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Preface

Investigations of nonlinear waves in magneto-ordered substances started long ago, and since then
considerable results have been obtained. Yet, as a rule, principal attention has been paid to the spin
branch, both in insulating ferromagnets and antiferromagnets. However, from the viewpoint of
applications and from the viewpoint of theory, electromagnetic-spin waves (for brevity, EMS waves in
the sequel) make as good an object of investigation as spin waves. Moreover, in the investigation of
currently actual millimeter and submillimeter ranges EMS waves are preferable.

A sizeable stock of results on EMS waves has been accumulated up to now, but the articles
describing them are scattered in various sorts of publications, not easily accessible. In order to take the
next step in studying EMS waves, it is desirable to gather and sum up the results obtained thus far. This
is the purpose of the present survey. From the material gathered in it one can see that EMS waves are
rather diverse. They can be monochromatic but nonstationary, or stationary, shock, soliton-type, etc.
We hope this survey may stimulate the activity in the field, since, despite the large number of similar
results, a review of new types of waves is of interest; the reason being that the waves considered are
essentially different in their nature and properties. The propagation of EMS waves in a waveguide is
also examined in the survey. This problem is actual since the situation readily lends itself to technical
applications. But this problem is the only one of its kind.

Now we will comment on material not present in the survey. They are some investigations which
have not been carried out, though the need for them is pressing. First, the nonlinear wave excitation; in
some cases the equation initially set up can be reduced to an integrable equation (Burgers, sine-
Gordon, NSE, KdV). Here the problem can be treated with the inverse scattering method. In other
cases one can use the automodelling technique, which however becomes rather difficult for an
experimental realization.

The interaction of nonlinear waves with obstacles is of great interest. This interaction generates a
specific emission which can be used for the nonlinear wave diagnostics. We hope the survey will also
initiate such studies.

1. Introduction

Owing to the Zeeman energy of the magnetic moment in a magnetic field, the electromagnetic wave
propagation can be accompanied by the excitation of magnetization oscillations. On the other hand, the
wave-induced time-dependent magnetization variation leads, according to the electromagnetic induction
law, to the generation of a solenoidal electromagnetic field. The interaction of the solenoidal field with
the magnetization oscillations results in coupled electromagnetic—spin waves [1-3].

In contrast to slow spin and magnetostatic magnetization waves [4-6], EMS waves propagate with a
velocity comparable to that of light, which means that electrodynamic effects must be accounted for in
the description of such waves. Besides, the space scale of EMS waves substantially exceeds the
characteristic length of the inhomogeneous exchange interaction [4] that determines the space scale of
spin waves. This permits one to proceed with the treatment of EMS waves without taking into account
the inhomogeneous exchange, which drastically simplifies the analysis [4].

Typical frequencies of EMS waves belong to the microwave range, so the devices whose operation is
based on such wave processes are broadly used in modern microwave technology. Thus, practical
requirements here served as a stimulus for the thorough experimental and theoretical research of the
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EMS wave propagation in ferromagnetic media (see, e.g., monographs in refs. [6-9] and the literature
cited there).

In the investigations of the physical processes and applications relating to EMS waves primary
attention has been paid to studying weakly excited states of ferromagnets which can be described by
using a linearized set of Maxwell and magnetization dynamics equations (the Landau-Lifshitz equations
from ref. [10]). As the exitation energy grows, the EMS wave propagation is accompanied by new
effects, such as monochromatic wave self-action, interaction of various elementary wave excitations,
etc., whose description requires using a nonlinear approximation. Certain types of EMS waves (solitary
or shock waves) are substantially nonlinear formations which can be described only by means of
nonlinear equations.

It should be noted that nonlinear EMS waves are investigated far less than nonlinear spin waves (see,
e.g., refs. [11-13]) though the first investigations of shock waves in ferromagnets [14] preceded the first
attempt to analyze nonlinear spin waves [15].

In the present work we will consider a broad class of nonlinear EMS waves. In the second section of
this paper we will investigate the properties of monochromatic finite-amplitude waves. Such waves
which are rather similar to elementary wave excitations in a ferromagnet, i.e., to linear monochromatic
waves, can propagate along a d.c. magnetic field in an isotropic ferromagnet or along the anisotropy
axis in a one-axis ferromagnet. The space structure of monochromatic waves will be considered both in
ferromagnets and antiferromagnets; penetration of a wave into a ferromagnet and the resulting effect of
nonlinear self-brightening of the ferromagnet will be also studied, as well as the structure of the
two-dimensional weakly nonlinear EMS waves in a ferromagnet plate.

Section 3 of the work is devoted to studying solitary EMS waves in ferromagnetic media. These
waves differ from magnetostatic magnetization solitons (the latter have been actively studied) in that
they have a greater propagation velocity in comparison with that of light. We will consider waves both
in the isotropic and anisotropic ferromagnets, as well as in an antiferromagnet. The properties of
two-dimensional solitary waves in a ferromagnet plate will be examined.

In section 4 nonlinear EMS waves will be investigated, which are waves whose existence is caused by
the dissipative nature of the magnetization dynamics, i.e., shock waves. We will study the evolution of
simple waves in a ferromagnet and an antiferromagnet. The front structure of stationary shock waves
will be studied in one- and two-sublattice ferromagnets.

The article will be concluded with an analysis of nonstationary shock waves in a nonsaturated
ferromagnet.

2. Monochromatic and quasimonochromatic waves
2.1. Interaction of electromagnetic and spin waves

Within the framework of the phenomenological approach used in this work, EMS waves in a
ferromagnetically ordered dielectric are described by the complete set of Maxwell equations,

rotrot H + (g,/c*)0*(H + 4nM) /3£ =0,  div(H +47M) =0, (2.1)

and by the Landau-Lifshitz equation,



F.G. Bass and N.N. Nasonov, Nonlinear electromagnetic-spin waves 169

%z_ngHﬁ.l.iMxé_M_’ Heff=H+Bn(n-M)+aV2M’ (2.2)
a1 " M, it

where the dissipative term is given in the Gilbert form [16]. Here 8 and a are the constants of the
magnet anisotropy and of the inhomogeneous exchange, respectively, n is the unit vector directed along
the anisotropy axis, g is the gyromagnetic ratio, M, is the magnetic moment of saturation, 7 is a
dimensionless relaxation constant.

In case of small-amplitude waves the system (2.1), (2.2) can be linearized and thus reduced to the
problem of an analysis of the dispersion relation [3] relating the frequencies and wave vectors of
elementary wave excitations of a ferromagnet. The results of such an analysis are described in detail in
the monograph of ref. [4].

In case of finite-amplitude waves there appear some singularities which will be considered for the
simple example of circularly polarized plane monochromatic waves propagating along the anisotropy
axis in a nondissipative light-axis ferromagnet. One can easily see that such waves are described by the
solutions of the system (2.1), (2.2); the solutions must have the form

M =M +iM, = M,sin § exp(iwt — ikz), (2.3)
with constant values for the parameters 6, w and k, 6 being the deviation of the magnetization vector

from the direction of wave propagation.
Substituting expression (2.3) into egs. (2.1) and (2.2) yields a dispersion relation,

w,(k, 0) — © =4mgM, cos 8 (g,07/c*) /(K* — ,07/c?), (2.4)
where
ok, 0)=g(H,+ 4wM,) + gM,(B — 4w + ak’) cos 0 (2.5)

is the nonlinear spin wave frequency [4]. The quantity H, denotes the external magnetic field applied
along the anisotropy axis.

Let us examine the dispersion and nonlinear properties of the waves defined by eq. (2.4). The
substantially nonlinear wave processes in which we are interested occur in the frequency range
w ~ gM,~10""s™", which is typical for the phenomenon of ferromagnetic resonance. In this frequency
range, if one takes into account the smallness of the coefficient wvaz,/c ~vag,gM,/c~10", the
general formula (2.4) implies a simple expression,

2 _ 2% _ 25 “’a(o)—w
k'(w, 0)=w e F"(w’ 0)=w & wS(O, e (26)

For @ <0 the above describes the spectrum of waves with left rotation of the polarization plane, while
in the frequency range 0< w < (0, ) and for w > w,(0) = 0,(0, 8) + 47gM, cos 6 it describes the
spectrum of slow (w/k < c//g,) and fast (w/k > c/\/g,) waves with right polarization. It is essential
that the inhomogeneous exchange interaction does not affect the spectrum of the waves described by
relation (2.6). In the process of propagation of such waves, however, the excitation degree of the
ferromagnet spin subsystem characterized by an angle of deviation of the magnetization from the
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equilibrium axis 6 can be rather large. This fact justifies the introduction of the term coupled EMS
waves, for it points out the self-consistent variation of the magnetization with the magnetic field in the
process of wave propagation.

One can easily see that in the frequency range |o]> w,(6) the left-polarized waves of an arbitrary
amplitude, as well as the right-polarized waves of the fast variety degenerate into purely elec-
tromagnetic waves with the phase velocity w/k = c¢/v/, [4]. On the other hand, eq. (2.6) shows that the
degeneration can also occur at an arbitrary frequency w for all waves due to the substantially nonlinear
saturation effect of the magnetic permeability, u(w, #)— 1. The growth of the wave amplitude H  is
related with the precession angle of magnetization by the relation

glH,|=g|H +iH|=|w(0,6) - o|tan 6 .

Affected by the field, the magnetic permeability u(w, ) can change not only in value, but also in
sign. If as the amplitude grows the function u(w, #) changes from negative to positive, then the
ferromagnet undergoes self-brightening; otherwise it becomes opaque (undergoes self-dimming).

For instance, let 8> 47 while the frequency w is in the opaque region for linear right-polarized
waves,

g(H, +4nM)<w<g[H,+ (B +4mM,]
[according to the dispersion relation (2.6) k* ~ u(w,0)<0 in the given frequency range]. Equation
p g quency q

(2.5) implies that the ferromagnet becomes transparent in the considered case if the wave amplitude
exceeds a critical value determined by the condition

6 > arccos{[w — g(H, + 47M,)]|/gBM,} .

On the other hand, a ferromagnet transparent to linear waves in the frequency range g(H, +
47M,) < w < g(H, + BM,) becomes opaque to waves with an amplitude satisfying the condition,

6 > arccos{[w — g(H, + 47M,)]/g(B —47)M,} .

Equation (2.6) correctly describes the dispersion of the right-polarized waves of the slow branch in
the wave number domain

k =k, =[w,0,0)/c]V4me,claw?(0, 8) ~10° gM,/c .

In the domain k> k, the slow EMS waves degenerate, becoming nonlinear spin waves with the
dispersion law

o= w/k,0), (2.7
where the functional form of w(k, 8) is given by formula (2.5). Comparing the results (2.6) and (2.7),

one can conclude that the inhomogeneous exchange interaction is able to essentially affect the EMS
wave dispersion only for such w and k for which these waves differ only slightly from spin waves [4].
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2.2. Self-action of a monochromatic wave in a ferromagnet

Before analyzing the solutions of the system (2.1), (2.2) it is convenient to make the variables
entering these equations dimensionless. So we will set

H=4zMph, M=Mgm, |m|=1, rt=4mgMy, cé=4mgMvE,z; B=47B,.

For the sake of simplicity we will restrict ourselves to the case of an isotropic ferromagnet
magnetized by a field A, in the direction of the wave propagation. The solutions of the system
(2.1)-(2.2) will be sought in the long-wave limit when the effect of the inhomogeneous exchange
interaction may be neglected. One can easily see that the plane wave (2.3) is a particular case of
monochromatic magnetization waves of the form [17, 18]

m, =sin 6(¢) explior —1W(€)] . (2.8)
The quantities 6(¢) and ¥(¢) determining the magnetization state vary self-consistently with the

magnetic field of the propagating wave (for the self-action effect see refs. [19, 20]).
By substituting expression (2.8) into the initial equations we get a nonlinear wave equation,

d*w
d¢?

+ 0’ [p'(w,0) —ip"(w, )]W=0, (2.9)

where
h =We“, W=R(£)e ™ R=VA*+B?, ¢=¥-arctan(B/A),
p' —iw"=1+ (sin’9/cos 8 R*)(A-iB), (2.10)
A=h,+1—cos8-w/(1+7n’), B=nwcosd/(1+7°).

The quantity u’ —iu" entering eq. (2.9) plays the role of the nonlinear magnetic permeability of the
ferromagnet. When dissipation is absent, u'(w, 8) coincides with the function u(w, 6) defined by
formula (2.6).

Equation (2.9) is equivalent to the set of equations

R-¢’R+ o’u'(w,0)R=0, d(¢R*)/dé=—w’u"(w, §)R*. (2.11)

Note that the quantity ¢R” is proportional to the flow energy density of the wave, i.e., the second of
the above equations describes the wave energy absorption.

Let us first neglect the effect of magnetization relaxation on the wave propagation process. Then-
p" =0 and the system (2.9) coincides formally with the equations describing the motion of a material
point in the field of central forces (here R plays the role of the radius, ¢ is the angle and ¢ is the time).
The well-known formulas of classical mechanics [21],
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R R
dR j dR
= + -, = . * M _— ,
Rf ®R): ¢4 J R’o(R)

(2.12)
@’ =R’ + MR} - M’IR* — w’(h, + 1 — w)(tan’d — tan’§,) + 2(cos 6 — cos 8) ,

determine an implicit dependence of the amplitude and the wave magnetic field phase on the coordinate
¢ The subscnpt i in the above expressions denotes the values of the appropriate quantities at £ =0,
M= go,Rl .
Let us dwell on the classification of the solutions of eq. (2.12). Since ¢ is real-valued, the expression
( ) must obviously be nonnegative for all physically meaningful R. It is evident that ®*(R,) = 0. Let
@*(R.)>0, which can be achieved by a proper choice of the integration constant R, #0. Then for
M # 0 the equation @*(R) =0 must have at least two roots R, <R,<R,since ¢ (R)—> © when R— 0
and R— oo, accordmg to the coupling relation from eq. (2. 10) If R, and R, are simple roots of the

equation @°(R) =0, then the function R(&) will oscillate with a per1od Ay deﬁned by the relation
dR
2 =2 f 4R _ (2.13)

1.e., the self-action effect of the EMS waves considered leads to establishing a periodic structure of the
electromagnetlc field and magnetlzatlon in a ferromagnet. In the particular case with R, =0 and
M? = 0’u(8, )R] the equation @*(R) =0 has a multiple root R = R., while solution (2.12) descrlbes
magnetization waves of the form (2.3).

In the case of M =0 solutions (2.12) are of physical interest, for they correspond to standing waves
and waves decaying exponentially when £— . While analyzing the standing wave structure it is
convenient to place the origin £ = 0 at the point where the wave amplitude reaches its maximum. Then
the expression @ *(R) assumes the form & = (cos 8 — cos 8)f(6), and the function f(#) vanishes only in
that domain of parameter values where the waves are unstable. That is why the precession angle of
magnetization, 6(¢), for standing EMS waves is a periodic function passing through zero, unlike the
case of the waves propagating with M #0.

Solutions (2.12) corresponding to the exponentially decaying waves exist only for the waves with the
right rotation of the polarization plane in the frequency range £, <0<1+ h,.

In connection with the above-mentioned instability of EMS waves we will examine in more detail the
functional dependence of the wave magnetic field amplitude, R, on the magnetization precession angle
6. This dependence implied by the corresponding formula (2.10) is schematically shown in fig. 1. Curve
I is typical for the left-polarized waves with an arbitrary value of » and for the right-polarized waves
whose frequency lies outside the range s, < w <1+ h;. Curve II corresponds to the dependence R(6)
for the right-polarized waves with the frequency w inside the indicated range. One can see that in the
latter case the function 8 = 8(R) becomes multiple-valued if the amplitude R exceeds the critical value
determined by the formula

R, =nw\V1~(1+h, - ). (2.14)

This ambiguity was first established by Suhl [22] in a particular case of homogeneous magnetization
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Fig. 1.

precession; Suhl showed that this ambiguity causes instability of magnetization oscillations. Let us
examine the stability of the EMS wave (2.12) with respect to the generation of magnetostatic
magnetization disturbances in the wave number domain gM,/c < k <1/a. The magnetic field of such
disturbances is generated by the magneto-dipole interaction, and in the one-dimensional case consid-
ered is a constituent part of the longitudinal field /,. Substituting into the initial set of equations the
disturbed transverse magnetization in the form

m, =(sin @+ rr) e (2.15)
we will obtain, neglecting dissipation, a linearized equation to determine the disturbance amplitude m,
(1+hy— o +1id/91)m + } tan’0 (1 + hy — )i + m*)=0. (2.16)

For the disturbances whose dependence on time is given by the factor e”” the dispersion relation
follows from (2.16),

cos’d v> = —(1+ h,—cos § — w)(1+ h, — cos’d — o) . (2.17)
One can see that the quantity »” is positive for the angles
8, = arccos*\/4, < 8 < 8, = arccos 4, = arccos(1 + h, — w) . (2.18)

Thus, the part of curve II in fig. 1 which corresponds to the angles given by inequalities (2.18)
depicts unstable EMS waves. This instability is similar to another one which was studied in detail in the
theory of forced nonlinear oscillations [23]; this can be easily shown if one regards the relation
R=R(w, ) as giving the dependence of the force amplitude R on 6, the amplitude of forced
oscillations with the frequency w.

Let us pass now to the analysis of decaying EMS due to magnetization relaxation. We will assume
that the decay is weak (u"<pu'). The approach is justified in most cases since the ratio w"/u’ is
proportional to a small value n~ 107>
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The absorption of the plane monochromatic wave presents the simplest case. When there is no
damping, the plane wave amplitude remains constant, while when the damping is small, the amplitude
slowly decreases. That is why one can neglect the small quantity R as compared to ¢°R in the first
equation of (2.11) [24]. By solving the resulting system of equations we find the function 6(¢) as an
implicit dependence,

0.

i

F d[Vu'(6, 0)R*(8)]

=wf. 2.19
) w6, 0)R(8) wé (2.19)
Calculating the 6(¢) asymptotically when é — ® we arrive at the formula

0(£)— 6.5(8) exp{~z0[1"(0, 0) Vp'(0, ®)]¢} . (2.20)

This differs from-the corresponding formula of the linear theory only in the self-action factor S [20],

S(Gi)=Mxmﬂ#_lf(mﬁe)_l) do }

6 CPIVu(0,0) A%0) 2c0s8 2 J \Vu'(0,w) A%0) / sinfcosd

(2.21)

which regains the information on the nonlinear stage of the wave evolution. The coefficient A(#) in
(2.21) has been defined in (2.10).

It is much more difficult to investigate how the absorption affects the propagation of the waves with
amplitudes oscillating in space. In the general case one has to apply the averaging method developed in
ref. [25], but this method enables one to obtain an analytical solution for rather special forms of the
function u(k). If the amplitude of oscillations is not large as compared to its mean value, the problem
can be solved by using a method similar to the one considered above for the plane wave case.

Let us use once more the formal similarity of the system (2.11) with u"(0) to the equations
describing the motion of a material point in a field of central forces. One can easily see that a plane
wave corresponds to the motion of a material point along a circumference. In view of the small damping
the curve radius R becomes a slowly decreasing function of £. A rosette-type trajectory [21] corresponds
to a wave with an oscillating amplitude; thus, the quantity R(£) can be represented as a sum which
varies slowly under the action of absorption of the function r(¢) and oscillates with the period of the
amplitude oscillation of the additional wave u#(¢) that contributes the difference between the wave
considered and the plane one.

At u"=0 (2.11) implies conservation of the momentum M = $R> Due to the absorption M
decreases slowly. Following ref. [25], we write an equation to determine M by averaging over the
second of egs. (2.11),

M=—-o*(u"(r+d)(r+i)). (2.22)

In the first of egs. (2.11) we may neglect the quantity 7 as being small in comparison with u. The
resulting equation,
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U=—wu(r+a)r+a)+Mi(r+a)y, (2.23)

can be regarded as an equation for one-dimensional oscillations of a material point in a potential well
[the function #(¢) is, by the statement of the problem, periodic at u”=0] with slowly varying
parameters depending on the function 7(£). When #—0, i.e., in the case of a plane wave, eqgs. (2.22)
and (2.23) must result in (2.19). Combining this with eq. (2.23), we obtain a functional definition of the
momentum

M=o\ (0. (2.24)

In the considered case with & < r the right-hand sides of egs. (2.22) and (2.23) can be expanded in
powers of . For the sake of simplicity, we will retain only the principal terms of the expansion and,
using (2.24), we arrive at the system of equations,

i=-0nNi=-w [4,L (r)+r— (r)]
(2.25)

& VEDA)= o7 -0 & i)

which describes the self-consistent variation of the functions r(¢) and é( £). One can easily see that the
equation determining the dependence r(¢) differs from the equation corresponding to the integral
(2.19) only in one term proportional to (@) which accounts for the effect of wave amplitude
oscillations on the absorption process. In the domain where waves with oscillating amplitude exist the
conditions ' >0 and dr(f)/d@ >0 are satisfied; these conditions can be used for demonstrating that
the quantity £2°(7) is positive. By using an adiabatic version of the harmonic oscillator equation, we
arrive at the equation

uy =i Q(r)29(r), (2.26)

where u; is the initial value of the oscillation amplitude u(£). Substituting relation (2.26) into the
second equation of set (2.25) leads to a nonlinear first order equation which is integrated in the same
manner as (2.19).

As we have noted, in the case of M #0 solutions (2.12) describe monochromatic waves with a
constant or spatially oscillating amplitude, while in the case of M =0 they describe standing waves and
waves exponentially decaying when {—. The latter can be realized in the process in which a
right-polarized magnetic wave penetrates into a ferromagnet, provided that the wave frequency w
belongs to the opacity region for linear EMS, h,<w <1+ h,. Let us dwell on the corresponding
boundary problem, since it will reveal an interesting effect of the nonlinear self-brightening of a
ferromagnet.

Let a polarized electromagnetic wave h, explior —i(w/v/€)¢] fall on the surface of a ferromagnet
filling the half-space £ > 0. The field in this half-space is described by a solution from (2.12) where the
quantity M which is proportional to the energy flow must be set, in the considered case of the complete
internal reflection, to zero.

Expressions (2.12) corresponding to exponentially decaying waves must, in the asymptotic region
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¢— o, turn out to be expressions of the linear theory. This determines the integration constant R,. We
will find the two remaining constants 6 and ¢ with the help of the usual boundary conditions that
require the continuity of tangential field components on the ferromagnet surface. It is easy to show that
¢, = arctan(R,/w\/g;R,) while the quantity 6, is related with the incident wave amplitude #, by the
relation

4h? = F*(8) =sin’0, — 24,(1 — cos )/cos 6, — 24,(1 — 1/e)(1 — cos 6 — 14, tan’g)) (2.27)

where the quantity 4, was defined in formula (2.18).
Let us examine now the function F(§,). Note that the variation range of the angle 6, in (2.27) is
bounded from above by the condition

0, < 6, = arccos[ ;4,(1 +V/1+8/4,)], (2.28)

which follows from the requirement that the quantity ®*(w, 8) in (2.12) should be positive. By
comparing eqs. (2.18) and (2.28), we arrive at the inequality 6, <6, <6,. One can easily see that the
function F(6,) reaches its maximum at the point 6, = §,. Thus taking into account the wave instability in
the region 6, < 6, < 6, of magnetization precession angles, eq. (2.27) determines a decaying wave in a
ferromagnet in a unique way if the incident wave amplitude h, does not exceed the critical value
h, = 3 F(8,) that depends on the wave frequency as

he= 51— 41— 4°) (1 + 457 + (Ay/e )2 + 45)]' 2. (2.29)

For h,>h, the wave begins to penetrate into a ferromagnet, bringing about the effect of the
nonlinear self-brightening of the medium. The self-brightening threshold becomes lower as the incident
wave frequency decreases; in the vicinity of w = h, it may be small,

h,~(V2/3V3)(w — hy)Vw — h, +9/8¢,<1.

The graph of the function k4, = h,(4,) obtained according to formula (2.29) for the value of the
dielectric constant ¢ =8 (typical for ferromagnets) is shown in fig. 2. The asymptote of the function
6(£) in the considered case of complete internal reflection of the wave has the form

0(£) =658, w) exp[—wVA,/(0 = hy)é],
(2.30)

1
S8, w)= tan( 6,) exp[ T(.\/—a)_:Toj

6

1

X(!( (@ —hy) = Tvﬁ:l;mg)]“2> Vlfecosé)]

Let us consider now the excitation in a ferromagnet caused by propagating EMS waves. The case of
a plane wave is the simplest. For a plane wave R(6) = R(8) = const. and ¢ = v\ u(w, 6) = const., so
the boundary conditions are reduced to the conventional Fresnel formulas,
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2h, =[1+Vu(w, 6)/]R(6) . (2.31)

Taking into account formulas (2.10) which determine the quantities u(w, #) and R(6), we see that
the function (k) following from (2.31) for left-polarized waves is a monotonically increasing function
for any negative values of the frequency lying outside the opacity region for linear waves, h, < o <
1+ h,. If  belongs to the opacity region, then the variation of £, within the interval (0, ) corresponds
to the variation of the angle 6 in the interval 8, =arccos(4,) <6 <w/2, with R(6,)=0 if the
magnetization relaxation is not accounted for. In the case considered we encounter the hysteresis
phenomenon, as is the case in many nonlinear problems. In order to excite a propagating right-
polarized wave in the frequency range h, < o <1+ h, the incident wave amplitude &, must exceed the
critical value h, determined by formula (2.29). The resulting expression (2.31) proves that a ferromag-
netic state exists in which a plane monochromatic wave is excited by an electromagnetic wave with
h, <h,, the wave being directed from the vacuum. A ferromagnet can acquire such a state from a
similar state with h,> h, by adiabatically decreasing the incident wave amplitude.

A plane wave is a particular case of a monochromatic wave with an amplitude periodically varying in
space. Such waves arise under the action of an electromagnetic field on a ferromagnet plate whose
thickness does not exceed the EMS penetration depth. Let us examine the resonance on standing EMS
waves in the simplest linear resonator formed by a layer of a ferromagnet of thickness L sandwiched
between two metallic plates. The function R in the considered case must satisfy the obvious boundary
conditions dR(¢=0)/d¢é =dR(¢= L)/d¢ =0, taking these conditions into account we will transform
the function @*(6, ®) from (2.12) into the form

A(cos 6 +cos ) ) 2.32)

2 2
D7(0, w) = w’Ay(cos 6 — cos Gi)< 005 cos’d
where 6 =6(¢£=0) is the value of the magnetization precession angle on one of the resonator
boundaries. The energy flow in the considered case equals zero, when the absorption is not taken into
account. The frequency w is assumed to lie in the transparency region for linear waves, so that a stable
field structure is realized within the resonator. So the expression in large parentheses in eq. (2.32) does
not vanish in the angular range 0 =<0 < #/2.
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Let us find the eigenvalue spectrum of the resonator w,(6). Having noted that the angle 8 varies
from zero to 6 at a distance equal to a quarter of the wavelength of its own oscillation, we will obtain
the equation for determining w,(6) by equating the ratio of the resonator length L to half of the
oscillation wavelength (see eq. 2.13), to an integer n,

6,
L [ dR(b, »,)
o ) ——@(0, o) (2.33)

In the linear approximation eq. (2.33) implies a well-known formula

w0 ?) T

When the values of 6, are finite, a nonlinear shift of the resonator eigenfrequencies occurs. The
nonlinearity is especially pronounced for the right-polarized oscillations with a frequency close to that
of the homogeneous ferromagnetic resonance. When h, — w <1, the nonlinear frequency shift o, (6) —
w,(0) becomes sizeable even for small 6 which one can see by analyzing the relation

(1/@,)(367 + by — w,) " {2E8[26 + $(hy — ,)] ") — K(8[26] + §(h, - ,)] ")} = L/2n,
(2.34)

which in the case considered follows from the general formula (2.33). In this formula E and K are
complete elliptic integrals. The functional dependence of w,(6,) for several initial values of r is shown in
fig. 3.

2.3. A monochromatic wave in an antiferromagnet
Equations (2.1), (2.2) and the solutions obtained from them describe monochromatic electromag-

netic waves in a ferrodielectric with one magnet sublattice being characterized by the magnetization
vector M. Let us pass now to the analysis of nonlinear monochromatic EMS waves in two-sublattice
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magnets. We will restrict ourselves to the case of a one-axis antiferromagnet whose magnetic properties
are characterized by two equivalent magnetic sublattices with the magnetizations M, and M, related by
antiferromagnetic exchange [4]. Linear EMS waves in such a magnet were studied in ref. [26] while
nonlinear ones were studied in ref. [27].

The magnetization dynamic equations in the case under consideration have the form [4],

oM, ,/dt=—gM, , X Hy 5,
(2.35)
Hy ,=H-AM, +Bnn-M ,+f'nn-M,, +aVM, ,+a'V’M,

where A is the constant of the homogeneous intersublattice exchange, and |M,| = |M,|.

Let us examine the solution of the systems of equations (2.1) and (2.35) in the long-wave limit when
one may neglect several terms in H,, which are responsible for the inhomogeneous exchange
interaction. As usual, we introduce the vectors of ferromagnetism M = M, + M, and antiferromagnet-
ism L =M, — M,. Expressing egs. (2.35) in terms of dimensionless variables we have,

dmldr +mX (h+ Bynn-m)+ B, n-1lxn=0,
(2.36)
or+1x(h—Agm+Bonn-m)+ B, n-lmXn=0,
where 878, =B = B’ (we consider a case of a light-axis ferromagnet, so 8> B'), 4mA,= A,

M=Mym, L= M. The remaining notation coincides with that of the previous section. Properly
normalized, the vectors / and m satisfy the relations

m-1=0, |m|*+|l|’=4. (2.37)

It is not difficult to see that, as in the case of a one-sublattice ferromagnet, monochromatic waves of
finite amplitude may propagate along the antiferromagnetic anisotropy axis. Passing to the circular
polarization for the transverse component of the vectors m, I and h in egs. (2.36), we arrive at the
equations

[hO + sz - (1 + AO - B(;-)mz + 1 a/a’r]ll = lz[hJ. - (AO + :B(;)ml] s
[ho+ m,y—(1—Bg)m,+idldrim =mh, — B, L1, ,
(2.38)
ollor=Im(h¥l, — Amil)), dm,/lor=Im(h*m)),
(8%9€* = 3%9r*)h = 9*m Ior*,

where n=e,, the formula a, = a, +ia, holds for all the quantities, /, is a constant magnetic field
applied along the anisotropy axis. We will seek the solution of system (2.38) in the form

a,(§,7)=a,(£)e"", a,=a,f). (2.39)

It follows from (2.38) that if a wave of the type (2.39) propagates in an antiferromagnet, then the
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transverse components of the vectors m, I and k rotate around the anisotropy axis in the same phase.
We will assume that the external field k, is less than 2[8, (A, + B5)]'"> =2(B; A,)"7 so that the
antiferromagnet in the ground state is in the collinear phase [4]. Here m_, = 0, so, combining (2.38) and
(2.39), we obtain the formulas

mw:Kwhu)z — B(;zl§+m2(w_h0+A0mz) h ,
BoAyl; + (0 —hy)(®—hy+ Aym,)
L hehtAm)
B(;Aolz_(w_ho)(w—ho""Aomz) v

(2.40)

l, = x,h,

that relate the magnetization components with the magnetic field of the propagating wave. It is assumed
in eq. (2.40) that A,>1, B, which is usually true.

Relation (2.37) enables one to express the longitudinal components of the magnetization m, and /,
that enter in the functions «, and y, via the quantity |4_|* Subsequently the last equation of the set
(2.38) is reduced to the closed nonlinear equation

d’h,/dé* + 0’1+ x (o, [k, |)]h, =0, (2.41)

which is similar to eq. (2.9) describing nonlinear monochromatic waves in a ferromagnet. The sort of
solutions of the above equation is determined by the form of the nonlinear magnetic susceptibility
«,(w, |k, |*) which is found from the equations

AOKw(w - hO + mz/Kw)2 = wlz)(l - %mi - %Ktzulhwlz)(AOKw - 1) ’
(2.42)
Agm, = =40 = ho){1 = [1 - 44k, (Aox, = Dk, [7(@ = he)']"}

where wf, =48, A,. One can easily see that in the limit |k,|— 0 relation (2.41) implies the standard
expression for the linear magnetic susceptibility of the antiferromagnet

k,(0,0) = (1/Ag)wi [0} — (0 = h)’]. (2.43)

For small but finite values of the wave magnetic field amplitude eqs. (2.42) yield an approximate
expression for the nonlinear magnetic permeability,

Rl et L oty
Ak, (@, |h,[7) = ( 4|ij 20 [( +[-w-pL—(-w8——hh0—)-2—2lhw|2]2) _]

2
(O]

; 2.44
T Ty 2 24

that shows that nonlinear self-action effects of monochromatic EMS waves in antiferromagnets are
essential only in the vicinity of the resonance frequencies @ = *w, + h,.

The expression for the magnetic susceptibility (2.43) enables us two write the solution of eq. (2.41)
in quadratures, the general analysis being similar to the one in the above-considered case of a
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monochromatic wave in a ferrodielectric. As an instructive example, we will examine the structure of
standing waves in an antiferromagnet. Taking account of (2.44) the first integral of (2.41) has the form

2

(i—?)z = wz[% ln(l + G—:—if)%wi) - RZ] : (2.45)

where R = |h,| and the integration constant is chosen so that the boundary condition R— 0 should be
fulfilled at || — %, which corresponds to the autolocalized nonlinear oscillations of the antiferromagnet
magnetization. One can easily see that the r.h.s. of (2.45) in the limit |£|—> has the form
—w’u(w,0)R* Thus the solitary nonpropagating waves we look for can be realized in the frequency
range corresponding to the opacity region of nonlinear monochromatic waves

w,thy<w<o,+hy+VB,/A,, —w,thy— VB A <w<-w,+h,. (2.46)
The analytic solution of eq. (2.45) in the case of small amplitudes has the form
© 0
R=—-" [4(, 0) sech[wV/ (@, 0)] €], (2.47)
|K¢u ((l)-, 0)1 0

which is typical for weakly nonlinear solitary waves. One can see that the solitary wave amplitude
vanishes on the boundaries of the opacity regions of linear waves (2.46). Nevertheless, the condition
R’ < |a)f, —(w — h,)*| used in deriving expression (2.47) from eq. (2.45) permits us to use solution
(2.47) only in the vicinity of the values o = * o, + hy =V B, /A,.

2.4. Dynamics of Schrodinger wave packets of electromagnetic—spin waves

We have thus far studied the propagation of monochromatic EMS waves in magnets. New interesting
physical effects appear when EMS waves with a finite spectrum width propagate in a ferromagnet. The
analysis of weakly nonlinear quasimonochromatic waves is of special interest, since, on the one hand,
such waves are most typical for experiments and applications and, on the other hand, the analysis can
be carried out in the general manner by employing the well developed theory of NSE (nonlinear
Schrédinger equations) [28-30].

At first, let us examine the simplest problem of the evolution of a quasimonochromatic one-
dimensional EMS wave of a finite amplitude propagating in an isotropic ferrodielectric along the d.c.
field. The initial equation for the analysis is one that follows from the system (2.9), (2.10); this is a
nonlinear dispersion relation,

1+h,o+i
K = o e (2.48)
hy— o+ 30" +inw

that relates the wave frequency, wave number and amplitude. In the case at hand of a weakly nonlinear
wave, the amplitude, whose role is played by the angle by which the magnetization vector deviates from
the direction of wave propagation, 6, is small, § <1. Let us confine the analysis to the slow branch,
assuming that i, <1. Then the solution of eq. (2.48) can be represented as
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_ 2 : 2
w=wlk,0)+iy(k,0%). (2.49)

In the reglon of long-wave disturbances where the condition k* < <4h, holds, the functions w(k, 8°) and
y(k, 8°) are as follows:

ok, 0*)=Vhok(1 = ki2\Vh, + 0%14h,),  y(k, 0%)=ink*. (2.50)
In the region of short-wave disturbances with k*> 4k, the same functions are given by the expressions
ok, 0%)=h,(1- hy/k>+ 0%2h,),  y(k,0°)=hy. (2.51)

Following ref. [29], we will seek the solution of the system (2.1), (2.2) giving the transverse
magnetization component m , =m, +im, as

m, =U(& )™, (2.52)

where w(k) = w(k, 0) and the envelope U( &, 7) grows slowly as compared to the exponential growth of
its arguments.
Relation (2.49) corresponds to the operator equation for the envelope U(¢, 7),

[—ia%+w(k)—w<k+1— |U| )] -1y<k+1 |U|) (2.53)

Taking into account that the medium is weakly nonlinear and the envelope varies but slowly, the
operator w(k +id/d¢, |U|*) in the Lh.s. of eq. (2.53) can be expanded in powers of i /3¢ and |U|
keeping several leading terms (see, e.g., ref. [29]). As a result, we obtain the equation

[0yl 10w & ) _ ( >
(i o T ok &2 9K o Jr¢9|u|2|U| U] =iy(k+i5 5 |UP)u (2.54)

Equation (2.54) with zero on the right is called a nonlinear Schrédinger equation [28]. The form of
the solution essentially depends on the sign of the quantity a, (3°w/dk’, dw/d|U|*). One can easily see
that for EMS waves of the slow branch the Lighthill criterion of the modulation instability is satisfied,
a, <0 [31] [relations (2.50) and (2.51) imply the inequalities d’w/dk* <0 and dw/d|U|*>0]. In the
assumed conditions the wave in (2.52) is in the evolution process divided into a set of spatially localized
wave packets, i.e., solitons of the envelope, for which U(¢, 7)— 0 when | £|— ». Equation (2.54) with
y # 0 describes the magnetization relaxation effect on the soliton evolution. A change in the spectral
composition of the wave m (&, 7) during its propagation can significantly affect the wave absorption
conditions (for instance, the spectrum can be shifted towards larger or smaller values of the
decrement). So for a correct description of the wave absorption one must consider the behaviour of
y(k,|U|?) in greater detail than the behaviour of w(k,|U|?). To this end, the operator y(k +i d/
3¢, |UJ?) on the r.h.s. of (2.54) is expressed in a general form.

Let us rewrite (2.54) in the canonical form
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9U 1 38*U 2 < 2) .
=422 + =iR 2.55
lé”+2a§’2+|U'U 5fl k ig ét,,|U| U=iR[U], (2.55)
where

. dw , /§<§ dw ) ~  |ow/a|UJ|

= —— = _—— = —,
TR ak ") 9°wlk’]

= % 2] 'Y:'Yof(k+lﬁ |U|) f=1.

|dw!a U]

For 8 <1 the considered problem allows a simple analysis on the basis of the perturbation theory
developed for solitons [32] that was created in the framework of the inverse scattering problem. The
theory of ref. [32] (see also refs. [33,34]) allows one to describe a slow variation of the soliton
parameters under the action of a structural disturbance R[U] and also to study the distortion of the
soliton shape in time. Following ref. [32], we will seek the solution of eq. (2.55) in the form

U =2k, exp[i( A)/ky)z +ig] [sech z + W(z, 7')], z=2k,(¢' —g'), (2.56)

where the first term proportional to sech z describes the envelope soliton with the slowly varying
parameters x,(7"), Ao(7'), ¢(7"), g'(7'). The distortion of the soliton shape is described by the term
proportional to the function W(z, 7').

The soliton parameters are found from the set of equations describing the adiabatic approximation
[32]. In the case under consideration these equations assume the form,

o[ g). - g=som( [ scem )
e ok, Re J dz g*fq), ek ok, Im J dz tanh z g*fq) ,

dr =24, 2x, Re J dz zq*fq) ,

(2.57)
d d
d—“’, =24, dg, 20—k -6 Im(f dz (1 - z tanh z)q*fq) ,

q(z) = exp[i( Ay/xy)z] sech z , f=flx+ ZiEKO d/dz, x}).

Using the Fourier transform of the quantity g,

©

o= [ qerds = Lseehliats A,

—®

we obtain the relation
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71 Al
fq =1t f dve "f(k — 2,3)\ + 2BK0V k2)sech(imy) =1 /0

that allows substantial simplification of eq. (2.57). Finally, we have such a set of equations,

©

de, oK, f i . dk A, 28k, f k' dk’
Koo 2 ke -2BA K kD) ——— o= ,
dr’' A J flle =26 o) cosh’(k'/A) dr'  7A* ] 7 cosh’(k'/A)

(2.58)
dg'/dr' =2A,, de/dr' =2(A}+kl).

The set describes the soliton parameter evolution for an arbitrary dependence of the decrement on the
wave number and amplitude. Here 4 = (47/B)«, stands for the envelope spectrum width.

Set (2.57) is obtained under the assumption that the function w(k) changes smoothly. A question
may arise as to how large the contribution in (2.54) is of the neglected terms of the expansion of the
operator w(k +1d/9¢) in powers of i d/d¢. Our analysis showed that taking into account of the term
proportional to 9’w/dk’> does not change the form of the equation for the parameters «,(7') and A(7")
in the system (2.57), but the equations expressing the parameter g’ and ¢ via k, and A, assume the form

dg'/dr' =2A,+29(AL+ k2/3),  de/dr =2(A5+ k) + $9(As — ko)A,
(2.59)
7= B3 wldk’) (3 wldk*) " .

Let us pass now to the calculation of the function W(z, ') in (2.56) which describes the distortion of
the soliton shape in the evolution process. Using the results of ref. [32] and relation (2.58), we arrive at
the expression

© o

W=- fdz’ f dp,((p,—lxo-ktanhz)d)(z)—

2771/(0 7

2

b))

Z

K %

(,u, + ik, + tanh z) expli (m/K,)(z — 2")] N 8k, J s’ J’ du
—(p—lxo) (p+ix,) 8mieesh’z J

(o) BHIC =2 60

X ((M+i;<0+tanh 2o (z') - (i —ix) (g k)

osh2 '

Equation (2.60) implies that in the reference frame fixed to a moving soliton the explicit dependence
of the function W(z, 7') on the time 7' is determined by the time-dependent parameters A,(7') and
k,(7") of the soliton, the parameter A,(7') entering (2.60) only via the function (k, A, z') from (2.58)
which characterizes the dependence of the decrement on the wave number.

Calculating the integral over du in (2.60) yields a rather cumbersome expression for W(z, ') whose
asymptotic behaviour for |z|—  has a simple form,
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6

2
8ik,

W— — fdxe“*[is(z+x)+ P(z - x)], (2.61)

0

where the function (f’(z * x) has been defined previously.

Of greatest interest is the analysis of the evolution of the wave packet as a whole. By substituting
into the adiabatic equations (2.57) the coefficients derived from (2.51) and (2.50) we obtain in the case
of the long-wave solitons of the envelope (k” <4h,) the following simple equations

dA/dr' = -28k*A=-1n%8a’,  dk/dr' =-1in"k A%, (2.62)

where k. (7') =k — 2,[5/\0(7’), in accordance with definition (2.56), is a time-dependent wave number
that characterizes the center of the spectral distribution of the wave packet. Here & =2V/h,n/k. The
integral of egs. (2.62)

2
k.= %kco{l - g ;‘—20 +H[(1 - &7 ATk, + ba? Az/kio]”z} : (2.63)
c0
shows that in the evolution process of the soliton its spectral distribution centre is shifted towards
smaller k, [k— k(1 — 57" A2/k%), 4, and k_, being the initial values of the corresponding
quantities]. Here, according to the first of eqgs. (2.62) the rate of the soliton absorption becomes slower,
i.e., here we observe a peculiar effect of a nonlinear self-induced transparency (self-brightening) of the
medium. Figure 4 shows the behaviour of A(7") calculated by using formulas (2.62) and (2.63) with
ALK, =0 (curve 1), A3/k%, =0.2 (curve 2) and A%/k%, = 0.4 (curve 3).

This peculiarity of the soliton evolution can be simply explained. It is well-known that soliton
solutions of the nonlinear Schrodinger equation can be regarded as coupled states of a large number of
elementary excitations in the form of plane waves. During absorption in a medium with a decrement
which is a growing function of the wave number £’, as in the case described by egs. (2.50), the soliton
spectrum components corresponding to the left wing of the spectrum density function |y(k’)|’,

; 2
)= | | g e*uce, 5 @0~ comh (K -k )iae)
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are absorbed more slowly than the elementary excitations with larger K’ which correspond to the right
wing of the spectrum density. That is why the centre of the soliton spectrum distribution is shifted to the
left, towards smaller values of the absorption decrement. The nonlinear interaction results in such
energy redistribution among the elementary excitations comprising the soliton, so as to make the
envelope shape close to the function U(¢, 1) (2.56); this is just the shape that ensures equilibrium
between dispersion and nonlinearity, which is a necessary condition for the soliton existence.

Short-wave packets of EMS waves of the slow branch [the dispersion and nonlinear characteristics of
such waves are described by relations (2.51) which are valid for wave numbers satisfying the inequality
k* > 4h,] decay exponentially owing to the magnetization relaxation. Here the soliton does not move as
a whole, since the absorption decrement in the region k°>4h, is independent of the wave number,
according to (2.51).

2.5. Quasimonochromatic waves in a ferrite waveguide

The characteristic spatial scale gM,/c of EMS waves is of the order of one centimeter, so practically
all wave processes involving EMS waves occur in spatially limited structures. In this connection the
above analysis of one-dimensional waves gives but a qualitative description of nonlinear effects of the
propagation of intense EMS waves in real waveguide and resonator systems. Now we will investigate
the weakly linear wave propagation in a strip waveguide filled with an isotropic ferrodielectric and
magnetized in the direction normal to the metallic plates that bound the waveguide [35].

Let a wave propagate along the e, axis, let the external magnetic field h, (internal field) be directed
along the e, axis. The initial equation set for the problem has the form

VX h=delor, VX g=—-dhlgr— omldr, om/dr=—m X (hy+ k), (2.64)
where, besides the dimensionless magnetic field k, we introduced the dimensionless electric field E,
E=4nM e/, , V=e d/dx+e, dldy, ct =4mgM\VEx cx =4mgMVEyy ,

with the remaining rotation coinciding with that explained previously.

We will seek solutions of (2.64) which correspond (without taking account of nonlinearity) to the
usual linear waveguide modes. When weak nonlinearity is taken into account, the waveguide harmonics
becomes slow functions of the coordinates and time. Our task is to obtain and subsequently to analyze
the evolution equations of the amplitudes. The multiple scale technique will be a convenient method for
solving this problem [36].

Let us expand the field components in the transverse waveguide modes. We will seek the solution of
egs. (2.64) as asymptotic expansions in powers of the wave amplitude, assuming that the wave TEM
components are the principal ones. The quantities ¢, and e, will be expressed in accordance with the
general formula

a(r, £, x)= 2 a,(, £)sin(nk,x) (2.65)

n=1

while the quantities m_, m_, h,, h_, &, will be obtained in accordance with the formula

C(r, & X) = Cylr, ) + 2 C,(, §) cos(nk 1x) , (2.66)
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where k, = m/d, d being the ferrodielectric layer thickness. It is convenient to seek the quantity h, in
the form

hy=1im? + % h, (7, €) sin(nk,x) , (2.67)

with m’ = m> + m’. In the next chapter, representation (2.67) will be derived in analyzing solitary
waves in a strip waveguide.

Let us introduce formally the small parameter a; <1 which characterizes the smallness of the wave
amplitude; let us also introduce different temporal and spatial scales 7, = ;7 and ¢, = agé. For the
wave TEM components the following formula is valid:

Co=2 o Cl(r—Elu, 7,70, €1, &y ). (2.68)
=1

For the waveguide harmonrcs having the index n =1 the corresponding asymptotic expansions begin
with terms proportional to @2. The substitution of expressions of the type of (2.68) into set (2.64) and
taking into account rules of differentiation, leads to

3 4 9, .4 a1
+- —==
u

2 ‘9§

+ tay— ol — .
ar I, % 57, a7, %o 57 T, % o€, %o ’ (2.69)

and related equations of different order in a,. In (2.69) 7,=7— £/u.
The equations of first order in a, imply the usual formula,

m)=my(r,7y..., &, &,.. ) +he., (2.70)
which describes a linear monochromatic wave, with the dispersion law
u'(w)=(bohy — @) /(b3 — ©*), by=1+h,. (2.1)
Other wave components in the considered approximation have the form
WS = —mQ) = (iw/by)mge“™ +hc.,  h% =ue®) =[u’(1- u?)]m, ™ + h.c.
The equations of second order in a, for the TEM components of the wave are reduced to one

equation for the quantity m'2),

2
9 .
(ii n wz) I @ = > 2 (B2hy + (byhy — ©°) ]( Mo e +hc. 2.72)

or 0 ﬂTO

m, )
+p —20
er ‘751
whose 1.h.s. is a resonance with respect to the operator in the 1.h.s. The requirement for the solution to

be regular leads to the following equation for the amplitude m,:

am, v amy _ _ (coho — “’2)3/2(173 - “’2)1/2
or, ¥ gf & bihy+ (bohy— 0°)*

(2.73)
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that shows that the wave envelope (2.70) in the considered approximation propagates with a group

velocity.

Taking into account eq. (2.73), eq. (2.72) implies that the quantlty m'?) has a structure similar to
that of (2.70), so in what follows we will unite m'y and m') in one expression, (2.70). The
second-order approximation equations will lead to the following expressions for the remaining wave

components:

1 om, .
h(2) (2) 0 lw70+h. .
x0 mx[) b 37'] c ’
2u 2 u’ om om .
e B 2 (my im
DT e (1-ud) \an Y a ¢

The system of equations which is of second order in «, for wave components with the index n =1 is
represented by the three equations,

(_(9_2 B nzkiuz) Fo) nku om'? _ (1 —cos mn) 1 ( (2
m T u2 o, nw (1~ ) ar 2 '

873 1-u°

J (2) (9 (2)
by 4 Z T e ik (2.74)

0"1'0 077'0

<&2 2k ) (2) ( ~ u2 > 92 i_i) B 2‘2 2 @
0

m
PR P

zn

(970 1-u?

expressing the components of the nth waveguide harmonics via the solutions of the first approximation
(2.70). The solution of egs. (2.74) looks rather cumbersome; one can see, however, that the quantity

h if,) we will need further has the structure
hQ = A, (0)ymg e +h.c. (2.75)

The expression for the coefficient A, (w) will later be given for several particular cases.
Let us examine the third-order equations in « for the TEM components of the wave. After some
simple algebra the initial rather awkward system is reduced to the three equations,

(3)

am am, iw o 1—cosnmw i
—_z0 (3) _ 0 iwT 2 iwr,
+bmy=———¢e“"—— 2 —— A e “" + h.c.
o7, T, b, ; nw almolmy ’
am) B 1 d*my o, i@ dmy . 1 1 < 2> A
) _ 0 ot e 0 LiwTty - 2 iwTy
— - +h,,=1 +——¢e“"+ - —— |3+ myi'mg, e
7, hymzy +hyy b, 0.,7% € b, o, 21- 2 bz |mq|*my,
1-cosn I
+ En: —__ﬁ-‘h_ﬂ A |my|’mye“ " +he +. .., (2.76)
ovy _ W gmy) 2u’ amy Mo\ iy
= 3 + 73 +u (]
a7, 1-u> 9, (1-u”) \ dm, ¢,
1 ( d d >[ 2 0 } o
+ = = —+tu— )| (1+3u) — +u3+ 4 m °+he +.
iw 1—y* \om, “ 9¢, ( ) ar, ( ) 3 ¢, o€
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Nonresonance terms have been omitted in the r.h.s. of the equations, because they are inessential for
the subsequent analysis.
Equatlons (2.76) can be easily reduced to one closed equatlon of the form (d%ar;+
0’ )m$) = Fe'“ + h.c. +.... The condition that the secular term in the r.h.s. be absent leads to the
required evolution equatlon for the envelope

21w( 9., 9 ) byw’ (bl — 0*)(Bbohy + 0’u*)(bohy — ©°) 3°m,
dgr, ¥ a5 [bzh +(byhy — @°)']’ I
b,w’(b)— w®) 3 1—cos nw
b2h0+ G oh ) (2 E _0 3 Lcos nm ")|mo|zm0 =0. (2.77)
o"o 0’0 n

In deriving eq. (2.77) we assumed that the TEM component was the principal component of the
wave, so, in accordance with the equation just derived, the dispersion properties of the envelope m,, are
determined only by the TEM harmonics structure. Waveguide TM harmonics affect the nonlinear wave
properties. Since eq. (2.77) is a NSE [28], it is interesting to clarify the question whether any solitary
waves of the EMS wave envelope exist in the considered waveguide.

One can easily see that the dispersion coefficient in the term proportional to d°m,/d¢; is positive for
the slow branch EMS waves (v <V/b,h,) and negative for those of the fast branch (w > b,). So, to
employ the Lighthill criterion (see the preceding section), one must analyze the frequency dependence
of the coefficient before the nonlinear term in the evolution equation (2.77).

Assuming the external field &, to be small, let us examine the slow branch waves. The analysis
showed that for k = 1 in the low frequency region w <V/h, the expression for A, (w) assumes the form

_l-cosmn ( 22 1+4a)2/h§>'1
A (w)= — 1+ nk; —4w2/h§ (2.78)
In the case of h,— w” < h, the coefficient A () is given by the formula
~_1—cosw-n( 22/’10_(1)2>_1
A (w)= EE— 1+n'%; 3h, . (2.79)

Substituting expressions (2.78) and (2.79) to (2.77) with the subsequent summing over n shows that
the coefficient in the nonlinear term of the NSE is positive. Thus, slow EMS waves are unstable with
respect to automodulation.

Let us proceed with the analysis of the fast branch. We will confine ourselves to the case of high
frequencies, w > 1; eq. (2.74) implies the following expression for A (w):

A, (0)= — 4w’ (1 —cos mn)In’km . (2.80)

Taking account of (2.80), eq. (2.77) assumes the form

am, %>_Lm w2< w2w2) 2 _
ol Gt gt = G (1= G im0, 281

Equation (2.81) shows that the fast EMS waves in the considered waveguide are unstable with
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respect to automodulation in the frequency region b, ~1< w <V3k,/m (here the k, must be large
enough). In the higher frequency region the waves are stable.

The NSE was thoroughly investigated, so there is no necessity to write down the solution of (2.77).
Note only that the formal smallness parameter « in this equation should be set to unity. In the solution
of eq. (2.77) the small parameter is the soliton amplitude.

3. Stationary waves

The above-described monochromatic EMS waves of finite amplitude exist due to the uniformity and
azimuthal symmetry of the forces acting on the magnetization vector in the plane normal to the
direction of wave propagation. That is why the harmonic oscillations of the magnetization vector are
excited by the monochromatic magnetic field even in the case of a finite oscillation amplitude. The
magnetization oscillations arising when an EMS propagates at an angle to the magnetic anisotropy axis
or to the magnetizing field are not harmonic; as the wave amplitude grows, the wave spectrum becomes
enriched with higher harmonics. We will consider the structure of the simplest nonmonochromatic
waves stabilized in a ferromagnet, waves depending on the time ¢ and the spatial coordinate z (through
the expression z — vt) directed along the propagation direction [37-42]. We will pay special attention to
analyzing solitary EMS waves which drastically differ from the well-known magnetostatic magnetization
solitons [11-13].

3.1. Solitary waves in an isotropic ferromagnet

First of all let us examine the structure of stationary EMS waves propagating in the e, direction in an
isotropic ferrodielectric magnetized by the field H, along the e, axis. The initial set of equations (2.1),
(2.2) can be written in terms of the dimensionless variables,

J’ 32) 9’ a0 2(3( z?(p)
(?_}7 hy—;(cosf)cosqa), cosBaT—hlcOSO g P cos’d 7€

A J’ .
(a—f—i - P)hx = 3;'2‘ (COSBSIII qp) s
(3.1)

6% - —(cos @ + h,)sin 0 + [51n000s0(§—(£)2+?—230—]
cos § —- cos NE v pY: ok

h,=h,sing—h,cosp, h,=h,cosg+h,sing, vl =4me, g’ Ml ,

where M, = M cos 6§ sin ¢, M, = M, cos 0 cos ¢. The remaining notation coincides with that used
previously.

We will be interested in the existence of the solutions of egs. (3.1) describing the propagation of the
stationary solitary waves satisfying the boundary condition 6, ¢ <1, h,— h, = H,/4wM,, h,—0 when
|| — 0. Although it is difficult to find exact solutions of the set, one can determme however the
necessary conditions and the domains of existence for soliton solutions to the magnetization dynamics;
for this one needs to examine the solutions of (3.1) in the asymptotic domain |£|— %, where the
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homogeneous state of magnetization is established. Here 6, ¢ <1, permitting one to linearize set (3.1)
and seek solutions in the form of exponentially decaying waves [43, 44]. Setting 6, ¢ ~exp[—«(¢ —
ur)], we get in the asymptotic region the dispersion relation from (3.1),

/J,Ou2 —1\!? B Ei /,L(Z,u2 -1
1_u2 ) d’_uz 1 2

m

2

h
K'=-—% [¢i(¢2+4uo
du:

(3.2)

where w,=1+1/h,, u2 =vih, It is evident that the solutions of the dispersion equation (3.2),

k = k(u), which meet the condition Re[«(u)]#0, correspond to solitary waves.
Analysis of relation (3.2) shows that there exist soliton solutions of the type [43, 44] for which

(3.3)
5 h() uZ u2 2 1/2
K=7{#o+1*—zi[<#o+1—u—z> —4#0] }

No electrodynamic factors practically affect the solutions obtained, due to the small value of the limit
velocity u_V/ p, +1 (analogous to the Woker velocity) as compared to the velocity with which the
electromagnetic interaction is transferred in the medium.

Relations (3.3) can be obtained directly from the system of equations (3.1), after passing to the
magnetostatic limit s, — h,sin ¢, h,— h,cos ¢. It should be noted that when the velocity of the
magnetostatic soliton propagation |u| <u_(\/ g, — 1), then the angles 6( £ — ur) and ¢( £ — ur) mono-
tonically decrease when || — ; when the velocity lies in the range u (v, — 1) <|u| <u, (Vy, +1)
the decrease in 6 and ¢ is accompanied by oscillations (cf. the results of refs. [43, 44]).

Relation (3.2) implies the existence of a new branch of soliton solutions of the magnetization
dynamics equations. In the asymptotic region these solutions are characterized by the relations

Vpe=u'<1,  k>=(peha/*) peu’ —1)/(1-u?). (3.9)

The minimum velocity of propagation of the solitary waves of branch (3.4) far exceeds the maximum
velocity of the solitons of branch (3.3), the former being of the order of the light velocity. This means
that in principle, solutions of (3.4) cannot be obtained within the framework of the magnetostatic
approach. A very important feature of the solutions obtained is the independence of the quantity «,
which describes the spatial localization of a soliton, of the constant a; this constitutes evidence of a
weak dependence of the spatial structure of the soliton of the considered electromagnetic branch on the
effective field of the inhomogeneous exchange interaction. Thanks to that, one can give an exhaustive
analytical description of the considered solitary waves in many cases. Setting v; =0 in eqgs. (3.1), we
obtain the expressions

sin 0 = 1 Sin @ = /’u 1-u’ —tanh{x( ¢ — u7)]
o cosh[x(§ —ur)] ’ * bt =1 \/o? cosh’[k(¢ —ur)] -1~

2 _ [po(1 - uz) - F’vouz + 1]2
o =1+ 2 2 s
4pg(1—u Y pou”™ —1)

where the coefficient « is defined by formula (3.4).

(3.5)
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Analyzing (3.5) we see that the dependence of the soliton amplitude sin(d,,,) on its propagation
velocity u is nonmonotonic; sin(f,,,) =1 at u* = (u, + 1)/ 2,u,0 and vanishes at the end points of the
interval of permissible values of the velocity u from (3.4). It is important to bear in mind that at the
point u = [, + 1)/24,]""? an abrupt change occurs of the topological properties of the solitary wave.
It is easy to see that in case of the solitons propagating with the velocities [u| <V (u, + 1)/2u, the angle
¢ grows monotonically from zero when {— — to 27 when £— x, i.e., the magnetization vector makes
a complete revolution around the e, axis in the process of wave propagatlon If the soliton velocity
exceeds the value [(p, +1)/2x,]""", then the angle ¢ becomes an odd osc1llat1ng function, the values of
¢ at ¢ = — and ¢ = = being both equal to zero, while sin(p,, )= ui(1— u )/(;Lou — 1)< 1. Thus the
considered solitary waves are topological solitons in the ve10c1ty range 1y <u® <(py+1)/2u, and
are dynamic solitons in the velocity range (u, +1)/2u,< u’ <1, in analogy with the magnetization
magnetostatic solitons [11].

One should notice the relation between the expression «°= k’(u) in formulas (3.4) with the
dispersion dependence for linear EMS waves in a transversally magnetized ferromagnet [6],

k() = 0*(pohy — ©°) [ (poh — %) , (3.6)

which can be easily derived from (3.4) by setting k — ik, w = ku. Comparing relations (3.4) and (3.6),
we see that the interval of the admissible values of the propagation velocities of solitary waves (3.5)
coincides with the gap separating the existence domain of the slow-branch linear EMS waves
[u? <1/u,, according to (3.6)] with that of the fast-branch waves (u” > 1).

The interaction of the solitary waves of the form (3.5) is of utter importance, and to elucidate this
question one must study the corresponding nonstationary solutions of egs. (3.1). In the general case the
solution of this physical problem requires overcoming considerable mathematical difficulties. We will
seize the opportunity to substantially simplify the initial equations in the case where the waves
propagate with velocities close to the lower limit (3.4) in a ferromagnet positioned in a field
H,<47M,, with H,_ ~47Mu’ <47wM,, according to (3.1). One can easily see that under such
condltlons the magnetodlpole ﬁeld H,=—47M, generating the effective anisotropy of the type of the
light magnetization plane will have a dominant effect on the magnetization dynamics. Thanks to this
fact the vector M deviates only slightly from the xy plane during the wave propagation process. The last
equation in (3.1) implies the approximate relation between the angles 6 and ¢

0=—3dplor, (3.7
which permits one to reduce two magnetization dynamics equations to one,
d%plor’ = h,cos ¢ — h, sin g, (3.8)

not containing the wave function 6(¢, 7).

In the theory of magnetization, magnetostatic waves in a light-plane ferromagnet, relation (3.7)
yields (see ref. [11]) a closed sine-Gordon equation of the function ¢(¢, 7). In the case of EMS waves
eq. (3.8) must be solved jointly with the equations for the vortex electromagnetic fields from (3.1), &,
and h,, where one must set cos §—1. We obtain

3’ 192) 3’ (az 32) a° .
— ——|h,=—cos ¢, — ——Jh.=—sin¢g. 3.9
(agz ot/ T 9 ¥ g2 gt/ g Y (39)
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Let us utilize now the fact that the wave velocities are close to the value 1/, =V h; <1 in order to
lower the order of the wave equations (3.9). Let us use a reference frame that moves w1th the velocity
Vh,. The corresponding Lorentz transformation,

VIl = 6= VIyr,  VT=hyt' = Vigr = h

virtually coincides with the Galilean transformation. Taking account of the slow variation of the vortex
field and magnetization in the new reference frame (9/97' < 9/9¢"), we will get, by combining (3.8) and
(3.9), the following equations:

ag' (h, — hy c0s @) = 2hy sin ¢ j‘P, , ag' (h. — hy sin ¢) = —2h, cos ¢ % ,
o (3.10)
h, F =h,cosp—h,sing.
Further simplification is achieved by the change of variables,
fi=h,cosg—h sing, fi=hsing+h,coso—h. (3.11)

By substituting (3.11) into (3.10) and excluding the quantities f; and f,, we arrive at a closed equation
for the angular function ¢(¢', 7'),

dplor' + L(dpldt'y + 18°plot" =0. (3.12)

First of all, consider a stationary solution of eq. (3.12) which corresponds to a solitary wave. It is not
difficult to show that such a solution has the form

—2tanh[V24(¢' — u'r")]
T

Comparing the obtained solution with the exact solution of (3.5) we see that they coincide, provided
that

¢ = 7+ 2arctan[sinhV2u'(£' —u'r’)], sine= (3.13)

w'=uiNh,—1<1, (3.14)

which agrees with the assumptions underlying the derivation of eq. (3.12).

The evolution equation (3.12) possesses a remarkable property: it is fully integrable. Differentiating
this equation with respect to £’ and applying the linear exchange of variables ¢’ =2¢£”, 7' = 167" leads to
the mKdV equation in the canonical form [45],

v v v _ f ,
o T e 6‘1’;@—0, <p—2_ vd¢". (3.15)

The general analytic solution of this equation was found in ref. [45] by a method employed in the
inverse scattering problem. This N-soliton formula enables analytic description of the interaction
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between the solitary waves (3.15). The interaction of solitary waves in (3.5) can be expected to have the
character of elastic collisions in a broader range of velocities than in the case of (3.14). This conjecture
is supported by the above-mentioned nonzero topological charge of the solitary waves (3.5) whose
velocities lie within the interval 1/, < u’ <(p, +1)/2pu,.

Let us dwell on another limit case that also allows a drastic simplification of eqs. (3.1). Expressing
the vortex electromagnetic field components £, and 4, via the angular variables 6 and ¢ by means of the
magnetization dynamics equations,

h, +ih, = —cos 8 €' + (i/sin 6)d(cos 8 &) /T ,

and substituting the relation obtained into the wave equations (3.1), we obtain the closed equation,

2 2 ) ~ ' aZ )
(——jfz - —j 2)(—:7 cos 8 e"")(sin 9)"' =—i —352 cos e . (3.16)
-

Let us consider the waves whose propagation velocities are close to the upper limit (3.4), i.e., u=1.
Equation (3.16) describing such waves can be substantially simplified by using the inequality d/9¢ +
3191~ (1 —u)d/ar < d/ar. It is not difficult to see that the system of equations

J a)ae 1 dg <a a)( ago) .98
— =) ==1 = = — 4+ — -+ — = )
(df =) % 3 COs 0 P 0, Fr cot p= 5 sin 0 o 0, (3.17)

with the obvious integral
(90/97)* + cot’d (de/dr)’ = const. (3.18)

is valid.
The constant in (3.18) is determined from eq. (3.1) and it is equal to pehl. As a result, we obtain a
closed equation for the quantity 0(¢, 7),

(9/0€ + 3197)30/07 + L6\ uhs — (90/97)° =0. (3.19)

In deriving eq. (3.19) we considered the exact solution of (3.5) that shows that the‘ sol}tary wave
propagation with velocities u =1 is accompanied with a small excitation of the magnetization (0 <1,
p<1).

One can easily see that the soliton solution of eq. (3.19),

8 = V8ughy (1~ u) cosh ™[V poho/ 2(1 = u)(§ = ur)], (3.20)
coincides with (3.5), provided that

1-u<1/4psh, . (3.21)

Equation (3.19) is fully integrable and has N-soliton solutions. By the exchange of variables

30191 = pohosin W, =&+ dpohyr', 7= —Spuoh,t', eq. (3.19) is reduced to the well-known sine—
Gordon solution,
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’WIoE'Ir' =sin¥ , 0=-23VI3¢ . (3.22)

The soliton solutions of eq. (3.22) have been thoroughly studied; in particular, the N-soliton formula
describing collisions of N solitons has the form [46]
L£0°=Indet|B>+1|, B, =[VCCl(k,+k)]e & C ="K, (3.23)

where I is an N X N unit matrix K;, K, and v, are constants. Formula (3.23) shows that the collision of
the solitary waves under consideration has an elastic character.

3.2. Waves in an anisotropic ferromagnet

Let us pass now to analyzing how the magnetic anisotropy affects the propagation of the stationary
EMS waves of finite amplitude. First we will consider the solitary wave dynamics in a light axis
ferromagnet. We will introduce angular functions 6 and ¢ that describe the magnetization vector in a
polar system of coordinates whose axis coincides with the magnetic anisotropy axis n. We obtain

M, = M,(cos 6 cos y, —sin 6 cos ¢ sin y,) , (3.24)

where cos x, = n-e,, and the axis e, has been chosen so that the vector » lies in the plane xz.

Let us consider the structure of the stationary solitary waves propagating along the anisotropy axis
(x, =0). Substituting expressions (3.24) into the general set of equations (2.1), (2.2), we will arrive at
a set of two nonlinear equations whose solution is

a—b _pg - u2 u’
1+2a(a+b)™" sinhZ[K"(f —ur)]’ 0 4v0 1-u*’

tan’(6/2) =

(3.25)
b=[1-2v/u’|,  a=[(1-2v5/u’) +4(ve/u)k;]"”.

The solution differs from the one obtained for the first time in ref. [15] only by the term u*/(1 - u*) in
the expression for (u) which is due to the EMS interaction. The domain for the existence of the wave
in (3. 25) is obtalned from the condition «| (u) >0; it is determined by the inequality u” <4B,v? —
168,v; ~4B,v2, which coincides with the one established in ref. [15] for magnetostatic solitons. Thus
only magnetostatic magnetization solitons of the stationary profile can propagate along the anisotropy
axis in a light axis ferromagnet.

Another situation occurs for x, # 0. Let us consider the equation set (2.1), (2.2) in the long wave
limit K”v0 < 1. Here the equations that determine the variation of the functions # and ¢ assume the
form

uf = —[sin x,/(1— u*)][(1 - cos 8) cos x, + sin 6 cos ¢ sin y,]sin ¢ ,

2
. ) in’y, s
s1n0[u<p+1— _Xz (BO _/: )cos 0]

sin y, cos y, . sin y,
=—=——7>—"sinfcos ¢ — [(1—cos 8) cos x, +1n 6 cos ¢ sin y,] cos 6 cos ¢ .

SN,
_ — 2
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The solution of (3.26) is

dy = f—ur _
ny(y)_ u(l—uz)’ y =tan(6/2),

Q*(y) =[w(1+ B, +y") = Byllsin’x,, — (y cos x, F V(1 + B, +y7) - B)'], (3.27)
sinzxn cos ¢ + (1+ BB,/ (1 + B,) — uz] + (cosz)(n - uz)y2 +2sin x, cos y,cos ¢ y=0.

Examine the structure of the solitary waves with y — 0 when |¢|— %. The condition Q°(y) > 0 in the
asymptotic region |¢|— = implies that the admissible values of the soliton propagation lie in the interval

B,/(1+ By) = u’ = (sin’)y, + B,) /(1 + By) - (3.28)

The above inequalities, valid for solitons of both branches corresponding to different signs () of the
term Q*(y) in eq. (3.27), show that the minimal admissible velocity of the EMS solitons considered is
determined by the value of the magnetic anisotropy constant 8 = 4x8,, the dependence u,_, ( 3,) being
the same as the corresponding dependence of the minimum soliton velocity in an isotropic ferromagnet
on the constant transversal magnetic field H =4mh, [see eq. (3.4)]. This is quite natural, since the
quantities B and &, determine the boundary of the opaqueness region for linear monochromatic EMS
waves in the corresponding cases [see eq. (3.6)]. According to eq. (3.28), the width of the interval of
the admissible values of the solitary wave velocities tends to zero when y,— 0.

A characteristic spatial soliton size is given by the decaying decrement of the function y(& — ur) in
the asymptotic region. Equation (3.27) yields the formula

d 1+By (o By \'7(sinx+By o\
d—gln[y(f—m)]_’u(l_uZ)<u_1f,30) ( 1+ 8, _u> ’

indicating that in the range of velocities given by (3.28) the condition that has been used in deriving
(3.27), Kﬁv(2,<1, is satisfied. This condition means that the inhomogeneous exchange affects the
structure of the considered waves only slightly.

According to eq. (3.29), the solitons under consideration are delocalized on the boundaries of the
admissible velocity region. This is true, however, only for the case u’— (S, + sin’y, ) /(1 + B,).
Analysis of eq. (3.27) shows that for u” = 8,/(1 + B,) the solutions become algebraic solitons described
by the expression,

(3.29)

(l + Bﬂ)z Sin2Xn

y= SIf X, (1 +
|cos x, T VB/(1+ By)l [cos x, & VBy/(By + 1)]

S (€- u7)>_ . (3.30)

At x, =0 the amplitude of the solitary wave (3.30) vanishes which shows that EMS solitons cannot
propagate along the anisotropy axis.

Let us analyze the dependence of the soliton amplitude and of the asymptotic values of the
magnetization rotation angle ¢ on the velocity u and the orientation angle y,,.

The soliton amplitude is found by means of solving the equation Q*(y™*) =0,
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(3.31)

_ sin x, cos x, V(1 — u)u’(1+ By) = By cos’x, ||
y =

N [u” = cos’y,|

From formula (3.31) it follows that the amplitude y_ grows infinitely when the soliton velocity tends
0 *cos x,. This situation actually occurs when the orientation angle belongs to the range
retan(V1/(1+ B,)) < x, <arctan(\/1/8,), the amplitude y, being finite. The values of u = *cos y,
livide the existence domain of the minus-branch solitons into regions with different types of magnetic
1oment rotation around the anisotropy axis.

Formulas (3.27) permit us to determine the asymptotic values of the angle ¢,

p(£= =)= —p(£=2) = —arccos[\/u’(1+ ;) = Bo] sin x, - (3-32)

Relations (3.32) hold for solitons of the both branches; they show that the solitary waves under
onsideration are magnetization rotation waves, similar to the corresponding magnetostatic waves
11, 15].

As has been shown, the stationary solitary EMS waves cannot propagate along the anisotropy axis.
hat is why it is interesting to investigate solutions of the more general form

0=0((—ur), ¢=wrt+V(&—ur), (3.33)

hich depend on the two parameters: w and u. The waves of the type considered which satisfy the
sundary conditions #— 0 when |£|— « are called envelope solitons [47] and are being extensively
udied in the magnetic soliton theory [11-13]. By substituting (3.33) into the initial set of equations
'.1), (2.2) and (3.24) at y, =0, we obtain the following equations for the functions # and ¥:

[dz +< +iu d)z]Re”’+(w+iu d>2sin0e“” 0

— w —_— — =

dfz df df ’
cosHR=[1+_(,BO+v§1P2—1)cos€—w+u‘1’]sin0 (3.34)

— 020 —icos 8 [uf + vi(20¥ cos 8 + ¥sin 6)] .

It is difficult to obtain an analytic solution of eq. (3.34); that is why we will consider the solution in
e asymptotic region |¢|—® where 6—0, so that the equation becomes a linear one. By setting
e’ ~ exp[—ik( & — ur)] we obtain from (3.34) the dispersion relation,

(By+ k*0i— 0 — ku)[k’ — (0 + ku)’]= (ku + w)*, (3.35)

at gives the quantity « as a function of the parameters w and u.

A necessary condition for the existence of soliton solutions of eq. (3.34) exponentially decreasing
1en |£|— = is that the dispersion relations (3.35) have complex roots. The region in the (w, u) plane
1ere the function «(w, u) assumes complex values determines the existence domain of the envelope
litons of EMS waves.

Let us first examine solutions of (3.35) in the long wave limit kv,— 0 which separates the EMS
anch. A third-order equation following from (3.35) remains rather cumbersome, and the well-known
rebraic condition that complex roots will appear brings about little information.



198 F.G. Bass and N.N. Nasonov, Nonlinear electromagnetic-spin waves

In the case of B, <1, realized in practice, the boundaries of the region of existence of EMS solitons
can be determined analytically. Taking into account that eq. (3.35) in the regions | + xu|<1 and
|w + ku|> B, (these regions overlap owing to the condition 8, <1) can be solved with respect to the
quantity  + xu, we will rewrite (3.35) in the form w + xu = w,(x),

o (k)= =31 FV1I+4B/k%), o, =3(1FV1+4&?). (3.36)

The number of real roots of eq. (3.35) at v, = 0 equals the number of intersections of the straight line
w + ku with the curves w,(x) on the (w, ) plane. A simple analysis shows that the boundaries of the
domain of soliton existence on the (w, ) plane, which corresponds to the absence of three intersections
of the straight line w + xu with the curves w,(«x), are given by the equations of the tangents to the
curves w;(x). The domain of existence of the solitons under consideration is shaded in fig. 5, the
boundary curves being given by the equations

Uy (@) =2VB[1 F (@/2B,) (VT +8By/w  1))*[2F (w/28,)(VI + 8B Jw F 1)] ',
u(w)=2Vo(l - w).

The precession frequency of magnetization in the proper reference frame changes within the range
0 < w <1. One can show that in the case of arbitrary values of the constant magnetic anisotropy S, the
EMS soliton velocity is bounded by the condition |u| <1 while the frequency w lies within the range
0<w<1+p,.

Let us examine now the domain of existence of magnetostatic envelope solitons. Here we have
w/k ~u~v,<1, and we get from (3.35),

(3.37)

va (w/k + u)’ ~(9 )2~ 2 o
Bt kv~ w Ku———————l_(w/K+u)2~ K-l—u vy <1. (3.38)

According to (3.38), the domain of existence for the solitons is given by the formula

u <4vi(B, — o), (3.39)
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which coincides with the result first established in ref. [48]. The parabola in (3.39) that delimits the
domain of existence of the magnetostatic solitons is schematically shown in fig. 5.

Consider now the spatial structure of the solitary waves of the EMS envelope, starting the analysis
from (3.34) in the long-wave limit kv,— 0. According to fig. 5, such an approach is justified, if the
soliton parameters @ and u are not simultaneously close to w = §;, u =0.

The simplest case to analyze is that of a solitary wave at rest (u =0). Here the waves considered
form a particular case of the above considered monochromatic standing EMS waves in a ferromagnet.
We will not write down rather awkward general relations, but give only the corresponding weakly linear
solution of eqgs. (3.34),

6= (2/\/F0)\/(1 + B, — w)(w — B,) sech[wV/ (1 + B, — w)/ (0 — By)¢] (3.40)

which is valid for 1+ B, — @ <1, B,. It should be noted that the soliton solutions (3.40) can occur only
in an anisotropic ferromagnet and not in an isotropic ferromagnet in the considered case of mono-
chromatic waves.

Finding an analytic solution to the system of equations (3.34) which describes the propagating
envelope solitons in the general case is difficult. Examine a particular case with 8, <1, 6° <1, o =1,
Here the set of equations (3.34) is approximately reduced to the equation

2
dd—§20e"”=(w+iu d%) (1—w—%[3002—iu d%)ae'“’, (3.41)

which has the analytic solution

¥=1uQw-1+18,6%),

(3.42)
0 =\[4o(1 - ©) ~ u’]/wB, sech[ 1\ 4w(1 — w) — u*(& - ur)] .

The soliton propagation velocity (3.42) is bounded by the condition |u| <2V w(1— w), coinciding
with the equation of the curve u,(w) from (3.37) that delimits the domain of existence of the envelope
solitons of EMS waves. It is easy to see that as u— 0, then solution (3.42) becomes (3.40) and accounts
for the conditions w =1, B,<1. According to (3.42), the solitons under consideration are delocalized
on the existence domain boundary, the amplitude tending to zero.

The solitary EMS waves under consideration are characterized by a significant (by three to four
orders of magnitude) excess of the propagation velocity compared to the maximum propagation velocity
of the magnetization magnetostatic solitons. We will analyze below the case of solitary wave propaga-
tion in an easy plane ferromagnet along the difficult magnetization axis; here a physically interesting
situation arises when magnetostatic solitons continuously become EMS ones.

Let us examine the solutions of the initial system of equations for 8, <0 and n = e,. In this case the
magnetization vector lies in the xy plane, the direction of m in this plane being not fixed (an infinite
degeneration). We will study the stationary solutions of the system of equations, using the notation
m, =sin 6 cos ¢, m, =sin 6 sin ¢, m, =cos § (in the state of equilibrium the vector m being directed
along the e, axis). The equations for the angular functions 6 and ¢ have the form,
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. d ) u .
uf cos § = vé d—§ (cosZO ¢)+ = cos @ sin ¢,

(3.43)

. e 1 . P
uqocosﬂ=—v(2)(0+gozsm(icos())+<ﬁ+],Bo|>s1n00050—%s1n0cos<p.
—u —u

To delimit the existence domain of the solitary waves, consider solution (3.43) in the asymptotic region
|€|— o with <1 and ¢ <1. A dispersion relation similar to (3.2) follows from (3.43); it determines
the dependence of the spatial size of the soliton, k™', on its velocity,

: 1 2 ¥ 2 2\ 4 172
k=zv—i 1+|BO|_;)—2—1—L£2+ 1+|Bo|_;i_1_uz +1__u2(1+“30|) . (3.44)
0 0 0

Let us study the limit expression for k(u) in the range of small and large values of the velocity u. In
the region u” < u} = (1+|B,)v eq. (3.44) implies that

K=k = (VI [Bl vV (1 = u) g . (3.45)

Equation (3.45) describes magnetostatic solitons [15], and is easy to comprehend by considering the
solution of (3.43) in the magnetostatic approximation. This solution is

sin @ = \/1— u’/u} sech[k_( & — ur)] . (3.46)

Expressions (3.45) and (3.46) clearly indicate that there exists a limit velocity of the magnetostatic
soliton propagation. When u— u_, soliton (3.46) is delocalized, the amplitude tending to zero. Taking
account of the EMS interaction in the case considered removes the velocity limit for magnetostatic
solitons. It follows from the general expression (3.44) that k(u,) =V 1+ |B,|/vVu, and k(u)=[(1+
|Bo1) /(1 — ui/u?)]'"?, provided that u} < u”> <1. In the velocity subrange u = u, magnetization magneto-
static solitons continuously transform into EMS ones, while when u” > ., k(u) from (3.44) is expressed
as

K=k =\1+|g|N1-u?, (3.47)

independently of the inhomogeneous exchange constant.

The smooth transformation of the magnetostatic soliton branch to the EMS one is due to the
absence, under the conditions considered, of the slow branch of the EMS waves that bound from below
the domain of the admissible velocities of the EMS soliton propagation. Indeed, after the substitutions
k—ik, o = ku eq. (3.47) yields the dispersion relation for linear waves,

K(w)=o’ 1By, (3.48)

which allows for the existence of only the fast EMS wave branch [w/«(w) > 1], in contrast to the similar
relation (3.2) describing linear waves in a transversally magnetized ferromagnet.

It is interesting to investigate the influence of the anisotropy in the basic plane which removes the
degeneration with respect to azimuthal angle ¢. In order to take account of the magnetic anisotropy in
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the xy plane, it is sufficient to add in the ground state another term, B,m,, in the expression for the
effective magnetic field affecting the magnetization vector. We will delimit the existence domain of the
magnetization stationary solitons in this case by assuming B, <1. It is not difficult to show that a
formula similar to (3.44) is valid,

1 w2 w2 2 @ \? 2_B 1/2
ki=—{1+ - - t[<1+ -5 - )+41+ 1] }
* 2v§ |Bo| Ug 1= |Bo| vz 1- 2 ( Iﬁo 1—u°

(3.49)

In analyzing (3.49) one must bear in mind that virtually always 8, > v;~107".

The most important effect of taking into account the magnetlc anisotropy in the basic plane is the
appearance of the velocity range v, <|u|<V8, whlch is forbidden for solitons and separates the
existence domains of magnetostatic solitons, 0 < U< uo, and EMS ones. For B, #0 there exist two
branches of magnetostatic solitons corresponding to the functions k. (u). In the velocity range

u < (1 2V B,/(1+|B,]))u the functions k. (u) are real, while in the range (1 —2V/8,/(1 +|B,|))ui <

u’ < ul they are complex. In the latter case oscillations are superimposed on the smooth dependence

6(& — ur).
In the domain of existence of EMS waves, eq. (3.49) implies that
k= (V1418 V(' - g)/(1- 1), (3.50)

which is similar to (3.4) and reduces, as should be expected, to (3.47) when u’> B,.
Let us examine the principal properties of the solitary waves of branch (3.47). Setting v, =0 in eq.
(3.43), we get

ing= 2VI-WVI 2')3" sechk,(u)(¢ — ur)]. (3.51)

Expression (3.51) shows that when #—1, then the soliton localization domain and the soliton
amphtude tend to zero. The soliton amplitude reaches its maximum value, sin( 1 when
wP=ul = (1+]B) 12+ | By).

The angular function (£ — ur) is significantly different in the regions u° < u; and u, <u’<1. For
u’<u’ the angle ¢ monotonically grows from zero, when £— —o, to 27, when £—>c; thus the
magnetization vector makes a complete rotation in the xy plane, as in the case of the soliton
propagation in the transversally magnetized isotropic ferromagnet that has been examined in the
preceding section. On the other hand, the solitary waves whose velocities lie in the range u, <|u| <1
are dynamic solitons. Here the angle ¢ is an odd oscillating function with @(§ = —®) = (£ =»)=0,
while the oscillation amplitude is given by the formula

. 21+ 8D - ) (2uV1+]B[V1— w1
sul((pmax)_ 1+|BO|(1_u2) {1+[1 \ 1+|B |(1—u ) } -l J

max)

(3.52)

Here one can see that ¢, changes from 7/2 to zero while the soliton velocity grows from u « tO unity.
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The analysis given above of the EMS soliton dynamics has not accounted for the energy absorption
which always occurs in the process of reversing the ferromagnet’s magnetization. The influence of the
weak absorption (when the relaxation constant 7 in the equations has the order of 107%) can be
accounted for within the framework of the adiabatic approximation in the perturbation theory for
solitons [49]. The dissipation causes a slow variation in time of the free parameter of the solution of eq.
(3.51), the velocity u. To find the law governing this variation, u(7), let us act as follows. First, it is not
difficult to derive from the system of equations (2.1), (2.2) the equation

2

2n
PR

icoe i
or sve

5 . g .
E”8+12+|h+|2+(1+lﬁol)81ﬂ 0]=_ +101_§(8)+kh+_5+h+)v (353)

that expresses the energy conservation law; in eq. (3.53) we have used the notations 4wMh, =
H, +iH, 4wMye, = Vg, (E, +1E,). Let us substitute solution (3.51) to eq. (3.53) and integrate the
equation with respect to d¢ from —x to «, as was done in ref. [49]. We shall obtain a simple first-order
equation,

2 2
uVi—u

[1+ lﬁo'(l - ”2)]

that describes the absorption of the soliton energy W(u). Note that the soliton energy W as a function of
the velocity reaches its maximum at

SR YR AT X1

T ﬂml< (G+]8))

The form of the dependence u(r) is substantially determined by the soliton initial velocity. When
u(0) <1, eq. (3.54) yields

_?_ _ i 3/2
= W(w) = - 16(1+ | )

7 =n(1+[B,)(1 - )W) , (3.54)

u(r) = ugexp[~im(1+|B )], W~u’. (3.55)

Thus, for slow EMS solitons we observe the usual, exponential in time, energy absorption.
In the case of 1 —u(0)<1, 1/|B,|, eq. (3.54) yields a substantially different result,

u(r)=1-[1-u(0){1 +4n(1+|B,DI1 - u(0)]r}™", W~Vi—u. (3.56)

Formula (3.56) shows that under the influence of the dissipation we shall have here accelerated
solitons in contrast to the case of (3.55). Besides we observe here an abrupt suppression of the energy
absorption rate of fast EMS solitons that propagate in the given medium at a speed close to that of
light.

To explain the first of the above mentioned effects we must note that for u ~ 1 the soliton energy
W(u) decreases, i.e. dW(u)/du <0. In this case decreasing of the soliton energy due to the dissipation
adiabatically transforms the soliton to a state with a greater velocity.

The effect of the abrupt suppression of the fast soliton absorption rate allows for a simple
explanation. The soliton total energy W consists of the vortex electromagnetic field energy,
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W =1 [dé(|e,|*+|h,|?), and the ferromagnet internal energy W, = (1 +|B,|) f d¢ sin°@ that con-
sists, in turn, of the magnetic anisotropy energy and the magnet-dipole interaction energy, with
W, =[(1+u*)/(1 - u®)]W_. According to (3.54), the change in the soliton total energy W is propor-
tional to —2W,_; for this reason, when u’ <1 (and W=W,_) dW/dr ~ W, which results in the soliton
absorption obeying the exponential law (3.55). When u ~ 1, the main part of the soliton energy is
contained in the vortex EM field energy, while the ratio W,/ W_ increases during the absorption process,
causing the abrupt suppression of the absorption.

3.3. Relativistic domain walls in an antiferromagnet

Up to now we have studied the solitary EMS wave properties in a single sublattice ferromagnet. Now
we proceed with analyzing solitary waves in a low-sublattice ferromagnet, confining the case to the
one-axis antiferromagnet.

Let the wave propagate along the anisotropic axis [4]. Then to analyze the structure, one may use the
eqs. (2.36). The wave eqution in (2.36) yields the relation for stationary waves

b =[ui(1-u)m, . (3.57)

Taking into account this equation in the case under consideration of an easy-axis antiferromagnet in the
collinear phase of the ground state, we deduce from the initial system of equations the relations m, =0,
[, ~im . Equations (2.36) then become simpler, assuming the form

. d u’ -
ho_lua—f I, =\——=~A;= B )l.m,,

dl, u

<h B _d_) N o , ) * (3.58)
o~ iu T m,=-B,01 , ud§—< AO>Im[llmL].

1-u’

The system of equations (3.58) can be easily reduced to a closed equation in /, whose solution,

[, =—2tanh

(Lt At By) [u’—ul
(2\/3( . Bo) “_;‘2 (§—u7)), (3.59)

has a form typical for propagating magnetostatic domain walls in antiferromagnets [11, 50]. That is why
a wave described by (3.59) will be called a relativistic domain wall. The minimum admissible
propagation velocity for the waves of (3.59) is determined by the quantity u, =[(A,+ B,)/
(1+ A,+ B;)]'"? which is rather close to the light velocity in an antiferromagnet.

Note that the external magnetic field &, does not affect solution (3.59). From the system of equations
(3.58) one can easily obtain the relation ¢ = Arg[/ ]| = —(h,/u)( £ — ur). Thus, affected by the external
magnetic field, transversal components of the antiferromagnet magnetization uniformly rotate in the
process of the wave propagation around the anisotropy axis.

We must bear in mind that the description of the solitary waves in question can be substantially
simplified. Let us neglect the quantity B, in the r.h.s. of the first equation of (2.36), since it is three
orders of magnitude less than the exchange constant A; from here and from the equation describing
the time dependence of /,, we will derive the following relation:
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2 2
[l |*+ I = const. . (3.60)

For the solitary waves under consideration the constant in the r.h.s. is obviously equal to 4.
According to the second of identities (2.37), eq. (3.60) may be used if m is small. This assumption is
similar to the one used in the theory of magnetostatic solitary waves in an antlferromagnet [51].

The system of equations (2.36) implies the estimates |k, |~ |m | and m, ~|m |’ so that one may set
m, =0 in egs. (2.36). The first identity from (2.37) yields m , ~il , which allows one to establish that
in the case of h, = 0 considered below the vectors m | and /, vary in mutually orthogonal planes passing
through the amsotropy axis.

By setting /, =2 cos 6 and /| =2sin 6, in accordance with (3.60), let us express m and h, via the
function 6 by the formulas

= =4iBysinfeosy, =i ? +4iA4,8, sin 6 cos 4, (3.61)

which follow from (2.36). If one substitutes (3.61) to the wave equation, one obtains a closed equation
for the angular function 6(¢, 7),

9’ 3’ 9’
F 377 P 5 +4A,8, sin 6 cos 6 430 P sin 6 cos 6 . (3.62)
Equation (3.62) is significantly simpler than the initial system of equations (2.36), so it becomes

important to clarify its domain of applicability for studying solitary waves. Let us compare the
stationary solution of (3.62),

cos 6 = —tanh( B A V w __ uzn (é- ur)) , (3.63)

with the exact solution of the initial system of equations (3.59). In formula (3.63) u; = A,/(1+ A,).
One can easily see that passing from solution (3.59) to solution (3.63) is achieved by renorming
Ay + By, — A, in complete accordance with the condition 8, < A, used in deriving (3.60). Let us
consider the formula for the transversal component of the magnetization vector, the one that follows
from (2.36) and (3.59),

1+ A, + 8. uz—uf,,)‘”2 ( VBL(1+ B+ By) [u* - )
ml—2(1+ B - sech{2 . T (é—ur)).

As we have noted, a necessary condition of applicability of the suggested approach is the smallness
of the quantity m . The relation obtained implies that in the considered case of solitary waves the
condition |m | <1 is reduced to the inequality

u—u_> B 12A%, (3.64)

that delimits the region of admissible values of the solitary wave velocities which can be investigated by
using (3.62).
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Let us examine now the stability of the domain wall (3.63). Passing to a reference frame that moves
with the speed of the domain wall, we will seek the solution of eq. (3.62) in the form

6(¢', )= 06(£") +e"8(¢), (3.65)

where V1 — u’¢' = £ —ur, V1—u’7’ =7 — £u, 6(¢') is a solution of (3.63), e”"(;(g’) is a small added
term, p is the spectrum parameter. Substituting (3.65) into eq. (3.62), we get the following linearized
equation for the function (¢'),

2 2 2 d 0 2 d? _ “
(2o (2 a- ol
0

dv ub—ul u
(3.66)
0B, A, |u’ - u
p=ki2, v=rké', K= ” T

We will confine our analysis to the stability of the waves whose velocities u are close to unity.

This case seems to be the most interesting and the reasons for it will become clear somewhat later. It
is easy to see that if the condition 1 — u <1/2A4 <1 is met, then in the r.h.s. of eq. (3.66) the second
term in the square brackets may be omitted. How to solve the spectral problem for the resulting
equation,

d%/dv? — 0% - (1 - u?)(1 - 2sech®)§ =0, (3.67)

is well-known [49]. The only localized solution of eq. (3.67), 8 ~sech(V1— u’p), is realized at 2 =0
and describes a stable translation mode.

The stability of the domain walls is closely related with the complete integrability of the equation
that describes them. It is not difficult to see that for the waves whose velocity satisfies the condition
1-u’<1/A,, eq. (3.62) permits a drastic simplification, assuming the form

(0%0¢% — 3%97°)9 = 4B sin 6 cos 6 . (3.68)

The complete integrability of the obtained equation allows an analytic description of the nonstation-
ary wave process in an antiferromagnet with the participation of the solitary waves under investigation.

We will not dwell on the analysis of solitary waves in an easy-axis antiferromagnet which is in the
spin-flop phase in the ground state (see ref. [41]). We will only note that the propagation velocities of
such waves are less than those of the solitary waves in an antiferromagnet in the collinear phase. Here
the lower boundary of the region of admissible velocities of the considered domain walls depends on the
strength of the field that magnetizes the antiferromagnet and tends to zero when the magnetizing field
strength approaches the critical value that determines the passage of the antiferromagnet from the
spin-flop to the collinear phase.

3.4. Solitary waves in a ferrite waveguide

The above given analysis of one-dimensional solitary EMS waves cannot be directly applied for
quantitative calculations of actual experiments with solitary waves in spatially limited waveguide
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structures. Here we will study the propagation of weakly nonlinear solitary EMS waves in a strip
waveguide with a normally magnetized isotropic ferrodielectric (the statement of the problem is similar
to the one given above in analyzing quasi-monochromatic waves in a ferrodielectric waveguide).

We will solve the system of equations (2.64), assuming, as in the case of quasi-monochromatic
waves, that the TEM components of a wave are the principal ones. For the quantities ¢ , €, and h we
will use expansions (2.65) while for the remaining wave components we will use expansions (2.66). The
coefficients in (2.65) and (2.66) will be assumed to be dependent on ¢ and 7 in the combination ¢ — ur.
Being reformulated in this manner the problem considered of solitary EMS pulses is similar to a very
popular problem of the states of two-dimensional nonlinear fields, self-localized along one of the
coordinates and periodic along the other (see ref. [52] and the references cited therein).

By substituting expansions (2.65) and (2.66) into the initial set of equations (2.64) we arrive at the
equations fof the wave components with index n =0,

U
hz(]: l_uZ sz? hx():_me’
d u 1 L2
uagmx0+ ho-—l_ m =—E dy (hym, + 3m’ h,), (3.69)

dgml°+(1+h")m dJ'd,\f(hm +im’h,).

These equations describe the structure of a TEM-type field. The equations for the remaining
coefficients of expansions (2.65) and (2.66) are as follows:

d

. nk

Lh =u —m,_, ——(l—u)a?m + ddfdxsin(nkdx)mi,
0

d d’
3 = 2y2 2
L.k, = nk, dz mxn—<n ki;+u d§2>

aul—

d

f dy sin(nk,x) m}

‘ (3.70)
uim W~ hom,, +h, =

d¢

[SH S

d

[ ax costnk, ) (hm, + 2y,
0

: o _ 2 ¢ 2.2 2 _ 2 2
Ln—(l—u)agg nky, m =m_t+m;.

First let us establish the existence domain of the solitary waves localized along ¢. In the asymptotic
region | £|— = one can omit nonlinear terms in the equation sets (3.69) and (3.70). The resulting linear
equations give the asymptotics of various independent modes. By setting k, ~¢ " alfmum) m,~
e ™) p=0, 1,..., we will obtain the dispersion relations , = «, () that allow us to clarify

necessary conditions and the existence domain for the solitary waves. At n =0 we have the formula
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, L+ kg u' = hol(1+hy)

= 3.7
Ky uz 1 _ uz ’ ( )
that coincides with similar relations, egs. (3.4).
Thus, the existence domain of the waves under consideration
ho/by=ho/(1+ hy)<u’<1, (3.72)

coincides with that of one-dimensional solitary EMS waves in a transversally magnetized ferromagnet.
For n=1 (3.70) implies the dispersion relation

bz( h)( h)(h 1-u? ) _
n? Yof.2_ "o 2 _ "o o 2 _ 2\ 2
ke = o\ =g \m=p ), b, /A7)

2= -u)in’k .

(3.73)

The analysis of eqs. (3.73) shows that in the velocity range delimited by inequalities (3.72), the
equation has two solutions of the form x> = A () >0 and one solution of the form x> = B, (1) <0, the
latter corresponding to a wave oscillating and not tending to zero in the asymptotic region.

This solution which oscillates at infinity makes the complete wave localization impossible. But waves
whose velocity is close to the lower bound of range (3.72) are delocalized only slightly. Indeed,
according to (3.71), the variation scale of the principal wave components with the index n = 0 rapidly
grows when u’— h,/b, (the inequality u” — h,/b,<u’ appears necessary to warrant the employed
condition of weak nonlinearity). At the same time the spatial scale of the oscillating solutions is of the
order (nk,)”' (due to the screening effect of metallic plates), so when one expresses such solutions in
terms of the principal components with the use of (3.70), one has to apply the effective averaging which
results in the exponential smallness of the amplitude of the wave oscillating components.

Taking into account the weak nonlinearity of the solution of eqgs. (3.69) and (3.70), we will seek this
solution by the method of asymptotic expansions in powers of the wave amplitude. Under real
conditions 4, is usually small, so from now on we will assume that b, =~ 1. In accordance with the above
reasoning we will introduce a small parameter §, = \/1 hy! W’ We w111 attempt to express the quantity
m,, in the form,

E Bomio(&), & =8(&— ur). (3.74)

It is easy to see that the corresponding series for the quantity m_, begins with a term proportlonal to
8. Analyzing the system of equations (3.70), we see that the asymptotic expansion for h,, is given by
the formula

h,, = 1>21 85 (&~ ur). (3.75)

Similar expansions for other wave components with index n # 0 begin with terms proportional to &;.
In the roughest approximation in 6, (3.69) and (3.70) yield
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d’m)

=M _ (mDy - = E —coSAm (),

df; yn sz ’

dhlrdg? - n2k3h§13 =- de[(l — cos nm) Inm|(my))’,

n>1

(3.76)

which determine the structure of the principal wave components. The second of egs. (3.76) yields

COS nm

h§;>=-2]f§(1—cosm)f ¢ e M m D6, = ———= (m})*. (3.77)

Substitution of (3.77) to the first of eqs. (3.76), summation over n and subsequent integration lead to
the following final expression for the principal term in expression (3.74):

m'}) =2ub, sech( &) (3.78)

It is easy to see that solution (3.78) coincides in the proper limit with solution (3.5) that describes a

one-dimensional solitary EMS wave in a transversally magnetized ferromagnet.
The principal terms of the wave components with an index n =1 are determined from the equations

d’ d

( 0) d—é_—i m(l) + honzkzm(l) <E —n k2> df (1) =0,

d d & Bk G
u<d—§2 - nzki) BT mﬁi’ - <d—§2 - honzkf,) (1) = — cos nir) tanh( &, ) sech’(&;) .

The solution of (3.79) can be represented in the form,
- Biku (1—cos n) f d¢' tanh(8,¢') G[nk(é —ur — ¢')]
My =~ = T J o ,
(3.80)

G- 1 J dz z(1 + z°) e™aémv =)
) (hy+ ) hy - w83 - kil (1+ 22

The structure of the Green function in (3.80) is determined by the roots of the expression ¢(z*) in
the denominator of the integral for G(¢ — ur — £'); the roots commde of course with those given by the
dispersion relation (3.73), after a change in notation: z — —z% As we have noticed above, the two
roots correspond to localized components similar to (3. 77) The delocalized part of the functlon m')
corresponding to the third root z2 >0 is described in the asymptotic region |¢ — ur|— « by the formula

3;3.3 2 2
k 1- zi(1+z .
m) = +8x n 24 au e mankalty 2 COS TR d;Ezz)/;z)z sin{z;nk (£ — ur)] . (3.81)
0 3 3

This formula is similar to the one established in ref. [52] and shows that for a wave of a sufficiently
small amplitude in (3.78) the delocalization effect due to a nonlinear relation of the localized TEM
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pulse with the propagating waveguide modes is insignificant. In practice the delocalization effect under
discussion causes the finite life time of the solitary wave.

Omitting the calculation of the subsequent terms of expansion (3.74), let us pass to the analysis of
the nonstationary process of the localized TEM pulse propagation.

Bearing in mind (3.77), we will expand &, as h = Im’+2,_, h,, sin(nk,x). Neglecting the
intramodal interaction in agreement with the above analysis, we obtain from (2.64) the equations,

am,, b *h, 9°h,, B a’m,
ar oMo > d§2 972 972

; (3.82)
mX
aTO - hOmz() + h’zO = %miﬂ(mZO + hzO) ’

that describe the nonstationary dynamics of the TEM pulse.

In investigating the egs. (3.82) one must bear in mind that (3.82) is capable of the correct description
of the solitary pulse evolution only for waves which propagate with the velocity that satisfies the
inequality 1 — h,/u’ <1, thus satisfying the conditions of weak nonlinearity and a weak connection with
the modes oscillating over the waveguide cross-section. This inequality gives a lower bound of the
duration of the pulse exciting a soliton at the waveguide input. In reality, according to (3.78), the
solitary pulse duration is T =~ (8,u)”". Expressing the velocity u via the duration T, one gets from the
inequality the following condition:

T(s)> 1/g\/4nM H, . (3.83)

Thus, in the experiment one must direct to the system input electromagnetic pulses which are similar
in shape to function (3.78).

Let us simplify the system of equations (3.82) by using transformations similar to those which have
been employed in deriving the evolution equation (3.12) that describes one-dimensional waves in a
homogeneous transversally magnetized ferromagnet. Passing to a moving frame of reference, ¢’ =
¢ =Vhyr, 7 =Vh,7 - hy¢, in the transformed equation of set (3.82) we omit the second derivatives
with respect to 7', since the waves in the new coordinate system are slow. We obtain

(310¢") by = hy(313¢' —2 31t )m., . (3.84)

Combining eq. (3.84) with the magnetization dynamics equation (3.82) (setting in the latter
dldt— —\'h, 3/3¢"), we get a closed mKdV equation for the quantity m,,

om,, 3, dmy 073_’”;0_
2 P +2h0 mj, P + p— =0. (3.85)

It is easy to see that the stationary solution of eq. (3.85),

m,,=2V2hu' sech[V2u'(¢' — u't")], (3.86)

coincides, as should be expected, with expression (3.78) in the case u'=(u—Vh)/Vh,<1, in
accordance with the assumption used in deriving eq. (3.85).
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From the viewpoint of studying opportunities for an experiment aimed at finding solitary EMS
waves, the property of the complete integrability of eq. (3.86) is very important. Owing to this
property, we do not need the exact coincidence of the shape and amplitude of the pulse excited at the
waveguide input by means of an external generator of a solitary pulse. It is known [45] that an initial
pulse of sufficient intensity is split during the evolution process described by eq. (3.85) into a number of
solitons and a smeared, due to the dispersion, “radiation tail”. The scheme for solving the inverse
problem developed in ref. [45] enables us to calculate the number and characteristics of the solitons
arising from a given input pulse.

The recently developed perturbation theory for the equations bordering on completely integrable
ones, enables us to calculate the effect of a small structural disturbance on the soliton evolution. We
will consider the magnetization relaxation effect on the single soliton dynamics. Taking into account the
relaxation term in the Landau-Lifschitz equation and repeating the line of reasoning used in deriving
eq. (3.85), we will obtain an equation for the disturbance in the canonical form,

v 9w , 0¥ 2y W
(97'" + (?5"3 +61P agu \/h—o ag,,z ’

where m,,=Vh,¥, 7' =167", ¢ =2¢" Assuming the parameter n/\/h, to be small and using
perturbation theory [32], let us examine the single soliton evolution.

A small structural disturbance leads to a slow variation of soliton parameters (described within the
adiabatic approximation) and to distortion of its shape (described within further orders of the
perturbation theory [32]). Following ref. [32], we will seek the solution of eq. (3.87) in the form

(3.87)

¥ =2g,(7")[sech(z) = W(z, 7). z=2g(m")[€" — @ (7")], (3.88)

where the parameters g,(7") and ¢,(7") are found from the adiabatic approximation equations,

3

dg, _ 1 f dz dey
dr" 2 coshz’ d7”

zdz
cosh z

1
=4gl + — f R , 3.89
8o 48(2)_00 ( )

while the correction to the soliton, W(z, "), is determined by a cumbersome expression whose
asymptotics has the form

1 ,z dz 1 oz
W= 4226 JRCOS'hZ’ z—>® W=32g32e _[Rdz, Z—> —o, (3.90)

In the formulas written above R stands for the r.h.s. of eq. (3.87) where in the capacity of ¥ the
function 2g, sech(z), o' =8 [ g; d7’, must be used. First let us consider the adiabatic approximation
equations. By calculating the integrals entering (3.89) we obtain for the soliton velocity,

u(r")y = dey/dr" = 4gi(") = u(0)[1 + $(n/V hy)u’(0)r"]'"*. (3.91)

According to (3.91) the magnetization relaxation effect leads to the soliton deceleration. Thus, in
accordance with (3.88), the soliton localization region becomes larger. This fact must be borne in mind
in experimental studies of the solitary EMS wave dynamics, for it is possible to interpret this effect of
the dissipative smearing of an autolocalized pulse as the usual dispersion smearing of a linear pulse.
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Let us consider the variation of the soliton shape. Formula (3.90) imples that
28.W=(n/6Vh)u(v")z e, z—>, 2gW=0, z—>-». (3.92)

In accordance with (3.92), in a reference frame connected with a moving soliton the distortion of the
latter’s shape does not increase in time, i.e., the soliton displays a certain stability with respect to the
structural excitation. Besides, expression (3.92) shows that it is the front part of the pulse that
undergoes a distortion.

4. Simple (Riemann) and shock waves
4.1. Riemann waves in magnetic dielectrics

The dissipative nature of the magnetization dynamics substantially affects the propagation processes
of the above investigated EMS waves, but it is not so important in determining the existence of EMS
waves. We will pass now to an analysis of shock EMS waves whose existence is caused by the dissipative
nature and nonlinearity of the ferromagnet magnetization motion.

Shock waves appear as a result of an evolution of simple (Riemann) waves which are natural wave
excitations of a nonlinear nondispersion medium [53].

Let us examine, for example, the propagation process of low-frequency EMS waves of the slow
branch in a longitudinally magnetized ferromagnet. The dispersion equation (2.6) relating the wave
number and frequency implies that in the region of sufficiently small frequencies, w < w_, the dispersion
dependence becomes linear, i.e., k(w)~ w. This fact results in a phase synchronization of low-
frequency waves with their own harmonics, so during the evolution of low-frequency pulses of EMS
waves in a ferromagnet their profiles are distorted as a consequence of the nonlinear generation of
higher harmonics.

Passing to the quantitative description, we must first remark that the Landau-Lifshitz equation (2.2)
implies in the low-frequency limit that the variables of the magnetic field components | = h, +ih, are
quasistatically related with the magnetization variables m = m_+1im, (see ref. [53]),

h,=(1+hN1=|m |)ym . (4.1)

By substituting (4.1) into the Maxwell equations (2.1) we obtain a set of hyperbolic equations in
dimensionless variables used in the present paper,

Je _ ( 1 46 [ )
o"f_b 70 or sm¢+tan0 cosd)
7 17
ai;g_b <c01 % gecosd)—tane—(psmqb)
(4.2)

_de _ ”2(0) d6 )

5 0( o (9§smgo+ul(0)tan0 ag > cos ¢
_de, <u2(0) 90 B >

o €= % 9 cos ¢ ul(a)tane f !sin ¢
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The quantities entering the set of equations (4.2) are given by the formulas

_ iy — o ip —
e, te =¢ee™, m,=sinfe™, d=¢ ¢,

(4.3)
uj=1-cos@/b,, ur=1-cos9lb,, by=1+h,.

We are interested in the process of forming a shock wave which is described by solutions of (4.2)
representing simple waves. To find such solutions we will assume for each of the quantities entering
(4.2) that

dyldr+udyldé=0. (4.4)

Because of (4.4), differential equations (4.2) become algebraic equations. It follows from the latter
that there exist two types of simple EMS waves [53]. The first type is characterized by the property of
the magnetization precession angle to be constant, 6 = const. Such waves propagate without changing
their shape with the velocity u = u,(8) = const. The corresponding solution of (4.2) is

¢=F(¢(—u (0)7), e= (14 hy)tan 6 u,(6)[sin ¢ \/sin® ¢ + const.], (4.5)

where F is an arbitrary function.
The second type waves are linearly polarized (¢, =0, ¢, = w/2) and propagate with the velocity
u,(0). The variation of the angle during the evolution process is described by the equation

36197 + 1 —cos9/(1+ h,) 30/3& =0, (4.6)

showing that the wave profile points corresponding to large values of the angle § move with great
velocities. That is why the fragments of the wave profile where the magnetic field &, grows become
steeper. The wave shape evolves as

0=Gl¢—u,(0)r], e=-(1+h,) J u,(0)/cos’0 df , (4.7)

where the function G is determined by the initial conditions.

Solution (4.7) describes an initial stage of forming a shock wave, when a pulse with a sloping front
propagates in a ferromagnet. The steeper the front becomes, the greater are the dispersion and
dissipation effects [not taken into account in the quasistatic relation (4.1)] which prevent the front from
becoming steeper. In this case, if the pulse is semi-infinite, the stationary shock wave is formed.

Before the investigation of the structure of stable shock EMS waves, we will consider several other
applications of the Riemann waves in ferromagnetic media. First we will dwell on such waves in
antiferromagnets.

In the case of low-frequency waves propagating in an easy-axis ferromagnet along the anisotropy axis
one may use the expression for the nonlinear magnetic susceptibility (2.44) but letting the frequency o
tend to zero in the quasistatic limit. We obtain the equations

(0%9&* = 9%1gr*yh, = %o’ m,,  m =LA wi/(w,~ho—2lh, )]k, . (4.8)
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Equations (4.8) can be obtained directly from the general equations (2.38) by omitting the operators
d/ar in the Landau-Lifshitz equations.

Since the r.h.s. of the first equation of set (4.8) is small (4, 1), the operator ¢°/9¢” — 3%/ar” in the
l.h.s. of this equation can be simplified by setting

a9’ az_(a a)z (a a)a <a a)a
@—W= ;g,'l‘; 2 a—f‘}'E_ E_~—2 (9—§+(97 9 (4.9)

Approximation (4.9) sorts the waves propagating in one direction, taking into account the proximity
of the propagation velocity to unity. By setting 2, = he'* we obtain from (4.8) and (4.9) the
hyperbolic equations for the amplitude 4 and the wave phase ¢,,

2 2
d a) 1 4 w,h (a a) 1 w, J
— 4 — — = —+—)e, + — ¢, =0
<a§+af h+2A0 It )~ hy— 2k’ 0, ot ot/ 24, w, —ho—2h’ ar
(4.10)

The first equation of set (4.10) shows an essential difference between Riemann EMS waves in
ferromagnets and antiferromagnets. The solution of this equation is given by a function of the type of
(4.7) where the nonlinear velocity u = u,(h) is

2 2 2 2
ey @y @ hy 2K
u,(h)=1 24, (oF R 2h) (4.11)

According to (4.11) the parts of the wave profile that correspond to large values of the amplitude 4
propagate with smaller velocities, in contrast to Riemann waves in ferromagnets. Because of this
peculiarity the rear part of the pulse in an antiferromagnet (not the front one as in a ferromagnet) will
becomes steeper during the evolution of a time-limited pulse.

Note one peculiarity of the equation set (4.10) from which it follows that the amplitude and the
phase of a Riemann wave propagate along different characteristics. This fact enhances further the
distortion of the wave profile in the process of its evolution.

Let us examine another example of Riemann waves in ferromagnets, viz. the evolution of such waves
in conducting ferromagnets, which have recently been actively studied [54]. We will confine the analysis
to nonlinear waves propagating along a magnetic field in an isotropic conducting ferromagnet with
frequencies that are small compared to the plasma and cyclotron frequencies of the current carriers
(coupled spin-helical and spin—Alfvenian waves [55]). Consider the case of a nondegenerate conduc-
tivity plasma (ferromagnetic semiconductors and semimetals). The pulse dependence of the energy for
the current carriers will be assumed isotropic and quadratic. The system of equations describing a local
mode of the wave evolution is

4
otH="" (¥, -nV)+ 2 LE, rotE=-+2p,
4 ¢ Jt c ot
1 g (4.12)
€
vapzapm_p(E+zVPXB)’ EHP‘FVP(IIP'VP):O,

where n, m, v,, V, stand for the density, effective mass, collision frequency, and the hydrodynamic
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velocity of the current carrier, respectively; the subscript p assumes two values: p=1ifor holes and p=-¢
for electrons; 8, =1, §, = — 1.

Analyzing the equation set (4.12) in order to establish the existence domain of Riemann waves, we
come, above all, to an important conclusion: under the considered conditions Riemann waves can exist
only in a conducting ferromagnet with a compensated electron-hole plasma (in such a plasma
equilibrium concentrations of holes and electrons are the same). Indeed, in the case of the conductivity
plasma with current carriers of the same sign, or in case of an uncompensated electron-hole plasma,
the linearized equation set (4.12) implies a quadratic relation between the frequency @ and the wave
number k of elementary low-frequency wave excitations w = w(k) ~ k’; this relation is typical for the
helical branch of plasma waves [56]. Here the nonlinear process of higher harmonic generation that
accompanies nondispersion Riemann wave propagation does not occur due to the absence of the phase
synchronization between different exciting agents of elementary waves.

Let us examine the wave evolution in a conducting ferromagnet with a compensated plasma
conductivity. In range of frequencies which are small compared to the ferromagnet resonance
frequencies, one can use the quasistatic relation (4.1) between the variable components of the magnetic
field wave and magnetization. The frequency of a homogeneous ferromagnetic resonance gH, is usually
smaller than plasma and cyclotron frequencies for current carriers in conducting ferromagnets. In view
of this condition the initial equation set (4.12) can be substantially simplified to the form (in
dimensionless variables),

iuii<——L—l)ml—isL=V08L, iis =—b0i——m———, (4.13)
W T
where

_ (vm, +v.m,) _g(Hy+ 47M,)

=1 £ ¢ u
g dag(m, +m,)) "’ A o Vmitm,

is the normal Alfvenian velocity, v, = (4me’ny/mye,)'”, my and n, being the free-electron mass and
the equilibrium concentration of the current carriers, respectively.

The equation set (4.13) describes coupled spin—Alfvenian waves [55]. Since the dispersion law for
these waves is linear, Riemann waves exist in the considered frequency range. In deriving (4.13) the
condition » < b, has been assumed to be true, which is necessary for a weak damping of waves.
Estimates show that the external field H, must be of the order of 10kOe.

Analyzing the equation set (4.13) without accounting for absorption leads to results similar to those
obtained for Riemann waves in a ferrodielectric. One can easily see that in the conducting ferromagnet
under consideration there exist two types of simple waves. The waves of the first type are linearly
polarized. During their propagation their profile is distorted, for some of its points propagate with the
velocity u = u, (1 —cos’8/b,)""* [the magnetization precession angle varies according to the equation
dblar +u,(1- cos’f/ bo)”zo"ﬂ/&f =0]. The waves of the second type propagate without distorting their
shape with the velocity u = u, (1 — cos 6/ b,)""’, 6 = const.

To take account of the collisional absorption on the Riemann wave evolution, let us use the fact that
the propagation velocity of the waves under investigation and the Alfvenian velocity u, are rather close
(the weak absorption of waves occurs virtually only if by~ h,>1 with 1 — cos’9/b, = 1). Excluding the
electric field of the wave, £ , from egs. (4.13), we simplify the resulting closed equation for the
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transversal magnetization m by means of a relation similar to (4.9). As a result, we obtain simple
equations for the wave amphtude and phase (m, =sin f ')

98197 + u, (1 — cos’0/2b,)30/3¢ + v, sin 6 cos § =0,

(4.14)
dldT + u,(1—cos 6/2b,)dp/oé =0,

which can be exactly solved by the method of characteristics. Attention should be paid to a peculiar
feature of these equations, which is similar to that of eq. (4.10) that describes Riemann waves in
antiferromagnets. According to (4.14), the wave amplitude and phase propagate along different
characteristics.

By means of the change of variables 7, = {57 and &, = (sb,/u,)[ € — u,(1—1/2by)7] the first of
eqs. (4.14) is reduced to the form

d8lor, + (1— c0s°0)d0/d¢, +sin 6 cos 6 =0 (4.15)
The Cauchy problem for eq. (4.15) with the initial condition 6 = §,(£,) at 7, =0 has the solution,

tanf =e "tanéf,,

tan g, (1+cos8,\'"*/1~cos @ \'"?
£(1,)=¢ +ln[ 0! 0? ( ) ]+cos0—cos0,
()=4 tan 6 1-cos 6, 0

where 6, = 6(¢&,), & = £,(0).
According to (4.16), §—0 and ¢, — £, #® when 7, — . Thus, the initial broad frequency pulse of
spin—Alfvenian waves is completely absorbed at a finite distance from the point of its origin [54].

(4.16)

4.2. Shock wave front structure in a one-sublattice ferromagnet

The analysis given above of Riemann wave propagation in ferromagnets does not enable us to
investigate the final stage of the wave development when dispersion and absorption result in forming
stationary profile shock waves. As we have noted in the introduction, the analysis of the structure of the
shock wave front in a ferromagnet was the first study of essentially nonlinear waves in electrodynamics
[14]. Following ref. [14], let us consider the structure of the shock wave front of a wave propagating in a
longitudinally magnetized ferrodielectric. Instead of eq. (4.1) of the quasistatic relation between the
a.c. components of the magnetic field and the magnetization, we will use the exact relations for a
stationary wave that are derived from the Maxwell equations (2.1),

2

h,=h, +ih, = 1i‘u2 sinf (£—ur) e =h,+1—cos 8 (&—ur). (4.17)

Relations (4.17) satisfy the boundary conditions &, = h,, h, =0, 6 =0 before the shock wave front
when ¢ — . Substituting (4.17) into the Landau-Lifshitz equations results in

d9  cos8—b,(1-u") | 4o _cosb - b(l—u)

—y — = 0’
udf n 1= 7 sin d§ -

(4.18)
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Equations (4.18) shows that the stationary state of the magnetization behind the shock wave front
when §— o is established when the deviation angle of the magnetization approaches the value 6 = 6, ;
this is related to the propagation velocity by the expression

u*=1-cos /b, . (4.19)

Note that the velocity u from (4.19) coincides with the phase velocity of nonlinear EMS waves, the
latter velocity being given by eq. (1.6) in the case of an isotropic ferromagnet in the limit @ — 0.

Let us examine the magnetic field value behind the shock wave front &, = h_, assuming that ¢ — 0
when £ — —o. The first of eqs. (4.17) yields a formula,

h,=(h,+1—cosf,)tané,, (4.20)

according to which the magnetization deviation angle in the considered shock wave does not exceed
/2. .

Formulas (4.19) and (4.20) show that the propagation velocity of shock EMS waves in a longitudinal-
ly magnetized ferromagnet varies, depending on the wave magnetic field, within the limits

holb,<u’<1. (4.21)

It is easy to see that this range coincides with the opaqueness range for linear right-polarized EMS
waves, the range that divides the slow and fast branches.

When h,_ grows, the shock wave velocity grows too, the variation of the function u = u(h,) being
especially great when the d.c. field magnetizing the ferromagnet is small, 4, <1.

The solution of the system of equations (4.18),

1 ( (Sln 0)1+C05 [ ) B nﬁn
sin’f,  \(1+cos 8)° (cos § —cos 6,)/ ucosé,

(€~ wur),

(4.22)
n¢ = artanh cos 6 — artanh cos 6, ,

determines the shock wave front structure. According to (4.22), the duration of the wave front is
proportional to the relaxation time of the ferromagnet and essentially depends on the wave amplitude
h.. For instance, in the case 6, ~h,/h,<1, \/2h, the variation of the precession angle of the
magnetization 0(¢ — ur) obeys the relation,

0(£ — ur) = (h,,/h){1 + exp[(nby/u)(h2/h2)(& — ur)]} V. (4.23)

This formula shows that the duration of the front for small intensity shock waves is inversely
proportional to the square of the wave amplitude.

The second of eqs. (4.22) shows that during the shock wave propagation the magnetization vector
rotates around the d.c. magnetic field h,. The factor 7 is usually of the order of 1072 so for the
transversal components of the magnetic field and magnetization in a shock wave propagating in a
longitudinally magnetized ferromagnet, the profile shows strong oscillations.

Note that in this case the oscillatory structure of the shock wave front is mainly determined by the
magnetization relaxation coefficient 7 and depends weakly on the wave magnetic field. Somewhat later



F.G. Bass and N.N. Nasonov, Nonlinear electromagnetic-spin waves 217

we will show that when a shock propagates in a transversally magnetized ferromagnet, the presence or
absence of oscillations is determined, to a considerable degree, by the wave amplitude.

Let us consider the structure of an EMS wave propagating along the e, axis in an isotropic
ferrodielectric magnetized in the ground state by the field 4; in the direction e,. For the analysis we will
use the system of equations (3.1) which, being completed by the relaxation terms in the dynamic
equations, assumes the form,

#0/91=h, cos ¢ — h, sin ¢ —nsin 6 (cos § + h, sin ¢ + h, cos @),
cos @ dp/dr = sin 6 (cos 6 + h, sin ¢ + h, cos ) + n(h, cos ¢ — h, sin ¢) (4.24)
(9%10¢* — 3% 9% Yh, = ¢*o7" cos @sin g, (9719¢> — 37107 )h, = 9°191° cOs B cos ¢ .

For a stationary wave propagating with velocity u, it follows from the Maxwell equations (4.24) that
h,=h,— [1%/(1 - u*)](1 - cos 8 cos @), h,=[w/(1- u’)]cos @sin ¢ . (4.25)

Behind the front of the shock wave when £— — the ferromagnet is assumed to be reversely
magnetized in the direction —e,. The asymptotic value of the wave magnetic field is h = —e h;. From
(4.25) it indirectly follows that the shock wave velocity is determined by

w=hy(1+hy),  2hg=h;+h,. (4.26)
By substituting (4.25) into (4.24) we obtain the equations

dé/dv = Ahsin ¢ —n[(1+ h,) cos § — Ah cos ¢]sin 0,
(4.27)
cos @ de/dv =[(1+ h,)cos @ — Ahcos ¢]sin @ + nAhsin ¢,

where 2Ah=h,— h,, v=17— £/u, and, as we have repeatedly noted, the condition h, <1 is usually
met in practice. By using this condition one can easily reduce the set (4.27) to the nonlinear pendulum
equation [57],

d*e/dv’ + nde/dv — Ahsin ¢ =0. (4.28)

It is easy to see that the solution of eq. (4.28) that is of interest to us, viz., the one that describes
how a ferromagnet magnetization is reversed by a shock wave from the state when the vector is directed
along e,, exists only for Az >0. This condition has a simple physical meaning: the ferromagnet energy
in the final state —M - H must be less than the energy in the initial state ahead of the wave front.

The functions ¢(») calculated at n=5X 10" and Ak =5x 107* (curve 1), Ak =5x10"" (curve 2)
and Ak =5x 1072 (curve 3) are shown in fig. 6. It can be easily seen that with the growth of Ak the
duration of the shock wave front decreases because the reverse magnetization rate in the ferromagnet
increases. For a large enough value of Ak (Ah = 7?) oscillations appear at the wave front.

It is interesting to examine formally the solutions of the system (4.27) under the condition h,> 1 that
ensures a great propagation velocity of a shock wave [see eq. (4.26)]. It is not difficult to show that in
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the case h,>Ah the system (4.27) is reduced to eq. (4.28) with the substitutions »— h,v and
Ah— Ah/h,. Thus, if A>1, then the propagation velocity of a shock wave increases and its front
duration decreases, which may be useful for applications. The condition h,>1 can be, in principle,
realized in a ferrite with two magnetic sublattices with close degree of magnetization. Further we will
study the magnetization dynamics in a ferrite in which a shock EMS wave propagates.

4.3. A shock wave in a two-sublattice ferromagnet

Let us examine a model of an isotropic ferrite described by eq. (1.35) with the substitution
H. ,,=H—- AM, and with the appropriate relaxation terms added. Since M, — M, is not equal to

3

zero, it is convenient to make dimensionless the temporal and spatial coordinates: 7 =4mwy(M, — M,)t,
ct=4my(M, — M,)Ve,z. In doing this we obtain for the ferromagnetism vectors, M =M, + M, =
(M, + M,)m, and antiferromagnetism ones, L = M, — M, = (M, — M,)l, the following equations:

omidr+mx h=—n"{mx(mxh)+1Ix[lx(h— A,m)]
{1 (X )+ [mx (X (B = Am)])

lgr+IxX(h— Agm)=—n"{IX(mXh)+mx[Ix(h— Am)]}
—n {mX(mxh)]+IX[Ix(h—Am)]}, (4.29)

dnA,= A,
where

H=4z(M,- M))h, 40" =(M,~ M,)(n,/M, = n,/M,).
One can easily see that the vectors I and m satisfy the relations

mol=(M,+ M) M, -M)=q, P+m'=q¢+1. (4.30)
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As in the case of a one-sublattice ferromagnet, we will be interested in the stationary solution of set
(4.29) and the corresponding Maxwell equations describing a shock wave that turns a ferrite from the
initial state when the vector m is oriented by the field e h; along the e, axis to the final state when
m=—e, and h = —e h,. It is not difficult to see that relations (4.25) and (4.26) are also valid for such a
wave. The most 1nterest1ng waves are the ones propagatlng with velocity # =1 and such that the
condition H, + H, > 8m(M, — M,) is satisfied. This condition is satisfiable in the vicinity of the magnetic
compensation point of the ferrite when M,— M, [6].

A specific feature of a ferrite magnetization dynamics is that the moduli of vectors m and [ are not
conserved. From (4.29) we have

m-m=—n"A,[g*(m~1)~m"]=n"q(-h—gm-k)—n (m’l-h— qm- h)
~-n"Ayq’[m’ — 1+ (1/A )k —qm-h)], (4.31)

where the coefficient ¢ is defined in (4.30); in our case ¢ > 1. From (4.31) an interesting result follows:
when the modulus of the normed ferromagnetism vector m(7) is large enough (when it satisfies the
condition m* — 1> h,/A,), the vector satisfies the relation,

m*(7) — 1 =[m*(0) — 1] exp(—=21"A ,¢°7) , (4.32)

independently of external fields. The difference of m(7) from unity means that the vectors M, and M,
are not collinear. In this situation the effective field of the interlattice exchange creates a sizeable
torque under whose action M and M, quickly precess around the equilibrium axis, approaching it due
to relaxation. In the case m’ — 1> h,/A, the exchange field becomes dominant (the ratio hy/A, is
usually small since the constant A, is of the order 10°~10*). The characteristic tlmes of the change in
the magnetization of the shock wave are much larger than the time when the value m’(r) — 1 decreases,
so one can assume that m=1. It follows from (4.30) that /~¢>1.

Since |[ — g| <1, the modulus of I can be considered as constant, so in the equation for [ in set (4.29)
one may disregard the relaxation terms. For the subsequent analysis one may use the approach of ref.
[51] that has been employed above in studying domain walls in antiferromagnets. Taking the vector
product of the equation for / in (4.29) with I/, we obtain

m=p—(1/A)[pxp+pX(pxh)], (4.33)

which expresses the vector m via the vector I = gp, | p| = 1. Substituting (4.33) into (4.29) results in the
equation

ptpxh—(1A)pXp+px(pxh)+2p-hp+p-hpxhl=n"g’pXp, (4.34)

that determines the dynamics of the unit vector p(v).

The system of equations (4.26), (4.33) and (4.34) fully determines the front structure and the
propagation velocity of a shock EMS wave in a two-sublattice ferrite.

The vector equation (4.34), which involves the angular variables 6 and ¢ that are introduced both for
the vector p and for the vector m in the above considered problem of a shock wave in a transversally
magnetized one-sublattice ferromagnet, is reduced to the scalar equations,
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6—h,cos+h,sing+(1/A,)cos 0 ¢ +2sin60p—2p-hd + p-h(h, cos ¢ — hsin ¢)

~cos 6 h, —sin 8 (h, sin ¢ + h, cos )] = —n"q’cos 0 ¢ ,
(4.35)
cos ¢ —sin 6 (h, sin @ +h, cos ) +cos b h,

+(1/A)[—6 —sin 6 cos 6 ¢* + h, cos ¢ — h, sin ¢

—2p-hcos8¢ —p-hcos h,+sin6 p-h(h, sing +h,cos p)]=n+qf .

The magnetic field k entering (4.35) is expressed through the angles 8 and ¢ by means of eqgs. (4.26)
and (4.33). It is easy to see that in the considered case of h,> 1 the longitudinal field component £ is
of the order 1/h, <1 and it does not greatly affect the magnetization dynamics. So (4.26) and (4.33)
yield

(1—ho/Ag)(h, cos ¢ — h,sin @) = Ak sin ¢ — (hy/Ay)8
[1 = (ho/A,) sin®8](h, sin @ + h, cos @) = h, cos 6 — Ah cos ¢ — (hy/A,) sin 6 cos 6 ¢ . (4.36)

We will confine our analysis of eqs. (4.35)—(4.36) to the case where 1 < h < A, which is closer to a
realistic experiment. Here the exchange field greatly exceeds the vortex one, so, according to (4.33),
m = p, while the correction to m, which should be made because in the magnetization process the
vectors M, and M, become noncollinear, is of the order of h,/A, < 1. Equations (4.35)-(4.36) take on
the form

6 —Ahsin @ +(1/A,)(cos § ¢ —2sin 6 84) +1*q° cos § ¢ =0,
; , (4.37)
¢ cos 0 — sin (h, cos 6 — Ah cos @) — (1/A,)(6 +sin 8 cos § ¢°) —n ¢ =0.

Equations (4.37) differ from eqs. (4.27), which correspond to a one-sublattice ferromagnet, by the
terms proportional to 1/A,, which account for the precession of the vectors M, and M, in the exchange
field, and also by dissipative terms in the Hilbert form. Taking account of the dissipation in the Hilbert
form and in the Landau-Lifshitz form brings about the same result at n°q” <1.

A useful piece of information on the shock wave front structure can be obtained by studying the
behavior of the solution of eqs. (4.37) near the equilibrium states ahead of and behind the front, i.e.,
for v— ¥oo [58]. In these regions eqs. (4.37) can be linearized; besides, one can assume that all the
quantities depend on v as exp(ikv), with k determined by the dispersion relation

K+ (ho+in" g’k — k1A ,) (0 Ah —in" ¢’k + K*1A,) =0, (4.38)

where 0 =1 when v— — and o = -1 when v > .
Approximate solutions of eq. (4.38) have the form

ki ,=*{—a Ahhy— i[n"q*(h,— o AR)*}'* + Lin*q*(h, — o AR),
(4.39)
ky,~A,+in"qA,.

According to (4.39), the low-frequency front structure (the front duration and the low-frequency
oscillation period) is determined by the vortex magnetic field of the shock wave (roots R, ,). The wave



F.G. Bass and N.N. Nasonov, Nonlinear electromagnetic-spin waves 221

profile is a rather smooth function, but high-frequency oscillations caused by the precession of the
vectors M, and M, in the exchange field AM (roots R, ,) are superimposed on the profile. Among the
solutions described by formulas (4.39) only those which grow at the foot and decrease at the top of the
shock wave front are realizable [58]. So the expressions for the roots R, , imply that the magnetization
exchange oscillations reveal themselves mainly at the top of a shock wave front.

To estimate the exchange oscillation amplitude, we will examine the expression

d d 1 . .
dE_d [sinzo +—— (6* +cos ¢°) -2 Ak (1 — cos 6 cos qo)] =(n"q"1hy)(6° + cos’d ¢7),
dv dv Ak, h, (4.40)

that follows from eqs. (4.37) and describes the energy dissipation on the shock wave front. The
integration constant in (4.40) is selected in such a way that the equality £ =0 is satisfied before the
wave front. According to (4.40), dE/dv=0 and E(v—>®)—> —4 Ah/h,. Thus, for the exchange
oscillation amplitudes, 6, ~ ¢,, we obtain the estimate 6, <4 Ah/h A, <1 from (4.40) combined with
(4.39).

It follows from (4.40) that for Ak < h the function 6(») is small. Here eqs. (4.37) are easily reduced
to one equation for the angle ¢,

o'+ a g’e' — (Ahlhy)sin @ = —2a " (hy/Ay)e" — (he/Ag)e' =0, (4.41)

where primes denote differentiation with respect to n = h,v, and the angle 6 proves equal to ¢'. It is
easy to see that eq. (4.41) virtually coincides with the appropriate equation that describes the shock
wave front structure in a one-sublattice ferromagnet in the case of ;> 1.

4.4. Shock waves in an unsaturated ferromagnet

Thus far we have considered the shock wave structure in a saturated ferromagnet. It should be noted
that functioning of practical devices is based on the shock wave propagation in an unsaturated
ferromagnet [53, 59].

An unsaturated ferromagnet is a nonlinear dissipative and dispersive medium. To describe a process
of magnetization reversal in such a magnet several modal equations are known, the most ‘““physical” of
them being the modified Bloch equation,

IMIdt=—(1/7){M - Mox(H/H,)} (4.42)

that seems to have been reported first in ref. [60]. In this equation 7, is a typical relaxation time; M),
the magnetic saturation moment; the function y is given by the curve of the technical saturation of the
given material; H,, the typical saturation field (if H > H,, then y—1).

Equation (4.42) together with the Maxwell equations,

dEldz=(1/c)dBldt, dH/9z = (e/c)dE/dt, (4.43)
fully determines the state of a one-dimensional electromagnetic field in a unsaturated ferromagnet.

Let us show that the initial system of equations (4.42)—(4.43) in a broad range of parameters can be
reduced to the Burgers equation that has an exact analytical solution.
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Note that in the limit or—0 eq. (4.42) implies a static M = M x(H/H,); taking it into account
permits us to solve (4.43) exactly, the solution corresponding to Riemann waves [14]. Since the
relaxation time is finite (usually 7, ~ 107" s), (4.42) yields the relation (in the frequency range o <7, D,

M=Mx(H/H,)— 1, dMlor~Mx(H/H,) — 7,(M,/H,)x'(H/H,)dH/dt .

In case of weakly linear wave processes which can be described within the framework of the
quadratic (in the field amplitude) approximation, the above formula can be simplified,

M= y,(M,/H)H + x,(M,JH)H? - T.x(My/H,)oH]dt (4.44)

where y; and y, are the coefficients of the expansion x(H/H,)=1% ., x,(H/H,)", usually with x, <0.
Combining (4.43) and (4.44), we get equations with a short r.h.s.,

2
<_C_ - i)(Hi \/E E) . 877)(21;40 _ dmy My, g 12{ |
VER 3z ' at " WH Wl

(4.45)
w=1+4myM,/H .

Let us examine, for example, waves propagating to the right. For such waves E = —\/u/eH, and in
the r.h.s. of eq. (4.45) one may set d/dt = (c/v/em)d/dz. As a result, we arrive at the Burgers equation

JH JH  ¢°H

e B
at’ dz' J9z'"?

(4.46)
. 4mix, M . VEm i,
===y = z—t, v=2=E
wH; ¢ 2|,

Reducing the initial system to eq. (4.46) actually solves the general problem, for the Cole-Hopf
substitution H = —2v(d/dz’)In ¢ transforms eq. (4.46) to a linear equation of heat conductivity
dpldt' = v 3%pldt'>. Thus, the problem of wave propagation in an unsaturated ferromagnet admits a
general analytic solution for the frequencies w smaller than the relaxation frequency 7;1 and for
amplitudes H smaller than the saturation field H, for the given material.

Equation (4.46) opens wide opportunities for the analytic investigation of electromagnetic processes
in unsaturated ferromagnetic media, such as turbulent wave states (see ref. [61]) or nonstationary
modes of forming shock waves.
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