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Weak localization theory of magnetoresistance in two-dimensional systems is
re-investigated. A formulation is developed which is applicable up to magnetic
field much larger than the exsisting theory. The result of the calculation is com-
pared with the experiment on GaAs/AlGaAs heterojunction and the agreement

between them is satisfactory.

§1. Introduction

Recently various anomalous properties of
two-dimensional systems have been explained
in terms of weak localization theory.? As for
magnetoresistance the theory by Hikami,
Larkin and Nagaoka® (HLN) can qualitatively
explain experiments, but quantitatively devia-
tion of experiments from HLN is not negligibly
small and generally it becomes larger as the
magnetic field increases.® In most cases the
deviation was explained in terms of electron-
electron interaction effects. According to the
recent theories,*>) however, the interaction
does not affect magnetoresistance very much
except when the temperature is extremely low
and the effect of Zeeman splitting shows
up.*® Therefore the discrepancy between
experiments and theory has to be explained
within one-particle theory. As will be shown
below, HLN is correct when

ogsxl/er<l, (1)

where w,, ¢ and t are cyclotron frequency,
Fermi energy divided by # and momentum

2

relaxation time of electrons, respectively. Since
the parameter 1/ezt must be small enough in
order that the weak localization theory is
correct, HLN is applicable only to the regions
of very weak magnetic field. If a theory of
magnetoresistance which is valid for larger
magnetic field is available, we will be able to
extract more reliable information, for instance,
that on energy relaxation time, spin-flip scat-
tering time, etc. from the experiments.

Some years ago, the author proposed a
theory” of magnetoresistance in three-dimen-
sional systems which is valid when

o1, l/egr«1, )

and is applicable to much wider regions of
magnetic field than HLN. In this paper the
two-dimensional version of this theory will be
discussed.

§2. Formuiation

We consider a model of non-interacting
electron gas with randomly distributed scat-
tering center. The part of the conductivity
associated with weak localization is given by”*®

h 2
So(H, w)= #(- z;> jdr, dr, drsy dr,[(rs, 14, ®)

0
X GA(ra, 11y 0) 2 G (s, I3, )G (s, F3y @) 2 GA(rg, 13, 0), 3
0x, 0x,

where L is the linear dimension of the system, GR(r, r', €) and G*(r, ', ) are retarded and ad-
vanced one-electron Green’s functions, and the diffusion propagator I'(r, r', @) is to be obtained

by solving the equation

I(rs, e )= [503 _r)+ j drsGA(rs, 15, 0)GH(rs, 15, O (rs, sy w)} / omvhr, (4
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v being the density of states at the Fermi level. Under the condition w, « 1/7, &, the Green’s func-
tion in magnetic field can be approximated as”

GRAr, v, e)=exp {i(x+x)(Y =02} GG (r—7', ), )

where GR4(r—r’, ¢) are the Green’s functions in the absence of magnetic field and /=(ch/eH)/*
with H the magnetic field. It is important to note that in deriving (5) the condition (1) is not re-
quired. In order to solve (3), we expand the diffusion propagator and the product of the Green’s
function with the eigenstates of an electron in magnetic field of /2H;

rr,r, w)=bg{ L(N, 0)¥ yx (1) Prx(r), (6)
GR(r, ¥, w)GA(r, v, 0)= Z II(N, )P yx(r) P ux(r), @)
N, X
where
¥ yx(r)=Py(x— X) exp (—2iyX/I1*)/\/L, ®)

&, (x) being the Nth eigenstate of harmonic oscillator of frequency /2w, and we assume that I'(N,
) and II(N, w) are independent of X from the consideration of translational symmetry. Then mak-
ing use of the relation®

1
; Pax()PRx(r) = —3 exp {i(x+x)(y=y)I?} exp (= |r = r'* 21 Ly(lr - r'|*/1%), ®

Ly being Laguerre polynomial, and noting the orthogonality of the functions exp (—x?/2)Ly(x?),
we can solve (4) in the form

T'(N, w)=[2nvht(1—Py)]™%, (10)
with

Py=Q2nvhr)"! j drLy(r2/1%) exp (—r?/212)G¥(r, ©)G§(r, 0). (1)

From (2) it follows that pp>>1/4, 1/I, pr and A being the Fermi wave number and the mean free
path, and hence the integral in (11) is dominated by the contribution from the regions pgr>1. In
these regions the Green’s function can be approximated as

Go(r, ©)=Gy'(r, &)= — (im/21)(2/nrpg)'/? exp ilr(pr+e/ve+i/22)—7/4], (12)

where vy is the Fermi velocity. It has been argued by Anderson, Abrahams and Ramakrishnan'?
and by Fukuyama and Abrahams!? that at zero frequency  is to be replaced by 1/z,, t, being the
energy relaxation time of electrons due to inelastic scattering. Then, putting (12) into (10) we find
that

Py= lij dxLy(x?) exp (—sx—x%/2), (13)
+z Jo
where
z=1/1,, (14)
and
s=(1+2)/Qw,%ex)/?. (15)

As is shown in the appendix P, can be evaluated with a simple numerical calculation and Py for
N>0 can be calculated with the use of the recursion formulas

P, =5*/(1+2)—s*P,, (16)
Py =[(N+1+5*)(Py—Pys+ )+ NPy_J/(N+2). (NZ0) Y))

Next we have to carry out the integration over r, and r, in (3). To do this it is convenient to
use the following forms of G® and G#;%
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GA(r, ¥, )= GA°(r, v, o) = Y, SO (1)

N,X 3+3F_8N+i/21:’

where ¥y x(r) is the eigenfunction of an electron in the magnetic field A and ey =w (N + 1/2). Here
we neglect the energy dependence of t because of the condition (2). Then we find that

0
j drlGA(r4s Fy O)a—GR(rls r3, 0))

X1

v b U [N ) N4 ]

N,X \/21 EF—GN“‘Z./ZTLSF+CU—8N+ 1 + i/ZT 8F+(0—6N.. 1 +i/2't :

To carry out the summatjon over X we make use of the relation®
r r? (3 +x)(y3s—=ya) 2 .
; Unx(r YN - 1x(r3)=— ngll(ifz> exp [1—3—%12—3'—4——4-]7 +i0 |, (20)

where r=r;—r, and 6 is the angle between r and x axis. In the summation over N in (19) the
contribution from the region N~gp/w,>1 is dominant. Therefore we can replace N+1 with N
and the Laguerre polynomial can be approximated with its asymptotic form;

LP(y)=n"112e22y= 314 N1I* cos [2(Ny)'/? —3n/4]. 1)

Then, replacing the summation with an integral we can evaluate the right hand side of (19), and
putting it into (3) we obtain

19

2,2
So(H)=— 57~ j dry dryL(rs, 14, @) 08%0 €xp [i(xs +x4)(¥3 —ya)/ > —rjA—r/t08).  (22)

Thus from (6), (9), (10) and (11) we finally obtain

22 No P
60(H)=~7ETEA Z X

No 1= Py’

23

with 4 =w_12er. The cut off number N, is estimated as follows. For N>»1 we use the asymptotic
form of Ly in (13);

Py= j'o dyJo(2/2A(N+1/2)y) exp {— (1 +2)y}
=[84(N+1/2)+(1+2)*]~ /2 24)
To this integral the contribution from the region y=r/AS[A(N+1/2)]” /2 is dominant while (12)
is correct only for rpe> 1. Therefore the summation in (23) should be cut off at
No=b(es1)*/4, (25)
where b is a constant of order of unity. In the limit H—0 (4—0) we replace the summation over N

in (23) with an integral and use (24). Then we obtain the expression for the magnetoresistance

2¢% N 1
Ao(H)=3a(H)—60(0)=— | 4 ¥ 1=~ — FAWN,+1)~FO)} |, (26)
T h N=0 l—P N
where we have subtracted 1 from the summand of (23), of which the contributions to do(H) and
0a(0) are identical, and

dy
F(y)=f 1-By+A+27" 7
=[t?/2+t+1n (1—1)]/4, [v3))

with ¢=[8y+(1+2)?]*/2. Using (24) we can easily see that Ac(H) tends to a finite value in the limit
Ny— 00, and by numerical calculation it has been found that Ao(H) is practically independent of
N, if No>5~10 for realistic values of 4 and z.
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§3. Effects of Spin-Orbit Interaction and Intervalley Scattering

Extension of the present theory to the case when spin-flip scattering of electrons due to spin-
orbit interaction is considerably strong® is straightforward;

2e? 1
Ao(H)=— n—zh[s<ﬂl)+ §{S(ﬂz)—S(l)}], 28)
where
No A
SB)= ). =P, —F,(A(No+1), B+ F5(0, p), (29)
N=0 N
Fy(y, B)=I[t*2+pt+p* In (t— P)I/4, (30)
t being defined as in (27), and the intervalley scattering time.
B1=1-21/t5,—21/5, (1)  §4. Discussions
Ba=1—4r/tg,. (32) In Fig. 1 the result of the calculation of

(As for the definition of 7}, and tZ,, the reader
is referred to ref. 3). In the above we have
neglected the effects of Zeeman splitting,'?
which is unimportant except when the magnetic
field is parallel to the surface or g-factor is
extremely large.

In the case of two-valley systems like (001)
MOS, the effects of intervalley scattering have
to be considered!® and we obtain

4¢? 1
dot=— 25| 5B+ 35— |,
()
with f3=1—1/r; and B,=1-21/1;, 7; being

Ac(H) using (26) is compared with experi-
ment'® on a GaAs/AlGaAs heterojunction.
For an appropriate value of t, we can reproduce
the experiment quite well in the whole region
of the magnetic field while HLN gives Ao (H)
considerably larger than the experiment for
H =30 Gauss if the curve is fitted in the low
field region. This tendency is seen in the most
of the experiments. HLN can be obtained from
the present theory by expanding Py in A4
(~1/s?) up to the first order. To do this we
have to expand Ly(x?) exp (—x?/2) in (13) to
the first order in x2. Up to the second order in
A, Py is given by

Py=[1-2QN+DA/1+2)2+ 122NN+ 1)+ 1}4%/(1 + 2)*1/(1 + 2), 34
GaRs/A1GaAs—-312 -

= T=1.06K P

g 2} 0Oo=1.336E-3mho /g~
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Fig. 1. The present theory and Hikami-Larkin-Nagaoka theory are compared with experiment on GaAs/
AlGaAs heterojunction. For HLN 7, is chosen in such a way that the best fit is obtained in the low field

region.
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and we find that in HLN the deviation of Py from 1 is overestimated and hence that the suppres-
sion of quantum interference effects is overestimated. Recently Ebisawa and Fukuyama pub-
lished a theory!> which is claimed to be valid under the condition (2). It gives, however, 46(H)
larger than HLN in the regions of large field and can not explain the above mentioned tendency of
the experiments. In order to calculate the diffusion propagator in magnetic field they simply re-
placed the wave number ¢ with 2/~1,/N+1/2 in that in the absence of the field. This approxima-
tion is, however, correct only when gA<« 1 or g« kyT/hvg, %17 and can not be applied to the case
1< Aat low temperatures. In ref. 17, forinstance, the calculation is correct to infinite order in fvZtg?/
kT but only to the lowest order in g4, and is applied only to the case /> A.
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Appendix
We put

On=(1+2)Py/s= j: dxLy(x?) exp (—sx—x?/2). (A-D

Then, by integrating the right hand side by part and making use of the relations between the
Laguerre polynomials and its derivatives, from (A-1) we obtain

1 1 N-1
QN=;+?|:2 Zo Qn"‘ZNQN“(N+1)QN+1—'NQN—1:|s (A-2)
and hence
1 N-—1 5
QN+1=N—‘+1[2 Zo 0,—(2N+s )QN_NQN~1+S]- Nz0) (A-3)
It is straightforward to derive (16) and (17) (1984) 1415.

from (A.3)‘ For N= 0’ we can Write (A. 1) in 6) A. Kawabata: Surf. Sci. 113 (1982) 527 (Proc.
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Qo= \/’2' /2 Erfc (s/ \/j) (A-4) 7) A. Kawabata: J. Phys. Soc. Jpn. 49 (1980) 628.
) 8) L. P. Gor’kov, A. I. Larkin and Khmel’nitzkii:
The error function Erfc (x) can be calculated JETP Lett. 30 (1979) 248.
easily with the use of the expansion in x when 9) R. Kubo, S. J. Miyake and N. Hashitsume:
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