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1. jntroduction: the SGFM method

"~ qurface physics constitutes a very active field of research in both the applied and basic aspects. The
ame holds for interfaces, the free surface being a particular case. Many problems of interest involve

- nore than one interface, for example, a layer on a substrate, a sandwich type of system. including the

very important case of quantum wells, a multiple quantum well or a supertattice. This field has grown

into a vast area of very active developments, experimental as well as theoretical, on account of the

many practical applications of such composite laminar systems.

'One may be interested in different types of states or elementary excitations, for example,-electronic
states, phonons, magnons, piezoelectric waves and many others, but in all these cases there are some
basic common features. Fronfa theoretical point of view the one-interface system poses the problem of

“matching, whether one matches electronic wavefunctions or, say, vibration amplitudes. The essential

feature of composite laminar systems is that the various interfaces are coupled and this raises the
pr_o'blem of.interrelated multiple matching. Now, for the present purpose the constituent materials can
be classified in continuous and discrete media, depending on the type of mathematics employed in their
description. We shall consider these separately. ' -
Continuous media are studied with differential calculus. For planar geometry we introduce the

_,’fol]owing notation: the position vector is r={(p, z), where p=1(x, y) is the two-dimensional (2D)
position vector in the plane of the interfaces and 2 is the coordinate in the perpendicular direction. The

wavevector is k = (k, k), where x = (k. k,). The initial differential equations are Fourier transformed

'in the 2D surface plane and we are left with x-dependent 2D ordinary differential equations in the

variable z. Henceforth, the x-dependence will be understood everywhere if not explicitly indicated.

“The problem may involve one or several coupled differential equations, depending on the number ¥ of

‘omponents of -the field under study. Examples of N=1 are the electrostatic potential - Poisson
‘equation — or the electronic wavefunction — Schrédinger equation for a one-band model. For N = 2 we

. have, for instance, a two-band envelope function model for electronic states, eleciromagnetic matching
o elastic waves in a sagittal geometry. N =3 could be the problem of elastic waves with arbitrary
- geometry and N =4, for instance, the case of piezoelectric modes in which the electrostatic potential

and the three vibration amplitudes are coupled. An envelope function four-band model would be
another example of N = 4 and more elaborate ones are used in practice, up to N = 14. Perhaps the most
important case can be typified by an arbitrary pseudopotential model. In the corresponding plane-wave
representation the Schrisdinger equation then becomes a system of N coupled differential equations.
From a matiiematical point of view the general problem under study is that of matching a field of N
components subject to N coupled ordinary differential equations, that is we study N x N linear
differential matrices acting on the N-component vectors to be matched.

" Discrete media are described in terms of ordinary matrix algebra. For instance, phonons in a discrete

lattice or electronic states in a tight-binding model. In-this case the position variable is discrete,
corresponding to atomic positions and, after the 2D Fourier transform, to the 1D atomic layer position

in the direction perpendicular to the interfaces. The three vibration amplitudes or the atomic states

forming the basis of the tigh't-binding scheme are also labelled by discrete indices and in the end we
“have N x N matrices acting on N-~omponent vectors. But now no differential calculus is involved and
_ 50 matching must be effected differently.

Many techniques have been and are being developed for doing matching calculations for single or
multiple interfaces, for continuous or discrete systems and for different types of elementary excitations.

‘There has been too much progress in this area to even attempt to review it here. This paper is only
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* concerned with the presentation of one such technique, the surface Green function matching (SGFM)
~ method, with which the different cases can be treated with a unified point of view. The emphasis will be
on the formulae to be used and on the algorithms which, combined with these, provide a technique for
doing practical €alculations. - - o _ D R
The problem will be formulated in terms of Green functions. Let G,,, in general a matrix, be “the
Green function (GF) of each constituent-tredivm M. This requires further specification, as will be
seen presently. Let G, be the Green function of the composite matched system under study. The

problem is to obtain G, in terms of the constituent @,;, assumed to be all known. All G are functions of

%, of an eigenvalue £2 - which can be energy E, or w’, for instance~ and of a continuous or discrete
position variable. We shall see-how G, can-be obtained in terms of the consgituent G,, but, having done
this, the real question is how the G,, are evaluated. : _ SR

Consider an ideal interface (fig..1). Two unperturbed buik crystals are ideaily cleaved agd matched
without perturbation. Then each G, is the unperturbed GF of the corresponding, bulk crystal. If the
model is fairly realistic, that is complicated, the evaluation of each G,, may require quite substantial
computation. For instance, the direct evaluation of the spectral representation of a GF involves the
evaluation of rather complicated integrals with oscillatory factors in the infegrand. This question will be
addressed later.. : ) ' , : : '
. Insome cases the difficulties are of a different nature. Consider the situations described in fig. 2. The
bulk models are now extremely simple, but the presence of inhomogeneities on both sides of the -
matching plane raises a new question. What are G, and G; now? How:své they defined and evaluated? -
- ‘When 'this is combined with the complications of elaborate bulk-crystal models thie problem may easily
- become. quite formidable. These issues will also be discussed here.” ~ =~ - -
The ﬁﬂ is organised as follows. Sections 2 through 6 cover the case of contisuous. media, when

- “idifferen i i‘.ﬂculus is involved, and sections 7 through 10 are devoted to discrete media. In both cases
o @
VAVAV (b}

6

Fig. 1. Model of an ideal interface. G, and G, are the corresponding Fig. 2. Qualitative pictures of {a) sel-consistent potential bartier at a o
bulk-crystal Green functions. o free surface or an intexface {jellium model) and (b} a semiconductor
. heterojunction with inversion layers (one-bend effective-mass model).
The first question now concerns the definition of G, and G,
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/‘,“ A

he dmmssmn starts w1th the formulation of the matchmg problem in terms of the SGFM analysis. Smct,
formahsm has been presented elsewhere, only a summary is given here, with emphasis on ‘the
to be used. For continuous media this is done in section 2 for a single interface and in section
for ‘muitiple interfaces, while for discrete media, single interfaces are discussed in section 7 and
| gultiple interfaces in section 8. The question of the evaluation of the intervening GF is then discussed,
i {m section 4 for continuous media and in section 9 for discrete media. Except for some occasional appeal
|10 8 specific case, the discussion up to this point is general and applicable to any type of elementary
. |ucitation. Some examples are given to illustrate practical applications to continuous and .discrete
* |pedia, together with discussions of practical aspeets. Final comments are made in section 10. -

A brief collection of background material on the SGFM method may be useful. This method was
gitially developed for electronic surface or interface states [1-4] and then extended to film-like

blems involving two interfaces [5-9]. Planar geometry is nearly always involved, but this is not
‘Juecessary [9, 10]. The method has also been extended to the study of electronic states at twin faults in
‘{petals [11] and of tunnelling problems [12]. The refationship to the phase shift analysis is discussed in
afs. [2, 9, 13~15). As stressed above, the method is not restricted to the case of one-electron states.
- |surface plasinons, for instance, were discussed early on in terms of SGFM {16, 17] and so were some
pany-body aspects of surface or interface problems in Hartree {18], Thomas-Fermi [19] and random-
pase [20] approximations. Discussions of this method in general terms can be found in refs. [9, 14, 21].
i relationship to the concept of surface electromagnetic impedance has been discussed in refs. [9 22]

- §ad there have also been further developments extending the scope to other physical problems, such as
[dstic surface or interface waves [6, 23, 24], surface thermodynamics [23, 25], viscoelastic waves
ivolving fluid surfaces or interfaces [26-28], piezoelectric surface or interface waves [29, 30] and
. -fmgnetoelastic -surface waves [31, 32]. The SGFM analysis has been lately extended to the case of
~|wntum wells and superlattices [33] and used to study elastic [34] and piezoelectric [35] waves. in
- |merlattices, as well as the electro-optical properties of quantum wells [36]. Another extension has
Jken recently made to the study of elementary cx01tat10ns in superconducting systems involving
terfaces [37).
All the above references concern continuous systems. For discrete media the SGFM analysis was
titially formulated and used for surface phonons [38-41]. A general formulation, valid for any discrete
gtem, can be found in refs. [42, 43]. This has been used to study the electronic structure of
e conductor interfaces {44, 45] and transition-metal surfaces {46}, as well as the surface magaetism in

masition metals [47]. The general formalism for laycred systems of the type of quantum wells and
perlattices can be found in refs. [43 48]. Applications have been made to study phonons in graphite
“fifercalation compounds [49] and in metallic superlattices {50}, and also to the study of the electronic
ure of semiconductors [51] and metallic superlattices [52]. These applications also contain further .
Witions to the formal development of the SGFM analysis and to the formulae used for its practicat
- -Fplementation.

Ctmﬁnuous media: single interface

_ We consider the matching surface at z =0, ‘with. medium 1 on the left-hand side and medium 2 on the
- Mht-hand side. As explained in the introduction we assume G, and G, to be known. The question of.
. evaluatmn will be addressed later. We collect here the main formulae of the SGFM analysns
- Mowing the notation established in the introduction. Details of their derivation can be found in the
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above references. All the objects appearirig hereand henceforth can be matrices but this will be
understood without explicit matrix notation except when it becomes convenient. .

Let % denote the surface projection (z = z'=0) of any Green function G, be it G,, G or. G We .
define its inverse in the 2D space -of the pro;ectlon surface that is . ?@v__gz‘\}

G =g g g, - S @21

where ¢ is the unit of the 2D space of. the surface. Let ‘G denote d@G(z, z')/9z. For second-order
differential equations the first derivative has a discontinuity. We define

aG(z, z")] | :
regi =) — 2
£ I N [ Fye iy (2:.2)

The discontinuity
Ng="¢"" ¢ =§ ' (2.3)

is obtained by, performing a first integratioﬁ of the differential equation defining the GF under study.
We recall that this term may denote a differential matrix, in which case G, %, "¢~ and § are matrices.
The point is that § is known. This fact will be used later.

2.1. The matched Green function G,
Now, let z, (z,) denote the variable z when it is on side 1 (2), and likewis_e for z'. Then
Gz,,22)=G (z,,0)%,'4%,'G,(0, z3) ; . ‘ (2.4)
G, (25, 23) = Gy(2,. 73} + Go(2,,0)%, (%4, — %)% 'G1(0, 23) . | (2.5

We also recall that the dependence on («, 2) is understood throughout For incidence from side 2 the
reflection and transmission amplitudes are, respectively,

fo=(4-9)9,  f=99. | | @6)

A dual set of formulae holds with 1 and 2 interchanged. -
The secular equation for matching states is

det| 4, '(x, 2] =0. SR 2.7)
~ This yields the surface or interface dispersion relations ()(x), that is an-electronic surface band 5
structure, for instance. |

Spectrai functions of various types constitute an important class of objects of physical interest. With
“the present sign conventionthe general density of states formula for the matched system reads

N(Q)——lImTrG(ﬂ) .(2+=£1_l_1(1’(ﬂ+w). o D (2.8) |
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Consistently with this there are different spectral functions of interest, which corrcsporidﬂ to different
- definitions. Firstly, there are x-dependent spectral functions, for example, the local density of states

| woy |
R Nx(ﬂ, z) =_—%_Ii11Tr G_s(x,ﬂ+;z, 2). | (2.9)

-

In particular, the LDOS at the interface is
1 ' . )
N ()= - ImTr 4(x,27). (2.10)
For-a free surface this would be the key spectral function to study the inelastic cross section for

scattering of an incoming probe off the surface as in, for example, surface Brillouin scattering [S3] or .
inelastic ultrasonic scattering [54], while for the local charge density the quantity required is the

" integrated LDOS

N({, z) = E%N,F(ﬂ,z)'.. R R | (2.11)

For the totalyd."é:f?-s'ﬁy' of ‘states.we must integrate (2.11)"9\_fer z. The result can be cast in the form
] . : & . ‘.
NQ) = —% Im Tr I dz G,(27;2,2)— % Im Trj dz G,(17; 2, 2)
- . 1] - .-
Q

+ % Im Tr J dz G,(07; z, O)‘gfl(.(ZJ').Gl(ﬂ.J';'U, z) o

-

1 dargdet|4;'(2")
- .

i 4+ % ImTrJ dz G,(2%; z,0)%; (27)G,(27;0,2) - i0 (2.12)
'- ¢

~ As with the other spectral functions, this can be read either for a fixed x or else integrated over k as in

(2.11). _
The task then is to find 4, on which all these formulae rest.

' 2.2. The matching forrﬁu!a

In order to obtain ¥, we must specify the matching conditions. This requires going into the physics of
each particular case. For instance, for a one-band effective-mass model of electronic states the matching
conditions are continuity of the wavefunction ¢ and of m™ 'y’ Furthermore, the discontinuity S of (2.3)
is —2m/k’. The matching formula is then :

G, =g G -G - (13

This can be cast in a general form that encompasses the different particular cases. From the derivatives
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*4"*) we define appropriate linear differential forms &=, which correspond to the physical magnitudes
- one must match, for example, for the scalar Schrodinger equation &' is m™''9". Then the _
* discontinuity (2.3) can be cast in the form ‘

Ad =o' - =, (2.14)

where C (=—2/# in this example) is a constant independent of the medium. Then the matching .
formula reads ' :

1t pm

A A A A S N e el

. In this form this holds for any physical system, We need only specify C arnid the fo_rm. of o/ in each case.

Here are some examples of physical interest.

(i) Electrostatics. G represents the electrostatic potential. C=—47 in Gaussian units. &)= |

£'§"® represents the normal component of the electric displacement vector. :
For- problems involving more than onie. component we use (x,, x,,x;) instead of (x, y,z) and | -
V,=a/0x,, so V, is the normai Heri’\gat’!ve.' T e . :
(1) A two-component problem: electromagnetic waves. G represents the electric field E, C=—4x/c

(Gaussian units) and &{*) is.a 2 X2 meatrix, defined after-
! Aijz E (Ecg,j"ijij) ’ l, ]=1’2=.x‘}y' B . AR o , _ . (216}

These represent the tangeritial componehts ofithe magnetic indyuction B. Note that. V,G,; is the normal
derivative "G, which, upon.projection, yields the discontinuous derivatives ‘4>, whence (=) All
matrices involved in (2;15).afe in this case 2 X 2. ' .

(iii) A three-component problem: elastic waves, G represents vibration amplitudes. C = —1 and

| A!’j = Cain Vanj : i! }s ks h= 1’ 29 3. . ] | i . . (2‘ 17)
Summation over repeated indices is implied, the ¢, are the elastic stiffness coefficients with the first | -
index equal to 3, corresponding to the normal coordinate z and when k = 3, then V,G,. ='G,;, whence
"4 and finally o). This represents stresses.

nj?

(iii) A four-component problem: piezoelectric waves. Here G is a 4 x 4 matrix re_pre’s‘eﬁfing thé | .

elastic and electrostatic fields coupled through the piezoelectric coefficients €~ We use Latin indices to
span the values 1, 2, 3, corresponding to the three vibration amplitudes, and Greek indices o, 8= |
+ 1,2,3,4. The value 4 corresponds to the electrostatic potential, the fourth component of the field under [
study, Then : s ' ' ‘ :

Ap=CunViGop+ €5 ViGhs  Ap=6,,%G,— e, NGy (2.18)
In this case C= —1, that is |
Qo) =oAL ~tld =5, a,8=1,2,3,4. ' o (2.19)

All matrices entering the matching formula (2.15) are then 4 x 4.
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- It will be observed that & (*)g " is always a surface impedance and the theorem (2.7) embodies the
pnn(:lple of matching of surface impedances with the convention that the normal to the surface has the
same sign — from negative to positive - for the two media.

-Arbitrary values of N may appear in electronic structure calculations based on either envelope

" ‘function models or else more elaborate ones, such as pseudopotentials. These require separate

. consideration. The use of envelope function models for matching problems raises.several questions

concerning their validity and scope and, especially, the matching conditions. Differént views have been

put forward [55] and further arguments continue to appear in the literature [56]. The purpose here is

_pot to discuss models but ways to solve a given matching problem. So our standpoint is that a certain

~ Hamiltonian has been adopted and our task is to solve the corresponding matching problem. Ultimately

" the N-component vector f under study is subject to a given matrix differential equation. Although

~ higher-order derivatives may be used in other models we shall consider here second-order differential
'equatlons for which a prototype eigenvalue equation can be

’” '[""d“adz ;(”Edz‘*ad;”)“‘]'fﬂf, o )

mth K D ahd L pOss:bly bemg z-dependent. Then

. dtt)_ ,_.vcg() @-94, C=I. : | _ ' - (221)

A pseudopotentla] model can be rcgardcd as a Tepresentative example of an advanced type of model,
""'capable of embodying a good description of the electronic band structure. Although this is not the only
fype of ‘accurate model one can devise, and several others have been put forward for matching
‘ calculatmns (57} the general line of argument 1s sufﬁcnently illustrated by the study of a Hamiltonian of

“'the form - -

H=——2fiv +V(r), V(r);zv;exp(ig-r).: | : __.(2.22)

B Wri_tc down 'separately the p-dependence and the z-dependence, for example,

V()= 2V, (2) expliv-p),

(2.23)
_,'l’k(r) Z ¢,+,(Z) expli(x + )+ p],

" whcre the y are the 2D projections of the 3D reciprocal lattice vectors g. Take the corresponding 2D
- plane-wave represeatauon and leave the z-dependence in the dlfferenual form. Then the system of
d:ﬂcrentaal equatmns i '

3[(e- g ket 2 s, - V,-,;.(z)]w.,;;f(z)%""' o e

2
” dz
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S =1 + s . .
d*=m 9", C=-31, . (2.

where I is the N X N unit matrix, N being the number of resulting coupled differential f:ql.latlons
The above suffices to dcmonstrate the wide range of problems that can be treated in a unified way
In each case one must find &~ and C. The matching formula is then (2.15) which, used in (2.4), (2, 5}
through (2.12) allows us to evaluate practically all objects of interest concerning one single surface o
interface.

kR Contimions media: multiple interfaces

We now consider problems involving more than one interface. As prototypes we shall consider twg
cases. One is that of two interfaces. Examples of physical interest can be a sanawlch-type structure
: consnstmg of three media 1-2-3 with their respective matching interfaces! “Then medium 2 has a finitef .
thickness. If 1 and 3 are equal, then this corresponds to a quantum well. If one of the extreme media s
the vacuum — say, 1 - then it corresponds to a layer of a material, 2, on top of a substrate of another |
- material. The other case we shall consider is the superlattice ...1-2-1-2..., in which the tw
- constituént media alternate in a periodic way. We then have an alternating sequence of 1-2 and 2-|

interfaces. Other laminar systems, such as polytype superlattices, can be treated by an extension of th
same method.

3.1. The sandwich or quantum well case

~ Consider the configuration shown in fig. 3a: three media with two interfaces labelled / (left) and;
(right). Each P, is the projector onto.the corresponding domain. The symbols / and r will be used; .

(a)

QN @ P ® P
( 3
g .
ey My [(B)
]
| I
| |
TOX:] @ P2 @ P :
: i
1 -
: o)

- d — -

Fig. 3. Notation for (a) a sandwich or-quantum well and (b) a superlattice.
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'indisériminately either as labels or else to indicate the units of the corresponding 2D surface spaces. For

4, §Y=99"=1. ey

1ikewise, G, denotes the matrix element of G between /and r. We recall that the quantities appearing
in the formulae to be collected here can in general be matrices, for example, G, ¢, G,,, but explicit
matrix notation will not be used unless it is necessary or convenient for clarity. However, the correct
order of all factors will always be maintained. Now, given G, and G, we define the complete interface

. of projection domain with projector # =1+ r and the 2X2 supermatrix projections

~ @21' GZ‘?) ~ _( (gsl' Gslr)
Gz_(-GZrl ("qu ’ Gs_ Gsr! cgsr ’ l (3‘2)

together with their inverses:

g o I 0
'GzleszG;!l:(O ,

We furthermore define the external an;i internal projectors

)=éﬁéfwiéj. | | (3.3)

P,=P +P,, P=P, | | (3.4)
wd the external Green funcgion ‘

PGP, 0 )

&Q&=( 0 PGP,

(3.5)
This is a compact way of expressing the fact that in G, both z and 2’ are in domain 1, while in G, they
are in domain 3. The complete interface projection of G, is

& [ % 0) | .. '
Q—(U g) . (36)

It is more‘-{Jseful to write down the SGFM formulae for the two-interface problem with the more
compact projector notation. The results are then isomorphic with those of the one-interface case, the
one side and the other side being in correspondence with the inside and the outside. For instance, for z
outside (P,) and z' inside (P,), the formula is ' '

PGP,=P.GG.'GG;'GP;, | ‘ 6D

which is isomorphic with (2.4) if we put P,G,P; instead of G,(z,, z;) and likewise for the rest. But here
z'can be in either P, or P, and both cases are encompassed by the compact formula (3.7). Symbols with
tiides are projections — défined in (3.2) through (3.6) - and can be understood as containing . as a
prefactor and as a postfactor. Thus a term like P.G.G, ! can be read as P.G.$G_'. The meaning of
PG $ is the following: suppose z is in P;. Then this is the two-component row vector :
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P.G.9=[G,(z,1),0], | | T

while for z.in P,:
PG-.¢=[O‘G(z nt. | | N X

Here G(z, Hr) means that z' is at h’r For the same reason the factor G,P; can be read as J‘G P and

this is the column vector

ﬁGzP;=( z(t’,zz)),. . I o (3.10) ¢

Gyfr, z3)
whereas P,G,$ is the row vector
P,G,# =[Gz, 1), Gy(z,1)] =~ B - (3.13)

and this appears in the formula

PGP=PGP+PGG"(G—5)6"GP2, o | G

which is isomorphic with (2.5). As in the one- mterface case, a dual set of formulae holds wnth internal
and external mterchanged : :
The next question is the matching formula for G s , and this is

Gi=c" NG - 4,G5Y, : : o . | (313).

where 57, and o, are 2 X 2 supermatrices correspondmg to .94 *) and .sd‘ ) of the one-mtetface case. The
general relationship between &= and '$'*) has been discussed in section 2.2, thus it suffices to discuss
the supennatnces formed mmply from the Green function denvatlves These are

,ée=(€§§;) o(_))’ "é.‘,_'=‘( {'_?(’Ii, | rcgmﬁ?i,:)(}z,,)‘
0 - 'glir —’glr gzr Gzrl "G

By oomhmmg the Green function derivatives with appropnatc coefficients correspondmg to each
~ particular case we go from 'G and 'G, to .sf and m’ "
Now, the internal Green functlon can be choscn 10 sausfy arbitrary boundary conditions at the I- and '

r-iriterfaces provided neither corresponds to an infinite barrier {58]. Thus, with this sole restriction, one

~can choose from a double infinity of Green functions G,, alf satisfying the same differential equations in

P, and arbitrary boundary conditions at / and r. In particular, if we can find a G, sansfymg
!@H)_rg( )_0 ' . . - (3 IS)

then 'G becomes dlagonal and so does &52, whence a substantial simplification in the algebra may
ensue. : : _

| (3.145 \
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~ 3.2, The superlattice

The notation is laid out in fig. 3b. Here m and n denote another two interfaces and d is the length of
the period. This entails a phase factor f= exp(igd) for states with (superymomentum g associated with
the superperiodicity of period d. The internal projector, and corresponding Green function ontinue to
be P, and P,G,P,, but the external domain now has projector -

p=p+pP., | o (3.16)

- with P, and P, also spanning finite domains. The material contained in these is the same, but they carry
left and right labels. The extension of the objects defined in section 3.1 is as follows: define, for z in P,

or P,

PG.i=Gz,1), PGr=f"'PGm=f"G\z,m),
(317)

PGl=fPGn=fG\(z,.n), PGr=Glz,1),
whence the 2 x 2 supermatrix

. - (PGl PG r) ( Gz, 1) f"Gl(z,,m)) _ | :

: = ° )= . A8) -
PG (P,Gc[ PGr) ~\fGzm)  Gi(z.1) (3.18)

: "The-complete interface projection is then

G, = (((f”' f;’) = ( / Gf;’, ") f _]Gé,(,[, m)) . | (3.19)

erl

Note the appearance of non-diagonal terms, with corresponding phase factors, in the supermatrices
~corresponding to-external objects. ; o
The SGFM formulae are frow typified b

PGP =PG.G]'GG;'G,P,, - ' ' ) (3.20)
PGP = P,G,P, + P,G,G; (G, - G,)G;'G,P, o S %1 )
which are again isomorphic with the corresponding formulae for the one- and two-interface problems.
. An alternative formula for PG_P is discussed in ref. [51]. . ‘ ' : _
The next question is again the matching formula for G,, which involves the corresponding

- derivatives. As in section 3.1 we need only discuss the 2 X 2 supermatrices involving derivatives of the
.Green functions. Obviously 'G, is the same as in (3.14), but now instead of 'G, we have

,@(1;} FUg9 G, n)) 3.2)

6=y i
. —f’cg(lr )(glrlGl(‘r’ n) '_‘(g(lr)_

From this we form the corresponding ﬁe and hence obtain_ the matching formula for the superlattice .
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Gl=CNAG - %G, ; (3.23)
As before, G, in each domain can be chosen -arbitrarily provided it satisfies the same differential
equations inside P, or P,. In particular, the choice : '

g =190 =0 - - (3.24)

makes G, diagonal, thus simplifying the algebra.

4. Evaluation of Green functions and SGFM formulae for continuous media

The practical use of the formulae so far presented, and of others one can obtain from a SGFM
analysis of various matching problems raises the question of the evaluation of the intervening G.
Ignoring for the moment some of the. problems commented on in connection with fig. 1, the practical
issue is the evaluation of G for a giten medium. _

If G can be obtained in analytical form as G(k), that is G{x, k,), then all terms entering the above
formulae are readily evaluated from '

=

' dk o ' . |
- Gk, z—z2")= j 2—1: Gk, k,) explik (z — z')] \ ’ - (41)
and from
‘4 = jim w dk, G(x, k) exp(Fik,n) | | a (4.2)
0 ) 2 P 2 A

—oa

This assumes an ideal junction of the two unperturbed bulk media which remain homogeneous right up
to the matching surface. This is typically a good physical model for problems involving long waves, for
example, elastic, piezoelectric or magnetoelastic waves. Even if one includes specific surface effects, for
example, surface stresses, in the long-wave limit thesé are essentially localised perturbations going like
8(z) and there is no difficulty in including them in the analysis {6, 9, 26, 27, 28, 59, 60]. A similar case is
that of a thin layer on a substrate provided the thickness & of the layer is such that xh <1 for the long
waves — small « — of interest [61]. By Fourier transforming the equations of motion one can find G(k)
and then, by using (4.1) and (4.2), one can implement the SGFM analysis in practice. |

Figure 4 shows some results obtained in this way in the study of surface Brillouin scattering for GaAs
(110) surfaces [60]. One can obtain not only the form.of the cross section but also the parts contributed
by the spectral strength corresponding to vibrations perpendicular and parallel to the surface. Figure 5
shows the phase velocity of the surface waves on Si (001) surfaces compared with data obtained from
inelastic ultrasonic diffraction experiments. The phase velocities are plotted as a function of the angle
formed by the propagation vector x with the [100] axis, both contained in the (001) surface. In this case
one can also follow the evolution of the surface mode while describing it with a great deal of spectral
information. Details can be found in ref. [24]. '

As an example of a superlattice system, fig. 6 shows some calculated dispersion relations for elastic
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Fig. 4. (2) Theoretical spectrum for Brillouin scattering in the [110}
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waves in a W-Al superlattice [34]. Two aspects of these waves can be of interest. One is that, j
general, waves propagating paralle] to interfaces are in principle sagittal, that is, part of the wbratmn

amphtude is longitudinal and part is transverse, perpendicular to both the interface and the correspond. |

ing wavevector, just as in fig. 4. The interest then lies in knowing how the total spectral strength j
distributed between the two polarisations. The other aspect of interest is the spatial distribution of the
spectral strength given by (2.9). For an electronic wavefunction this would be proportional to |4}
Figure 7 shows the corresponding spectral functions for three different frequencies spanning the twg
lowest branches of fig. 6. One can see, for instance, that the first branch is nearly ail transverse and the
second one nearly all longitudinal, as in bulk material, but the modes have different preferentiy

confinements in real space. Again, one can study at will d;fferent modes and conﬁguratlcns and obtain

detailed spectral information [24].

A viscoelastic fluid can be formally treated in a way that is mathematically 1somorph1c with that of ap |
isotropic elastic solid medium [9, 26-28]. A quantity of interest is the fractional change AV/V, of the |

surface wave velocity V, of a free solid surface, which changes to a different value ¥ when the solid i
“loaded” with a fluid. Table 1 shows experimental and calculated results obtained from an SGFM
calculation [26]. :

The situation is rather mors involved when it comes to problems involving slectronic states. The bulk - -
Green function is of course trivially easy for free-electron states and this offers already some interesting | -
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. -+ Tablel .
. Fractional changes in surface wave velocities because of fluid loading
Theory (%) Experiment (%)
Alfwater X 0.50
" Al/glycerine , 165 1.10
Steel/water . . .o 0605 ) - 0.06 -
. Steel/glycerine’ 0.18 . 0.13

- possibilities, such as the study of some coliective aspects of a metallic clectron gas bounded by a surface
7 {17-20]. Crystallinity complicates the evaluation of G, but this can be done with simple pseudo-
. potentials without great effort. In a plane-wave reresentation, when a given wavevector & mixes with
" several reciprocal lattice vectors g, G becomes a matrix labelled by g, g'. In the 2D projection for the
surface problem one ends up with matrices labelled by ¥, v', as in (2.24). For metals one can study in
. this way, for instance, the electronic structure of solid solutions of simple metals [62] or localised states
at twin faults and surfaces [11]. For semiconductors one can also evaluate the butk G and use these to
- study surface states, but so far this has been done mainly for simple pseudopotential models and ideaily
} _terminated surfaces [63]. While these calculations were useful in the early stages in the theory of surface
- gtates, the issues of today require more accurate calculatians. If the bulk model is more accurate, hence

. /more complicated, the evaluation of-the G and their derivatives Tequires very substantial numerical
7. effort, and mare so if one wants to do a self-consistent calculation [64].

- Moreover, there may be situations in which it is not even clear how the bulk G is to be ‘defined. A
* point in case is, for instance, that of a parabolic’quantum well [65}. We now address these probtems.

3 41, The transfer matrix M

" Transfer-matrices for solutions of systems of ordinary " differential equations can be defined in
- dilerent ways and various definitions can be found in the literature. Basically one can define a matrix
- Al tramsders cither amplitudes or both amplitudes and derivatives. The former cant be usclul # the
- Wector) wavefunction can be expressed as a combination of a set of knawn functions. Then if suffices to.
- koow the amplitudes. We shall sopm sec that the lattes  tmore convenicnt for the practical
mplementation of the SGFM method #nder quite general conditions. We shall follow the analysis of
 ref. [66] with only a rearzangement of terms-which we shall presently explain. ,
-~ Consider a system of N coupled differential equations. The differential operator and the Green
function are N x N matrices. The wavefunction is an N-composent vector f. Let f (p=1,2,...,N)
be these components. Physically they could correspond, say, to vibration amplitudes, to the envelope
functions of a many-band modet or to the Fourier components in a plane-wave representation for a
-peeudopotential mode!. The formal analysis holds quite generally. We define the 2N-component vector
.- F, associated with f, by : ' '

R\ /()
F(2) £é2)

Fo= | kv § =| 72 | B | (43)
- Fx_’ﬁ’i»](z) ’ f;(Z) _ .

FZN(Z) \I‘C;{z
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We then define the 2N x 2N transfer matrix M which transfers F from z, to 2:

F(z) = M(z, 2} F(z,). o | T (4.4)
We shall use p,g=1,2,...,N 10 denote components of G or fand i, j=1,2,...,2N to denote
components of M or F. In the definition used in ref. [66] amplitudes f, and derivatives f, occupied an

 alternating sequence (f,, f1, f. f5.. - .) but here we shall use the order defined in (4.3). This order is

optional and simplifies the notation.
The first question is to relate G and M. A preliminary formulation for N=1(G ascalar, Ma2Xx2

matrix) was presented in ref. [58] and a full analysis of this case in ref. [67]. The extension to N =2 can

. be found in ref. [37] and the general anatysis for arbitrary N in ref. [68]. We now summarise the results,

Consider the 2N X 2N matrix M of elements M, We then define four N X N submatrices resuiting
from the partitioning of M in blocks: .

. M11 M-I.N Ml,'N+1 NI,;N

My, - Myw | Mywe - MN:,ZN_ =(MM ] um) “s)
Mzg+1,1 M.x:+1,N MN+_1,N+1 MN+_1,2N . ! Moo/ |
MMJ Y H;N,ﬁ Mm:r,m: A Mzh;,zw

Then M, , relates the amplitude at z to the amplitude at z, M, relates amplitudes at z to
derivatives at z,, and so on. The elements and derivatives of the constituent Green functions can be
fully obtained in terms of the submatrices of (4.5). The details have been given elsewhere, ref. [68].

Here we give a summary of the results.
Taking a given reference point z =0 where matching is eventually to be effected and defining

M (£)=M,(+=0), (46

the transfer matrices sweep through the potentials or similar coefficiénts of the corresponding domains. '
" These constitute the input to the evaluation of the corresponding M, which depend on the eigenvalue

variable (2. For propagating states this is to be understood in the sense of the causal limit £2°. Consider

now the matching formula (2.13). The quantities of interest are the logarithmic derivatives. We denote

P =g g =T, S0 =906 =Y R ()
then
T —[M () MO Ve = M) T M (DL (48)

The label 1 or 2 indicates the domain swept by the corresponding transfer matrices. The secular matrix
(2.13) is thus fully obtained in terms of constituent transfer matrices only. It is now convenient to
introduce the following notation: let M denote a matrix that can be a complex function of a complex
variable:

.. ]
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M) = a(0) +ib(0). o 6y
. Define M, 3 and b as the transposes of M. a and b. Then V;@ deﬁné o
M (0Q) = a0)-ib(0). SR o (410)

. Note that {2 is not conjugated, so for complex {1 this is not quite the Hermitian conjugate of M. Now, of
" the complete matched G,(z, z') the two configurations of interest in practice are (i) z and z' on
" opposite sides, for example, to study transmission across the interface — and (ii) z and z' on the same
“side and usually z = z' — for example, to study a local density of states. For instance, for z=0=z"

G(2,2') = [MA (2, 00+ Myp(2,0) TU']- G- (M2 )+ V- Myp(20,0)), 0, (411)
while for z.and z’ equal and on the same side:

Gs(z’ z) =-[MAA(2=0) +M,5(2,0) T:_]] {4 [ﬂcAA(z’O) + Ul_l ’ ﬁ;AD(Z-’ 0} - Sir' ﬂcAD(Z! 0)},
6.(z2,2) = [My (2, 0) + Myp (2, 0) V'] {9 [M, (2, 0) + Q; - (2, 0)] '
~8,"M_..(2,0)} | (4.12)

. where
U;I = _[A_’CAA(_) ’ ﬁ’mo(_)ﬂ]l : az—E = _{ﬂcAA('[") ) McAD(+)_1]z : (4.13)

- The label 1 or 2 indicates the domain for which the transfer matrices are evaluated.
" The same considerations hold for multiple matching. For instance, for the 1-2-3 system discussed in .

““section 3.1 one finds . :

_é_1=

H]

(s;‘-r;‘ 0

~—1
0 s -:v;') +G;', (4.14)

where T, is given by (4.8) with the reference point at / and ¥, is also given by (4.8) with 2 replaced by 3
~ and the referencé_point at r. Furthermore,

-1

é—lz(mf—)}\-mDD.SZ my.- S, ) : (4.15)
: m;. -8 My My, - S,/ 0 .
where ] '

mraﬁ = ] (I! r) 3 | ’ . (416)

which transfer from r to . This is a submatrix of the inverse of M(, r) but it can also be directly
_evaluated by feeding the same potentials in the reverse order, starting from r. A similar formula holds

" for. the superlattice, only the first matrix of (4.14) has then non-diagonal terms containing the phase

factor exp(igd), where g is the 1D wavevector associated with the periodicity d of the superlattice. The
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complete G,(z, z') can also be obtained, for either the sandwich structurg or the superlattice, by using §

the appropriate SGFM formulae and relating the intervening Green functions to the corresponding i

[68]. The point is that in all cases everything is ultimately expressed in terms of transfer matrices, which

can be evaluated directly from the differential system by means of efficient numerical algorithms.

- Consider, for instance, a parabolic quantum well. Medium 1 is taken to be a homogeneous materiy|
right up to /. Medium 3 is equal to medium 1 from r onwards. Medium 2 has a parabolic potentiy] |
profile from / to . This is then the difficult region. Suppose one uses a one-band effective-mass mode|_ |
Then G, and G, are obtained trivially and hence £ for each case. But G, is much harder. In fact j; |
would be hopeless to try and evaluate it in order to use (3.14) in (3.13). This could be even worse for 7
any other arbitrary potential profile. However, formula (4.15) solves, this problem. It suffices ty'| -
evaluate the transfer matrix, for which efficient numerical algorithms exist and the problem of ,
evaluating or even defining G, has been circumvented altogether. Table 2 shows some results obtaineq
for a parabolic quantum well of Al Ga,_; As with graded composition, that is with x varying from [ tor. } |
The ecigenvalues were calculated by using (4.14) and (4.15). In this case the m,, are scalars | |
(Man=my, myp=m,, my, =m,, my,=m,;). The calculation was done [58] with a persong) |
computer and the results compared with those of an elaborate full computer calculation [65).

An example with N'=2 is the study of elementary excitations in superconductors. In Bogolioubovy |
model, widely used in the literature — for example, [69-71] - this involves two coupled differentia] .
equations for the electron and hole wavefunctions. If A is the energy gap of the superconductor, they | .
no elementary excitation can exist with energy E < 4. However, it was found [69] that a N/S bilaye f
(N, normal; S, superconductor) can have elementary éxcitations at energies below A. This proximit
effect was also studied in refs. [70, 71} with the same conclusion. In all these studies the spectra |

function evaluated was the density of states of the entire N/S bilayer. A Bardeen—-Cooper—Schrieffer [ |
(BCS)-like peak appears at some low encrgy E,< A, that is, the normal metal becomes, by the|
proximity effect, something like a superconduetor with a very small gap equal to E,. For a bilayerit /|
which each layer has a thickness 30¢, where £ is the cohefence length of the superconductor, this peak | .
appears {37, 70]-at about E, = 0.094 ~ the normal metal is like an almost zero-gap superconductor. Thisf - |
can be disciosed in real space by calculating the local spectral strength (2.9). Figure 8 shows the resuls |
of such a calculation in which the SGEM formulae were evaluated in' terms of the corresponding |
transfer matrices [37] for x =0. The ideais to probe the system at an-energy of interest. Figure 8 | .
shows the local spectral strength for E = 1,084, shighily above the threshold at which the BCS peak |

appears. This demonstrates thie typical spatial behaviour of this type of elementary excitation. In fig. 8
the system was probed at E =.0.092; where#he B454iKe-peak appears. The behaviour corresponds 0}
that of an elementary. excitation -of the same kind-and quickly decays on getting intc the superconduct-

Quantised sub-band levels for the parabokic questum well of Al Ga, , As described in the fext

7 i : Epergy {meV) of level o
" lowest conduction - " heavy holes 7 light holes

Quantised T Ptz and T this Pétz and - this . Ptz and this -
sub-band level . Perryf65) - work " Ferry [65] _ work Ferry [65] work
E, ©is3 15311 -45 ~4.5 -1 . -101 :
E,° ~1555.0° 15548 . 134 ~134 -304 " R A -
E, 1578.8 15786 . -n3 -2.4 —49.6 -se6  f |
E, .

1

" 16019 1602.3 =312 - =313 -63.9 -70.8
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ing slab, as it must since in the superconductor the energy is far below the gap threshold. The decay in

fact is very steep, corresponding to E/A very small. The curious result is that the spectral strength of

such an excitation tends to pile up not near the interface, but rather towards the far end, thirty
coherence lengths away from the interface. This is another example of the kind of detailed information
these calculations can yield. In this case the transfer matrix is 4 x 4 and can be written down analytically
in terms of trigonometric functions and the calculation can also be done on a personal computer.
The use of transfer matrices to evaluate Green functions opens an interesting practical possibility to

perform self-consistent calculations. If one starts from an ideal interface -~ two unperturbed media

Joined at the matching surface — whether one uses the intervening G directly or (4.6) depends on the
model. If this is sufficiently tractable, then the direct evaluation of the G may be the most
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Table 3
The four lowest eigenvalues for the Si inversion layer. The prime indicates the
beginning of a different ladder [72]. Energy values in eV

. _ E,. E, E, E; )
Present calculation 0.058 0.091 0.110 0.088 P
Stemn [72] 0.059 0.093 0.112 - 0.090

straightforward way. However, this is clearly pot the case in the situations described in fig. 2. In sy
cases the use of M is very practical. The calculation proceeds in exactly the same way irrespective of t?

details of the numerical input— that is the potential profile. Thus the new potential obtained
successive stages of a self-consistent calculation can be treated in the same way and, from this poin
view, the problem is straightforward except for the possible complications of the self-consistent dnalygf
ntself As an example we can consider the inversion layer at the Si-SiO, interface. In this case it suffy

to use a Hartree approximation [72]. Table 3 shows the results of ref. [72] and those obtained with ti
method discussed here [37]. The point is that the latter can be obtained with a personal computg}

5. The wavefunction of a matched system

For some physical problems one may want to know the wavefunction explicitly. This may}
required to evaluate some appropriate matrix element for, say, optical transitions or electron—phoy

scattering probabilities. ,

The SGFM analysis constitutes an extension of ordinary scattering theory in the sense thatif -
scattering events are classified in reflection and transmission. The relationships involving Greg -
functions are of the Dyson type. Correspondingly, there are relationships of the Lippman-Schwing! -
type involving the wavefunctions. :

Consider the case of one single interface. Let ¢,(z) be the wavefunction of an eigenstate of mediwt‘-
1 incident from the left. The corresponding scatiering state wavefunction of the matched system is |

WD) = (2)+ 6,(2.09; (%~ 9)9, "6, 0% 220, ;s
. i X
h(2) = Gz, 009 0(0) = Gu(z, 067 6,9, 6,(0) 220, X
with similar formulae with 1 and 2 interchanged when the state is incident from the nght
For a bound state:

(2) = G,(2,009,'4,(0) z=0,

b(2) = Gy(z,0)%; ' 0y (0) 220,

Having related the Green functions to the transfer matrices, one can now evaluate the d '
wavefunctions from the M. ) ' -
The case of multiple interfaces, notably the quantum well and the superlattice, can also be ultimd
referred to one single amplitude at one chosen matching surface by using various relationships obtai}
from the SGFM analysis [36, 68]. Note that while the z-dependence of the wavefunction is given ® 3
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by terms of the form_ G(z,0), the other factors are also important, as they contain, for instance, an
extra dependence on the eigenvalue and possibly other important parameters. A-case in point is the
electro-optical properties of a quantum well in an external electric field €. Then one is interested in the
g dependence of ¢, and this is contained not only in the Green function terms but.also in the amplitude
factor. In such cases this must be found by normalisation. - —

_ Figure 9 gives the results of a calculation [36] performed in this way, compared with experimental

~ data on quenching of the photoluminescence of a quantum well as a function of €. Except for the
. highest fields the main factor is the increasingly separate confinements of the electron and hole

wavefunctions as & increases. The quantity calculated in this case is the overlap integral

£t {lelectron)g(hole))

for which the complete &-dependence must be obtained, and this includes the amplitude factor which
can be obtained by normalising each wavefunction. For any non-trivial case this must be done
numerically but is otherwise straightforward for bound states. Scattering states are different. They are
normalised in the sense of 8-functions — of the energy — and this cannot be done numerically in a direct

- manner. In this case one can obtain the normalisation amplitudes by equating the density of states
* obtained from the i to the same quantity obtained from G. A case in point is that of a superlattice, for
- which all states are simuitaneously matching and scattering states. Taking, say, the / surface as z =0,

the general formula is then

e 'ws(z)=Gs(z)§;i¢s(0). S | ! ' : (5.3)

e ) 0.5 1.0
o £010% viem )

Fig. 9. The integrated photoluminescences intensity against electric field, normalised with respect 1o zero-field conditions. Full circles, expérimf:mal

m"315. continuous line, variational calculation of the overlap between electron and hole wavefunctions; broken curve: SGFM calculation
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solutions, for example, : '
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The usefulness of the method just described rests on using a good numerical algorithm to obtain the .
transfer matrix. Basically we are interested in the solution of a set of N coupled linear second-orde;
differential equations. Let this be of the general form

@)
A+ B+ (C-E)=0, =77

We assume that A causes no special prbblem, which is usually the case. in practice. This is easily |
transformed into a system of 2N coupled fist-order differential equations: :

{6.1)

/ fi(2)
| . £(2) |
. o 10 i, _ : I
F'= P,"F , P= (A'l (EL,-C) -A"! ~B) , F ?{g; . (6.2)
M)

‘We have defined the 2N-component vector F. Then Pis a 2N X 2N matrix. The transfer matrix, defined
by (4.4) is then in fact the matrix that transfers the solution of the system (6.2).
If‘the coefficients are-eonstant then ‘M can be obtained from refs. [66, 73]

7!5(2,20) =exp[P X (z — z,)] _ : _ (63)

Obviously the matrix P can be diagonalised by means of the standard subroutines existing in |
mathematical subroutine libraries like EISPACK [74] and LINPACK [75]. In any case it is well known X
that to obtain the exponential of an arbitrary matrix is a tricky problem {76]. It is also well known that
in the case of non-Hermitian matrices standard diagonalisation procedures can run into serious trouble. |
When the coefficients are not constant it is always possible to introduce a grid of closely spaced points [
such that in each narrow intervai of the grid the coefficients are taken as constants. The transfer matrix §
for each interval is obtained according to (6.4) and then - - '

M(z.z)=M(z,z—2) - Mz 424,24 ) Mz +4,2,). - wal

This involves repeated multiplication on top of diagonalisation and exponentiation of matrices and the i
amount of memory required grows very quickly with N. Moreover, this is not a very accurate ¥
procedure. : ) -k

Alf these problems can be avoided if the transfer matrix is obtained by numerically integrating from
Zy to z the system of differential equations (6.2) and assuming at the starting point canonical basis §*

65 |
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where- i represents a particular component and j represents a particular vector in the basis. The
integration of a first-order differential system like (6.2) can be efficiently performed by using the
.Adams—Rashforth-Moulton method [77, 78]. From the formal point of view we need only the values of
F{(2,) to know the solution in the whole domain of interest. When starting from a canonical basis (6.5)
each one of the 2N solutions thus obtained gives, at the variable point z, a column of the transfer
matnx. _ .

_ This works efficiently and for realistic cases in which N is of medium size (N ~20) it performs
accurately and quickly on personal computers of the AT or XT classes. B

7. Discrete media: single interface

The general introduction to the formal SGFM analysis is as in the continuous case. The form of the
results is also the same, except that formulae like (2.4, 2.5) are to be read in terms of discrete layer
indices, rather than continuous variables (z of z'}. A convenient notation in terms of projectors will,
-~ soon be introduced. The dependence on the eigenvalue and on the two-dimensional wavevector Kis
- again understood everywhere. All objects appearing here and henceforth can be matrices. This will also -
- be-understood without using explicit matrix notation, unless it proves convenient to do so. Details can -
--be found in ref. [42). S
-+ For discrete media it proves convenient to use the concept of the principal layer. This is defined so
that: (i) one principal layer interacts only with itself and with its two nearest-neighbour principal layers
and this accounts for all the interactions in the crystal, (ii) the crystal is reproduced by translations of
the principal layer. One principal layer may contain one or more atomic layers, depending on the
geometry and on the range of interactions included in the model. After the Fourier transform parallel
to the interfaces one atomnic layer is described with as many basis states as are needed to describe the
states of one atom. This determines the size of the diagonal term, a matrix in general, representing the
L Jocal layer projection of, say, a Hamiltonian or a Green function matrix. If the principal layer contains
“iiwp-atomic layers, then the size of the matrix representing the principal-layer projection is doubled, and
“so’on. Tn the following the term layer will be simply used to denote a principal layer.

:~-Yhe formal analysis to be presented here holds for any system with inherently discrete structure in
 which'the basis staites are labelled with discrete indices (R, ), R being a discrete atomic position. For
 tlectrons in tight binding (TB) u labels the atomic or atomic-like states on a given atom; for phonons
#=1x,y, 2, labels the three independent vibration amplitudes; for, say, a Heisenberg Hamiltonian,

- #=*labels spin states, etc. Let I.be the complete unit or projector of all the states in which all the
atoms forming the system under study are described. For example, I could be the unit of a complete

+ crystal. In this space one can define, in a concise notation applicable to different discrete systems, the |
| “Hamiltonian” H and its resolvent or Green function G, - ' S

G e ' | 1)
| 'Hns mustbe spec_iﬁ_ed in 'ea_cl_l-_. particular apb]ication. For electrons (2 = E, for phonons 2 = o®_ étc.
. Also, in the case of phonons one must keep in mind that the symbol H in an explicit calculation stands
- for the matrix of force constants é,,(R,R'). '

-t will be nécessary to include some additional notation appropriate for the discrete character of the- |
Situations to be discussed later. The situation is sketched in fig. 10. Let H_ denote the Hamiltonian of :
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* Fig. lb. An interface with A atoms (-) on one side and B atoms (O) on the other. The interface domain # consists of the two subdomains ,,
partof P,, and Sy, a part of Py. ’ :

the systein with an interface, defined in the space of the actual existing atoms forming the system unds
study, and G, its resolvent defined in the same space

(2-H)G,=P, | | (718
where P is the projector of the space of the existing atoms and in our case is spanned by
P=P,+Py. ' (138

Within P there is an interface domain with projector . consisting of two parts F. + Fy. A surface obja '
X is defined to exist and have an inverse, if riot singular, within the space of

N=3N$, N'=SNT'9, NN =NTN=S. . (74

Now, every bulk Hamiltonian H,, (M = A, B) or resolvent G, is only meaningful in the I,, part of
thai is when evaluated at the atoms M. Thus only the $,,G,, 5, part of $G,,$ is non-vanishing.
example, viewed in the entire domain, by definition - - '

- G, 0 . {G1 0 y
99A=JGAJ=JAGAJA=(0" 0), <.9;=( 0" 0), | | (7.

Cand 9,95 is just 5,.
7.1. The matched Green function G,

 Let us indicate now points on the A/B side by R, and Ry, respectively. An elementary excitation!
the whole system can either propagate directly from Ry to Ry, both within P or else propagate to
interface domain #, and there: (a) undergo a reflection, described by some surface object ® = SRS
S,R5,, and then propagate to Ry; (b) undergo a transmission described by some surface ob¥
J=$T9=$,T$,, ard then propagate to R,, as indicated in fig. 10. '
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' '['.hc'.‘two distinctly diﬂérent projcctions of G, m now o ;
PBGP P G,P, + P,GyRC, P, , P, GPy=P\G TGoPy. 3 T (7.6)
_Prolecﬁﬂs onto the appropnate domains $,, one finds | .
(g ‘5‘5.; , m=€4"1(‘§-9ﬂ)‘5 R e
‘wheﬂce the transmission and reflection scattermg amphtudes | |
X L AN S AC U U e
and the form_ulaé_ [compare with (2.4, 2.5), where the sides A and B coalesce into the plane z =0f
o PBGSPB=PBGBP;+PBGBf§g‘(s§s;@B)@;IG;PB, o
PGPy = PoGLY3' 6,95'GyPs . 3

Oné could equa]]y start from side A and obtain the dual formulae with A and B mterchan_ged Let here
and henceforth M indicate the other side, that is B/A 1f M is A/B. Taking $,, (M’ = M, M) projections .

| from the right or from the left, : : | \

I PuOSw = PGS G 914G =l 495 GuPu» . T (7.0)
and addmg up for the two valucs of M’ (M, M) we have, qulte generally | N 2

4 PyG,# = PGy ‘g5, JGP ﬁ‘&@‘GP - | (7.11)

! These formulae have the same form as those.;ongmally derived for continuous tedia [2], but they
- contain an mlportant element in an ‘atomistic description of discrete media. Every G,, is only used in-
" the space in which it is meaningful. For example, matrix elements of H orG, between atomic states of -
’ B atoms would never énter this analysﬂ :
The local densnty of states (LDOS) in the successive layers on either side, for ﬁxed x, is glven by

N,,(x,m_=—,,1—,hn'rr(n|G,m iy, @ =ﬂ_+xe, 0, (D)

Wi_th'G; taken from either the P, or the Py domain.
3 7.2. The matching formula

! " To obtain the formula for 4 we start from !qs (7 2) and (7.3) and prOJect onto =4, + .ﬁ (ﬁg
. 10), whlch yields ,

g, - sH P, +PB)G.¢ 5. S an)
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Using eq. (7:11) agam for each P,,G_# term ineq. (7.13) one finds the new matchmg formula forap.

arbntrary interface o . — - I

G =09 - SHP, 9. — SHP, G5 . S (g

The terms (matrix elements in an explicit representation) entering this formula have an obvioys
meanmg {H,P,, includes interactions between boundary-M atoms and any M atoms. $,H_P,,, which
Is just %, H ﬁu contams the MM coupling at the interface. The precise specification of these terms
constitutes the model for the interface and

det|%. ' =0 o o (7.5)

is the secular equanon for the (matching) interface states. We can now define arbltranly the ideal

interface as that in which the coupling terms exist but where on each side P,H.P, is just the
- unperturbed P, H, P, . The interface perturbat:on 1s then defined as ' .

Vo= JaBH, )P, + I3 (AH,) S, (7.16) .
and then eq (7 14) becomes . -

1

i 9l=gl oy ' . : | : (7.17)
From a praetical point of view it is interesting to note that
G = (I8, = FH PAGL G, I,) + (509, — FH PG 95 5y)
~($,H 3, + I,HSI,). (7.18)
The point is that the first two terms have often been studied separately. Each one gives the free surface
matching formula for each M. Thus the work done to study each incomplete crystal separately can be
directly used to study the coupled, and eventually perturbed, mterface Note that the- secular equation |

based on eq. (7.17) contains no redundant information.
This analysis differs from other Green function treatments of the mterfaoe problems [79] in which the

secular detérminant is larger than uecessary and the roots corresponding to each separate semi-infinite

crystal must be sorted out in order to’be left with the interface states. The above results hold for an
interface of arbitrary shape and can equally be apphed to study localised defects like substitutional or

" interstitial impurities [43].

~ After this formal presentation of the SGFM method for the single 1nterface case we shall illustrate
how the method works in practice by presenting some interface electronic structure calculations with
empirical tight-binding (ETB) models. We shall consider the (001) Ge-GaAs heterojunctions, In this
case one ayer will contain two atomic planes, because we consider second-nearest- -neighbour interac-
tions, and we shall use a four-states basis, namely one with one s and three p orbitals.

Let us indicate by #, the projector or unit matrix of layer n. Consequently the Hamiltonian “matrix
elements”, written as JF HF, or H, . indiscriminately, according to convenience, will be k-dependent
8 X 8 matrices. The same apphes to the Green function “matrix elements” # G$,. or G
and energy-dependent 8 X 8 matrices.

nn’

which are k- |
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The structure of the secular matrix is actually very simple. Assume, for instance, A on the left and B
on the tight and concentrate on o

g:113 = jBE‘ﬁB - ﬂBHBPBGB 'y;l . ' o . . ' L. (7.19)
Let n=1 correspond to $. Then, by definition of the principal layer

‘FEBHBPB = HB.ll + HB.EZ * CgB = GB‘ll o .V . - (720)

r'and
$3=(E~Hy), — Ha T (7.21)
E _where. | | !
T, = GB.;]GEH_ . | . | . (71.22)

is the transfer matrix for the bulk crystal B. More about the practical advantages for computation of the

transfer matrices will be presented in section 9. Here and in the following we shall give. the main

formulae in terms of transfer matrices where they are convenient. Note that Ty, is defined by eq. (7.22)
#and corresponds to a displacement of the first layer index, from G, , 10 G, ,, thai is to the right. The

same applies to the A side but changing right into left. Additional transfer matrices appearing in later
- formulae are defined by : -

Goo=TeGnrir Gon=GouSas ~ Guio=Candos. - (7.23)
~ and analogous expressions for crystal A.‘; | A
The first layer on going into A corresponds to # =0 and

Th= GA.-H}G;.IDO : — . : ,‘ : (7.24)
Thus : |
(g;l =[(E—Hy)oo— HaorTal+ [(E—Hg)yy ~ HB‘_IZTFS] —[Hyot Hiol- ‘ (7.25)

This involves only Hamiltonian matrix elements and T, which can also be evaluated by matrix algebra
involving only Hamiltonian matrix elements as will be seen later. Thus the secular matrix involves only
Hamiltonian matrix elements. It does not even require the knowledge of the bulk Green functions.
Moreover, eq. (7.25) used directly the information on semi-infinite A, semi-infinite. B and cross
coupling. The secular equation (7.15) is only a 2X2 supermatrix and it contains f0. redundant
information. Every root of the secular equation is an eigenvalue of the interface problem. The structure
of the secular matrix is very simple indeed. In practice the interface states can alternatively be obtained
from the singularities of the imaginary part of Tr % In fact this is a practical method, and describes
equally well resonances and similar solutions. Indeed, the trace of %, is just what one needs to calculate
the density of states in the interface layers, that is ' :
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:Ns(k,.E) = -—:; lim ImTr %(x, E +ie) . o . . (7.26) |

In the present example this involves a sum over four atomic planes and each one contributes the trace
of a 4 X 4 submatrix corresponding to the four basis states. The contribution of each atomic plane can
. be separately identified. The SGFM analysis yields the formula for all matrix elements of G, in terms of
"ifs own projection ¥, as explained before. From the diagonal terms we calculate the LDOS in any
desired layer n. For example on the B side

G = GB an T GB n]GB 11(G 'GB,u)G;,luGa,m E (7.27)
where G 1 is the projection of G, on the $, domam (n=1). Then, for side B, we have
™ Gypa = Gu+ Ty(Goy = Go,11)S3 - - (128)

Note that this is an explicit formula, not a recurrence relation. At this stage the matrix G,, is needed.
However, if one-knows the transfer matrices then G,, can be evaluated by simple matrix algebra as wil
be seen later. As explained before G, can be employed both to obtain the band structure of the
interface and to calculate the LDOS for the atomic planes wnhm the mterface domain. Beyond these
the LDOS must be calculated from eq.-(7.28).

Ideal {44] and nosideal [45] Ge-GaAs {001} interfaces have been calculated w1th this method by
using the ETB Hamiltonian of Chadi [80] for the bulk materials, and taking the arithmetic averages of
the corresponding bulk parameters for the cross-coupling matrix elements. As an illustration we show in
figs. 11 and 12 the LDOS summed over the two-dimensional Brillouin zone for the first four atomic
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Fig. 11. LDOS integrated over the two-dimensional Brillouin zote,  Fig. 12. As in fig. 12, for the ideal (001) Ge—As interface.
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interface, with a valence-band discontinuity of 6.9 &V,
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on each side of the ideal (001) Ge-Ga and Ge-As mtcrfaces usmg a valence-band dlsoontmulty

iﬂ 9¢V. Both figures show that the interface-induced effects are mainiy restricted to the two atomic

janes. forming the geometrical interface. No separate interface states are prescnt in the gap regions,
and there are only small changes within the band continuum.

This method has also been apphed to the study of phonons at the (001) interface of BCC transition

metalS [81]

. Discrete media: multiple interfaces

Having seen the case of a single interfaée,- we now diseuss multiple interfaces. As prime examples of
 widespread physical interest we concentrate on quantum wells and superlattices again.

8. 1. The sandwich or quantum well structure

" The system is sketched in fig. 13, where /, m and r indicate left, middle and right, respectlvely The
weresponding media have Green functions G, and prolectors P, with M =1, m, r. Now we have two
‘mterfaces, one on the left (/) and the other one on the right (r) Let us indicate by 4, and J,, fig. 13, the
corresponding projectors of the said interface domain. Each one has two subdomazns as in section 7,
and in each one the corresponding surface object, with its inverse, is defined. Now, however, 4, and 4,
are seen as - 2X2 supermatnccs with only one full box, m thc space of the /- aud r-mtcrfaces,
respecuvely, that is e '

: 9 0y -
548 =(9,+ ‘,lm)_gl(jﬂ + Ip,) :‘ﬁ"(g’ﬁ” - ( 0’ 0) ’

3,95,=(5,+9,)9(5,+5,)= J‘ 4.5, (g ;)

Then

‘ ' S 'JII .::L':Tl‘m‘ ) UTrg:'Jrr
-0 .o:"A:_ H-—in _.A.:B o-=--
—-0 "o : ;.‘.ra-—--.‘-ﬁ a :'U o~
<0 o_:A' a-_—g_a'—--a'-'g.;n o --
-0 o1l!.~_. b = -— A a.:p o - -
--0 O:A Avm=-ah A | O T-=

I==P K Pm Sh—=—=Pr=1=x=

"‘ il A lpdmch-type m For electronic states, vm.h G, = G,, this is the quantum well, Note the structure of the interface domains in the
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B %' 0
%4, 1ﬂz=( I

i I, 0 : | |

0 0
and one never performs an illegitimate matrix inversion. In the present case there are two, ‘ géneratly
coupled, interfaces and the projection domain, where all the physics of the problem is containeq | -
consists of %, and .#,.‘Thus the entire interface domain will be defined as consisting of both { and r ang

having the projector

= 'ﬁl + "¢r = ﬂ”. + “ﬁfm + ’ﬁrm + ﬂrr . (83}

Considered in this space all surface objects become (4 X 4) supermatrices. Again one must note which
boxes are empty and how inverses are defined. Thus egs. (8.1) and (8.2) become '

(84) :

The definition of the projection is different for G, because it is through the cross matrix elements of G,
between / and r that the coupling between the two interfaces enters the problem. The appropriat
definition is then G, = (%, + %.,.)G,(#,, + #,,.), which considered in the entire interface domain 43

0 0 0 0
G = O ‘?;.'me JI.'m ﬁIme frm 0 = -
me ﬁij - 0 jrmeﬁ!m ‘ﬁrm Gm lgjrrﬂ 0 ’ ) - (SJ)
0 0 0 ]

displaying again which boxes of the 4 X 4 supermatrix are empty. The physical reason Is again the same. | -
Matrix clements of G, between states of [ or r atoms are meaningless. Note that G, is actually firstf
defined in its own space, %, +.% , and then considered in . The inverse G . is defined by observing}
the same rule. One first defines the inverse of the matrix (¥, + % )G, (4, + £,..), that is the centraly -
2 x 2 supermatrix contained in the larger 4 X 4 supermatrix of eq. (8.5), so that :

G.':rlém = ("g

lllﬂf

P I ' - :
+ ﬁrm)Gl:l'le(ﬂlm + "¢rm) = ( é}m [U ),’ E - (86) 5

rm

and then é,:,' again becomes the central block in a 4 X 4 supermatrix like (8.5) so that

00 0 0 =
Jadg pad _ (} ]{rn 0 (] ' ]
A I A | D . (8.7)'.
0 0 0

The surface objects thus defined will now play their usual role in the SGFM analysis, which is then st |
up as follows. First one must choose a model and define the **Hamiltonian™, of the system. Physicalliy
one has the [, m and r crystalline media in their respective domains, their possible perturbations in thel:
interface domains and their coupling interactions across the interfaces. We shall indicate the bulkf .
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«Hamiltonians” by H, (M =1 m,r). By definition the interface domains include all atoms-or
layers — that are affected by the creation of interfaces. Thus the possible perturbations AH,, are

" localized within the corresponding subdomains, for example, $, AH,%, and the coupling terms arc -

fikewise localised. The “Hamiitonian” of the system under study is then

H=PHP+P H P +PHP +%AH$ + $H S, - o " (88)

" where e

rorr

FAHS =3, 0H 3, + 9, AH S, + 5 _AH $ +9 AH I
* (8.9)
‘ngﬁ = ‘ﬁHH xﬁl‘m + ﬁ!mej" + ‘grmH ﬁrr + ﬂ"H "g;rm

The first thre¢ terms of (8.8) represent the ideally truncated /-, m- and r-parts. The fourth term
represents the local changes affecting the boundary atoms and the last one embodles the {— m and
m — r couplings at the respectivé interfaces.

The model contains all the information put into eq. (8.8). Once this has been defined, the form of

- the relationship between G, and its own projection G, is the same as in the continuous case. This part of

the SGFM analysis proceeds in exactly the same way, only that the continuous position variable z is
replaced by the discrete layer index n. This can be conveniently cast in terms of the projectors P, P,
and P,. For instance, when both # and n’ are in the domain of P, , then :

P,G.P,=P,G,P,+P,G,G6.(G,~ ,)G,'G,P,. | (8.10)

Note that és is defined like ém in (8.5), but all its boxes are full. Now define the external projector P,

_ and external resolvent G,

r=ror?

P.=P+P,, G.=PG.P =PGP+PGP . " S (811)

“s0 that the complete _surface projection of G, is

. $,G, %, 00 0 ,
P ' 0 0 0 0
G,=3G,9=9G%H+9G95= o oo o |- (8.12)
- 0 00 5G9,
_and its inverse is
$G7%, 00 0
DA 0 .00 0 | . : '
Gl=l o oo 0 . | (8.13)
_ 0 00 $G'$,
. Then
= eGeG"eVIGSG‘Vr;lePm v | | : : - (814)
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The matrix elements P.G P, eq. (8.10), and P,.G.P_, eq. (8 14), are identical in form to the PGP,

st m?

- and P,G P, matrix elements for the one-interface problem, eq. (7.6), with in/out replacing the B/A '

sides and hence 4 X 4 supermatrices appearmg instead of the 2 X2 supermatnces of the one-interface
case. .

It only remains to give the matching formula for Gs, which can be done by startmg from the equation
of motion .

(2-H)G, =P, +P,, _ o (8.15)
takiﬁé appropriate projections and using egs. (8.10) and (8.14). In fact from this point on there is
complete isomorphism between this problem and the one-interface problem studied before, and the

analysis consists of a mere formal repetition of the steps taken in the former section. It can be easily
seen that

G =08- $H(P.GG'+ PG, G, L (8.16)

| Knowing G one knows the complete G, and one has the complete physics of the problem at hand in the

usual way. In partlcular the secular equation for the matching states is

detIG (n n)| I T | | (8.17)

e -

. where we have Founer tl:ansformed in the planes of the interfaces and the matching states will have
' amphtudes localized near and .. Their local spectral strength is obtained from the dlagonal parts
_P G.P eq (8 10) ‘and P, G P,; wluch is ‘analogously obtamed as '

m S}ﬂ’ € SC’

. PeGsPe=PeGePe+PeGeGe—l(Gs_ Ge)Ge_lGePe : . ) | . (818)

Both equations (8.10) and (8 18) are also Fourier transformed so that from the imaginary part of the

- local trace projected on a given atomic plane we _can obtain the LDOS for given K. Any other spectral

function of interest can be obtamed again by startmg from here.

',8.2. The superlattice

Consider now a superlattice . . . A-B~A-B. . .. The situation is sketched in fig. 14, which displays
the distinct features of the dlscrete case. Here m and n denote ‘another two inferfaces and d is the length
of the period. This entails a phase factor f = exp(in), whcre 7 = qd, for states with (super)momentum g
associated with the superperiodicity of period d.

The. structure of all the terms concerning the mtcrfaces follows from an analysis 1dentlcal to that of
the earlier section. It is now convenient to define surface objects and projections as before, with
appropriate- modifications. In order to indicate projections on the two coupled interfaces limiting a slab
of material A, the definitions of G and G now become

G =(5,+9)G.(5+5), sA—(ﬁ+.ﬁ)G(ﬁ+ﬁ) ®.19) |

Agam one must keep in mind details llke the fact that out of, for example, 4,G, 4, only the #,,G, 5 |
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~—dz=dg+ds

.....da _—-s-q—-—-dA —_—
A *| B A

D) 11®
A L~

Rn T TOlTR, Ry Ta|dfe RnTo

I

§ | y

m Mg B +la Ia +ig Ng n
I r

——Ph=—= " DR

Fig. 14. Same as fig. 3, with atomic structure and interface domains and subdomains, for the superlattice ... A-B-A-B.. ..

" has non-vanishing boxes in the 4 x 4 supermatrix format, etc. The algebra of subsection 8.1 can then be
.repeated with the conspicuous differenee that the P, and P, domains are now finite, which brings in two_
extra terms involving the phase factor f. The dlagonal terms inside P, are now cOmpacted into [42, 43]

P,G,Py=P, GAP, .-I-P---GgG'.(G,A A)G 'GP, L (829
_‘The sum of the cross terms is more mve]ved It is now convenient to deﬁne the projector

p= P,+P Ce } o 4821

: and, cast in the 2 x 2 format,

s - . PGe% - exP-('"i"?)P.'GB-pm-)
Pt =i Gyt PGy, ) (5222
_— $G, 5, exp(—in) ¥,Gp 2, )
Bn ( exp(in) £,Gg#, - £G4, ’ (822b)

- Note that all the information is now folded into the supermatrix referred to / and ». Thus a term like
- #,Gy ¥, occupies the place labelled {7, r) but it carries the corresponding phase factor. After some
algebra {42, 43] one has the new matching formula

Ga =08 - $H(PG, G, +P,G,G"). o (8.23)
There is an important difference between this and eq. (8.16) in that, after appropriate Fourier
~ transformation, eq. (8.16) is a function of (n 12), whereas (8.23) is a function of (x, g, £2). Thus the

- new secular equation,

(8.24)
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yields the new band structure of the superlattice, and this includes the effect of the superperiodicity
through g and that of the possible x-dependent bands of matching states. The spectra] functions of
interest are obtained from the diagonal part, eq. (8.20). The momentum variable g is canonicafly
conjugate to the superlattice position coordinate, measured in multlples of d, and not to the lattice
position coordinate contained in P, . Thus from the trace of the imaginary part of eq. (8 20) one obtaing
directly the density of states in the slabs of material A for given x and gq.

The analysis presented until now has focused on the two interfaces limiting a slab of material A. Of
course, the dual choice is equally legitimate and the same formulae hold mutatis mutandis if one takes-

_the projection on two consecutive interfaces limiting a slab of material B. Hence one has at once a

formula for G5 instead of Gs A, Which provides an alternative expression for the secular equation and
. from which P,G Py is obtained at once by mterchangmg A and B in eq. (8.23). Let us now see the
practlcal 1mplementat10n of these formulae.

The elements of the Green functlons can be conveniently obtamed by using the transfer matnces

- introduced previously.

The SGFM formulae needed for actual calculations are then cast in the following form:

s _ () (lr)) : s | ._
GSA_((,I) (rm)/ _ : S S (8,25)1
i 'Where
(H)_:(ZB(E_HS)HB_IBDBLB ) —IBHI : )
—l My I(E~H)l, ~1,D,l,
e 0 _lBDBrB) _( 0 rAD l )
(lr)_(_gADA,A o ) D= Dy 0 )
T “r\Hr
—rgHir, - re(E- Hs)rn—jra_,{}‘xri1
ad |
1Dl LDwa)_(HuL2) 0 ) L N
'(rADAIA rADArﬁ_\V B 0 H,(2, 1) pf\TA ’ P : (8.26)

Dyl faDars)'_(Hg(z,l) 0 R | |
(’BDB’B TaDyry/ Pe7s > SR (8.27)

0 Hy(1,2))
- T. . T(VA_I) . 1 1_'- va _—
,,PA,_?( - A, TA.=‘-( R A\
n , .

ToAH T, T% L, e R
-( T f_ngB_”-) w={ 2 f_]TEB) ‘ L (8.29)
R+ Y B

The local ‘spectral strength in the layer n, i_si obtained from o
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plr,— (v, +1—n S(HA_I) .
G,(nas 1a) = Gy + (TS0, Ta™! >) MA.(g(,:+I_nA)) (8.30)
P : N Y
_'ﬁA*"AﬁAE”A=7;l(ﬁAésAﬁA"gA)F’:, ‘ (8.31)
- % 0 ) o (IA S:j‘) '
= y G =Galna,n,), 0,=1 4 , 8.32
8a ( 0 9, A Al :& ) A §% 1, ( )

and the dual formulae with the roles of A and B interchanged.-

The labelling of the layers and the meanings of ¥, and v, are shown in fig. 15. In order to obtain the
LDOS for given « we must integrate over g, the perpendicular component of the wavevector. The
above formulae cannot be literally applied to the particular case in which one of the slabs is reduced to
just one layer. This is the situation for periodic intercalation compounds but the same method can be
readily adapted to this case [49]. Note that one layer may, and usually does, contain more than one
atomic layer. The LDOS is obtained from the trace of G (n, n) and this sums over the atomic layers
forming the layer n. The separate contributions from each atomic layer yield the correspondlng local -
spectral strengths.

Now having calculated the LDOS in the A layers, the question is how to do the same for the B
~layers. The straightforward way would scem to be to resort to the set of dual formulae, with A and B
_and their roles interchanged. This would obviously  be correct, but impracticable, because the

projections are then not in the domain (4, r) but in, say, (r, n). Gy, for instance, is not the same matrix
as Gs 4 although both yield the same secular determinant. A parallel calculation of the dual formulae
requires a recalculation of the secular matrix and Green function elements, which would be highly
redundant as all the physical information should be contained in the projection on (/, r). An alternative
formulation for the B part, whose formal aspects need not be given here, can be obtained and it has
considerable practical advantages concerning both memory requirements and computer time, against
the dual formulae for B. This yields the following expression for the local spectral strength in an ng
layer:

_ ~ . . S_(nﬂ—l)'
G(ny,np) =4 + (T;,Bﬂ  f ]Tgavnﬂ_na))ﬁ"a(fs(vsﬂ-nﬂ]) ’ (833)
o ' B
where
=7 (G~ )0, A ‘ (8.34)
. % 0 o l L FiSs '
gB=( OB gﬂ)! E€B=(;B(NB:”B)S aﬂ=(fszl3 ‘IBB)' (835)
B . L — A - ; -y -
i ' P12 Ma “Va Yar
S E E] g o d---g---goodd
ntnB—1 IB—1 | lA !A+1 nA+lAI FA-‘i Ta )
"_-Pl -t PA —-—.I-o— Pr

Fig. 15. The ordéring and Iibelling of the different layers of the superlattice. Each square reprcsénts a principal layer.
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Now the same type of calculation and the §ame projections are employed for the A and B parts of e !
superlattice in such a way that no redundant caiculations must be performed. ,

The above formulae are prepared so that once the transfer matrices are evaluated they are diregyf |
inserted in the algebra yielding the secular matrix and then the diagonal-layer prOJectlons Altogeth}! !
‘this provides a very efficient computational procedure, It is important to stress that in this methoduh |
dimension of the secular determinant is only fixed by the size of the basis and the range of 1
interactions, but not by the period of the superlattice. In the case of nearest-neighbour interactions ayf |
a sp’s* basis the secular matrix (8.25) is 40 X 40 [51], whereas for a force constant model for transitiml
: metals including central interactions up to third nearest neighbours and angular interactions up tn'
ol second nearest neighbours [50] the secular matrix (8.25) is 24 x 24. The increase of the superlaty -
period is reflected in this method in the need to calculate higher powers in the. o, 7- and p-matricesj -
the A and B parts.

In practical calculations the band structure can be obtained either by looking for the zeros of (8, 25
| or for peaks in the local spectral strength given by egs. (8.30) and (8.33). As in the case of superlattma ;
3 one is also interested in the spatlal localization or confinement of the different modes and this canbd |

| ) s ‘
P . P
A h S ,
| 2 T
i L] i
: ] !
| n ! l
. B - 1
o olus.. Lt
Zsh w i t] Mg -
- ) 1
= - 1
Q 1]
2 1sp !
80 |- - : s 1Ll —
S I - It R TR W O VA RSN <O L - T T 5
\ S0 e . } s
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. ~ Fig. 16. Local spectral strength at the different atomic layers for two high frequencies {confined modes) in three (001) Mo-~W supertatticts
'J {4, 4) superlattice, v = 7.06 THz; (b) (4, 4) superlattice, » = 6.462 Thz; (16, 4) superfattice, v = 7[511-!2 (d) (16 4) superlatfice, v = 6462TH1-..
i (4, 16) superlattice, v—-7112THz and (f) (4,16) supeﬂaltwe »=06.68TTHz. . _
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Fig. 17. Spatial variation of the spectral strength (LDOS) for four eigenstates at the -poiat of a (4,8) (001} Nb-Ta superlattice, in the
nelghbourhood of the Fermi level. Energy eigenvalues in (a) ~1.52, (b) —1.38, (¢} —1.32, (d) —1.16.

easily obtained from the local spectral strength but not from the zeros of the secular determinant (8.25).
It is usually better to look for peaks in the local spectral strength, which give the states associated with
the zeros of the secular determinant.

~.As an illustration_of this we present in fig. 16 the LDOS of high-frequency phonons for different
Mo-W (001) super]attlces [50). This displays the spatial confinement of the high-frequency modes i the
Mo layers. In fig. 17 we present the local spectral strength of different electronic states, in the
neighbourhood of the Fermi level, for a (4, 8) Nb-Ta (001) superlattice {52}. A rich variety of spatial

localization is cv1dent thére. .~ :
| o

9, '- Fffaluation of -Grreen' functions and SGFM formulae for discrete media

In sections 7 and 8 we have scen that in order to proceed with pcrctlcal calculatlons by using the
SGFM formulae we must be able to calculate Green function elements. These could obyviously be
Obtalned by direct caiculation of the spectrai representation for the bulk Green function [82]. However,
' even for very-simple models direct evaluation of the Green function is not easy 82} and its
-8eneralisation for numerical calculations must contend with quickly varying exponential factors. In
e Ofder to avoid this we have introduced in egs. (7.22} and (7.23) the transfer matrices for the discrete
case ‘because they provide a fast reliable way to calculate the Green function elements.
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9.1. The transfer matrices T, T, § and 3
The different transfer matrices are defined as follows:

G,...=TG G, ,,=TG,,,

_ (9.q)
Goni1 =G, .8, Grn1 =G, 08
In this way we can raise or lower the right or left index at will. It is then clear that we can calculate apy
Green function element if we know the bulk diagonal element G, , of the Green function and the
transfer matrices, 7, T, S and S. Transfer matrix techniques have been used in the past to obtain the
electronic {83, 84] and vibrational properties [85, 86] of different systems. In earlier versions the
calculation of the transfer matrix could require in some cases more than 100 iterations.

Quite recently decimation techniques [87] and fast convergent methods for the transfer matriy
calculation [88, 89] have been put forward. The advantage of these methods as compared with the
earlier versions is that they only require n iterations where 2" were needed previously to achiey
convergence to the same degree of accuracy. Thus a very substantial saving in computer time j
achieved with the new schemes.

Starting from the generic equation

_H:,n+lG + (‘Q - H)n,nGn,n - Hn,n+IGn+l,rt = I ? (924

n—1,n

it is easy to obtain the following relationships between the different transfer matrices:

G;,}t =(0—H)n,n _Hn,n+1T_H:,n+lT’ . (93)
H:,n-i‘-lf‘: Is'-}Im,n+l ] (94) i
Hn,n+1T= SH:,H+I * Lo ) (95)

It must be noticed that our notation for the transfer matrices differs from that used in (88, 89]. 5

All the different transfer matrices are calculated by using the same iterative procedure, in which |
- some changes in the order in which H,, and H}, enter the calculation must be considered [88, 89], and ;
as a byproduct the bulk diagonal Green function elements G, , are also obtained [88, 90]. From here it |
is possible to obtain all the different elements G, of the Green function needed in the SGEM
formulae in order to perform the calculations. ' '

By using the new algorithms usually no more than five iterations are required, and even for very high
accuracy in the convergence no more than 15 iterations are needed.

9.2. Evaluating G, from the constituent transfer matrices f

In sections 7 and 8 we have found that G (n, n), which is needed to calculate the LDOS, is finally
expressed as a function of the bulk diagonal element G(x, n), different powers of the transfer matrices :
T, T, S and §, and of the projection of the system Green function on the interface domain (4, or G,),

which is also a function of G(n, n) and powers of T, T, § and S. So once we know G(n,n) and the |
- different transfer matrices we are able to obtain G,(n, n). ;
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In the case of the superlattices an increase in the length of the period is reflected in the need to
calculate higher powers of the transfer matrices appearing in the SGFM formulation without an increase
"_in the size of the matgices required for the calculation unlike what happens with the diagonalisation of
larger secular matrices if one uses the direct diagonalisation procedure associated with supercell

schemes.

10. Discrete media: practical aspects

As we have seen the basic SGFM formulae for the single and multlple interfaces are expressed in

terms of transfer matrices, which can easily be obtained byqmeans of fast and reliable iterative
-algorithms [88, 89]. It is now interesting to comment on some ‘practical aspects of this type of
calculation, some of which have been used as illustrations in earlier sections.

In order to calculate the transfer matrices and Green function elements a small positive imaginary
part was added to the eigenvalue. Different values of the imaginary part can be used and they affect the
computer time and some fcatures in the results. In the case of the interface electronic structure we used:

_imaginary parts down to 107" eV. The use of very small imaginary parts in this case increases
considerably the computer time without adding any further essential features. We found that a very
- ‘good description of the electronic structure and layer LDOS [44, 45] could be obtained with reasonable
amounts of computer time by using 0.05 €V as the igaaginary part. The iterative scheine to calculate the
transfer matrix converged in that case after three or four iterations. As was explained in section 7- the
electronic structure and layer LDOS for the two semi-infinite crystals could also be obtained as a
‘byproduct of the interface calculation. The integrals in the two-dimensional Brillouin zone were
performed by summing over ten special points {90]. A summation over 64 special points added no
“important additional features and increased considerably the computer time, Similar conclusions can be
jreaci:u:d for the interface phonon case [81].

~ This is also true in this case of the superlattices, but here we must take into account that how small

.the imaginary part must be depends on a balance between the accuracy réquired in the calculation and

“the computer time employed. When the period of the supcrlattlce increases there will be several modes
in a very small energy (frequency) interval and if one uses imaginary parts of the order of, for example,
0.1€V there will be some difficulty in finding individual peaks when looking at the local spectral
strength. In our calculations we employed usually 0.001 eV as the imaginary part and an energy mesh of
0.01eV or 0.001 €V according to the different situations. This is also true in the case of phonons [50].
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