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ABSTRACT. The phenomenon of lattice relaxation, namely, that the atomic 
configuration surrounding a localized centre in solids changes with its change of 
electronic state, leads to various forms of multiphonon transitions. In  optical 
emission or absorption spectra, such multiphonon transitions can cause shift and 
broadening of the spectral lines or give rise to distinct multiphonon peaks. Certain 
basic theoretical concepts relating to such multiphonon optical spectra are 
explained and a special discussion of the proper interpretation of the Franck- 
Condon principle in this connection is given. Lattice relaxation can also give rise 
to nonradiative trannitionn, which are important for carrier recombinations in 
xemiconductorn and quenching of luminescence. 

1. Introduction 
By the term ‘lattice relaxation’, used in the title, we refer specifically to the 

change of the equilibrium atomic configuration surrounding a localized centre 
(impurity or defect) in a crystal lattice, as the result of a quantum transition of the 
electronic state of the centre. From Franck’s paper published in 1926, which led to 
the well-known Franck4ondon principle, i t  was apparently already common 
knowledge that the binding forces and hence the equilibrium atomic configuration in 
a molecule depend essentially on the electronic state. This essential fact relating to 
atomic systems was represented schematically by a ‘configurational coordinate 
diagram’ such as shown in fig. 1; the curves i and j represent the effective potential 
energy as functions of the atomic configuration, designated schematically by a 
coordinate Q, for two different electronic states i and j .  During the thirties, the 
configurational coordinate diagram, together with the Franck-Condon principle was 
adapted to the discussion of various effects of lattice relaxation associated with 
localized centres in solids, including the difference between optical and thermal 
activation energies, peak shifts and broadening of emission and absorption spectra, 
nonradiative transitions between electronic states, etc (Mott and Gurney 1953). 
These developments, albeit very important and in concept and methodology still’ 
useful today, were essentially qualitative and semiclassical. 

The first successful quantum-mechanical treatment of lattice relaxation effects 
was marked by two papers published respectively by Pekar (1950) and Huang and 
Rhys (1950), both on the most-studied localized centre a t  the time, namely, the F- 
centre in the alkali halides. Most importantly, lattice relaxation was explicitly 
related to the occurrence of multiphonon transitions, that is, electronic transitions 
accompanied by simultaneous emission or absorption of a number of phonons. 
Although various forms of multiphonon transitions are of common occurrence, the 
theoretical development was restricted for a number of years mainly to the solid 
state theoreticians. Now, after the developments of the intervening years, they have 
come to be accepted as a unified subject, which engages the interest of solid state 
spectroscopists, luminescence scientists, semiconductor physicists, etc. Particularly 
in the past few years, agreater degree ofimportance has been accorded to the subject 
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Fig. 1. Configurational coordinate diagram for two states i and j .  

then ever before, so it seems worthwhile to present a brief survey ofvarious aspects of 
the subject. The present article is written mainly for the general reader, but it is 
hoped that it may contain certain points of interest to scientists who are directly 
working on related subjects. 

2. Multiphonon effects in optical emission and absorption 
The present writer still remembers the occasion when his attention was first 

drawn to the problem at  a seminar on luminescence held at  Bristol University in 
1947. A speaker, while commenting on the considerable width of the F-centre 
absorption band as being equivalent to a large number of phonons, remarked that a 
quantum-mechanical treatment would be difficult, for it would involve very high 
order of perturbation. When I was later working on the electron-LO (long optical 
wavelength) phonon interaction in ionic crystals, i t  became apparent, without 
having to resort to perturbation theory, that with lattice relaxation taken into 
account, an electronic transition is naturally accompanied by change in phonon 
numbers. 

Thus for an allowed optical transition (emission or absorption), the transition 
probability is proportional to the square of the transition matrix element of the 
electric dipole moment er. For localized centres showing lattice relaxation, the 
atomic configuration changes with the transition, so in forming the transition matrix 
element, the atomic vibrational wave functions xi,,(&), xi,,.(&) as well as the electronic 
wave fbnctions cpi(r) and cpj(r) have to be taken into account. So one should write 

transition probability a xi,.(&) cpjercpidr xi,(&) dQ . I S  [ S  1 r 
As the integral over the electronic coordinates can be considered as approximately 
independent of the vibrational coordinates (the ‘Condon approximation’), so one has 
approximately 

2 

transition pr6bability a I [ r p p y i  df 1 [xj,.(&)xin(&) d&( . 
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In this formula, only the overlap integral between the initial and final state 
vibrational wave functions involves the phonon numbers. The vibrational wave 
functions are products of simple harmonic oscillator wave functions of the normal 
coordinates Q, describing the various vibrational modes: 

x n ( Q )  =nxn,(Qs). 
S 

Lattice relaxation is represented by appropriate displacements of the origins of these 
normal coordinates. Thus two different electronic states i and j of a localized centre 
will have respectively vibrational wave functions: 

xin(Q)=nxnI(Qs-Ais); xjn,(Q)=nxn;(Qs-AJ 
S 3 

characterized by different lattice relaxation parameters Ah and Ajs (8  = 1 . . . N ) .  The 
optical transition probability, which was seen to be proportional to 

depends essentially on the lattice relaxation. Thus, without lattice relaxation (i .e., 
4 = 0) ,  the oscillator wave functions with different quantum numbers would be 
mutually orthogonal, so the transition probability is non-zero only if the vibrational 
quantum numbers n, and n; before and after the transition are unchanged. But with 
the presence of the lattice relaxation Ak, Ajs in the arguments, the orthogonality 
between the oscillator wave functions no longer holds. This means that transitions 
with changes in the phonon numbers ns, n; can occur with finite probability. The first 
quantitative calculation on this basis for the F-centre absorption assumed only 
interaction with long optical vibrational modes (LO modes), all having the same 
frequency oo and gave a series of equally spaced spectral lines, corresponding to the 
emission ofdifferent numbers ofphonons. As represented schematically in fig. 2, they 
were smoothed into a continuous intensity distribution, which adequately 
accounted for the experimentally observed absorption band. 

E 

Pig. 2. Multiphonon linex reproducing absorption band. 
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Figure 3 shows the edge emission from CdS, which was the first cave of distinct 
multiphonon peaks accurately interpreted in terms of the quantum mechanical 
theory' (Hopfield 1959). The integrated peak intensities conform well with the 
t.heoretically predicted intensity distribution: 

nt'h peak x Sn/n! 
where S is a parameter characterizing the lattice relaxation and n represents the 
number of phonons emitted. The first line, corresponding to n = 0, is usually known 
as the zero-phonon line and represents the undisplaced spectral line with photon 
energy equal to the electronic energy level difference. The above formula is a much 
used basic formula, applicable to multiphonon structures characterized by a single 
phonon frequency oo (phonon energy=ho,) a t  low temperatures such that the 
thermal average phonon number << 1. It can be understood quite simply as follows. 
Suppose there are N modes of the same frequency interacting with the emission 
centre and let S be an average value of the squared overlap integral for a single mode 
emitting a phonon: 

So for an n-phonon transition, the n-modes concerned will contribute 

Out of the N modes, the total number of all such n-mode transitions will be 

N" 
n! 

CrZ- 
and they cont,ribute in all: 

N" Is" -p=  - 
n.! n! 

where S= N i  clearly represents the sum of the above squared overlap integral over 
all t,he N modes. 

I n =  0 1 2 3  

Wavelength 

Fig. 3. Multiphonon emission peeks. 
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In  practice, such multiphonon structures characterized by a distinct frequency 
are commonly attributed to either the LO lattice modes or a single local mode at the 
emission centre; i t  can be proved that the above intensity distribution formula 
applies in fact to both cases. As different vibrational modes contribute to the 
transition probability through their respective overlap integrals, which are 
multiplicative, for observed multiphonon structures involving more than one 
distinct phonon energy, the spectrum can be analysed by corresponding 
multiplication of the above intensity formula. 

The spectral intensity distribution I(E) can be expressed generally as 
I P  I2 

for the case of emission due to a transition from state i (energy Ei) to state j(energy 
E,),  E in the d-function being energy of the emitted photon (for absorption due to the 
reverse transition j + i ,  one has only to change the sign of the phonon term in the 
&function). The d-function expresses that the energy of the emitted photon is equal 
to the electronic energy level difference E r E ,  minus the net emitted phonon energy. 
In  actual calculations, one has also to take a thermal average over the initial 
vibrational quantum numbers n,. For a general distribution of the lattice mode 
frequencies, i t  is not possible to express Z(E) in explicit analytical form. However a 
simple general result can be proved, namely, the first moment of the spectral 
distribution (i.e. the weighted mean photon energy) is given by 

We note that Ah - Ah represents the lat.tice relaxation in a transition from state i to  
state j, so the second term in the above expression is just the elastic energy associated 
with the relaxation. This relaxation energy can be represented schematically in the 
configurational coordinate diagram, as shown in fig. 4. The significance of the above 
result is clearest in the case of a continuous spectxal distribution of an approximately 
symmetric shape (e.g. Gaussian), mch as shown in fig. 5 .  In  this case the first moment 
should give directly the position of the peak. As indicated in the figure, Ei - E, marks 
the position of the zero-phonon line; so the above result signifies that the spectral 
peak is s h i h d  from the zero-phonon line by an energy equal to the lattice relaxation 
energy. The lattice relaxation energy is usually expressed as a parameter S 
multiplying into an average phonon energy: 

Referring to fig. 4, we note that  this peak position corresponds exactly to what one 
would obtain by an application of the Franck4‘ondon principle. 

As lattice relaxation effects on optical spectra are widely discussed in the context 
of the Franck-Condon principle, i t  is of interest to relate the discussion of 
multiphonon transitions to  the interpretation of t.he principle. In  this connection, 
the Franck-Condon principle is commonly represented as stating that  the electronic 
transition is such a fast process that  the atoms can be considered as stationary. It 
seems to the present writer that stating the Franck-Condon principle in this way is 
inaccurate. In fact, in a way such a statement would put the Franck-Condon 
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Pig. 4. Relaxation energy for an electronic t.ransition. 

I 
t 

(Ei-Ej) - 
Photon energy 

Fig. 5. Peak shift of a wymmetric bend. 

principle in direct conflict wit.h the observation of multiphonon structures. For 
instance, one could then ask the question: if the electron makes the transition so fast, 
how can i t  'know' with what fiequencies the atoms vibrate'? If i t  is without the time 
to gauge the vibrational frequencies, how can i t  make the transition with just such 
energies as to produce the observed multiphonon structures, which are characterized 
by these vibrational hquencies? 

It seems that  the Franck-Condon principle should be interpreted along the 
following lines. To describe the electronic transition as a process fast compared with 
the atomic vibrations is inaccurate; one cannot assign any time constant for the 
transition other than the lifetime of the electronic state (that is, the inverse of the 
transition probability). This latter must in fact be greater than the vibrational 
periods, if multiphonon structures are not to  be completely obliterated by line 
broadening owing to the uncertainty principle. It is the orbital motion of the electron 
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in its stationary states that is fast compared to the atomic vibrations; it is on this 
ground that the electronic states can be regarded as functions of the vibrational 
coordinates Q, as in the adiabatic approximation theory. On this premise, one can 
consider the electron making a transition at  given positions of the vibrational 
coordinates; however, it is subject to the uncertainty principle. For instance, one is 
certainly allowed to consider the electron making the transition with the vibrational 
coordinates Q limited to a certain small neighbourhood AQ. But this implies a time 
interval for observation equal to the time required to traverse AQ, which is naturally 
much smaller than the vibrational periods. A moment’s reflection will show that 
owing to the uncertainty principle such an analysis will be subject to an energy 
uncertainty greater than the phonon energy, that is, consideration of finer detailx 
such as multiphonon structures is ruled out in principle. Or speaking more generally, 
one can consider the electronic transition to be as fast as one chooses, in the sense 
that one can specify a AQ as small as one chooses (i.e. a time interval as short as one 
chooses) and there is always a certain probability for the electron making the 
transition. However, it will be subject to an energy uncertainty proportionately 
greater. 

To sum up, it is legitimate to make the usual Franck-Condon type ofanalysis for 
optical transitions, on the ground that the electronic orbital motions are fast 
compared to the atomic motion. But such an analysis is always subject to an energy 
uncertainty large enough to obliterate all multiphonon structures. This is of course 
to be expected, as the vibrational coordinate Q is treated as a variable parameter, 
which implies a classical treatment of the vibrational motion and is thus 
incompatible with the quantized phonon energies. 

3. Multiphonon nonradiative transitions 
With the application of the configurational coordinate diagram to localized 

centres in solids, it was early realized that lattice relaxation makes it possible for 
electrons at localized centres to make nonradiative transitions, whereby the 
t,ransition energy is provided by or dissipated into thermal vibrational energy of the 
lattice. In  quantum-mechanical theory, the possibility of such transitions is in fact 
even more readily evident, for multiphonon emission or absorption, made possible 
by lattice relaxation, are just the processes required for energy balance in 
nonradiative transitions. 

In quantum-mechanical theory, the adiabatic approximation, which assumes 
the electronic state to follow the atomic motion adiabatically, forms the natural 
basis for representing the lattice relaxation effects. Transitions will occur between 
the adiabatic electronic states, as though caused by a perturbation represented by 
the following transition matrix element (Huang and Rhys 1950): 

lXjn*(Q)Lji(Q)Xin(Q) dQ 

where the xs represent the initial and final vibrational wave functions and the 
‘nonadiabaticity operator’: 

where qi, qj are the initial and final adiabatic electronic wave functions. 
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The nonradiative transitions are sometimes called thermal transitions, to be 
distinguished from the optical transitions associated with the absorption or emission 
of electromagnetic radiation. They are of general importance as one of the basic 
processes underlying the kinetics of electrons (and holes) in solids. I n  particular, the), 
are responsible for recombination of carriers in semiconducting materials and 
quenching of luminescence in luminescent materials. Although the basic theory was 
formulated in the early fifties, its further development and application were for 
many years beset with inconsistencies and uncertainties. 

During the early developments, theoretical calculations of the transition 
probabilities yielded results which were apparently too small when compared with 
the experimental results. 80 these early attempts tended in a way to discredit the 
interpretation of nonradiative transitions in terms of multiphonon processes and led 
people to look for alternative mechanisms. However, some scientists thought. that 
the discrepancy might be due to inappropriate approximations introduced in the 
actual calculations. The major approximation used in these calculations related to 
the way adiabatic electronic wave functions depend on the atomic vibrational 
coordinates Q and this played a decisive role in the evaluation of the nonadiabaticity 
operator. It became known as the Condon approximation, which just means using 
adiabatic electronic wave functions obtained by usual first order perturbation 
procedure regarding the electron-lattice interaction as the perturbation. Therefore 
attempts were made to  replace the Condon approximation by improved ‘non- 
Condon’ approximations. Thus Kovarskii (1962) and co-workers adopted a ’non- 
Condon‘ wave function of the following form: 

(ael represents the electron-lattice interaction), which resembles usual first-order 
perturbation wave functions, but with the exact adiabatic eigenvalue Wi(Q) and the 
first-order perturbation eigenvalue Vp,(Q) replacing the usual zeroth-order eigen- 
values. This wave function was proposed on the ground that i t  should hold for wider 
ranges of the Qs than the Condon approximation. They obtained transition 
probabilities 3 4  orders of magnitudes higher than Condon approximation results 
and generally in agreement with the experimental results. 

During the seventies, Passler, apparently thinking the problem still unsolved, 
sought to find another way out (Piissler 1974). He gave up the adiabatic 
approximation in the belief that it could not give the right result and used simple 
electronic wave functions not dependent on the atomic coordinates. So in his version 
of the theory, the electron-lattice interaction is left over to act as the perturbation 
inducing the nonradiotive transitions. With this very much simpler and apparently 
basically different approach, Passler obtained estimates of the transition 
probabilities which turned out to be very similar to the results given by Kovarskii. 

To resolve this paradoxical situation, the present writer has pointed out in a 
recent paper (Huang 1081) that  the Condon approximation actually involves an 
inconsistent application of the perturbation method with respect to the electron- 
lattice interaction responsible for the lattice relaxation. Thus in forming the matrix 
element 

JXjm’(Q )Lji(Q)XdQ) dQ 
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the vibrational wave functions xi,,., xin contain effectively all order terms in the 
lattice relaxation, whereas the use of the Condon approximation wave function in 
the non-adiabaticity operator Lji(Q) means cutting off the perturbation expansion 
after the first-order term. It was shown that an electron wave function, which taken 
proper account of the part of the electron-lattice interaction responsible for lattice 
relaxation without having recourse to perturbation expansion can in fact be 
constructed, namely: 

This wave function is seen to be very close to the 'non-Condon' wave function 
adopted by Kovarskii. Moreover, it was proved that. using this corrected wave 
function, the matrix element of the n0nadiabaticit.y operator in the adiabatic 
approximation theory, namely: 

J x j n * ( Q ) L j i ( Q ) X i f i ( Q j  d~ 

is exart,lJ* equal to  the transition matrix element: 

due to electron-lattice interaction in Passler's theory. Thus the apparently 
incompatible developments of the basic theory are reconciled in an unexpectedly 
simple way. 

Working out explicitly the nonradiative transition probability is quite an 
involved task and results in an expression too unwieldly to reproduce here. However, 
in a practically important limiting case, which may be called the strong-coupling 
high-temperature limit, the theory yields a simple result for the nonradiative 
transition probability, which may be represented as follows: 

W 2 CT''' exp ( - AE/kT) 

where AE represents the minimum energy required to reach a configuration where 
the two adiabatic electronic levels coincide. On a configurational coordinate 
diagram, the energy Ah' can be very simply represented as shown in fig. 6. A formula 
of this form was proposed by Mott long before the advent of the quantum mechanical 
theor?. It has a very simple interpretation in the semiclassical theory, which treats 
the atomic motion classically. For in such a semiclassical theory, energy 
conservation requires that electronic transitions occur only at configurations where 
the two electronic levels cross. The point C in fig. 6 is just such a configuration and the 
exponential factor in the above formula represents the thermal probability of 
reaching this configuration. O f  course only the quantum mechanical theory 
prescribes a definite mechanism and permits quantitative evaluation of W in terms 
of the actual interaction. Moreover, in the semiclassical theory, the formula was 
considered to be valid only for temperatures high enough for the vibrational motion 
of the atoms to  be considered classically; this would mean that the average 
vibrational quantum number 

Ei(T)={exp(ho,,/kT)- 1}-'>> 1 
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Pip. 6. Artivation energy for nonratliative transition. 

Taking this criterion seriously, i t  would appear dubious whether the formula could 
ever be used in practical circumstances. 

The quantum-mechanical derivation of the above formula depends on the 
assumption of strong joint effect of coupling and temperature. Actual calculations 
show t.hat SO long as 

the formula is accurately usable. We notice that p=(Ei-E, ) /hw,  is just the 
electronic transition energy expressed as number of phonons. So for strong coupling 
such that the lattice relaxation energy Shw, is comparable to the transition energy 
Ei- Ei. A(T) need not be large. The adjoining table, based on simplified calculations, 
conipares the accurately calculated values with values calculated from the above 
formula; they are given in pairs with the accurate value on top (all values given are 
relative values), for various values of iZ(T), S and p .  The values below the solid 
partition lines represent cases conforming to the requirement that ii(T)S 2 p ;  the 
approximate and accurate values are seen to  be in close agreement. 

The tabulated values are instructive in another way. Certain early 
valrulations of the nonratliative transition probability had left one with the 
impression that the theoretically calculated transition probabilities were excessively 
sensitive to changes in the transition energy. Values given in the table show 
that this actually depends essentially on the strength of coupling relative to the 
transition energy. Thus for coupling strong enough for the strong-coupling high- 
temperature formula to  be valid, the variation with either the transition energy or 
the coupling is relatively slight. Only in the case of weak coupling with lattice 
relaxation energy very much smaller compared with the electronic transition energy, 
the transition probability varies sharply with the transition energy. 

The btrong variation of the nonradiative transition probability with the 
electronic transition energy in the case of rare-earth luminescent centres (coupling 
parameter S estimated to be ofthe order ofOl!) underlies one of the most successful 
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Accurate (upper figure) and approximate (lower figure) relative values of nonradiative 
transition probabilities for various values of ii( T), the average vibrational quantum 
number; S, the electron-lattice coupling that provides lattice relaxation; and p, the 
electronic tramition energy expressed as the number of phonons. Below the solid lines 
ii( T)S  ,p .  

lines of research on multiphonon nonradiative transitions, notably by Weber (1967), 
and Moos (1970) and collaborators. The rare-earth luminescent centres are 
characterized by possessing a large number of electronic levels. The remarkable rule 
was discovered that the levels showing observable luminescence are those separated 
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by a wider energy gap from the next level below. This was correctly surmised to  be a 
manifestation of the fact that with the other levels having a lesser energy gap below, 
nonradiative transitions to the level below will dominate and quench the 
luminescence. This sharply marked division of the levels is just the conequence of 
the strong variation of the nonradiative transition probability with the transition 
energy. Subsequent. accurate measurements of the nonradiative transition 
Probabilities led to the exponential gap law, which states that  the nonradiative 
transition probabilities from different levels are proportional to the function 
exp ( - a m )  of the energy gap AE from the next level beneath and has been 
adequately explained by the non radiative transition theory. 

4. Resonance energy transfer-another form of multiphonon transitions 
The transfer of excitation energy between different localized centres is an 

important subject for research in luminescence. Notably, it is the basic process 
underlying the phenomenon of sensitization, whereby the luminescent centres are 
excited indirectly through energy transfer from sensitizer centres, which can absorb 
energy effectively from the primary radiation. There are various mechanisms for 
such energy transfer. The direct transfer of excitation energy between non- 
overlapping centres owing to  their Coulomb interaction is known as resonance 
energy transfer. As the excitation energies of the centres concerned do not generally 
match, the resonance energy transfer has to  be accompanied by multiphonon 
emission or absorption to conserve energy. So it is a multiphonon process and 
nonradiative, but, as we shall presently see, i t  is quite distinct from the thermal 
transitions discussed in the previous section. 

For a theoretical treatment of the process, the energy donor centre A and the 
energy acceptor B are, to be considered as forming a single system. Thus if cplre(rl), 
cpAc(rl), cpBg(r2), qBc(r2) represent respectively the ground(g) and ercited(e) states of 
A and B, the energy transfer process is represented as a quantum transition from the 
initial state cpAc(r,) pBg(r2) of the system to the final state cpAs(rl)qBe(rZ), as 
illustrated in fig. 7. 

Formally the transition is similar to t,he nonradiative transitmion process discussed 
in the previous sections; thus, i t  involves a change of electronic state from (Ae, Bg) to 
(Ag, Be) with its transition energy to be compensated by multiphonon emission or 
absorption. However, the nature of the transition is basically different; it is caused 
by the Coulomb interaction between the two centres. Thus the transition matrix 
element may be represented as 

'Pnc('1) 'P8g(rZ) =b 'pAp(rdx 

- 
'f C phonons 

= EA-Es 

__c_ 
A El A B 
Fig. 7. Resonance energy transfer between two centres. 
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AH in the case of t,he optical transitions. the elect.ronic matrix element within the 
square brackets may be considered as approximately independent. of the at.omic 
coordinates Q. So calculation of the transition probability involves essentially only 
the overlap integrals between the initial and final vibrational wave functions, 
entirely similar to  the case of optical transitions discussed earlier: 

transition probability = const 

I n  the above overlap integrals, AAes and ABBrr represent respectively the lattice 
relaxations with A or B in the excited state. 

A comparison with the optical transition probability shows that the above 
transition probability varies with the energy discrepancy EA-EB in exactly the same 
way as the intensity of optical emission spectrum varies with the energy separation 
from the zero-phonon line position. As we noted before, lattice relaxation causes a 
shift of the spectral peak from the zero-phonon line equal to the lattice relaxation 
energy associated with the transition, so i t  follows here that the maximum 
probability for resonance energy transfer does not occur for exact coincidence of E A  
and EB, but corresponds to a level difference EA- EB equal to the lattice relaxation 
energy accompanying the transition. This conclusion is just an instance which we 
cite to indicate the close relationship with multiphonon optical transitions. In  fact it 
follows from a more general theorem which states that the probability of resonance 
energy transfer depends on the product of the emission spectrum of the energy donor 
and the absorption spectrum of the energy acceptor (Fonger and Struck 1978). 

5. Relaxation effect relating to virtual states-multiphonon Raman 

In  usual phonon Raman scattering in solids, the incident light is scattered 
inelastically with emission (Stokes component) or absorption (anti-Stokes 
component) of one (first-order scattering) or two (second-order scattering) phonons. 
As with optical emission or absorption processes, Raman scattering can also be 
directly related to  localized centres. On first thought, one might think that Raman 
scattering from localized centres should not be affected by lattice relaxation in the 
way that optical emission and absorption are. For in Raman scattering, before and 
after the event, the electronic state remains unchanged, so i t  would seem that lattice 
relaxation does not come into the question. This is however not true. 

In  terms of the interaction of the scattering centre with the photon field, Raman 
scattering must be a second-order process, so as to achieve the elementary acts of 
annihilat.ing the incident photon and creating the scattered photon. This is realized 
by the intervention of a virtual intermediate state. Thus typically the second-order 
process can occur first by a virtual transition of the electron to the intermediate state 
with the annihilation of the incident photon, then followed by the transition of the 
electron back to the initial state with the creation of the scattered photon. Now with 
an  additional intermediate state taking part, lattice relaxation may conceivably 
play a role through the intermediate state, much as in the case of optical transitions. 
For instance, the second-order process will depend on the product of the matrix 
elements corresponding to the two virtual transitions and these matrix elements can 
lead to multiphonon emission or absorption during the scattering, owing to lattice 
relaxation. However, as the intermediate states are virtual states, whether they can 

scattering 
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Pig. 8. Int,ermediate xtate energy relation. 

show lattice relaxation effects requires special consideration. By virtual state is 
meant one that departs from the real energy ofthe system. As illustrated in fig. 8, the 
energy of the system is represented by the dashed horizontal line, which is equal to 
the energy Eo of the initial state of the scattering centre plus the incident photon 
energy h q ,  whereas the intermediate state energy E, departs from it by a certain 
energy AE. 

By virtue of the uncertainty principle, such a virtual state can exist only as a 
transitory state with a time duration of At= h/hE.  Physically, AT must clearly be 
larger than the phonon vibration period for lattice relaxation to take effect. As one 
readily sees, this means that the energy departure of the virtual intermediate state 
must be smaller than the phonon energy in order to show lattice relaxation effects. 
From fig. 8, i t  is seen that a small AE means that the incident photon is close to 
resonance with the intermediate state. And in actual fact, multiphonon structures 
were discovered early in resonance Raman scattering research. However, as Raman 
scattering is a second-order process, the observed multiphonon structures and their 
theoretical interpretation are much more .involved than in the case of emission or 
absorption spectra. Moreover, with scattering experiments in proper resonance, 
absorption can occur and other complicated processes also give rise to secondFry 
radiations with structures related to the phonon frequencies. Therefore for the 
purpose of studying multiphonon structures associated with lattice relaxation 
effects, i t  should be most advantageous to investigate near-resonance scattering .' 

The author wishes to express his thanks to Miss Zhou Qun for help in preparation 
of the manuscript. 
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