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Abstract

Polysdmon resonant microbeams can be used as strain-sensitive elements to replace conventional silicon piezoresis-
tors in precision sensor applications, such as pressure sensors and accelerometers These elements are combined with
conventional silicon diaphragms or flexures with a proof mass to convert pressure or acceleration directly into a
frequency output Vacuum-enclosed resonant microbeam elements 200 or 400 Jim long, 45 pm wide and 1 8 Jim thick
have been fabricated using LPCVD mechanical-grade polysilicon at the University of Wisconsin Q-values
determined using gain,lphase analysis are typically over 25 000 Lower Q-values are primarily the result of residual
gas in the cavity Closed-loop operation from -60 to 180 `C using piezoresistive sensor and electrostatic drive has
been achieved with automatic gam control (AGC) to prevent overdrive The characteristic resonance frequencies of
the beams have been measured, with 550 kHz, 12, 2 2 and 5 2 MHz being typical of the frequencies of the
one-dimensional bending modes for the 200 pin length These measurements of the multiple resonance frequencies
of a single beam provide a means of testing mathematical models of the dynamic behavior as well as determining
the residual beam stress The one-dimensional (1 D) differential equation of motion of a doubly clamped singlespan
beam with an axial load can be solved analytically for lateral natural frequencies and mode shapes These ID
solutions have been verified by 3D finite-element methods In addition, the flmte-element models are used to identify
both lateral and torsional modes The closed-form solutions agree closely with the numencal results and the
experimental data

Introduction

Requirements for sensors and transducers are
increasingly demanding in industrial, commercial
and residential control applications, as well as in
commercial and military aviation systems There is
an increasing trend toward more autonomy and
higher functionality and at the same time sensors
must be increasingly cost effective and reliable To
meet these requirements, it is important that a
sensor provide digital output for direct interfacing
to digital control systems and data highways It is
now well accepted that resonant sensors offer sig-
nificant advantages for integrating the sensing and
digitization functions in the same monolithic strut
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ture by providing a frequency output that is read-
ily converted to a digital sensor output

Resonant elements, such as vibrating wires, dia-
phragms and cylinders, have been used in sensor
applications for the past three decades In 1970,
Sperry (now Honeywell) combined a resonant Cu-
Be diaphragm with digital electronics to produce
the first digital pressure sensor [1] Resonant sen-
sors still offer the highest resolution, performance,
long-term stability and reliability available today
The stability is determined only by the mechanical
properties of the resonator material, not by the
stability of the electronic circuits The frequency
output provides high-level signals and is less sensi-
tive to spurious or parasitic influences than capac-
itive or piezoresistive devices The ubiquitousness
of quartz wristwatches shows that batch-fabricated
resonant structures, together with their associated
oscillator and digital electronic circuits, can be
very low in cost and high in performance Recent
advances in silicon micromachining technology
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Fig I Resonant microbeams (a) Cross-sectional stew of polysilicon
beam attached to silicon diaphragms (b) or flexures (c) In (b), when
the pressure P, exceeds P i the diaphragm bends downward, increas-
ing the resonance frequency of the microbeam, represented by the line
in the middle of the symbol In (c), an upward acceleration deflects
the proof mass downward, causing a frequency increase The mn
crobeam is seated in an integral vacuum enclosure to prevent gas
damping

Vin

have led to silicon resonant structures [2-12] that
have been proposed for a variety of transducer
applications

The resonant microsensors demonstrated at the
University of Wisconsin [7-l l] are fabricated by
depositing and patterning fine-grain low-tensile-
strain polysilicon thin films and sacrificial layers,
resulting in a free-standing silicon beam sealed
inside a polysilicon shell (Fig 1) The polysilicon
process was originally developed for nonresonant
pressure sensors and appears to have the high
stability, controllability and repeatability required
for high-performance digital transducers The vac-
uum within the polysdicon shell is achieved by
reactive sealing [7-11, 20]

The electrode arrangement is shown schemati-
cally in Fig 2 The beam is driven at resonance by
a sinusoidal voltage which causes it to be alter-
nately attracted to the top electrode on the shell or
the bottom electrode (the substrate), which are
biased oppositely with respect to the beam elec-
trode Alternate bias and drive schemes have been
described in ref 10 The drive electrode, sense
resistor and top electrode are fabricated by ion
implantation into the polysilicon, which is a semi-
insulator The implanted resistor values are not
critical, since the sensor output is at the mechani-
cal resonance as long as the oscillation is main-
tained The piezoresistive sense resistor, implanted
on the upper surface near one end of the beam,
changes its resistance when the beam deflects In
principle, the stability of the sensor output de-
pends only on the mechanical properties of the

Fig 2 Microbeam lest circuit For open-loop tests, the beam electrode (see Fig 1(a)) is driven by an external oscillator at the test frequency
The differential amplifier amplifies the a c signal from the piezoresistive sense resistor For closed-loop operation, an automatic gain control
(AGC) circuit is used to maintain constant amplitude and prevent overdriving the beam Open-loop tests (1) disable AGC, (2) measure
gain = V,,,(V,,, VS frequency, drive amplitude Closed-loop tests (1) enable AGC, (2) connect beam drove, (3) measure frequency vs strain,
temperature



structure, and does not depend on the stability of
the piezoresistor

Figure 2 also schematically illustrates the circuit

used for both open-loop measurements of gain
and Q and closed-loop measurements of gage fac-
tor, temperature sensitivity and frequency stabil-
ity The amplifier amplifies the piezoresistive signal
resulting from the beam vibration and must have
sufficient gain so that, at resonance, the overall
open-loop gain generously exceeds unity to insure
that the circuit will oscillate in closed-loop opera-
tion As discussed below, only a small voltage is

needed to drive the beam (a few millivolts) For
closed-loop tests, an automatic gain control
(AGC) circuit is used to maintain a constant-am-
plitude variable-frequency output (V0,,,) This si-
nusoidal output is conditioned to provide output
to a frequency meter

Resonator characteristics

The resonant response of the microbeam was
characterized using a gain-phase analyzer
(Hewlett Packard 4194A) with capabilities from
10 Hz to 100 MHz A typical example of the ana-
lyzer output is shown by the dashed lines in Fig 3
The gam amplitude shows a sharp resonance and
the phase has a rapid decrease in the vicinity of the
resonance Either of the curves can be used to
determine Q The solid lines show the same device,
under the same drive conditions (3 mV rms), but
with the gain-phase analyzer directly probing one
side of the piezoresistor The devices, though very
stable, are extremely strain-sensitive (as intended)
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Fig 3 Typical resonant response The dashed lines show the uulpul
after the differential amplifier The solid fines show the gain measured
before amplification
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and it was verified that the frequency shift between
the dashed set of curves and the solid curves was
due to the pressure applied by the probe tip to the
chip, which was rigidly bonded on a ceramic pack-
age Packaging-induced temperature coefficients
and hysteresis are to be expected for this sensor, as
for any pressure sensor where ppm accuracies are
important

The microbeam resonators are also sensitive to

drive conditions as illustrated in Fig 4 for a
lower-Q device As the drive voltage is increased,
the resonance frequency shifts to a higher value,
leading to hysteresis depending on the direction of
the frequency scan This behavior is typical of a
`hard' resonator in which stiffness increases with
amplitude [21] In spite of the low voltages re-
quired for linear operation, it has been found that
the devices are very rugged and are not damaged
by large voltages (10 20 V) applied to the drive
electrodes

An important issue regarding the use of polysil-
icon as a resonant element concerns the quality
factor, Q, for mechanical resonance Since polysih-
con consists of large numbers of grain boundaries,
there is a concern [ 13] that dissipative mechanisms
introduced by the gram boundaries would render
the polysilicon unusable However, work at the
University of Wisconsin [14,6-10], as well as
the present work, demonstrates that polysilicon

can have surprisingly high Q values, typically
Q - 25 000

If the vacuum in the shell were perfect, Q would
be determined only by the resonator material
and method of fabrication The intrinsic material
loss mechanism for beam resonators involves the
thermoelastic effect first observed by Zener (see
ref 15) Because of the operational frequencies
and dimensions of micromechanical flexural res-
onators, the thermoelastic effect can be a
significant dissipation mechanism [ 15, 16] The
thermoelastic effect has its origin in thermal energy
flow from compressed regions to rarefaction re-
gions (i e , corresponding to the bottom half and
the top half of the beam center for a beam
deflected upwards) The significance of the mecha-
nism can be determined by calculation of the
characteristic damping frequency of the resonance
beam [ 15] For the present devices the operational
frequency is well below this limit, and it is clear
that this damping mechanism is not a factor
Further discussion of intrinsic loss mechanisms in
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Fig 4 Nonlinear behavior of microbeam resonators As the drive
amplitude is increased, the resonance shifts to higher frequencies, and
the frequency response becomes asymmetric, eventually showing am-
plitude discontinuities and hysteresis as the frequency is swept
Increasing frequency,	, decreasing frequency Drive voltage=
10 . 50, 70 mV ms, G =gam (0 5/div ), d = phase (20"/div )

construction materials is given by Hok and
Gustafsson [13] We assume that the basic loss
mechanism in our devices is due to end losses
arising from uncancelled shear forces and mo-
ments at the end supports, which transfer energy
from the beam to the substrate It is well known
that this loss can be minimized by the use of a
dual-beam tuning-fork configuration, or a sophis-
ticated isolator structure before the beam mount
[17-19,221 Such structures would complicate fab-
rication and introduce complicated modes into the
frequency mode spectrum [23] Instead, the reso-
nance frequency of the microbeam was designed to
be much greater than the vibrational modes in the
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Fig 5 Quality factor vs external pressure for a 200 pin long, 40 pin
wide microbeam The theoretical predictions of Q are designated by
the solid lines in the three regions Region I corresponds to the
observed limit Q of the resonator, II is the region of momentum
damping by collisions with individual gas molecules while III is the
region of viscous damping

supporting structure This reduces effective cou-
pling losses to the substrate and allows the high

Q-values to be obtained
Residual pressure in the microbeam enclosure

can have a strong detrimental effect on Q, as
illustrated in Fig 5 The measured data were
obtained by carefully fracturing the cover of a
device using a sharp probe tip without damaging
the resonant beam The device was then monitored
in situ in a vacuum chamber while the pressure
was decreased by pumping The measurement of Q
was done by applying a voltage pulse, and observ-
ing the ring-down [10] Above 100 mTorr, no ring-
ing was observed As the pressure decreased, Q
increased until the limiting value was reached
Testing devices with low Q in this way produced
essentially identical results [10] The results imply
that the root cause of Q variations was a variable
cavity vacuum resulting from the LPCVD silicon-
nitride sealing process The sealing process has
since been modified slightly and seals with high
vacuum can be obtained consistently The variation
of Q with pressure for resonant beams, diaphragms
and tuning forks is well known [3, 4, 16, 18] In the
low-pressure region (region II of Fig 5) the gas is
still rarefied to the point that the gas molecules are
not interacting with each other Damping occurs by
momentum transfer during collisions between indi-
vidual gas molecules and the beam Newell [24]
applied the model of Christian [25] to miniaturized
cantilevers In this model the rate of momentum
transfer is proportional to the difference in velocity
between the gas molecules and the resonator The



damping is proportional to the gas pressure, P, and
yields a Q given by

Q (2
)
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( 1)

where R is the universal gas constant, T is absolute
temperature, M is the molecular mass of the gas, p
is the density of the beam material, h is the beam
thickness and f. is the resonance frequency

There is rough agreement between eqn (1) and
experiment, as shown in Fig 5 The most probable
failure of the theory is the assumption of free
space surrounding the resonating structure The
close proximity of the beam to the shell means
that the gap is much less than the mean free path
length of the gas molecules, causing rapid reflec-
tion of the gas molecules and thereby increasing
the damping rate In addition, the equation is
based upon classical gas equations The validity of
that assumption as applied to these structures has
not been established This equation has been criti-
cized as inaccurate, but more sophisticated models
have not been developed [13]

At higher pressures, the gas molecules begin to
interact and exert a viscous drag force on the
beam Newell [24J also developed a first-order
model based on gas pumping from between a
cantilever and a substrate when the gap separa-
tion, g, is less than the cantilever width, b For the
case of viscous damping, Q is given by

27EJ
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(2)

where p is the viscosity of the gas Due to the
cover, pumping must occur between both top and
bottom gaps Therefore, eqn (2) should be divided
by at least a factor of two Assuming p = 1 8 x
10 -'N s/m2 (air) and the nominal beam values for
the other parameters, the calculated Q is roughly
0 27 Although the calculation of Q by eqn (2) is
no longer strictly valid for Q S 5, the implication
is that the beam will not resonate under conditions
of viscous air damping (at one atmosphere), as is
observed experimentally

Another important resonator characteristic is
the temperature dependence of the resonance fre-
quencies Figure 6 shows the result of temperature
cycling from room temperature to -60 °C, then
up to + 160 °C The resonator chip was supported
only by its 0 001" gold lead wires to minimize
stresses induced by the package The apparent
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Fig 6 Oscillator frequency as a function of temperature for a
'floating die' device that was suspended by I mil gold wires and cycled
between -60 and +160 °C

temperature hysteresis during and after tempera-
ture cycling is an experimental artifact caused by
temperature differences between the temperature
sensor and the device under test The frequency
shift with temperature corresponds to a tempera-
ture coefficient of -50 ppm/°C for the linear re-
gion between -10 and + 100 °C
The temperature dependence of the frequency is

almost entirely due to the temperature dependence
of Young's modulus, E, and is given by [16, 19]

1 df, - 1 dE 1
a

	

(3)
fdET

+ 2

where x is the linear coefficient of expansion This
result follows directly from the simplest model of
the beam behavior, based on the Rayleigh-Ritz
method discussed below The temperature depen-
dence of Young's modulus for polysilicon can be
deduced from data on the elastic constants of
silicon [20], and gives a value of -38 ppm/°C for
the first term in eqn (3) Thus, eqn (3) predicts a
temperature coefficient of -36 ppm/°C which is in
reasonable agreement with experiment Single-
crys-tal silicon beam resonators have been reported to
have frequency coefficients of about -45 ppm/°C
[3] and -29 ppm/°C [ 16] Torsional modes have a
larger coefficient [18] We noted some variations
between samples, which could be attributed to very
small temperature-dependent external stresses
caused by the sample supports, since the resonators
are extremely sensitive to stress We conclude that
the temperature effects are in reasonable agreement
with theory and with those in single-crystal silicon,
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Fig 7 Higher-order modes All the devices tested showed a number of modes, which can be difficult to find by sweeping the frequency, except
in low-Q devices such as this one

03

and that great care must be taken in order to find
any differences that may exist

Characteristic frequencies

One of the most interesting aspects of the mi-
crobeam resonators is the observation of higher-
order modes In high-Q devices these can be
difficult to find with a digitally controlled fre-
quency-synthesized drive voltage Figure 7 shows
the first three bending modes of a low-Q mi-
crobeam A chip was mounted as a cantilever so
that a bending force could be applied by deflecting
the tip of the cantilever with a micrometer Figure
8 shows the frequency shifts due to the applied
strain Table I gives frequencies of a strained and
unstrained high-Q device, and compares the values
with a fit to the theoretical model

Previous analyses of resonant microbeams have
relied on approximate methods (e g , Rayleigh
Ritz) to solve for the frequency of a doubly
clamped beam with axial loads [7,8] Energy
methods such as Rayleigh-Ritz will yield an upper
bound to the actual eigenvalue Results can be
very good for the fundamental frequency, with a
displacement function that is symmetric and sa-
tisfies the kinematic boundary conditions Accu-
rate values for the second harmonic have also been
obtained by assuming that the second mode is
antisymmetric with a node exactly at midspan For
any higher modes, the locations of the node points
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Fig 8 Frequency as a function of strain The theoretical curves show
the frequencies of the planar bending modes as a function of total
axial strain for the beam of Table I The experimental frequencies
were measured on a cantilever sample with the external strain applied
by a micrometer

are not necessarily known, and thus the errors in
frequency estimates from Rayleigh-Ritz can be
expected to increase accordingly Correlation of
experimental data with analytical and numerical
results depends not only on the fundamental fre-
quency but on higher modes as well The theoreti-
cal solution for the one-dimensional response of
the beam has been determined in closed form In
addition, to substantiate these results, finite-ele-
ment models of both a beam and a plate have been
used to refine the frequency values and address the
three-dimensional nature of the problem



TABLE I Frequencies (kHz) for a 400 pin x 40 gm x 18 gm beam
in tension

"Beam bending about the major cross-section axis

For the analytical beam model, the transcenden-
tal frequency equation for a clamped-clamped
beam with a constant axial tension can be found in
the literature [26, 27] This closed-form solution is
based upon classic Bernoulli Eider theory, which
does not include shear and rotary inertia effects
Defining the dimensionless tensile force as
U=T1 2/12F.I and the dimensionless flexural fre-
quency as Sl = w1 2a, the characteristic equation
can be expressed as

Sl+ U smh(U+ v; U2 +Q2) 1 n

xsm(-U+ U2 +S12) 7 f2

-0 cosh(U+,U+(1 2) 112

xcos(-U+ \/U2 +f12) 1 '2 =0

	

(4)

Here 7', 1, E, I and w represent the tensile force,
length, elastic modulus, cross-section moment of
inertia and flexural rigidity, respectively The
parameter a is given by a =(EI) 1 f 2/pA, in which p
is the material density and A is the cross-sectional
area

Specific results are presented in Table I for a
beam 400 µm long, 40 tim wide and 1 8 tim thick
with an elastic modulus of 1 61 dyne/cm', Poisson's
ratio of 0 26 and density equal to 233g/em'
Frequencies are associated with a pair of numbers
identifying the nodal pattern The first is the num-
ber of node lines in the transverse direction (exclud-
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ing the ends), the second is the number of node
lines in the axial direction Eider beam-theory
models the planar flexural response about the
minor axis and thus such patterns are designated
as (n, 0) Experimental and theoretical results are
matched for the fundamental frequency by using
a tensile load of 782 6 dyne corresponding to
an axial strain of 6 75 x 10 -4 , which includes
3 23 x 10 -4 of internal strain This is subsequently
used to determine the theoretical values for the
higher frequencies

It should be noted that for very high frequencies
(characterized by short wavelengths), shear defor-
mation and rotary inertia become increasingly im-
portant Both contribute to a reduction in
frequencies, compared with classical theory Con-
sequently, a finite-element analysis which included
these additional effects was performed for the pla-
nar beam response Results are also presented in
Table 1 Small corrections can be seen for frequen-
cies fbo and f7o , however, these deviations would
increase for higher modes The finite-element beam
model was also used to show the effect of axial
strain on the resonance frequencies (Fig 8) Addi-
tional experimental data are shown on the Figure
for the symmetric (planar) modes as well as for the
first antisymmetric mode Higher antisymmetnc
modes are not observed with the nearly uniform
excitation source (Nonuniformities in the source
could excite not only planar antisymmetric modes
but also three-dimensional oscillations) The fact
that the computational results are higher than the
experimental may be attributable to the slightly
stiffer finite-clement model, i e , the model repre-
sents the supports as rigid

In order to develop a more complete under-
standing of the response of the resonator, the
analysis was extended to three dimensions by us-
ing a finite-element plate model With this model
the entire spectrum of frequencies was determined,
i e , frequencies corresponding to all possible
nodal patterns Table 1 shows a comprehensive
listing of these patterns with the associated fre-
quencies for the first 15 modes The results are in
direct correlation with the experimental data, the
theoretical beam model and the finite-element
beam model The actual ordering of the nodal
patterns is dependent upon the plate dimensions
and the applied axial strain Figure 9 illustrates
some of the higher-order modes listed in Table I
It is worth noting that the in-plane mode (0, 0)„ is

Nodal
pattern

Experimental
data

Enter
beam
theory

Fimte-element
beam model

Fmile-element
plate model

(0,0) 3039 3037 303 6 303 8
(1,0) 6267 6288 628 7 629 1
(0,1) 6485
(2,0) 985 7 9936 993 3 9945
(1 ,I) 13059
(3,0) 14120 14115 14143
(4,0) 18630 19939 IM 9 1898 6
(2,1) 1981 3
(UM, 1 2037 8
(5,0) 24457 2443 3 24544
(3,1) 2683 1
(6,0) 30002 30719 30684 30867
(4,1) 34180
(7,0) 37755 37724 37995
(5,1) 41949
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Fig 9 Selected mode shapes The labeling corresponds to Table I Generally, ciem .t splaoements ace along the e direction eacepi . for the
(0, 0), mode, where displacement is along the v direction

not included in the usual analysis of plates [28]
However, it can be calculated by one-dimensional
beam theory Future tests will be aimed at exciting
and measuring these plate-like modes to further
identify the characteristics of the resonator

Conclusions

The excellent agreement between the experimen-
tal data and the theoretical models for the higher-
order modes shows that the device is indeed well
behaved fn Fig 8, for example, the five observed

(60)

frequencies are fitted to the theory using only one
adjustable parameter, the applied strain Using the
fit, this strain can be determined much more
accurately than it can be measured The residual
internal strain of the nucrobeam can also be deter-
mined with high accuracy from a measurement of
one or more higher-mode frequencies Thus, the
resonant microbeam is, in effect, a self-calibrated
strain gage, with the gage factor, Affe, given by
the theoretical fit, where Afis the frequency shift
of the fundamental node and a is the applied strain
A 1/1 In Fig 8, for example, the gage factor is
1100 This compares to gage factors (A R/R)c) for



piezoresistors that are typically less than five for
metals and less than 125 for single-crystal silicon
In actual sensor applications, it is not the strain
that must be calibrated, but rather the sensed
variable, e g , pressure or acceleration Neverthe-
less, measurement of higher-order modes may be
useful in characterizing device performance and in
monitoring variations in the mechanical properties
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