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Size-Dependent Electric Conductivity 
in Semiconducting Thin Wires 
BY 
V. K. ~ R A  

A quantum theory for electric conductivity in a thin rectangular-shaped wire is developed taking 
into account the wave character of an electron. It is shown that the quasi-one-dimensional (&OD) 
gas behaves somewhat like the strictly-one-dimensional (SOD) gas when the wire is ultra-thin, 
so that the spacing between the quantized levels is quite large, and all the electrons are assumed 
t o  be in the lowest quantized level. In  the ultra-thin limit (UTL), the ratio of longitudinal resis- 
tivity to bulk resistivity is shown to be proportional to Ai/A,  where AD = h/(2m*k~T)1/2 is the 
de-Broglie wavelength of an electron of effective mass m* a t  temperature T, and A is the area of 
the cross-section of the wire. The transverse resistivity ratio depends strongly on the scattering 
parameters and is inversely proportional to the area for wires of square cross-section. 

Es wird eine Quantentheorie fur die elektrische Leitfiihigkeit in einem dunnen rechteckformigen 
Draht entwickelt, wobei der Wellencharakter des Elektrons berucksichtigt wird. Es wird gezeigt, 
daS sich das quasi-eindimensionale (QOD) Gas etwa iihnlich wie das strikt-eindimensionale (SOD) 
Gas verhiilt, wenn der Draht extrem dunn ist, so daS der Abstand zwischen den Quantenniveaus 
sehr grol3 ist und sich alle Elektronen im niedrigsten Quantenniveau befinden. In  dem ultradiinnen 
Grenzfall (UTL) ist das Verhdtnis des longitudinalen Widerstands zum Volumenwiderstand pro- 
portional zu ASIA, wobei AD = h/ (2m*k~T)1 /2  die de-Broglie-Wellenliinge eines Elektrons der 
effektiven Masse m* bei der Temperatur T und A die Querschnittsfliiche des Drahtos ist. Das 
transversale Widerstandsverhiiltnis hlingt stark von den Streuparametern ab und ist proportional 
zur Fliiche der Driihte mit rechteckigem Querschnitt. 

1. Introduction 

In  the last few years, there has been a considerable interest in electronic transport 
limited by the size of the sample. The existence of quantized energy levels in thin 
films [l] is now well known. When the de-Broglie wavelength A,, of an electron is 
comparable to dimension of the sample, quantum effects are important. Under 
degenerate conditions, these effects are of oscillatory type [ 2 ] .  But, for non-degenerate 
semiconductors, monotonically increasing or decreasing behavior of the transport 
properties with sample size is expected. The quantum size effect (QSE) and perspec- 
tives of its practical applications have been discussed by Elinson et al. [a ] .  

Recently, it has been predicted [3,4] that thin metal films never exhibit true 
metallic conductivity. Non-metallic behavior a t  low temperatures for thin wires 
whose impurity resistance exceeded 10 k Q  is predicted by Thouless [4]. The Fermi 
energy 5 of a metal lies well above in the conduction band. But, when quantization 
is taken into account, the lowest quantized energy F ~ , ~  (see Section 3) of an electron 
may become larger than the Fermi energy. And, for a sufficiently thin sample, when 
E ~ , ~  > c, metals may behave like semiconductors. In  the ultra-thin limit (UTL), when 
only the lowest quantized level is assumed to contain most of the electrons, the system 
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behaves somewhat like a strictly low-dimensional system [ 1,5]. Electric transport par- 
ameters are then strongly size-dependent [ 1,5]. An analogous situation occurs for trans- 
port properties of electrons confined to a strong magnetic field [GI, whendD &, A, the 
radius of the cyclotron orbit. Transport parameters are then strongly niagnetic-field- 
dependent. When magnetic field in a degenerate sample is sufficiently strong, so that 
1, >A, the metal behaves like a semiconductor [7]. This kind of behavior has not 
yet been seen in metals in a magnetic field as the magnetic field required for this to 
happen is expected to  be quite large. This may not be too difficult to test in future 
when ultrahigh magnetic fields are available. 

The &RE in thin films has been well investigated, but the study of QSE in thin 
wires is just beginning to  emerge. So far, the theoretical work is largely based on the 
model of localization, according to  which the electronic states become localized 
when variation in potential wells in juxtaposition with their spatial distribution is 
great enough to prevent transitions between them [B]. Several theories had predicted 
that the electric conductivity in strictly one-dimensional (SOD) systems would go ex- 
ponentially to  zero with temperature [8], but such conclusions could not be experimen- 
tally tested until Thouless [4] generalized the arguments to  apply to  thin wires for 
which the length was sufficiently long compared to cross-sectional area. Experimental 
results tend to  be in qualitative agreement with the theory, but there is EL lack of quan- 
titative agreement [9]. Dolan and Osheroff [lo] have also done similar experiments to 
test Thouless's theory and have indicated one-dimensional localization. 

In  a more recent study [l], we have tried to  explain the behavior of a strictly two- 
dimensional (STD) and a quasi-two-dimensional (QTD) gas in terms of a quantum 
transport theory. I n  the UTL, QTD gas is found to  behave somewhat like an STD 
gas. Relative longitudinal (parallel to the film) resistivity is found to be proportional 
to  h,/d, where d is the film thickness. This study showed that the quantitative relation 
between resistance, temperature, and size of the sample is determined niainly by the 
scattering mechanisms affected by the size quantization of the electron [ 11. Motivated 
by the success of the above calculations, we present here a study, in terms of quantum 
theory, of transport parameters in long and thin wires, taken to be rectangular in 
cross-section. I n  this work, we will only consider the electron scattering via acoustic 
phonons and point defects represented by a &function potential. The study of the 
electric conductivity in the domain when ionized-impurity and other scattering 
mechanisms are important is deferred to a future work. 

In Section 4, we discuss the transport properties of an SOU gas when electron 
waves are constrained to move in one direction only. I n  Section 3, we indicate the 
quantum properties of QOD gas and show its relationship with SOD and bulk proper- 
ties. The results so obtained are analyzed in the UTL. For completeness sake, in 
Section 2, we present a more elaborate quantum transport theory, that involving 
the density matrix to  find the expressions for conductivity in transverse (perpendic- 
ular to the length of the wire) as well as longitudinal (parallel to the length of the 
wire) configuration . 

2. SOD Model 

I n  an SOD model, the electronic motion parallel to the length cc of the wire is charact,er- 
ized by a plane wave, 

(2.1) yk = (1/a)*I2 exp ( i k x )  

with associated energy given by 
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The matrix elements of the velocity operator lj in the representation of (2.1) are 

The density of states NO(&) ZE 2 8(& - E ~ ) ,  where s stands for spin, is readily cal- 
( k ' [  o, Ik)  = (hk/m*) B k j k .  

NO(&) = a(2m*)1/2 ~ - 1 / 2 / z h  . 

(2.3) 

(2.4) 

culated as k8 

No(&), unlike in STD system, varies inversely as the square root of energy. The Fermi 
energy[, as obtained from the normalization ( N  = I: fO(eX))  of the distribution function 

ks f0(4 = exp [(C - & k ) / k B T I ,  is given by 
= - k B T  In [(2ztm* kBT)1/2/n,zh], (2.5) 

where n, = N / a  is the number of electrons per unit length, m* the effective mass of 
the electron and T the temperature. The inverse relaxation time z - ~ ( E * )  for electron 
scattering via acoustic phonons and point defects is proportional to the density of 
states [ l ] .  For a thin wire, following the procedure used earlier [l], Z - ~ ( E ~ )  is obtained 
as follows: 

z - ~ ( E ~ )  = (EtkBT (2m*)1/2/~u2bdh2) .si1/2 (acoustic phonons) , (2.6) 

= (niV$(2m*)1/2/bdh2) ql/z (point defects) , (2-7) 
where El is the deformation potential constant, e the volume density of wire, u the 
sound velocity, b and d are transverse lengths of the rectangular wire, ni is the volume 
density of point defects, and V, the potential parameter for point defect potential 

ns 

i= l  
v = v, 2 8 ( x  - .(). 

The electric conductivity parallel to the wire as obtained from the solution of the 
Boltzmann transport equation (BTE) is 

where 9 = abd is the volume of the wire. It is worth noting that the use of BTE is 
still valid as the matrix elements of velocity, as given by (3 ) ,  are diagonal. Now, 
converting summation to integration by x + (a/2z) J dk and using ( 5 )  after integra- 

tion, we have for c, a simple expression, 
E 

IS, = 2nae2R&u2/~m*E~ (acoustic phonons) , (2.9) 
= 2n,eZADDAkBT//~m*n,V~ , 

= ? ? / ( 2 m * k ~ T ) ~ / ~ .  

(point defects) , 
where 

(2.10) 

(2.11)  
Comparing the above expressions with the bulk conductivity cb, 

ob = 4ne2p2zh4/3( 2zm* kBT )I12 m*2E :kB T (acoustic phonons) , (2.12) 
= 4ne%?~*/3(2zm*k~T)~/~ m*2ntVg (point defects) , (2.13) 

we get for the relative resistivity ratio e,[pb = q,/ISs (both for acoustic phonon and 
point defect scattering) the simplified result 

ps /eb  = 4 ~ A t / 3 A  . (2 .14)  

The relative resistivity is, therefore, inversely proportional to the area of cross- 
section A = bd of the wire, is inversely proportional to T-l ,  and is independent of 
the scattering parameters. No transverse conductivity is expected in SOD model as 
the transverse electronic motion is zero. 
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3. QOD Model 
I n  a QOD model, the electronic motion in the transverse direction is quantized, with 
eigenfunctions yplk and eigenvalues eplk  given by 

ypzk = (Z /Q)* /z  exp ( i kx )  sin (pny lb)  sin (Zzzld) ; (3.1) 
cplk = h2k2/2m* $- p 2 ~ u  $. E2&, , (3.2) 

cU = z2h2/2m*b2, E~ = z2fi2/2m*d2 . (3.3) 

p ,  I = 1, 2, 3 , 

respectively, with 

The matrix elements of the components vz, vu, and vz of the velocity vector in the 
representation of (3.1) are given by 

(p’l’k’l vz Iplk) = (Akz/m*) d&,&.pk, (3.4) 

P2)} (3.5) 

} (3.6) 

(p’l’k’l vy Iplk) = 2hpp’ { 1 - exp [in(p’ - p ) ] }  6~&&h*b(pt2 - 

(p’l‘k’l vz ( p l k )  = 2hEl’ { 1- exp [in(l’ - l ) ] }  6,&.k/im*d(1’2 - 1 2 )  
= 0 when p = p ’ ,  

= 0 when 1 = 1 ’ .  

As we see from (3.4) to (3.6), the matrix elements of vz are diagonal, while those of 
vu and v, are non-diagonal. The BTE, therefore, can be successfully used for cal- 
culating the expectation value of the electronic current parallel to the wire. But, 
for vy and v, a more elaborat,e technique, that of using the density matrix [ll], is 
required. 

The density of states, N ( E )  3 C 8(& - E ~ ~ ~ ) ,  are evaluated as follows: 
plks 

N ( e )  = [ ~ ( 2 m * ) ~ / ~ / n : h ]  C’ ( E  - p 2 ~ y  - P E , ) - ~ / ~  , (3.7) 
P l  

where the prime on the summation indicates x-ll2 is zero when x < 0. The Fermi 
energy (, evaluated from the normalization condition, is given by 

(3-8) 

(3.9) 

(3.10) 

(3 .8)  agrees with (2 .5)  if yu and yz are taken unity. The infinite series yy (~v ,  T) and 
yz(e,, T )  cannot be evaluated analytically. I n  the limiting cases ( E ~ , ,  > k,T) or 
E ~ , ~  < lt,T), these can be evaluated to give 

(3.11) 

= ( ~ k ~ T ] 4 ~ ~ ) l / ~ ;  Eg < kBT 9 (3.12) 

(3.13) 

= ( n k , T / 4 ~ ~ ) ~ / ~ ;  E t  < k,T . (3.14) 

The BTE, for the conductivity in t,he longitudinal direction, gives for conductivity 

YY(“U, T) = exp (-- EuIkgT) ; ~y > kBT 9 

y&,, y) = exp (- +,TI; EZ > k,T , 

0s an expression 

(3.15) 
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where Z - ~ ( E , ~ ~ ) ,  by following the procedure outlined earlier [l], is given by 
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Z-l(&,lk) = [E~k,~(Zrn*)l/2/bd@u2h2] [ (ep lk  - p’*Ev - 1’2&J + 
p’l’ 

+ f r. (EPlk - p ’ 2 E y  - Pe2) -112 + + (EPlk - @Ey - P E Z )  -112 + 
P‘ 1‘ 

+ + (cpzk - p 2 ~ ~  - PE,) -1121 (acoustic phonons) . (3.16) 

I n  the UTL (p’ = 1,Z’ = l ) ,  the above expression for the relaxation time yields 

Z & ( E ~ )  = [pEt EBT(2rn*)1/2/4@~2bdA2] eg1l2 (acoustic phonons) (3.17) 

which differs from z-l(er) in SOD model, as given in (2.6), by a factor p. For point 
defect scattering, the above expressions are valid if E$kBTIeu2 is replaced by .ntPg. 

The conductivity expression given by (3.15) in the UTL ( E ~ , ~  > k,T) simplifies to 

&$ = 40,/9. (3.18) 

Thus, the longitudinal conductivity in QOD model differs from that in SOD model 
by a factor +. The relative resistivity ratio eZz/eb = ~ r ~ / & ~  is given by 

@ 9 @ b  = 3&/A (3.19) 

We thus see that a QOD gas behaves somewhat like an SOD gas in the UTL only. 
I n  the bulk limit ( E ~ , ~  << EBT), it can be shown that &/eb approaches unity. Thus, 
two limiting cases (bulk and SOD) bracket the QOD case very well. 

4. Quantum Transport Theory 

As discussed in the previous section, BTE has its own limitations. It cannot be used, 
for example, to find the expectation value of current flowing perpendicular to the 
wire as the average value of the velocity is zero in a transverse configuration [ll]. We 
then resort to a more complete quantum-mechanical theory, that of using the density 
matrix e. The expectation value of the current is then obtained from 

where (a1 e la‘) are evaluated from the solution of Liouville’s equation 

ih aept = [H,  @] . (4.2) 

Here H = Ho + V + F is the Hamiltonian of the system, which consists of unper- 
turbed part H,,, electron-lattice interaction V ,  and electron-electric-field interaction 
P = e 8 .  r.  The eigenfunctions and eigenvalues of the electronic part of Ho are those 
given by (3.1) and (3.2), respectively. A steady state linearized solution, in the repre- 
sentation la) = IpZk) of El,, is given by 

where ~2 . ’  = ~ - ~ ( c , l k )  is that given by (3.16). The matrix elements of commutator 
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[eo, F ]  for an electric field 

<&’I [Po, E”1 la> = 

V. K. ARORA 

--f 

8‘ = (gX, ZU, g2) are given by 

o i j = O ;  i + j .  (4.9) 

We thus see that quantum transport theory gives results equivalent to those obtained 
from BTE for uxz. But expressions for cryy and crzz could not be obtained from BTE. 
In the UTL, these components are simplified to give 

m ,-t 
Ei(-a) = J ~ dt . 

a t  

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

Under the conditions when brodening due to collisions is small (hlz,, << k,T), Ei( -a) 
can be approximated as 

(4.15) Ei(--a) x - lna - y ; -a < 1 
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where y = 0.577 is Euler’s constant. The relative resistivity ratios (as compared t.0 
bulk resistivity) are then given by 

(4.16) 

(4.17) 

(4.1.8) 

As is expected, t,he quantum transport theory gives results equivalent to those 
obtained for BTE for longitudinal conductivity. The longitudinal resistivity ratio is 
independent of scattering parameters. But, transverse resistivity ratios are strongly 
dependent on scattering parameters. For a wire with square cross-section, the trans- 
verse resistivity varies inversely with the cross-sectional area of the wire. The longi- 
tudinal conductivity is inversely proportional to the area for any rectangular shape. 
The theoretical results for transverse resistivity, a t  present, may be difficult to test 
experimentally as measurements of transverse resistivity may be quite difficult. 
But,, in future, when technology develops to that extent, it may be possible to verify 
the above expressions for the conduct,ivity by including other possible Scattering 
mechanisms. 
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