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1. Introduction 

The characteristic feature of metallic systems is the presence of conduction 
electrons ; hence the investigation of the effect of those electrons upon various 
macroscopic properties of metals has received a great deal of interest. Electrical 
conduction is one of the most important properties essentially depending on the 
behaviour of the electronic sub-system. 

At the same time electrical conductivity is one of the most complex phenome- 
na since it is determined by the properties of all sub-systems of the metal: the 
electronic, ionic, and (in the case of magnetically ordered metals) magnonic 
sub-system, and by their interaction. In  other words, the conductivity of a given 
metal depends not only on its electronic structure but also on the mechanisms of 
relaxation of the conduction electrons which are due to  the scattering by struc- 
tural defects of the lattice, phonons, magnons (in ferro- and antiferromagnetics), 
and scattering arising from electron4ectron interaction. The electrical resis- 
tance of simple non-transition metals is mainly established by the first two mech- 
anisms of scattering. For the electric resistance of transition metals, especially 
at low temperatures, the last mechanism is essential. For magnetically ordered 
metals, a11 the above-mentioned mechanisms of scattering make contributions 
to  the resistance. 

In  the first stage of the investigations of the electrical resistance of metals the 
main efforts were directed towards the understanding of the scattering of elec- 
trons by lattice vibrations and structural defects (impurities, vacancies, disloca- 
tions). Several review articles and monographs have been devoted to  these 
mechanisms of scattering (see, for example, [ l ]  to [4]). During the last 10 to  
15 years the centre of interest moved to the study of the scattering mechanisms 
due to  interelectronic and electron-magnon collisions. At present a large amount 
of experimental material has been accumulated ; however, -there is no review 
article on these questions so far. With the present paper an attempt is made to  
fill this gap. However, before passing over to a brief description of the related 
theoretical concepts and presenting the accumulated experimental material, it 
seems advisable to make a few remarks concerning some questions of experimen- 
tal conditions. 

In  order to  isolate the contributions of electron-electron and electron-mag- 
non collisions to electrical resistance, i t  is necessary to measure the temperature 
dependence of the resistance of quite pure samples to ensure that the investigat- 
ed scattering mechanisms are not masked by a large background due to scatter- 
ing on impurities and other lattice defects (residual resistance). Moreover, 
according to [5 ]  and [14] a t  low temperatures the scattering of electrons by 
vibrating impurity ions leads to an additional contribution to  electrical resistance, 
which is proportional to the concentrat)ion of impurities and varies with tem- 
perature according to a T2-law, i.e. in the same way as electron-electron and 
(for a quadratic dispersion law of spin waves) electron-magnon resistance. I n  
order to estimate the value of this contribution, it is necessary to  make measure- 
ments on several samples having different concentrations of impurities. Only 
for samples with a high degree of purity this contribution may be neglected. 

However, in low-temperature investigations of pure samples for which the 
ratio of room temperature to residual resistance ~ 3 0 0  .K/pol) is about some lo3 to 

I) The value ~ 3 0 0  o g l e o  the so-called “residual resistance ratio” (RRR), is often used to 
estimate the purity of the metal. 
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lo4 it is often necessary to  use samples with a small cross-section, or to increase 
the measuring current through the sample in order to increase the experimental 
accuracy. 

In  the first case, when the mean free path of the electrons, 1, is comparable 
with the transverse dimensions of the sample, d,  a size effect arises which can 
distort the real temperature dependence of the bulk resistivity. This is associat- 
ed with the fact that in thin samples a t  low temperatures (scattering by small 
angles) the contribution of normal electron-phonon collisions, the so-called 
N-processes, grows because in this case each scattering act of an electron by 
a phonon is followed by a collision with the surface. According to [S] this 
mechanism of scattering leads to an additional contribution eeps to the tempera- 
ture-dependent part of electrical resistance2) : 

where em and I ,  are the resistance and the mean free path of electrons in a bulk 
sample. OD is the Debye temperature, and &, is the resistance due to normal 
electron-phonon collisions. From the above formula it follows that the thick- 
ness of the sample should be chosen according to the condition d > 1. 

In  the second case, when the magnetic field caused by the measuring current 
(or external field) has such a magnitude that it is impossible to neglect the radius 
of curvature of the electronic trajectories in comparison with the mean free 
path, there arises a galvanomagnetic effect which strongIy depends on tempera- 
ture. The point is that a t  small fields a t  which the topological peculiarities of the 
Permi surface of the metal are not displayed, the value of the transverse magne- 
toresistance is Ae(H,  5”) N e(0, T) (Z(T) / r )2 .  Hence, in measurements of the 
temperature dependence of electrical resistance a t  low temperatures which aim a t  
investigating the scattering mechanisms, the condition 1 << r has to be fulfilled.3) 

For ferromagnetic metals the experimental situation becomes more complicat- 
ed due to  the fact that even for small currents whose magnetic field may be 
neglected, there is an internal field due to non-zero magnetic induction which 
will act on the movement of the electrons. This leads to a galvanomagnetic 
effect, just as an external magnetic field (or bhe field of the measuring current) 
leads to  an increase of the electrical resistance of non-ferromagnetic metals. 
Hence, when discussiiig experimental results for ferromagnetic metals carried 
out in zero external magnetic field, i t  is necessary (see Section 3 of the paper) to  
take into account the contribution of that internal magnetic field. 

2. Scattering Mechanisms Due to Electron-Electron Interaction 
2.1 Theoretical concepts concerning the influenre of electron-elertron interaction 

on the electrical resistance of metals 

The electrostatic interaction between the conduction electrons in a metal 
is described by a screened Coulomb potential of the type ( e / r )  exp ( -  q r )  ; q is 

*) In addition to  this temperature-dependent contribution the size effect gives also 
a temperature-independent contribution which may be evaluated by the well-known for- 
mula e d  = em (1 + a lw /d )  where e d  is the resistance of a sample with thickness d, and a 
is a parameter characterizing the probability of diffuse reflection from the surface. 

3, For evaluations i t  should be noted that  r = c P x H / ( e  H2), where P and e are the 
electronic momentum and the charge, and c is the velocity of light. 
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called the screening constant, and l / q  the screening length (or radius). Due to  
the effect of screening the electrons can interact only at short distances; a t  
distances r > l / g  they may be regarded as independent. Nevertheless, the elec- 
tron-electron interaction is rather large and is comparable with other types of 
interaction in a metal, in particular with electron-phonon interaction.. This 
leads to peculiarities in a number of properties of metals, in the first place of 
kinetic properties. These Peculiarities cannot be explained without taking into 
account electron4ectron interaction which results in the occurence of an addi- 
tional scattering mechanism. 

According to  the Pauli principle the scattering of two electrons from the states 
k, and k, into the states k; and ki can take place only if both final states are not 
occupied. Moreover, the initial and final states should lie in an energy range of 
width kT  about the Fermi surface. Due to this fact the probability of inter- 
electronic collisions contains a factor (kT/EF),. This factor determines the tem- 
perature dependence of the electron4ectron resistance pee. 

The value pee depends on the electronic structure of the metal and the prob- 
ability of electron-electron umklapp processes. Let us discuss two cases which 
occur in metals : 

1. In  the metal there is only one group of electrons having the same effective 
mass, i.e., the metal has spherical (or near-spherical) Fermi surfaces. An example 
of such a metal is sodium. 

2. In  the metal there are several groups of current carriers with different 
effective masses (and different Fermi velocities) corresponding to different sheets 
of the Fermi surface or different regions of a sheet (strongly anisotropic Fermi 
surface). The second case is particularly characteristic of transition metals. 

1. The influence of interelectronic collisions on the electrical resistance of 
metals in the first case was first examined in [7]. Later this question was re- 
examined [4, 8, 121. It follows from these investigations that the interelectronic 
collisions lead to a resistance contribution pee- T 2  only if in the process of scatter- 
ing there are electron-electron umklapp processes, as a result of which the 
total wave vector of the interacting electrons is changed by a reciprocal-lattice 
vector g :  k, + k, - k; - kb = g,  i.e. if some momentum is transfered to  the 
lattice as a whole. 

According to  [4] in this case the electron-electron resistance takes the form 

where a is a constant, e electronic charge, and vg, tp, and k, are Fermi velocity, 
Fermi energy, and Fermi wave vector, respectively. G is an interference factor. 
Experimentally in monovalent non-transition metals (Na, K, Cu, Au, Ag) such 
a dependence on temperature has never been observed. Since electron-electron 
umklapp processes are not frozen out even at the lowest temperatures (unlike 
electron-phonon umklapp processes), this experimental fact apparently indica- 
tes a very small value of pee which is masked by the residual resistance of even 
very pure monovalent metals. 

If there are no umklapp processes, i.e. only normal electron-electron processes 
(k, + k, - k; - ki = 0) are essential, interelectronic collisions do not lead to 
electrical resistance in virtue of the momentum conservation law. Thus normal 



Scattering Mechanisms of Conduction Electrons 13 

electron-electron processes of scattering cannot give rise to a relaxation of the 
electron distribution which is displaced from the equilibrium state by an electric 
field and has a total momentum different from zero. However, in sufficiently 
thin samples whose thickness is smaller than the mean free path of the electrons, 
and in which diffuse scattering by the surface is essential, even normal electron- 
electron collisions may lead, in principle, to the appearance of resistance. In  
this case a single electron-electron collision is sufficient to  deflect the electrons 
to the surface, and the diffuse scattering on the surface will lead to an additional 
contribution to electrical resistance proportional to T 2  and dependent on the 
thickness of the sample. Hence, in this samples normal electron4ecbron 
processes become an effective mechanism of scattering due to surface scattering. 
The possibility of such a source of resistance was pointed out in [9] and [lo], but 
no experimental evidence of such a mechanism exists. 

2. A different situation arises in metals whose electronic sub-system is charac- 
terized by several groups of carriers with different velocities (and effective 
masses). The most characteristic example of such metals are transition metals. 
If the electronic sub-system of such a metal is not closed (for example, carriers 
with large effective masses transfer the momentum acquired in intere1ect)ronic 
collisions to the lattice), collisions between carriers with large velocities (and 
small effective masses) and low-mobility carriers (with large effective masses) 
will lead to a decrease in the velocities of the “light” carriers and, as a result, the 
appearance of resistance. It should be noted that in this case the appearance of 
eee is possible even in the absence of electron-electron umklapp processes. 

Theoreticallythis case wasdiscussed [4,11,12,13]. It is shown in [ l l ]  bhat t,he 
electrical resistance due to interelectronic collisions, i.e. the scattering of “light” 
carriers with mass m1 by “heavy” carriers with mass na,, is proportional to t,he 
square of the temperature and is expressed by the formula 

(n number of carriers with mass m, per unit volume, h Planck’s constant, 
= ms/nz,, E;  Fermi energy of the group of “light” carriers counted from the 

bottom of the band). In  (2.2) the factor H(B,  q )  is essential: as B increases by a 
factor of 10, the value of H(B,  q )  increases by more than two orders. According 
to [ l l ]  a t  a given value of the screening constant H(B,  q )  is proportional to P2.l5. 
With increasing screening constant H ( p ,  q )  decreases. Hence, the greater the 
difference between the effective masses of the two groups of carriers and the less 
the value of q, the greater is the contribution of pee to the total electricalresistance 
of the metal. 

The evaluation of eee for a metal with two groups of electrons was also con- 
sidered in [4]. I n  this work pee is expressed not through the ratio of effective 
masses but through the ratio of Fermi velocities : 

Here v1 and v2 are the velocities of the carriers with small and great effective 
mass, respectively; v, > v2. 
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A similar calculation for eee was carried out in [12]. It is necessary to note 
that the expressions (2.2) and (2.3) were obtained in the approximation of two 
spherical Bermi surfaces and quadratic dispersion laws. These assumptions 
were also made in [ 121. 
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Fig. 1. Temperature dependence of the electrical resi- 
stance of some transition-metal single crystals 
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Thus, the results of the theoretical papers [4], [ll],  and [12] show that a t  low 
temperatures eee 4, may be dominant in the temperature-dependent part of elec- 
trical resistance, since with decreasing temperature the electron-phonon re- 
sistance decreases much faster (eep - T5 a t  T < 0.1 0,) than eee. 
2.2 Experimental investigations of the contribution of interelectronic collisions 

to the electrical resistance of transition metals 

For the first time a quadratic dependence of electrical resistance on tempera- 
ture a t  T < 0, was experimentally discovered in Pt in 1933 [16]. Later anal- 
ogous temperature dependences of electrical resistance were found in Mo [ 171, 
W [lS], Nb, Pd, Rh, Mn, Fe5), Co5), and Ni5) [2, 191. In  these papers quantita- 
tive studies of the contribution -T2 were made not for all these metals ; however, 
the main value of the enumerated papers consisted in the experimental evidence 
of a new scattering mechanism in transition metals due to interelectronic colli- 
sions. For many other transition metals the contribution of this mechanism of 
scattering was detected only recently. 

At present the contribution of interelectronic collisions has been observed in 
most transition metals. The results of these experimental investigations and the 
references to the papers are given in Table 1. 

Typical temperature dependences of the electrical resistance of transition 
metals are given in Fig. 1.  In  order to reveal the different scattering mecha- 
nisms leading to different temperature dependences of electrical resistance, it is 
convenient to  give the dependence of an “ideal” electric resistance on tempera- 
ture, pi = p(T)  - po, in a logarithmic scale. Such dependences for some tran- 
sition metals are given in Fig. 2. This figure shows the transition from the 
T5-dependence, which characterizes electron-phonon resistance, to  the T2-de- 
pendence, which occurs a t  sufficiently low (= lo  OK) temperatures and charac- 
terizes electron-electron scattering. 

An analysis of the experimental results has shown that the temperature de- 
pendence of the electrical resistance of transition metals a t  T < 0.1 OD cannot 
be described by the expression 

= po + b T 6 ,  
but i t  follows very well the expression 

p(T) = pa + u T2 + b T6. 
The occurrence of such a dependence can be demonstrated by plotting 

[e(T) - eo]/T2 versus T3. The result should be a straight line which intersects 
the ordinate axis a t  a (electron-electron scattering); the slope of this line is 
equal to  the coefficient b (electron-phonon scattering). The experimental data 
treated by this method indeed fit a straight line. Typical plots are shown in 
Fig. 3. For greater reliability, the measured p( T) dependences were treated in 
a number of papers (see, for example, [23]) according to  the above relation by a 
least-squares method, using an electronic computer. Both methods give identi- 
cal results. Moreover, in [26] the temperature dependence of the electrical re- 

4)  In general, the above mechanism of scattering due to  interelectronic collisions can 
apparently manifest itself even in non-transition multivalent metals, which have rather 
complex Fermi surfaces. However, experimental confirmations of this effect are not numer- 
ous a t  the present time; therefore the discussion of this question would now be premature. 

5)  I n  ferromagnetic metals a T2-dependence of electrical resistance occurs due to  inter- 
electronic scattering as well as due to  scattering by spin waves. 
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sistance of platinum measured on several samples of high purity in the region of 
liquid helium temperature was discussed on the basis of a power series : 

e ( T )  = P o  +a T + a  T 2  + p  T 3  + p  T4 + b T 6 ,  (2.6) 

instead of using (2.5). It was found that the coefficients a, p, and p are close to 
zero, and Po, a,  and b are positive and practically completely determine e( T )  for 
the investigated samples. 

As seen from Table 1 there is a considerable scattering of the values of a 
measured on different samples of the same metal (see Mo, W, Ru, Pt in Table 1). 
For example, the values of a,  which are found in [28] for nine tungsten samples 
with residual resistance ratios (RRR) from 9400 to 95000, lie in the range 

Fig. 2. Dependence of lg pi on lg T for Pt [16], Mo, W, L 
and Ta [23] "'1 2 4 6 70 20 

TPKi - 
2 physica (b) 57/1 
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0.6 x 10-l2 to  1.2 x 10-l2 SZcmdeg-2, but there is no correlation between a 
and RRR, characterizing the sample purity. 

With regard to the quantitative correlation between a and y noted in [27] for 
Os, Re, Co, Fe, Ni, Pt, and Pd (a  - yZ), it should be noted that the value of a is 
determined not only by the values of the effective masses (or y ) ,  but also depends 
on the screening constant, the Fermi energy, and also on the probability of 
electron-electron umklapp processes. The latter characteristics of the electronic 
sub-system also differ for different metals, as well as the effective masses and the 
coefficient of the electronic heat capacity. Electron-electron scattering affects 
not only the electric resistance, but also the temperature dependence of the ther- 
mal resistance. In  recent papers (for example, [20 to  22, 281) this contribution 
was discovered in rhenium, osmium, ruthenium, tungsten, and other metals. 
This is additional evidence of the strong influence of electron-electron interac- 
tion on the kinetic properties of metals. The temperature dependence of the 
mean free path characteristic of interelectronic collisions (1 T - 2 )  was discov- 
ered recently in measurements of the radio-frequency size effect in Mo and W 
1291. 
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Thus, the available experimental data show that the temperature-dependent 
part of the electrical resistance of transition metals a t  sufficiently low tempera- 
tures (T  s 10 OK) is determined practically completely by the scattering of 
electrons due to  interelectronic collisions. At liquid helium temperature the 
electron-electron resistance of transition metals is higher than the electron- 
phonon resistance by several tens of magnitude. So, for example, a t  T = 
= 4.2 OK the ratio eee/pep is equal to 30 for tungsten, 60 for molybdenum, 50 
for osmium, and 130 for ruthenium and platinum. 

It is difficult to draw conclusions on the exact origin of eee in non-ferromagnet- 
ic transition metals : There may be contributions to pee from collisions of groups 
of carriers with different effective masses and different Fermi velocities as well 
as from interelectronic collisions accompanied by electron4ectron umklapp 
processes. 

The scattering mechanisms of electrons which determine the temperature 
dependence of the electrical resistance of magnetically ordered transition metals, 
will be discussed in Section 3 of this review. 

3. Scattering of Conduction Electrons by Spin Waves 
in Ferromagnetic (3d and 4f) Metals 

3.1 Scattering mechanism leading to a gtcadratic temperature dependence 
of electm'cal resistance 

Transition metals with magnetic order possess some peculiarities in their 
kinetic properties. The thermal excitations in the system of atomic magnetic 
moments (spin waves6)) lead to  the appearance of additional scattering mecha- 
nisms for the current carriers. Let us discuss the main results of theoretical 
papers in which the temperature dependence of the electrical resistance due to  
the scattering of conduction electrons by spin waves is investigated. 

The collision processes of s-electrons and magnons a t  T <  Oc (Oc Curie tem- 
perature) were first investigated by Vonsovskii on the basis of the s-d model. 
The interaction between s-electrons and magnons occurs via creation and de- 
struction of spin waves. In  these processes the conservation law of quasi-mo- 
mentum is fulfilled: 

k ' = k + q ,  

where k' and k are the quasi-momentum of the s-electron before and after the 
collision, q is the quasi-momentum of the magnon [47]. 

The calculation of the energy spectrum of electrons in ferromagnetic crystals 
and of the transition probabilities in such systems performed in [48] allowed to  
develop a theory of the electrical conductivity of ferromagnetic metals in the 
region of low temperatures. 

The qualitative behaviour of ee,( T )  due to any electron-magnon scattering 
mechanism can be obtained from general physical considerations without 
solving the kinetic equation [49]. If in the collision the electron would fully lose 
the momentum obtained in the electric field, the electrical resistance would be 
proportional to the total number of collisions, 

6 )  The quasi-particles corresponding to spin waves are ferromagnons (or magnons) char- 
acterized by the quasi-momentum q. 

2' 
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where Fg is the average number of magnons with momentum q (the Bose distri- 
bution function). The product w(q)  8 (Ek,o - Ek--q,op - E ~ )  gives the probability 
of collisions in which the electron loses the momentum q and the energy (EE, a - 
- EkPq ,+) ,  w(q)  is the squared absolute value of the matrix element correspond- 
ing to the given transition, and the 8-function ensures energy and quasi-momen- 
tum conservation. However, at low temperatures in each collision the compo- 
nent of the momentum along the field changes by a value directly proportional 
to  q2. Hence, the number of collisions during which the electron will fully lose its 
momentum is -q-2, i.e., 

(3.2) @em(T) - .f & W(q) 8 ( E k ,  a - Ek-q, o' - &I) q2 dq , 
where the integral is taken over the whole momentum space. Assuming that 
the energy of the electrons depends only on the absolute value of the quasi- 
momentum and not on spin, and integrating the expression (3.2) over the angles 
it follows that 

pem(T) = const .f Tg w(q)  q3 dq . (3.3) 
Hence, €or the qualitative determination of the temperature dependence eem( T), 
according to (3.3) it is sufficient to know w(q) .  For processes due to exchange 
electrostatic interaction w(q)  is constant, and from (3.3) it follows that 

eem(T) = a1 T 2 .  (3.4) 
Analogous results are obtained by more rigorous calculations of the electrical 

resistance of ferromagnetics [50 to 551 (solution of the kinetic equation and use 
of the statistic perturbation theory developed by Kubo and applied to  the cal- 
culation of electrical resistance by Nakano). In  11551 it was taken into account 
that the energy of the conduction electron depends not only on the absolute 
value of quasi-momentum, but also on the direction of spin : 

Ek,a = E ( k )  f 2 (T I ( k )  9 

where E ( k )  and I ( k )  are functions of the absolute value of quasi-momentum; 
(T = * l / Z .  As a consequence in (3.4) an exponential multiplier of the type 
exp ( - T o / T )  appears, where the parameter To = &(a ko)2 ( J / E #  is some criti- 
cal temperature below which the scattering processes of the type discussed be- 
come non-effective (due to the impossibility of the simultaneous conservation 
of energy and quasi-momentum in electron-magnon collisions). The value of To 
is found [55, 561 to lie between 0.1 and 10 OK. The coefficient a, in (3.4).depends 
on the functions E(k)  and I(k) and their derivatives a t  the Fermi level [55 ] .  

For a quadratic dispersion law eem( T )  takes the form 

where 

eem(T) - T 2 q  ($) a t  T x T o ,  

m 

TO q(t)  = __ ( ~ - t ) d x ;  t = -  T 
2 n 2  s (e+ xe= - 1 )  

t 
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and 
eern(T) - T 2  a t  T > T , .  (3.7) 

Since ~ ( t )  a t  T = To rapidly changes with temperature, pem(T)  falls more 
rapidly than quadratically as the temperature decreases. 

Hence it may be said that the scattering of electrons on spin waves due to 
s 4  exchange interaction results in a quadratic temperature dependence of the 
electrical resistance of ferromagnetics in the region of applicability of the spin- 
wave approximation (T  < 0.1 8,  but T > To). 

3.2 Scut tmhg mechnnisms leading to a linear temperattire dependence 
of electrical resistance 

In  some theoretical papers temperature dependences of the magnetic compo- 
nent of resistance different from (3.4) were obtained for low temperatures. 
Turov [49] showed theoretically that the electrical resistance of 3d ferromagnetic 
metals in the region 1 t o  10 OK has a term which is proportional to temperature. 
Recently in [52] and [57] calculations were made for various scattering mecha- 
nisms which qualitatively explain the linear dependence of the electrical re- 
sistance of Fe, Go, and Ni in the region of low temperatures. 

One of the possible mechanisms is the scattering of conduction electrons by 
spin waves taking into account, the polarization of these electrons. In  this case 

eem(T) = a, T + a, T 2  ; T >To, 
where the second term is due to the Scattering of electrons by spin waves (see 
(3.4) and (3.6)), and the first one arises from the polarization of s-electrons by 
d-electrons. If the coefficients a, and a, have values of the same order, eem( T )  is 
-T2 at T 9 To. The linear term is comparable with the quadratic one only a t  a 
sufficiently large value of the ratio a,/%. AS is seen from the calculation [57], 
which was performed for the case of an arbitrary isotropic dispersion law of the 
electrons, the coefficient a, is determined by an expression of the type 

Another reason for t,he appearance of a linear term in eem( T )  may be the spin- 
orbit interaction between the spin of the “magnetic” electron and the orbital 
motion of the conduction electron. Of all the kinds of spin-orbit interaction 
which are possible in the s 4  exchange model, just this interaction plays the main 
role in the kinetic effects. The probabilities of collisions corresponding to this 
type of spin-orbit interaction were calculated by Vonsovskii [48], and Turov 
[49] took into consideration their influence on the electrical resistance. Quali- 
tatively this dependence may be obtained from (3.3) if we substitute 

k2 
w(q)  N - sin2 6 , (3.10) 

q2 
where 6 is the angle between the vectors k and q. 

If the above tyye of spin-orbit interaction makes the main contribution to the 
linear term, an anisotropy of a, should be observed in a magnetic field. The 
relative anisotropy originating from the anisotropy of the matrix elements of 
spin-orbit interaction was calculated in [52] and [57] and found to  be (aoll -aol) x 
x ai,; = 0.1. 
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The third mechanism which, in principle, can explain the appearance of a 
linear term in the electrical resistance is associated with the scattering of elec- 
trons by excitations in domain boundaries. It was shown by Winter [58] that in 
a Bloch domain boundary there are some special excitations, which are similar 
to  spin waves with a wave vector having two degrees offreedom. The amplitude 
of such waves has its maximum a t  the centre of the boundary and vanishes in 
the volume of the domain. Theoretical investigations of the scattering by the 
domain boundaries themselves and of the scattering by two-dimensional spin 
waves [52,57] show that for a random distribution of domain boundaries 

(3.11) 

(6 thickness of the domain boundaries, v relative volume of the domain bound- 
aries, k ,  Fermi wave vector; a, t!? constants). 

The first term in (3.1 1) c.orresponds to  the scattering by static domain bound- 
aries and only makes a contribution to  the residual resistance eo. Since n k, 6 = 
x 102 to  lo3, this term may be neglected. Physically this is due t o  the slow 
change of the scattering potential of the domain boundary. 

The second term in (3.11) arises from the scattering of electrons by two-dimen- 
sional spin waves. Since the magnitude of this term depends on the number of 
domain boundaries, it should strongly decrease with increasing magnetic field 
in the region of technical magnetization, and be anisotropic, i.e. different for 
orientation of the current parallel and perpendicular to magnetization. This 
term can always be roughly approximated by an expression of the type (3.8). 

Hence the spin-orbit interaction between the d-electron spin and the orbital 
motion of the s-electron leads to a linear dependence of pem( T). The linear term 
in the electrical resista.nce will manifest itself only a t  very low temperatures 
T 1 OK, due to the smallness of spin-orbit interaction compared with the 
exchange interaction discussed in Section 3.1. 

3.3 Contribution of two-ntagnon processes to the electrical resistance 
at low temperatures 

In  Sections 3.1 and 3.2 we discussed scattering processes of s-electrons which 
involve the creation or annihilation of a spin wave. Such processes are called 
single-magnon (EM) processes. These processes are inelastic and are associated 
with the fluctuation of the “transverse” components of magnetization (8;). 
The dependence of energy on spin has the consequence that single-magnon pro- 
cesses are frozen-in a t  temperatures T < To (see (3.5)), i.e., there is a minimum 
wave vector of magnon, g,,,in, such that processes with 191 < gmin do not take 
place. 

For two-magnon processes of scattering (ZM) (associated with the fluctuation 
of the longitudinal component of magnetization (8;)) which, unlike E M  processes 
take place without a change of the spin of the s-electrons, there is no such limi- 
tation, i.e., they take place over the whole temperature region where the spin- 
wave approximation is valid. The contribution of two-magnon processes to the 
resistance of ferromagnetic metals ezM( T) a t  low temperatures was examined by 
Rosler [51] using the transition probabilities for ZM processes calculat,ed in [59]. 
The temperature dependence of electrical resistance due to ZM processes (with- 
out umklapp processes) is expressed by 

eZM(T) = A T7I2,  (3.12) 
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whereas that due to  E M  processes with an accuracy to  logarithmic terms is given 
by the expression (3.5). A comparison of the coefficients in (3.12) and (3.5) shows 
that QZM is larger than ~ ~ b f  only for T < 0.1 To, i.e. where the resistanceis already 
determined by impurities. So the ZM processes may be neglected practically 
over the whole region of temperatures. 

We should note that the theoretical calculations discussed in Sections 3.1 to  
3.3 were carried out for a quadratic dispersion law of spin waves and, i n  most 
cases, for an arbitrary isotropic dispersion law of conduction electrons. 

3.4 Ezpeiimental situation in the determination oj the temperature dependence 
of magnetic resistance - Difficulties it1 interpretation 

The temperature dependence of the electrical resistance of the ferromagnetic 
metals Fe, Go, and Ni was studied experimentally by many investigators. White 
and Woods [Z ]  found that below 10 “I< the electrical resistance of these metals 
quadratically depends on temperature : a T2, and the coefficient a (see Table 2) 

Tab le  2 
___ 

metal 

Fe 

co  

Ni 

chemical 
purity 

99.980,b 

99.9806 

99.980,b 

“whisker’ 
<loo> 

“whisker’ 
(111) 

99.98% 

- 

99.99840, 

99.999% 
- 
- 

99.940,; 

99.99yo 
99.90,6 

99.990,A 

- 

- 

RRR 
( H  = 0) 

25.6 

25 

40 to 104 
180 

4x108 
700 to 

103 to 

2000’) 

10 to 240 

26.3 

65 to 91 
66.6 

400 

100 

21 to 31 
5 

1400 
1400 
- 

39.4 to 49.3 

30.6 

- 

826 

49.3 

11 to 30 

19 to 32 

- 

3 
15 

5.8 to 16 

- 
8 
- 

- 
- 

a 
(10-12 Rcm deg-2) 

3.85 to 11.8 

10.8 

12.8 
1 

20.7 

32.5 

15 to 17 

8.7 to 9.9 

12.8 
57.5 

5 to 24.4 

19.8 

16 
41 
26 
14 
15.5 

temper. 
ature 
region 
(OK) 

1.23 to 
4.2 

0.38 to 
4.2 

<4.2 
<4.2 

1 to 4.2 
<1 

0.28 to 
20 

4.2 to 
20 

1.23 to 
4.2 

1.2 to 6 
1 to 4.2 

< lo  

1.23 to 
4.2 

<lo 
<20 
5 t o 2 0  
.6 to 20 
2 to 50 

*) The RRR value is given for B = 0. 
**) The electrical resistance was measured in a longitudinal magnetic field with 
H = 1.2 kOe. 

ref. 
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for Fe and Co is equal to  13 x 10-l2 Rcmdeg-2 for Fe and Co, and to 16 x 
x 10-l2 Rcmdeg-2 for Ni. This dependence was confirmed for Fe and Ni below 
18 OK by Kondorskii et al. [60], and for Co in the temperature range 1.2 to  6 OK 
by Radhakrishna and Nielsen [62]. For Ni with RRR ( H  = 0) = 14007) the 
value a = 14 x 10-l2 Rcmdeg-2 was obtained by Schwerer and Silcox [63], 
and a = 15.5 x Qcm deg-2 by Greig and Harrison [64]. In  a series of 
papers by Semenenko and Sudovtsov [61] a quadratic as well as a linear term 
in e ( T )  are reported for Fe, Co, and Ni a t  T < 4.2 OK. The values of the coeffi- 
cient a from [61] and [62] are close to the values obtained by White and Woods. 

We should note that the experimental values of this coefficient for ferro- and 
non-ferromagnetic metals are of comparable magnitude. Thus a amounts to 
18 x 

This means that the quadratic temperature dependence of the electrical re- 
sistance of ferromagnetic 3d metals a t  T < Bc should be essentially due to inter- 
electronic collisions : It should be noted that these collisions are quasi-elastic, 
while the scattering of electrons by magnons and phonons a t  these temperatures 
is essentially inelastic. A quite reliable method af establishing the predominance 
of elastic scattering in the region of low temperatures is the simultaneous study 
of the “ideal” parts of the electrical and thermal resistance, ,pi and Wi (obtained 
by subtracting the residual resistances). In  the case of elastic scattering their 
ratio should give a constant value, called the Lorentz number : 

Qcmdeg-2 for Pt and 9 x 10-l2 Qcmdeg-2 for Ir. 

(3.13) 

A calculation by Herring [65] considering only electron-electron collisions, 
for metals with a complex Fermi surface gives the value Li = 1 x lo-@ WQdeg-2. 
This has been confirmed experimentally for non-magnetic transition metals 
[66], though the accurate value of Li to some extent depends on the 
substance. For ferromagnetic metals this problem was experimentally investi- 
gated only in two papers. For pure Ni (RRR ( H  = 0) = 1400) White and 
Tainsh [67] obtained Li = 1 x WRdeg-2 in the range 2 to 50 OK (Fig. 4). 
In  [68] the electrical and thermal resistances of Fe single-crystal whiskers with 
the orientation (111) and RRR (B = 0) = lo3 were measured in a longitudinal 
magnetic field of 1.2 kOe. It was found that below 20 OK Li has a constant value 
equal to 1.09 x WQdeg-2 (see Fig. 4). 

Fig. 4. Temperature dependence of the total Lorentz number and the “ideal” Lorentz 
number for Ni (Ni-1 by [2], Ni-2 by [67]) and Fe (by [SS]). L = e /W T [15] 

7) For ferromagnetics i t  is necessary to  distinguish RRR ( H  = 0) and R R R  ( B  = 0) 

8 )  Only the temperature-dependent part of the electrical resistance is discussed. 
(see Section 3.6). 
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Fig. 5. Temperature dependence of the elec- 
trical resistance of Fe whiskers in the tempera- 
ture region 1.1 to 4.2 "K, at H = 0 [72]. 
a) Fe (100); FC state; 9 (294 OK) = 0.1038 a; 
b) Fe <loo); PS state; e (294 "K) = 0.1038 R 

Hence, on the basis of [67] and [68] i t  
may be concluded that the contribution 
of s-d exchange interaction to the T2-part 
of electrical resistance is quite small in 
comparison with the contribution of inter- 
electronic collisions. 

Let us analyse late experimental papers 
devoted to  the separation of the term 
proport,ional to  T in the electrical resis- 
tance of Fe. The most characteristic of 
them are t,he papers by Coleman et al. 
[72, 731 performed on maximum-purity 
Pe single-crystal samples (RRR ( H  = 0) = 130 to 250, RRR ( B  = 0) = lo3 
t o  2 x lo3). The electrical resistance of Fe was measured in two magnetic states : 
in the demagnetized (FC) and the single-domain (PS) state. (The results ob- 
tained for one of the samples are shown in Fig. 5 . )  

The total resist,ance g(  T) in t,he region 1 to 4.2 OK was treated by means of the 
formula e ( T )  = g, + a, T .  The average value of the coefficient a, for different 
samples in the FC and PS stat,e is equal to 8.3 x 10-lo Qcmdeg-l and 
2.2 x 10-lo Qcmdeg-l, respectively. The values of these coefficients are by 
two orders higher than the values obtained in previous papers. The results of 
[72] and [73] seem to  be consistent with the dominance of the scattering of elec- 
trons on spin waves expected theoretically at these temperatures. However, 
it should be noted t,hat if the term a T2 is included in g ( T )  the coefficient a 
(a < 10-l2 Qcmdeg-2) obtained in [72] is by an  order smaller than the value 
usually observed before (see Table 2). 

So far, in analysing experimental data, the formula (3.8) was usually applied, 
or only one linear term was considered. 

However, in ferromagnetics it is necessary to separate the temperature de- 
pendence of the electrical resistance into two parts : 

1.  a part due to electron-magnon scattering : pem( T) ; 
2. a part due to the dependence of magnetoresistance on relaxation time t: 

The magnetoresistance part g B  appears to  be due to  the influence of the inter- 
nal magnetic field, equal to  4 n M s  ( M ,  saturation magnetization), on the move- 
ment of conduction electrons. This effect is analogous to  the behaviour of a 
non-magnetic met,al in an external magnetic field, since the magnetoresistance 
of the metal depends on the ratio l /r  (see Introduction). So the total resistance 
of a ferromagnetic metal has the form 

e d T ) .  
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Fig. 6. Temperature dependence of the elec- 
trical resistance of Fe in a transverse mag- 
netic field, at some values of magnetic 

induction [69] 
where 
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Fig. 7. Temperature dependence of the elec- 
trical resistance of Mo in a transverse mag- 
neticfield. (1) H = O ;  (2) 2.5 kOe; (3) 5kOe; 

(4) 7 kOe; (5) 8.5 kOe; (6) 9.9 kOe 

(3.14) 

Here we have neglected the demagnetization factor. The first term is due to the 
spin-wave scattering due to  spin-orbit interaction. I ts  value decreases with de- 
creasing temperature due to the growth o f t .  The second term is the contribu- 
tion of magnetoresistance which increases with decreasing temperature. Above 
a certain value of the magnetic field the second term should be dominant. This 
will lead to the appearance of a minimum in e( T). 

In  [69] investigations were carried out on polycrystalline Fe (RRR ( H  = 0) = 
= 240) in a transverse magnetic field, which distinctly showed the influence of 
eB on the temperature dependence of the electrical resistance (see Fig. 6). At 
inductions up to 22.9 kG the contribution of the magnetoresistance eB does not 
affect the temperature dependence of electrical resistance. However, on slightly 
increasing the ratio 1/r (increasing B to 28.5 kG) a minimum appears in the curve 
e( T) which shifts towards higher temperatures with increasing magnetic field. 
A similar behaviour is shown by the electrical resistance of a non-ferromagnetic 
transition metal, molybdenum, which was measured at the same Heff9) as for 
iron. I n  Fig. 7 e ( T )  curves are shown for a molybdenum single crystal (RRR = 

t 25 
6 10 a' 

05 
Fig. 8. Contribution of magnetoresistance t o  e(T)  for 

Mo in a transverse magnetic field; H = 2.5 kOe 
0 0.5 10 15 (4 = ea - e H = o )  

/gT- 

O )  The value of Heff is determined by the relation Neff(T) = H (e3oo o K / e ( T ) ) .  
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= 900) a t  several values of the external magnetic field. From comparison of 
p(T)  a t  H = 0 and p ( T )  a t  H = 2.5 kOe (see Fig. 8) it may be seen that in the 
region 4.2 to 20 "K the increase of resistance a t  the expense of @ B  is nearly pro- 
portional to  temperature: A@( T )  - Tl.li0.1. If this additional part of resistance 
is approximated as a, T ,  one obtains a, = 30 x 10-l2 Ocmdeg-l, i.e. the same 
order as for Fe (see Table 2). Therefore i t  may be expected that the larger part 
of the linear term in ferromagnetics (in particular in Fe) is due to the contribution 
arising from the effect of spontaneous magnetization on the movement of the 
electrons, Hence the contribution eB to  the resistance of pure Fe samples (essen- 
tial even in the absence of an external field) gives considerable complications in 
studies of spin-wave scattering. 

We note that the value of pa depends on whether the magnetoresist,ance is in 
the low-field region (impure samples), 

wcz< 1 ,  

o c z > l ,  

in the high-field region (pure samples), 

or in the region of intermediate fields, 

o c z  = 1 .  
In the second and third case the t,opological peculiarities of the Fermi surface 
and the state of compensation of the metal become significant. 

So, the above analysis of theoretical and experimental results concerning the 
temperature dependence of the electrical resistance of ferromagnetic metals a t  
low temperatures leads to the conclusion that the influence of the internal 
magnetic field (spontaneous magnetization) on the movement of conduction 
electrons has to be taken into account. Only if the influence of this factor on 
e( T )  can be eliminated, it will be possible to  obtain reliable quantitative data on 
the separation of different scattering mechanisms in ferromagnetic metals. 

3.5 Use of the Kohler rule for the determination of electi*ical resistance 
of ferromagnetic metals ut zero mqn.e t ic  induction 

One of the methods of eliminating the magnetoresistance contribution to e(  T )  
is based on the application of the Kohler rule. According to this rule the in- 
fluence of the magnetic field on the electrical resistance of a metal can be de- 
scribed by the Kohler function [4] 

(3.15) 

where e(0) is the resivtance a t  zero magnet,ic field, and F (H/e(O)) ,  which depends 
on the relative orientation of the magnetic field and the measuring current, is a 
universal function independent of temperature and sample purity. The tempera- 
ture independenpe of P(H/@(O))  follows from the assumption of an isotropic re- 
laxation time of the electrons. As follows from (3.15) the parameter determining 
the magnetoresistance obeys the relation H/p(O) IV l l r ,  where 1 is the mean free 
path and r is the radius of the cyclotron orbit, of the electron. The Kohler rule 
is fulfilled for many metals [a], but deviations from it may be observed. As noted 
in [70] in the case of anisotropic Fermi surfaces the occurrence of small-angle 
scattering of electrons leads to  a deviation from the Kohler rule if the background 
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of isotropic scattering on impurities is not too high. In  ferromagnetic metals 
deviations may also be observed due to t,he fact that p(H = 0, T )  contains the 
magnetoresistance contribution p B .  

Numerous experiments indicate that the Kohler rule is applicable only in the 
case of large-angle scattering of electrons. This circumstance limits the range of 
sample purity for which pe,,,(T) can be separated from p ( T )  by means of the 
Kohler rule : samples with very small impurity concentration are inadequate, 
since on passing from helium to hydrogen temperature large-angle scattering 
of electrons (mainly due to impurity scattering) should remain dominant over 
small-angle scattering (collisions with long-wavelength phonons). In  the reverse 
case there may be deviations from the Kohler rule associated with topological 
peculiarities of the Fermi surfaces of the investigated metals. 

This approach to  the problem of separating the magnetoresistance contri- 
bution to p(T)  was used for polycrystalline Fe (RRR ( H  = 0) = 240) [69], Ni 
(RRR ( H  = 0) = 1400) [63], and Co samples (RRR ( H  = 0) = 150). 

If the Kohler function would be known, it would be possible to determine the 
values p(B = 0, T ) .  But usually this function is unknown; therefore we present 
a method of estimating i t  for the example of Fe. The relation (3.15) may be 
written as 

It can be shown experimentally [69] that the magnetoresistance a t  T .> 40 OK 
(due to the small value of Z/r) can be neglected, and it may be assumed t,hat 
p(H = 0, T )  = p(B = 0, T ) .  Therefore we may put KT = 1 a t  T > 40 OK, 

and for T < 40 OK the values of KT can be dete.rmined from (3.16). For this 
purpose, using the isotherms of transverse magnetoresistance, it is necessary to 
construct the dependences 

(3.17) 

Displacing all the curves (3.17) for T < 40 OK so that they form one continuous 
curve, and ensuring a sufficient interval of overlap between neighbouring tem- 
peratures we obtain a continuous smooth curve from 48.5 to 4.2 OK. The ad- 
vantage of the logarithmic scale lies in the fact that the fit of the magnetore- 
sistance isotherms to  one monotonous function involves a simple shift of the 
curves along two axes by the value Ig K T .  The maximum error in the determi- 
nation of Ig K T  is h0.005, which allows one to determine e ( B  = 0, T )  with an 
accuracy of 2.5 to  5%. From Fig. 9 i t  can be seen that the transition from pho- 
non scattering prevailing a t  T > 20 OK to impurity scattering does not lead to  
appreciable deviations from the Kohler rule in Fe of given purity. Using the 
obtained values of KT it is possible to  determine e ( B  = 0, T ) ,  which (Fig. 10) 
essentially differs from p(H = 0, T ) .  

A similar analysis of the longitudinal magnetoresistance in the temperature 
region 14 to 48 OK, which is illustrated in Fig. 9, gives values of p ( B  = 0, T )  
coinciding with those calculated from transverse magnetoresistance. If we use 
the isotherms of longitudinal magnetoresistance measured in the region 22.9 to 
36 kG to  construct p(T)  a t  constant field, a minimum in these curves does not 
appear. This is associated with the fact that the longitudinal magnetoresistance 
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Fig. 9. Dependence of 
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saturates in the region l / r  > 1 and is proportional to B" (0 < < 1)  in the tran- 
sition region 11' = 1 .  

In  a similar way the magnetoresistance contribution to e( T) was taken into 
account in experiments performed on cobalt (RRR ( H  = 0) = 150) and nickel 
(RRR ( H  = 0) = 1400) [63] in a transverse magnetic field. The results for Co 
are shown in Fig. 9 and 10, and those for Ni in Pig. 11. In  [63] it was noted that 
if in constructing the Kohler function for Ni of a given purity, the magnetic in- 
duction B is used instead of the magnetic field H ,  and e(0) is taken corresponding 
to e ( B  = 0, T) but not to e ( H  = 0, T), the Kohler rule is fulfilled in the tem- 
perature range where the sc.attering of electrons on phonons is dominant, i.e. a t  
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Fig. 10. Temperature dependence of the electrical resistance of Fe a t  B = 0, H = 0, and 
H I /  = H I  = 1.1 kOe [69], and of Co a t  B = 0 and H = 0 

17 OK < T < 64 OK. Below 17 OK deviations from the Kohler rule were ob- 
served, and these were associated with the influence of small-angle scattering 
because of the high purity of the samples; therefore it was impossible to find 
,o(B = 0, T). The problem of impurity resistance may be solved using the same 
rule, but a set of samples is required containing impurities of the same type (see 
Section 3.6). 

For Fe and Go in the temperature range 4.2 to 20 OK the temperature-depend- 
ent part of the electrical resistance was described by the expression (3.8) in 
which each term is responsible for a definite scattering mechanism. (In bhis 
region the electron-phonon part of the resistance can be excluded.) The cor- 
responding values of coefficients are shown in Table 3. In  this table e ( T )  data 
a t  H = 0 for Fe and Co samples of different purity are also given for comparison. 

Hence, in order to obtain the temperature dependence of electrical resistance 
a t  zero magnetic induction, ,o(B = 0, T), in ferromagnetics it is possible to  
apply the Kohler rule for longitudinal and transverse magnetoresistance. The 
corresponding samples should contain enough impurities so that deviations from 
the Kohler rule associated with the transition from large- to  small-angle scatter- 
ing (by long-wavelength phonons) do not occur. The investigation of the tem- 
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Fe-l 
Fe-2 
Fe-3 
Fe-4 

( H  = 0: 
samples 

10 
50 
71 
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perature dependence of electrical resistance in the demagnetized state ( H  = 0) 
shows that with decreasing purity the linear term decreases considerably while 
the quadratic term remains practically unchanged. In the temperature depend- 
ence e ( B  = 0, T) the linear term is considerably smaller than the values cor- 
responding to  the resistance in the demagnetized state (at H = 0). 

3.6 Residual electrical resistance of ferromagnetic metals 

I n  order to clarify the character of the temperature dependence p(T) ,  it is 
necessary to  known how to determine correctly the residual resistance Po.  In  
ferromagnetic metals Po, l i - 0  is not proportional to the concentrations of impu- 
rities and other lattice defects, i.e. is not determined only by the scattering on 
inhomogeneities of the electrostatic potential. Moreover, Berger and de Vroo- 
men [71] showed that for Fe p o , R = O  as a function of impurity concentration has a 
minimum which corresponds to RRR (H = 0) = 300. The anomalous behaviour 
of @ O , H = O  for ferromagnetics arises from the fact that there is a contribution to  
e 0 , H - o  which comes from the magnetoresistance eB(0)  due to  the presence of 
spontaneous magnetization (see Section 3.4). Therefore the residual resistance 
of ferromagnetic metals at H = 0 may be written as 

@ O , R = O  = k c + e m  > (3.18) 
where k is a constant, c the concentration 
of impurities, and ,oB the contribution to 
resistance arising from the internal mag- 
netic field B = 4 z M,. 

Thus, to  obtain the residual resistance 
it is necessary to know the value eB(0) .  
Fujii and Morimoto [75] determined e B  
for a zone-refined Fe polycrystal a t  4.2 OK 

from measurements of e ( T )  in a longitu- 
dinal field up to  5.5 kOe. An analysis of 
the correlation between the resistance 
e ( B  = 0 ;  4.2 OK) obtained by extrapola- 
tion ande(H = 0 ;  4.2 OK) shows that the 
electrical resistance measured a t  H = 0 
contains a contribution from magneto- 

Fig. 12. Connection between RRR ( B  = 0, 
T = 4.2 OK) and ERR (H = 0, T = 4.2 OK) 

for Fe: o by [75] and by [35] 
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resistance lying between 38 and 84% for samples with RRR ( H  = 0) = 35 to 
400, and depends on the concentration of impurities. The maximum value of eB 
(4.2 O K )  is 0.02 x 0 cm. Fig. 12 shows the correlation between the resistance- 
ratios a t  B = 0 and H = 0. The difference between the straight Line n = 1 
and the RRR ( B  = 0;  4.2 OK) curve gives the value of the magnetoresistance. 
As seen from Fig. 12 it increases with increasing RRR. Roughly speaking three 
regions may be distinguished : 

I .  RRR ( H  = 0) = 36 to  100: small eB.  
2. RRR ( H  = 0) = 100 to 300: RRR ( B  = 0 ;  4.2 OK) is two to six times lar- 

3. RRR ( H  = 0) = 330 to 400 : RRR ( H  = 0 ; 4.2 OK) contains the constant 
ger than RRR ( H  = 0;  4.2 OK). 

value @a. 1.2 OK = 0.02 x 10-6 Rcm. 

Hence, the above-mentioned nomogram may be used to determine the purity of 
polycrystalline Fe. 

Such an effect was observed by Fujii in Ni [76]. He found that for Ni samples 
with RRR ( H  = 0) = 300 to 1600 the contribution of magnetoresistance to  
@ ( H  = 0 ;  4.2 OK) lies between 15 and 23.5% and depends on the concentration 
of impurities (see Fig. 13). A similar effect should be observed in Go; however, 
its influence on the residual resistance has not been studied so far. 

It should be noted that the longitudinal magnetoresistance tends to saturation 
when t,he magnetic field increases (see, for example, [77]), and therefore the deter- 
mination of @( B = 0 ; 4.2 OK) performed in [75] and [76] by means of linear ex- 
trapolation is not always correct, especially for pure samples whose magneto- 
resistance reaches the region of saturation. 

A consistent analysis of residual resistance (not making use of linear extra- 
polation) has been carried out by Schwerer and Silcox [78] on the basis of the 
Kohler rule. 

For ferromagnetic metals two additional scattering mechanisms should be 
mentioned which make a contribution to residual resistance : 

1.  scattering by an inhomogenous distribution of d-electron spins caused by 

2. scattering by the inhomogeneous spin distribution in domain boundaries 
the presence of internal stresses (magnetostriction residual resistance) ; 

(magnetocrystal residual resistance). 

The first mechanism has been investigated in [79] where it is shown that a t  
large magnetic field strengths this part of resistance decreases as H - 2 .  Therefore, 
if we determine e,, from measurements in a magnetic field, this part of the re- 
sistance may be neglected. 

Fig. 13. Values of the magnetoresistance of 
Ni a t  T = 4.2 OK for samples of different 

purity [78] 
5CO 1000 15QO 

RRR IH-0) - 
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Hence, the residual electrical resistance of a ferromagnetic metal is determined 
not only by the number of static lattice imperfections, but also by inhomogene- 
ous distributions of d-electron spins and the contribution of the magnetoresis- 
tance due to  the internal magnetic field. This should be taken into account when 
the contributions of different scattering mechanisms to  the electrical resistance 
are to  be separated. 

3.7 Znfluence of the spin-wave dispersion law on eem(T) 
in fewornagtietically ordered rare-earth metals 

The temperature dependence of the electrical resistance due to the scattering 
of electrons by spin waves is determined essentially by the energy spectrum of 
the spin waves. I n  Section 3.1 a discussion was given for a quadratic spin-wave 
dispersion law which occurs in ferromagnetics with small anisotropy. However, 
the ferromagnetics with hexagonal close-packed structure including heavy rare- 
earbh metals usually possess considerable magnetic anisotropy between the 
hexagonal axis and the basal plane, as well as in the basal plane. As shown by 
Niira [80] in such crystals the lowest branch of the spectrum of spin waves has 
the form (for sufficiently small q)  

(3.19) 

where the constants A ,  al, and a, are determined by the exchange integral and 
anisotropy energy; ql, q,, q3 are the components of the vector q along the basis 
vectors of the reciprocal lattice. The energy gap A which is the minimum energy 
required for the excitation of a spin wave, is determined by the values of the 
magnetic anisotropy constants for the hexagonal axis k, and the basa,l axis k6. 
A may be evaluated by means of the formula 

(4  k € Y 2  A =  

where kB is the Boltzmann constant. 
It was shown by Turov and Shavrov [81] that in the spin-wave spectrum of 

ferro- and antiferromagnetics, in addition to the “pure magnetic” gap (which is 
due to the magnetic anisotropy energy and the energy of demagnetizing fields), 
there is an energy gap associated with spontaneous deformations caused by 
magnetoelastic energy. A real possibility for the appearance of a magneto- 
elastic gap occurs in h.c.p. crystals with a small anisotropy constant in the basal 
plane and with the easy magnetization axis in the basal plane, but with a suffi- 
ciently large anisotropy constant in the direction of the hexagonal axis. Hence, 
in the spin-wave dispersion law an energy gap associated with the magnetic an- 
isotropy energy or magnetoelastic energy may appear. 

As mentioned in Section 3.1, in the case of a quadratic dispersion law of spin 
waves the magnetic part of the resistance of ferromagnetic metals a t  low tem- 
peratures is proportional to T2 (see (3.4)). In  the presence of magnetic aniso- 
tropy an exponential factor appears in the expression for eem( T )  which is con- 
nected with the occurrence of an energy gap in the spectrum of spin waves : 

k B  ’ 

(3.20) 

3 physica (b) 57/1 
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quadratic, A = 0 
quadratic, A + 0 

- 
linear, A = 0 
linear, A * 0 

where B is a coefficient independent of temperature and A is the value of the 
energy gap expressed in OK. 

Yoshimori [82] and Kaplan [83] found that for a magnetic structure which 
has the form of a ferromagnetic spiral the spin-wave dispersion law is linear. 

T2 TW T3/2 
T2 exp ( -  A / T )  T3/2 exp (- A / T )  - 

T4 T2 TS 
T4 exp (- A/T)  T2 exp (- A/T)  - 

For a linear dispersion law 
eem(T) - T 4 .  (3.21) 

In  this case anisotropy can also cause the appearance of an energy gap ; it follows 

eem(T) = C T 4  exp - - ( 3- (3.22) 

Accordingly the character of the spin-wave spectrum is reflected in the tem- 
perature dependence of the kinetic coefficients, but also in that of all quantities 
a t  thermodynamic equilibrium, in particular spontaneous magnetization, as( T ) ,  
and magnetic contribution to  heat capacity, C,(T) (see Table 4). 

Table 4 

3.8 Experimental investigation of the tentperuture dependence 
of the magnetic part  of the resistance of rare-earth metals (polycrystals) 

The temperature dependences of the total resistance (curve 1) and the magnet- 
ic part of the resistance (curve 3) of polycrystalline rare-earth metals (Gd, Tb, 
Dy, Er, and Tm) are presented in Fig. 14. The comparatively low purity of the 
investigated rare-earth samples allows one to  neglect the contribution eB which 
is due to the influence of the internal field on the movement of conduction elec- 
trons (see Section 3.4). Indeed, in effective fields where l / r<  1 ,  Aele is propor- 
tional to ~ Z / Y ) ~ ;  for metals with RRR ( H  = 0) = 10 in a magnetic field H = 
= 3 x lo4 Oe the ratio llr is about 0.1, i.e., the contribution of eB does not 
exceed 1 per cent of the total resistance e(T) .  It follows that eo can be obtained 
by extrapolation of e( T )  to  0 OK and that the contribution of ea( T )  to eem( T )  is 
negligible. 

For separating the temperature-dependent parts of resistance it is assumed 
that the various scattering mechanisms give additive contributions to the total 
resistance e( T )  : 

(3.23) 
(Po residual resistance, pee( T )  resistance associated with electron-lectron colli- 
sions, eem( T )  and eep( T )  resistance due to the scattering of electrons by magnons 
and phonons, respectively). 

In  order to  determine the dependence eem( T )  without postulating the form of 
this function, it is necessary, using definite assumptions, to separate eee( T )  and 
eep(T)  from ei(T)  = e ( T )  - eo. One of the possible ways of separating eee(T) is 
to use data on the temperature dependence of the resistance of a metal, which 

e ( T )  = e o  + eee(T) + e e m ( T )  + eep(T) 
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has a similar electronic structure, but does not possess a magnetically ordered 
state. I n  the rare-earth series such a metal is lutetium. 

Indeed, calculations by the method of augmented plane waves considering 
relativistic effects [84] show that the Fermi surfaces and the densities of states 
at the Fermi surfaces of the heavy rare-earth metals Tb, Dy, Er, and Lu are 
similar. This is also confirmed experimentally : The coefficient y characterizing 
the electronic heat capacity is practically the same for all these metals, and is 
equal to  =lo m J  deg-l mol-1 [85]. Thus i t  may be concluded that  the con- 
tributions eee(T)  should not be very different for the heavy rare-earth metals. 

I n  Fig. 14. curve 2 corresponds to  the expression 

ei(T) - e e e ( T )  = e e p ( T )  + e e m ( T )  9 (3.24) 

i.e. contains contributions from only two scattering mechanisms : phonon and 
magnon scattering. 

The phonon part eep( T )  may be separated with the aid of the Bloch-Griineisen 
function. For this purpose it is sufficient to know the Debye temperature and 
the value of the phonon resistance at this temperature, e e p ( 8 D ) .  The possibility 
of using the Bloch-Griineisen law to describe the temperature dependence of the 
electrical resistance of heavy rare-earth metals was also checked for lutetium 

For magnetically ordered rare-earth metals 0, can be determined from measure- 
ments of the elastic constants, since an evaluation of OD from the heat capacity 
or the electrical resistance of magnetically ordered rare-earth metals is not 
possible due to  the uncertainty of the magnetic contributions C,( T) and eem( T), 
and the neglect of these contributions will lead to an underestimated value of 8,. 
In  determining eep(eD) corrections should be made for the mass number M and 
the Debye temperature of the given metal. (For T > OD, e - r T / ( M  O”,, where 
r is a characteristic constant proportional to the radius of the Debye sphere.lO)) 

By such a treatment of the experimental data i t  was found that in the para- 
magnetic region een, does not depend on temperature and coincides with the 
value obtained by linear extrapolation of curve 2 to 0 OK. This coincidence 
confirms the correctness of the applied method of separating the magnetic part 
of the resistance of rare-earth metals.’l) 

Taking into account the energy gap in the spin-wave spectra of Tb and Dy, 
good agreement is obtained between the calculated curves and experiment iri 
the low-temperature region. The electrical resistance [86, 87, 93, 941, sponta- 
neous magnetization [SO], and the magnetic part of the heat capacity [SS, 89,941 
of these metals vary with temperature according to Table 4 with A = 20 OK for 
Tb and A = 30 OK for Dy, which corresponds to the known magnetic anisotropy 
of these metals. Thus, the experimental results confirm the presence of energy 
gaps in the spin-wave spectra of these metals. 

The magnetic structures of holmium and erbium in the low-temperature region 
are ferromagnetic spirals for which the spin-wave dispersion law is linear. 
Therefore, it may be expected that for the electrical resistance of these metals 
the relation (3.21) will be fulfilled. The behaviour of the electrical resistance of 

[861. 

lo) For heavy rare-earth metals the radii of the Debye spheres are similar, and the cor- 

11) An exceptional behaviour is shown by gadolinium in which eem depends on tem- 
rection for the coefficient r practically does not change the final result. 

perature at T > OC. 
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holmium and erbium a t  low temperatures shows that the energy gap in the spin- 
wave spectrum of these metals is comparatively small. I n  the temperature region 
4.2 OK < T < 20 OK eem(T) of holmium and erbium varies as T4.  The magnetic 
part of the resistance of thulium exhibits a similar variation. 

Thus, from the temperature dependence of the elect,rical resistance, erm( T ) ,  
as well as of the spontaneous magnetization, a,(T), and heat capacity, C , ( T ) ,  
some conclusions can be drawn regarding the energy spectrum of spin waves. 
It is also interesting to study the anisotropy of the energy gap for different 
directions in Tb and Dy single crystals and to elucidate the question of its origin. 

At present it would be of great interest to study the temperature dependence 
of the electrical resistance of polycrystals with the aim of explaining the law 
gem( T ) ,  as well as to investigate the anisotropy of eem( T )  in single crystals of 
rare-earth metals (explanation of the main part of the anisotropy of eem( T )  not 
only a t  low temperatures but in a wide temperature range including temperatures 
above the Curie point). This question is discussed in Section 3.9. 

3.9 Anisotropy of the scuttering by  spin waves 

I n  a number of papers the temperature dependence of the electrical resistance 
of rare-earth single crystals was investigated for different crystallographic direc- 
tions [go]. However, the magnetic part of the resistance, eem( T ) ,  was separated 
only for Tb, Dy, and Er [91, 921. The method of separation of pem(T) proposed 
in [91] allows to determine the type of the temperature dependence as well as 
its value, without postulating the form of eem(T).  For separating the contri- 
butions of different scattering mechanisms the assumption (3.23) was used. I n  
Fig. 15, curves 1 and 2 give pi( T )  = e( T )  - Po for Tb, Dy, and Er in the main 
crystallographic directions [OOOl] (c-axis) and [1210] (a-axis) in the range 4.2 to  
370 OK. Curves 3 in these figures represent the electrical resistance of polycrys- 
talline samples, and curves 4 are similar to curves 2 in Fig. 14. 

In order to find pem( T) for different crystallographic directions it is necessary 
to know the value (per + pep) for these directions a t  each temperature. In  the 
case of Lu it is simple to determine these values as well as the coefficients A, 
and A ,  connecting (eee + erp) of polycrystals with the resistance of single crys- 
tals : 

in single crystals of rure-earth metals 

( e e e  + eep):ccr = A ,  (em + e e p ) p c r  . (3.26) 

The coefficients A, and A, for Lu practically do not depend on temperature. 
Because of the similarity of the crystal structure and the Fermi surfaces of the 
investigated metals, we may assume that the relations (3.25) and (3.26) are 
valid for other heavy rare-earth metals as well. Subtract,ing the components 
(3.25) and (3.26) from e i (T)  for magnetically ordered rare-earth metals we 
obtain the desired values of magnetic resistance. In  Fig. 15 curves 6 and 7 re- 
present the magnetic part of the resistance along the a- and c-axis, respectively. 

The magnetic pert of the electrical resistance of rare-earth metals is strongly 
anisotropic in the whole investigated region of temperatures : In  the ferro- and 
antiferromagnetic regions egm( T )  is greater than &,( T ) .  At low temperatures 
from 20 to 60 OK the dependence eem(T) for Tb and Dy is close to quadratic. 
Below 20 OK, for describing pem(T) it is necessary to introduce an exponential 
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Fig. 15. Temperature dependence of the 
electrical resistance of Gd, Tb, Dy, Ho, 
and Er single crystals. (1, 2) “Ideal” 
resistance in the directions [1310] and 
[OOOI]; (3) ‘‘ideal” resistance of poly- 
crystals; (4) phonon and magnon part 
of the resistance of polycrystals; (6) 
magnetic part of the resiBtsnce of poly- 
crystals e e m ( T ) ;  (6) eem(T) for single cry- 
stals in the direction [1210]; (7) pem(T) 
for single crystals in the direction [OOOl] 

([92,911) 
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Fig. 16. Dependence of lg [eem(T)]  on lg T for Tb and Dy single crystals 

Fig. 17. Temperature dependence of the magnetic part of the resistance for an Er single 
crystal in the ferromagnetically ordered state [92] 

factor, which agrees with the measurements of eem(T) on polycrystals (see 
Section 3.8). 

The temperature corresponding to the value of the energy gap in the spin- 
wave spectrum is observed directly in the dependence pem( T )  plotted on a loga- 
rithmic scale (see Fig. 16). From measurements of the electrical resistance of 
Tb single crystah along the c-axis the values A = 21.5 OK (for a non-annealed 
sample) and 17 OK (for an annealed sample) were determined [94]. The differen- 
ces in the values of A found before and after annealing can be associated with 
different values of the magnetic elastic energy in these two states (see Sec- 
tion 3.7). For Dy the value of A is between 29 and 31 OK (the measurements 
were carried out on several samples). 

pem(T) curves of an Er single crystal in the low-temperature range are shown 
in Fig. 17. I n  the region of ferromagnetic ordering (4.2 OK < T < 20 OK) it is 
found that 

e&,(T) - T3.7*0.3  and e:m(T) - T4.0*0.9 . 
The obtained result agrees well with the calculations for ferromagnetics 

having a linear spin-wave dispersion law, with the theoretical investigations of 
the electrical resistance of polycrystals (see Section 3.8), and with measurements 
of magnetization, a,( T )  [96]. In  the paramagnetic region the magnetic resistance 
does not depend on temperature, but it is anisotropic, and the character of 
anisotropy is different from that in the magnetically ordered state: &,, < @Ern. 
The anisotropy of the scattering by magnetic disorder may be understood from 
the following considerations : In  the general case the electrical conductivity at, 
depends on the processes of scattering (through the relaxation time z) and on 
the characteristics of the electronic structure : 

(vi electronic velocity in the direction i, dSf surface element on the Fermi surface). 
If i t  is assumed that the relaxation times of electrons for scattering by magnons, 
z,, and by phonons, tp, are isotropic, we have, as shown in [96], in the para- 
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I 

Tb 1.1 
DY 1.2 
Ho 1.3 
Er 

Table 5 magnetic region 

where a, and a, are the coefficients in the 
electron-phonon term of resistance. For Tb, 
Dy, Ho, a,nd Er these values are given in 

1.6 
2.0 
1.6 Table 5. 

rare-earth e: m 
metal 

4. Conclusions 

Thus, the available experimental data on the temperature dependence of the 
electrical resistance of transition metals allows one to conclude that the tempera- 
ture-dependent part of the resistance of non-ferromagnetic metals a t  sufficiently 
low temperatures (T & 10 OK) is mainly due to the scattering of conduction 
electrons by interelectronic collisions. The contribution of electron-phonon 
scattering to the electrical resistance of transition metals a t  T & 4.2 OK is by 
one order smaller than pee. It should be noted that in the available theoretical 
studies for transition metals, which qualitatively correctly describe th is  scatter- 
ing mechanism, considerable simplifications are made. For a correct description 
of the electrical resistance due t o  interelectronic collisions, it is necessary to take 
into account the peculiarities of the electronic structure and the topology of the 
Fermi surface of the given metal as well as the possibility of electron-electron 
umklapp processes. 

In the electrical resistance of magnetically ordered transition metals a t  low 
temperatures an additional contribution is introduced by the scattering of con- 
duction electrons by spin waves. The value of this contribution is extraordinarily 
great in the case of magnetically ordered rare-earth metals, exceeding the value 
of electron-electron resistance by several times and that of electron-phonon 
resistance by more than one order. The character of the temperature dependence 
eem(T) is determined by the peculiarities of the energy spectrum of spin waves. 
Therefore experimental investigations of the temperature dependence of the 
contribution due to  spin-wave scattering enables one to  get information on the 
type of the spin-wave dispersion law, and to estimate the value of the energy 
gap. 
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where a, and a, are the coefficients in the 
electron-phonon term of resistance. For Tb, 
Dy, Ho, a,nd Er these values are given in 
Table 5. 

Thus, for magnetically ordered rare-earth 
metals the anisotropy of eem in the para- 

magnetic region is due not only to  the anisotropy of the Fermi surfaces, but 
probably also to the anisotropy of the relaxation times. 

We should note that an analogous separation of pem(T) performed for Gd 
single crystals (see Fig. 15) without considering the differences in the Fermi 
surfaces of Gd and Lu leads to results which are basically different from those 
obtained for other rare-earth metals. This indicates that the present method of 
determining pem(T) ,  as should be expected, is not applicable to  Gd due to con- 
siderable differences in the electronic structures of Gd and Lu [84]. 

4. Conclusions 

Thus, the available experimental data on the temperature dependence of the 
electrical resistance of transition metals allows one to conclude that the tempera- 
ture-dependent part of the resistance of non-ferromagnetic metals a t  sufficiently 
low temperatures (T & 10 OK) is mainly due to the scattering of conduction 
electrons by interelectronic collisions. The contribution of electron-phonon 
scattering to the electrical resistance of transition metals a t  T & 4.2 OK is by 
one order smaller than pee. It should be noted that in the available theoretical 
studies for transition metals, which qualitatively correctly describe th is  scatter- 
ing mechanism, considerable simplifications are made. For a correct description 
of the electrical resistance due t o  interelectronic collisions, it is necessary to  take 
into account the peculiarities of the electronic structure and the topology of the 
Fermi surface of the given metal as well as the possibility of electron-electron 
umklapp processes. 

In the electrical resistance of magnetically ordered transition metals at low 
temperatures an additional contribution is introduced by the scattering of con- 
duction electrons by spin waves. The value of this contribution is extraordinarily 
great in the case of magnetically ordered rare-earth metals, exceeding the value 
of electron-electron resistance by several times and that of electron-phonon 
resistance by more than one order. The character of the temperature dependence 
eem(T) is determined by the peculiarities of the energy spectrum of spin waves. 
Therefore experimental investigations of the temperature dependence of the 
contribution due to  spin-wave scattering enables one to  get information on the 
type of the spin-wave dispersion law, and to estimate the value of the energy 
gap. 
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