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Time-Dependent Density Functional Theory

NikosL. Doltsinis

Chair of Theoretical Chemistry
Ruhr-Universitat Bochum
44780 Bochum, Germany
E-mail: nikos.doltsinis@theochem.rub.de

Time-dependent density functional theory (TDDFT) is theeyalization of stationary DFT

to time-dependent potentials and electron densities. [lastical applications are concerned
with the interaction of molecules with an electric laserdielln the vast majority of cases,
such as the calculation of photoabsorption spectra for fixexdei, the electric field constitutes
a small perturbation which can be treated using linear resptheory. This has to be distin-
guished from directly solving the time-dependent Kohn+8hequations in the time domain,
i.e. dynamically propagating orbitals and nuclei.

1 Introduction

Density functional theory (DFT) in its usual time-indepentiform is essentially a ground
state theory and, as such, excludes the interaction of maitie time-dependent fields.
There is generally no rigorous way, for example, to caleudéctronic excitation energies
due to photoabsorption. Standard DFT can be extended tted)states representing the
lowest state of a given space-spin symmetry. Beyond thisinaber ofad hoc solutions
based on Ziegler's sum methbldave been proposed over the yéars

The description of time-dependent phenomena, includirggaxcitation, was incor-
porated properly into DFT by Runge and Gridssho generalized the Hohenberg-Kohn
theorem to time-dependent densities and potentials. lesia&nse to distinguish between
two main types of time-dependent DFT (TDDFT) calculatiohise overwhelming major-
ity of applications deal with relatively weak electric fislde.g. photoabsorption spectra,
which can be treated as a small perturbation within linespeoase theory. The other branch
solves the TDDFT equations in the time domain to dynamigailbpagate electrons and
nuclet®>2 In the present article we will limit the discussion to thedar response aspect,
the particular focus being on electronic excitation.

The past decade has seen TDDFT linear response tHedry become the most
widely used electronic structure method for calculatingieal electronic excitation en-
ergie$®26 Except for certain well-known problem cases such as, fetaimce, charge
transfef’° Rydberg stateéd-34and double excitatiod3 TDDFT excitation energies are
generally remarkably accurate, typically to within a fiaatof an electron Voft—38.31

Excited state analytical nuclear forces within TDDFT havdydbeen implemented
recently?*?in an attempt to extend the applicability of TDDFT beyondysinpoint cal-
culations. One complication has been the fact that TDDFTelggurovides excitation
energies, but excited state wave functions are not propefiped. The first excited state
geometry optimization using analytical gradients was gméed by van Caillie and Amos
based on a Handy-Schaefer Z-vector meffidd An extended Lagrangian ansatz was
chosen by Furche and AhlricHsand Huttef? for their Gaussian-type basis set and plane



wave/pseudopotential implementations, respectivelg [atter variant is of particular im-
portance for condensed phase applications since it is unsednjunction with periodic
boundary conditions. In order to ensure completeness uhar of Kohn-Sham (KS) or-
bitals included in constructing the response matrix in agoolar orbital (MO) basis must
equal the number of basis functions. Since a plane wave hgscally consists of two
orders of magnitude more basis functions than a Gaussnissis set a complete MO
formulation of TDDFT is impractical. A solution to this priam is to cast the working ma-
trix equations directly into a plane wave basis as propogeduiter*?. Earlier, Doltsinis
and Sprik® have proposed an alternatiagtive space approach to TDDFT in which only
a subset of (active) KS orbitals is selected to constructélsponse matrix. For a large
variety of excited states, convergence of the correspgneeitation energies has been
shown to be rapid with respect to the number of orbitals idetlin the active spate®,
Doltsinis and Kosof# followed this active space ansatz and derived analytigalessions
for excited state nuclear forces within an MO basis. In asttto previous work, they do
not rely on a Lagrangian formulatiéh#? 4% but employ an implicit differentiation scheme
instead.

This article is organized as follows. First a general intrcitbn to TDDFT is given
before deriving the working equations of TDDFT linear resg® theory for the calcula-
tion of excitation energies. Subsequently, we present bwites to computing excited state
nuclear gradients within TDDFT linear response theorypibeular extended Lagrangian
ansatz and the implicit differentiation method. Finallyg discuss some illustrative exam-
ples of excited state energy and gradient calculationgusplane wave basis set.

2 Theory

2.1 Time-Dependent Kohn-Sham Theory

According to the Runge-Gross theorkrthere is a one to one correspondence between
the time-dependent external potential(r, ¢), and the time-dependent electron density,
p(r, t) for afixed initial state. This can be seen as a generalizafitee usual Hohenberg-
Kohn theorerff for electronic ground states. Similar to the static case, can cast the
many-electron problem into the Kohn-Sham non-interaatiegtrons form assuming non-
interactingu-representability. The latter assumption means that thsityeof the interact-

ing system can be reproduced by the non-interacting palesptii.e.

occe

pr,t) = |gi(r, )| (1)
where the orbitalg;(r, t) satisfy the time-dependent Kohn-Sham equations
.0 Vv?
i) = (=5 + w0 6i(e,0) @
with
!t
wlpl(e,t) = ves(,0) + [ (f‘;;ﬂ + vselpl(r, ) 3)



defining the exchange-correlation potential[p](r, t). In the usual adiabatic approxima-
tion*’, the exchange-correlation potential is taken to be simpdyderivative of the static
ground state exchange-correlation enefgy, with respect to the density,
8 Exc|p]

dp

Uxe[p](r,t) & (4)

2.2 Linear Response Theory

Let us suppose a time-dependent perturbing potential ¢), for instance an oscillating
electric fieldv; (r, t) = Ez coswt, is switched on at timé = ¢,. The external potential is
then given by

_ _ Joo(r) it <to
Vext (F, 1) = vo(r) + w1 (r, 1) = { vo(r) + Ezcoswt ,t > to ®)
wherewvy is usually the attractive Coulomb potential between etertrand nuclei
N
7K
vo(r) = — _ . 6

The first order density response fateracting particles to the perturbation (the first order
deviation of the time-dependent densiifr, t) from the unperturbed ground state density
po(r)) may be obtained from,

plr,t) = o) m i) = [t [ dn'x(e,t, 'ty 1) ™
with theinteracting response function

X(r,t, I‘I,tl) _ 6p(r’ t)

 SWext (T, 1) (8)

Yo

Expressing the rhs of Eq. (7) in terms of the Kohn-Sham respdonction ofnon-
interacting particles,

ép(r,1)

tr' )= 2 9
XS(I‘, T ) (5Us(rl,tl) velpol ( )

one arrives at
p1(r,t) = /dt'/dr'xs(r,t,r',t')vs’l(r',t') (10)

where
! p(rIJ t) ! 1 ! 1 ! 1

%Mﬁ=mmﬂ+/ﬁh_ﬂ+/ﬁ/ﬁﬂMﬂMJJMMJ)(ﬂ)

with the exchange-correlation kernel

Svxe[p](r, ?)

p(r',t) (12)

fxc[pO](r; t; rla tl) =



The frequency-dependent linear density response is @atdiy Fourier transform as
p1(r,w) = /dr’xs(r, r';w)v (r',w)

+ /dr'/dr"xs(r, r';w) (ﬁ + fxc[po](rlyr”;w)> p1(r",w) (13)

and

e = 3 (SADEOE) _ GEORDBORE

w— (€p — €p) w+ (ep —€p)

ph

¢p andgy, being the Kohn-Sham particle (unoccupied) and hole (o@m)pnolecular or-
bitals corresponding to the Kohn-Sham energjgande,, respectively.

Equation (13) for the first-order density has to be solveficmtsistently. This is most
conveniently done by casting Eq. (13) into a matrix eigemegiroblem>?2 For this
purpose, Bauernschmitt and AhlriéAparametrized the first-order density

p1(0:w0) = Y [Poho (@) bpo (V)16 (1) + Phpo (W) (8)ro(r)] - (15)
pho

Notice that we have now introduced the spin indéx1, |) and the undetermined expan-
sion coefficientsP,,, (w) have the meaning of the linear response of the density matrix
Equation (13) can then be rewritten as

()G E) o) o

with the vector component§;,,; = Phps (w), Yape = Ppro(w), and

Vipe = / dr g (1)1, (F) e (1) (17)

having separated the time-dependent perturbing potdnt@la purely space-dependent
and a purely time-dependent part, wg(r, t) = v1 »(r)v1 (). The matriceM andL are
given by
thtr,h’p’a’ = 0go 5pp’ Ohn (€p¢7 - eha) + tha,h’p’rf’ (18)
and
Mhpa,h'p’o" = tho’,h’p’o" (19)
with the coupling matrix

Khpohpor = / dr / dr' $s (1) $po () fii e (0, 7)1 0 ()b (2) . (20)
Here we have summarized the Hartree term and the exchamgdation term in the re-
sponse kernel

) 1 8?E,
oo AN xXC
H,xc(rar) = r—1| + 5p° (r)ép° (r')
The poles of the response function (Eq. (8)) of ithteracting system represent electronic
excitation energied481® They are characterized by zero eigenvalues of the matrix on

(21)



the lhs of Eqg. (16) and can therefore be obtained by solviaghin-Hermitian eigenvalue

problem
Ger) (3)=+(31) () - (22)

In the following, we shall assume the Kohn-Sham orbitals eordal. It is then possi-
ble to halve the dimension of the non-Hermitian eigenvalabiem by means of a uni-
tary transformatiof?. The essential steps are multiplication of Eq. (22) on tliedg
LM -10
ML 01
tion. Subtracting the two equations obtained this way fracheother, one finds

and substitution of Eq. (22) into the rhs of the resultingnmatqua-

L-M(L+M)X+Y)=uw?)(X+Y) . (23)

If (L — M) is positive definite, Eq. (23) can be multiplied on the lefthw(L — M)~2
yielding the Hermitian eigenvalue problem

QF = W’F (24)
where
Q= (L—-M)3(L+M)(L - M)? (25)
and
F=L-M)2(X+Y) (26)

The Hermitian coupling matrix (Eq. (25)) elements are
thu,h’p’a’ = 0go (Spp’ Onn (fpa - 6h0)2 +2 €po — 6haKpha,p’h’o’ VEép'o —€ho
(27)

The Tamm-Dancoff approximation, which amounts to set¥htp zero, further simplifies
the problem in particular when hybrid Hartree-Fock/DF Thexage-correlation functionals
are usetP. However, it does not reduce the computational cost or geospace compared
to the full Hermitian formulation (Eq. (24)).

2.3 Excited State Gradients

Excited state analytical nuclear forces within TDDFT havdydbeen implemented re-
cently?®42.44in an attempt to extend the applicability of TDDFT beyondysénpoint cal-
culations. One complication has been the fact that TDDFTelggrrovides excitation
energies, but excited state wave functions are not propefiped. The first excited state
geometry optimization using analytical gradients was gméed by van Caillie and Amos
based on a Handy-Schaefer Z-vector meffild An extended Lagrangian ansatz was
chosen by Furche and AhlricHsand Huttef? for their Gaussian-type basis set and plane
wave/pseudopotential implementations, respectivelg [atier variant is of particular im-
portance for condensed phase applications since it is usedrijunction with periodic
boundary conditions.



2.3.1 Extended Lagrangian Method

The starting point for the derivation of TDDFT excited stateergy gradients is the con-
struction of the extended Lagrangfart?

L =LV 4 KS (28)
consisting of the TDDFT linear response Lagrangian
‘CLR = <X7Y|A|X7Y) —w [<X7Y|A|X>Y> - 1] (29)
with
LM
A= (M L ) (30)
and
-10
A= ( 0 1) . (31)

The corresponding non-Hermitian linear response probEm (22)) can be recovered
from

(5,CLR
= 32
X, y] 0 (32)
subject to the constraint
8£LR
=0 . 33
Ow 0 (33)
The ground state Kohn-Sham contribution is given by
LS =" Zpho Hyho — Y Wijo [(bio|$50) — 655] (34)
pho ij

where theZ,,, andW;;, are Lagrange multipliers an,,;, are matrix elements of the
static Kohn-Sham Hamiltonian. The conditions

6£KS
— 35
0Zpho (35)
and
aEKS
5., = O (36)

ensure that the orbitals;,, are orthonormal and satisfy the ground state Kohn-Shamequa
tions. The important step is now to determine the unknowrrduage multipliersZ,,, and
Wije from
oL
6¢i¢7
The derivative of the excitation energy with respect to theclear coordinate
R, (a=1,...,3N) foramolecule consisting a¥ atoms yields

W =LY = (X, YIAYX,Y) + ) Zono Ho — Y Wijo [(68 |5a) + (biol62,)]

pho ij

0 . (37)

(38)
where we have used the short-hand notaggaﬂ = f< for a general functiorf.



2.3.2 Implicit Differentiation Approach

An alternative to the above extended Lagrangian methockisetently proposed implicit
differentiation schenfé. In the following detailed derivation, we confine ourseltes
singlet excitations (extension to triplet excitations timghtforward) and therefore drop

the spin index.
Multiplying Eq. (24) by(F| from the left we obtain

(F|IQIF) = w? . (39)
Differentiation with respect to nuclear position yields
w® = <F|m|F Z > Fon 8 o Fon (40)
ph plhl

where theF),, are the components of the linear response eigenv&ct@arrying out the
differentiation of the response matrix, Eq. (40) becomes

1 .
W =~ D (Fon) (e = i) (e — €n)
ph
+2/dr/drTl(r)fH,xc(r,r')Fg(r')
+2/drI‘1 x(‘ a( )Fl(r) - (41)
Here we have defined the contracted densities
r) = Zth € — €pl'pn(r) (42)
ph
and
Z th [ﬁ ph(l‘) + 2 Chl—‘gh(l‘) (43)
with
Lij(r) = ¢i(r)d;(r) . (44)

In order to compute the excitation energy gradient (Eq.)(41¢ require the nuclear deriva-
tives of KS orbital energies and wave functioe®,and¢$ (i = p, h). These can be ob-
tained using an implicit differentiation scheme as followge start by writing down the

KS equations in matrix form

For the full differential ofF;; we have
0H;;
dF;; = (8R] — €5'0i)dR, +Z/dr 6¢k , (46)



k — OH;;
whereH;; = 7=

oHy;
6R:_6i5ij:_;/derj Z/dr/dr r)en (') . (47)

On the rhs of Eq. (47) we have inserted a delta function, wiviemow express in terms of
KS orbitals

S(r —r') Z di(r)pi(r') . (48)
Thus Eq. (47) becomes
gﬁ: — ey =—Y HEg (49)
kl
where
H} = / drH}; ¢y (r)
— (Gukdiy + O50800)er + 2n / dr / Tt () fitme (0, 0)Tis (1)) 5 (50)
and
o' = [ s (51)

ny being the number of electrons occupying orbkal
Exploiting the symmetry of the nonadiabatic coupling masiements (Eq. (51)), i.e.

ok = —¢2l and therefor@?! = 0, Eq. (49) can be rewritten as
BH
” => Dl (i < §) (52)
1<k

and for the diagonal terms & j)

-3 Dt (53)

k<l
where
Dif = Hzljk — Hfjl = (51'1519]' + 5,’k(slj)(€k — 6[) + 2(nk — nl)Kij,lk . (54)
With the definition in Eq. (54) Eq. (52) becomes
OHy, ap'
aRap = plzhl((ep’ - eh’)(spp’ Onn + 4Kp’h’,ph)¢h/p (55)

for particle-hole states, and
6Hij
OR,

=4 Kijondi? + (e — )63 (i < j, ij > ph) (56)
ph



for all remaining combinations. Eq. (56) allows us to expré® nonadiabatic coupling
elements between non-particle-hole states analytically a

aH,J
ol = 28 2 ¥4 2 Kiandi” (i <j, ij > ph) . (57)
(€ — 6])
The system of linear equations (55) is first solved for theiglarhole nonadiabatic cou-
pling eIementsﬁgh, which are then inserted into Eq. (57) to obtain the remainimon-
particle-hole, elements. The second term in the numer&teqo57) is most conveniently
evaluated by introducing the contracted density

=Y ¢p(Ddn(r)dy” (58)
ph
Then
S Kyt = / dr / dE'T3(x) fr (0, 7) i) 6 (0) = KLy, . (59)
ph
Thus Eq. (57) becomes
i BH”+4K' A
ggi = e Y (i< j, ij 5ph) . (60)
(€ — 5])
Similarly the KS orbital energy gradients can now be obtaiinem the simplified Eq. (53)
OHj;
o= 2% 4K 1
62 6R + (6 )

Finally, the nuclear derivative of the KS orbital wave fupatis recovered by unfolding
the nonadiabatic couplings

=> ar)ey . (62)
l

Equations (1)—(31) have been implemented with periodicndawy conditions using a
plane wave expansion of the KS MOs at figoint of the Brillouin zone. By making
use of the periodic boundary conditions, the generalizeditlesI';, I';, I's andI’;; can
be expanded in reciprocal space via the three-dimensianaidt transform, e.g.

Z I (G) exp(iGr) (63)

whereG is the vector of the reciprocal lattice. The Hartree parthaf matrix element
J dr [ dr'Ty (r) fu,xe(r,r")T2(r') and [ dr [ dr'Ty(r) fuxe(r,r’)Tij(r') which enter the
key equations (41) and (50), respectlvely, can be readitypzded in reciprocal space, e.g.

/dr/dr Ty(r QGZ#O G) , (64)

whereas the exchange-correlation parts of the matrix elesrare calculated via direct
numerical integration over grid in coordinate space.



| active spac§ AExs 1o/lv.50/lv 50/5v  50/50v  50/100\
| exc.energy] 839 9.47 940 9.40 9.33 9.29]

Table 1. Dependence ofNTDLDA excitation energy ]([Ig, 304 — 1my) in eV using plane waves (p.w.) with a
70 Ry cutoff in a 1ag periodic box on the number of occupied (0) and virtual (v) K&bham orbitals included
in the active spaceA Fxg is the unperturbed Kohn-Sham energy difference.

3 Example Calculations

In this section, we present some (test) results for exoitanergies and gradients from the
TDDFT implementations described in Refs. 43, 44. All caltiains were performed with
the CPMD packag® employing periodic boundary conditions and a plane wave J(PW
basis set in conjunction with Troullier-Martins normconseg pseudopotentiai

The central idea underlying this active space (AS) approaiginates from the obser-
vation that excitation energies for a large number of etettr transitions exhibit only a
minor dependence on the size of the response matrix (Eq. PTiyis illustrated in Table 1
for the3o, — 1w, transition of .. A simple two-state HOMO-LUMO response calcula-
tion is seen to give an excitation energy which is less thare?. away from an extended
treatment including all 5 occupied and 100 virtual MOs. Gahyg such behavior is to be
expected for excitations which can be characterized by arigw low-lying one-electron
transitions without higher-lying continuum states mixing

Table 2 lists the first eight excitation energies of édmparing the AS-PW results (30
a.u. unit cell, 70 Ry cutoff, AS consisting offband 85p states) to atomic basis set studies
as well as experimental data. We observe satisfactory agnete the largest difference
being 0.19 eV for th&s, — 1, transition.

As a further example, our results fo,8O in a fcc lattice (30 a.u. unit cell, 70 Ry
cutoff, AS contained @& and 70p states) are presented in Table 3. Again, there is reason-

TDLDA CCSD  Exp.

Transition reP?  ref3” ref3T ref3 AS-PWF  ref33 ref>*
(*A,) 17, — 17, 1022 10.23 10.21 10.20 10.25 10.54 10.27
('s,) 1m, = 1m, 965 9.68 9.64 9.63 9.73 10.09 9.92
(M) 30, — 1m, 9.05 9.07 9.04 9.04 9.23 9.27 931
() 20, — 1w, 10.36 10.37 10.36 10.36 1045 11.19 11.19
=) 1my, = 1my, 965 9.68 9.64 9.63 9.73 9.86 9.67
(Ay) 1my — 1my 882 884 882 8.80 8.92 8.93 8.88
(M,) 30, > 1n, 754 758 754 7.3 7.66 805 8.04
=D 1my = 1y, 786 790 7.86 7.84 7.99 756 7.75
polarizability [a.u.] - 1227 1217 1211 12.6 11.74

Table 2. Comparison of AS-PWJ\excitation energies in eV to other TDLDA results obtainethveitomic sets,
CCSD, and experiment. In the last row, sum-over-stateesgdir the mean static polarizability are compared to
the experimental number.
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TDLDA CASPT2 Exp.
Transition ref? ref3T  AS-PWS  AS-PW(ACY®  ref5  ref56.57

4, (n—> ") 3.64 368  3.68 3.69 3.01 3.4
%4, (n > ) 302 3.06  3.08 3.08 3.48 3.50
4, (r > *) 611 6.24  6.38 6.39 5.99 553
B, (0 - %) 870 879 894 8.94 9.09 8.68
By (n —3s) 586 578 565 6.56 - 6.83
By (n—3s) 593 582 576 6.89 7.30 7.09
4, (n—3p) - 648  6.73 7.59 - 7.79

T4, (n—3p) 6.79 649  6.93 7.83 8.09 7.97

Table 3. Comparison of #ZO AS-PW excitation energies in eV with and without asymiptobrrection (AC)
to literature TDLDA results obtained with a gaussian setexpueriment.

able agreement between the different LDA studies. The CARS#XTitation energies are,
however, much closer to the experimental values than theD/iesults. Moreover, in-
specting the data for the transitions to 8xand3p Rydberg orbitals the deficiency of the
LDA exchange-correlation potential at long range becorppagent. These problems per-
sist for most GGA's. In contrast, employing the asymptoticrection proposed by Tozer
and Handy"* these excitation energies can be drastically improvedasrsin Table 3.

In our final example, we go beyond the static, zero tempezadascription. Figure
1 depicts an average photoabsorption spectrum of formaaotitiéned from the instanta-
neous spectra of 11 molecular configurations sampled frorPBIIT run at 300 K. Al-
though many more configurations are needed to obtain a qgedepectrum, we are able
to reproduce the most important features of the experirhghtatoabsorption spectrum.
The W band (see Table 4 for a summary of this historic nomémaaresulting from the
n — m* transition has been found to have a maximum around 5%.&%ingell et al*®
have associated the, hand between 6.2 and 7.0 eV with transitions fromthand~
orbitals to the3s Rydberg orbital which is supposed to be mixed with*avalence orbital.
The main absorption peak;With a maximum at roughly 7.4 eV has traditionally been
linked to thers — 7* transition, whereas the sharp structure on its high-ensidg/has
been assigned to transitionsdp Rydberg orbital®. There remains considerable doubt
regarding the origin of the broad band, Q, around 9.2 eV, hior a long time, was
thought to be due to the, — 7* transitior?®. Gingell et al®® have interpreted this peak
as a superposition of a large number of Rydberg states.

Our theoretical LDA absorption spectrum in Figure 1 is seeadree overall quite
well with the VUV curve, only the low-energy side of the maiagk seemingly being
somewhat overestimated. However, analyzing the indiViéuaitations at equilibrium
geometry listed in Table 4, it becomes clear that use of timptotically corrected LDA
exchange-correlation potential corrects for this disareyy. According to our calculations,
the R band then unambiguously arises fram- 3s andw — 3s excitations. We cannot
confirm, however, any involvement ofcet valence orbital as previously assurfédin-
stead we observe a small contribution (roughly 5% in the gdgtically corrected case)
from ther, — 7* transition. Our calculations further reveal that all tharghstructure of

11



transiton AS-PW® AS-PW(ACY® HCTH(AC)® CASPTZ'  Exp>®

n — ¥ 5.27 5.29 5.43 5.61 5.8 (W)
n — 3s 5.56 6.27 6.30 6.59 6.35 (R)
T — 3s 6.28 7.09 7.03 6.52

n — 3p 6.44 7.22 7.09 7.31 7.7 (R)
T — 3p 7.18 7.91 7.76 7.04

T — 7" 7.80 7.67 7.58 7.41 7.4y

Table 4. Comparison of formamide equilibrium geometry A8-Excitation energies in eV using LDA with and
without asymptotic correction (AC) to literature data.

the main peak is due to excitations franto 3p orbitals, generally being more intense by
one order of magnitude compared with their— 3p equivalents.

The most intense line found with LDA(AC) is at 7.67 eV and ii®cacter is a mixture
of 37% m — 7* and 63% excitations from the or m» valence to3p or 3d Rydberg
orbitals. A smallm, — 7* contribution can also be detected in our calculated Q band,
which otherwise predominantly results frem— 3d transitions.

We would like to point out that our LDA(AC) results are in acdavith the HCTH(AC)
values of Hand§f. On the other hand, the CASPT2 results of Serrano-Andrés an
Fillsche?! show larger differences; in particular the energetic drdpof excitation from
then andm, orbitals seems to be reversed.

=

oscillator strength

0.0
5.0 6.0 7.0 8.0 90 100 11.0

energy [eV]

Figure 1. Theoretical room temperature photoabsorpti@ctspm of formamide obtained from TDLDA calcu-
lations (white bars) compared to the experimental VUV d&@iogell et al..
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0 250 300
number of virtual orbitals

150

Figure 2. Upper panel: The integral in Eq. (65) as a functibthe number of virtual orbitals included in the
active space. Lower panel: Absolute deviation of finiteati#hce and analytic derivatives of the KS HOMO and
LUMO energies and the first singlet excitation energy of & a bond length of 1.0 a.u. as a function of the
number of virtual KS orbitals included in the active spacée Ealculations were carried out in a cubic box of
length 6 a.u. with periodic boundary conditions and a plaaeexcutoff of 40 Ry.

In the following we shall illustrate the performance and to&vergence behavior of
the implicit differentiation methott (cf. Section 2.3.2) for nuclear gradients.

The upper panel of Figure 2 displays the completeness ofth@apace as a function
of the number of virtual KS orbitals included in the spacee Tritegral

N
) = [ ey ix)n(0) (65)

was used as a measure of completeness of the active spaaxothés unity when the
active space of KS orbitals is complete, i.e. when the totethiner of the KS orbitals
(virtual and occupied) equals the number of plane waves tesedlve the KS equations.
The total number of plane waves is 925 for the 6 a.u. cubic k40 Ry plane wave
cutoff. With 450 virtual orbitals included the active spa&almost complete and the value
of the integral (Eq. (65)) deviates from unity by approxistatl0—2 which is already
comparable with the accuracy of the numerical integratibime lower panel of Figure 2
shows the absolute deviation of the analytic derivativesifthne respective finite difference
values for the the first singlet excitation energy, as well as the HOMO and LUMO KS
orbital energies¢; ande,, of Hy at a bond length of 1.0 a.u. as a function of the number
of virtual KS orbitals included in the active space. The dlgodeviation in analytical
gradients vanishes rapidly as the number of virtual orbitaincreased and the errors in the
analytical gradients of different states generally shosvdame patterns in the dependence
upon the number of virtual orbitals included in the activacp

Figure 3 shows the absolute deviation of the analyticalvdévie from the respective
finite difference value as a function of the size of the actipace for the first three KS
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Figure 3. Absolute deviation of the analytic derivativesnirthe respective finite difference values for the the
first singlet excitation energy;, as well as the three lowest KS orbital energigg; = 1, 2, 3), of N2 at a bond
length of 2.0 a.u. as a function of the number of virtual KSitaib included in the active space. The calculations
were carried out in a cubic box of length 6 a.u. with periodicidary conditions and a plane wave cutoff of 40
Ry.

orbital energies; (i = 1,2, 3) as well as the lowest response matrix eigenvalyef the

N, molecule. The errors of the analytical gradients are seatetvease rapidly as the
number of orbitals included in the active space approadtesumber of plane wave basis
functions (in this case 925 plane waves). For the largesteaspace the deviations of all
energies are of the order ®6—2 or smaller. At this point, the accuracy of the analytical
derivatives is hard to assess because the finite differefieence values are also subjected
to numerical errors.

To test the practical value of our derivatives, we have peréal geometry optimiza-
tions of N, in the first excited state8(x 5.6 x 5.6 a.u. box, 40 Ry plane-wave cutoff, i.e.
600 basis functions). When we include only 100 virtual alsiin the active space, we
obtain a bond length of 2.44 a.u., which deviates by 0.02faom the value of 2.42 a.u.
determined by a series of single point energy calculatidizon increasing the number
of virtual states to 200, the optimized bond length comesagu2.42 a.u., correct to two
decimal places. Our test calculations illustrate how tlze sif the active space may be
adjusted to achieve any desired level of accuracy. For meamtipal purposes it will be
sufficient to work with a reduced active space which is sigaiftly smaller than the total
number of basis functions.

We would like to emphasize that the method described heragalde of providing
additional information beyond excited state energy gnatdieFigure 4 shows, for instance,
the nonadiabatic coupling strength between the secondnéntd{S orbitals,¢, and¢s,
for the H, molecule as a function of its bond length. The nonadiabatigptng values
obtained from Eq. (60) exhibit a singularity at the crosspaint between the two KS
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Figure 4. Upper panel: Absolute value of the nonadiabatigpling matrix element between the KS orbitgils
andgs along the molecular axis of4as a function of the bond length. Lower panel: KS orbital giesr,e2 and
€3 of Hy as a function of bond length. The calculations were carrigtdroa periodic orthorhombic box of size
8 x 5.6 x 5.6 a.u3 using a plane wave cutoff of 40 Ry.

orbital energies, as one would expect due to the KS enerprelifce in the denominator.
This feature of our formalism may be exploited in future aggtions of TDDFT beyond
the Born-Oppenheimer approximation.
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