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1. Introduction

The characteristic feature of metallic systems is the presence of conduction
electrons; hence the investigation of the effect of those electrons upon various
macroscopic properties of metals has received a great deal of interest. Electrical
conduction is one of the most important properties essentially depending on the
behaviour of the electronic sub-system.

At the same time electrical conductivity is one of the most complex phenome-
na since it is determined by the properties of all sub-systems of the metal: the
electronic, ionic, and (in the case of magnetically ordered metals) magnonic
sub-system, and by their interaction. In other words, the conductivity of a given
metal depends not only on its electronic structure but also on the mechanisms of
relaxation of the conduction electrons which are due to the scattering by struc-
tural defects of the lattice, phonons, magnons (in ferro- and antiferromagnetics),
and scattering arising from electron—electron interaction. The electrical resis-
tance of simple non-transition metals is mainly established by the first two mech-
anisms of scattering. For the electric resistance of transition metals, especially
at low temperatures, the last mechanism is essential. For magnetically ordered
metals, all the above-mentioned mechanisms of scattering make contributions
to the resistance.

In the first stage of the investigations of the electrical resistance of metals the
main efforts were directed towards the understanding of the scattering of elec-
trons by lattice vibrations and structural defects (impurities, vacancies, disloca-
tions). Several review articles and monographs have been devoted to these
mechanisms of scattering (see, for example, [1] to [4]). During the last 10 to
15 years the centre of interest moved to the study of the scattering mechanisms
due to interelectronic and electron—magnon collisions. At present a large amount
of experimental material has been accumulated; however, there is no review
article on these questions so far. With the present paper an attempt is made to
fill this gap. However, before passing over to a brief description of the related
theoretical concepts and presenting the accumulated experimental material, it
seems advisable to make a few remarks concerning some questions of experimen-
tal conditions.

In order to isolate the contributions of electron—electron and electron-mag-
non collisions to electrical resistance, it is necessary to measure the temperature
dependence of the resistance of quite pure samples to ensure that the investigat-
ed scattering mechanisms are not masked by a large background due to scatter-
ing on impurities and other lattice defects (residual resistance). Moreover,
according to [5] and [14] at low temperatures the scattering of electrons by
vibrating impurity ions leads to an additional contribution to electrical resistance,
which is proportional to the concentration of impurities and varies with tem-
perature according to a T%law, i.e. in the same way as electron—electron and
(for a quadratic dispersion law of spin waves) electron-magnon resistance. In
order to estimate the value of this contribution, it is necessary to make measure-
ments on several samples having different concentrations of impurities. Only
for samples with a high degree of purity this contribution may be neglected.

However, in low-temperature investigations of pure samples for which the
ratio of room temperature to residual resistance gsoo -x /') is about some 103 to

1) The value gg00 °x /g, the so-called “residual resistance ratio” (RRR), is often used to
estimate the purity of the metal.
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101 it is often necessary to use samples with a small cross-section, or to increase
the measuring current through the sample in order to increase the experimental
accuracy.

In the first case, when the mean free path of the electrons, I, is comparable
with the transverse dimensions of the sample, d, a size effect arises which can
distort the real temperature dependence of the bulk resistivity. This is agsociat-
ed with the fact that in thin samples at low temperatures (scattering by small
angles) the contribution of normal electron—phonon collisions, the so-called
N-processes, grows because in this case each scattering act of an electron by
a phonon is followed by a collision with the surface. According to [6] this
mechanism of scattering leads to an additional contribution gy to the tempera-
ture-dependent part of electrical resistance?):

1/3 2/3
oo = ()" (0w Loo)8 (L) [ (T8 218 (L1)
3 0p P

where go, and I, are the resistance and the mean free path of electrons in a bulk
sample. 6}, is the Debye temperature, and of, is the resistance due to normal
electron—phonon collisions. From the above formula it follows that the thick-
ness of the sample should be chosen according to the condition d > 1.

In the second case, when the magnetic field caused by the measuring current
(or external field) has such a magnitude that it is impossible to neglect the radius
of curvature of the electronic trajectories in comparison with the mean free
path, there arises a galvanomagnetic effect which strongly depends on tempera-
ture. The point is that at small fields at which the topological peculiarities of the
Fermi surface of the metal are not displayed, the value of the transverse magne-
toresistance is Ag(H, T) ~ 0(0, T) ({T)/r)%. Hence, in measurements of the
temperature dependence of electrical resistance at low temperatures which aim at
investigating the scattering mechanisms, the condition /<€ r has to be fulfilled.3)

For ferromagnetic metals the experimental situation becomes more complicat-
ed due to the fact that even for small currents whose magnetic field may be
neglected, there is an internal field due to non-zero magnetic induction which
will act on the movement of the electrons. This leads to a galvanomagnetic
effect, just as an external magnetic field (or the field of the measuring current)
leads to an increase of the electrical resistance of non-ferromagnetic metals.
Hence, when discussing experimental results for ferromagnetic metals carried
out in zero external magnetic field, it is necessary (see Section 3 of the paper) to
take into account the contribution of that internal magnetic field.

2. Scattering Mechanisms Due to Electron-Electron Interaction

2.1 Theoretical concepts concerning the influence of electron—electron interaction
on the electrical resistance of metals

The electrostatic interaction between the conduction electrons in a metal
is described by a screened Coulomb potential of the type (efr) exp (— ¢ 7); ¢ is

2) In addition to this temperature-dependent contribution the size effect gives also
a temperature-independent contribution which may be evaluated by the well-known for-
mula g3 = 9o (1 + & loo/d) where g4 is the resistance of a sample with thickness d, and a
is a parameter characterizing the probability of diffuse reflection from the surface.

3) For evaluations it should be noted that r = ¢ P x H/(e H2), where P and ¢ are the
electronic momentum and the charge, and c¢ is the velocity of light. '
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called the screening constant, and 1/g the screening length (or radius). Due to
the effect of screening the electrons can interact only at short distances; at
distances r > 1/q they may be regarded as independent. Nevertheless, the elec-
tron—electron interaction is rather large and is comparable with other types of
interaction in a metal, in particular with electron—phonon interaction.. This
leads to peculiarities in a number of properties of metals, in the first place of
kinetic properties. These peculiarities cannot be explained without taking into
account electron—electron interaction which results in the occurence of an addi-
tional scattering mechanism.

According to the Pauli principle the scattering of two electrons from the states
Ek, and k, into the states k; and k; can take place only if both final states are not
occupied. Moreover, the initial and final states should lie in an energy range of
width kT about the Fermi surface. Due to this fact the probability of inter-
electronic collisions contains a factor (kT /eyx)?. This factor determines the tem-
perature dependence of the electron—electron resistance ge..

The value ge. depends on the electronic structure of the metal and the prob-
ability of electron-electron umklapp processes. Let us discuss two cases which
oceur in metals:

1. In the metal there is only one group of electrons having the same effective
mass, i.e., the metal has spherical (or near-spherical) Fermi surfaces. An example
of such a metal is sodium.

2. In the metal there are several groups of current carriers with different
effective masses (and different Fermi velocities) corresponding to different sheets
of the Fermi surface or different regions of a sheet (strongly anisotropic Fermi
surface). The second case is particularly characteristic of transition metals.

1. The influence of interelectronic collisions on the electrical resistance of
metals in the first case was first examined in [7]. Later this question was re-
examined [4, 8, 12]. It follows from these investigations that the interelectronic
collisions lead to a resistance contribution gee~ 7'2 only if in the process of scatter-
ing there are electron—electron umklapp processes, as a result of which the
total wave vector of the interacting electrons is changed by a reciprocal-lattice
vector g: k; + k, — k; — ks = ¢, i.e. if some momentum is transfered to the
lattice as a whole.

According to [4] in this case the electron—-electron resistance takes the form

e? g ky (kT 2 '
— L EZ) 2.1
Gee a”F 3 ¢ \¢xp 1)

where « is a constant, e electronic charge, and vy, ey, and kg are Fermi velocity,
Fermi energy, and Fermi wave vector, respectively. @ is an interference factor.
Experimentally in monovalent non-transition metals (Na, K, Cu, Au, Ag) such
a dependence on temperature has never been observed. Since electron—electron
umklapp processes are not frozen out even at the lowest temperatures (unlike
electron—phonon umklapp processes), this experimental fact apparently indica-
tes a very small value of g, which is masked by the residual resistance of even
very pure monovalent metals.

If there are no umklapp processes, i.e. only normal electron—electron processes
(ky + ky — ki — ks = 0) are essential, interelectronic collisions do not lead to
electrical resistance in virtue of the momentum conservation law. Thus normal
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electron—electron processes of scattering cannot give rise to a relaxation of the
electron distribution which is displaced from the equilibrium state by an electric
field and has a total momentum different from zero. However, in sufficiently
thin samples whose thickness is smaller than the mean free path of the electrons,
and in which diffuse scattering by the surface is essential, even normal electron—
electron collisions may lead, in principle, to the appearance of resistance. In
this case a single electron—electron collision is sufficient to deflect the electrons
to the surface, and the diffuse scattering on the surface will lead to an additional
contribution to electrical resistance proportional to 7'? and dependent on the
thickness of the sample. Hence, in this samples normal electron—electron
processes become an effective mechanism of scattering due to surface scattering.
The possibility of such a source of resistance was pointed out in [9] and [10], but
no experimental evidence of such a mechanism exists.

2. A different situation arises in metals whose electronic sub-system is charac-
terized by several groups of carriers with different velocities (and effective
masses). The most characteristic example of such metals are transition metals.
If the electronic sub-system of such a metal is not closed (for example, carriers
with large effective masses transfer the momentum acquired in interelectronic
collisions to the lattice), collisions between carriers with large velocities (and
small effective masses) and low-mobility carriers (with large effective masses)
will lead to a decrease in the velocities of the “light’’ carriers and, as a result, the
appearance of resistance. It should be noted that in this case the appearance of
Qee is possible even in the absence of electron—electron umklapp processes.

Theoretically this case was discussed [4, 11,12, 13]. It is shown in [11] that the
electrical resistance due to interelectronic collisions, i.e. the scattering of <light”’
carriers with mass m, by “heavy’’ carriers with mass m,, is proportional to the
square of the temperature and is expressed by the formula

7? e mé (kT

2
o ="gnit|z) HO D =aT 22)

Ep

(n number of carriers with mass m, per unit volume, % Planck’s constant,
B = my/m,, ey Fermi energy of the group of ‘light’’ carriers counted from the
bottom of the band). In (2.2) the factor H(f, ¢) is essential: as § increases by a
factor of 10, the value of H{f, q) increases by more than two orders. According
to [11] at a given value of the screening constant H(f, ¢) is proportional to %15,
With increasing screening constant H(f, q) decreases. Hence, the greater the
difference between the effective masses of the two groups of carriers and the less
the value of g, the greater is the contribution of g.. to the total electrical resistance
of the metal.

The evaluation of gee for a metal with two groups of electrons was also con-
sidered in [4]. In this work g.. is expressed not through the ratio of effective
masses but through the ratio of Fermi velocities:

At €@ kg (v — v,\P(kT\?
o =~ Tonz g ) (o) (&)

Here v, and v, are the velocities of the carriers with small and great effective
mass, respectively; v; > v,. :
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A similar calculation for g.. was carried out in [12]. It is necessary to note
that the expressions (2.2) and (2.3) were obtained in the approximation of two
spherical Fermi surfaces and quadratic dispersion laws. These assumptions

were also made in [12].

Table 1
metal| 02732 ok 8) 6p 0300 °K @ léef. y 4) rfef.
(1078 Qem) | (°K) | ppooor | (10722 Qem deg™2) Zr (mdJ mol-! deg~2) T
Zr 38.6 291 34 =~ 80 [23] 2.80 [41]
Nb 13.5 275 | 30000 32 (30] 7.79 (361,
30 140 (2] (42]
Mo 5.2 425 7700 1.8 [31] 2.01 [37]
5250 2.6 (23]
1600 2.1 (23]
800 1.8 (31]
Ru |olec 450 1220 2.7 [22] 2.95 [38]
elec 12| — 90 2.8 [25]
elle 541 — — 2.3 [25]
Rh 4.4 512 — — — 4.65 [39]
Pd 9.7 267 580 33 [2] 9.57 [40]
400 31 [32]
Hf 28.1 252 32 ~ 15 (23] 2.16 [41]
Ta 12.1 230 200 ~ 70 (23] 6.27 [37]
\4 4.9 379 | 300000 0.8 (33] 0.84 [43]
27000 0.6 [34]
25000 1.5 [23]
9400 to 0.6 to 1.2 [28]b)
95000
Re e lc 168 | 280 5100 4.3 {20] 2.29 [44]
0p—82° ©) — 2240 5 [23]
0s | gp=6oc 7.9 | 400 310 2.3 [21] 2.35 [45]
ep~16° 6.0 400 1.8 [21]
Ir 47 310 150 0.9 [24] 3.14 [45]
Pt 9.6 235 5000 12 [10] 6.41 [39]
2500 14 (2]
2300 17 [26]
280 19 [46]

8) The value gg73.2 °x for Zr, Nb, Rh, Pd, Hf, Ta, Ir, and Pt are taken from [2].
b) According to [28] there is no correlation between a and 9300 °x/00 °E.

°) @ is the angle between the rod axis and the c-axis.
4) » is the coefficient of electronic heat capacity.



Fig. 1. Temperature dependence of the electrical resi-
stance of some transition-metal single crystals
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Thus, the results of the theoretical papers [4], [11], and [12] show that at low
temperatures ge.*) may be dominant in the temperature-dependent part of elec-
trical resistance, since with decreasing temperature the electron—phonon re-
sistance decreases much faster (gep ~ 75 at 7' <C 0.1 0p) than gee.

2.2 Experimental investigations of the coniribution of interelectronic collisions
to the electrical resistance of transition melals

For the first time a quadratic dependence of electrical resistance on tempera-
ture at T < 0y, was experimentally discovered in Pt in 1933 [16]. Later anal-
ogous temperature dependences of electrical resistance were found in Mo [17],
W [18], Nb, Pd, Rh, Mn, Fe8), Co®), and Ni®) [2, 19]. In these papers quantita-
tive studies of the contribution ~ 7'? were made not for all these metals; however,
the main value of the enumerated papers consisted in the experimental evidence
of a new scattering mechanism in transition metals due to interelectronic colli-
sions. For many other transition metals the contribution of this mechanism of
scattering was detected only recently.

At present the contribution of interelectronic collisions has been observed in
most transition metals. The results of these experimental investigations and the
references to the papers are given in Table 1.

Typical temperature dependences of the electrical resistance of transition
metals are given in Fig. 1. In order to reveal the different scattering mecha-
nisms leading to different temperature dependences of electrical resistance, it is
convenient to give the dependence of an “‘ideal’ electric resistance on tempera-
ture, o; = o(T') — ¢, in a logarithmic scale. Such dependences for some tran-
sition metals are given in Fig. 2. This figure shows the transition from the
T5-dependence, which characterizes electron-phonon resistance, to the 7'2-de-
pendence, which occurs at sufficiently low (=10 °K) temperatures and charac-
terizes electron—electron scattering.

An analysis of the experimental results has shown that the temperature de-
pendence of the electrical resistance of transition metals at 7' < 0.1 6y, cannot
be described by the expression

olT) =g, + 0T, (2.4)
but it follows very well the expression
o(T) =gy +aT? +bT5. 2.5)

The occurrence of such a dependence can be demonstrated by plotting
[e(T) — o)/ T2 versus T3. The result should be a straight line which intersects
the ordinate axis at a (electron—electron scattering); the slope of this line is
equal to the coefficient b (electron-phonon scattering). The experimental data
treated by this method indeed fit a straight line. Typical plots are shown in
Fig. 3. For greater reliability, the measured ¢(T') dependences were treated in
a number of papers (see, for example, [23]) according to the above relation by a
least-squares method, using an electronic computer. Both methods give identi-
cal results. Moreover, in [26] the temperature dependence of the electrical re-

1) In general, the above mechanism of scattering due to interelectronic collisions can
apparently manifest itself even in non-transition multivalent metals, which have rather
complex Fermi surfaces. However, experimental confirmations of this effect are not numer-
ous at the present time; therefore the discussion of this question would now be premature.

5) In ferromagnetic metals a 7'%-dependence of electrical resistance occurs due to inter-
electronic scattering as well as due to scattering by spin waves.
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sistance of platinum measured on several samples of high purity in the region of
liquid helium temperature was discussed on the basis of a power series:

oT) =0 +aT +aT* +BT°+puT*+ 075, (2.6)

instead of using (2.5). It was found that the coefficients «, £, and p are close to
zero, and g,, @, and b are positive and practically completely determine o(T') for
the investigated samples.

As seen from Table 1 there is a considerable scattering of the values of a
measured on different samples of the same metal (see Mo, W, Ru, Pt in Table 1).
For example, the values of @, which are found in [28] for nine tungsten samples
with residual resistance ratios (RRR) from 9400 to 95000, lie in the range

50
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0.6 X 10722 to 1.2 x 10722 Qcmdeg=2, but there is no correlation between a
and RRR, characterizing the sample purity.

With regard to the quantitative correlation between a and y noted in [27] for
Os, Re, Co, Fe, Ni, Pt, and Pd (a ~ »?), it should be noted that the value of a is
determined not only by the values of the effective masses (or ), but also depends
on the screening constant, the Fermi energy, and also on the probability of
electron—electron umklapp processes. The latter characteristics of the electronic
sub-system also differ for different metals, as well as the effective masses and the
coefficient of the electronic heat capacity. Electron—electron scattering affects
not only the electric resistance, but also the temperature dependence of the ther-
mal resistance. In recent papers (for example, [20 to 22, 28]) this contribution
was discovered in rhenium, osmium, ruthenium, tungsten, and other metals.
This is additional evidence of the strong influence of electron—electron interac-
tion on the kinetic properties of metals. The temperature dependence of the
mean free path characteristic of interelectronic collisions (I ~ T-?) was discov-

ered recently in measurements of the radio-frequency size effect in Mo and W
[29].
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Thus, the available experimental data show that the temperature-dependent
part of the electrical resistance of transition metals at sufficiently low tempera-
tures (T < 10 °K) is determined practically completely by the scattering of
electrons due to interelectronic collisions. At liquid helium temperature the
electron—electron resistance of transition metals is higher than the electron-
phonon resistance by several tens of magnitude. So, for example, at T =
=4.2 °K the ratio ge./gep is equal to 30 for tungsten, 60 for molybdenum, 50
for osmium, and 130 for ruthenium and platinum.

It isdifficult to draw coneclusions on the exact origin of g in non-ferromagnet-
ic transition metals: There may be contributions to g from collisions of groups
of carriers with different effective masses and different Fermi velocities as well
as from interelectronic collisions accompanied by electron—electron umklapp
processes.

The scattering mechanisms of electrons which determine the temperature
dependence of the electrical resistance of magnetically ordered transition metals,
will be discussed in Section 3 of this review.

3. Scattering of Conduction Eleetrons by Spin Waves
in Ferromagnetic (3d and 4f) Metals

3.1 Scattering mechanism leading to a quadratic temperature dependence
of electrical resistance

Transition metals with magnetic order possess some peculiarities in their
kinetic properties. The thermal excitations in the system of atomic magnetic
moments (spin waves?)) lead to the appearance of additional scattering mecha-
nisms for the current carriers. Let us discuss the main results of theoretical
papers in which the temperature dependence of the electrical resistance due to
the scattering of conduction electrons by spin waves is investigated.

The collision processes of s-electrons and magnons at T'<€ 0¢ (0 Curie tem-
perature) were first investigated by Vonsovskii on the basis of the s-d model.
The interaction between s-electrons and magnons occurs via creation and de-
struction of spin waves. In these processes the conservation law of quasi-mo-
mentum is fulfilled :

kK =k + q,

where k’ and k are the quasi-momentum of the s-electron before and after the
collision, q is the quasi-momentum of the magnon [47].

The calculation of the energy spectrum of electrons in ferromagnetic crystals
and of the transition probabilities in such systems performed in [48] allowed to
develop a theory of the electrical conductivity of ferromagnetic metals in the
region of low temperatures.

The qualitative behaviour of gen(T) due to any electron-magnon scattering
mechanism can be obtained from general physical considerations without
solving the kinetic equation [49]. Ifin the collision the electron would fully lose
the momentum obtained in the electric field, the electrical resistance would be
proportional to the total number of collisions,

S Nyw(g) 8 (Byo — Ex_q0 — &) dq, (3.1)

8) The quasi-particles corresponding to spin waves are ferromagnons (or magnons) char-
acterized by the quasi-momentum gq.

2%
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where N, is the average number of magnons with momentum ¢ (the Bose distri-
bution function). The product w(q) 8 (Er,c — Er—gq,« — &) gives the probability
of collisions in which the electron loses the momentum ¢ and the energy (£, , —
— By _q, ), w(q) is the squared absolute value of the matrix element correspond-
ing to the given transition, and the 3-function ensures energy and quasi-momen-
tum conservation. However, at low temperatures in each collision the compo-
nent of the momentum along the field changes by a value directly proportional
to ¢2. Hence, the number of collisions during which the electron will fully lose its
momentum is Nq'z ie.,

Pem(T fN w(q) 8(Er ¢ — Ex—q 00 — &) 9> dg, (3.2)

where the integral is taken over the whole momentum space. Assuming that
the energy of the electrons depends only on the absolute value of the quasi-
momentum and not on spin, and integrating the expression (3.2) over the angles
it follows that

Oem(T’) = const | qu w(q) ¢*dg . (3.3)

Hence, for the qualitative determination of the temperature dependence pom(T),
according to (3.3) it is sufficient to know w(g). For processes due to exchange
electrostatic interaction w(q) is constant, and from (3.3) it follows that

Oew(T) = a; T2 (3.4)

Analogous results are obtained by more rigorous calculations of the electrical
resistance of ferromagnetics [50 to 55] (solution of the kinetic equation and use
of the statistic perturbation theory developed by Kubo and applied to the cal-
culation of electrical resistance by Nakano). In [55] it was taken into account
that the energy of the conduction electron depends not only on the absolute
value of quasi-momentum, but also on the direction of spin:

Ero = E(k) + 20 I(k),

where E(k) and I(k) are functions of the absolute value of quasi-momentum;
0 = +1/2. As a consequence in (3.4) an exponential multiplier of the type
exp (—T,/T) appears, where the parameter Ty = Oc¢(a k,)? (J/Ey)? is some criti-
cal temperature below which the scattering processes of the type discussed be-
come non-effective (due to the impossibility of the simultaneous conservation
of energy and quasi-momentum in electron-magnon collisions). The value of 7',
is found [55, 56] to lie between 0.1 and 10 °K. The coefficient a, in (3.4) depends
on the functions E(k) and I(k) and their derivatives at the Fermi level [55].
For a quadratic dispersion law gen(7') takes the form

gem(T') ~ exp (—%) at T<LT,, (3.5)

oem(T) ~ T2 g (%) at T~T,, (3.6)

3 r T,

where
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and :
Pem(T) ~ T? at T>T,. (3.7)

Since ¢(t) at T =~ T, rapidly changes with temperature, g.,(7") falls more
rapidly than quadratically as the temperature decreases.

Hence it may be said that the scattering of electrons on spin waves due to
s—d exchange interaction results in a quadratic temperature dependence of the
electrical resistance of ferromagnetics in the region of applicability of the spin-
wave approximation (T < 0.1 6; but 7 > T).

3.2 Scattering mechanisms leading to a linear temperature dependence
of electrical resistance

In some theoretical papers temperature dependences of the magnetic compo-
nent of resistance different from (3.4) were obtained for low temperatures.
Turov [49] showed theoretically that the electrical resistance of 3d ferromagnetic
metals in the region 1 to 10 °K has a term which is proportional to temperature.
Recently in [52] and [57] calculations were made for various scattering mecha-
nisms which qualitatively explain the linear dependence of the electrical re-
sistance of Fe, Co, and Ni in the region of low temperatures.

One of the possible mechanisms is the scattering of conduction electrons by
spin waves taking into account the polarization of these electrons. In this case

em(T) =a, T +a, T?; T>T,, (3.8)

where the second term is due to the scattering of electrons by spin waves (see
(3.4) and (3.6)), and the first one arises from the polarization of s-electrons by
d-electrons. If the coefficients a, and a, have values of the same order, gem(7) is
~T?at T > T,. The linear term is comparable with the quadratic one only at a
sufficiently large value of the ratio ay/a;. As is seen from the calculation [57],
which was performed for the case of an arbitrary isotropic dispersion Jaw of the
electrons, the coefficient a, is determined by an expression of the type

d2E dk
Qg ~ k(‘alzz— E'E“)EF . (39)

Another reason for the appearance of a linear term in g.n{7) may be the spin—
orbit interaction between the spin of the ‘““magnetic” electron and the orbital
motion of the conduction electron. Of all the kinds of spin-orbit interaction
which are possible in the s—d exchange model, just this interaction plays the main
role in the kinetic effects. The probabilities of collisions corresponding to this
type of spin—orbit interaction were calculated by Vonsovskii [48], and Turov
[49] took into consideration their influence on the electrical resistance. Quali-
tatively this dependence may be obtained from (3.3) if we substitute

kZ
w(g) ~ P sin? ¢ , (3.10)

where ¢ is the angle between the vectors k and q.

If the above type of spin—orbit interaction makes the main contribution to the
linear term, an anisotropy of a, should be observed in a magnetic field. The
relative anisotropy originating from the anisotropy of the matrix elements of
spin-orbit interaction was calculated in [52] and [57] and found to be (@ —ap | ) X
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The third mechanism which, in principle, can explain the appearance of a
linear term in the electrical resistance is associated with the scattering of elec-
trons by excitations in domain boundaries. It was shown by Winter [58] that in
a Bloch domain boundary there are some special excitations, which are similar
to spin waves with a wave vector having two degrees of freedom. The amplitude
of such waves has its maximum at the centre of the boundary and vanishes in
the volume of the domain. Theoretical investigations of the scattering by the
domain boundaries themselves and of the scattering by two-dimensional spin
waves [52, 57] show that for a random distribution of domain boundaries

Pem(T) = v (x e~7¥FS B T'3/2) (3.11)

(6 thickness of the domain boundaries, » relative volume of the domain bound-
aries, kg Fermi wave vector; «, § constants). '

The first term in (3.11) corresponds to the scattering by static domain bound-
aries and only makes a contribution to the residual resistance g,. Since 7 ky § =
= 102 to 103, this term may be neglected. Physically this is due to the slow
change of the scattering potential of the domain boundary.

The second term in (3.11) arises from the scattering of electrons by two-dimen-
sional spin waves. Since the magnitude of this term depends on the number of
domain boundaries, it should strongly decrease with increasing magnetic field
in the region of technical magnetization, and be anisotropic, i.e. different for
orientation of the current parallel and perpendicular to magnetization. This
term can always be roughly approximated by an expression of the type (3.8).

Hence the spin—orbit interaction between the d-electron spin and the orbital
motion of the s-electron leads to a linear dependence of gem(T'). The linear term
in the electrical resistance will manifest itself only at very low temperatures
T < 1 °K, due to the smallness of spin-orbit interaction compared with the
exchange interaction discussed in Section 3.1.

3.8 Contribution of two-magnon processes to the electrical resistance
at low temperatures

In Sections 3.1 and 3.2 we discussed scattering processes of s-electrons which
involve the creation or annihilation of a spin wave. Such processes are called
single-magnon (EM) processes. These processes are inelastic and are associated
with the fluctuation of the ‘“transverse” components of magnetization (S7).
The dependence of energy on spin has the consequence that single-magnon pro-
cesses are frozen-in at temperatures T' < T, (see (3.5)), i.e., there is a minimum
wave vector of magnon, gmix, such that processes with |g| < gmin do not take
place.

For two-magnon processes of scattering (ZM) (associated with the fluctuation
of the longitudinal component of magnetization (Sf,)) which, unlike EM processes
take place without a change of the spin of the s-electrons, there is no such limi-
tation, i.e., they take place over the whole temperature region where the spin-
wave approxXimation is valid. The contribution of two-magnon processes to the
resistance of ferromagnetic metals pz(T') at low temperatures was examined by
Résler [51] using the transition probabilities for ZM processes calculated in [59].
The temperature dependence of electrical resistance due to ZM processes (with-
out umklapp processes) is expressed by

ozu(T) = A T2, (3.12)
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whereas that due to EM processes with an accuracy to logarithmic terms is given
by the expression (3.5). A comparison of the coefficients in (3.12) and (3.5) shows
that gzu is larger than ggy only for 7' < 0.1 T, i.e. where the resistanceisalready
determined by impurities. So the ZM processes may be neglected practically
over the whole region of temperatures.

We should note that the theoretical calculations discussed in Sections 3.1 to
3.3 were carried out for a quadratic dispersion law of spin waves and, in most
cases, for an arbitrary isotropic dispersion law of conduction electrons.

3.4 Experimental situation in the determination of the temperature dependence
of magnetic resistance — Difficulties in interpretation

The temperature dependence of the electrical resistance of the ferromagnetic
metals Fe, Co, and Ni was studied experimentally by many investigators. White
and Woods [2] found that below 10 °K the electrical resistance of these metals
quadratically depends on temperature: @ 72, and the coefficient a (see Table 2)

Table 2
temper-
metal chemical RRR @ a ature ref
purity (H =0) | (10712 Qcm deg-1) | (10712 Qcm deg™2) | region ’
(°K)
99.989%, 25.6 39.4 to 49.3 9.85 to 11.8 1.23 to | [61]
4.2
99.989%, 25 30.6 10.8 0.38 to | [61]
4.2
99.989%, 40to 104 — 12.8 <42 | [2]
— 180 826 1 <4.2 | [72]
Fe | “whisker” 103 to 1to4.2| [73]
<100> 4x108 49.3 20.7 <1
“whisker” 700 to
A1ly 2000%*) — 32.5 0.28 to | [68]*%*)
20
99.989%, 10 to 240 11 to 30 15 to 17 4.2 to [69]
20 |
99.9984%, | 26.3 19 to 32 8.7t09.9 1.23 to | [61]
4.2
Co | 99.999% | 65t091 - 12.8 <10 2]
- 66.6 3 57.5 1.2t06 | [62)
— 400 15 5t024.4 1t04.2 | [74]
99.949; 100 5.8t016 19.8 1.23 to | [61]
. 4.2
99.99% | 21to 3l — 16 <10 (2]
Ni | 99.99 5 8 41 <20 | [60]
— 1400 — 26 51020 | [67]
— 1400 — 14 16 to 20 | [63]
99.999%, — — 15.5 2 to 50 | [64]

*) The RRR value is given for B = 0.
*¥) The electrical resistance was measured in a longitudinal magnetic field with
H = 1.2 kOe.
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for Fe and Co is equal to 13 X 10-!2 Qcmdeg=2 for Fe and Co, and to 16 X

10-12 Qemdeg~2 for Ni. This dependence was confirmed for Fe and Ni below
18 °K by Kondorskii et al. [60], and for Co in the temperature range 1.2 to 6 °K
by Radhakrishna and Nielsen [62]. For Ni with RRR (H = 0) = 14007) the
value @ = 14 x 10712 Qcmdeg=2 was obtained by Schwerer and Silcox [63],
and a = 15.5 X 1072 Qcm deg=? by Greig and Harrison [64]. In a series of
papers by Semenenko and Sudovtsov [61] a quadratic as well as a linear term
in g(7T') are reported for Fe, Co, and Niat T < 4.2 °K. The values of the coeffi-
cient a from [61] and [62] are close to the values obtained by White and Woods.

We should note that the experimental values of this coefficient for ferro- and
non-ferromagnetic metals are of comparable magnitude. Thus @ amounts to
18 x 10712 Qcmdeg=2 for Pt and 9 x 10-12 Qemdeg2 for Ir.

This means that the quadratic temperature dependence of the electrical re-
sistance of ferromagnetic 3d metals at T' <€ 6 should be essentially due to inter-
electronic collisions 8): Tt should be noted that these collisions are quasi-elastic,
while the scattering of electrons by magnons and phonons at these temperatures
is essentially inelastic. A quite reliable method af establishing the predominance
of elastic scattering in the region of low temperatures is the simultaneous study
of the ‘“‘ideal” parts of the electrical and thermal resistance, p; and W; (obtained
by subtracting the residual resistances). In the case of elastic scattering their
ratio should give a constant value, called the Lorentz number:

i
L = W (3.13)
A calculation by Herring [65] considering only electron—electron collisions,
for metals with a complex Fermi surface gives the value L; =1 X 10-8 WQdeg~2.
This has been confirmed experimentally for non-magnetic transition metals
[66], though the accurate value of L; to some extent depends on the
substance. For ferromagnetic metals this problem was experimentally investi-
gated only in two papers. For pure Ni (RRR (H = 0) = 1400) White and
Tainsh [67] obtained L; = 1 x 10~ WQdeg~2 in the range 2 to 50 °K (Fig. 4).
In [68] the electrical and thermal resistances of Fe single-crystal whiskers with
the orientation (111> and RRR (B = 0) = 103 were measured in a longitudinal
magnetic field of 1.2 kOe. It was found that below 20 °K L, has a constant value

equal to 1.09 x 10-8 WQdeg~? (see Fig. 4).

3 T 3
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IR NN e 52 '\‘\:[
3| LMD .eezzt NN .
X \\\ s b \t\
2 1} i LIKi-2) 8 |~ —————
Sz 57 N e
= / \ S U
= 1, (Cu) 4 =
.Ll’llllllllll P EUPUN CUUS R NS RNU SR |
0 200 40 60 80 100 120 g 20 40 60
T(%X) — T(0K) —=

Fig. 4. Temperature dependence of the total Lorentz number and the “ideal” Lorentz
number for Ni (Ni-1 by [2], Ni-2 by [67]) and Fe (by [68]). L = o/W T [15]}

) For ferromagnetics it is necessary to distinguish RRR (H = 0) and RRR (B = 0)
(see Section 3.6).
8) Only the temperature-dependent part of the electrical resistance is discussed.
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Fig. 5. Temperature dependence of the elec-
trical resistance of Fe whiskers in the tempera-
ture region 1.1 to 4.2 °K, at H = 0[72].
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Hence, on the basis of [67] and [68] it & P D A R
may be concluded that the contribution T T

of s—d exchange interaction to the 7'2-part
of electrical resistance is quite small in
comparison with the contribution of inter-
electronic collisions.

Let us analyse late experimental papers
devoted to the separation of the term
proportional to T in the electrical resis- y
tance of Fe. The most characteristic of T(oK) ——
them are the papers by Coleman et al.

[72, 73] performed on maximum-purity

Fe single-crystal samples (RRR (H = 0) =~ 130 to 250, RRR (B = 0) ~ 10?
to 2 x 10%). The electrical resistance of Fe was measured in two magnetic states :
in the demagnetized (FC) and the single-domain (PS) state. (The results ob-
tained for one of the samples are shown in Fig. 5.)

The total resistance o(7') in the region 1 to 4.2 °K was treated by means of the
formula g(T') = g, + a3 T. The average value of the coefficient a, for different
samples in the FC and PS state is equal to 8.3 x 10-1° Qcmdeg~! and
2.2 X 10710 Qemdeg~?, respectively. The values of these coefficients are by
two orders higher than the values obtained in previous papers. The results of
[72] and [73] seem to be consistent with the dominance of the scattering of elec-
trons on spin waves expected theoretically at these temperatures. However,
it should be noted that if the term a 7 is included in o(7T') the coefficient a
(@ < 10712 Qemdeg~?) obtained in [72] is by an order smaller than the value
usually observed before (see Table 2).

So far, in analysing experimental data, the formula (3.8) was usually applied,
or only one linear term was considered.

However, in ferromagnetics it is necessary to separate the temperature de-
pendence of the electrical resistance into two parts:

-§,-"\§-‘*\
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&
=
T T

=
N
)
[T o
\

&~
S
=)
~3
t
N
[

1. a part due to electron-magnon scattering: gem(7');
2. a part due to the dependence of magnetoresistance on relaxation time 7:
os(T).

The magnetoresistance part g5 appears to be due to the influence of the inter-
nal magnetic field, equal to 4 # M, (M, saturation magnetization), on the move-
ment of conduction electrons. This effect is analogous to the behaviour of a
non-magnetic metal in an external magnetic field, since the magnetoresistance
of the metal depends on the ratio ljr (see Introduction). So the total resistance
of a ferromagnetic metal has the form

1
o) = 6 — + a7
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Fig. 6. Temperature dependence of the elec-
trical resistance of Fe in a transverse mag-
netic field, at some values of magnetic
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Fig. 7. Temperature dependence of the elec-
trical resistance of Mo in a transverse mag-

netic field. (1) H =0; (2) 2.5 kOe; (3) 5 kOe;

induction [69] (4) 7 kOe; (5) 8.5 kOe; (6) 9.9 kOe
where

w0, = L Hex t A7 M) (3.14)

mc

Here we have neglected the demagnetization factor. The first term is due to the
spin-wave scattering due to spin—orbit interaction. Its value decreases with de-
creasing temperature due to the growth of . The second term is the contribu-
tion of magnetoresistance which increases with decreasing temperature. Above
a certain value of the magnetic field the second term should be dorminant. This
will lead to the appearance of a minimum in (7).

In {69] investigations were carried out on polycrystalline Fe (RRR (H = 0) =
= 240) in a transverse magnetic field, which distinctly showed the influence of
op on the temperature dependence of the electrical resistance (see Fig. 6). At
inductions up to 22.9 kG the contribution of the magnetoresistance gz does not
affect the temperature dependence of electrical resistance. However, on slightly
increasing the ratio I/r (increasing B to 28.5 k() a minimum appears in the curve
o{T) which shifts towards higher temperatures with increasing magnetic field.
A similar bebaviour is shown by the electrical resistance of a non-ferromagnetic
transition metal, molybdenum, which was measured at the same H;®) as for
iron. In Fig. 7 o(T') curves are shown for a molybdenum single crystal (RRR =

15
Ma

4
> 10 /

05 //

Fig. 8. Contribution of magnetoresistance to o(7T} for
Mo in a transverse magnetic field; H = 2.5 kOe
0 05 10 15 (A¢ = er — 0H-0)

g7 —
%) The value of Hesr is determined by the relation Hege(T) = H (@300 °x/0(T)).
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= 900) at several values of the external magnetic field. From comparison of
o(T) at H = 0 and o(T) at H = 2.5 kOe (see Fig. 8) it may be seen that in the
region 4.2 to 20 °K the increase of resistance at the expense of gz is nearly pro-
portional to temperature: Ag(T) ~ T11+01_ If this additional part of resistance
is approximated as a, T', one obtains g, = 30 x 10~ Qemdeg™, i.e. the same
order as for Fe (see Table 2). Therefore it may be expected that the larger part
of the linear term in ferromagnetics (in particular in Fe) is due to the contribution
arising from the effect of spontaneous magnetization on the movement of the
electrons. Hence the contribution gp to the resistance of pure Fe samples (essen-
tial even in the absence of an external field) gives considerable complications in
studies of spin-wave scattering.

We note that the value of gy depends on whether the magnetoresistance is in
the low-field region (impure samples),

w.TLl,
in the high-field region (pure samples),

weT>1,
or in the region of intermediate fields,

wet=1.

In the second and third case the topological peculiarities of the Fermi surface
and the state of compensation of the metal become significant.

So, the above analysis of theoretical and experimental results concerning the
temperature dependence of the electrical resistance of ferromagnetic metals at
low temperatures leads to the conclusion that the influence of the internal
magnetic field (spontaneous magnetization) on the movement of conduction
electrons has to be taken into account. Only if the influence of this factor on
o(T) can be eliminated, it will be possible to obtain reliable quantitative data on
the separation of different scattering mechanisms in ferromagnetic metals.

3.5 Use of the Kohler rule for the determination of elecirical resistance
of ferromagnetic metals at zero magnetic induction

One of the methods of eliminating the magnetoresistance contribution to o(T)
is based on the application of the Kohler rule. According to this rule the in-
fluence of the magnetic field on the electrical resistance of a metal can be de-
scribed by the Kohler function [4]

Ao _o(H) —00) _ p(i) 3.15
OO 00))’ (8.19)

where g(0) is the resistance at zero magnetic field, and F (H /e(0)), which depends
on the relative orientation of the magnetic field and the measuring current, is a
universal function independent of temperature and sample purity. The tempera-
ture independence of F(H /9(0)) follows from the assumption of an isotropic re-
laxation time of the electrons. As follows from (3.15) the parameter determining
the magnetoresistance obeys the relation H/o(0) ~ I/r, where [ is the mean free
path and r is the radius of the cyclotron orbit, of the electron. The Kohler rule
is fulfilled for many metals [4], but deviations from it may be observed. Asnoted
in [70] in the case of anisotropic Fermi surfaces the occurrence of small-angle
scattering of electrons leads to a deviation from the Kohler rule if the background
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of isotropic scattering on impurities is not too high. In ferromagnetic metals
deviations may also be observed due to the fact that o(H = 0, T') contains the
magnetoresistance contribution gp.

Numerous experiments indicate that the Kohler rule is applicable only in the
case of large-angle scattering of electrons. This circumstance limits the range of
sample purity for which gen(7) can be separated from o(7') by means of the
Kohler rule: samples with very small impurity concentration are inadequate,
since on passing from helium to hydrogen temperature large-angle scattering
of electrons (mainly due to impurity scattering) should remain dominant over
small-angle scattering (collisions with long-wavelength phonons). In the reverse
case there may be deviations from the Kohler rule associated with topological
peculiarities of the Fermi surfaces of the investigated metals.

This approach to the problem of separating the magnetoresistance contri-
bution to o(7) was used for polycrystalline Fe (RRR (H = 0) = 240) [69], Ni
(RRR (H = 0) = 1400) [63], and Co samples (RRR (H = 0) = 150).

If the Kohler function would be known, it would be possible to determine the
values o(B = 0, T'). But usually this function is unknown; therefore we present
a method of estimating it for the example of Fe. The relation (3.15) may be
written as

olB=01T) B B
KroH=0,T) 14 F(m—m)“)* Q)( Ky olH = 0. 1) ).(3.16)

It can be shown experimentally [69] that the magnetoresistance at 7' > 40 °K
(due to the small value of I/r) can be neglected, and it may be assumed that
o(H=0,T) =o(B=0,T). Therefore we may put Kr =1 at T > 40 °K,
and for T < 40 °K the values of K; can be determined from (3.16). For this
purpose, using the isotherms of transverse magnetoresistance, it is necessary to
construct the dependences

B ) (3.17)

o(B—0,T) ,
g(e(H =0, T)) Ve g(Q(H =0, 7)

Displacing all the curves (3.17) for T' <C 40 °K so that they form one continuous
curve, and ensuring a sufficient interval of overlap between neighbouring tem-
peratures we obtain a continuous smooth curve from 48.5 to 4.2 °K. The ad-
vantage of the logarithmic scale lies in the fact that the fit of the magnetore-
sistance isotherms to one monotonous function involves a simple shift of the
curves along two axes by the value Ig K. The maximum error in the determi-
nation of Ig Ky is 4-0.005, which allows one to determine o(B = 0, T') with an
accuracy of 2.5 to 5%. From Fig. 9 it can be seen that the transition from pho-
non scattering prevailing at 7' > 20 °K to impurity scattering does not lead to
appreciable deviations from the Kohler rule in Fe of given purity. Using the
obtained values of Ky it is possible to determine o(B = 0, T'), which (Fig. 10)
essentially differs from o(H =0, T').

A similar analysis of the longitudinal magnetoresistance in the temperature
region 14 to 48 °K, which is illustrated in Fig. 9, gives values of ¢ (B = 0, T)
coinciding with those calculated from transverse magnetoresistance. If we use
the isotherms of longitudinal magnetoresistance measured.in the region 22.9 to
36 kG to construct g(7') at constant field, a minimum in these curves does not
appear. This is associated with the fact that the longitudinal magnetoresistance
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saturates in the region I/r >> 1 and is proportional to B* (0 < n < 1} in the tran-
sition region Ifr =~ 1.

In a similar way the magnetoresistance contribution to o(7') was taken into
account in experiments performed on cobalt (RRR (H = 0) = 150) and nickel
(RRR (H = 0) = 1400) [63] in a transverse magnetic field. The results for Co
are shown in Fig. 9 and 10, and those for Niin Fig. 11. In [63] it was noted that
if in constructing the Kohler function for Ni of a given purity, the magnetic in-
duction B is used instead of the magnetic field H, and p(0) is taken corresponding
to o(B = 0, T) but not to o(H = 0, T'), the Kohler rule is fulfilled in the tem-
perature range where the scattering of electrons on phonons is dominant, i.e. at
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Fig. 10. Temperature dependence of the electrical resistance of Fe at B = 0, H = 0, and
H;=H) =11kOe [69],andof Coat B=0and H =0

17 °K < T < 64 °K. Below 17 °K deviations from the Kobhler rule were ob-
served, and these were associated with the influence of small-angle scattering
because of the high purity of the samples; therefore it was impossible to find
o(B = 0, T'). The problem of impurity resistance may be solved using the same
rule, but a set of samples is required containing impurities of the same type (see
Section 3.6).

For Fe and Co in the temperature range 4.2 to 20 °K the temperature-depend-
ent part of the electrical resistance was described by the expression (3.8) in
which each term is responsible for a definite scattering mechanism. (In this
region the electron—phonon part of the resistance can be excluded.) The cor-
responding values of coefficients are shown in Table 3. In this table o(T) data
at H = 0 for Fe and Co samples of different purity are also given for comparison.

Hence, in order to obtain the temperature dependence of electrical resistance
at zero magnetic induction, ¢(B = 0, T'), in ferromagnetics it is possible to
apply the Kohler rule for longitudinal and transverse magnetoresistance. The
corresponding samples should contain enough impurities so that deviations from
the Kohler rule associated with the transition from large- to small-angle scatter-
ing (by long-wavelength phonons) do not occur. The investigation of the tem-

K (8, T)(10°Qem)
® 8 N

3

K86

Fig. 11, Transverse magnetoresistance of Ni represented as the dependence of K¢ on
K 1 B (data for fourteen temperatures from 1.4 to 64 °K) [63]
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Table 3
) RRR RRR ap (10712 Qem deg™1) a (10712 Qcm deg—2)
samples i -
H=01B=01py_0o | Hy | B=0o | BH=0]| B | B=0

Fe-1 10 10 11 9 — 16 17 —
Fe-2 50 57 16 52 — 17 17 —
Fe-3 71 80 21 — — 16 — —
Fe-4 240 465 30 93 2 15 15 15
Co-1 20 — 20 — — 16 — —
Co-2 60 — 33 — — 15 — —
Co-3 150 277 55 — 8 15 — 16

perature dependence of electrical resistance in the demagnetized state (H = 0)
shows that with decreasing purity the linear term decreases considerably while
the quadratic term remains practically unchanged. In the temperature depend-
ence o(B = 0, T') the linear term is considerably smaller than the values cor-
responding to the resistance in the demagnetized state (at H = 0).

3.6 Residual electrical resistance of ferromagnetic metals

In order to clarify the character of the temperature dependence p(T), it is
necessary to known how to determine correctly the residual resistance g,. In
ferromagnetic metals go, #—o is not proportional to the concentrations of impu-
rities and other lattice defects, i.e. is not determined only by the scattering on
inhomogeneities of the electrostatic potential. Moreover, Berger and de Vroo-
men [71] showed that for Fe go 5 _o as a function of impurity concentration has a
minimum which corresponds to RRR (H = 0) = 300. The anomalous behaviour
of go, p—o for ferromagnetics arises from the fact that there is a contribution to
Qo,z—o Which comes from the magnetoresistance gp(0) due to the presence of
spontaneous magnetization (see Section 3.4). Therefore the residual resistance
of ferromagnetic metals at H — 0 may be written as

go,m-0 = k¢ + 05(0), (3.18)

where k is a constant, ¢ the concentration
of impurities, and g5 the contribution to 10" 10
resistance arising from the internal mag-
netic field B = 47 M. 5r 1

Thus, to obtain the residual resistance fe 13
it is necessary to know the value gp(0). § 2T 15
Fujii and Morimoto [75] determined gy :\;»\‘ 1wk 3 08
for a zone-refined Fe polycrystal at 4.2 ° K
from measurements of ¢(T) in a longitu- & 357 :
dinal field up to 5.5 kOe. An analysisof & 13
the correlation between the resistance 2r 15 g
¢ (B = 0; 4.2 °K) obtained by extrapola- ik 3 0 S
tion and o(H = 0; 4.2 °K) shows that the $
electrical resistance measured at H = 0 5 1 8
contains a contribution from magneto- /15t region | 2nd regimiirdregion] S
Fig. 12. Connection between RRR (B =0, ? ) o ‘ 55-6
T =42°K) and RRR (H =0, T=42°K) 10 o2 oo i g P

for Fe: 0 by [75] and A by [35] RRR(H-0;T=4.2 0) —



32 N. V. VoLKENSHTEIN, V. P. Dyaxing, and V. E. STARTSEV

resistance lying between 38 and 849, for samples with RRR (H = 0) =35 to
400, and depends on the concentration of impurities. The maximum value of gy
(4.2°K)is 0.02 x 10-% Q cm. Fig. 12 shows the correlation between the resistance-
ratios at B = 0 and H = 0. ‘The difference between the straight line n =1
and the RRR (B = 0; 4.2 °K) curve gives the value of the magnetoresistance.
As seen from Fig. 12 it increases with increasing RRR. Roughly speaking three
regions may be distinguished :

1. RRR (H =0) = 35 to 100: small gp.

2. RRR (H = 0) = 100 to 300: RRR (B = 0; 4.2 °K) is two to six times lar-
ger than RRR (H = 0; 4.2 °K).

3. RRR (H = 0) = 330 to 400: RRR (H = 0; 4.2 °K) contains the constant
value pg 42°x = 0.02 x 107¢ Qem.

Hence, the above-mentioned nomogram may be used to determine the purity of
polycrystalline Fe.

Such an effect was observed by Fujii in Ni [76]. He found that for Ni samples
with RRR (H = 0) = 300 to 1600 the contribution of magnetoresistance to
o(H = 0; 4.2 °K)) lies between 15 and 23.5%, and depends on the concentration
of impurities (see Fig. 13). A similar effect should be observed in Co; however,
its influence on the residual resistance has not been studied so far.

It should be noted that the longitudinal magnetoresistance tends to saturation
when the magnetic field increases (see, for example, [77]), and therefore the deter-
mination of g(B = 0; 4.2 °K) performed in [75] and [76] by means of linear ex-
trapolation is not always correct, especially for pure samples whose magneto-
resistance reaches the region of saturation.

A consistent analysis of residual resistance (not making use of linear extra-
polation) has been carried out by Schwerer and Silcox [78] on the basis of the
Kobhler rule.

For ferromagnetic metals two additional scattering mechanisms should be
mentioned which make a contribution to residual resistance:

1. scattering by an inhomogenous distribution of d-electron spins caused by
the presence of internal stresses (magnetostriction residual resistance);

2. scattering by the inhomogeneous spin distribution in domain boundaries
(magnetocrystal residual resistance).

The first mechanism has been investigated in [79] where it is shown that at
large magnetic field strengths this part of resistance decreases as H-2. Therefore,
if we determine g, from measurements in a magnetic field, this part of the re-
sistance may be neglected.

03
=3 Ni
=
NS
D IE 02 v
[ian 2 . .
A Fig. 13. Values of the magnetoresistance of
Ni at T = 4.2°K for samples of different
01 purity [78]
0 500 1000 1500

RRR(H-0) —
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Hence, the residual electrical resistance of a ferromagnetic metal is determined
not only by the number of static lattice imperfections, but also by inhomogene-
ous distributions of d-electron spins and the contribution of the magnetoresis-
tance due to the internal magnetic field. This should be taken into account when
the contributions of different scattering mechanisms to the electrical resistance
are to be separated.

3.7 Influence of the spin-wave dispersion law on gem(T)
in ferromagnetically ordered rare-earth metals

The temperature dependence of the electrical resistance due to the scattering
of electrons by spin waves is determined essentially by the energy spectrum of
the spin waves. In Section 3.1 a discussion was given for a quadratic spin-wave
dispersion law which occurs in ferromagnetics with small anisotropy. However,
the ferromagnetics with hexagonal close-packed structure including heavy rare-
earth metals usually possess considerable magnetic anisotropy between the
hexagonal axis and the basal plane, as well as in the basal plane. As shown by
Niira [80] in such crystals the lowest branch of the spectrum of spin waves has
the form (for sufficiently small g)

1
ho ~ A {1 + [(91 + g2)® +§ (¢ — 92)2] + o, q§}, {3.19)

where the constants 4, x,, and «, are determined by the exchange integral and
anigsotropy energy; q,, ¢, ¢; are the components of the vector ¢ along the basis
vectors of the reciprocal lattice. The energy gap A which is the minimum energy
required for the excitation of a spin wave, is determined by the values of the
magnetic anisotropy constants for the hexagonal axis k, and the basal axis ;.
A may be evaluated by means of the formula
4 Uk
kg

where kg is the Boltzmann constant.

It was shown by Turov and Shavrov [81] that in the spin-wave spectrum of
ferro- and antiferromagnetics, in addition to the “pure magnetic’’ gap (which is
due to the magnetic anisotropy energy and the energy of demagnetizing fields),
there is an energy gap associated with spontaneous deformations caused by
magnetoelastic energy. A real possibility for the appearance of a magneto-
elastic gap occurs in h.c.p. crystals with a small anisotropy constant in the basal
plane and with the easy magnetization axis in the basal plane, but with a suffi-
ciently large anisotropy constant in the direction of the hexagonal axis. Hence,
in the spin-wave dispersion law an energy gap associated with the magnetic an-
isotropy energy or magnetoelastic energy may appear.

As mentioned in Section 3.1, in the case of a quadratic dispersion law of spin
waves the magnetic part of the resistance of ferromagnetic metals at low tem-
peratures is proportional to T (see (3.4)). In the presence of magnetic aniso-
tropy an exponential factor appears in the expression for g,y(7') which is con-
nected with the occurrence of an energy gap in the spectrum of spin waves:

Qem(T) = B T? exp ( ——ﬁ,—), (3.20)

3 physica (b) 57/1
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where B is a coefficient independent of temperature and A4 is the value of the
energy gap expressed in °K.

Yoshimori [82] and Kaplan [83] found that for a magnetic structure which
has the form of a ferromagnetic spiral the spin-wave dispersion law is linear.
For a linear dispersion law

Qem(T) ~ T4, (3.21)

In this case anisotropy can also cause the appearance of an energy gap ; it follows
A

gem(T) = C T exp ( — 7) (3.22)

Accordingly the character of the spin-wave spectrum is reflected in the tem-
perature dependence of the kinetic coefficients, but also in that of all quantities
at thermodynamic equilibrium, in particular spontaneous magnetization, o (7},
and magnetic contribution to heat capacity, C(T') (see Table 4).

Table 4
spin-wave Qem(T) GS(T) — Os (0 °K} Cm(T)
dispersion law
quadratie, 4 =0 T? T3/2 T3/2
quadratic, 4 £ 0 | T?exp (— A4/T) T32exp (— A/T) —
linear, A4—=0 T4 T ™
linear, A+0 | Ttexp(— 4/T) T? exp (— A/T) —

3.8 Experimental investigation of the temperature dependence
of the magnetic part of the resistance of rare-earth metals (polycrystals)

The temperature dependences of the totalresistance (curve 1) and the magnet-
ic part of the resistance (curve 3) of polycrystalline rare-earth metals (Gd, Th,
Dy, Er, and Tm) are presented in Fig. 14. The comparatively low purity of the
investigated rare-earth samples allows one to neglect the contribution gg which
is due to the influence of the internal field on the movement of conduction elec-
trons (see Section 3.4). Indeed, in effective fields where I/r £ 1, Ap/p is propor-
tional to (I/r)?; for metals with RRR (H = 0) =~ 10 in a magnetic field H =
= 3 x 10% Oe the ratio ljr is about 0.1, i.e., the contribution of gp does not
exceed 1 per cent of the total resistance o(7'). It follows that g, can be obtained
by extrapolation of g(T') to 0 °K and that the contribution of g5(T') to gem(T) is
negligible.

For separating the temperature-dependent parts of resistance it is assumed
that the various scattering mechanisms give additive contributions to the total
resistance o(7):

Q(T) = Qo + Qee(T) + Qem(T) + QEP(T) (323)

(0, residual resistance, g..(7T') resistance associated with electron—electron colli-
sions, em(7") and gep(T') resistance due to the scattering of electrons by magnons
and phonons, respectively).

In order to determine the dependence gen(T") without postulating the form of
this function, it is necessary, using definite assumptions, to separate ge.(7) and
Oep(T') from ¢;(T) = o(T) — g,. One of the possible ways of separating ge.(T') is
to use data on the temperature dependence of the resistance of a metal, which
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has a similar electronic structure, but does not possess a magnetically ordered
state. In the rare-earth series such a metal is lutetium.

Indeed, calculations by the method of augmented plane waves considering
relativistic effects [84] show that the Fermi surfaces and the densities of states
at the Fermi surfaces of the heavy rare-earth metals Th, Dy, Er, and Lu are
similar. This is also confirmed experimentally : The coefficient p characterizing
the electronic heat capacity is practically the same for all these metals, and is
equal to =10 mJ deg~* mol-* [85]. Thus it may be concluded that the con-
tributions ge.(7') should not be very different for the heavy rare-earth metals.

In Fig. 14, curve 2 corresponds to the expression

0i(T) — @ee(T) = gep(T) + gem(T) , (3.24)

i.e. contains contributions from only two scattering mechanisms: phonon and
magnon scattering.

The phonon part g.p(T') may be separated with the aid of the Bloch-Griineisen
function. For this purpose it is sufficient to know the Debye temperature and
the value of the phonon resistance at this temperature, g.,(0). The possibility
of using the Bloch-Griineisen law to describe the temperature dependence of the
electrical resistance of heavy rare-earth metals was also checked for lutetium
[86].

For magnetically ordered rare-earth metals 61, can be determined from measure-
ments of the elastic constants, since an evaluation of 0y, from the heat capacity
or the electrical resistance of magnetically ordered rare-earth metals is not
possible due to the uncertainty of the magnetic contributions C (T') and gem(T'),
and the neglect of these contributions will lead to an underestimated value of 6y,.
In determining ge,(0p) corrections should be made for the mass number M and
the Debye temperature of the given metal. (For T' > 0y, 0 ~ r T/(M 63), where
7 is a characteristic constant proportional to the radius of the Debye sphere.?))

By such a treatment of the experimental data it was found that in the para-
magnetic region g, does not depend on temperature and coincides with the
value obtained by linear extrapolation of curve 2 to 0 °K. This coincidence
confirms the correctness of the applied method of separating the magnetic part
of the resistance of rare-earth metals.!!)

Taking into account the energy gap in the spin-wave spectra of Tb and Dy,
good agreement is obtained between the calculated curves and experiment in
the low-temperature region. The electrical resistance [86, 87, 93, 94], sponta-
neous magnetization [80], and the magnetic part of the heat capacity [88, 89, 94]
of these metals vary with temperature according to Table 4 with 4~20 °K for
Th and 4 = 30 °K for Dy, which corresponds to the known magnetic anisotropy
of these metals. Thus, the experimental results confirm the presence of energy
gaps in the spin-wave spectra of these metals.

The magnetic structures of holmium and erbium in the low-temperature region
are ferromagnetic spirals for which the spin-wave dispersion law is linear.
Therefore, it may be expected that for the electrical resistance of these metals
the relation (3.21) will be fulfilled. The behaviour of the electrical resistance of

10) For heavy rare-earth metals the radii of the Debye spheres are similar, and the cor-
rection for the coefficient r practically does not change the final result.

1) An exceptional behaviour is shown by gadolinium in which gem depends on tem-
perature at T > 6.
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holmium and erbium at low temperatures shows that the energy gap in the spin-
wave spectrum of these metals is comparatively small. In the temperature region
4.2 °K < T < 20 °K gem(T) of holmium and erbium varies as 7'%. The magnetic
part of the resistance of thulium exhibits a similar variation.

Thus, from the temperature dependence of the electrical resistance, gem(7'),
as well as of the spontaneous magnetization, o (T), and heat capacity, Cn(T),
some conclusions can be drawn regarding the energy spectrum of spin waves.
It is also interesting to study the anisotropy of the energy gap for different
directions in Tb and Dy single crystals and to elucidate the question of its origin.

At present it would be of great interest to study the temperature dependence
of the electrical resistance of polycrystals with the aim of explaining the law
gem{T), as well as to investigate the anisotropy of gem(T') in single crystals of
rare-earth metals (explanation of the main part of the anisotropy of gem(7') not
only at low temperatures but in a wide temperature range including temperatures
above the Curie point). This question is discussed in Section 3.9.

3.9 Anisotropy of the scatiering by spin waves
in single crystals of rare-earth metals

In a number of papers the temperature dependence of the electrical resistance
of rare-earth single crystals was investigated for different crystallographic direc-
tions [90]. However, the magnetic part of the resistance, gem(T'), was separated
only for Tb, Dy, and Er [91, 92]. The method of separation of gem(T’) proposed
in [91] allows to determine the type of the temperature dependence as well as
its value, without postulating the form of g.,(7"). For separating the contri-
butions of different scattering mechanisms the assumption (3.23) was used. In
Fig. 15, curves 1 and 2 give g(T) = o(T') — g, for Tb, Dy, and Er in the main
crystallographic directions [0001] (c-axis) and [1210] (a-axis) in the range 4.2 to
370 °K. Curves 3 in these figures represent the electrical resistance of polycrys-
talline samples, and curves 4 are similar to curves 2 in Fig. 14.

In order to find gen(T) for different crystallographic directions it is necessary
to know the value (gee 4 gep) for these directions at each temperature. In the
case of Lu it is simple to determine these values as well as the coefficients 4,
and 4, connecting {0ee + pep) Of polycrystals with the resistance of single crys-
tals:

(Qee + er)sccr = Al (Qee + er)pcr ) (3.25)
(Qee + er):cr = A2 (Qee + er)pcr . (326)

The coefficients 4, and A4, for Lu practically do not depend on temperature.
Because of the similarity of the crystal structure and the Fermi surfaces of the
investigated metals, we may assume that the relations (3.25) and (3.26) are
valid for other heavy rare-earth metals as well. Subtracting the components
{3.25) and (3.26) from g;(7T") for magnetically ordered rare-earth metals we
obtain the desired values of magnetic resistance. In Fig. 15 curves 6 and 7 re-
present the magnetic part of the resistance along the a- and c-axis, respectively.

The magnetic part of the electrical resistance of rare-earth metals is strongly
anisotropic in the whole investigated region of temperatures: In the ferro- and
antiferromagnetic regions iy (7)) is greater than ggn (7). At low temperatures
from 20 to 60 °K the dependence gem(T) for Thb and Dy is close to quadratic.
Below 20 °K, for describing gen(7") it is necessary to introduce an exponential
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Fig. 17. Temperature dependence of the magnetic part of the resistance for an Er single
crystal in the ferromagnetically ordered state [92]

factor, which agrees with the measurements of g.n(7') on polycrystals (see
Section 3.8).

The temperature corresponding to the value of the energy gap in the spin-
wave spectrum is observed directly in the dependence gem (T} plotted on a loga-
rithmic scale (see Fig. 16). From measurements of the electrical resistance of
Tb single crystals along the c-axis the values 4 = 21.5 °K (for a non-annealed
sample) and 17 °K (for an annealed sample) were determined [94]. The differen-
ces in the values of 4 found before and after annealing can be associated with
different values of the magnetic elastic energy in these two states (see Sec-
tion 3.7). For Dy the value of A4 is between 29 and 31 °K (the measurements
were carried out on several samples).

gem(T") curves of an Er single crystal in the low-temperature range are shown
in Fig. 17. In the region of ferromagnetic ordering (4.2 °K < T < 20 °K) it is
found that

ng(T) ~ TB3.7+0.3 and ng(T) ~ TEO0+02

The obtained result agrees well with the calculations for ferromagnetics
having a linear spin-wave dispersion law, with the theoretical investigations of
the electrical resistance of polycrystals (see Section 3.8), and with measurements
of magnetization, o (7') [96]. In the paramagnetic region the magnetic resistance
does not depend on temperature, but it is anisotropic, and the character of
anisotropy is different from that in the magnetically ordered state: gtm < gom.
The anisotropy of the scattering by magnetic disorder may be understood from
the following considerations: In the general case the electrical conductivity g;;
depends on the processes of scattering (through the relaxation time 7} and on
the characteristics of the electronic structure:

e
Oij = mf’u,; de

(v; electronic velocity in the direction ¢, dS; surface element on the Fermi surface).
If it is assumed that the relaxation times of electrons for scattering by magnons,
Ty, and by phonons, 7, are isotropic, we have, as shown in [95], in the para-
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Table 5 magnetic region
o o v, dS
rare-earth em dq sz = ;E = —J{v—cﬁ >1,

metal Cm g Qem ¢ e U0g

where &, and «, are the coefficients in the
Tb 1.1 1.5 electron—phonon term of resistance. For Tb,
Dy 1.2 2.0 Dy, Ho, and Er these values are given in
Ho 1.3 1.6 Table 5.
Er 14 1.5

Thus, for magnetically ordered rare-earth
metals the anisotropy of gen in the para-
magnetic region is due not only to the anisotropy of the Fermi surfaces, but
probably also to the anisotropy of the relaxation times.

We should note that an analogous separation of gen(T) performed for Gd
single crystals (see Fig. 15) without considering the differences in the Fermi
surfaces of Gd and Lu leads to results which are basically different from those
obtained for other rare-earth metals. This indicates that the present method of
determining gen(7'), as should be expected, is not applicable to Gd due to con-
siderable differences in the electronic structures of Gd and Lu [84].

4. Conclusions

Thus, the available experimental data on the temperature dependence of the
electrical resistance of transition metals allows one to conclude that the tempera-
ture-dependent part of the resistance of non-ferromagnetic metals at sufficiently
low temperatures (T 5 10 °K) is mainly due to the scattering of conduction
electrons by interelectronic collisions. The contribution of electron-phonon
scattering to the electrical resistance of transition metals at 7' 4.2 °K is by
one order smaller than gee. It should be noted that in the available theoretical
studies for transition metals, which qualitatively correctly describe this scatter-
ing mechanism, considerable simplifications are made. For a correct description
of the electrical resistance due to interelectronic collisions, it is necessary to take
into account the peculiarities of the electronic structure and the topology of the
Fermi surface of the given metal as well as the possibility of electron—electron
umklapp processes.

In the electrical resistance of magnetically ordered transition metals at low
temperatures an additional contribution is introduced by the scattering of con-
duction electrons by spin waves. The value of this contribution is extraordinarily
great in the case of magnetically ordered rare-earth metals, exceeding the value
of electron—electron resistance by several times and that of electron—phonon
resistance by more than one order. The character of the temperature dependence
gem(T') is determined by the peculiarities of the energy spectrum of spin waves.
Therefore experimental investigations of the temperature dependence of the
contribution due to spin-wave scattering enables one to get information on the
type of the spin-wave dispersion law, and to estimate the value of the energy
gap.
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