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A class of coordinate transformations depending on a single parameter is studied as
quadrature tool.. Working rules for the choice of the parameter are_proposed. Numerical
Agsts for the method are presented. They show that these coordinate transformations, when
combined with Gauss—Legendre quadrature rules, are well suited for the numerical integration
of functions possessing a sharp peak ar or near one boundary of the interval of integration.
A method 1o combine the transformations with automatic quadrature routines is also
proposed: it scems to be useful for the numerical evaluation of integrals with the same kind
of integrand behavior.  © 1990 Academic Press, Inc.

1. INTRODUCTION

Quite-often in practice one encounters the problem of how to integrate functions
with a sharp peak. In most cases such an integration can be done only numericaily.
Usually the position of the peak and/or its width are known at least roughly. For
example, in our investigations concerning multicenter molecular integrals with
exponential-type functions [1] we encountered integrals of the form

1= wissm,n. o, ,p) f (s, p) ds (11)

with weight function (p, o, fe R, ; m, ne N)

. (1 _S)m Sn
[PZT?{I —s)+a®(l —s)+ frs]mtre i’

{12)

wis;m, n,a, ff,p)=

Integral / is part of the integrand of an outer integral with integration variable p.
The weight function {1.2) exhibits very sharp peaks for certain combinations of the
parameters (m, n, «, f, p), especially for large p. A straightforward calculation
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62 HOMEIER AND STEINBORN

shows that the location of the peaks may be obtained quite easily as zeroes of a
third-order polynomial.

A number of quadrature methods turned out to be inappropriate in this
situation, mainly because of the computational costs caused by the sharp peaks:

—Automatic routines [2] are accessible in software libraries [3, 4], but even
sophisticated routines [5, 6] have some disadvantages [7, 81].

—For Gaussian rules [9], either the standard ones, or newly computed
Gaussian rules [9] with respect to Eq. (1.2), also the numerical error estimation is
difficult [10].

It is more cost effective to use all available information on the behavior of the

“integrand to make the integrand function smoother and to flatten its peaks. This

can be done through coordinate transformations [11-16]. For example, the IMT-
rule [17, 18] can be understood this way. Then many quadrature methods perform
better for the new integrand,

In this paper we shall study a simple class of coordinate transformations: Mabius
transformations [19, 20], also-called bilinear or fractional linear transformations,
depending on a single parameter. The additional numerical effort to impilement it
as a quadrature tool is (usually) negligible since no transcendental functions have
to be computed. For the problem described above these transformations seem to be
very effective. First results of the method concerning integrals with weight function
(1.2) were presented at a conference.! Now, more generaily, we shall see that these
coordinate transformations are well suited for the quadrature of functions with a
sharp peak at or near a boundary of the interval of integration.

In the following section we describe how to use these Mobius transformations in
combination with Gauss-Legendre rules as quadrature tools. Classes of functions
for which the method is exact will be given explicitly.

In the subsequent section we will report on the implementation and numerical
tests of the method. Working rules for the choice of the parameter will be presented.

The results will be discussed and summarized in the last section. We will see that
the use of Mobius transformations in combination with fixed quadrature rules or
with automatic routines makes the numerical quadrature of functions with a sharp
peak at or near a boundary much more efficient.

In an appendix an equivalent formulation of the method in terms of quadrature
rules is presented. Here we study Maobius transformations in combination with
Gauss-Jacobi rules: This allows us to point out a connection of our method te some
well-known quadrature rules.

I Sanibel Symprosium 1988 on Atomic, Molecular and Condensed Matter Theory, University of
Florida, Whitncy Marine Laboratory, $t. Augustine, Florida, March 12-19, 1988.
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MOBIUS-TYPE QUAbRATURE : 63
2. MOBIUS TRANSFORMATIONS AS QUADRATURE TOOLS

In numerical quadrature coordinate transformations are used to obtain a more

_favorable integrand, and then a fixed quadrature rule or even an automatic routine

is used to evaluate the transformed integral.
The result of using the coordinate transformation

x=e(u) (2.1
with a = ¢(c), b= ¢(d) to obtain
b 7]
1=f f(x)dx=j () du (2.2)
with the new integrand
£() = (p(w)) '(1), - (23)

and api)lying a fixed quadrature rule G, with weights w; and abscissae v, to the
u-integral is ‘

”

G, (g)=Y w glu). (2.4)

i=1 )
It may be formulated entirely in terms of the original integrand f(x) as

a

G, (g)= 2 w, ' (u) f(e(u)}=R,(]), (2.5)

j=1

ic, as a fixed quadrature rule R, with abscissae x,=@(u,
W' (u;). 7

Unless otherwise stated we will use the notation G, for an a-point Gauss—
Legendre rule in the sequel.

First we consider the case where [a, 5] and [c, 4] are bounded intervals. There
is no loss of generality assuming [a, b]=[c,d]=[—1, 1] since this can always be
achieved by suitable linear coordinate transformations.-

We study the one-parameter system of Mdobius transformations

) and weights @;=

x=mam=f:; (2.6)
with inverse
G )

for —1 < &< 1. Here we regard ¢ as a parameter, and » and x as independent

581/87/1-5




64 HOMEIER AND STEINBORN

variables. Hence ¢’ denotes-the derivative of ¢ with respect to « in the following.
Using {2.6) as coordinate transformation in combination with G, yields exact
results whenever g(u) is a polynomial of degree less than 2#, i.e., when f(x) is of the
form

__ X=<
0= P () (28)
. 1 - 1
=(1_—Ex)*apzn_: (I—_ﬁr) (2.8b)
2t 1 J
=y b}.(l_{x), (2.8¢)
j=2

where P, (1) and P, (r) denote any—in general different—polynomials in ¢ of degree
less or equal to m, and b; are arbitrary constants. This parallels to a certain extent
the results of Newbery [11] on exponential and trigonometric polynomials.

Now we consider the case where [a, ] is a semi-infinite interval. Without loss
of generality we may assume [a, 5] =1[0, 0] and [¢,d]=[—1,1].In this case we
may use the Mobius transformation

1
x= B(E u) = — o (29)
1 —u
with inverse
X(&: %) =t (2.10)
u= i x)= .
x+E ‘

for 0 < &< oo as coordinate transformation. Applying G, to the new integrand gives
exact results if f(x) is of the form

__ x—¢ | ,
f(x)_(X+€)2P2"l(x+f) | {(2.11a)
1 - |
=(-\'+é)2P2"_1(X+é) (leb}
2n+ 1 i
= ‘j:z bj(x+r§) . (2.11c)

In Appendix A it is shown how the quadrature method based on the coordinate
transformations of both cases can be formulated in terms of quadrature rules. The
case of the unbounded interval is seen to be completely equivalent to the Gauss-
rational rules available in the NAG-library [21, 22]. Therefore no test results for
this case will be given in the next section. It seems probable that the rules corre-
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sponding to the case of the bounded- interval—or equivalently, the coordinate

transformations (2.6)—will turn out to be of comparable practical importance in
view of the test results presented in the following section.

3. APPLICATION AND NUMERICAL TESTS

The numerical quadrature of a function with a sharp peak at or near a boundary
of integration, which is based upon Mobius transformations, requires the choice of
a certain & First, we discuss how ¢ should be chosen in order to utilize information
on the position and/or the width of the peak. Second, we will compare our method
to other quadrature rules by presenting numerical test values for various functions.
These functions all have a sharp peak at or near a boundary of integration and may
be taken as quite typical representatives. Further we will report on test results
obtained for various choices of £, We will see that there is normally quite a large
interval of ¢-values yielding acceptable results.

We _consider the coordinate transformation (2.6) on [—1, 1]. If the original
intégrand peaks in [x — Ax/2, x + Ax/2] then thls interval is mapped to an u-inter-
val of approximate length

Au=[¢" (& x(&x))] " dx. (3.1)

Thus if ¢'(£; y(£; x)) is small the peak region can be expanded enormously, and
hence the new integrand poses less problems for numerical quadrature via @,,.
Equivalently we may say that the abscissae of the new rule R, ebtained from G,
using (2.5) and (2.6) cluster in the region of the peak.

Since the extrema of (p’(cf; u) are

N FY-
@& 1) = s @'(&; 1)—175 (3.2)

ie., directly at the boundaries, by contmulty @'(&; u) is small for u~ £, i.e, near one
boundary, if [&] = 1.
These facts suggest the following two working rules which both assume 1&| & 1:

WoRKING RULE W. [If the function f has a sharp peak at one boundary and
attains half of the peak value at or close 1o x = xy, choose £ = x, and use the corre-
sponding Mdbius transformation (2.6).

If the function has a sharp peak near one boundary and attains half of its peak
value at that x = x, which has the largest distance from the boundary (there may be
twe points inside the integration interval where the function attains haif of its peak

value!) then use the Mébius transformation (2.6) with { =x,

If the point x, is chosen as described above then the bulk of the peak is

.contained in one of the x-intervals 7, =[£, 1] or I =[—1, ¢]. That interval is
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expanded by a large factor by y(&; x) to the corresponding u-interval, J, = [0, 1]
or J_=[-10], resp, if |£] = 1.

This Working Rule W can be used if the width and the position of the peak are
known. If only the position is known one may use the following working rule:

WORKING RULE W'. [f the function [ has a sharp peak at or close to x=x,
choose & =x, and use the corresponding Mdbius transformation (2.6).

First we consider the case that function /" has its peak exactly at the boundary,
Then Rule W’ is not applicable. Rule W has the effect of enlarging the half width
at half maximum from approximately 1— |&| for f to about 1 for the transformed
function h(u)}=f(@(&; u)). The extra factor @'(¢; u) of the new integrand g(u) is

~ large near the boundary opposite to the peak. Therefore extra weight is given to

that interval, where the transformed function is supposed to be small. Ideally this
can lead to a very broad peak of the new integrand near 1 =0.
These effects are illustrated in Fig. 1. This plot shows the function

. =22 14 25000504 57) ",

the transformed function (), and the new integrand g(u) for £ = —0.996.
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Fic. 1. Plotted are function f{x) of (3.3), the transformed function k(x) and the new integrand g{u)
corresponding to it for ¢ = —0.996.
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In the case that the function f has its peak close to one boundary both Working
Rules W and W' may be applied. The effect of Rule W’ is that the transformed
function peaks at ¥ =0. Rule W works as in the former case. In any case and by

- both working rules the width of the peak is increased enormously.

. Now we report on numerical tests of the method. The computations were done
in FORTRAN 77 DOUBLE PRECISION, corresponding to an accuracy of 14-15
decimal digits on our computer.

In Table I we present results for the following functions:

{(a) The function (3.3) possessing a peak at one boundary.
{b} The function
(x—0.99)*

f(x) =0.0199 “ngx)zé,

(3.4}

which is of the form (2.8). Apart from relative rounding errors of the order of
10" x #, where »n is the order of the Gauss-Legendre rule used, our transform
method is indeed exact for n> 12, -

{c) The functions

(50x + 50)1°

=350
/e [1410(50x + 50)>]"**’ (3.52)
C 21 :
f(x)z583[].(—30_;_29—(303730): (3.5b)

possessing a sharp peak near one boundary.

TABLE I

Comparison of the Method of the Present Article with Composite Gauss-Legendre Rules with s
Subintervals for Various Functions on the Interval [—1,1]

Legendre rules

. Present Working
Function & method ' m=1 m=2 rule
3.3) —0.996 7/14 74/173 ' 148/346 w
(3.4) 0.99 12/13 183/ %** 44/92 —
(3.52) —0.9884 13/22 104/ %= 204/348 w
(3.5a) —0.983 14/24 104/ % *x 204/348 w’
(3.§b) 0.893 10/18 29/59 24/96 W
(3.5b) 0.983 19/39 29/59 54/96 w’

Nore. In the case of the composite Legendre rule with #t =2 the two intervals [ —1,¢] and [&, 1] are
used. Plotted are the numbers ny/n, of functional evaluations needed to achieve 5- and 10-figure
accuracy, resp. Three stars mean that the corresponding number is greater than 200, The &-value used

‘in (2,6) and the corresponding working rule are indicated.
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From Table T it is clear that Rule W is superior to Rule W'—if this rule is
applicable. In fact, Rule W utilizes more information than does Rule W', But it is
seen that even application of Rule W' leads to results superior to Gauss-Legendre
rules.

Hence it is not optimal to think of the peak position alone: The whole peak
region should be considered. This also explains why our method with highest
resolution at one boundary, see (3.2), also gives good results for the functions (3.5),
The method of the present article is not sensitive to the exact value of &; there
is normally a large interval of £ivalues yielding acceptable results. This may be
seen from Table IL In terms of quadrature rules one might say: It is important
to have a sufficient number of abscissae in the peak region; then their exact
positions-—determined by the value of £&—do not matter very much,

- Thus we conclude that it is preferable to use Rule W if possible, since the corre-
sponding {-value is closer to the optimal £-range than the value corresponding to
rule W'

TABLE II

" ¢ Mébius Transformation (2.6) Combined with Gauss-Legendre Rule G,
Applied to the Integral of Function (3.5b) in the Interval [—1, 1] with
ne {6, 12,18, .., 90} for Different &

: f 6 12 18 24 30 n{13)
0.983 3 3 4" 5 7 60
0.966 2 5 6 7 9 42
0.950 3 5 7 10 11 6
0.933 3 5 g 10 13 30
0.92% 3 5 9 1! 13 30

" 0.920 3 5 9 13 30
0913 3 7 9. . 13 13 24
0.906 3 6 9 12 13 30
0.900 3 5 9 12 13 30
0.803 3 7 10 13 13 24
0.888 3 6 9 13 13 24
0.880 2 5 9 13 13 24
0.873 3 5 9 13 13 24
0866 3 6 10 12 13 30
0.853 3 6 9 13 13 24
0.833 2 6 8 12 13 30
0.766 3 5 7 10 12 36
0.668 2 4 7 7 i 42
0.333 0 3 3 5 7 —

1 2 3 4 5 —

0.000

Note. Plotted is the number of exact decimal digits after rounding, a(13)
is the first value of » in the specified range where 13 exact digits are
obtained. Gauss-Legendre rules correspond to £=0. Working Rule W’
corresponds to £ =0.983, while the £-value corresponding to Rule W is close
to {=0.893.
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Though our main emphasis in this paper is laid on fixed quadrature rules it may
be noted that Mabius transformations can also be used together with automatic
quadrature routines.

We chose the routine DOIAJF of the NAG library as an ali-purpose automatic

* integrator. The performance of the routine may be controlled by giving two input

parameters EPSABS and EPSREL as user defined absolute and relative error
requirements. The output is the value of the integral, the number of integrand
evaluations, and an estimated absolute error of the result. We chose EPSABS =0
always.

- When DOIAJF was applied to function (3.3) on [—1, 1] the routine needed
357 integrand evaluations for EPSREL=10"7" and 399 evaluations for
EPSREL = 10", When DO1AJF was applied to the new integrand g{u) corre-
sponding to function (3.2) for £= —0.996 (compare Fig. 1), only 63 integrand
evaluations were needed for both relative error requirements. But it should be noted
that the transform method based on Gauss—Legendre rules needs only 20 integrand
gvaluations in this case for the same accuracy: In all cases the observed error was
less than 10", )

Thus if information on peak position or width is available it may be worth trying
to combine automatic routines with the appropriate Mdbius transformation. This
approach seems to be efficient enough for normal users. It also may be extended
easily to other coordinate transformations. A more complicated application of
Mobius transformations is the development of special-purpose automatic
integrators [23]. Which approach is better may be worth investigating by further
numerical studies.

4. DISCUSSION AND SUMMARY

Coordinate transformations in integrals allow the use of relevant information on
the behavior of the integrand to obtain new integrands which are easier to
integrate. Thus the numerical quadrature of functions with a sharp peak at or close
to one boundary of the interval of integration may be performed more efficiently

“ since the new integrand function is smoother and has a less pronounced peak.

In this paper we showed that Mbius transformations of a special type for finite
intervals, Eq. (2.6), in combination with Gauss-Legendre rules or general-purpose
automatic integrators are well suited for this purpose. It should be noted that the
numerical effort to implement these coordinate transformations is low, since no
additional transcendental functions have to be computed.

The coordinate transformation (2.6) depends on one parameter { which has to
be chosen in some way: Information on the width and/or position of the peak
should suffice for this choice. We suggested and tested two working rules, W and

" W', It turned out that Rule W led to better resuits than Rule W' in the examples

studied. This is not surprising since essentially Rule W utilizes information both on

_peak position and width while Rule W’ relies only on knowledge of the position.
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Certainly in each application of Mobius transformations as quadrature tools there
will be a range of adequate ¢-values. In the examples studied, this range turned out
to be broad; Working Rule W—and a bit less efficiently also rule W'—were useful
to locate this range; the choice of ¢ did not seem to be critical, It may be conjee-
tured that this holds in general.

The main emphasis in this paper is laid on coordinate transformations combined
with standard Gauss rules. This method considerably facilitates the numerical
quadrature of certain classes of functions without the necessity of computing non-
standard Gauss rules corresponding to special weight functions, In the case of
Eq. (2.6) combined with Gauss-Legendre rules we were able to determine all
those functions explicitly for which our method is exact. The results presented in
Section 3 show that the quadrature method for bounded intervals presented in
Section 2 are useful for the quadrature of functions with a sharp peak at or near
one boundary of the interval of integration. Though we have tested the method
only for a limited number of functions we think that we have chosen examples
which are typical enough to justify the statement about its usefulness. For semi-
infinite intervals the present method using Mabius transformations (29} in com-
bination with Gauss—Jacobi rules is cquivalent to the well-known Gauss—rational
rules. This sheds new light upon rules obtained using Mdbius transformations for
the finite interval in combination with Gauss-Legendre rules: They can be viewed
as rational rules as well.

In certain situations automatic integrators will be preferable to fixed rules,
Fortunately it is possible to combine coordinate transformations with automatic
routines as was described in the previous section. If an adequate transformation is
chosen, one can make use of the reliability of automatic quadrature and largely
avoid the costs of automatic integrators which are not adapted to the integrand. In
this way it is not necessary to develop a special-purpose automatic integrator for
every class of application. Instead, coordinate transformations are used as a tool
which does not require too much highly specialized knowledge on how to program
a good special-purpose automatic quadrature routine. In this paper we have shown
how this problem can be solved for the quadrature of functions with a sharp peak

at or close to one boundary of the interval of integration via Mobius transforma-
tions. ' :

APPENDIX A: QUADRATURE RULES

We discuss how the transform method using the coordinate transformations (2.6)
and (2.9) can be formulated in terms of quadrature rules.

In the case of bounded intervals one may use (2.6) in combination with
G,=J>", the n-point Gauss-Jacobi rule with abscissae u; and weights w, corre-
sponding to the weight function w™®(u)=(1—u)*(1+u)* on —l<u<! for
a> —1, f> ~1. With (2.5), we obtain new rules, R,=M™"%) with abscissac
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' szcp(f; ;) and weights w; = w;@"(¢; 1;) depending on n, o, f, and £ These rules

evaluate 7={"' | f(x) dx exactly, whenever f{x) is of the form

(1=x)*(1+x) =&\ (1—x) (1 +x)
R T R (e |

1
i———(fr) (A1)

for ¢ #0. Equation {A.l) holds because then the new integrand corresponding to f
is a polynomial of degree not greater than 2n — I, multiplied by w™®_ Equation
(2.8) is the special case x=§=0 of (A.1) corresponding to the use of Gauss—
Legendre rules. It is easy to show that these new rules converge to the exact value
of the integral for all Riemann-integrable functions in the limit # — 0.

1In the case of semi-infinite intervals one can also construct quadrature rules using
{2.9) but we will see that these rules are well known. We use (2.9} in combination
with G, =J{*# to obtain new rules R,/=3"7_, w,f(x,) with abscissae x; = ®(; u,)
and weights w;=w,®'({; 1)) depending on n, «, B, and £ These rules evaluate
exactly 7= f(x) dx, whenever both &> 0 holds, and f{x) is of the form

_ xr x=&\ X t
f(x)_(_xwpbr—l(x_l_g)_(x_‘l_&)aq.ﬁ.;.zp‘!n—l(m)a (A.2)

since then the new integrand corresponding to f is a suitable polynomial multiplied

~ by the Gauss-Jacobi weight function. But in the notation of Ref. [21] Gauss-

rational rules

S= Z wif(xl')s ' (A3)

i=1

with adjusted weights w, and abscissae x,, exactly evaluate the integral
I=(2 f(x) dx whenever

e, (1
1=t P () (A4)

“where ¢> —1, d>c+1, a+b>0, and P,(¢) stands for any polynomial in ¢ of

degree m or less. Comparing with (A.2), we see that we have reproduced these rules
for a=0, 6=¢, c=p, d=o+ ff+2 This means that—up to a translation of the
interval of integration—the use of Gauss-rational rules is equivalent to applying the
eoordinate transformation (2.9).

Hence we have established a relation between Gauss—rational rules on one hand
and Mdbius transformations for the semi-infinite interval combined with Gauss-
Jacobi rules on the other hand. Thus one can view rules obtained from the M&bius
transformation (2.6) using Gauss—Jacobi rules as .G, as an adaptation of Gauss-
rational rules to the case of a bounded interval.
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