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Study of the Temperature Dependence of the Resistivity
in the Kondo Side-Band Model

By
F. E. MARANZANA and P. BIANCHESSI

The influence of the crystal field on the Kondo effect in a magnetically non-dilute inter:
metallic compound is analysed. An expression for the resistivity versus temperature is
obtained. Some resistivity versus temperature curves are reported and discussed.

L’influence du champ cristallin sur I'effet Kondo est analysée dans un composé inter-
métallique magnétiquement non dilué. Une expression est obtenue pour la résistivité en
fonction de la température. Quelques courbes de résistivité en fonction de la température
sont calculées numériquement et discutées.

1. Introduction

The present article contains a detailed analysis of the temperature dependence
of the resistivity within the Kondo side-band model [1]. A second order per-
turbational calculation has been carried out in order to establish the effect on
the resistivity of the scattering of the conduction electrons by magnetic ions
subject to a crystal field. This calculation has been completed by a numerical
study that has supplied a set of resistivity versustemperature curves. The numer-
ical calculation has been performed assuming that the magnetic ion has a total
angular momentum equal to 5/2 and it is under the influence of a hexagonal
crystal field. The curves obtained show as a function of temperature either
one or two maxima whose positions and widths vary as a function of the crystal
field parameters and of the exchange constant proper to the curve under con-
sideration. These maxima are in general the consequence of the existence
of Kondo side-bands in the expression of the relaxation time of the conduction
electrons as a function of energy. Kondo side-bands are obtained when the
perturbation expansion is carried up to second order. A set of orystal field
parameters can be chosen, however, in a rather narrow range such that a maxi-
mum followed by a minimum can be obtained already as a consequence of
first-order contributions. This first order effect adds up constructively in this
range to Kondo side-band effects, and it will be discussed in some detail in
the following sections.

The results presented here can be applied in our opinion to magnetically non-
dilute compounds. A question that arises of course is how does the correlation
between the motion of different localized angular momenta influence the
Kondo effect. In agreement with the traditional molecular field theory we
think we can neglect correlations when a material is paramagnetic. There
may be valid reasons to do this. In the first place the present theory is meant
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to be applied to rare-earth intermetallic compounds. The limited spatial ex-
tension of the 4f electrons, as compared to the d electrons of the transition-
metal ions, appreciably reduces the possibility of the existence of correlations.
in the rare-earth compounds. Furthermore in a compound the magnetic mo-
ments are separated from each other by the non-magnetic anion, and thus
random internal magnetic fields seem negligible. The present point of view
is not in agreement with the opinions stated by other authors [2]. We expect
the magnetic transition temperature in our systems to be smaller than the
Kondo temperature, while the opposite is true for the alloys considered by
the authors just cited.

Besides this introduction, this article contains two other sections. Section 2
contains the calculation of the resistivity as a function of temperature for the
Kondo side-band model. It is an adaptation to our model of Kondo’s original
calculation {3]. Section 3 of this paper contains a discussion of the numerical
results.

2. Description of the Model and Calculation

The model to be considered consists of a gas of charge carriers and of a periodic
array of spins. We shall indicate in this context with the word “spin’’ a total
angular momentum. Indeed in the case of intermetallic compounds of the
rare-earths the “‘spins’ are total angular momenta that result from the L-S
coupling in the presence of the spin-orbit interaction. The spin-orbit inter-
action is much larger than the interactions acting on the spins, so that the length
of the spins can be considered a good quantum number. In particular we are
thinking for example of the cerium ion, which has a “spin” 8 = 5/2, and thus
possesses six degenerate levels, which are labelled by the six values of the z-
component S, of the spin. The degeneracy is partially raised by the presence
of the crystal field interaction:

Hmag = NHcf . (1)

N is the number of spins present in the crystal. H.¢ is the crystal field Hamil-
tonian proper to the symmetry of the site of a spin. We shall take the z-axis
appearing in H.¢ as the axis of quantization for the spins 8. Hp,g is the un-
perturbed Hamiltonian of the array of spins. It can be diagonalized and one
obtains the energy levels E,, (m = 1,2, ..., 8 for the cerium ion). We assume
that no interaction is present between the spins, so that in particular no sponta-
neous magnetization is expected. Our results should be applied only in the
paramagnetic region.

We shall now turn our attention to the charge carrier system. The charge
carriers are described by creation and annihilation operators aj; awy, @iy, Q.
k is the wave vector, and the arrow indicates the direction of the spin with
respect to the z-axis. As the magnetic system is paramagnetic the charge car-
riers of opposite spin reside in the same band. This band extends from —E, to
E,, where we have chosen Ey = 0 as the zero of the energies. We shall also
assume that the density-of-states function of the band is equal to a constant
n(Eg).

The eigenfunctions of the Hamiltonians now described are the product of
a Slater determinant of kets |k, 1), |k, |) times a product of eigenfunctions
| E%) relative to the mth energy level of the rth ion. We shall take these eigen-
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functions as the unperturbed eigenfunctions of the model under consideration.
The perturbation Hamiltonian is the s—~d Hamiltonian [4]:

H = — (-‘I—) S exp[i(k — k)R] X
N ki r

X {S; (a;‘,'T At — a;;w a”) -+ Sq. a,*” (23 + S'_ a,‘:'T a,q} . (2)

The matrix elements of the perturbation H’ between the above-defined un-
perturbed states are

KA 3 B By BS H k45 By B BR =

J . -
_ _(N)(il) exp [i (k — K) - R} <EL| % | B, (3a)
KA By By Eng | HR, ) 5 By o, By, BRS —
J . ,
- _(N) exp [i (k — k') - Ry) CBl| 87 |y, (3b)
CIRTY - /N N D | - AR /.
J . ,
_ _(W) exp [i (k — k') - R,] CEL,| 87 |y, (3¢)

These matrix elements are introduced in the following formula that gives the
transition probability up to terms cubic in H’:

W(a—b)= WD (a->b)+ WO (a—>b),

WW(g > b) = (-27")6 (E, — Ey,) Hyy Hia

W® (@ - b) = (2—;1)6(1474 — B X {(Hee Hoo Hio (Ba — E)™] 4 0.0 - (4

We shall concern ourselves with the first terms in W, which are quadratic in
H’'. The Ws are

, 2a\[J\? Y
W(l) (k‘N,m—>k"N,m)= —h_') N za(Ek_Ek’+Em,-E:”;_) X
X (Bl Sz | By (Em)| S; |E,rs, (5a)

, , 2x\/J\?
W (kT,Mekl',m):(-h—)(w) 2 0(Bx — By + E,, —Ep0)x

X (B | 8 |Emy <Bm,| S~ |E, 5 (5b)

, 2x\[J\?
W (k,m— k'},m) =(T)(1—v) X 8(By — By + By, —E) X

X KB} 8 By (B, | S | By (5¢)
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In the equations just written the summation over r is easily performed in view

of the fact that the states |E},) are the same for every . One can then omit the
index r and one obtains

(27N J\?
W(1>(kN,m—+k’N,m)=(—h~—)(—ﬁ) NO(Ex—Ep+En—En)|(Ew|S.; |En)[?, (6a)
WO (e m—> Iy m) = (2_")(11\,)2“(EE—E,,.+E,,I—EW) KEuw| 8 |Bad]2, (6D)

WO gty = (32) () WO BB+ BB [CBa] S_ B (60

These transition probabilities should finally be averaged over the occupation
of the initial state B, and summed over the final states K, :

R S R e e

E
x [ Z esp (—gop)? e — Be + Bu —Eu) [ 8, lEm>|2]. (7a)

== (7))ol ool -5

x[z exp(—k%,) (Be — B + By — En) [(Bw| 8, IEm>I2], (7b)

mm'’

2 J\? E. \1-!
wo e, =kt = () () ¥ |2 o (- 35)] 5
<[ Z o (=~ 25)? (B — B 4 Bu— B (Bl 8- EF]. )

We shall now consider the contribution to the transition probability (4) from
terms cubic in H’. The transition probability that an electron of wave vector k
and spin up is scattered to a state of wavevector k’ and spin up, is a sum of
four terms, resulting from four different processes. This transition probability is

WD (et m — k', m) = (2 ")a (B — E,,)(_ %) ¥ x
x {1,2[(1 —fv)(Bx — By - Eyy — By + 4 9)71 + cc.] X
x KE’""I 8, IE"‘> <E7”'] Sz IEM"> <Eml 8, lEM> +
+ <E7”"| S+ lEm> <Em' IS-l Em"> <Em lSz IEm’>] -
—‘knzu[fk" (BEv — By + Ep — Ew + i)™ + c0] X
X [KEw| S; |Eny (B S | B (E’ml S, |E,,y> +
+ <Bue| 8- |Buy (Bi| 8. |Bw> Bl Sz |Budl)- (%)
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For T — 0 the summation over %’ can be carried out in (8). Terms B, + E, —
— E, are neglected with respect to E;,. One sums further over m’ and averages
over the states E,. The following result is obtained :

R [

X[ P exp(—li—';,)é(lﬂ,, — By + Ep — En)X

mm'm’’
X {ln I(Ek + Em - Em") El_ll <Em| S: |Em'> (<Em| Sz |Em> <Em| S. IEm”> +
+ <Em"| S+ |Em> <Em’| S_ IEm">) —In I(Ek + Em” _ Em’) El_ll X
X <Em ISZI Em'> (<Em" lszl Em> <Em’ ISzI Em”> +
+ <Em"| S_ 'Em> <Em’| S+ IEm’>)}] . (9)
We shall now consider the transition probability that an electron of wave-

vector k and spin up is scattered to a state of wave vector k’ and spin down.
This transition probability equals

3
W (kY,m - k'|,m) = (ghf)é (Ey — Ev + E, — En) (— %) N x
X {kZ (1 — fe) (Bx — Ep» + Ep — B + i)' +c.c.] X

X (B |8z |Bmd B 18, | B> {B |S_| B — (B |8, | B (B |8 | B> X
X (Ea| 8- |Bw>] = 5 [fe (B — By + B — Ewe + im)™ + 001 X

X [<Em" IS+ IEm> <Em’| S, lEm"> <Em| S IEM'> -
_<Em"l Sz lEm> <Em’| S+ lEm”> <Em| S_ lEm'>]} (10)

By performing the summation over k'’ at T — 0 and by neglecting the energy
differences between different levels as done above, and by finally averaging,
one obtains

wWe (k} - k') = (2;)( — %)BN n(Ey) [é‘ exp( — I:—;,)]—l X

X [mmz',‘m”exp(—k—i—';—,)d (Ex — Ey + E,, — E,) ¥
X[In |(Bx + Em — Ew) BT} + 10 |(By + B — Be) B ] CBin| S_ | B X
X (<Em”| Sz lEm> <EM’l S+ lEm”> - <Em”\ S+ lEm> <Em‘ Sz lEM”»]- (11)

Consider equations (9) and (11), valid as 7' — 0. The interesting feature of
these equations is the presence of logarithmic terms that diverge when the
energy of the scattered charge carriers equals one of the energy differences
between the energy levels of the scattering spins. These logarithmic terms
converge to the usual In E term when the crystal field Hamiltonian (1) tends
to zero. When, however, the crystal field Hamiltonian is not zero, the logarith-
mic terms make the transition probability diverge at finite charge carrier
energies. These divergencies we call Kondo side-bands. When T + 0, the
summation over ¥’‘ cannot be performed in closed form. As implied above,
when T — 0 the Fermi-Dirac distribution function in (8) and (10) is a step-

89 physica (b) 43/2
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function and the sum over &'’ gives the logarithms of (9) and (11). Otherwise,
at finite 7', the summation over k'’ gives numerically a sort of smoothed-out
logarithm, the smoothing taking place in an interval of length 2 T' around
the value of the energy for which the argument of the logarithm is zero. Equa-
tion (8) and (10) are sufficient to compute the resistivity of a paramagnet.

In the absence of spontaneous magnetization, as remarked above, the distri-
bution function f, of charge carriers with spin up is equal to the distribution
of charge carriers with spin down. The relaxation times for the two types of
electrons are equal. The calculation of the resistivity can be copied from van
Peski-Tinbergen and Dekker [4]. The change in the distribution function as
a consequence of collisions is [4]:

ZZ:.] = yg {(—WE > ENQA—~fe) + WEL>EN) fe (1 —fi) —
coll
~WEr>ED)fe(l —fe)+ WEY>E) fe (1 —f} . (12)

By considering the principle of detailed balance in the absence of electric fields,

and by introducing the deviation g, from the equilibrium distribution function
fi caused by the electric field F, one obtains the following:

afk _—&__ 40 _ Ek_Ek’ -1
E]w" == gbkz" [1 r (1 exp kT —-) X

X (1 —%)[W(k‘r»k'ﬂ + Wkt >Ry (13)

The deduction of (13) from (12) can be followed in detail in the reference cited

above. When one substitutes the transition probabilities obtained above in (13)
the desired expression for the relaxation time in the case of isotropic scattering is:

1 1 1

Ok
= (7) (5) ¥ i8n [ 5 ew(= 5)]
X {2 [(1 — ) exp (,g’%) + fi exp (%)]_1 X
X (1CBu] S, B+ [CB] . [EwS1
O P
« {m 5 [(1 — W exp (i m) + frexp (,i—;)} x
X [(zldEk" (I —fe)(Exy — Ep + E, —E',,.u)—l)<E,,,| S, |E’,,.> X

X (<Em”l Sz IEm> <Em’l Sz lEm"> + <Eml S+ |Em> <Em| S_ lEm”>) -
B,
—( [ aBe e (B — Byt B — Bu)=1) Bl . 1B X
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X (<Em”l Sz |Em> <Em'] Sz IEm”> + <Em| S |Em> <Em'l S+ IEm">) +

E,
+( [ aBe 0 1) (B — B + Bn— But +
E,
+ [ By for (Be — By + B — E,,.'f)-l) (Bn] S |Ew> x

X (<Em"| Ss |Em> <Em’| S+ lEm"> - <Em| S+ lEm> <Em'| Sz |Em">)]} . (14)
When an expression for the relaxation time is available, the conductivity is

obtained by applying
Of
o Ndeka —82;. (15)

The whole calculation presented here is of course non-sensical, like all pertur-
bation calculations, when 1/t{? > 1/v{!). This is epitomized, as usual, by the
fact that, for instance, 1/7; can become negative if J > 0.

3. Numerical Calculation and Discussion of the Results

In order to obtain numerically the temperature dependence of the resistivity
from equation (15), we have to specify in greater detail the properties of the
scattering system. We have therefore to refer to a particular intermetallic
compound. We have chosen a hexagonal material containing Ce ions as tri-
valent ions. It is well known that a hexagonal crystal field splits the six degener-
ate levels of the Ce ion spin into three doublets that are eigenstates of S,:
|£1/2), |£3/2), |+5/2). We have performed the calculation of equation (15)
considering the three doublets’ energies as parameters. We shall report the
results obtained for a few particular choices of these parameters.

The numerical calculations were performed on the Philips Electrologica X8
computer of our laboratory. The computation of equation (15) at finite temper-
atures requires a double integration, one over E, appearing explicitly in (15)
and one on the energy E;- of the intermediate state. In order to maintain our
computing times within reasonable limits, we approximated the integrals on
E,- in the following way:

E, T
: ln e if E ’ Em’ - Em" T;

f A fi- (Ber — By + B — Bur)' = (El) e+ <
'y In[|(Ey + Enp —En) E71|] otherwise,
(16)

that is, a “‘chopped”’ logarithmic function. We have computed the integral (15)
exactly and checked that the approximation (16) is justified.

The parameter (— J/N)n(Ey) has been given a maximum value of 0.1,
which is a limit for the present perturbation theory because the terms 1/7{! and
1/? are of the same order of magnitude when (— J/N) n(Eg) is 0.1. The
limits of the band, E; and —E,, have been given the absolute value of 10000 °K.

Fig. 1 shows a set of resistivity versus temperature curves. These curves
refer to a situation in which the 4 5/2 doublet lies lowest and the 4-1/2 doublet

39
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lies highest. The energies of these doublets chosen for the different curves are
given in the caption of Fig. 1. In each curve we see two maxima, whose position
changes when the value of the doublets’ energy levels is changed. We have
plotted in Fig. 2 the resistivity versus temperature curves that are obtained
from first order processes only (setting 1/7{? = 0) and from second order pro-
cesses only (setting 1/7{) =0). From Fig. 2b we observe that the maxima in
Fig. 1 are a consequence of the existence of Kondo side-bands in the energy de-
pendence of the relaxation time. Moreover the Kondo side-band effects are
amplified by a first order effect which is visible in Fig. 2a in the form of a
maximum at the place of the first Kondo side-band. This first-order effect is
peculiar to the situation in which the 45/2 doublet is lowest and it appears
only for certain choices of the doublets energy levels. It follows probably from
a competing effect of elastic and inelastic first order processes.

Fig. 3 gives an idea of the change of the resistivity behaviour as a function
of temperature when the parameter (— J/N) n(Ey) is changed. We observe
that by proper adjustment of this parameter the relative height of the two resist-
ivity maxims can be modified within & certain range of values. It has to be
noted that in this figure our arbitrary units scale of the g-axis is not the same
one for case a) and case b). This follows obviously from the fact that the nor-
malization factor (J2/N) n(Ey) has been varied in the two curves.
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Fig. 5. ¢ vs. I' curves computed with the following Fig. 6. ¢ v8. T curves computed with the following
choice of energy levels (see caption to Fig. 1): choice of energy levels (see caption to Fig. 1): curve a:
curve a: (50, 3, 0); curve b: (50, 5, 0) (69, 0, 8); curve b: (50, 0, 5); curve ¢: (50, 0, 10)
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Fig. 4, 5, and 6 give resistivity versus tempsrature curves relative to other
choices of the order in which the doublets appear on the energy scale. We see
here again that the position of the resistivity maxima is correlated to the pogition
of the Kondo side-bands. In certain cases, (see for instance Fig. 6) we observe
that the maxima overlap each other to form one broad maximum. This process
takes place when the relative position of the doublets on the energy scale is
varied continuously.

In Fig. 5 we notice that the well-known Kondo divergence at T = 0 reappears
when the +1/2 doublet lies lowest. This is quite obvious: spin-flip scattering
can take place within the doublet, i.e. without energy expenditure, so that the
typical Kondo central band is present at £ = 0.

In conclusion: it appears that the Kondo side-band model allows sufflclent
freedom to obtain quite different types of resistivity versus temperature
behaviour. Experimental results of resistivity measurements on intermetallic
compounds containing “cerium are available, and a comparison between this
theory and the existing evidence will be made in the near future.
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