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Preface

Investigationsof nonlinearwavesin magneto-orderedsubstancesstartedlong ago, and since then
considerableresultshavebeen obtained.Yet, as a rule, principal attentionhasbeenpaid to the spin
branch, both in insulating ferromagnetsand antiferromagnets.However, from the viewpoint of
applicationsandfrom the viewpoint of theory,electromagnetic—spinwaves(for brevity, EMS wavesin
the sequel)make as good an objectof investigationas spin waves. Moreover, in the investigationof
currently actual millimeter andsubmillimeterrangesEMS wavesare preferable.

A sizeablestock of results on EMS waves has been accumulatedup to now, but the articles
describingthem arescatteredin varioussortsof publications,not easilyaccessible.In order to takethe
nextstepin studyingEMSwaves,it is desirableto gatherandsum up theresultsobtainedthus far. This
is the purposeof the presentsurvey. Fromthe materialgatheredin it onecan seethatEMS wavesare
ratherdiverse.They can be monochromaticbut nonstationary,or stationary,shock, soliton-type,etc.
We hope this surveymay stimulatethe activity in the field, since,despitethe largenumberof similar
results,a review of new types of wavesis of interest;the reasonbeing that the wavesconsideredare
essentiallydifferent in their natureand properties.The propagationof EMS wavesin a waveguideis
also examinedin the survey. This problemis actualsince the situationreadily lends itself to technical
applications.But this problemis the only oneof its kind.

Now we will commenton material not presentin the survey. They are someinvestigationswhich
havenot beencarriedout, thoughthe needfor them is pressing.First, the nonlinearwaveexcitation;in
some casesthe equationinitially set up can be reducedto an integrableequation(Burgers, sine—
Gordon,NSE% KdV). Here the problemcan be treatedwith the inverse scatteringmethod.In other
casesone can use the automodelling technique,which however becomesrather difficult for an
experimentalrealization.

The interactionof nonlinearwaveswith obstaclesis of greatinterest.This interaction generatesa
specific emissionwhich can be usedfor the nonlinearwavediagnostics.We hopethe survey will also
initiate such studies.

1. Introduction

Owing to the Zeemanenergyof the magneticmomentin a magneticfield, the electromagneticwave
propagationcan be accompaniedby the excitationof magnetizationoscillations.Onthe otherhand,the
wave-inducedtime-dependentmagnetizationvariation leads,accordingto theelectromagneticinduction
law, to the generationof a solenoidalelectromagneticfield. The interactionof the solenoidalfield with
the magnetizationoscillationsresultsin coupledelectromagnetic—spinwaves [1—3].

In contrastto slow spin andmagnetostaticmagnetizationwaves[4—6],EMS wavespropagatewith a
velocitycomparableto thatof light, which meansthat electrodynamiceffectsmust be accountedfor in
the description of such waves. Besides,the space scale of EMS waves substantiallyexceedsthe
characteristiclength of the inhomogeneousexchangeinteraction [4] that determinesthe spacescaleof
spin waves.This permits oneto proceedwith the treatmentof EMS waveswithout taking into account
the inhomogeneousexchange,which drasticallysimplifies the analysis [4].

Typical frequenciesof EMS wavesbelongto the microwaverange,sothe deviceswhoseoperationis
basedon such wave processesare broadly used in modern microwave technology.Thus, practical
requirementshereservedas a stimulus for the thoroughexperimentaland theoreticalresearchof the
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EMS wavepropagationin ferromagneticmedia(see,e.g.,monographsin refs. [6—9]andthe literature
cited there).

In the investigationsof the physical processesand applications relating to EMS wavesprimary
attentionhasbeenpaidto studyingweakly excitedstatesof ferromagnetswhich can be describedby
usinga linearizedsetof Maxwell andmagnetizationdynamicsequations(theLandau—Lifshitzequations
from ref. [10]). As the exitation energygrows, the EMS wavepropagationis accompaniedby new
effects, such as monochromaticwave self-action, interactionof various elementarywave excitations,
etc.,whosedescriptionrequiresusinga nonlinearapproximation.Certaintypesof EMSwaves(solitary
or shockwaves) are substantiallynonlinear formations which can be describedonly by meansof
nonlinearequations.

It shouldbe notedthat nonlinearEMSwavesareinvestigatedfar lessthannonlinearspinwaves(see,
e.g., refs. [11—13])thoughthefirst investigationsof shockwavesin ferromagnets[14]precededthe first
attemptto analyzenonlinearspin waves [15].

In the presentwork we will considera broadclassof nonlinearEMS waves. In the secondsectionof
this paperwe will investigatethe propertiesof monochromaticfinite-amplitudewaves. Such waves
which arerathersimilar to elementarywaveexcitationsin a ferromagnet,i.e., to linear monochromatic
waves,can propagatealong a d.c. magneticfield in an isotropic ferromagnetor alongthe anisotropy
axis in a one-axisferromagnet.The spacestructureof monochromaticwaveswill beconsideredboth in
ferromagnetsandantiferromagnets;penetrationof awaveinto aferromagnetandthe resultingeffect of
nonlinear self-brighteningof the ferromagnetwill be also studied, as well as the structureof the
two-dimensionalweaklynonlinearEMS wavesin aferromagnetplate.

Section 3 of the work is devotedto studyingsolitary EMS waves in ferromagneticmedia.These
wavesdiffer from magnetostaticmagnetizationsolitons (the latter havebeenactivelystudied)in that
they havea greaterpropagationvelocity in comparisonwith that of light. We will considerwavesboth
in the isotropic and anisotropicferromagnets,as well as in an antiferromagnet.The propertiesof
two-dimensionalsolitary wavesin a ferromagnetplate will be examined.

In section4 nonlinearEMS waveswill be investigated,which arewaveswhoseexistenceis causedby
the dissipativenatureof the magnetizationdynamics,i.e., shockwaves.We will studythe evolutionof
simple wavesin a ferromagnetand an antiferromagnet.The front structureof stationaryshockwaves
will be studiedin one- and two-sublatticeferromagnets.

The article will be concludedwith an analysis of nonstationaryshock waves in a nonsaturated
ferromagnet.

2. Monochromaticand quasimonochromatic waves

2.1. Interaction of electromagneticand spin waves

Within the framework of the phenomenologicalapproachused in this work, EMS waves in a
ferromagneticallyordereddielectricare describedby the completeset of Maxwell equations,

rot rot H + (e01c
2)i12(H+ 4irM)h~t2= 0, div(H + 4irM) 0, (2.1)

and by the Landau—Lifshitzequation,
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= —gM X Heff + ~- M X ~, Heff= H + 13n(n M) + aV2M, (2.2)

where the dissipativeterm is given in the Gilbert form [16]. Here f3 anda are the constantsof the
magnetanisotropyandof the inhomogeneousexchange,respectively,n is the unit vectordirectedalong
the anisotropyaxis, g is the gyromagneticratio, M

0 is the magneticmoment of saturation,ij is a
dimensionlessrelaxationconstant.

In caseof small-amplitudewavesthe system(2.1), (2.2) can be linearizedand thusreducedto the
problem of an analysis of the dispersionrelation [3] relating the frequenciesand wave vectorsof
elementarywaveexcitationsof a ferromagnet.The resultsof suchan analysisaredescribedin detailin
the monographof ref. [4].

In caseof finite-amplitudewavesthere appearsome singularitieswhich will be consideredfor the
simple exampleof circularly polarizedplane monochromaticwavespropagatingalongthe anisotropy
axis in anondissipativelight-axis ferromagnet.Onecan easilyseethatsuchwavesaredescribedby the
solutionsof the system(2.1), (2.2); the solutionsmusthavethe form

M1 =M1+iM~=M0sinOexp(iwt—ikz), (2.3)

with constantvaluesfor the parameters0, w andk, 0 beingthe deviationof the magnetizationvector
from the direction of wavepropagation.

Substitutingexpression(2.3) into eqs. (2.1) and (2.2) yields a dispersionrelation,

w~(k,0)—w =4irgM0cose(s0w
21c2)I(k2— r

0tu
2/c2), (2.4)

where

w,(k, 0) = g(H
0+ 4irM0) + gM0(f3 —

41T + ak2)cos0 (2.5)

is the nonlinearspin wave frequency[4]. The quantity H
0 denotesthe externalmagneticfield applied

alongthe anisotropyaxis.
Let us examine the dispersionandnonlinearpropertiesof the wavesdefinedby eq. (2.4). The

substantially nonlinear wave processesin which we are interested occur in the frequency range
w gM0 — iO

t°s~,which is typical for the phenomenonof ferromagneticresonance.In this frequency
range, if one takes into account the smallnessof the coefficient w\/~~/c—~~/~~gM

0Ic i0
5, the

generalformula (2.4) implies a simple expression,

k2(w, 0) = ~ ~ 0) = ~ (2.6)

For cv <0 the abovedescribesthe spectrumof waveswith left rotationof the polarizationplane,while
in the frequencyrange0< cv < w

5(0, 0) and for cv> Wa(0)= w,(0, 0) + 4ITgM0cos0 it describesthe
spectrumof slow (wik < c[’../~) andfast (cv 1k> cIV~)waveswith right polarization. It is essential
that the inhomogeneousexchangeinteractiondoesnot affect the spectrumof the wavesdescribedby
relation (2.6). In the processof propagationof such waves, however, the excitationdegreeof the
ferromagnetspin subsystemcharacterizedby an angle of deviation of the magnetizationfrom the
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equilibrium axis 0 can be rather large.This fact justifies the introduction of the term coupled EMS
waves, for it pointsout the self-consistentvariation of the magnetizationwith the magneticfield in the
processof wavepropagation.

Onecan easily seethat in the frequencyrange cvj ~‘ cvi,(0) the left-polarizedwaves of an arbitrary
amplitude, as well as the right-polarized waves of the fast variety degenerateinto purely elec-
tromagneticwaveswith the phasevelocity cvlk= cIV~[4]. Onthe otherhand,eq. (2.6) showsthatthe
degenerationcanalso occurat an arbitraryfrequencycv for all wavesdueto the substantiallynonlinear
saturationeffect of the magneticpermeability,~4cv,0)—* 1. The growth of the wave amplitude H1 is
relatedwith the precessionangleof magnetizationby the relation

g~H1~= g~H~+ iH5j = w~(0,0)—witan 0.

Affected by the field, the magneticpermeability~(cv,0) can changenot only in value, but also in
sign. If as the amplitude grows the function p(w, 9) changesfrom negative to positive, then the
ferromagnetundergoesself-brightening;otherwiseit becomesopaque(undergoesself-dimming).

For instance, let /3 > 4ir while the frequencycv is in the opaqueregion for linear right-polarized
waves,

g(H0+ 4~-M0)< cv <g[H~ + (/3 + 4ir)M0]

[accordingto the dispersionrelation (2.6) k
2 ~(cv,0) <0 in the given frequencyrange]. Equation

(2.5) implies that the ferromagnetbecomestransparentin the consideredcaseif the waveamplitude
exceedsa critical value determinedby the condition

0> arccos{[cv — g(H
0+ 41TM0)]lgf3M0}.

On the other hand, a ferromagnettransparentto linear waves in the frequencyrange g(H0+

47rM~~)< cv <g(H0 + /3M0) becomesopaqueto waveswith an amplitude satisfying the condition,
0> arccos{[cv — g(H0 + 4irM0)]Ig(13 — 4ir)M0}.

Equation(2.6) correctly describesthe dispersionof the right-polarizedwavesof the slowbranchin
the wavenumberdomain

k = k~= [w,(0,0)Ic]~/41reoc2/acv~(0,0) 102 gM0lc.

In the domain k> k~the slow EMS waves degenerate,becomingnonlinear spin waves with the
dispersionlaw

cv = w,(k,0), (2.7)

wherethe functionalform of cv~(k,0) is given by formula(2.5). Comparingthe results(2.6) and(2.7),
one can concludethat the inhomogeneousexchangeinteraction is able to essentiallyaffect the EMS
wave dispersiononly for suchcv andk for which thesewavesdiffer only slightly from spin waves[4].
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2.2. Self-actionofa monochromaticwavein a ferromagnet

Before analyzingthe solutions of the system(2.1), (2.2) it is convenientto make the variables
enteringtheseequationsdimensionless.So we will set

H=4~rM0h, M=M0m, mI=1, r—4lTgM0t, c~=4irgM0~r~z; /3=4w/30.

For the sake of simplicity we will restrict ourselvesto the caseof an isotropic ferromagnet
magnetizedby a field h0 in the direction of the wave propagation.The solutions of the system
(2.1)—(2.2) will be sought in the long-wave limit when the effect of the inhomogeneousexchange
interactionmay be neglected.One can easily see that the planewave (2.3) is a particular caseof
monochromaticmagnetizationwavesof the form [17,18]

= sin 0(~)exp[icvr — ilI’( f)]. (2.8)

The quantities0(~) and ~P(~) determiningthe magnetizationstatevary self-consistentlywith the
magneticfield of the propagatingwave (for the self-actioneffect see refs. [19,20]).

By substitutingexpression(2.8) into the initial equationswe get a nonlinearwaveequation,

+ cv
2[~’(cv,0) — i~”(cv,0)]W—~0, (2.9)

where

h
1 = We~, W= R(~)e’~, R= VA

2+ B2, q~’= ‘I’— arctan(B/A),

— ij.t” = 1 + (sin20/cos0 R2)(A— iB) , (2.10)

A=h
0+1—cos0—cvI(1+i~

2),B=i~cvcos0I(1+ii2).

The quantityp~’— i
1il’ enteringeq. (2.9) playsthe role of the nonlinearmagneticpermeabilityof the

ferromagnet.When dissipationis absent,p.’(cv, 0) coincideswith the function ~(cv,0) defined by
formula (2.6).

Equation(2.9) is equivalentto the set of equations

R— ~
2R+ cv2~’(w,0)R= 0, d(~R2)Id~= —cv2p.”(cv, 0)R2. (2.11)

Note that the quantity ~oR2is proportionalto the flow energydensityof the wave,i.e., the secondof
the aboveequationsdescribesthe waveenergyabsorption.

Let us first neglectthe effect of magnetizationrelaxationon the wave propagationprocess.Then~
= 0 andthe system(2.9) coincidesformally with the equationsdescribingthe motion of amaterial

point in the field of centralforces(hereR plays the role of the radius,ç is the angleand~is the time).
The well-known formulasof classicalmechanics[21],
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R R

IdR I dR
~(R)’ ~=c~±Mj R2~(R)’

(2.12)
+ M2IR’~— M21R2— w2(h

0+ 1 — w)(tan
2O — tan2O

1)+ 2(cos 0 — cos0),

determineanimplicit dependenceof the amplitudeandthe wave magneticfield phaseon the coordinate
~. The subscripti in the aboveexpressionsdenotesthe valuesof the appropriatequantitiesat ~ = 0,
M ~

Let usdwell on the classificationof thesolutionsof eq. (2.12). Since ~is real-valued,the expression
I~

2(R)mustobviously benonnegativefor all physically meaningfulR. It is evidentthat c12(R
1)� 0. Let

P
2(R

1)>0, which can be achievedby a proper choiceof the integrationconstantR1� 0. Then for
M ~0 the equationI~

2(R)= 0 must haveatleasttwo roots R
1<R1 <R2 since ~I

2(R)—~cxwhen R—*0
and R—÷oc, accordingto the couplingrelation from eq. (2.10). If R

1 and R2 are simple roots of the
equationc1

2(R)= 0, then the function R(~)will oscillatewith a period A
0 definedby the relation

A0=2J ~y (2.13)

i.e., the self-actioneffectof the EMS wavesconsideredleadsto establishinga periodic structureof the
electromagneticfield and magnetizationin a ferromagnet.In the particular casewith R1 = 0 and
M

2 = w2js(0
1,w1)R~the equationcb

2(R)= 0 hasa multiple root R= R~,while solution(2.12)describes
magnetizationwavesof the form (2.3).

In the caseof M = 0 solutions(2.12) are of physicalinterest,for theycorrespondto standingwaves
and waves decaying exponentiallywhen ~ —÷ ~. While analyzing the standing wave structureit is
convenientto placethe origin ~ = 0 at the point wherethe waveamplitudereachesits maximum.Then
the expressionc12(R)assumesthe form ~2 = (cos 0 — cos0

1)f(0), andthe functionf(0) vanishesonly in
that domain of parametervalueswherethe waves areunstable.That is why the precessionangle of
magnetization,0( ~), for standingEMS wavesis a periodic functionpassingthroughzero, unlike the
caseof the wavespropagatingwith M � 0.

Solutions(2.12) correspondingto the exponentiallydecayingwavesexist only for thewaveswith the
right rotation of the polarizationplanein the frequencyrangeh0 < 0< 1 + h0.

In connectionwith the above-mentionedinstability of EMSwaveswe will examinein moredetailthe
functionaldependenceof thewavemagneticfield amplitude,R, on the magnetizationprecessionangle
0. This dependenceimplied by the correspondingformula (2.10) is schematicallyshownin fig. 1. Curve
I is typical for the left-polarizedwaveswith an arbitrary valueof cv and for the right-polarizedwaves
whosefrequencylies outsidethe rangeh0 < cv < 1 + h0. CurveII correspondsto the dependenceR(0)
for the right-polarizedwaveswith the frequencycv inside the indicatedrange. Onecan see that in the
latter casethe function 0 = 0(R)becomesmultiple-valuedif the amplitudeR exceedsthe critical value
determinedby the formula

R~= i~w\[1 — (1 + h0 — w)
2. (2.14)

This ambiguity was first establishedby Suhl [22]in a particularcaseof homogeneousmagnetization
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0 8~. ff12 B

Fig. 1.

precession;Suhi showedthat this ambiguity causesinstability of magnetizationoscillations. Let us
examine the stability of the EMS wave (2.12) with respect to the generationof magnetostatic
magnetizationdisturbancesin the wavenumberdomain gM0Ic~ k~ 1/a. The magneticfield of such
disturbancesis generatedby the magneto-dipoleinteraction,and in the one-dimensionalcaseconsid-
eredis a constituentpart of the longitudinal field h~.Substitutinginto the initial set of equationsthe
disturbedtransversemagnetizationin the form

m1 = (sin 0 + i~)~ , (2.15)

wewill obtain, neglectingdissipation,a linearizedequationto determinethe disturbanceamplitudeiii,

(1+h0—cv+iô/8r)i~+~tan
20(1+h

0_w)(,i+,~*)=0. (2.16)

For the disturbanceswhosedependenceon time is given by the factor ePT the dispersionrelation
follows from (2.16),

cos
20v2=—(1+h

0—cos0—cv)(1+h0—cos
30—cv). (2.17)

One can see that the quantity ~ is positive for the angles

= arccos3V~< 0 < °2= arccos = arccos(1+ h
0 — cv). (2.18)

Thus, the part of curve II in fig. 1 which correspondsto the anglesgiven by inequalities(2.18)
depictsunstableEMS waves.This instability is similar to anotheronewhichwas studiedin detailin the
theory of forced nonlinear oscillations [23]; this can be easily shown if one regards the relation
R = R(w,0) as giving the dependenceof the force amplitude R on 0, the amplitude of forced
oscillationswith the frequencycv.

Let us passnow to the analysisof decayingEMS dueto magnetizationrelaxation.We will assume
that the decayis weak (pS” ~ ‘). The approachis justified in most casessince the ratio ~“I~’is
proportionalto a small value i~— ~o2



174 F. G. Bassand N.N. Nasonov,Nonlinearelectromagnetic—spinwaves

The absorptionof the plane monochromaticwave presentsthe simplest case.When there is no
damping,the planewaveamplituderemainsconstant,while whenthe dampingis small, the amplitude
slowly decreases.That is why one can neglectthe small quantity R as comparedto ~‘

2R in the first
equationof (2.11) [24]. By solving the resulting systemof equationswe find the function 0(e)as an
implicit dependence,

(d[\/~’(0, w)R2(0)]
I 2 ~ (2.19)

J ~“(0,cv)R (0)

Calculatingthe 0(~) asymptoticallywhen ~—~ we arrive at the formula

0(~)—~0
1S(01)exp{— ~w[~s”(0,w)I~~’(0,cv)]~}. (2.20)

This differs fromthe correspondingformula of the linear theory only in the self-actionfactor S [20],

tan(01) [/~‘(~, cv) A
2(0

1) 1 1 f ( /~‘(o,cv) A
2(0) \ dO 1S(0~)= ~ ~ ~‘(ocv) A2(o) 2cos2~— + J Y~~‘(0, cv) A2(o) ~ sin0 cos01’

(2.21)

which regainsthe information on the nonlinearstageof the wave evolution. The coefficientA(0) in
(2.21) hasbeendefinedin (2.10).

It is muchmoredifficult to investigatehowthe absorptionaffectsthe propagationof the waveswith
amplitudesoscillatingin space.In the generalcaseonehasto apply the averagingmethoddevelopedin
ref. [25], but this methodenablesone to obtain an analyticalsolution for ratherspecialforms of the
function ~(k). If the amplitudeof oscillationsis not largeas comparedto its meanvalue, the problem
can be solved by usinga methodsimilar to the one consideredabovefor the planewavecase.

Let us use once more the formal similarity of the system(2.11) with ~il’(0) to the equations
describingthe motion of a material point in a field of centralforces.One can easilysee thata plane
wavecorrespondsto the motionof a materialpoint alongacircumference.In view of the smalldamping
the curveradiusR becomesa slowly decreasingfunction of ~.A rosette-typetrajectory[21]corresponds
to a wave with an oscillating amplitude; thus, the quantity R(~)can be representedas a sum which
varies slowly underthe actionof absorptionof the function r( ~)and oscillateswith the period of the
amplitude oscillation of the additional wave ü~(~) that contributesthe difference betweenthe wave
consideredand the planeone.

At
1a” = 0 (2.11) implies conservationof the momentumM = pR

2. Due to the absorptionM
decreasesslowly. Following ref. [25],we write an equationto determineM by averagingover the
secondof eqs. (2.11),

M —cv2(p.”(r+ ü)(r+ ~2)2) . (2.22)

In the first of eqs. (2.11) we mayneglectthe quantity r as being small in comparisonwith II. The
resultingequation,
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ü~=—w2.t’(r + ñ~)(r+ u) + M2/(r + t7)3, (2.23)

canbe regardedas an equationfor one-dimensionaloscillationsof a materialpoint in apotentialwell
[the function i2’(~) is, by the statementof the problem, periodic at ~“ = 0] with slowly varying
parametersdependingon the function r( fl. When i~—~0, i.e., in the caseof a planewave,eqs. (2.22)
and (2.23)must result in (2.19). Combiningthiswith eq. (2.23),we obtaina functionaldefinitionof the
momentum

M= w~
1a’(r)r

2. (2.24)

In the consideredcasewith z~~ r the right-handsidesof eqs. (2.22) and (2.23) can be expandedin
powersof ü~.For the sakeof simplicity, we will retain only the principal termsof the expansionand,
using (2.24),we arriveat the systemof equations,

i~=—a2(r)ui= _w2[4j~~(r)+ r ~- ~f(r)]i~,

(2.25)

[V~’(r)r2I= —cv~”(r)r2— cv ~ [~“(r)r2](u~2),

which describesthe self-consistentvariation of the functionsr( ~)andi~(~).Onecan easilyseethat the
equationdetermining the dependencer( 4~)differs from the equationcorrespondingto the integral
(2.19) only in one term proportional to (~2) which accountsfor the effect of wave amplitude
oscillationson the absorptionprocess.In the domainwherewaveswith oscillatingamplitudeexist the
conditions~‘ >0 anddr(O)/dO>0 are satisfied;theseconditionscan be usedfor demonstratingthat
the quantity 122(r) is positive. By using an adiabaticversion of the harmonicoscillatorequation,we
arrive at the equation

(~2) = i~Q(r~)I2Q(r), (2.26)

where ü~is the initial value of the oscillation amplitude i7( ~). Substitutingrelation (2.26) into the
secondequationof set (2.25) leadsto a nonlinearfirst orderequationwhich is integratedin the same
manneras (2.19).

As we have noted, in the caseof M ~ 0 solutions (2.12) describemonochromaticwaveswith a
constantor spatiallyoscillatingamplitude,while in the caseof M = 0 they describestandingwavesand
waves exponentially decaying when ~ ~. The latter can be realized in the processin which a
right-polarized magneticwave penetratesinto a ferromagnet,provided that the wave frequencycv
belongsto the opacity region for linear EMS, h

0 < cv < 1 + h0. Let us dwell on the corresponding
boundaryproblem, since it will reveal an interestingeffect of the nonlinear self-brighteningof a
ferromagnet.

Let a polarizedelectromagneticwaveh~exp[iwr — i(cv /V~)~] fall on the surfaceof aferromagnet
filling the half-space~>0. The field in this half-spaceis describedby a solution from (2.12)wherethe
quantityM which is proportionalto the energyflow mustbeset, in the consideredcaseof the complete
internal reflection, to zero.

Expressions(2.12) correspondingto exponentiallydecayingwavesmust, in the asymptoticregion
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~ ~,turn out to be expressionsof the linear theory.This determinesthe integrationconstantR1.We
will find the two remainingconstants0~and ~ with the help of the usual boundaryconditions that
requirethe continuityof tangentialfield componentson the ferromagnetsurface.It is easyto showthat

= arctan(R~/cvV~R1)while the quantity O~is relatedwith the incident wave amplitudeh0 by the
relation

4h~=F
2(01)nssin201_2LIo(1_cos0j)/cos01_2LIo(1_1Ie)(1_cos0

1~~LI0tan
20

1),(2.27)

wherethe quantity LI0 was definedin formula (2.18).
Let us examinenow the function F(01). Note that the variation rangeof the angle 01 in (2.27) is

boundedfrom aboveby the condition

01< 0~= arccos[Li0(1 + Vi + 8/LI0)], (2.28)

which follows from the requirement that the quantity ~
2(cv,0) in (2.12) should be positive. By

comparingeqs. (2.18) and (2.28),we arrive at the inequality O~<0< 02. Onecan easilysee that the
function F(0

1) reachesits maximumat the point 01 = 01. Thus taking into accountthe waveinstability in
the region 01 < 01 < 0~of magnetizationprecessionangles,eq. (2.27) determinesa decayingwave in a
ferromagnetin a unique way if the incident wave amplitude h~doesnot exceedthe critical value
hk = ~F(O1)that dependson the wave frequencyas

hk = ~(1— LI~’
3)[(1 — LI~/~)(1+ 4~3)3+ (LI

01e0)(2+ LI~/
3)]’’2 . (2.29)

For h~>hk the wave begins to penetrateinto a ferromagnet,bringing about the effect of the
nonlinearself-brighteningof the medium.The self-brighteningthresholdbecomeslower as the incident
wave frequencydecreases;in the vicinity of cv h

0 it maybe small,

hk (\/~I3\/~)(w— ho)~w— h0 + 9/8e04 1.

The graph of the function hk = hk(LIo) obtainedaccordingto formula (2.29) for the value of the
dielectricconstante= 8 (typical for ferromagnets)is shown in fig. 2. The asymptoteof the function
O( 4) in the consideredcaseof completeinternal reflectionof the wavehasthe form

O(~)= 01S(01,cv) exp[—w\/LI01(cv —

(2.30)
4 1 1

S(01,cv) -~ tan(~O1)exp~\/2(w — h0)

1/ cos
30—4

0 \ do
x ~ ~\/(cv— h0) — cos0 [cos

20— ~LI
0(1+ cos9)]1/2) Vi — cos0

Let usconsidernow the excitation in a ferromagnetcausedby propagatingEMS waves.The caseof
a planewave is the simplest.For a planewaveR(0) = R(01) = const.and ~ = w~~(cv,0~)= const.,so
the boundaryconditionsare reducedto the conventionalFresnelformulas,
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Fig. 2.

2h0 = [1 + Vjs(cv, 01)Ie0]R(0~). (2.31)

Taking into accountformulas (2.10)which determinethe quantitiesp~(cv,0) andR(O), we see that
the function0(h~)following from (2.31) for left-polarizedwavesis a monotonicallyincreasingfunction
for any negativevalues of the frequencylying outsidethe opacity region for linear waves,h0 < cv <

1 + h0. If cv belongsto the opacityregion,thenthe variation of h~within the interval(0,cc) corresponds
to the variation of the angle 01 in the interval 02 = arccos(LI0) S 01 < IT/

2, with R(0
7) = 0 if the

magnetizationrelaxation is not accountedfor. In the caseconsideredwe encounterthe hysteresis
phenomenon,as is the casein many nonlinear problems. In order to excite a propagatingright-
polarizedwave in the frequencyrangeh0 < cv < 1 + h0 the incidentwaveamplitudeh~mustexceedthe
critical valuehk determinedby formula(2.29).The resultingexpression(2.31)provesthata ferromag-
netic state exists in which aplane monochromaticwave is excited by an electromagneticwavewith
h~< hk, the wave being directedfrom the vacuum. A ferromagnetcan acquiresuch a statefrom a
similar statewith h~> hk by adiabaticallydecreasingthe incident waveamplitude.

A plane wave is a particular case of a monochromatic wave with an amplitude periodically varying in
space.Such waves arise under the action of an electromagneticfield on a ferromagnetplate whose
thicknessdoesnot exceedthe EMS penetrationdepth. Let usexaminethe resonanceon standingEMS
wavesin the simplestlinear resonatorformed by a layer of a ferromagnetof thicknessL sandwiched
betweentwo metallic plates.The function R in the consideredcasemustsatisfythe obviousboundary
conditionsdR(~= 0)/dc = dR(~ = L)Id~= 0; taking theseconditionsinto accountwe will transform
the function cP

2(O cv) from (2.12) into the form

2 2 /LI.(cos0+cos0.) \k (0,cv)=cvLI
0(cos0—cos01)~ 2 2 ‘ —2), (2.32)

cos 0 cos

where 01 = 0(~ = 0) is the value of the magnetization precessionangle on one of the resonator
boundaries. The energy flow in the considered case equals zero, when the absorption is not taken into
account. The frequency cv is assumed to lie in the transparency region for linear waves, so that a stable
field structure is realized within the resonator. So the expression in large parentheses in eq. (2.32) does
not vanish in the angular range 0 ~ 0 � irI2.
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Let us find the eigenvalue spectrumof the resonatorcv~(01).Having noted that the angle0 varies
from zero to O~at a distance equal to a quarter of the wavelength of its own oscillation, we will obtain
the equation for determiningw~(01) by equating the ratio of the resonatorlength L to half of the
oscillation wavelength (see eq. 2.13), to an integer n,

L — f dR(O,w~)
2nJ c~P(0,cv~) (2.33)

In the linear approximationeq. (2.33) implies a well-known formula

/1+h0—w,,(0)\’~
2 irn

h
0—w~(0) ) T

When the values of 01 are finite, a nonlinear shift of the resonator eigenfrequencies occurs. The
nonlinearity is especially pronounced for the right-polarized oscillations with a frequency close to that
of the homogeneousferromagneticresonance.When h0 — cv 4 1, the nonlinear frequencyshift cv~(01) —

cv~(0) becomes sizeable even for small 01 which one can see by analyzingthe relation

(1/cv~)(~0~+ h0 — cv~)”
2{2E(01[20~+ ~(h

11— w~)]_hI2) — K(01[20~+ ~(h0— w,,)]’’
2)} = L12n

(2.34)

which in the caseconsideredfollows from the general formula (2.33). In this formula E and K are
completeelliptic integrals.The functionaldependenceof cv~(01) for severalinitial valuesof r is shownin
fig. 3.

2.3. A monochromaticwavein an antiferromagnet

Equations(2.1), (2.2) and the solutionsobtainedfrom them describemonochromaticelectromag-
netic wavesin a ferrodielectricwith one magnetsublatticebeing characterizedby the magnetization
vectorM. Let us passnow to the analysisof nonlinearmonochromaticEMS wavesin two-sublattice
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magnets.We will restrictourselvesto the caseof a one-axisantiferromagnetwhosemagneticproperties
arecharacterizedby two equivalentmagneticsublatticeswith the magnetizationsM1 andM2 relatedby
antiferromagneticexchange[4]. Linear EMS waves in such a magnetwere studiedin ref. [26] while
nonlinearoneswere studiedin ref. [27].

The magnetizationdynamicequationsin the caseunder considerationhavethe form [4],

9M12Iôt= —gM12X Heff 1,2

(2.35)
Heff 1,2 = H — AM21 + f3n n•M1,2 + /3’n ii. M21 + aV

2M
12 + a’V

2M
21,

whereA is the constantof the homogeneousintersublatticeexchange,and M1 = M2
Let us examinethe solutionof the systemsof equations(2.1) and(2.35) in the long-wavelimit when

one may neglect several terms in Heff which are responsiblefor the inhomogeneousexchange
interaction.As usual,we introducethe vectorsof ferromagnetismM = M1 + M2 and antiferromagnet-
ism L = M1 — M2. Expressingeqs. (2.35) in termsof dimensionlessvariableswe have,

8mI8r+mX(h+f3~nn.m)+f3~n’llXn=O,
(2.36)

~91h9r+1X(h—A0m+f3~nn”m)+~ nim X n=0,

where 8ir/3~= /3 ±/3’ (we consider a case of a light-axis ferromagnet, SO /3 > /3’), 4~rA0= A,
M = M0m, L = M01. The remaining notation coincides with that of the previoussection. Properly
normalized,the vectors1 and m satisfy the relations

m’l=O, m1
2+11124. (2.37)

It is not difficult to seethat, asin the caseof a one-sublatticeferromagnet,monochromaticwavesof
finite amplitude may propagatealong the antiferromagneticanisotropyaxis. Passingto the circular
polarizationfor the transversecomponentof the vectorsm, 1 and h in eqs. (2.36), we arrive at the
equations

[h
0+ m~0— (1 + A0 — f3~)m~+ i ~9Ic~r]l1= l~[h±— (A0 +

[h0+ m~0— (1 — /3~)m~+ i ôIôr]m1 = m~h±— f3~l~l~
(2.38)

ol~It9r= Im(h~l1— A0m~l1), iim5IôT= Im(h~m1),

(8
2/ô~2— e92/ôr2)h

1= d
2m~Idr2,

where n = e~,the formula a
1 = a~+ ia~holds for all the quantities,h0 is a constantmagneticfield

appliedalong the anisotropyaxis. We will seekthe solutionof system(2.38) in the form
a1(~,r) a,,(~)e~’

T, a~= a~(~). (2.39)

It follows from (2.38) that if awave of the type (2.39) propagatesin an antiferromagnet,thenthe
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transversecomponentsof the vectorsm, I andh rotate aroundthe anisotropyaxis in the samephase.
We will assumethat the external field h0 is less than2[/3~(A0+ f3)]112 =2(/3~~A0)~

2,so that the
antiferromagnetin the groundstateis in the collinearphase[4]. Herem~

0= 0, so, combining(2.38) and
(2.39), we obtain the formulas

— — f3~l~+m5(w—h0+A0m5)
— K~ w — — 2 w

f30A0l~+ (cv — h0)(w — h0 + A0m~)
(2.40)

l~(w—h0+A0m~)
— ~ — — 2 ri~ ,

/30A0l~— (cv — h0)(cv — h0 + A0m~)

thatrelatethe magnetizationcomponentswith themagneticfield of thepropagatingwave.It is assumed
in eq. (2.40) that A0 ~‘ 1, /3~which is usuallytrue.

Relation (2.37) enablesoneto expressthe longitudinal componentsof the magnetizationm~andl~
that enterin the functions,ç andx~via the quantity h~2 Subsequentlythe last equationof the set
(2.38) is reducedto the closednonlinearequation

d
2h~Id~2+ w2[i + iç(cv, h~i2)]h~= 0, (2.41)

which is similar to eq. (2.9) describingnonlinearmonochromaticwavesin a ferromagnet.The sort of
solutions of the above equationis determinedby the form of the nonlinearmagneticsusceptibility
iç(w, h~i2)which is found from the equations

2 2 12 12 2

A
0iç(cv — h0 + m~I,c) cv~(i— 4m~— ~ h~)(A0iç — 1),

(2.42)
A0m~= — ~(w — h0){1 —[1— 4A0,ç(A0,ç — i)jh~i

2/(cv— h
0)

2]”2}

wherecv~= 4f.3~A
0.One can easily see that in the limit hj—~0relation (2.41) implies the standard

expressionfor the linear magneticsusceptibilityof the antiferromagnet

iç(w, 0) = (1 IA0)w~I[w~— (to — h0)
2] (2.43)

For small but finite values of the wave magnetic field amplitude eqs. (2.42) yield an approximate
expressionfor the nonlinearmagneticpermeability,

2 w~—(w—h
0)

2—2ihj21( 8ih~i2w~ \1/2
AOKW(W,ih~i) 41hi2 + [w~ — (to — h

0)
2 — 21hj2]2) 1

2cv
—~ p (2.44)

that shows that nonlinear self-action effects of monochromaticEMS waves in antiferromagnetsare
essentialonly in the vicinity of the resonancefrequenciescv = ±cv~+ h

0.
The expressionfor the magneticsusceptibility(2.43) enablesus two write the solutionof eq. (2.41)

in quadratures,the general analysis being similar to the one in the above-consideredcase of a
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monochromaticwave in a ferrodielectric.As an instructiveexample,we will examinethe structureof
standingwavesin an antiferromagnet.Taking accountof (2.44) thefirst integral of (2.41)hastheform

(dR)2 = ~2[~- ln(1 + ~2_ 2) - R2], (2.45)

whereR= h~andthe integrationconstantis chosenso that the boundaryconditionR—~ 0 should be
fulfilled at —+ cc, which correspondsto the autolocalizednonlinearoscillationsof the antiferromagnet
magnetization. One can easily see that the r.h.s. of (2.45) in the limit ~I_.*cchas the form
—cv2p~w,0)R2. Thus the solitary nonpropagatingwaveswe look for can be realizedin the frequency
rangecorrespondingto the opacity region of nonlinearmonochromaticwaves

w~+h
0<w<w~+h0+~/3~/A0, —w~+h0—\//3~/A0<w<—w~+h0. (2.46)

The analyticsolution of eq. (2.45) in the caseof small amplitudeshasthe form

~ \/i~L)i sech[wVi~(w,0)i~], (2.47)
A0

which is typical for weakly nonlinear solitary waves. One can see that the solitary wave amplitude
vanisheson the boundariesof the opacity regionsof linear waves (2.46). Nevertheless,the condition

4 — (cv — h0)
21 used in deriving expression(2.47) from eq. (2.45) permits us to usesolution

(2.47) only in the vicinity of the values cv = ±w~,+ h
0 ±

2.4. Dynamicsof Schrödingerwavepacketsof electromagnetic—spinwaves

We havethusfar studiedthe propagationof monochromaticEMSwavesin magnets.New interesting
physicaleffectsappearwhenEMS waveswith afinite spectrumwidth propagatein aferromagnet.The
analysisof weakly nonlinearquasimonochromaticwavesis of specialinterest,since,on the one hand,
suchwavesaremost typical for experimentsand applicationsand, on the other hand, the analysiscan
be carried out in the generalmannerby employing the well developedtheory of NSE (nonlinear
Schrödingerequations)[28—30].

At first, let us examine the simplest problem of the evolution of a quasimonochromaticone-
dimensionalEMS waveof a finite amplitudepropagatingin an isotropic ferrodielectricalong the d.c.
field. The initial equationfor the analysisis one that follows from the system (2.9), (2.10); this is a
nonlineardispersionrelation,

2 2 i+h0w+i~jcvk=w ~2 . (2.48)
h0—cv+~0+rqw

thatrelatesthewave frequency,wavenumberandamplitude.In the caseat handof a weaklynonlinear
wave,the amplitude,whoserole is playedby the angleby whichthe magnetizationvectordeviatesfrom
the direction of wave propagation,0, is small, 0 4 1. Let us confine the analysisto the slow branch,
assumingthat h0 4 1. Then the solution of eq. (2.48) can be representedas
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cv = cv(k, 02) + iy(k, 02). (2.49)

In the region of long-wavedisturbanceswherethe conditionk2 4 4h
0 holds,the functionscv(k, ~2) and

y(k, ~2) are as follows:

cv(k, 02) \/i~k(1— kI2\/k~+ 0
214h

0), y(k, ~2) _ ~k
2. (2.50)

In the region of short-wavedisturbanceswith k2 ~ 4h
0 the samefunctionsaregivenby the expressions

cv(k, 02) h0(1 — h0/k
2+ 0212h

0), y(k, 02) _ h~j. (2.51)

Following ref. [29], we will seek the solution of the system(2.1), (2.2) giving the transverse
magnetizationcomponentm1 = m~+ im~as

m1 = U(~,T) eT_~~ , (2.52)

wherew(k)= cv(k, 0) andthe envelopeU(~,r) growsslowly as comparedto the exponentialgrowth of
its arguments.

Relation (2.49) correspondsto the operatorequationfor the envelopeU( ~, T),

[_~ ~- + cv(k) — cv(k + i ~, 1u12)]u= iy(k + i ~, U12)U. (2.53)

Taking into accountthat the medium is weakly nonlinearand the envelopevaries but slowly, the
operatorcv(k + I 9I9~,(UI

2) in the l.h.s. of eq. (2.53) can be expandedin powersof i ~ and U(2
keepingseveralleading terms (see,e.g., ref. [29]). As a result,we obtainthe equation

7. ~ . ôcv ô 1 ô2cv ~2 t9cv 2\ . / . ~
~\l~_+1~ ~ ~ ~ (u( ~ (2.54)

Equation(2.54) with zero on the right is called a nonlinearSchrädingerequation[28].The form of
the solutionessentiallydependson the sign of the quantity aL(9 2cv/~k2,dcv /~U 2) Onecan easilysee
that for EMS wavesof the slow branchthe Lighthill criterion of the modulationinstability is satisfied,
a4 <0 [31] [relations(2.50) and (2.51) imply the inequalities~2t.oh9k2<0 and ôcv/l U(2 > 0]. In the
assumedconditionsthe wave in (2.52) is in the evolutionprocessdivided into a set of spatially localized
wavepackets,i.e., solitonsof the envelope,for which U(~,r) —+0 when ~ --+ cc~Equation(2.54)with
y � 0 describesthe magnetizationrelaxationeffect on the solitonevolution. A changein the spectral
composition of the wave m

1( ~,T) during its propagation can significantly affect the wave absorption
conditions (for instance, the spectrum can be shifted towards larger or smaller values of the
decrement).So for a correctdescriptionof the waveabsorptionone must considerthe behaviourof
y(k, U(

2) in greaterdetail than the behaviourof w(k, U(2). To this end, the operator y(k+ i o/

~ U(2) on the r.h.s. of (2.54) is expressedin a generalform.
Let us rewrite (2.54) in the canonical form
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i ~ + ~ + U(2U=~f(k+ifi ~ U(2)U=i1~[U], (2.55)

where

_____ ~/ ow \ 2 ________

T O(U(2T~ ~ =/3~—~T), ~ = o~wIok2(

~ Ow/O(U(~(’ y=~
0f(k+i~~,(U(2), f~1.

For ~ 4 1 the consideredproblemallows a simple analysison the basis of the perturbationtheory
developedfor solitons [32] that was createdin the framework of the inversescatteringproblem.The
theory of ref. [32] (see also refs. [33,34]) allows one to describe a slow variation of the soliton
parametersunderthe action of a structuraldisturbanceR[ U] and also to study the distortion of the
soliton shapein time. Following ref. [32], we will seekthe solution of eq. (2.55) in the form

U =

2K
0 exp[i(A0/K0)z + ip] [sechz + W(z,r’)], z = 2Ko(~’— g’), (2.56)

where the first term proportional to sechz describesthe envelopesoliton with the slowly varying
parametersK0(T’), A0(T’), p(r’), g’(T’). The distortion of the soliton shapeis describedby the term
proportional to the function W(z,T’).

The solitonparametersare found from the set of equationsdescribingthe adiabaticapproximation
[32]. In the caseunderconsiderationtheseequationsassumethe form,

= —
3K

0Re(J dz q*jq), ~ = —
8K

0 Im(J dz tanhz q*fq),

=2A0— ~ Re(f dzzq*fq),

(2.57)

= 2A0 — 2(A~— K~)—6 Im( f dz (1— z tanhz)q*fq),

q(z)=exp[i(A01K0)z]sechz, J=f(K +2if3K0dIdz, K~).

Using the Fourier transformof the quantity q,

q~= ~— J qe~dz = ~ sech[~i~(~+ A01K0)],

we obtain the relation
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Jq= ~ f di’ e~
5f(K — 2~A

0+
2~K

0 ~,K~)sech( ~) = e00)z~,

that allows substantialsimplification of eq. (2.57). Finally, we havesuch a setof equations,

dK0
6K

0 f , 2 dk’ dA0
26K

0 f k’dk’
~T=—-~-~j00 f(k_

2f3A+k~Ko) h2(k’ILI)’ ~J fcosh2(k~/LI)

(2.58)
dg’IdT’ = 2A

0, dçoldr’ = 2(A~+ K~).

Thesetdescribesthe solitonparameterevolutionfor an arbitrarydependenceof the decrementon the
wavenumberand amplitude.Here LI = (4 ir/$ )K0 standsfor the envelopespectrumwidth.

Set (2.57) is obtainedunderthe assumptionthat the function cv(k) changessmoothly.A question
mayariseas to how large the contributionin (2.54) is of the neglectedtermsof the expansionof the
operatorcv(k + i oIo~)in powersof i o/o~.Our analysisshowedthat taking into accountof the term
proportionalto 0

2w10k3doesnot changethe form of the equationfor the parametersK
0(r’) and A(r’)

in the system(2.57),but the equationsexpressingtheparameterg’ and ~ via K0 andA0 assumethe form

dg’/dr’ = 2A0 + 2~(A~+ K~/3), dço/dr’ = 2(A~+ K~)+ ~(A~—

(2.59)
$(o

3cvIdk3)(O2wIOk2~’

Let us passnowto the calculationof the function W(z,r’) in (2.56)which describesthe distortionof
the solitonshapein the evolutionprocess.Usingthe resultsof ref. [32] andrelation(2.58),wearrive at
the expression

W=_
2~f dz’f d~((~_iKo+tanhzl)2~(zF)_~

~ (~+ i~0+ tanhz)
2exp[i(~IK

0)(z— z’)] + 6K0 J dz’ d~
(,u—iK0)

3(,a+iK
0)

3 8iricosh2z~ -~

/ — K~ \ exp[—i(,a/K
0)(z—z’)]

x((~+iK0+tanhz~)
2tI~*(z~)_2 , ‘t)@)) . 3 . 3 (2.60)

coshz (~—1K
0)(~+1K0)

Equation(2.60) impliesthat in the referenceframefixed to amoving solitonthe explicit dependence
of the function W(z,r’) on the time r’ is determinedby the time-dependentparametersA0(r’) and
K0(r’) of the soliton, the parameterA0(r’) entering(2.60)only via the function ~(K, A, z’) from (2.58)
which characterizesthe dependenceof the decrementon the wave number.

Calculatingthe integraloverd~in (2.60)yields a rathercumbersomeexpressionfor W(z,T’) whose
asymptoticbehaviourfor z —~ cc hasa simple form,
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W--+ — —~-~ J dx e~[~(z+ x) + ~(z — x)j, (2.61)
81K

0
0

wherethe function ~(z ±x) hasbeendefinedpreviously.
Of greatestinterestis the analysisof the evolution of the wave packetas a whole. By substituting

into the adiabaticequations(2.57) the coefficientsderivedfrom (2.51) and(2.50)weobtainin the case
of the long-wavesolitons of the envelope(k

2 4 4h
0) the following simpleequations

dLI/dT’ —26k~LI= — ~ir
26LI3, dk~Idr’= — ~,ir26k~LI2, (2.62)

where k~(T’)= k — 2/3A
0(r’), in accordancewith definition (2.56), is a time-dependentwave number

that characterizesthe centerof the spectraldistributionof the wavepacket.Here 6 = 2\/i~~1k. The
integral of eqs. (2.62)

= ~k~0{1— + [(1 — ~ir
2 LI2Ik~

0)
2+ ~ir2 LI2/k~

0]h/2}, (2.63)

shows that in the evolution processof the soliton its spectraldistribution centre is shifted towards
smaller k~[k—+k~0(1— ~ LI~Ik~0),~ and k~0being the initial values of the corresponding
quantities].Here,accordingto the first of eqs. (2.62) the rateof the solitonabsorptionbecomesslower,
i.e., hereweobserveapeculiareffect of a nonlinearself-inducedtransparency(self-brightening)of the
medium.Figure 4 showsthe behaviourof LI(r’) calculatedby usingformulas (2.62) and (2.63) with

= 0 (curve 1), LI~Ik~0= 0.2 (curve 2) and LI~Ik~0= 0.4 (curve 3).
This peculiarity of the soliton evolution can be simply explained. It is well-known that soliton

solutionsof the nonlinearSchrödingerequationcan be regardedas coupledstatesof a largenumberof
elementaryexcitationsin the form of planewaves. During absorptionin a mediumwith adecrement
which is a growing function of the wavenumberk’, as in the casedescribedby eqs. (2.50), the soliton
spectrumcomponentscorrespondingto the left wing of the spectrumdensity function I ~i(k’) 2

I ~(k’)(
2 = d~e1~U(~,r) e~T~ 2 cosh2{[k’ — k~(r’)]/LI(r’)},

Fig. 4.
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are absorbed more slowly than the elementary excitations with larger k’ which correspond to the right
wing of the spectrum density. That is why the centre of the soliton spectrum distribution is shifted to the
left, towards smaller values of the absorption decrement. The nonlinear interaction resultsin such
energyredistribution among the elementaryexcitationscomprising the soliton, so as to make the
envelope shape close to the function U( ~,i-) (2.56); this is just the shape that ensures equilibrium
between dispersion and nonlinearity, which is a necessary condition for the soliton existence.

Short-wavepacketsof EMSwavesof the slow branch[the dispersionandnonlinearcharacteristicsof
such waves are described by relations (2.51) which arevalid for wavenumberssatisfyingthe inequality
k2 ~‘ 4h

0] decayexponentiallyowing to the magnetizationrelaxation.Herethe solitondoesnot moveas
a whole, since the absorptiondecrementin the region k

2 ~ 4h
0 is independentof the wavenumber,

accordingto (2.51).

2.5. Quasimonochromaticwavesin a ferrite waveguide

The characteristic spatial scale gM0lc of EMS wavesis of the orderof onecentimeter,so practically
all wave processesinvolving EMS waves occur in spatially limited structures.In this connectionthe
aboveanalysisof one-dimensionalwavesgives but a qualitativedescriptionof nonlineareffectsof the
propagationof intenseEMS wavesin real waveguideandresonatorsystems.Now we will investigate
the weakly linear wave propagationin a strip waveguidefilled with an isotropic ferrodielectricand
magnetizedin the direction normal to the metallic platesthat boundthe waveguide[35].

Let awave propagatealongthee~axis, let the externalmagneticfield h0 (internal field) be directed
along the axis. The initial equationset for the problemhas the form

VXh=OEIOT, VXr=—Oh/Or—OmIOr, OmIOr=—mX(h0+h), (2.64)

where, besidesthe dimensionlessmagneticfield h, we introduced the dimensionlesselectric field E,

E 4~rM0EIV~, V= e~0/Ox + ey OlOy, c~= 4irgM0’..f~x, cx= 4i~gM0V~y,

with the remaining rotation coinciding with that explained previously.
We will seek solutions of (2.64) which correspond(without taking accountof nonlinearity) to the

usuallinear waveguidemodes.Whenweaknonlinearityis takeninto account,the waveguideharmonics
becomes slow functions of the coordinatesand time. Our taskis to obtainand subsequentlyto analyze
the evolution equations of the amplitudes.The multiple scaletechniquewill be a convenientmethodfor
solving this problem [36].

Let usexpandthe field componentsin the transversewaveguidemodes.We will seekthe solution of
eqs. (2.64) as asymptoticexpansionsin powersof the wave amplitude,assumingthat the waveTEM
componentsare the principal ones.The quantitiesr~and ~ will be expressedin accordancewith the
general formula

a(T, ~, x) = a~(r,~)sin(nkdx), (2.65)

while the quantitiesm~,m2, h~,h~,~ will be obtainedin accordancewith the formula

C(T, ~, x) = C0(r, ~)+ ~ C~(r,~)cos(nkdx), (2.66)
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wherek~= irld, d being the ferrodielectric layer thickness.It is convenient to seek the quantity h~in
the form

= ~ + n�1 h~(T,~)sin(nkdX), (2.67)

with m~= m~+ m~.In the next chapter, representation (2.67) will be derivedin analyzing solitary
waves in a strip waveguide.

Let us introduceformally the smallparametera04 1 which characterizes the smallness of the wave
amplitude; let us also introducedifferent temporaland spatialscales r,, = a~rand ~ = a~.For the
wave TEMcomponents the following formula is valid:

C0 = ~ a~C~(r— ~Iu, T1, T2,... ~ ~ (2.68)

For the waveguideharmonicshaving the index n > 1 the corresponding asymptotic expansions begin
with termsproportionalto a~.The substitutionof expressionsof the type of (2.68) into set (2.64)and
taking into accountrules of differentiation, leadsto

0 0 0 20 010 0 20
~ ~ (2.69)

and relatedequationsof different order in a0. In (2.69) r0 = T — f/u.
The equationsof first order in a0 imply the usual formula,

(1) 1(OTm~0= m0(r1, r2, . . . ~ ~ . .)e °+ h.c. , (2.70)

which describesa linear monochromaticwave,with the dispersionlaw

u
2(w)= (b

0h0 — cv
2)/(b~— cv2), b

0 = 1 + h0. (2.71)

Otherwave componentsin the consideredapproximationhavethe form

h~= —m~= (iw/b0)m0e’°
1T°+ h.c. , h~]= ue~= [u21(1— u2)]m

0 e’~’
T0+ h.c.

The equationsof secondorder in a
0 for the TEM componentsof the wave are reducedto one

equationfor the quantitym~,

(~-~ + ~2) _- m~]= ~- [b~h0+ (b0h0 — cv2)2](~ + Vg1 ~) e~T0+ h.c. , (2.72)

whoser.h.s.is a resonancewith respectto the operatorin the l.h.s. The requirementfor the solutionto
be regularleadsto the following equationfor the amplitudem0:

2 3/2 2 2 1/20m0 0m0 — (c0h0 — cv ) (b0 — cv )
+ Ugr — Ugr = b~h0+ (b0h0 — to

2)2 , (2.73)
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that shows that the wave envelope (2.70) in the consideredapproximationpropagateswith a group
velocity.

Taking into account eq. (2.73), eq. (2.72) implies that the quantity m~has a structure similar to
that of (2.70), so in what follows we will unite m~and m~0in one expression, (2.70). The
second-order approximation equations will lead to the following expressions for the remainingwave
components:

= (2) 1 ~ e’~°+ h.c.xO —m~0=
~ Or1

2

h~
2~= 2u (2) .1 u /0m

0 0m0\______ ________ WT5 + h.c.zO 1+u
2 ~Y

0 ito (1—u
2)2 (\-~--—+u-~j-—)e

The systemof equationswhich is of secondorder in a
0for wavecomponentswith the index n � 1 is

representedby the threeequations,
2 2 2 (2)

/ 02 n kdu ~jj(2) nkdu c’m~~ (1 — Cos lTn) 1 02 (1) 2
2 ~ (m10)2) y~+ 1—u

2 Or
0 n~ (1—u) Or0Or0 1—u

(2) ~2 (2)Om cm
b0 ~“ + OT~ = nkduh~ (2.74)

2 (2) 2 2 2
(2) u

2 0 m~—h nkdu (2)
( 02 n2k~u\ Om~= (h — 2 2 0 2 m

5~
- 2?

0r~ 1—u’ Or0 0 1—u’ Or0 1—u

expressingthe componentsof the nth waveguideharmonicsvia the solutionsof the first approximation
(2.70). The solutionof eqs. (2.74) looks rathercumbersome;one can see,however,that the quantity

we will need further has the structure

~(2) = A~(w)m~e
2~wt0+ h.c. (2.75)

yn

The expression for the coefficient A~(cv) will later be given for severalparticularcases.
Let us examinethe third-orderequationsin a for the TEM componentsof the wave.After some

simple algebrathe initial ratherawkwardsystemis reducedto the threeequations,

Om~ ______
_______ ____________ ‘2+ b

0m~= — e’~°— ~ 1 C05 fl~ A~Im0Im0e~
T0+ h.c.Or

0 Or2 b0 ,, nir

21 1 / ~ 2 IWT()Om~ 1 0
2rn() e~wT0+ ito 0m

0 iWT~ 2 ~ + —~)Im0Im0e
_____ — h0m~+ h~0= ~ Or~ e + 2 1 — u b0Or~1

____________ ‘2+ ~ 1—cos ~ A~Im0I m0e~
T0+ h.c. +..., (2.76)

11-n

(3) 2 / Om
0 Om0\Oh~

3~ u2 Om~
0+zO _________ ________ ____________

Or0 1_u2 Or0 (l_U2)2~OT+uO~)e

1 u
2 / 0 ~)[(1+3U2)~+U(3+U2 0 1

+~ Or
1 )~_jmoe °+h.c.+....ito 1—u

2 Or
1 O~
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Nonresonance terms have been omitted in the r.h.s. of the equations, because they areinessentialfor
the subsequentanalysis.

Equations (2.76) can be easily reduced to one closed equation of the form (O2IOr~+
cv2)m~]= F e’~T0+ h.c. +. . . . The conditionthat the secularterm in the r.h.s.be absentleadsto the
requiredevolution equationfor the envelope

22 2 22 2 2~ o o ‘~ b
0w (b0 — cv )(3b0h0+ cv u )(b0h0 — cv ) 0 m0

+ Vgr m0+ [b~h0+ (b0h0 — w2)2]3

22 2 2b0cv(b0—cv) /3 cv 1 1—cosn~ 2
+ b~h0+(b0h0—cv

2)2~ +—~ + ~ A~Jm
0( m0=0. (2.77)

In deriving eq. (2.77) we assumedthat the TEM componentwas the principal componentof the
wave, so, in accordance with the equation just derived, the dispersionpropertiesof the envelopem0are
determinedonly by the TEM harmonicsstructure.WaveguideTM harmonicsaffect the nonlinearwave
properties.Sinceeq. (2.77) is a NSE [28], it is interestingto clarify the questionwhetheranysolitary
wavesof the EMS wave envelopeexist in the consideredwaveguide.

Onecan easilyseethat the dispersioncoefficient in the term proportionalto 0
2m

0IO~is positive for
the slow branchEMS waves (cv <\b~ii~)and negative for thoseof the fast branch (cv > b0). So, to
employ the Lighthill criterion (seethe precedingsection),one mustanalyzethe frequencydependence
of the coefficient before the nonlinear term in the evolution equation (2.77).

Assumingthe external field h0 to be small, let us examinethe slow branchwaves. The analysis
showedthat for k~ 1 in the low frequencyregion cv 4 \/ii~the expression for A~(cv) assumesthe form

A~(~)~_
1c0~(1+fl2k~1+4w/ho) (2.78)

In the caseof h
0 — cv

2 4 h
0 the coefficient A~(cv)is given by the formula

A~(W)~_
1:~” (1+n2k~ ho_w2y1 (2.79)

Substitutingexpressions(2.78)and(2.79) to (2.77) with the subsequentsummingover n showsthat
the coefficient in the nonlinearterm of the NSE is positive. Thus, slow EMS wavesareunstablewith
respect to automodulation.

Let us proceed with the analysis of the fast branch. Wewill confine ourselves to the case of high
frequencies, cv ~‘ 1; eq. (2.74) implies the following expression for A~(cv):

A~(w) — 4w2 (1 — cos 1rn)In3k~1r. (2.80)

Taking accountof (2.80), eq. (2.77) assumesthe form

• 7 Om
0 Om0\ 1 O

2m
0 to

2 / 1T2cv2\ 2

2iw~-~-—-+Vgr -~j--)— ~ — -~- ~,1—-~~-)ImoImo=0. (2.81)
Equation (2.81) shows that the fast EMS waves in the consideredwaveguideare unstablewith
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respectto automodulationin the frequencyregion b0 1 4 cv <V~kdhr (here the kd must be large
enough).In the higher frequencyregion the waves arestable.

The NSEwas thoroughly investigated,so thereis no necessityto write down the solutionof (2.77).
Note only that the formal smallnessparametera in this equationshouldbe set to unity. In thesolution
of eq. (2.77) the small parameteris the solitonamplitude.

3. Stationarywaves

The above-describedmonochromaticEMS wavesof finite amplitudeexistdueto the uniformity and
azimuthal symmetry of the forces acting on the magnetizationvector in the plane normal to the
direction of wave propagation.That is why the harmonicoscillationsof the magnetizationvectorare
excited by the monochromaticmagneticfield evenin the caseof a finite oscillation amplitude.The
magnetizationoscillationsarisingwhenan EMS propagatesat an angleto the magneticanisotropyaxis
or to the magnetizingfield arenot harmonic;as the waveamplitudegrows, the wavespectrumbecomes
enrichedwith higher harmonics.We will consider the structureof the simplest nonmonochromatic
wavesstabilizedin a ferromagnet,wavesdependingon the time t andthe spatialcoordinatez (through
the expressionz — Vt) directedalongthe propagationdirection [37—42].We will payspecialattentionto
analyzingsolitary EMSwaveswhich drasticallydiffer from the well-known magnetostaticmagnetization
solitons [11—13].

3.1. Solitary wavesin an isotropicferromagnet

First of all let usexaminethe structureof stationaryEMS wavespropagatingin thee~direction in an
isotropic ferrodielectricmagnetizedby the field H0 along the e~,axis. The initial setof equations(2.1),
(2.2) can be written in terms of the dimensionlessvariables,

/ 02 02 ~ 02 00 2 0 7 2
~ ———~)h,~=—7(cos0cos~), cos9 ~ =h1cos0—v0 ~i,~cos0 ~

— -~-~)h~=-~(cos0sin~),

2 2 (3.1)
cos0~=—(cosO+h2)sin0+v~[sin9cosO(~)+_~]

h1 = h~sin ~ — h~cos ~, h2 = h~cos~ + h1 sin ~, = 4irs0g
2M~Ic2,

where M~= M
0 cos 0 sin ~‘, M~= M0 cos0 cos ~‘. The remaining notation coincides with that used

previously.
Wewill be interested in the existence of the solutions of eqs. (3.1) describing the propagation of the

stationary solitary waves satisfying the boundary condition 0, ~ 4 1, h~—~ h0 = H0/4irM0, h~—*0 when
—* cc~Although it is difficult to find exact solutions of the set,one can determine,however,the

necessaryconditionsandthe domainsof existencefor solitonsolutionsto the magnetizationdynamics;
for this one needsto examine the solutions of (3.1) in the asymptoticdomain I I —+ ~, where the
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homogeneousstateof magnetizationis established.Here 0, ~ 4 1, permittingoneto linearizeset (3.1)
andseeksolutionsin the form of exponentiallydecayingwaves [43,44]. Setting 0, ~ ~ exp[— K( ~ —

we get in the asymptotic region the dispersion relation from (3.1),

K2~~ [~±(~2+4,~0 ~Loul)] 4~~~tL~+ ~u2—1 , (3.2)
4um 1—u u,~, 1—u

where ~ = 1 + 1/h
0, u~= v~h0.It is evident that the solutions of the dispersion equation (3.2),

K = K(u), which meet the condition Re[K(u)] ~ 0, correspond to solitary waves.
Analysis of relation (3.2) shows that there exist soliton solutions of the type [43,44] for which

(33)

K
2 ~ + 1— u2 ± [(~ + 1— u2)2 —

No electrodynamic factors practically affect the solutions obtained, due to the small value of the limit
velocity umV~O+ 1 (analogous to the Woker velocity) as compared to the velocity with which the
electromagnetic interaction is transferred in the medium.

Relations(3.3) can be obtaineddirectly from the systemof equations(3.1), after passingto the
magnetostatic limit h

1 —+ h0 sin ~, h2—o h0 cos ~‘. It should be noted that when the velocity of the
magnetostaticsoliton propagation uI <um(V~i~— 1), then the angles 0(~ — ur) and q( 4 — ur) mono-
tonically decrease when I~I-_*~c;whenthe velocity lies in the range um(V~— 1)< lul < Um(V120+ 1)
the decreasein 0 and~ is accompaniedby oscillations (cf. the resultsof refs. [43,44]).

Relation (3.2) implies the existenceof a new branch of soliton solutions of the magnetization
dynamicsequations.In the asymptoticregion thesesolutionsare characterizedby the relations

iIp.~~ u
2 <1 , K2 — (/L

0h~/u
2)(~

0u
2— 1)1(1 — u2) . (3.4)

The minimum velocity of propagation of the solitary waves of branch (3.4) far exceeds the maximum
velocity of the solitonsof branch(3.3), the former being of the order of the light velocity. This means
that in principle, solutions of (3.4) cannot be obtainedwithin the framework of the magnetostatic
approach.A very importantfeatureof the solutionsobtainedis the independenceof the quantity K,

which describes the spatial localization of a soliton, of the constant a; this constitutesevidenceof a
weakdependenceof the spatialstructureof the solitonof the consideredelectromagneticbranchon the
effective field of the inhomogeneousexchangeinteraction.Thanksto that, onecan give an exhaustive
analytical description of the considered solitary waves in many cases. Setting V~= 0 in eqs. (3.1), we
obtain the expressions ___________

sin 0= 1 . — / 1—u2 —tanh[K(~—ur)]
ucosh[K(~—ur)] sin~—~ /L

0u
2—1 \/o-2cosh2[K(~—ur)}—1

2 2 2 (3.5)
2 [p~

0(1—u)—~0u+1]
0~

4p~(1 — u )(p.0u — 1)

wherethe coefficient K is definedby formula (3.4).
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Analyzing (3.5) we see that the dependence of the soliton amplitude 5~fl(0max) on its propagation
velocity u is nonmonotonic;sin(Omax) = 1 at u2 = (,u

0 + 1)/
2/L

0 and vanishes at the end points of the
interval of permissiblevaluesof the velocity u from (3.4). It is important to bearin mind that at the
point u = [(j.~ + 1) /2~~]1/2 an abruptchangeoccursof the topologicalpropertiesof the solitary wave.
It is easy to see that in case of the solitons propagating with the velocities u( <V(IL0 + 1)I2~~the angle
~ growsmonotonically from zero when ~—* —cc to 211-when~ cc, i.e., the magnetization vector makes
a completerevolution aroundthe e~axis in the processof wave propagation.If the soliton velocity
exceeds the value [(~ + 1)/2,~~]~/2,then the angle ~ becomes an odd oscillating function, the values of
~ at ~ = —~ and ~ = cc being both equal to zero, while sin(q~~~)= ~c~(1— u

2)/(~
0u

2— 1)< 1. Thus the
considered solitary waves are topological solitons in the velocity range 1 ~ < u2 <(~ + 1) /2p~and
are dynamic solitons in the velocity range ~ + 1)/2~s

0< u
2 <1, in analogy with the magnetization

magnetostaticsolitons [11].
One should notice the relation between the expression K2 = K2(u) in formulas (3.4) with the

dispersiondependencefor linear EMS wavesin a transversallymagnetizedferromagnet[6],

2 2 22 2 2 2k (cv) = cv (~
0h0— cv )/(~s0h0— to ), (3.6)

which can be easilyderivedfrom (3.4)by settingK —* ik, cv = ku. Comparing relations (3.4) and (3.6),
we see that the interval of the admissiblevaluesof the propagationvelocities of solitary waves (3.5)
coincides with the gap separating the existencedomain of the slow-branch linear EMS waves
[u

2< 1 /p~
0,accordingto (3.6)] with thatof the fast-branch waves (u

2 > 1).
The interaction of the solitary waves of the form (3.5) is of utter importance, and to elucidate this

questiononemuststudythe correspondingnonstationarysolutionsof eqs.(3.1). In thegeneralcasethe
solution of this physical problem requires overcoming considerable mathematical difficulties. Wewill
seize the opportunity to substantially simplify the initial equations in the case where the waves
propagatewith velocities close to the lower limit (3.4) in a ferromagnetpositioned in a field
H

0 441TM0, with ~ —4irM0u
244irM

0, according to (3.1). One can easily see that under such
conditionsthe magnetodipolefield H~= —4irM5 generatingthe effective anisotropyof the typeof the
light magnetizationplanewill havea dominanteffect on the magnetizationdynamics.Thanksto this
fact the vectorM deviatesonly slightly from thexy planeduring the wave propagationprocess.The last
equation in (3.1) implies the approximate relation between the angles 0 and ~

0—Ow/Or, (3.7)

which permits one to reducetwo magnetizationdynamics equationsto one,

O
2~bOr2= h~cos~ — h~sin ~, (3.8)

not containingthe wave function 0(4, r).
In the theory of magnetization,magnetostaticwaves in a light-plane ferromagnet,relation (3.7)

yields (seeref. [11]) a closedsine—Gordonequationof the function~‘(~,r). In the case of EMSwaves
eq. (3.8) mustbe solvedjointly with the equationsfor the vortex electromagneticfields from (3.1),h~
and h~, where one must set cos0—41. We obtain

(~~i)hy~cosc’, ~ (3.9)
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Let us utilize now the fact that thewavevelocitiesarecloseto the value1 /V~ V7~4 1 in order to
lower the orderof the waveequations(3.9). Let ususea referenceframethat moveswith the velocity
v’ii~.The correspondingLorentz transformation,

\/1—h
0~’—\Th~r, \/1—h0r’=\/7~r—h0~,

virtually coincideswith the Galileantransformation.Taking accountof the slow variation of the vortex
field andmagnetizationin the new referenceframe(0/Or’ 4 ObOe’), we will get,by combining(3.8) and
(3.9), the following equations:

0 • O~’ 0 . Op
~ (h~— h0 cos~p)= 2h0 sin ~ ~, ~ (h1 — h0 sin p) = —2h0cos~

2 (3.10)
h0 2=h~cos~—h~sin~.

Furthersimplification is achievedby the changeof variables,

f1=h1cos~—h~sin~,f2=h~sin~+h~cos~—h0. (3.11)

By substituting(3.11) into (3.10) andexcludingthe quantitiesf1 andf2, wearrive at a closed equation
for the angularfunction p( ~‘, r’),

O~bOr’+~(O~/O~’)~+~O
3q2/O~’30. (3.12)

First of all, considera stationarysolution of eq. (3.12) whichcorrespondsto a solitary wave. It is not

difficult to showthat such a solution hasthe form

= ii~+ 2 arctan[sinhV~(~’— u’r’)], sin ~ = ~ ,I’,I~. (3.13)

Comparingtheobtainedsolutionwith the exactsolutionof (3.5) weseethat theycoincide,provided
that

u’=ubV/~—141, (3.14)

which agreeswith the assumptionsunderlyingthe derivationof eq. (3.12).
The evolutionequation(3.12) possessesa remarkableproperty:it is fully integrable.Differentiating

this equationwith respectto ~‘ andapplyingthe linearexchangeof variables~‘ = 2~”,r’ = 16r” leadsto
the mKdV equationin the canonicalform [45],

O~1, 01W O~I’ I
~ co=2J ~Pd~”. (3.15)

The generalanalytic solution of this equationwas found in ref. [45] by a methodemployed in the
inverse scatteringproblem. This N-soliton formula enablesanalytic description of the interaction
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betweenthe solitarywaves(3.15). The interactionof solitary wavesin (3.5) can beexpectedto havethe
characterof elasticcollisions in a broaderrangeof velocitiesthanin the caseof (3.14). This conjecture
is supported by the above-mentioned nonzero topological charge of the solitary waves (3.5) whose
velocities lie within the interval 1/p~<U2 < (,a~+ l)/2/.L

0.
Let usdwell on anotherlimit casethat also allows a drasticsimplification of eqs. (3.1). Expressing

the vortex electromagneticfield componentsh~andh~via the angularvariables0 and~ by meansof the
magnetization dynamics equations,

h~+ ih~= —cos 0 e’~+ (i/sin 0)O(cos0 e’~)IOr,

and substituting the relation obtainedinto the wave equations(3.1), we obtain the closedequation,

2 2 2

~ . (3.16)

Let us consider the waves whose propagation velocities are close to the upper limit (3.4), i.e., u 1.
Equation(3.16) describing such waves can be substantially simplified by using the inequality O/O~+
0/Or —~ (1 — u)O/Or4 0/Or. It is not difficult to see that the systemof equations

/ 0 0 ~ 00 0~ / 0 0 \/ O~’\ . 00
+ ~—) -~~--— ~ cosO -b-- =0, ~ ~—)~cot0~—) + ~sinO =0, (3.17)

with the obvious integral

(00/Or)
2 + cot20 (O~/0r)2 const., (3.18)

is valid.
The constant in (3.18) is determined from eq. (3.1) and it is equal to ~ As a result, we obtain a

closedequationfor the quantity 0(~,r),

(O/O~+ O/0r)O0/Or + ~0\~i~ — (00/Or)2 = 0. (3.19)

In deriving eq. (3.19) we consideredthe exact solution of (3.5) that showsthat the solitary wave
propagationwith velocities u 1 is accompaniedwith a small excitation of the magnetization (0 4 1,

One can easilysee that the solitonsolution of eq. (3.19),

O~8~
0h0(1—u)cosh’[V~0h0/2(1 u)(~—ur)], (3.20)

coincides with (3.5), provided that

1—u41/4~t0h0. (3.21)

Equation (3.19) is fully integrable and has N-soliton solutions. By the exchange of variables
00/Or= ~0h0sin W, ~ = ~‘ + ~,a0h0r’,r = — ~t0h0r’, eq. (3.19) is reducedto the well-known sine—
Gordonsolution,
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O2W’I0~’Or’= sin ‘1’, 0 = —2 O~PIO~’. (3.22)

The solitonsolutionsof eq. (3.22) havebeenthoroughlystudied;in particular,the N-soliton formula
describingcollisions of N solitonshasthe form [46]

~02 = in detIB2 + I( , B
11 = [V~1/(k~ + k)] e K1+K1)~ C1 = e_T’l

2lCi+~~1, (3.23)

whereI is anN x N unit matrix K
1, K, and areconstants.Formula(3.23) showsthat the collision of

the solitary waves underconsiderationhasan elasticcharacter.

3.2. Wavesin an anisotropicferromagnet

Let us pass now to analyzing how the magnetic anisotropy affects the propagation of the stationary
EMSwaves of finite amplitude. First we will consider the solitary wave dynamics in a light axis
ferromagnet.We will introduceangularfunctions0 and ~ that describethe magnetizationvector in a
polar systemof coordinateswhoseaxis coincideswith the magneticanisotropyaxis n. We obtain

M5 =M0(cos0cosx~—sin0cos~‘sin~~), (3.24)

where cos x~= e~,and the axis e~hasbeenchosenso that the vectorn lies in the plane xz.
Let us consider the structure of the stationary solitary waves propagating along the anisotropyaxis

(x~= 0). Substitutingexpressions(3.24) into the generalsetof equations(2.1), (2.2),wewill arriveat
a setof two nonlinearequationswhosesolution is

2 2
2 a—b 2 Utan (0/2) = 1 . 2 , K~= f3~— — 2

1 + 2a(a + b) sinh [K11(~— ur)] 4v0 1 — u
(3.25)

2 2 2 22 2 2 21/2b = 1 — 2V0/u , a = [(1 — 2V0/u ) + 4(V0/u )K11]

The solutiondiffers from the oneobtainedfor the first time in ref. [15]only by the termu
21(1 — u2) in

the expression for K~(u)which is due to the EMSinteraction. The domain for the existence of the wave
in (3.25) is obtainedfrom the condition KM(u) >0; it is determinedby the inequality U2<4f3

0L’~ —

16f30v~ 4/3~v~,which coincideswith the one establishedin ref. [15] for magnetostaticsolitons.Thus
only magnetostaticmagnetizationsolitons of the stationaryprofile can propagatealongthe anisotropy
axis in a light axis ferromagnet.

Another situationoccursfor x~~ 0. Let us considerthe equationset (2.1), (2.2) in the long wave
limit K~V~41. Here the equationsthat determinethe variation of the functions 0 and ~ assumethe
form

= —[sin x~/(l— u
2)][(1 — cos0) cos~ + sin0 cos~ sin x~]sin ~

sin0[u~+i_ ~ +(/3~—cos2~]

sin,y cosx . sinx

2 “ sin0cos~— .~ ‘~[(l—cos0)cosx~+ln0cos~sinx]cosocosq,.U i—u (3.26)
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The solution of (3.26) is

I dy ~—ur
i yQ(y) u(1—u2)’ y=tan(0/2),

~ (3.27)

~ y=0.

Examinethe structureof thesolitary waveswith y—*0when —-* cc~The condition Q2(y) > 0 in the
asymptoticregion I I —~ cc impliesthat theadmissiblevaluesof the solitonpropagationlie in the interval

(3.28)

The above inequalities, valid for solitons of both branchescorrespondingto differentsigns(~)of the
term Q2(y) in eq. (3.27), show that the minimal admissible velocity of the EMS solitonsconsideredis
determined by the value of the magnetic anisotropy constant /3 = 41T/30, the dependence Umjn(/3~)being
the sameas the correspondingdependenceof theminimumsolitonvelocity in anisotropic ferromagnet
on the constanttransversalmagneticfield H = 4irh

0 [see eq. (3.4)]. This is quite natural, since the
quantities /3 and h0 determinethe boundaryof the opaquenessregion for linear monochromaticEMS
wavesin the correspondingcases[seeeq. (3.6)]. Accordingto eq. (3.28), the width of the interval of
the admissiblevaluesof the solitary wavevelocities tendsto zero whenx,,—~ 0.

A characteristic spatial soliton size is given by the decayingdecrementof the function y( ~— ur) in
the asymptotic region. Equation (3.27) yields the formula

d 1 + /3~ / 2 /3~ ~1/2/ sin
2x~ + f3~ 2\ 1/2

~ln[Y(~_ur)]-4u(lU2) ~ — ~ —U) , (3.29)

indicating that in the range of velocities given by (3.28) the condition that hasbeen usedin deriving
(3.27), K~V~4 1, is satisfied. This condition meansthat the inhomogeneousexchangeaffects the
structureof the consideredwavesonly slightly.

According to eq. (3.29), the solitonsunder considerationare delocalizedon the boundariesof the
admissible velocity region. This is true, however, only for the case u2 —* (/30 + sin2x~)/(1 + f3~).
Analysis of eq. (3.27) showsthat for u2 = /3~/(1 + f3~)the solutions become algebraic solitons described
by the expression,

sinx~ ( (1 + /3)2 sin2x~

y Icosx~~V/3o/(1+/3o)I~1+ [cosx~~V/3
0/(/30+1)]

2 (~_ur)) . (3.30)

At x~= 0 the amplitude of the solitary wave (3.30) vanishes which shows that EMSsolitons cannot
propagatealong the anisotropyaxis.

Let us analyze the dependence of the soliton amplitude and of the asymptotic values of the
magnetization rotation angle ~ on the velocity u and the orientationanglex~.

The soliton amplitude is found by meansof solving the equationQ2(ymax)= 0,
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max ~ (331)
y1 = Iu

2—cos2x~I

From formula (3.31) it follows that the amplitude y_ grows infinitely when the solitonvelocity tends
n ±cos~ This situation actually occurs when the orientation angle belongs to the range
rctan(V1/(1+ /3~))<x~<arctan(\/T]~),the amplitudey÷being finite. The values of u = ±cosx~
ivide the existencedomainof the minus-branchsolitons into regionswith different typesof magnetic
~omentrotation around the anisotropyaxis.

Formulas(3.27) permit us to determinethe asymptoticvalues of the angle ~,

= —cc) = —tp(~ = cc) = —arccos[\/u2(1 + /3~)— f3~]sin Xn (3.32)

Relations (3.32) hold for solitons of the both branches;they show that the solitary waves under
Dnsiderationare magnetizationrotation waves, similar to the correspondingmagnetostaticwaves
[1, 15].

As hasbeenshown, the stationarysolitary EMSwavescannotpropagatealongthe anisotropyaxis.
hat is why it is interestingto investigatesolutionsof the moregeneralform

O=0(~—ur), pcvr+~P(~—ur), (3.33)

hich dependon the two parameters:cv and u. The waves of the type consideredwhich satisfythe
Dundary conditions 0—*0 when I I — cc are called envelopesolitons [47] and are being extensively
udied in the magneticsoliton theory [11—13].By substituting(3.33) into the initial set of equations
~.1),(2.2) and (3.24) at x,, = 0, we obtain the following equationsfor the functions0 and ~P:

+ (~ + iu ~j)2]Re’~ + (~+ iu ~)2 sin 0 e’~=0,

cos 0 R= [1+ (f3~+ ~
0

2~ — 1) cos0 — cv + &1’] sinO (3.34)

— V~O—icosO[uO+ V~(20~Pcos0+ V’sinO)].

It is difficult to obtainan analyticsolution of eq. (3.34); that is why we will considerthe solution in
e asymptotic region I~I_*ccwhere 0—*0, so that the equationbecomesa linear one. By setting
efl” — exp[—iK( 4 — ur)] we obtain from (3.34) the dispersionrelation,

22 2 2 2
(f3

0+Kv0—cv—Ku)[K —(w+Ku)]=(Ku+cv) , (3.35)

at gives the quantity K as a function of the parameterscv and u.
A necessarycondition for the existenceof solitonsolutionsof eq. (3.34) exponentiallydecreasing
~enI ~I—*cc is that the dispersionrelations(3.35)havecomplexroots. The region in the (cv, u) plane
iere the function K(cv, u) assumescomplexvaluesdeterminesthe existencedomain of the envelope
litons of EMS waves.
Let us first examine solutionsof (3.35) in the long wave limit KV0—*0 which separatesthe EMS
Emnch.A third-orderequationfollowing from (3.35)remainsrathercumbersome,andthe well-known
~ebraiccondition that complexroots will appearbrings about little information.
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In the caseof ~ 4 1, realizedin practice,the boundariesof the region of existenceof EMS solitons
can be determinedanalytically. Taking into accountthat eq. (3.35) in the regions Ito + K ul 4 1 and
Ito + K ul ~‘ /3~(theseregionsoverlapowing to the condition f3~4 1) can be solvedwith respectto the

quantity to + KU, we will rewrite (3.35) in the form cv + KU = cv,(K),

cv
12(K) = — ~K

2(1 ~ ~Ji+ 4f3
0/K

2), to34 = ~(1~ Vi + 4K2). (3.36)

The numberof real roots of eq. (3.35) at v
0 = 0 equalsthe numberof intersectionsof thestraight line

cv + KU with the curvescv,(K) on the (cv, K) plane. A simple analysisshowsthat the boundariesof the
domainof solitonexistenceon the (to, K) plane,which correspondsto the absenceof threeintersections
of the straight line cv + KU with the curvescv,(K), are given by the equationsof the tangentsto the
curves cv,(K). The domain of existenceof the solitons under considerationis shadedin fig. 5, the
boundarycurvesbeing given by the equations

U12(to) = 2\/~[1~ (cv/2f30)(~If f30/cv ~ 1)]3/2[2 ~ (cv/2130)(V1 + 8I3~/cv~ 1)]’
________ (3.37)

U3(cv) = 2\/cv(1— cv).

The precessionfrequencyof magnetizationin the properreferenceframe changeswithin the range
0< cv <1. Onecan showthat in the caseof arbitraryvaluesof the constantmagneticanisotropyf3~the
EMS solitonvelocity is boundedby the condition I U( <1 while the frequencycv lies within the range
0< cv<1 + /3g.

Let us examine now the domain of existenceof magnetostaticenvelopesolitons. Here we have
to/K— u—v041,and we get from (3.35),

/30+K
2V~—cv—Ku= 1—(w/K+u)2~ +U)2~V~41. (3.38)

Accordingto (3.38), the domain of existencefor the solitons is given by the formula

u2<4v~(/3
0— cv), (3.39)

: CL,

Fig. 5.



F. G. Bassand N.N.Nasonov,Nonlinear electromagnetic—spinwaves 199

which coincideswith the result first establishedin ref. [48]. The parabolain (3.39) that delimits the
domainof existenceof the magnetostaticsolitonsis schematicallyshown in fig. 5.

Considernow the spatial structureof the solitary waves of the EMS envelope,starting the analysis
from (3.34) in the long-wavelimit kV0—* 0. According to fig. 5, such an approachis justified, if the
solitonparameterscv and u are not simultaneouslycloseto cv = f3~,u = 0.

The simplestcaseto analyzeis that of a solitary wave at rest (U = 0). Here the wavesconsidered
form a particularcaseof the aboveconsideredmonochromaticstandingEMS wavesin a ferromagnet.
Wewill not write down ratherawkwardgeneralrelations,but give only the correspondingweaklylinear
solution of eqs. (3.34),

0 ~‘(2/\/~)\/(1 + /3~— cv)(cv —$0)sech[cvV~1 + /3~ cv)/(cv —/3~)~], (3.40)

which is valid for 1 + /3~— cv 4 1, 13g. It shouldbenotedthat the solitonsolutions(3.40) can occuronly
in an anisotropic ferromagnet and not in an isotropic ferromagnetin the consideredcaseof mono-
chromaticwaves.

Finding an analytic solution to the systemof equations(3.34) which describesthe propagating
envelopesolitonsin the generalcaseis difficult. Examinea particularcasewith /3~~ 1, 02 4 1, cv 1.
Herethe set of equations(3.34) is approximatelyreducedto the equation

o e’~=(~ + iu ~ (i — cv — ~/3~02— iu ~ e’~, (3.41)

which hasthe analyticsolution

~i~’=~U(2to—1 + ~I3~O2),

(3.42)
0 \[4cv(1 — cv) — u

2] /cvf3~sech[ ~\/4cv(i — cv) — u2(~ — ur)].

The soliton propagationvelocity (3.42) is boundedby the condition lul <2\/cv(1 — cv), coinciding
with the equationof the curveU

3(cv) from (3.37) that delimits the domainof existenceof the envelope
solitonsof EMS waves. It is easyto seethat as u—* 0, then solution(3.42)becomes(3.40) andaccounts
for the conditionscv 1, /3~4 1. According to (3.42), the solitonsunder considerationaredelocalized
on the existencedomainboundary,the amplitudetending to zero.

The solitary EMS wavesunder considerationare characterizedby a significant (by threeto four
ordersof magnitude)excessof the propagationvelocity comparedto the maximumpropagationvelocity
of the magnetizationmagnetostaticsolitons. We will analyzebelow the caseof solitary wave propaga-
tion in an easyplaneferromagnetalong the difficult magnetizationaxis; herea physically interesting
situationariseswhenmagnetostaticsolitonscontinuouslybecomeEMS ones.

Let usexaminethe solutionsof the initial systemof equationsfor ~ <0 andn = e~.In this casethe
magnetizationvector lies in the xy plane, the direction of m in this planebeing not fixed (an infinite
degeneration).We will study the stationarysolutionsof the system of equations,using the notation

= sin0 coscp, m~= sin 0 sin ~,m5 = cos0 (in the stateof equilibrium the vector m being directed
alongthe e~axis). The equationsfor the angularfunctions0 and~ havethe form,
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u~cos0 = (cos2o~ + ~ cos0 sin ~,

2 (3.43)
U~cos0_v~(O+c25in0cos0)+(

12+(/30I)sinocoso—1—u
2 sinOcos~.

To delimit the existencedomainof the solitary waves,considersolution(3.43) in theasymptoticregion

I ~I—* cc with 0 4 1 and ~ 4 1. A dispersionrelation similar to (3.2) follows from (3.43); it determines
the dependenceof the spatialsize of the soliton, k ~,on its velocity,

k2=~{1+(/3ol__ 2 +[(1+Is
0i—~— 2)+ 4u

2 (1+I/3~I)]I. (3.44)
2v

0 V0 1—u V0 1—u 1—u

Let us studythe limit expressionfor k(u) in the rangeof smalland largevaluesof the velocity u. In
the region u

2 < U~= (1 + I I3
0I)v~eq. (3.44) implies that

2 2 I I 2 2k ~“km=(V1+ /3~ o)V(
1U )/u

0. (3.45)

Equation(3.45) describesmagnetostaticsolitons[15], andis easyto comprehendby consideringthe
solutionof (3.43) in the magnetostaticapproximation.This solution is

sin0 = ~i — u
2/u~sech[km(~ — ur)]. (3.46)

Expressions (3.45) and (3.46) clearly indicate thatthereexists a limit velocity of the magnetostatic
solitonpropagation.Whenu—* Urn soliton (3.46) is delocalized, the amplitude tending to zero. Taking
accountof the EMS interaction in the caseconsideredremovesthe velocity limit for magnetostatic
solitons. It follows from the generalexpression(3.44) that k(u

0) yi + I 130I /~/u~and k(u) [(1+

I f3~I) /(1 — u~/u
2)]1’2, providedthat u2

0 < U
2 4 1. In the velocity subrange i~~ u

0 magnetization magneto-
static solitons continuously transform into EMSones, while when u

2 ~‘u~,k(u) from (3.44) is expressed
as

k2—~k~=V1+(/3
0I/V1—u

2, (3.47)

independentlyof the inhomogeneousexchangeconstant.
The smooth transformationof the magnetostaticsoliton branch to the EMS one is due to the

absence, under the conditions considered, of the slow branch of the EMSwaves that bound from below
the domain of the admissible velocities of the EMSsoliton propagation. Indeed, after the substitutions
k—* iK, cv = KU eq. (3.47) yields the dispersionrelationfor linear waves,

K2(cv)to21I/3
0I , (3.48)

which allows for the existenceof only the fastEMS wavebranch[cv/K(cv)> 1], in contrastto the similar
relation (3.2) describinglinear wavesin a transversallymagnetizedferromagnet.

It is interestingto investigatethe influenceof the anisotropyin the basicplanewhich removesthe
degenerationwith respectto azimuthalangleq’. In order to takeaccountof the magneticanisotropyin
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the xy plane, it is sufficient to add in the groundstateanotherterm, f31m~,in the expressionfor the
effectivemagneticfield affecting the magnetizationvector. We will delimit the existencedomainof the
magnetizationstationarysolitons in this caseby assuming~ 4 1. It is not difficult to show that a
formulasimilar to (3.44) is valid,

k2+=~{1+I/3oI__ u2 2 ±[(1+I/30I-~- U2 2)
2+4(1+I/3

0I) U
2_Pi]1I2}

2v
0 V0 1U V0 i—u 1—U

(3.49)

In analyzing(3.49) one must bearin mind that virtually always f3~ ~ V~—~i0~.
The most importanteffect of taking into accountthe magneticanisotropyin the basic planeis the

appearanceof the velocity range V0 < IUI <\/7~which is forbidden for solitons and separatesthe
existencedomains of magnetostaticsolitons,0< u

2 < u~,and EMS ones.For ~ ~ 0 there exist two
branches of magnetostaticsolitons correspondingto the functions k+ (u). In the velocity range
U2 <(1 — 2V/3

1/(1 + I/3oI))u~the functions k±(u)arereal, while in the range(1 — 2\/f3~/(1+ I/3oI))u~<
U

2 < u~they are complex.In the latter caseoscillationsare superimposedon the smoothdependence
0(~—Ur).

In the domain of existenceof EMS waves,eq. (3.49) implies that

k=(V1+I/3
0I/U)V(u

2—/3
1)I(i—U

2), (3.50)

which is similar to (3.4) and reduces,as should be expected,to (3.47) when u2 ~‘

Let us examinethe principal propertiesof the solitary wavesof branch(3.47). SettingV
0 = 0 in eq.

(3.43), we get

sin 2UV1 ~ u2 sech[ke(u)(~ - ur)]. (3.51)

Expression(3.51) shows that when u—>i, then the soliton localization domain and the soliton
amplitude tend to zero. The soliton amplitude reachesits maximum value, sin(Ornax)= 1 when
u2 = u~= (1 + I130I)/(2+ II~~I).

The angularfunction ~i( ~ — UT) ~5 significantly different in the regionsu
2 < u~andu~< U2 < 1. For

U2 < u~the angle ~ monotonically grows from zero, when ~—o—cc, to 2ir, when ~—* cc; thus the
magnetizationvector makes a complete rotation in the xy plane, as in the case of the soliton
propagationin the transversallymagnetizedisotropic ferromagnetthat has beenexaminedin the
precedingsection.On the otherhand, the solitary waveswhosevelocities lie in the rangeUk < I ul <1
are dynamicsolitons. Here the angle~ is an odd oscillatingfunction with q~(~ = —cc) = ~(~ = cc) = 0,
while the oscillation amplitudeis given by the formula

2(1 + I/3
0I)(1 - U2) f I (2uVl + /30IV1 - U2\2]h/21 -1

s1n(~max)= 1+1p0I(1—U
2) ~1+I1_~ 1+lf3

0I(1—u
2) )] f . (3.52)

Hereonecan seethat~~maxchangesfrom irI2 to zerowhile the solitonvelocity growsfrom Uk to unity.



202 F. G. Bass and N. N. Nasonov,Nonlinearelectromagnetic—spinwaves

The analysisgiven aboveof the EMS solitondynamicshasnot accountedfor the energyabsorption
which always occursin the processof reversingthe ferromagnet’smagnetization.The influenceof the
weak absorption(when the relaxationconstantij in the equationshas the order of 102) can be
accountedfor within the framework of the adiabaticapproximation in the perturbationtheory for
solitons[49]. The dissipationcausesa slow variation in time of the free parameterof the solutionof eq.
(3.51), the velocity u. To find the law governing this variation, u(r), let us actas follows. First, it is not
difficult to derive from the systemof equations(2.1), (2.2) the equation

~ [16+12+Ih+I2+(i+I/3
0I)sino]=—l+~sin2O cosoeH ~ (rh~— c+h~), (3.53)

that expresses the energy conservation law; in eq. (3.53) we have used the notations 4irM0h~ =

H~+ iH~,4irM0e~= “.f~(E~+ iE~). Let us substitutesolution (3.51) to eq. (3.53) and integratethe
equation with respect to d~from —cc to cc, aswasdone in ref. [49]. We shall obtaina simple first-order
equation,

W(u)= 16(1 + I/30I)
312 [1 +~I(i_u2)]2 = ~(1 + /3~I)(1- u2)W(u), (3.54)

that describesthe absorptionof the solitonenergyW(u).Note thatthe solitonenergyW asa functionof
the velocity reachesits maximumat

2 2 3~Ii3
0I/ 8($0I(1+I/30()~

U U = ~1+ j<1.~ 2~/3~“~ (3--I1301)
2 /

The form of the dependenceu(r) is substantiallydeterminedby the soliton initial velocity. When
u(0)4 1, eq. (3.54) yields

1 2
u(r)=U

0exp[—~(i+(/30I)r], W—u . (3.55)

Thus, for slow EMS solitonswe observethe usual,exponentialin time, energyabsorption.
In the caseof 1 — u(0)4 1, 1 / I f3~, eq. (3.54) yields a substantiallydifferent result,

u(r) 1— [1—u(0)]{1 +
4~(l+ 13

0I)[1 — u(0)]r}~, W—V1 — u . (3.56)

Formula (3.56) showsthat under the influence of the dissipationwe shall havehere accelerated
solitons in contrast to the case of (3.55). Besidesweobserveherean abruptsuppressionof theenergy
absorptionrate of fast EMS solitonsthat propagatein the given mediumat a speedcloseto that of
light.

To explain the first of the abovementionedeffects we mustnote that for u — 1 the solitonenergy
W(u) decreases,i.e. dW(u)/du<0. In thiscasedecreasingof the solitonenergydue to the dissipation
adiabaticallytransformsthe solitonto a statewith a greatervelocity.

The effect of the abrupt suppressionof the fast soliton absorption rate allows for a simple
explanation. The soliton total energy W consists of the vortex electromagnetic field energy,



F.G. BassandN.N. Nasonov,Nonlinearelectromagnetic—spinwaves 203

We = ~ J d4 (ie+I2 + Ih+12), and the ferromagnetinternal energyWm = ~(1+ I13
0l) f d~sin

20that con-
sists, in turn, of the magneticanisotropy energyand the magnet—dipoleinteraction energy,with
We = [(1 + u2)/(1— U2)]Wm. According to (3.54), the changein the solitontotal energyW is propor-
tional to ~2Wm;for this reason,when u2 41 (and W= Wm) 0W/Or—W, which resultsin the soliton
absorptionobeying the exponentiallaw (3.55). When u -~1, the main part of the soliton energyis
containedin thevortex EM field energy,while the ratio We/Wm increasesduring the absorptionprocess,
causingthe abruptsuppressionof the absorption.

3.3. Relativisticdomain walls in an antiferromagnet

Up to nowwe havestudiedthe solitary EMS wavepropertiesin asingle sublatticeferromagnet.Now
we proceedwith analyzingsolitary wavesin a low-sublattice ferromagnet,confining the caseto the
one-axis antiferromagnet.

Let the wave propagatealongthe anisotropicaxis[4]. Thento analyzethe structure,onemay usethe
eqs. (2.36). The waveequtionin (2.36) yields the relation for stationarywaves

= [u2/(i — u2)]m
1 . (3.57)

Taking into accountthisequationin the caseunderconsiderationof an easy-axisantiferromagnetin the
collinearphaseof the groundstate,we deducefrom the initial systemof equationstherelationsm~= 0,

im1. Equations(2.36) thenbecomesimpler, assumingthe form

(h0 — iu ~)i~ = (1_u2 — A0 — /3o-)lzm1,

d — dl 2 (3.58)

(h0 — iu ~)m± = —/30 lzl1~ —u = (~ ~ — Ao)Im[l1m~].

The systemof equations (3.58) can be easilyreducedto a closedequationin l~whosesolution,

lz=_2tanh(2~0A0+/3o) ~ (~-Ur)), (3.59)

hasa form typical for propagatingmagnetostaticdomainwalls in antiferromagnets[11,50]. That is why
a wave describedby (3.59) will be called a relativistic domain wall. The minimum admissible
propagation velocity for the waves of (3.59) is determined by the quantity Urn = [(A0 +

— 1/2 . . . .(1 + A0 + /30)] which is ratherclose to the light velocity in an antiferromagnet.
Note that the externalmagneticfield h0 doesnot affectsolution (3.59). Fromthe systemof equations

(3.58)one can easilyobtainthe relation~ = Arg[11] = —(h0/u)(~— UT). Thus, affected by the external
magneticfield, transversalcomponentsof the antiferromagnetmagnetizationuniformly rotate in the
processof the wavepropagationaroundthe anisotropyaxis.

We must bearin mind that the descriptionof the solitary waves in questioncan be substantially
simplified. Let us neglectthe quantity ~ in the r.h.s. of the first equation of (2.36), since it is three
ordersof magnitudeless thanthe exchangeconstantA0 from here and from the equation describing
the time dependence of l~,we will derive the following relation:
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11±12+ l~= const.. (3.60)

For the solitary waves under considerationthe constantin the r.h.s. is obviously equal to 4.
According to the second of identities (2.37), eq. (3.60) may be used if m is small. This assumption is

similar to the one used in the theory of magnetostatic solitary waves in an antiferromagnet [51].
The systemof equations(2.36) impliesthe estimatesIh±I rn1 I andm~—- Im±2 ~ that one may set

m5 0 in eqs. (2.36). The first identity from (2.37) yields m1 —-il1, which allows one to establishthat
in the caseof h0 = 0 consideredbelow thevectorsm1 andl~vary in mutually orthogonalplanespassing
through the anisotropy axis.

By setting l~= 2 cos0 andl~= 2 sin 0, in accordance with (3.60), let us express m1 and h1 via the
function 0 by the formulas

0m1 - Oh 020
—~— = 4if30 sin0 cos0, —~-~ = i —~ + 4iA0/3~sin 0 cos0, (3.61)

which follow from (2.36). If onesubstitutes(3.61) to the waveequation,oneobtainsa closedequation
for the angularfunction 0(~,r),

/ 02 02 \ / 020 02
— —~)~——~+ 4A0/3~sin0 coso) = 4/3~—~ sin0 cos 0. (3.62)

O4 Or Or Or

Equation(3.62) is significantly simpler than the initial system of equations (2.36), so it becomes
important to clarify its domain of applicability for studying solitary waves. Let us compare the
stationarysolution of (3.62),

(2V/3~A0 /u2_u~
cosO=—tanh~ 2 (~—ur) , (3.63)

U 1U

with the exact solution of the initial systemof equations(3.59). In formula (3.63) u~= A0/(1+ A0).
One can easily see that passing from solution (3.59) to solution (3.63) is achievedby renorming
A0 + —* A0 in completeaccordancewith the condition /3~4 A0 usedin deriving (3.60). Let us
considerthe formula for the transversalcomponentof the magnetizationvector, the one that follows
from (2.36) and (3.59),

( 1+A0+/3~U2u2\1/2 / Vi3~(1+f30+/3~)fu2_u~,
m1=2~1+ I3~ i_U2) sech~2 ii ~ 1—u

2 (f—uT)

As we have noted, a necessary condition of applicability of the suggested approach is the smallness
of the quantity rn

1. The relation obtainedimplies that in the consideredcaseof solitary waves the
condition Irn±I4 1 is reducedto the inequality

U~Urn~$0/2A~, (3.64)

thatdelimits the region of admissiblevaluesof the solitary wave velocitieswhich can beinvestigatedby
using(3.62).
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Let usexaminenow the stability of the domainwall (3.63).Passingto a referenceframethat moves
with the speedof the domain wall, we will seekthe solution of eq. (3.62) in the form

0(~’,r’) = ö(~’)+ e~’O(~’), (3.65)

where Vi — U2~’= — u~,Vi — u2~’= r — ~u, O(~’)is a solutionof (3.63),e’~’O(~’) is a small added
term, p is the spectrum parameter. Substituting (3.65) into eq. (3.62), we get the following linearized
equation for the function 0(~’),

(~ — fl
2)(d — ~)2 u2u2 [(d — ~)

2— A
0(1 — u2)(~_~— p2)] cos2O(v)~

___ ___ (3.66)
2Vf3~A0 fu2_u~

p~’KfI, VeK~ , K u ~ 1—u
2

We will confine our analysisto the stability of the waveswhose velocitiesu are close to unity.
This case seems to be the most interesting and the reasons for it will becomeclearsomewhatlater. It

is easyto see that if the condition 1 — u 4 1 /2A 4 1 is met, thenin the r.h.s.of eq. (3.66) the second
term in the square brackets may be omitted. How to solve the spectral problem for the resulting
equation,

d20/dv2 — Q2ö—(1—u2)(i —2sech2v)O=0, (3.67)

is well-known [49]. The only localizedsolutionof eq. (3.67), 0 —sech(V1 — u2v), is realized at Q=0
and describesa stabletranslationmode.

The stability of the domainwalls is closely relatedwith the completeintegrability of the equation
thatdescribesthem. It is not difficult to see that for the waveswhose velocity satisfiesthe condition
1 — u2 4 1/A

0, eq. (3.62) permits a drasticsimplification, assumingthe form

(O2/O~2— O
2IOr2)0= 4j3~sin0 cos0. (3.68)

The completeintegrabilityof the obtainedequationallows ananalyticdescriptionof the nonstation-
ary waveprocessin anantiferromagnetwith the participationof the solitarywavesunderinvestigation.

We will not dwell on the analysisof solitarywavesin an easy-axisantiferromagnetwhich is in the
spin-flop phasein the groundstate(seeref. [41]). We will only notethat the propagationvelocitiesof
suchwavesareless thanthoseof the solitary wavesin an antiferromagnetin the collinearphase.Here
the lower boundaryof theregion of admissiblevelocitiesof the considereddomainwalls dependson the
strengthof the field that magnetizesthe antiferromagnetandtendsto zerowhenthe magnetizingfield
strengthapproachesthe critical value that determinesthe passageof the antiferromagnetfrom the
spin-flop to the collinear phase.

3.4. Solitary wavesin a ferrite waveguide

The above given analysis of one-dimensionalsolitary EMS waves cannotbe directly applied for
quantitativecalculations of actual experimentswith solitary waves in spatially limited waveguide
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structures.Here we will study the propagationof weakly nonlinearsolitary EMS waves in a strip
waveguidewith a normally magnetizedisotropic ferrodielectric(the statementof the problemis similar
to the one given abovein analyzingquasi-monochromaticwavesin a ferrodielectricwaveguide).

We will solve the systemof equations(2.64), assuming,as in the caseof quasi-monochromatic
waves,that the TEM componentsof a wavearethe principalones.For the quantitiesr~,i~andh~we
will useexpansions(2.65) while for the remainingwave componentswe will use expansions(2.66). The
coefficients in (2.65) and(2.66) will be assumedto be dependenton 4 andr in the combination~ — ur.
Being reformulatedin this mannerthe problemconsideredof solitary EMS pulsesis similar to a very
popular problem of the statesof two-dimensionalnonlinearfields, self-localized along one of the
coordinatesand periodic alongthe other (seeref. [521and the referencescited therein).

By substitutingexpansions(2.65) and (2.66) into the initial setof equations(2.64) we arrive at the
equationsfor the wave componentswith index n = 0,

h~0= 1 —u
2 m~

0, h~0= — m~0

d

u m~0+ (h0 — u 2)mzo=— ~ Jd~(h~m~+ ~ (3.69)

u m~0+ (1 + h0)m~0= ~ Jd~(h~m~+ ~

These equations describe the structure of a TEM-type field. The equations for the remaining
coefficientsof expansions(2.65) and (2.66) are as follows:

d

d
2 d2 nkf

L~h
2~= u

2 —i ~ ~ = —(1 — u2) ~ + —~ j d~sin(nkdx)m~

d

= nkd ~ — (fl2k2 + u2 ~) ~ J d~sin(nkdx)m~,

0 (3.70)

u ~ ~horn:n+ h:n = J dx cos(:kdX)(h~rn~+

Lfl=(l_u)ä~~—nkd, m±=rn~+m~.

First let us establishthe existencedomainof the solitary waveslocalizedalong ~. In the asymptotic
region I~I—*cc onecan omit nonlineartermsin the equationsets(3.69) and(3.70).The resultinglinear
equations give the asymptotics of various independentmodes. By setting h~~ m~
e’~’~, n = 0, 1,. . . , we will obtain the dispersionrelations K~= K~(U)that allow us to clarify
necessaryconditionsand the existencedomain for the solitary waves. At n = 0 we have the formula
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2 ~ u2—h
0/(i+h0)

K0 2 2 (3.71)
u 1—u

that coincideswith similar relations,eqs. (3.4).
Thus, the existencedomain of the wavesunderconsideration

h0/b0= h0/(1 + h0) < u
2 <i , (3.72)

coincideswith that of one-dimensionalsolitary EMS wavesin a transversallymagnetizedferromagnet.
For n � 1 (3.70) implies the dispersionrelation

2 2 2 b~ 2 h
0 2 h0 h0 lu 2 2 —2

fl kdZfl = 2 (U — —)(~ — ~)(~ 2 + z~)(1— z~)
u b0 b0 b0 u —h0/b0

(3.73)
2 2 2 22

= (1 — u )K~Inkd.

The analysis of eqs. (3.73) shows that in the velocity range delimited by inequalities(3.72), the
equationhastwo solutionsof the form K~= A~(u)>0 andonesolutionof the form K~= B~(u)<0, the
latter correspondingto a wave oscillating andnot tendingto zero in the asymptoticregion.

This solution whichoscillatesat infinity makesthe completewavelocalization impossible.But waves
whose velocity is close to the lower bound of range (3.72) are delocalizedonly slightly. Indeed,
accordingto (3.71), the variation scaleof the principal wavecomponentswith the index n = 0 rapidly
grows when u

2—* h
0/b0 (the inequality u

2 — h
0/b04 u

2 appearsnecessaryto warrant the employed
conditionof weaknonlinearity).At the sametime the spatialscaleof the oscillatingsolutionsis of the
order (nkd)~(due to the screeningeffect of metallic plates),so whenone expressessuch solutionsin
termsof the principalcomponentswith the useof (3.70),onehasto apply theeffectiveaveragingwhich
resultsin the exponentialsmallnessof the amplitudeof the wave oscillating components.

Taking into accounttheweak nonlinearityof the solutionof eqs. (3.69)and (3.70),we will seekthis
solution by the method of asymptotic expansionsin powers of the wave amplitude. Under real
conditionsh

0 is usuallysmall, so from nowon we will assumethat b0 — 1. In accordancewith the above
reasoningwe will introducea smallparameter~ = ~i — h0/u

2. Wewill attempt to express the quantity
rn~

0in the form,

rn~0= ~ 6~m~(~),~ = 6~(~— ur). (3.74)

It is easyto seethat the correspondingseriesfor the quantity m~0beginswith a termproportionalto
6~.Analyzingthe systemof equations(3.70), weseethat the asymptoticexpansionfor ~ is givenby
the formula

= ~ ~ — ur). (3.75)

Similar expansionsfor otherwavecomponentswith index n ~ 0 beginwith termsproportionalto
In the roughestapproximationin 6~(3.69) and (3.70) yield
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~2 (1) /

u rn~0= — ~ — 1 1 —cosnIT h(1~ (1)

d~ \ 2 “ zO I U
2 ,,�~ fliT ~

(3.76)
d2h~)/d~2— n2k~h~= —n2k~[(1— cosn7r)/n1r](m~)2,

which determinethe structureof the principal wavecomponents.The secondof eqs. (3.76) yields

= (1— cosnIT)f d~’e~rI[m~(6
0~?)]2 1 C05 niT (m~)

2. (3.77)

Substitutionof (3.77) to the first of eqs. (3.76), summationover n andsubsequentintegrationleadto
the following final expressionfor the principal term in expression(3.74):

m~j= 2U6
0 sech(~) (3.78)

It is easyto see thatsolution(3.78)coincidesin the properlimit with solution (3.5) thatdescribesa
one-dimensionalsolitary EMS wave in a transversallymagnetizedferromagnet.

Theprincipal termsof thewavecomponentswith an index n � 1 aredeterminedfrom the equations

(u
2 — h

0) m~’,)+ h0n
2k~m~)— U(~_-~— fl2k2) ~ m~= 0,

(3.79)
/ d2 2 2’~ d 1 / d2 2 2~ 8k u2

u~—~— n kd) ~j-~~ — ~ — h
0n kd)m~J)= d (1 — cosnil) tanh(~) sech

2(4~).

The solutionof (3.79) can be representedin the form,

m~= — 8ikdu3 (1— cosnil) J d~’tanh(6
0~’)G[nk(~— Ur —

(3.80)
— 1 f dZ 2(1 + 22) ~

G —

2IT J (h
0+ Z

2)(h
0 — u

26~z2) — n2k~u2(1+ 22)222

The structureof the Greenfunction in (3.80) is determinedby the roots of the expression~(z2) in
the denominatorof the integralfor G( ~ — ur — 4’); the rootscoincideof coursewith thosegivenby the
dispersionrelation (3.73), after a changein notation: Z~—* — z2. As we havenoticed above, the two
roots correspondto localizedcomponentssimilar to (3.77). The delocalizedpart of the function m~
correspondingto the third rootz~>0 is describedin the asymptoticregion I — url —* oc by the formula

m~ +8IT nkdu e~~° 1— COS ilfi sin[Z
3nkd( ~ — ur)]. (3.81)

This formula is similar to the one established in ref. [52] and shows that for a wave of a sufficiently
small amplitude in (3.78) the delocalizationeffect due to a nonlinearrelation of the localizedTEM
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pulse with the propagating waveguide modes is insignificant. In practice the delocalization effect under
discussioncausesthe finite life time of the solitary wave.

Omitting the calculationof the subsequenttermsof expansion(3.74), let uspassto the analysisof
the nonstationaryprocessof the localizedTEM pulsepropagation.

Bearing in mind (3.77), we will expand h~as h~= ~ + ~n~1 ~ sin(nkdx). Neglecting the
intramodalinteraction in agreementwith the aboveanalysis,we obtainfrom (2.64) the equations,

2 2 2Om~0 0 h~0 0 h~0 0 m~0
2 — 2 = 2

Or X O4 Or Or

Om (3.82)
— h~m~0+ h~0= ~m~0(m~0+

that describethe nonstationarydynamicsof the TEM pulse.
In investigatingtheeqs. (3.82) onemustbearin mind that (3.82) is capableof thecorrectdescription

of the solitary pulse evolution only for waves which propagatewith the velocity that satisfies the
inequality 1 — h0/u

2 4 1, thussatisfyingthe conditionsof weaknonlinearityandaweakconnectionwith
the modesoscillating over the waveguidecross-section.This inequality gives a lower bound of the
durationof the pulse exciting a soliton at the waveguideinput. In reality, according to (3.78), the
solitary pulse duration is T——(6

0u)~.Expressingthe velocity u via the duration T, one gets from the
inequality the following condition:

T(s)~i/g\/4ilM0H0. (3.83)

Thus,in the experimentonemustdirect to the systeminput electromagneticpulseswhicharesimilar
in shape to function (3.78).

Let us simplify the system of equations (3.82) by using transformations similar to those which have
been employed in deriving the evolution equation (3.12) that describes one-dimensional waves in a
homogeneous transversally magnetized ferromagnet. Passing to a moving frame of reference, ~‘ =

— \/iir, r’ = \/i~r — h0~,in the transformed equation of set (3.82) we omit the second derivatives
with respect to r’, sincethe wavesin the new coordinate system are slow. We obtain

(O/O~’) h~0= h0(0/O~’—2 O/Or’)rn50. (3.84)

Combining eq. (3.84) with the magnetizationdynamics equation (3.82) (setting in the latter
O/Ot—* —\/7i~O/O~’),we get a closedmKdV equationfor the quantity rn~0,

Om0 ~ 2 0m0 O
3m

0
~ ~ 0. (3.85)

It is easyto see that the stationarysolutionof eq. (3.85),

m~0= 2\/2h0U’ sech[V~i~(~’— u’r’)], (3.86)

coincides, as should be expected,with expression (3.78) in the case u’ = (U — V7~)/\/ii~41, in
accordancewith the assumptionusedin deriving eq. (3.85).
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From the viewpoint of studying opportunitiesfor an experimentaimed at finding solitary EMS
waves, the property of the complete integrability of eq. (3.86) is very important. Owing to this
property, we do not needthe exact coincidenceof the shapeandamplitudeof thepulse excitedat the
waveguideinput by meansof an externalgeneratorof a solitary pulse.It is known [45] that an initial
pulseof sufficientintensityis split during the evolutionprocessdescribedby eq. (3.85) into anumberof
solitons and a smeared,due to the dispersion,“radiation tail”. The schemefor solving the inverse
problemdevelopedin ref. [45] enablesus to calculatethe numberandcharacteristicsof the solitons
arising from a given input pulse.

The recentlydevelopedperturbationtheory for the equationsborderingon completelyintegrable
ones,enablesus to calculatethe effect of a small structuraldisturbanceon the solitonevolution. We
will considerthe magnetizationrelaxationeffect on the single solitondynamics.Takinginto accountthe
relaxationterm in the Landau—Lifschitzequationandrepeatingthe line of reasoningused in deriving
eq. (3.85), we will obtain an equationfor the disturbancein the canonicalform,

o~i~o~ ~ 387
Or” + ~~j;;-~+ ~ \/i~O~11

2 ( . )

where m~
0= \/ii~‘I’, r’ = 16r”, ~‘ = 2k”. Assuming the parameter i1/~/ii~to be small and using

perturbationtheory [32], let usexaminethe single solitonevolution.
A small structural disturbance leads to a slow variationof solitonparameters(describedwithin the

adiabatic approximation)and to distortion of its shape (describedwithin further orders of the
perturbationtheory [32]). Following ref. [32], we will seekthe solution of eq. (3.87) in the form

hr = 2g0(r”)[sech(z) — W(Z, r”)] , 2 = 2g0(r”)[~” — ~o(r”)] , (3.88)

wherethe parametersg0(r”) and ~0(r”) are found from the adiabaticapproximationequations,

dg0 1 f dZ d~0 2 ~ I zdZ

~ RcoshZ~ ~j—~=
4g

0+~--~j Rh, (3.89)

while the correction to the soliton, W(z, r”), is determined by a cumbersome expression whose
asymptoticshas the form

~ z
2 e~ I R dZ Z-*~, W= 2 e~2I RdZ, z —cc~ (3.90)

32g
0 i coshz 32g0 -I

In the formulas written above R standsfor the r.h.s. of eq. (3.87) where in the capacity of 1J~the
function 2g0 sech(z),~ = 8 J g~dr”, mustbe used.First let us considerthe adiabaticapproximation
equations. By calculating the integrals entering (3.89) we obtain for the soliton velocity,

u(r”) = d~0/dr”= 4g~(r”)= u(0)[1 + ~(rj/ ~)u
2(0)r”]’2 . (3.91)

According to (3.91) the magnetizationrelaxationeffect leadsto the soliton deceleration.Thus, in
accordance with (3.88), the soliton localizationregionbecomeslarger.This fact mustbe bornein mind
in experimentalstudiesof the solitary EMS wavedynamics,for it is possibleto interpretthis effect of
the dissipative smearingof an autolocalizedpulse as the usual dispersionsmearingof a linear pulse.
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Let us considerthe variation of the solitonshape.Formula (3.90) imples that

2goW=(?j/6\Ii~)u(r1~)Z2e_Z,Z—*cc, 2g~W=0, Z—+—cc. (3.92)

In accordance with (3.92), in a reference frame connected with amoving solitonthe distortionof the
latter’s shapedoesnot increasein time, i.e., the soliton displaysa certainstabilitywith respectto the
structural excitation. Besides, expression (3.92) shows that it is the front part of the pulse that
undergoesa distortion.

4. Simple (Riemann) and shock waves

4.1. Riemannwavesin magneticdielectrics

The dissipativenatureof the magnetizationdynamicssubstantiallyaffects the propagationprocesses
of the above investigatedEMS waves,but it is not so important in determiningthe existenceof EMS
waves.We will passnow to an analysisof shockEMS waveswhoseexistenceis causedby the dissipative
natureand nonlinearity of the ferromagnetmagnetizationmotion.

Shock wavesappearas a result of an evolutionof simple (Riemann)waveswhich arenaturalwave
excitationsof a nonlinearnondispersionmedium [53].

Let us examine, for example, the propagationprocessof low-frequency EMS wavesof the slow
branch in a longitudinally magnetized ferromagnet. The dispersion equation (2.6) relating the wave
numberandfrequencyimplies that in the region of sufficiently smallfrequencies,cv 4 cv~,the dispersion
dependencebecomeslinear, i.e., k(cv) — cv. This fact results in a phase synchronizationof low-
frequencywaves with their own harmonics,so during the evolution of low-frequencypulsesof EMS
waves in a ferromagnet their profiles are distorted as a consequenceof the nonlineargenerationof
higher harmonics.

Passingto the quantitativedescription,we must first remarkthat the Landau—Lifshitzequation(2.2)
implies in the low-frequencylimit that the variablesof the magneticfield componentsh~= h~+ ih~ are
quasistaticallyrelatedwith the magnetizationvariablesm

1 = m~+ irny (seeref. [53]),

h1 = (1 + h0/~i— m±1
2)m±. (4.1)

By substituting(4.1) into the Maxwell equations(2.1) we obtain a set of hyperbolic equationsin
dimensionlessvariablesusedin the present paper,

Or / 1 00. O~
1

~=b0~—~- ~-sin~+tan0-~—cos~,j,

O~2 /1 00 Oço1
-~~- eboy—s_0~-cos4—tan0 -~—-sinq~),

2 (4.2)
Or /u2(0) 00 2 O(,Oi

— -~— = b0~cos
20 ~j 5~fl~ + U

1(0) tan 0 -~- cos~)

2
O~2 /U2(0) 00 2

— -~— s = b0~cos
20 ~j cos cb — u

1(0)tan 0 sin ~
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The quantitiesentering the set of equations(4.2) aregiven by the formulas

r~+r~=re~2, m1=sin0e’~’, ~

(4.3)
u~= I — cos0/b0, u~= 1 — cos

30/b
0, b0 = 1 + h0.

We are interested in the process of forming a shock wave which is described by solutions of (4.2)
representingsimple waves.To find such solutionswe will assumefor eachof the quantitiesentering
(4.2) that

Oy/Or+uOy/0~=0. (4.4)

Becauseof (4.4),differential equations(4.2) becomealgebraicequations.It follows from the latter
that there exist two types of simple EMSwaves [53]. The first type is characterizedby the property of
the magnetizationprecessionangleto be constant,0 = const.Suchwavespropagatewithout changing
their shape with the velocity u = u1(0) = const. The correspondingsolution of (4.2) is

4=F(~—u1(6)r), r=(1+ho)tan0u1(0)[sin4±\/~in24+const.], (4.5)

where F is an arbitrary function.

The second type waves are linearly polarized ~ = o~ = ir/2) and propagate with the velocity
u2(0). The variation of the angle during the evolution process is described by the equation

00/Or+ ~i — cos
30/(1+ h

0) O0/0~= 0, (4.6)

showing that the wave profile points correspondingto large valuesof the angle 0 move with great
velocities. That is why the fragmentsof the wave profile wherethe magneticfield h1 grows become
steeper.The wave shapeevolvesas

0= G[~—u2(0)r], r _(1+ho)Ju2(0)/cos2odo, (4.7)

where the function G is determinedby the initial conditions.
Solution (4.7) describes an initial stage of forming a shock wave, when a pulse with a sloping front

propagates in a ferromagnet. The steeper the front becomes, the greater are the dispersion and
dissipation effects [not taken into account in the quasistaticrelation(4.1)] whichpreventthefront from
becoming steeper. In this case, if the pulse is semi-infinite, the stationaryshockwave is formed.

Before the investigationof the structureof stableshockEMS waves,we will considerseveralother
applicationsof the Riemannwaves in ferromagneticmedia. First we will dwell on such waves in
antiferromagnets.

In the case of low-frequency waves propagating in an easy-axis ferromagnet along the anisotropyaxis
one mayuse the expression for the nonlinear magnetic susceptibility (2.44)but letting the frequency cv
tendto zero in the quasistaticlimit. We obtain the equations

(O2/O~2 — 0
2/0r2)h

1= 02/Or2 m1 , m1 = (1/A0)[cv~/(cv~— h~— 2Ih±1
2)]h±. (4.8)
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Equations(4.8) can beobtaineddirectly from the generalequations(2.38) by omitting the operators
0/Or in the Landau—Lifshitzequations.

Sincether.h.s.of the first equationof set (4.8) is small(A0~‘1), the operatorO2/O~2— O
2/Or2in the

l.h.s. of this equationcan be simplified by setting

02 02 /0 O\2 /0 o\o /0 O\O
— + —I —21— + —) —=—2~—+—) — (4.9)

O~2 Or2 \O~ Or! \ O~ Or OT O~ Or Or

Approximation (4.9) sorts the waves propagating in one direction, taking into account the proximity
of the propagation velocity to unity. By setting h

1 = h e’~’ we obtain from (4.8) and (4.9) the
hyperbolic equations for the amplitude h and the wave phase~,,

/0 o\ 10 cv~h (0 o\ 1 w~ o
Or cv~_h~_2h2°~~0Or)~~2A0 cv~h~2h

2~

(4.10)

The first equationof set (4.10) shows an essentialdifference betweenRiemannEMS waves in
ferromagnets and antiferromagnets. The solution of this equation is given by a function of the type of
(4.7) where the nonlinear velocity u U

1(h) is

to

2 cv2—h~+2h2
u

1(h) — 2A0 (cv~—h~— 2h
2)2 (4.11)

According to (4.11) the partsof the wave profile that correspondto largevalues of the amplitudeh
propagate with smaller velocities, in contrast to Riemann waves in ferromagnets. Because of this
peculiarity the rear part of the pulse in an antiferromagnet (not the front one as in a ferromagnet) will
becomessteeperduring the evolutionof a time-limited pulse.

Note one peculiarityof the equationset (4.10) from which it follows that the amplitudeand the
phaseof a Riemannwave propagatealong different characteristics.This fact enhancesfurther the
distortion of the wave profile in the processof its evolution.

Let usexamineanotherexampleof Riemannwavesin ferromagnets,viz, the evolutionof suchwaves
in conductingferromagnets,whichhaverecentlybeenactivelystudied[54]. We will confinetheanalysis
to nonlinearwaves propagatingalong a magneticfield in an isotropic conductingferromagnetwith
frequenciesthat are small comparedto the plasmaand cyclotron frequenciesof the current carriers
(coupledspin—helicalandspin—Alfvenian waves [55]). Considerthe caseof a nondegenerateconduc-
tivity plasma(ferromagneticsemiconductorsand semimetals).The pulse dependenceof the energyfor
the currentcarrierswill be assumedisotropic andquadratic.The systemof equationsdescribinga local
modeof the waveevolutionis

4ile e~0 10
rotH=~—(njVi—neVe)+—-~E, rotE=—-

1 (4.12)
~V~=6~ -~_(E+_V

0XB), ~n0+V~(n~.V~)=0,

whereni,, m~,v.a,, V~,standfor the density,effectivemass,collision frequency,and the hydrodynamic
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velocity of the currentcarrier,respectively;the subscriptp assumestwo values:p = i for holesandp = e
for electrons;8~= 1, 6~= —1.

Analyzingthe equationset (4.12) in orderto establishthe existencedomainof Riemannwaves,we
come,aboveall, to an importantconclusion:underthe consideredconditionsRiemannwavescan exist
only in a conducting ferromagnetwith a compensatedelectron—hole plasma (in such a plasma
equilibriumconcentrationsof holesandelectronsarethe same).Indeed,in thecaseof the conductivity
plasmawith current carriersof the samesign, or in caseof an uncompensatedelectron—holeplasma,
the linearizedequationset (4.12) implies a quadraticrelationbetweenthe frequencycv andthe wave
numberk of elementarylow-frequencywaveexcitationscv = cv(k) — k2 this relation is typical for the
helical branchof plasmawaves[56]. Here the nonlinearprocessof higher harmonicgenerationthat
accompaniesnondispersionRiemannwavepropagationdoesnot occurdueto the absenceof the phase
synchronizationbetweendifferentexciting agentsof elementarywaves.

Let us examine the wave evolution in a conducting ferromagnetwith a compensatedplasma
conductivity. In range of frequencieswhich are small compared to the ferromagnetresonance
frequencies,onecan use the quasistaticrelation (4.1) betweenthevariable componentsof the magnetic
field wave andmagnetization.The frequencyof a homogeneousferromagneticresonancegH

0 is usually
smallerthanplasmaandcyclotronfrequenciesfor currentcarriersin conductingferromagnets.In view
of this condition the initial equation set (4.12) can be substantially simplified to the form (in
dimensionlessvariables),

.20( b(J 0 .0 0 m11UA ~ — m
11

2 — 1)m±— = P
061, 1 6~= —b0 ~ yi — m±1

2’ (4.13)

where

— (i.’
1m1 + i~me) — g(H0 + 4irM0)

~ ~ cv~/7~m~

is the normal Alfvenian velocity, tope = (4ITe
2n

0/m060)”
2,m

0 andn0 being the free-electronmassand
the equilibrium concentration of the current carriers, respectively.

The equation set (4.13) describes coupled spin—Alfvenian waves [55]. Since the dispersion law for
these waves is linear, Riemann waves exist in the considered frequency range. In deriving (4.13) the
condition ii 4 b0 has been assumed to be true, which is necessary for a weak damping of waves.
Estimates show that the external field H0 must be of the order of 10 kOe.

Analyzingthe equationset (4.13) without accountingfor absorptionleadsto resultssimilar to those
obtainedfor Riemannwavesin a ferrodielectric. Onecan easilyseethat in the conductingferromagnet
under considerationthereexist two types of simple waves. The waves of the first type are linearly
polarized.During their propagationtheir profile is distorted,for someof its pointspropagatewith the
velocity u = uA(1 — cos

30/b
0)~

2[the magnetizationprecessionangle varies according to the equation
00/Or+ uA(1 — cos30/b

0)”
200/0~= 01. Thewavesof the secondtypepropagatewithout distorting their

shapewith the velocity u = uA(1 — cos0/b
0)~

2,0 = const.
To take account of the collisional absorption on the Riemann wave evolution, let us use the fact that

the propagation velocity of the waves under investigation and the Alfvenian velocity UA are rather close
(the weak absorption of waves occurs virtually only if b

0 h0 ~‘ 1 with 1 — cos
30/b

0 1). Excludingthe
electric field of the wave, r~, from eqs. (4.13), we simplify the resulting closed equation for the
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transversalmagnetizationm1 by meansof a relation similar to (4.9). As a result,we obtain simple

equationsfor the wave amplitudeand phase(m1 = sin 0 e’~)

00/Or + uA(i — cos
30/2b

0)O0/0~+ ~ ~ sin0 cos0 = 0,
(4.14)

0~/OT+ uA(i — cos0/2b0)O~/O~= 0,

which can be exactly solvedby the method of characteristics.Attention should be paid to a peculiar
featureof theseequations,which is similar to that of eq. (4.10) that describesRiemann waves in
antiferromagnets.According to (4.14), the wave amplitude and phase propagatealong different
characteristics.

By means of the changeof variables r~= ~v0rand ~ = (vobo/uA)[s’~— uA(i — 1/2b0)r] the first of
eqs. (4.14) is reducedto the form

00/Or~+ (1 —cos
30)O0/O~+sin0cos0=0. (4.15)

The Cauchyproblemfor eq. (4.15) with the initial condition 0 = 0~(~) at r~= 0 hasthe solution,

tan 0 = eT’ tan 00,
(4.16)

FtanO
0 /1+cos00\

112/i—cos0Y”21
~v(rp)=~+lnLt

0~l+cos0) ~i—cos00) ]+cos0—cos00,

where0~=0(~~),~
Accordingto (4.16), 0—>0 and ~ —* ~ cc when r,, —* cc, Thus, theinitial broadfrequencypulseof

spin—Alfvenianwavesis completelyabsorbedat a finite distancefrom the point of its origin [54].

4.2. Shockwavefront structure in a one-sublatticeferromagnet

The analysis given above of Riemannwave propagationin ferromagnetsdoes not enableus to
investigate the final stage of the wave development when dispersion and absorption result in forming
stationary profile shock waves. As we have noted in the introduction, the analysis of the structure of the
shock wave front in a ferromagnet was the first study of essentially nonlinear waves in electrodynamics
[14].Following ref. [14], let us considerthe structureof theshockwave front of awave propagatingin a
longitudinally magnetizedferrodielectric. Insteadof eq. (4.1) of the quasistaticrelation betweenthe
a.c. componentsof the magneticfield and the magnetization,we will usethe exact relationsfor a
stationarywave that are derivedfrom the Maxwell equations(2.1),

h1 = h~+ ih~= 1 _~2 sin 0 (~— ur)e UT) = h0 + 1— cos0 (~— ur). (4.17)

Relations (4.17) satisfy the boundary conditions h5 = h0, h1 = 0, 0 = 0 before the shock wave front
when ~—> cc, Substituting (4.17) into the Landau—Lifshitzequationsresultsin

dO cos0— b0(i — u
2) dip cos0— b

0(1 — u
2)

—U~j—~fl 1U2 sin0, u—~~-~ i—u2 (4.18)
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Equations(4.18) showsthat the stationarystateof the magnetizationbehindthe shockwave front
when ~-* cc is establishedwhenthe deviationangleof the magnetizationapproachesthe value 0 = 0~
this is relatedto the propagationvelocity by the expression

u2=1—cosojb
0. (4.19)

Note that the velocity u from (4.19) coincideswith the phasevelocity of nonlinearEMS waves, the
lattervelocity being given by eq. (1.6) in the caseof an isotropic ferromagnetin the limit cv—> 0.

Let us examinethe magneticfield value behindthe shockwave front h1 = h, assumingthat ip—*O
when ~—* —ccj The first of eqs. (4.17) yields a formula,

h,~=(h0+1—cos0,~)tan0~, (4.20)

accordingto which the magnetizationdeviation angle in the consideredshockwavedoesnot exceed

Formulas(4.19)and(4.20) showthat thepropagationvelocity of shockEMS wavesin alongitudinal-
ly magnetizedferromagnetvaries, dependingon the wave magneticfield, within the limits

h0/b0<u
2<1. (4.21)

It is easyto see that this rangecoincideswith the opaquenessrangefor linear right-polarizedEMS
waves, the range that divides the slow andfast branches.

When h~grows, the shockwave velocity grows too, the variation of the function u = u(h~)being
especiallygreatwhen the d.c. field magnetizingthe ferromagnetis small, h

0 4 1.
The solution of the systemof equations(4.18),

1 ( (sin 0)1+~0s0~ — ‘qb~ —

2 (~ ur),sin 0,, ‘~i+cos0) ~i,cos0—cos0~i ucos0,,
(4.22)

= artanh cos 0 — artanhcos0~,

determinesthe shock wave front structure. According to (4.22), the durationof the wave front is
proportionalto the relaxationtime of the ferromagnetandessentiallydependson the wave amplitude
h,,. For instance,in the case 0,, — h,,/h04 1, ~ the variation of the precessionangle of the
magnetization0( ~ — ur) obeysthe relation,

0(~—ur)~(hjh){1+exp[(-qb0/u)(h~/h~)(~—ur)]}~’
2. (4.23)

This formula shows that the duration of the front for small intensity shock waves is inversely
proportionalto the squareof the wave amplitude.

The secondof eqs. (4.22) showsthat during the shockwavepropagationthe magnetizationvector
rotatesaround the d.c. magneticfield h

0. The factor ~ is usually of the order of 10_2, so for the
transversalcomponentsof the magneticfield and magnetizationin a shock wave propagatingin a
longitudinally magnetizedferromagnet,the profile showsstrongoscillations.

Note that in this casethe oscillatorystructureof the shockwave front is mainly determinedby the
magnetizationrelaxationcoefficient~ anddependsweaklyon the wave magneticfield. Somewhatlater
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we will show thatwhena shockpropagatesin a transversallymagnetizedferromagnet,the presenceor
absenceof oscillations is determined,to a considerabledegree,by the wave amplitude.

Let us consider the structure of an EMS wave propagatingalong the e~axis in an isotropic
ferrodielectricmagnetizedin the groundstateby the field h~in thedirection ey.For the analysiswe will
use the system of equations (3.1) which, being completed by the relaxation terms in the dynamic
equations, assumes the form,

00/Or= h~cos ip — h~sin ip — ~ sin0 (cos 0 + h~sin ip + h~cos

cos0 Oip/0r = sin 0 (cos0 + h~sin ip + h~cos‘p) + 7l(h~cos ip — h~sin ip), (4.24)

(02/042 — O2/Or2)h~ = O2/Or2 cos0 sin ip, (02/O4~2 — 02/0r2 )h~= O2/Or2 cos0 cos ip.

For a stationary wave propagating with velocity u, it follows from the Maxwell equations(4.24) that

= h
1 — [u

2/(1— u2)](1 — cos0 cos ip), h~= [u2/(1— u2)] cos0 sin ip. (4.25)

Behind the front of the shock wave when ~—> —cc the ferromagnetis assumedto be reversely
magnetized in the direction — ey. The asymptoticvalue of the wavemagneticfield is h = — e~hf. From
(4.25) it indirectly follows that the shock wave velocity is determined by

= h
0/(1 + h0), 2h0= h~+ hf. (4.26)

By substituting(4.25) into (4.24) we obtain the equations

d0/dr=z~hsinco—7J[(i+h0)cos0—z~hcoscc’]sin0,
(4.27)

cos0 dip/dy = [(1+ h0) cos0 — ~h cos ip] sin 0 + ~ z~hsin ip,

where2 ~h = hf — h1, i.’ = r — i/u, and, as we haverepeatedlynoted, the conditionh0 4 1 is usually
met in practice.By using this conditiononecan easilyreducethe set (4.27) to the nonlinearpendulum
equation [57],

d
2ip/dv2+~~dip/du—~hsinip=0. (4.28)

It is easyto see that the solution of eq. (4.28) that is of interestto us,viz., the one thatdescribes
how aferromagnetmagnetizationis reversedby ashockwave from thestatewhenthevectoris directed
alongey, exists only for i~h>0. This conditionhasa simplephysicalmeaning:the ferromagnetenergy
in the final state—M’ H must be less thanthe energyin the initial state ahead of the wave front.

The functions ip(~)calculated at ~ = 5 x 10-2 and~h = 5 x i0~ (curve 1), i~h= 5 x i0~ (curve 2)

and L~h= 5 x iO_2 (curve 3) areshown in fig. 6. It can be easily seen that with the growth of iXh the
duration of the shock wave front decreases because the reverse magnetization rate in the ferromagnet
increases. For a large enough value of Lih (i~h~ ~ oscillations appear at the wave front.

It is interestingto examineformally the solutionsof the system(4.27)underthe conditionh
0 ~ 1 that

ensures a great propagation velocity of a shock wave [seeeq. (4.26)]. It is not difficult to show that in
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Iii 2O~(r-~/u)

Fig. 6.

the case h0 ~‘ iXh the system (4.27) is reducedto eq. (4.28) with the substitutions p—s h0v and
z~h->~h/h0.Thus, if h ~‘ 1, then the propagationvelocity of a shockwave increasesand its front
duration decreases, which may be useful for applications. The condition h0 ~‘ 1 can be, in principle,
realizedin a ferrite with two magneticsublatticeswith close degreeof magnetization.Furtherwe will
studythe magnetizationdynamicsin a ferrite in which a shockEMS wavepropagates.

4.3. A shockwavein a two-sublatticeferromagnet

Let us examine a model of an isotropic ferrite describedby eq. (1.35) with the substitution
Heff 12 = H — AM21 and with the appropriaterelaxationtermsadded.SinceM, — M2 is not equalto
zero,it is convenientto makedimensionlessthe temporalandspatialcoordinates:r = 4 iry(M1 — M2) t,

= 4iry(M1 — M2)~/~z.In doing this we obtain for the ferromagnetismvectors, M = M1 + M2 =

(M, + M2)m, and antiferromagnetismones,L = M, — M2 = (M1 — M2)l, the following equations:

Om/Or + mx h = —r~{mx (mx h) + lx [lx (h — A0m)]

— ij{l x (mxh) + [mx (1 x (h — A0m)]},

01/Or + 1 X (h — A0m)= —rj~{l X (m X h) + m X [1x (h — A0m)]}

— x (m x h)] + 1 x [1x (h — A0m)]}, (4.29)

4irA0 = A,

where

H = 4IT(M1 — M2)h, 4~= (M1 — M2)(q1/M1±~2/M2).

One can easilysee that the vectorsI andm satisfy the relations

m 1 = (M1 + M2)/(M1— M2) q, 12 + m
2 = q2 + 1. (4.30)
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As in the caseof a one-sublatticeferromagnet,wewill be interestedin the stationarysolutionof set
(4.29) and the corresponding Maxwell equations describing a shock wave that turns a ferrite from the
initial statewhen the vector m is orientedby the field e~h1along the ey axis to the final state when
m = ~eyandh = —e~h~.It is not difficult to see that relations (4.25) and (4.26) are also valid for such a
wave. The most interestingwaves are the ones propagatingwith velocity u 1 and such that the
conditionH + Hf ~‘ 8ir(M, — M2) is satisfied.This conditionis satisfiablein the vicinity of the magnetic
compensationpoint of the ferrite whenM, —> M2 [6].

A specific feature of a ferrite magnetization dynamics is that the moduli of vectorsm and 1 are not
conserved. From (4.29) we have

m ‘m = —rj~A0[q
2(m —1)—m4] — rj~q(l’h — qm h) — i~(m2l’h — qm h)

—ij~A~q2[m2— 1 + (1 /A
0q)(I’ h — qm ‘h)], (4.31)

where the coefficient q is defined in (4.30); in our case q ~- 1. From (4.31) an interesting result follows:
when the modulus of the normed ferromagnetism vector m(T) is large enough (when it satisfies the
condition m

2 — 1 ~ h
0/A0), the vector satisfies the relation,

rn
2(r) — 1 = [m2(0)— 1] exp(—2~1A

0q
2r), (4.32)

independently of external fields. The difference of m(r) from unity means that the vectors M
1 and M2

are not collinear. In this situation the effective field of the interlattice exchange creates a sizeable
torque under whose action M1 and M2 quickly precess around the equilibrium axis, approaching it due

to relaxation. In the case m
2— 1 ~ h

0/A0 the exchange field becomes dominant (the ratio h0/A0 is
usually small since the constant A0 is of the order 10~—10~).The characteristic times of the changein
the magnetization of the shock wave are much larger than the time when the value m

2(r) — 1 decreases,
so one can assume that m 1. It follows from (4.30) that I q ~- 1.

Since 1 — q~41, the modulus of lean be considered as constant, so in the equation for 1 in set (4.29)
one may disregard the relaxation terms. For the subsequent analysis one may use the approach of ref.
[51] that has been employed above in studyingdomain walls in antiferromagnets.Taking the vector
product of the equation for 1 in (4.29) with 1, we obtain

m=p—(i/A
0)[pxp+px(pxh)], (4.33)

which expressesthe vectorm via the vector1 = qp, I~I= 1. Substituting(4.33) into (4.29) results in the
equation

p +px h—(1/A0)[px~+px(px h)+2p’hp +p’hpx h]=i~~q
2pxp, (4.34)

that determines the dynamics of the unit vector p( i’).

The systemof equations(4.26), (4.33) and (4.34) fully determinesthe front structureand the
propagationvelocity of a shockEMS wave in a two-sublatticeferrite.

The vectorequation(4.34),which involvesthe angularvariables0 and ip that are introduced both for
the vectorp andfor the vectorm in the aboveconsideredproblemof a shockwave in a transversally
magnetized one-sublattice ferromagnet, is reduced to the scalar equations,
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cos p+h~sin co+(1/A0)[cos0q+2sinooçb—2p’hO+p’h(li~cosco—h~sin cc)

— cos0 h~— sin 0 (/~sin ip + cos ip)] = ~~jfq
2cos0 ~,

(4.35)
cos0 ~ — sin 0 (h~sin ip + h~cos ip) + cos0 h~

+ (1/A
0)[—~— sin 0 cos0 ~2 + h~cos ip — h~sin ip

— ‘h cos0 ~ —p~h cosOh~+ sin Op.h(h~sin ip + h~coscc’)]=r~+ q
20.

The magneticfield h entering (4.35) is expressedthroughthe angles0 and ip by meansof eqs. (4.26)
and (4.33). It is easyto seethat in the consideredcaseof h

0 ~‘ 1 the longitudinal field componenth~is
of the order 1/h0 4 1 andit doesnot greatly affect the magnetizationdynamics.So (4.26) and (4.33)
yield

(1—h0/A0)(h~cosip—h~sinip)=~hsinip—(h0/A0)Ô,

[1 — (h0/A1,)sin
20](h~sin ip + h~costp) = h

0 cos0 — z~hcos ip — (h0/A0)sin 0 cos0 çb. (4.36)

We will confineouranalysisof eqs. (4.35)—(4.36)to the casewhere1 4 h0 4 A0,which is closerto a
realistic experiment.Here the exchangefield greatlyexceedsthe vortex one, so, accordingto (4.33),
m p, while the correction to m, which should be madebecausein the magnetizationprocessthe
vectorsM1 and M2 become noncollinear, is of the order of h0/A04 1. Equations(4.35)—(4.36)takeon
the form

~
(4.37)

~ cos0 — sin O(h0cos 0 — i~hcos ip) — (1/A0)(~+ sin0 cos 0 ~2) — = 0.

Equations (4.37) differ from eqs. (4.27), which correspond to a one-sublattice ferromagnet, by the
termsproportionalto 1/A0, which accountfor the precessionof the vectorsM1 andM2 in the exchange
field, andalsoby dissipativetermsin the Hilbert form. Takingaccountof the dissipationin the Hilbert
form and in the Landau—Lifshitz form brings about the sameresult at ~

2q24 1.
A useful piece of information on the shockwave front structurecan be obtainedby studyingthe

behavior of the solution of eqs. (4.37) near the equilibrium states ahead of and behind the front, i.e.,
for p—* ~cc [58]. In theseregionseqs. (4.37) can be linearized; besides, one can assume that all the
quantitiesdependon i.’ as exp(ikv), with k determinedby the dispersionrelation

k2 + (h
0 + i~q

2k— k2/A
0)(o iXh — i~j~q

2k+ k2/A
0)= 0, (4.38)

where i = 1 when p—S—ccand if = —1 when p—>cc.

Approximatesolutionsof eq. (4.38)havethe form

k12 ±{—if~hh0 — ~[~q
2(h

0 — cTL~h)]

2}112 + ~i~~q2(h
0—

(4.39)
k34A0+i~q

2A
0.

According to (4.39), the low-frequencyfront structure(the front durationand the low-frequency
oscillationperiod) is determinedby the vortex magneticfield of the shockwave(rootsR12). Thewave
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profile is a rathersmooth function, but high-frequencyoscillations causedby the precessionof the
vectorsM1 andM2 in the exchangefield AM (rootsR34) are superimposedon the profile. Among the
solutionsdescribedby formulas(4.39) only thosewhich grow atthe foot and decreaseatthe top of the
shockwave front arerealizable[58]. So the expressionsfor the rootsR34 imply that the magnetization
exchangeoscillationsrevealthemselvesmainly at the top of a shockwave front.

To estimatethe exchangeoscillationamplitude,we will examinethe expression

= ~- [sin2~+ ~-~- (è
2 + cos20~2) —2 (1 — cos0 coscc)] = (~q2/h

0)(~
2+ cos20~2)

(4.40)

that follows from eqs. (4.37) and describesthe energydissipationon the shock wave front. The
integrationconstantin (4.40) is selectedin such a way that the equality E = 0 is satisfiedbefore the
wave front. According to (4.40), dE/dv= 0 and E(v—>cc)-->—4z~h/h

0.Thus, for the exchange
oscillation amplitudes,0,,~— ip~,we obtain the estimate0~<4 zXh/h11A04 1 from (4.40) combinedwith
(4.39).

It follows from (4.40) that for i~h4 h0 the function 0(r) is small. Hereeqs. (4.37)areeasilyreduced
to one equationfor the angle ip,

tp” + a ~q
2cc’— (~h/h

0)sin ip = —2a~(h0/A0)ip”— (h~/A~)tp”~0, (4.41)

whereprimesdenotedifferentiationwith respectto ~= h0i, and the angle0 provesequalto ~‘. It is
easyto seethat eq. (4.41) virtually coincideswith the appropriateequationthat describesthe shock
wave front structurein a one-sublatticeferromagnetin the caseof h0 ~ 1.

4.4. Shockwavesin an unsaturatedferromagnet

Thus far we haveconsideredthe shockwave structurein a saturatedferromagnet.It shouldbenoted
that functioning of practical devices is based on the shock wave propagationin an unsaturated
ferromagnet[53,59].

An unsaturatedferromagnetis a nonlineardissipativeanddispersivemedium.To describea process
of magnetizationreversalin sucha magnetseveralmodalequationsare known, the most“physical” of
them being the modified Bloch equation,

OM/0t —(1/r~){M—M0x(H/H~)}, (4.42)

that seemsto havebeenreportedfirst in ref. [60]. In this equationr~,is a typical relaxationtime; M0,
the magneticsaturationmoment;the functionx is given by the curveof the technicalsaturationof the
given material; H~,the typical saturationfield (if H> H~,then x—> 1).

Equation(4.42) togetherwith the Maxwell equations,

OE/0z= (1/c)OB/Ot, OH/Oz = (elc)OE/Ot, (4.43)

fully determinesthe stateof a one-dimensionalelectromagneticfield in aunsaturatedferromagnet.
Let usshowthat the initial systemof equations(4.42)—(4.43)in a broadrangeof parameterscan be

reducedto the Burgersequationthathasan exact analyticalsolution.



222 F. G. Bass and N.N.Nasonov, Nonlinearelectromagnetic—spinwaves

Note that in the limit cvr—>0 eq. (4.42) implies a static M = M0x(H/H~);taking it into account
permits us to solve (4.43) exactly, the solution correspondingto Riemannwaves [14]. Since the
relaxationtime is finite (usuallyr~— i0~s), (4.42)yields the relation(in the frequencyrangecv 4 r’),

M= M0x(H/H~)— r~0M/0r—~M0x(H/H~)— r~(M0/H~)x’(HIH~)0H/Ot.

In case of weakly linear wave processeswhich can be describedwithin the framework of the

quadratic(in the field amplitude)approximation,the aboveformulacan be simplified,
M—x1(M0/H~)H+ ~2(M0/H~)H

2— r~~
1(M0/H~)OH/0t, (4.44)

wherex1 andx2 arethe coefficientsof the expansionx(H/H~)= ~n�1 Xn(H~nY’,usuallywith x2 <0.
Combining(4.43) and (4.44), we get equationswith a short r.h.s.,

(_~—-~~-~VH±~E”\=+ ,)(20 X~~p02I~I
\V~ZOz OtI\ — ~/L I — ~ jiH~ 0t

2
(4.45)

=1+ 47rX
1M0/H~.

Let us examine,for example,wavespropagatingto the right. For suchwavesE —\/~i7~H,andin
the r.h.s.of eq. (4.45) onemayset O/Ot (ch/~)0/0z.As a result,wearrive at the Burgersequation

OH OH 0
2H

Ot’ 02’ Oz’2
(4.46)

4irIx
2IM0 r~x1H~

2 ~ Z—Z—t,
c 21x21

Reducingthe initial systemto eq. (4.46) actually solves the generalproblem,for the Cole—Hopf
substitution H = —2v(O/0Z’)ln ip transforms eq. (4.46) to a linear equation of heat conductivity
Otp/Ot’ v O

2ip /0~2 Thus, the problemof wave propagationin an unsaturatedferromagnetadmits a
general analytic solution for the frequenciescv smaller than the relaxation frequency r~’ and for
amplitudesH smaller than the saturationfield I~Infor the given material.

Equation(4.46) openswide opportunitiesfor the analyticinvestigationof electromagneticprocesses
in unsaturatedferromagneticmedia, such as turbulentwave states(see ref. [61]) or nonstationary
modesof forming shockwaves.
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