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Time-Dependent Density Functional Theory

Nikos L. Doltsinis
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Ruhr-Universität Bochum
44780 Bochum, Germany

E-mail: nikos.doltsinis@theochem.rub.de

Time-dependent density functional theory (TDDFT) is the generalization of stationary DFT
to time-dependent potentials and electron densities. Mostpractical applications are concerned
with the interaction of molecules with an electric laser field. In the vast majority of cases,
such as the calculation of photoabsorption spectra for fixednuclei, the electric field constitutes
a small perturbation which can be treated using linear response theory. This has to be distin-
guished from directly solving the time-dependent Kohn-Sham equations in the time domain,
i.e. dynamically propagating orbitals and nuclei.

1 Introduction

Density functional theory (DFT) in its usual time-independent form is essentially a ground
state theory and, as such, excludes the interaction of matter with time-dependent fields.
There is generally no rigorous way, for example, to calculate electronic excitation energies
due to photoabsorption. Standard DFT can be extended to excited states representing the
lowest state of a given space-spin symmetry. Beyond this, a number ofad hoc solutions
based on Ziegler’s sum method1 have been proposed over the years2–13.

The description of time-dependent phenomena, including photoexcitation, was incor-
porated properly into DFT by Runge and Gross14 who generalized the Hohenberg-Kohn
theorem to time-dependent densities and potentials. It makes sense to distinguish between
two main types of time-dependent DFT (TDDFT) calculations.The overwhelming major-
ity of applications deal with relatively weak electric fields, e.g. photoabsorption spectra,
which can be treated as a small perturbation within linear response theory. The other branch
solves the TDDFT equations in the time domain to dynamicallypropagate electrons and
nuclei15–20. In the present article we will limit the discussion to the linear response aspect,
the particular focus being on electronic excitation.

The past decade has seen TDDFT linear response theory14, 21–24 become the most
widely used electronic structure method for calculating vertical electronic excitation en-
ergies25, 26. Except for certain well-known problem cases such as, for instance, charge
transfer27–30 Rydberg states31–34 and double excitations35, TDDFT excitation energies are
generally remarkably accurate, typically to within a fraction of an electron Volt36–38, 31.

Excited state analytical nuclear forces within TDDFT have only been implemented
recently39–42 in an attempt to extend the applicability of TDDFT beyond single point cal-
culations. One complication has been the fact that TDDFT merely provides excitation
energies, but excited state wave functions are not properlydefined. The first excited state
geometry optimization using analytical gradients was presented by van Caillie and Amos
based on a Handy-Schaefer Z-vector method39, 40. An extended Lagrangian ansatz was
chosen by Furche and Ahlrichs41 and Hutter42 for their Gaussian-type basis set and plane
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wave/pseudopotential implementations, respectively. The latter variant is of particular im-
portance for condensed phase applications since it is used in conjunction with periodic
boundary conditions. In order to ensure completeness, the number of Kohn-Sham (KS) or-
bitals included in constructing the response matrix in a molecular orbital (MO) basis must
equal the number of basis functions. Since a plane wave basistypically consists of two
orders of magnitude more basis functions than a Gaussian-type basis set a complete MO
formulation of TDDFT is impractical. A solution to this problem is to cast the working ma-
trix equations directly into a plane wave basis as proposed by Hutter42. Earlier, Doltsinis
and Sprik43 have proposed an alternative,active space approach to TDDFT in which only
a subset of (active) KS orbitals is selected to construct theresponse matrix. For a large
variety of excited states, convergence of the corresponding excitation energies has been
shown to be rapid with respect to the number of orbitals included in the active space43, 30.
Doltsinis and Kosov44 followed this active space ansatz and derived analytical expressions
for excited state nuclear forces within an MO basis. In contrast to previous work, they do
not rely on a Lagrangian formulation41, 42, 45, but employ an implicit differentiation scheme
instead.

This article is organized as follows. First a general introduction to TDDFT is given
before deriving the working equations of TDDFT linear response theory for the calcula-
tion of excitation energies. Subsequently, we present two routes to computing excited state
nuclear gradients within TDDFT linear response theory, thepopular extended Lagrangian
ansatz and the implicit differentiation method. Finally, we discuss some illustrative exam-
ples of excited state energy and gradient calculations using a plane wave basis set.

2 Theory

2.1 Time-Dependent Kohn-Sham Theory

According to the Runge-Gross theorem14 there is a one to one correspondence between
the time-dependent external potential,���� �� � ��, and the time-dependent electron density,	 �� � �� for a fixed initial state. This can be seen as a generalizationof the usual Hohenberg-
Kohn theorem46 for electronic ground states. Similar to the static case, one can cast the
many-electron problem into the Kohn-Sham non-interactingelectrons form assuming non-
interacting�-representability. The latter assumption means that the density of the interact-
ing system can be reproduced by the non-interacting potential �
, i.e.

	 �� � �� � �

�� ��� �� � �� �� (1)

where the orbitals
�� �� � �� satisfy the time-dependent Kohn-Sham equations

� �� � �� �� � �� � �� ��� � �
 �	� �� � ��� �� �� � �� (2)

with

�
 �	� �� � �� � ���� �� � �� � � ��� 	 �� � � ���� � �� � � ��
 �	� �� � �� (3)
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defining the exchange-correlation potential��
 �	� �� � ��. In the usual adiabatic approxima-
tion47, the exchange-correlation potential is taken to be simply the derivative of the static
ground state exchange-correlation energy,��
, with respect to the density,

��
 �	� �� � �� � ���
 �	��	 � (4)

2.2 Linear Response Theory

Let us suppose a time-dependent perturbing potential� � �� � ��, for instance an oscillating
electric field� � �� � �� � � � ��� 	 �, is switched on at time� � �
 . The external potential is
then given by

���� �� � �� � �
 ��� � � � �� � �� � � �
 ��� � � � �
�
 ��� � � � ��� 	 � � � 
 �
 (5)

where�
 is usually the attractive Coulomb potential between electrons and nuclei

�
 ��� � � ��� �
�

��� � � � � (6)

The first order density response forinteracting particles to the perturbation (the first order
deviation of the time-dependent density	 �� � �� from the unperturbed ground state density	
 ���) may be obtained from,

	 �� � �� � 	
 ��� � 	 � �� � �� � � ��� � �� �� �� � � � � � � � � �� � �� � � � � � (7)

with theinteracting response function

� �� � � � � � � � � � � �	 �� � ������� �� � � � � � ������ � (8)

Expressing the rhs of Eq. (7) in terms of the Kohn-Sham response function ofnon-
interacting particles,

� 
 �� � � � � � � � � � � �	 �� � ����
 �� � � � � � ������ ��� �
(9)

one arrives at 	 � �� � �� � � ��� � ���� 
 �� � � � � � � � � ��
 �� �� � � � � � (10)

where

�
 �� �� � �� � � � �� � �� � � ��� 	 �� � � ���� � �� � � � ��� � �����
 �	
 � �� � � � � � � � � �	 � �� � � � � � (11)

with the exchange-correlation kernel

��
 �	
 � �� � � � � � � � � � � ���
 �	� �� � ���	 �� � � �� � � (12)
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The frequency-dependent linear density response is obtained by Fourier transform as	 � �� �� � � � ���� 
 �� � � � � � �� � �� � �� �
� � ��� � �� ��� 
 �� � � � � � � � �

�� � � ��� � � ��
 �	
 � �� � � � �� � � �� 	 � �� �� �� � (13)

and

� 
 �� � � � � � � � �� � ��� ���� �� ������ ��� ��� ��� �� � ��� � �� � � � �� ����� ����� ��� ���� �� � �� � ��� � �� � � (14)

�� and
�� being the Kohn-Sham particle (unoccupied) and hole (occupied) molecular or-

bitals corresponding to the Kohn-Sham energies
�� and

�� , respectively.
Equation (13) for the first-order density has to be solved self-consistently. This is most

conveniently done by casting Eq. (13) into a matrix eigenvalue problem21, 22. For this
purpose, Bauernschmitt and Ahlrichs22 parametrized the first-order density	 � �� �� � � �� �� �	��� �� ���� ���� ��� ��� � 	��� �� ����� ������ ���
 � (15)

Notice that we have now introduced the spin index� ��� � 
 � and the undetermined expan-
sion coefficients

	��� �� � have the meaning of the linear response of the density matrix.
Equation (13) can then be rewritten as��� �� � �� � � � ��� �� ��� ��� � � �� � �� �� � ��� � � (16)

with the vector components���� � 	��� �� �, ���� � 	��� �� �, and���� � � ��� ��� ���� � �� ������ ��� (17)

having separated the time-dependent perturbing potentialinto a purely space-dependent
and a purely time-dependent part, i.e.� � �� � �� � � � �� ���� � �� ���. The matrices� and� are
given by ���� ���� � � � � ��� � ��� � ���� ���� � ��� � � ���� ���� �� � (18)

and ���� ���� � � � � ���� ���� �� � (19)

with the coupling matrix

���� ���� �� � � � �� � ������� ������ ���� �� � ��
 �� � � � ����� � � ��� ��� � � � �� � � � (20)

Here we have summarized the Hartree term and the exchange-correlation term in the re-
sponse kernel

� �� � ��
 �� � � � � � �
�� � �� � �

� ���
�	� ����	� � �� � � � (21)

The poles of the response function (Eq. (8)) of theinteracting system represent electronic
excitation energies21, 48, 16. They are characterized by zero eigenvalues of the matrix on
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the lhs of Eq. (16) and can therefore be obtained by solving the non-Hermitian eigenvalue
problem

�� �� � �� � ��� � � � ��� �� �� ��� � � (22)

In the following, we shall assume the Kohn-Sham orbitals to be real. It is then possi-
ble to halve the dimension of the non-Hermitian eigenvalue problem by means of a uni-
tary transformation49. The essential steps are multiplication of Eq. (22) on the left by� � �� � � ��� �� �� and substitution of Eq. (22) into the rhs of the resulting matrix equa-

tion. Subtracting the two equations obtained this way from each other, one finds�� � � � �� � � � �� � � � � � � �� � � � � (23)

If
�� � � � is positive definite, Eq. (23) can be multiplied on the left with

�� � � �� ��
yielding the Hermitian eigenvalue problem

�� � � ��
(24)

where
� � �� � � � �� �� � � � �� � � � �� (25)

and
� � �� � � �� �� �� � � � (26)

The Hermitian coupling matrix (Eq. (25)) elements are
� ��� ���� � � � � ��� � ��� � ���� ���� � ��� �� � ����� � ������� �� ���� ���� � � � ���� �

(27)
The Tamm-Dancoff approximation, which amounts to setting

�
to zero, further simplifies

the problem in particular when hybrid Hartree-Fock/DFT exchange-correlation functionals
are used35. However, it does not reduce the computational cost or storage space compared
to the full Hermitian formulation (Eq. (24)).

2.3 Excited State Gradients

Excited state analytical nuclear forces within TDDFT have only been implemented re-
cently39–42, 44in an attempt to extend the applicability of TDDFT beyond single point cal-
culations. One complication has been the fact that TDDFT merely provides excitation
energies, but excited state wave functions are not properlydefined. The first excited state
geometry optimization using analytical gradients was presented by van Caillie and Amos
based on a Handy-Schaefer Z-vector method39, 40. An extended Lagrangian ansatz was
chosen by Furche and Ahlrichs41 and Hutter42 for their Gaussian-type basis set and plane
wave/pseudopotential implementations, respectively. The latter variant is of particular im-
portance for condensed phase applications since it is used in conjunction with periodic
boundary conditions.
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2.3.1 Extended Lagrangian Method

The starting point for the derivation of TDDFT excited stateenergy gradients is the con-
struction of the extended Lagrangian41, 42

� � ��� � ���
(28)

consisting of the TDDFT linear response Lagrangian��� � �� �� �� �� �� � � � ��� �� �� �� �� � � �� (29)

with
� � � � �� � � (30)

and
� � ��� �� �� � (31)

The corresponding non-Hermitian linear response problem (Eq. (22)) can be recovered
from ����� �� �� � � 	 (32)

subject to the constraint ������ � 	 � (33)

The ground state Kohn-Sham contribution is given by
��� � ���� �

� ��
� �� � ��� � �� � ����� ��� � � � � �� � (34)

where the�
� �� and

� �� � are Lagrange multipliers and
 � �� are matrix elements of the
static Kohn-Sham Hamiltonian. The conditions������� ��

� 	 (35)

and ������ �� � � 	 (36)

ensure that the orbitals
��� are orthonormal and satisfy the ground state Kohn-Sham equa-

tions. The important step is now to determine the unknown Lagrange multipliers�
� �� and� �� � from ������ � 	 � (37)

The derivative of the excitation energy with respect to the nuclear coordinate
� �� � � � � � � � �� � for a molecule consisting of� atoms yields� � � �� � �� �� ��� �� �� � � �� �� �
� ��
 �� �� � ��� � �� � ������ ��� � � � ���� ���� � �


(38)
where we have used the short-hand notation� ����

� � � for a general function� .
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2.3.2 Implicit Differentiation Approach

An alternative to the above extended Lagrangian method is the recently proposed implicit
differentiation scheme44. In the following detailed derivation, we confine ourselvesto
singlet excitations (extension to triplet excitations is straightforward) and therefore drop
the spin index� .

Multiplying Eq. (24) by�� � from the left we obtain

�� �� �� � � � � � (39)

Differentiation with respect to nuclear position yields� � � ��� �� �� � �� � � ��� �� � �� � �� �� ���� � �� � ���� � �� � (40)

where the
�� � are the components of the linear response eigenvector

�
. Carrying out the

differentiation of the response matrix, Eq. (40) becomes

� � � ��
�
��� � ��� � �� ���� � ��� � ��� � �� �

�� � �� � ���� � ���� ��
 �� � � � �� � ��� ��� � ��� � ��� � ���
�	 ���� 	� ���� � ���� � (41)

Here we have defined the contracted densities

� � ��� � �� � �� ���� � ����� ��� (42)

and

� � ��� � �� � �� � � ��� � ���� �� � �� �� � ��� � ���� � ������ ���� (43)

with

� �� ��� � �� ����� ��� � (44)

In order to compute the excitation energy gradient (Eq. (41)), we require the nuclear deriva-
tives of KS orbital energies and wave functions,

��� and
��� (

� � � � �). These can be ob-
tained using an implicit differentiation scheme as follows. We start by writing down the
KS equations in matrix form

� �� � 
 �� � � �� �� � 	 � (45)

For the full differential of
� �� we have

�� �� � ��
 ���
� � ��� � �� ��
� � �
� � ��
 ��� ��� ��� � 	 � (46)
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where
 ��� � �� ��
��� ��� . Division by �
�

yields

�
 ���
� � ��� � �� � � �
� � ��
 ��� ��� ��� � � �

� � �� � ���
 ��� � �� � �� ���� �� � � � (47)

On the rhs of Eq. (47) we have inserted a delta function, whichwe now express in terms of
KS orbitals � �� � �� � � �

�
� � ���� � �� � � � (48)

Thus Eq. (47) becomes �
 ���
� � ��� � �� � � �
� � 
 ���� �� �� � (49)

where


 � ��� � � ��
 ��� � � ���
� �� �� � �� � �� � ��� ��� � �	 � � �� � ������ ���� ��
 �� � � � �� �� �� � � � (50)

and ���� � � ��� � ������ ��� � (51)

	 � being the number of electrons occupying orbital
.
Exploiting the symmetry of the nonadiabatic coupling matrix elements (Eq. (51)), i.e.���� � ��� �� and therefore

�� �� � 	, Eq. (49) can be rewritten as�
 ���
� � �
���

� ���� ���� � �� 
 � � (52)

and for the diagonal terms (
� � �

)��� � �
 ���
� � �
���

� � ��� ���� � (53)

where
� ���� � 
 ���� � 
 ���� � �� ����� � � �� ��� � ��� � �� � � � �	 � � 	� �� �� ��� � (54)

With the definition in Eq. (54) Eq. (52) becomes�
 ���
� � �� � �� ���� � � ��� ���� � ���� � ������ �� � ���� ��� (55)

for particle-hole states, and�
 ���
� � �
�� � � �� �� ����� � �� � � �� ����� � �� 
 � � �� � � � � (56)
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for all remaining combinations. Eq. (56) allows us to express the nonadiabatic coupling
elements between non-particle-hole states analytically as

���� � ������� � � � � � � �� �� ������� � � �� � � �� 
 � � �� � � � � � (57)

The system of linear equations (55) is first solved for the particle-hole nonadiabatic cou-
pling elements

���� , which are then inserted into Eq. (57) to obtain the remaining, non-
particle-hole, elements. The second term in the numerator of Eq. (57) is most conveniently
evaluated by introducing the contracted density

�� ��� � ��� �� ����� ������� � (58)

Then �� � � �� �� ����� � � �� � ����� ���� ��
 �� � � � ��� �� � ��� �� � � � � ��� � (59)

Thus Eq. (57) becomes

�� �� � ������� � �� ����� � � �� � � �� 
 � � �� � � � � � (60)

Similarly the KS orbital energy gradients can now be obtained from the simplified Eq. (53)��� � �
 ���
� � �� ��� � (61)

Finally, the nuclear derivative of the KS orbital wave function is recovered by unfolding
the nonadiabatic couplings ��� ��� � �

�
� � ����� �� � (62)

Equations (1)–(31) have been implemented with periodic boundary conditions using a
plane wave expansion of the KS MOs at the� point of the Brillouin zone. By making
use of the periodic boundary conditions, the generalized densities� �, � � , �� and� �� can
be expanded in reciprocal space via the three-dimensional Fourier transform, e.g.

� � ��� � �
�

� � �� � ��� ��� �� (63)

where
�

is the vector of the reciprocal lattice. The Hartree part of the matrix element� �� � �� �� � ���� ��
 �� � � � �� � �� � � and
� �� � ����� � ���� ��
 �� � � � �� �� �� � � which enter the

key equations (41) and (50), respectively, can be readily computed in reciprocal space, e.g.

� �� � ���� � ��� �
�� � �� �� �

�� � � � � �
� �	


�

� � � � �� �� � �� � � (64)

whereas the exchange-correlation parts of the matrix elements are calculated via direct
numerical integration over grid in coordinate space.
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active space ���� 1o/1v 5o/1v 5o/5v 5o/50v 5o/100v

exc. energy 8.39 9.47 9.40 9.40 9.33 9.29

Table 1. Dependence of N� TDLDA excitation energy (��� , ��� � �	�
) in eV using plane waves (p.w.) with a

70 Ry cutoff in a 10
� periodic box on the number of occupied (o) and virtual (v) Kohn-Sham orbitals included
in the active space.�
�� is the unperturbed Kohn-Sham energy difference.

3 Example Calculations

In this section, we present some (test) results for excitation energies and gradients from the
TDDFT implementations described in Refs. 43, 44. All calculations were performed with
the CPMD package50 employing periodic boundary conditions and a plane wave (PW)
basis set in conjunction with Troullier-Martins normconserving pseudopotentials51.

The central idea underlying this active space (AS) approachoriginates from the obser-
vation that excitation energies for a large number of electronic transitions exhibit only a
minor dependence on the size of the response matrix (Eq. 27)). This is illustrated in Table 1
for the��� � �
� transition of N�. A simple two-state HOMO–LUMO response calcula-
tion is seen to give an excitation energy which is less than 0.2 eV away from an extended
treatment including all 5 occupied and 100 virtual MOs. Generally, such behavior is to be
expected for excitations which can be characterized by onlya few low-lying one-electron
transitions without higher-lying continuum states mixingin.

Table 2 lists the first eight excitation energies of N� comparing the AS-PW results (30
a.u. unit cell, 70 Ry cutoff, AS consisting of 5� and 85� states) to atomic basis set studies
as well as experimental data. We observe satisfactory agreement, the largest difference
being 0.19 eV for the��� � �
� transition.

As a further example, our results for H�CO in a fcc lattice (30 a.u. unit cell, 70 Ry
cutoff, AS contained 6� and 70� states) are presented in Table 3. Again, there is reason-

TDLDA CCSD Exp.
Transition ref.22 ref.37 ref.31 ref.52 AS-PW43 ref.53 ref.54

(��� )
�
� � �
 � 10.22 10.23 10.21 10.20 10.25 10.54 10.27

(���� )
�
� � �
� 9.65 9.68 9.64 9.63 9.73 10.09 9.92

(��� ) ��� � �
� 9.05 9.07 9.04 9.04 9.23 9.27 9.31
(
��� )

��� � �
� 10.36 10.37 10.36 10.36 10.45 11.19 11.19
(
���� )

�
� � �
� 9.65 9.68 9.64 9.63 9.73 9.86 9.67
(
��� )

�
� � �
 � 8.82 8.84 8.82 8.80 8.92 8.93 8.88
(
��� ) ��� � �
� 7.54 7.58 7.54 7.53 7.66 8.05 8.04

(
���� )

�
� � �
� 7.86 7.90 7.86 7.84 7.99 7.56 7.75

polarizability [a.u.] - 12.27 12.17 12.11 12.6 11.74

Table 2. Comparison of AS-PW N� excitation energies in eV to other TDLDA results obtained with atomic sets,
CCSD, and experiment. In the last row, sum-over-states values for the mean static polarizability are compared to
the experimental number.
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TDLDA CASPT2 Exp.
Transition ref.22 ref.31 AS-PW43 AS-PW(AC)43 ref.55 ref.56, 57�� � �	 � 
 � � 3.64 3.68 3.68 3.69 3.91 3.94�� � �	 � 
 � � 3.02 3.06 3.08 3.08 3.48 3.50�� � �
 � 
 � � 6.11 6.24 6.38 6.39 5.99 5.53�� � �� � 
 � � 8.70 8.79 8.94 8.94 9.09 8.68�� � �	 � ��� 5.86 5.78 5.65 6.56 - 6.83�� � �	 � ��� 5.93 5.82 5.76 6.89 7.30 7.09�� � �	 � �� � - 6.48 6.73 7.59 - 7.79�� � �	 � �� � 6.79 6.49 6.93 7.83 8.09 7.97

Table 3. Comparison of H�CO AS-PW excitation energies in eV with and without asymptotic correction (AC)
to literature TDLDA results obtained with a gaussian set andexperiment.

able agreement between the different LDA studies. The CASPT2 excitation energies are,
however, much closer to the experimental values than the TDLDA results. Moreover, in-
specting the data for the transitions to the�� and�� Rydberg orbitals the deficiency of the
LDA exchange-correlation potential at long range becomes apparent. These problems per-
sist for most GGA’s. In contrast, employing the asymptotic correction proposed by Tozer
and Handy31 these excitation energies can be drastically improved as shown in Table 3.

In our final example, we go beyond the static, zero temperature description. Figure
1 depicts an average photoabsorption spectrum of formamideobtained from the instanta-
neous spectra of 11 molecular configurations sampled from a CPMD run at 300 K. Al-
though many more configurations are needed to obtain a converged spectrum, we are able
to reproduce the most important features of the experimental photoabsorption spectrum.
The W band (see Table 4 for a summary of this historic nomenclature) resulting from the	 � 
 �

transition has been found to have a maximum around 5.8 eV58. Gingell et al.58

have associated the R� band between 6.2 and 7.0 eV with transitions from the
	

and



orbitals to the�� Rydberg orbital which is supposed to be mixed with a� � valence orbital.
The main absorption peak V� with a maximum at roughly 7.4 eV has traditionally been
linked to the


 � � 
 �
transition, whereas the sharp structure on its high-energyside has

been assigned to transitions to�� Rydberg orbitals58. There remains considerable doubt
regarding the origin of the broad band, Q, around 9.2 eV, which, for a long time, was
thought to be due to the


 � � 
 �
transition59. Gingell et al.58 have interpreted this peak

as a superposition of a large number of Rydberg states.
Our theoretical LDA absorption spectrum in Figure 1 is seen to agree overall quite

well with the VUV curve, only the low-energy side of the main peak seemingly being
somewhat overestimated. However, analyzing the individual excitations at equilibrium
geometry listed in Table 4, it becomes clear that use of the asymptotically corrected LDA
exchange-correlation potential corrects for this discrepancy. According to our calculations,
the R� band then unambiguously arises from

	 � �� and

 � �� excitations. We cannot

confirm, however, any involvement of a� � valence orbital as previously assumed58. In-
stead we observe a small contribution (roughly 5% in the asymptotically corrected case)
from the


 � � 
 �
transition. Our calculations further reveal that all the sharp structure of
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transition AS-PW43 AS-PW(AC)43 HCTH(AC)60 CASPT261 Exp.58

	 � 
 �
5.27 5.29 5.43 5.61 5.8 (W)	 � �� 5.56 6.27 6.30 6.59
 � �� 6.28 7.09 7.03 6.52

6.35 (R�)
	 � �� 6.44 7.22 7.09 7.31
 � �� 7.18 7.91 7.76 7.04

7.7 (R�)

 � 
 �

7.80 7.67 7.58 7.41 7.4 (V�)
Table 4. Comparison of formamide equilibrium geometry AS-PW excitation energies in eV using LDA with and
without asymptotic correction (AC) to literature data.

the main peak is due to excitations from
	

to �� orbitals, generally being more intense by
one order of magnitude compared with their


 � � �� equivalents.
The most intense line found with LDA(AC) is at 7.67 eV and its character is a mixture

of 37%

 � � 
 �

and 63% excitations from the
	

or

 � valence to�� or �� Rydberg

orbitals. A small

 � � 
 �

contribution can also be detected in our calculated Q band,
which otherwise predominantly results from

	 � �� transitions.
We would like to point out that our LDA(AC) results are in accord with the HCTH(AC)

values of Handy60. On the other hand, the CASPT2 results of Serrano-Andrés and
Fülscher61 show larger differences; in particular the energetic ordering of excitation from
the

	
and


 � orbitals seems to be reversed.

5.0 6.0 7.0 8.0 9.0 10.0 11.0

energy [eV]

0.0

0.1
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Figure 1. Theoretical room temperature photoabsorption spectrum of formamide obtained from TDLDA calcu-
lations (white bars) compared to the experimental VUV data of Gingell et al..

12



1.02

1.04

1.06

1.08

1.1

1.12

C
(N

)

50 100 150 200 250 300 350 400 450
number of virtual orbitals

0

0.001

0.002

0.003

0.004

0.005

0.006

|F
f.d

. -
 F

| [
a.

u.
] ε1

ε2
ω1

Figure 2. Upper panel: The integral in Eq. (65) as a function of the number of virtual orbitals included in the
active space. Lower panel: Absolute deviation of finite difference and analytic derivatives of the KS HOMO and
LUMO energies and the first singlet excitation energy of H� at a bond length of 1.0 a.u. as a function of the
number of virtual KS orbitals included in the active space. The calculations were carried out in a cubic box of
length 6 a.u. with periodic boundary conditions and a plane wave cutoff of 40 Ry.

In the following we shall illustrate the performance and theconvergence behavior of
the implicit differentiation method44 (cf. Section 2.3.2) for nuclear gradients.

The upper panel of Figure 2 displays the completeness of the active space as a function
of the number of virtual KS orbitals included in the space. The integral

� �� � � � �� ���	 � �� ����� �	 � (65)

was used as a measure of completeness of the active space. It becomes unity when the
active space of KS orbitals is complete, i.e. when the total number of the KS orbitals
(virtual and occupied) equals the number of plane waves usedto solve the KS equations.
The total number of plane waves is 925 for the 6 a.u. cubic box and 40 Ry plane wave
cutoff. With 450 virtual orbitals included the active spaceis almost complete and the value
of the integral (Eq. (65)) deviates from unity by approximately

�	�� which is already
comparable with the accuracy of the numerical integration.The lower panel of Figure 2
shows the absolute deviation of the analytic derivatives from the respective finite difference
values for the the first singlet excitation energy,� �, as well as the HOMO and LUMO KS
orbital energies,

�� and
�� , of H� at a bond length of 1.0 a.u. as a function of the number

of virtual KS orbitals included in the active space. The absolute deviation in analytical
gradients vanishes rapidly as the number of virtual orbitals is increased and the errors in the
analytical gradients of different states generally show the same patterns in the dependence
upon the number of virtual orbitals included in the active space.

Figure 3 shows the absolute deviation of the analytical derivative from the respective
finite difference value as a function of the size of the activespace for the first three KS
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Figure 3. Absolute deviation of the analytic derivatives from the respective finite difference values for the the
first singlet excitation energy,� �, as well as the three lowest KS orbital energies,�� (

� � � � � � �), of N� at a bond
length of 2.0 a.u. as a function of the number of virtual KS orbitals included in the active space. The calculations
were carried out in a cubic box of length 6 a.u. with periodic boundary conditions and a plane wave cutoff of 40
Ry.

orbital energies
� � (

� � � � � � �) as well as the lowest response matrix eigenvalue� � of the
N� molecule. The errors of the analytical gradients are seen todecrease rapidly as the
number of orbitals included in the active space approaches the number of plane wave basis
functions (in this case 925 plane waves). For the largest active space the deviations of all
energies are of the order of

�	�� or smaller. At this point, the accuracy of the analytical
derivatives is hard to assess because the finite difference reference values are also subjected
to numerical errors.

To test the practical value of our derivatives, we have performed geometry optimiza-
tions of� � in the first excited state (� � 	 �
 � 	 �
 a.u. box, 40 Ry plane-wave cutoff, i.e.
600 basis functions). When we include only 100 virtual orbitals in the active space, we
obtain a bond length of 2.44 a.u., which deviates by 0.02 a.u.from the value of 2.42 a.u.
determined by a series of single point energy calculations.Upon increasing the number
of virtual states to 200, the optimized bond length comes outas 2.42 a.u., correct to two
decimal places. Our test calculations illustrate how the size of the active space may be
adjusted to achieve any desired level of accuracy. For many practical purposes it will be
sufficient to work with a reduced active space which is significantly smaller than the total
number of basis functions.

We would like to emphasize that the method described here is capable of providing
additional information beyond excited state energy gradients. Figure 4 shows, for instance,
the nonadiabatic coupling strength between the second and third KS orbitals,

�� and
�� ,

for the H� molecule as a function of its bond length. The nonadiabatic coupling values
obtained from Eq. (60) exhibit a singularity at the crossingpoint between the two KS
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Figure 4. Upper panel: Absolute value of the nonadiabatic coupling matrix element between the KS orbitals��
and�� along the molecular axis of H� as a function of the bond length. Lower panel: KS orbital energies,�� and
�� of H� as a function of bond length. The calculations were carried out in a periodic orthorhombic box of size� � � �� � � ��

a.u.� using a plane wave cutoff of 40 Ry.

orbital energies, as one would expect due to the KS energy difference in the denominator.
This feature of our formalism may be exploited in future applications of TDDFT beyond
the Born-Oppenheimer approximation.
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