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Numerical calculation of electron density
distribution in modulation-doped
GaAs/AlGaAs heterostructures .

. MicHAL SZYMANSKI, MARIUSZ ZBROSZCZYK |
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Electrdn density distribution in GaAs/AlGaAs heterostructure is calculated. In addition, the

diagram of the conduction band edge is presented. The results were obtained through the self
_ -consistent solution of one-dimensional Schridinger—Poisson equations. For numerical
_calculations the finite-difference method with non-uniform mesh has been used.

Y

1. Introduction

Recent, dynamic development of such techniques like molecular beam epitaxy or
metal-organic chemical vapour deposition enables growth of low-dimensional,
multi-layer, modulation-doped semiconductor structures of excellent uniformity.
These structures are used for producing different opto- and microelectronic devices
like lasers, detectors or transistors. However, understanding their optical and
transport properties requires the self-consistent solution of both Schrodinger and
Poisson equations. For example, such a solution enables the calculations of material
gain in the active layer of a laser [1], density of two-dimensional electron gas in
high-electron-mobility transistor (HEMT) [2] or interpretation of the inverse
capacitance-voltage profiling technique [3].

In this work we create software for finding a self-consistent solution of
one-dimensional Schrodinger—Poisson equations. Next, we apply our numerical
tools for investigating the n-doped GaAs/AlGaAs heterostructure of HEMT grown in
molecular beam epitaxy (MBE) reactor in Institute of Electron Technology, Warsaw,
Poland. As aresult we present electron density and conduction band edge versus spatial
coordinate. Qur software is based on the finite-difference method, Because of the large
differences between layer thicknesses we decided to use a non-uniform mesh.

2. Basic equations
The one-dimensional, one-electron Schrodinger equation is
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where i is the wave function, E is the energy, V is the potential energy, % is the Planck
. constant divided by 27 and m,g is the electron effective mass. The one-dimensional
Poisson equation is

i(es(x)ijw(x)=—%fND(%§~ﬂkx)) L | @

where ¢, is the dielectric constant, @ is the electrostatic potential, Ny, is the ionized
donor concentration and # is the electron density distribution. Electron distribution in
the conduction band can be found when the potential energy V is set to be equal to the
conduction-band edge energy [4]. The potential energy V is re]ated to the clectrostatic
potential ¢ as follows [4]: :

V(x) = —q@+AE(x) _ SN 3)

where AEC is the'p‘sudopotentia] energy due to the band offset at the heterointerface.
The wave function  and electron density n are related by - :

n(x) = Y ¥ x)won, , @
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Fig. 1. Iteration scheme for finding the self-consistent solution of one—dlmensmnal Schrbdlnger—Pou.aon
equations.
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where m is the number of bound states, n, is electron occupatlon of k-th state of energy
E; and is expressed by :

m = =]
n, = L dE. | )

2 E-FE

~

~ Self-consistent solutions of Eqgs. (1) and (2) are obtained through the iteration
procedure symbolicaily depicted by block diagram in Fig. 1. The error criteria are
defined as changes 8V and dn smaller than arbitrary assumed values.

3 Numerlcal methods

In order to solve Eqgs. (1) and (2) we used the finite- dlfference method. Since the
analyzed- semiconductor structures contain layers of significantly different
thicknesses, many parameters may vary rapidly in some regions and slowly in other.
Thus, we decided to use a non-uniform mesh (see Fig. 2) and wrote three-point
approximation of the function derivative as

af(x,) f[“ atyer) = (5= 301)

dx 1 1
R

(6)

In Equation (6) half-steps have been used deliberately. Schrodinger (Poisson) equation
relates the wave function (electrostatic potential) with its second derivative. Thus, after
discretization, values of ¥ and ¢ in mesh points only have been required.
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Fig. 2. Discretization of g or ¢ uwsing a non-uniform mesh.
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Using the rule (6} to Schrodinger equation (Eq. (1)) we get a set of N linear
equations, where N is the total number of mesh points. Therefore, the discrete form of
Eq. (1) may be written as NxN matrix equation

N .
ZAUWJ = Ey; : (7)
j=1 ' ' .
where
, .
- 2 . JEitl,
2mj+1/2hj+l(hj+l +h;)
2 ‘ .
Aij = _ﬁ_ 2 j=i_1, ) (8)
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in remaining cases

Diagonalization of matrix A allows to find bound states for a particular profile V(x).

Application of rule (6) to Poisson equation (Eq- (2)) leads to NxN non-linear set °

of equations: :
Fle, o, ..., oy) =0 )

where @; is the value of the electrostatic potential in the i-th point of the mesh and the
i-th equation takes the form

2 @ - 2 0.+ 2 o
Blhip v R)TT bR, T Big (i +h) T

+E(Np ,—n) = 0. (10)
g
Solution of Eq. (10) is found by Newton—Raphson method [5].

4. Results and discussion

Quasi-one-dimensional GaAs/AlGaAs heterostructures tend to have conduction band
edge exhibiting several quantum wells where bound states may appear. Consequently
in all these wells electrons may be accumulated. However, the proper operation of
most semiconductor devices requires high electron concentration in a very small
region. Particularly, in investigation of HEMTs, one of the most important subjects
has been the improvement of two-dimensional electron gas concentration [6]. An
example of the well-designed heterostructure one can find in paper [4] where electrons

are confined to one region, namely at the interface of AlGaAs quantum well and
undoped GaAs layer. S
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Fig. 3. Schematic view of the investigated heterostructure.
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Fig. 4. Results for the obtained concentration.

In this work we consider a GaAs/AlGaAs heterostructure schematically depicted
in Fig. 3. It has been grown by MBE in Institute of Electron Technology. Note that
the doping concentrations assumed and obtained during the technological process
differ significantly. For both cases we calculated the electron concentration n(x) and
conduction band edge V(x). The diagrams are presented in Figs. 4 and 5. In the case
of the real heterostructure (Fig. 4) we see the undesired three-peak profile of electron
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Fig. 5. Results for the assumed concentration.

concentration. This indicates that a large part of electrons has been accumulated in
three regions: at the doped GaAs—doped AlGaAs interface, in AlGaAs layers and at
the undoped AlGaAs—-undoped GaAs interface. Calculations done for the assumed

doping profile (Fig. 5) show that almost all the electrons are confined at the undoped °

AlGaAs-undoped GaAs interface. Thus the deviations of doping ‘profile, occurring
during technological processes, may significantly influence the features of
heterostructures.
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