5); curve c: (50,0,10) 
choice of energy levels (see caption to Fig. I): 

curve a:  (KO, 9.0); curve b: (50, 5,O) 
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Fig. 4,5, and 6 give resistivity versus temperature curves relative t o  other 
choices of the order in which the doublets appear on the energy scale. We see 
here again that the position of the resistivity maxima is correlated to the po&ion 
of the Kondo side-bands. In  certain cases, (see for instance Fig. 6) we observe 
that the maxima overlap each other to form one broad maximum. This process 
takes place when the relative position of the doublets on the energy scale is 
varied continuously. 

In Fig. 5 we notice that the well-known Kondo divergence at T = 0 reappears 
when the f1/2 doublet lies lowest. This is quite obvious: spin-flip scattering 
can take place within the doublet, i.e. without energy expenditure, so that the 
typical Kondo central band is present at E = 0. 

In  conclusion it appears that the Kondo side-band model allows sufficient 
freedom to obtain quite different types of resistivity versus temperature 
behaviour. Experimental 'results of resistivity measurements on intermetallic 
compounds containing. cerium are available, and a comparison between this 
theory and the existing evidence will be made in the near future. 
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