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ABSTRACT 
 

In this paper, numerical investigation is performed for a 1.55 m InGaAsP-InP microring laser as a function of the bus 
waveguide reflectivity, the injection current and the phase of the backreflected field. The nascent nonlinear instabilities 
are identified utilizing a multimode rate equation model, originating from the continuous injections of each clockwise to 
the counterclockwise mode and inverse. The resulted time series are filtered using a 40GHz electrical low pass filter in 
order to omit the mode beatings. Chaos data analysis revealed high-dimensional chaos by means of the correlation 
dimension and the metric entropy calculation with continuously testing surrogate data. With increasing the bus 
waveguide reflectivity, period-doubling and quasiperiodic route to chaos was found and the dimension was found to 
follow a linear increase. The same dimension increase was found with increasing the injection current, with the system 
experiencing sudden transitions from chaos to limit cycles. With altering the phase of the backreflected field the 
dynamics were found to transit from limit cycle ( =0 /2) to chaos, maintained chaotic ( = /2 2 /3) and finally 
returning to periodic states ( =2 /3 2 ). Furthermore, the dynamics are investigated with calculating the standardized 
moments. 
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1. INTRODUCTION 

 
Semiconductor microring lasers (SMLs) are promising candidates for optoelectronic integrated circuits since they 
combine small footprint, high spectral purity occurring from the traveling wave nature of the device, and simple 
fabrication due to the absence of cleaved-facets and gratings.  A wide range of microring-based lightwave system 
applications can be performed, such as low-cost modulation sources for short to medium optical links, all-optical 
switches and optical memories1. Apart from the technological evaluation of the device, in a general point of view, a 
microring laser can be considered as a complicated physical system with a high level degree of freedom resulting from 
the multi-longitudinal mode dynamics2-4, combined with the nonlinear mode interaction and backreflection through bus 
waveguide facets.  
 
Nowadays, there is significant interest in developing optical chaotic generators because of their potential applications as 
carriers in secure communication schemes and also for the construction of optical gates5, revealing the importance of 
nonlinear dynamics in high-speed optical communications. On the other hand, the current trend in photonics technology 
is towards integrated photonic devices and such a chaotic integrated optical generator was recently realized 
experimentally using a colliding-pulse mode-locked semiconductor laser6.   
 
In this paper, we investigate the chaotic dynamics and especially the route to chaos of a 1.55 m InGaAsP-InP SML via 
the break-up of a 2-torus with increasing the bus waveguide’s residual reflectivity R. This specific route to chaos has 
been also numerically demonstrated for optically-injected semiconductor lasers7 and lasers subjected to filtered feedback 
8. The investigation will take place with phase diagrams, calculation of the largest Lyapunov exponent and the 
correlation dimension. Lastly, the dimensionless standardized moments of skewness and kurtosis9 will be calculated and 
interconnected with the torus breakup for the best time to the best of our knowledge.  
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2. NUMERICAL MODEL 

 
The investigation of the dynamics herein is continued as a function of the bus waveguide reflectivity R, the injection 
current I and the phase of the backreflected field , and the nascent nonlinear instabilities are identified utilizing the 
multimode rate equation model2,3 given below, where p is the mode number and m corresponds to each propagation 
direction, either clockwise (CW) or counterclockwise (CCW): 
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Where G is the modal gain variable including the linear A(..), the nonlinear s, the symmetric D(..) and asymmetric H(..) 
gain suppression coefficients respectively, described in detail2,3, E is the complex electric field amplitude, N the carrier 
concentration, p and s the photon and electron lifetimes respectively, d the feedback delay time for each mode to be 
coupled back to the ring, N0 the carrier concentration at transparency and g the differential gain.  The parameter K refers 
to the linear coupling that includes the bus waveguide’s residual reflectivity, R, defined as the ratio of the backreflected 
to the transmitted power to the bus waveguide facet, acting also as an internal additional optical feedback mechanism to 
the microring cavity (Fig.1), and p is the free-running frequency for each mode p where p d refers to the phase of each 
mode. The nonlinear system of equations is solved for equal number of modes propagating in each direction (CW/CCW). 
The number of supported modes is determined by the gain bandwidth, and the ring’s free spectral range FSR= 0

2/ngL. 
The ring radius is taken as r=50 m, the injection current I=2.3ITH, where ITH is the threshold current and the bus 
waveguide length Lb=4r. In the text herein the CCW direction is arbitrarily chosen since the time traces are dynamically 
identical for both directions (CW/CCW), due to the equal and relatively high values of residual reflectivity 
(R=RCW=RCCW) used for both bus waveguide facets2. In order to examine the time series, the complex fields of each 
mode are summed and the total power is calculated through the squared absolute value of the resulted summation. 

 

 
Fig.1 A semiconductor microring laser (schematic) 

 
 

3. QUASIPERIODIC ROUTE TO CHAOS 
 

The torus doubling route to chaos is a higher-dimensional phenomenon, requiring at least a four-dimensional flow, or a 
three-dimensional map. In our high-dimensional model, that consists of 60 coupled delay differential equations and one 
coupled ordinary differential equation (the equation for carriers dN/dt), it is prudent to conclude that the break-up of a 2-
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torus should be a common mechanism. For the optically-injected semiconductor laser7 the break-up of a torus is 
demonstrated despite the fact that the system is modelled by a three-dimensional flow. The latter results in a break-up of 
a torus that is not folded though into a double one before it transits to chaos. 
 
In Fig.2 with increasing R, the system transits from limit cycle, to a torus and suddenly the torus breaks-up into a low-
dimensional chaotic attractor with calculated correlation dimension D2=3.2±0.2 and largest Lyapunov exponent 

1 0.01ps-1.  These four attractors are reconstructed from a 120ns time-series resulting 2.4x105 closely-spaced points. It 
is plausible to conclude that the latter assures an adequate reconstruction of the attractor together with an accurate 
estimation of the correlation dimension in the order D2~5 since the calculation for D2>6 is substantially hampered due to 
significant statistical errors. Correlation time  is computed when the autocorrelation function10 reaches the value of e-1.   
Generally, the correlation dimension D2 for N points is calculated from the correlation integral-sum C(r), which is the 
probability that two randomly chosen points on the attractor are separated by a distance less than r and generally is given 
by: 
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The correlation sum Cm(r) is given for any embedding dimension m by: 
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where [..] is Heaviside function. 
 
In Fig.3 the cross-section plots, for the condition dP(t)/dt=0, are depicted for R=0.12 (torus) and R=0.1295 (break-up of 
torus) and in Fig.4 the time-series for the same values of R as in Fig.3. 
 

 
Fig.2 Phase portraits of the SML dynamics as R varies showing the transition from limit cycle, torus, torus annihilation and finally 

chaos. 
 

For the R=0.12 case where the system experiences a 2-torus, two dominant frequencies were found and the correlation 
matrix showed two dominant components. Other evidence for the torus existence is the value of the attractor dimension 
equal to D2=2.0±0.005 for all embeddings me>1, the largest Lyapunov exponent equal to 1= (0±0.001) ps-1 and that the 
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correlation function was found to decay very slowly. It is interesting to note that the R=0.1295 case closely resembles 
visually intermittent behaviour, but the erratic periodic bursts that should appear for the latter, do not occur for more than 
one time-segments, only around t=80ns, possibly justified by the considerable stochastic noise sources or the electric 
filtering. Nevertheless, the origin of such a transition may be attributed to the existence of a tongue of quasiperiodic 
motion near a torus-doubling bifurcation line, similarly to the ring map and the Toda oscillator found in the edge of 
chaos11. 
 

 
Fig.3 Cross-section plots for the torus (R=0.12) and the torus break-up (R=0.1295) 

 

 
Fig.4 Time series for the torus (R=0.12) and the torus break-up (R=0.1295) 

 
4. STANDARDIZED MOMENTS 

 
In order to examine in more detail the dynamics of the SML, and especially the transit from torus to chaos from a 
different dynamics view, the standardized moments are calculated as R increases. These moments8 include the excess 
kurtosis K, which is the degree of peakedness of a distribution, and the skewness S that is a measure of the degree of 
lopsidedness of the distribution of an attractor of N points, where  denotes the standard deviation: 
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The “minus 3” term in Eq. (3a) is explained as a correction to make the kurtosis of the normal distribution equal to zero. 
Scope of the remainder of this Letter is to demonstrate the topological changes in the attractor that affect the moments 
above of the probability distribution for the whole transition from limit cycle, to torus, to torus’ collapse and finally to 
chaos transition. In Fig.5 the skewness and kurtosis are plotted for increasing R. Three local extrema are shown 
indicating sudden crises on the geometrical topology of the attractor. The first crisis is relevant to the torus birth from a 
limit cycle, the second one to the torus annihilation (with an additional slight local extreme due to the erratic burst of 
Fig.4) and the third one to the nascent chaotic dynamics indicating slightly platykurtic distributions. Similarly, for the 
optically-injected semiconductor laser7, these three crises were also calculated in our simulations exhibiting identical 
qualitative behavior. 
 
Besides the interconnection of the quasiperiodic route to chaos with the dimensionless moments of S and K, it is 
interesting to investigate the connection of S and K as it was realized for drift-interchange turbulence in TORPEX 
plasmas12. In the latter, a relation in the form K= S2+  was demonstrated following a special Beta distribution resulting 
in both positive and negatives values for S. For the microring laser and specifically for the route to chaos via the torus 
break-up (as also for the injected laser), only positive values of S were exhibited. Albeit it is prudent to conjecture such a 
relation for the microring laser, this perquisition is patently arduous in terms of numerical computation for hundreds 
time-series in order to maintain an adequate statistical error. The data are depicted in Fig. 6 and are least-square fitted by 
the quadratic polynomial for 500 cases: 
 
 K = (1.32±0.05)S2 + (2±0.045)  (4) 
 
where K is the kurtosis without the “minus 3” term though in Eq.(3a) in order to coincide with the notation of the 
probability distributions13. It is noted that the data of Fig.6 could follow a variant of the Gamma distribution since 
skewness is always non-negative. For the Gamma, and also the Chi-square distribution that is a special case of the 
former, the relation between S and K is trivial in contrast to the Beta distribution12 and equal to K=1.5S2+3. Hence, the 
data of Fig.6 may be fitted better with a special Beta distribution, as well, with only positive values of S though. The 
former requires12 1< <1.5 and 1< <3 for the general relation K= S2+ . These inequalities fulfill our fitting of Eq.(4) and 
therefore it is prudent to present our results as a bridge between a special Beta and the Gamma distribution as an upper 
limit. 
 

 
Fig.5 Skewness and kurtosis as R varies for the SML. The three sudden crises are marked with the dotted circles. 
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Fig.6 Kurtosis versus skewness computed for 500 cases. The 2nd order fitted polynomial is also depicted together with the inset of a 

highly leptokurtic and lopsided chaotic attractor. 
 

Another parameter that is important in laser dynamics is the phase  of the backreflected field amplitude. In the case for 
the attractor of Fig.7a, the dynamics oscillate periodically with D2 1.1 whereas with altering the phase of the 
backreflected field (experimentally with a thermally tuned phase shifter) with variation = /2 the attractor becomes 
chaotic (Fig.7b). By further varying the phase at =2 /3 (Fig.7c) the system preserves its chaotic behaviour whereas 
finally for =  (Fig.7d) returns to a limit cycle again. It is calculated that for higher lengths of the bus waveguide 
(Lb 5r for the same intrinsic parameters used herein) this phase dependence deteriorates similarly to lasers subjected to 
optical feedback from a short external cavity14, a major characteristic of systems with feedback processes. 
 

 
Fig 7. Phase dependence: Time traces for R=-22dB and I=2.3ITH for a) =0, b) = /2, c) =2 /3 and d) = . 

 
For the high dimensional case of R=-14dB the time evolution of the power for each of the dominant laser modes is 
plotted in Fig.8a whereas in Fig.8b the chaotic optical spectrum is depicted showing the 15 modes that are considered for 
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the CCW direction in our model. It is easily noticed that albeit modes 0, +1 and -2 are in some sense correlated, the 
chaotic output is resulted by their competition and especially from the mode +2 that is dominant. The elaboration of each 
mode individually results in separate chaotic carriers with comparable dimensions (D2~6) except for the dominant mode 
that exhibits D2>7. 
 

 
Fig 8 a) Power of the first 4 modes for R=-14dB and I=2.3ITH (high-dimensional chaos). The -1 mode is not depicted due to its low 

power, and b) optical spectrum showing the 15 modes with the 5 first of them numbered. 
 

 
5. CONCLUSIONS 

 
In this Letter the break-up of a torus was demonstrated for a semiconductor microring laser and the quasiperiodic route to 
chaos was investigated with also calculating the skewness and kurtosis. With repeating these calculations for other 
chaotic systems, it is concluded that this route to chaos results in three sudden crises in the topology of the attractor. 
Finally, the link between skewness S and kurtosis K was presented with a quadratic polynomial fitting K= S2+ , 
indicating an underlying structure of a Beta distribution variant.  The results herein might prove beneficial to 
experimentalists since the skewness and kurtosis can be easily calculated for any given time-series, albeit the primary 
scope of this Letter was to demonstrate the break-up of a torus in a semiconductor microring laser as the basic route to 
chaos, and the beginning of understanding further the dynamics15,16 of this optical system with a fervent expectation for 
future applications to chaotic optical communications17. 
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