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A 2D Quantum Walk Simulation of
Two-Particle Dynamics
Andreas Schreiber,1,2* Aurél Gábris,3,4 Peter P. Rohde,1,5 Kaisa Laiho,1,2 Martin Štefaňák,3
Václav Potocekˇ ,3 Craig Hamilton,3 Igor Jex,3 Christine Silberhorn1,2

Multidimensional quantum walks can exhibit highly nontrivial topological structure, providing a
powerful tool for simulating quantum information and transport systems. We present a flexible
implementation of a two-dimensional (2D) optical quantum walk on a lattice, demonstrating a
scalable quantum walk on a nontrivial graph structure. We realized a coherent quantum walk
over 12 steps and 169 positions by using an optical fiber network. With our broad spectrum of
quantum coins, we were able to simulate the creation of entanglement in bipartite systems with
conditioned interactions. Introducing dynamic control allowed for the investigation of effects
such as strong nonlinearities or two-particle scattering. Our results illustrate the potential of
quantum walks as a route for simulating and understanding complex quantum systems.

Quantum simulation constitutes a para-
digm for developing our understanding
of quantum mechanical systems. A cur-
rent challenge is to find schemes that

can be readily implemented in the laboratory to
provide insights into complex quantum phenome-
na. Quantum walks (1, 2) serve as an ideal test
bed for studying the dynamics of such systems.
Examples include understanding the role of en-
tanglement and interactions between quantum par-
ticles, the occurrence of localization effects (3),
topological phases (4), energy transport in photo-
synthesis (5, 6), and the mimicking of the for-
mation ofmolecule states (7). Although theoretical
investigations already take advantage of complex
graph structures in higher dimensions, experi-
mental implementations are still limited by the
required physical resources.

All demonstrated quantum walks have so
far been restricted to evolution in one dimension.
They have been realized in a variety of archi-
tectures, including photonic (8–11) and atomic

(12–14) systems. Achieving increased dimen-
sionality in a quantum walk (15) is of practical
interest because many physical phenomena
cannot be simulated with a single walker in a one-
dimensional (1D) quantum walk, such as multi-
particle entanglement and nonlinear interactions.
Furthermore, in quantum computation based on
quantum walks (16, 17), search algorithms ex-
hibit a speed-up only in higher dimensional
graphs (18–20). The first optical approaches to
increasing the complexity of a linear quantum
walk (21, 22) showed that the dimensionality of
the system is effectively expanded by using two
walkers, keeping the graph one-dimensional.
Although adding additional walkers to the sys-
tem is promising, introducing conditioned inter-
actions and, in particular, controlled nonlinear
interactions at the single-photon level is tech-
nologically very challenging. Interactions be-
tween walkers typically result in the appearance
of entanglement and have been shown to im-
prove certain applications, such as the graph iso-
morphism problem (23). In the absence of such
interactions, the two walkers remain effectively
independent, which severely limits observable
quantum features.

We present a highly scalable implementation
of an optical quantum walk on two spatial di-
mensions for quantum simulation, using frugal
physical resources. One major advance of a 2D
system is the possibility to simulate a discrete evo-
lution of two particles, including controlled inter-
actions. In particular, one walker, in our case a
coherent light pulse, on a 2D lattice is topolog-

ically equivalent to two walkers acting on a 1D
graph. Thus, despite using an entirely classical light
source, our experiment is able to demonstrate sev-
eral archetypal two-particle quantum features. For
our simulations, we exploited the similarity be-
tween coherent processes in quantum mechanics
and classical optics (24, 25), as it was used, for
example, to demonstrate Grover’s quantum search
algorithm (26).

A quantum walk consists of a walker, such as
a photon or an atom, which coherently propa-
gates between discrete vertices on a graph. A
walker is defined as a bipartite system consisting
of a position (x) and a quantum coin (c). The po-
sition value indicates at which vertex in the graph
the walker resides, whereas the coin is an an-
cillary quantum state determining the direction of
the walker at the next step. In a 2D quantum
walk, the basis states of a walker are of the form
|x1, x2, c1, c2〉 describing its position x1,2 in
spatial dimensions one and two and the corre-
sponding two-sided coin parameters with c1,2 = T1.
The evolution takes place in discrete steps, each
of which has two stages, defined by coin (Ĉ) and
step (Ŝ) operators. The coin operator coherently
manipulates the coin parameter, leaving the po-
sition unchanged, whereas the step operator up-
dates the position according to the new coin
value. Explicitly, with a so-called Hadamard (H)
coin ĈH =Ĥ1⊗Ĥ2, a single step in the evolution
is defined by the operators,

H% ijxi,þ−1〉 → ðjxi,1〉 þ− jxi,−1〉Þ=
ffiffiffi
2

p
,∀i ¼ 1,2

S%jx1, x2, c1, c2〉 → jx1 þ c1, x2 þ c2, c1, c2〉 ð1Þ
The evolution of the system proceeds by repeat-
edly applying coin and step operators on the ini-
tial state |yin〉, resulting in |yn〉 = (ŜĈ)n|yin〉 after
n steps. The step operator Ŝ hereby translates
superpositions and entanglement between the
coin parameters directly to the spatial domain,
imprinting signatures of quantum effects in the
final probability distribution.

We performed 2D quantum walks with pho-
tons obtained from attenuated laser pulses. The
two internal coin states are represented by two
polarization modes (horizontal and vertical) in
two different spatial modes (27), similar to the
proposal in (28). Incident photons follow, de-
pending on their polarization, four different paths
in a fiber network (Fig. 1A). The four paths cor-
respond to the four different directions a walker
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can take in one step on a 2D lattice. Different path
lengths in the circuit generate a temporally en-
coded state, where different position states are
represented by discrete time bins (Fig. 1B). Each
round trip in the setup implements a single-step
operation, whereas the quantum coin operation is
performedwith linear optical elements (half-wave
plates, HWP) (27). In order to adjust the coin op-
erator independently at each position, we used a
fast-switching electrooptic modulator (EOM). A
measurement with time-resolving single-photon
counting modules allowed for the reconstruction
of the output photostatistics (27).

We have implemented two different kinds
of quantum coins in our 2D quantumwalks. First,
we investigated quantum walks driven only by
separable coin operations,Ĉ =Ĉ1⊗Ĉ2. Here, the
separability can directly be observed in the spa-
tial spread over the lattice, when initializing the
walker in a separable state. As an example, we
measured a Hadamard walk with photons initial-
ly localized at position |x1, x2〉 = |0, 0〉. The prob-
ability distribution showing at which position the
photons were detected after 10 steps (Fig. 2, A

and B) can be factorized into two independent
distributions of 1D quantum walks (15), stating
no conceptual advantage of a 2D quantum walk.
However, 2D quantumwalks allow for much great-
er complexity using controlled operations. These
operations condition the transformation of one
coin state on the actual state of the other. Because
of the induced quantum correlations, one obtains
a nontrivial evolution resulting in an inseparable
final state. The probability (P) distribution for a
Hadamard walk with an additional controlling
operation can be seen in Fig. 2, C and D. We
compare the ideal theoretical distribution with
the measured photostatistics via the similarity,

S ¼½ ∑
x1, x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pthðx1, x2ÞPexpðx1, x2Þ

q �2,quantifying
the equality of two classical probability distribu-
tions (S = 0 for completely orthogonal distribu-
tions and S = 1 for identical distributions). For the
Hadamard walk (Fig. 2, A and B), we observe
S = 0.957 T 0.003, and for the quantum walk
with controlling gates (Fig. 2, C andD) S = 0.903 T
0.018 (after 10 steps, across 121 positions).

Increasing the number of walkers in a quan-
tum walk effectively increases its dimensionality
(21). Specifically, for a given 1D quantum walk
with N positions and two walkers, there exists
an isomorphic square lattice walk of size N2

with one walker. By this topological analogy, a
measured spatial distribution from a 2D lattice
with positions (x1, x2) can be interpreted as a
coincidence measurement for two walkers at
positions x1 and x2 propagating on the same lin-
ear graph. Hereby each combined coin operation
of both particles, including controlled opera-
tions, has an equivalent coin operation in a 2D
quantum walk. This allows us to interpret the
2D walk in Fig. 2, C and D, as a quantum walk
with controlled two-particle operations, a sys-
tem typically creating two-particle entanglement.
The inseparability of the final probability dis-
tribution is then a direct signature of the simu-
lated entanglement.

In Fig. 2E, we show a lower bound for the
simulated entanglement between the two parti-
cles during the stepwise evolution with four dif-
ferent coin operations.We quantified the simulated

A

B

Fig. 1. (A) Experimental setup. Our photon source is a pulsed diode laser
with a pulse width of 88 ps, a wavelength of 805 nm, and a repetition rate of
110 kHz. The photons are initialized at position |x1, x2〉 = |0, 0〉 in horizontal
polarization (corresponding to coin state |c1, c2〉 = |−1, −1〉). Once coupled
into the setup through a low-reflectivity beam splitter (BS, reflectivity 3%),
their polarization state is manipulated with an EOM and a HWP. The photonic
wave packets are split by a polarizing beam splitter (PBS) and routed through
single-mode fibers (SMF) of length 135 or 145 m, implementing a tem-
poral step in the x2 direction. Additional HWPs and a second PBS perform a
step in the x1 direction based on the same principle. The split wave packet

after the first step with equal splitting is indicated in the picture. At each
step, the photons have a probability of 12% in loops x1 − 1 (or 4% in loops
x1 + 1) of being coupled out to a polarization and hence coin state resolving
detection of the arrival time via four avalanche photodiodes (APDs). In-
cluding losses and detection efficiency, the probability of a photon con-
tinuing the walk after one step is 52% without the EOM and 12% with the
EOM. (B) Projection of the spatial lattice onto a 1D temporally encoded pulse
chain for step one and two. Each step consists of a shift in both x1 direction,
corresponding to a time difference of ∆t1 = 3.11 ns, and x2 direction with
∆t2 = 46.42 ns.
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entanglement via the von Neumann entropy, E,
assuming pure final states after the quantumwalk
(27). For this calculation, the relative phases be-
tween the positions and coins were reconstructed
from the obtained interference patterns, whereas
phases between the four coin states were chosen
to minimize the entanglement value. Without
conditioned operations, the two particles evolve in-
dependently (E = 0), whereas an evolution in-
cluding controlled operations reveals a probability
distribution characterized by bipartite entangle-
ment. We found that the interactions presented

in Fig. 2, C and D, exhibit an entropy of at least
E = 2.63 T 0.01 after 12 steps, which is 56% of
the maximal entropy (given by a maximally en-
tangled state). The nonzero entropies obtained
in the higher steps of the separable Hadamard
walk are attributed to the high sensitivity of the
entropymeasure to small errors in the distribution
for E ≈ 0.

The investigated interactions can be interpreted
as long-distance interactions with the interaction
strength being independent of the spatial distance
of the particles. This is a unique effect and highly

nontrivial to demonstrate in actual two-particle
quantum systems.

Contrary to the position-independent interac-
tions is the evolution of two-particle quantumwalks
with short-range interactions, that is, interactions
occurring only when both particles occupy the
same position. These interactions can be interpreted
as two-particle scattering or nonlinear interactions.
When using a 2D quantum walk to simulate two
walkers, all vertices on the diagonal of the 2D
lattice correspond to both walkers occupying the
same position. Hence, we can introduce nonlinear

Fig. 2. Measured and simulated probability dis-
tribution P(x1,x2) (traced over the coin space) after
10 steps of a 2D quantum walk with initial state
|0, 0, −1, −1〉. Theoretical (A) and measured (B)
probability distribution of a 2D Hadamard walk
using the operation CH% (Eq. 1). Because only sep-
arable coin operations were performed (inset), the
distribution is separable, given by a product of two
1D distributions (gray). Theoretical (C) and mea-
sured (D) probability distribution of a 2D walk
with controlled-not X and controlled-phase opera-
tion Z, resulting in an unfactorizable distribution.
Here, c2 is only transformed by XZjT1〉→ Tj∓1〉 if
c1 = −1. The results in (B) and (D) are obtained by
detecting over 7 × 103 events and calibrated by
the detection efficiencies of all four coin basis states. (E) Dynamic evolution of
the von Neumann entropy E generated by quantum walks (B) and (D) and
quantum walks using controlled Hadamard coin operations (inset). The exper-

imental values (dots) and theoretical predictions (dashed lines) mark a lower
boundary for simulated two-particle entanglement. Statistical errors are
smaller than the dot size.
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interactions by modifying the coin operator on the
diagonal positions while keeping all other posi-
tions unaffected. As an example of a two-particle
quantumwalk with nonlinear interactions (Fig. 3),
the coin operator on the diagonal is in the form
Cnl = (H1⊗H2)CZ, whereCZ is a controlled phase
operation implemented by a fast switching EOM.
The chosen operation simulates a quantum sce-
nario of particular interest: the creation of bound
molecule states, predicted as a consequence of
two-particle scattering (7). Evidently, the quantum
walk is to a large extent confined to the main

diagonal [∑
x
Pðx,xÞ ¼ 0:317 T 0:006 as opposed

to theHadamardwalk∑
x
Pðx,xÞ ¼ 0:242 T 0:001],

a signature of the presence of a bound molecule
state. In general, using a coin invariant under
particle exchange, bosonic, or fermionic behav-
ior can be simulated, depending on whether
the initial states are chosen to be symmetric or
antisymmetric with respect to particle permu-
tations. With our initial state being invariant
under particle exchange, we simulated an ef-
fective Bose-Hubbard type nonlinearity for two
bosons (29).

We have demonstrated an efficient implemen-
tation of a 2D quantum walk and proved the
experimental feasibility to simulate a diversity of
interesting multiparticle quantum effects. Our
experiment overcomes the technical challenges
of two-particle experiments while exhibiting very
high similarity and scalability. Combined with
the flexibility in the choice of input state, con-
trolling the coin at each position independently
allows for simulations of a broad spectrum of dy-
namic quantum systems under different physical
conditions.

Our experimental architecture can be general-
ized to more than two dimensions, with the
addition of extra loops and orbital angular mo-
mentum modes as coin states (30). This opens a
largely unexplored field of research, facilitating
quantum simulation applications with multiple

walkers, including bosonic and fermionic behav-
ior, and nonlinear interactions. It may be possible
to study the effects of higher dimensional local-
ization or graph percolations or to use the network
topology in conjunction with single- or two-
photon states. Additionally, a foreseeable future
application for our system is the implementation
of a quantum search algorithm.We demonstrated
that, with a physical resource overhead, a clas-
sical experiment can simulatemany genuine quan-
tum features. Although our experiment is important
for simulation applications, it is equally interest-
ing for understanding fundamental physics at
the border between classical and quantum co-
herence theory.
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Fig. 3. (A) Circuit representation of
coin operations simulating nonlinear
interactions via 2D quantum walk. On-
ly when the two virtual particles meet
(x1 = x2) is a controlled operation
applied. Theoretical (B) and measured
(C) coincidence distributions P(x1, x2)
(traced over the coin space) after seven
steps of a simulated two-particle quan-
tum walk with initial state |0, 0, −1,
−1〉. The high probability that both
particles are at the same position (di-
agonal) is a notable signature of bound
states. The measured distribution is re-
constructed by detecting over 8 × 103

events and has a similarity of S =
0.957 T 0.013. Adding the EOM to
the setup for dynamical control limits
the step number to n = 7 because of
the higher losses per step. Small imperfections of the EOM are included in the theoretical plot.
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