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ABSTRACT 

During the last few years considerable effort has been devoted to deriving quantum transport equations for semi- 
conductors under extreme conditions (high electric fields, spatial quantization in one or two directions). Here we 
review the results obtained with nonequilibrium Green function techniques as formulated by Baym and Kadanoff, 
or by Keldysh. In particular, the following topics will be discussed: (i) Systematic approaches to reduce the 
transport equation governing the correlation function to a transport equation for the Wigner function; (ii) Ap- 
proximations reducing the nonmarkovian quantum transport equation to a numerically tractable form, and results 
for model semiconductors; (iii) Recent progress in extending the formalism to inhomogenous systems; and (iv) 
Noneqnilibrium screening. In all sections we try to direct the reader's attention to points where the present 
understanding is (at best) incomplete, and indicate possible lines for future work. 
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INTRODUCTION 

Transport in semiconductors has traditionally been described with the help of the Boltzmann equation (BE) 
(ConweU, 1967) (or by some of its simplifications, such as the drift-diffusion equation). Powerful Monte Carlo 
techniques have been developed to solve the BE (for a review, see e.g. Jacoboni and Reggiani, 1983), and combined 
with Poisson equation solvers these methods form the basis for the theoretical analysis and design of modern 
semiconductor microdeviees. As the characteristic length scales continue to decrease, however, quantum effects 
begin to dominate the transport, and consequently the semiclassical BE cannot be used as a starting point. 
Examples of such quantum effects are space quantization (the characteristic lenght scales in one or several directions 
are such that plane waves are no longer appropriate wave functions for describing the charge carriers), or ballistic 
transport (the charge carriers experience no or only few collisions within the active region of the device; here we 
point out the difference between quantum ballistic transport, such as underlies resistance quantization in quantum 
point contacts (van Wees and others, 1988, and Wharam and others, 1988) and ballistic peaks observed in the 
distribution function in Boltzmann equation studies of microstructures (Baranger and Wilkins, 1984)). Other 
effects beyond the conventional Boltzmann picture include the influence of field on collision processes, the so called 
intra-collisional field effect (ICFE) (Barker 1973, Levinson 1970), and collisional broadening (CB), or, in other 
words, effects due to finite quasi-particle life-times. A common theme for all these quantum effects is that the 
pha~e coherence of the charge carriers is maintained longer than some characteristic length scale (e.g. the inelastic 
mean free path), or time scale (the collision duration time is not negligible). 

A number of theoretical approaches have been developed to describe quantum transport. Methods based on 
the Landauer formula (Landauer 1970) have been particularly useful in analyzing transport in situations where 
inelastic collisions in the 'interesting' part of the system are infrequent (dissipation and loss of phase coherence 
takes place in the contacts). The Feynman path integral method has been applied to high field transport in 
semiconductors (Thornber 1978, Mason and Hess 1989), but it has not yet gained as widespread use as some other 
methods. A quantum Langevin equation approach has been developed by Hu and O'ConneU (1987,1988,1989). 
Wigner distribution function methods have also been reported (Frensley 1987, and Khiksdahl and others, 1989; the 
latter reference contains extensive references to other papers employing the Wigner distribution function). In fact, 
the Wigner function bears a close connection to the nonequilibrium Green function methods (see below) which 
form the actual topic of this review. - The present review should be viewed as a logical continuation of the review 
talks on similar topics given during previous Hot Electron Conferences: Barker (1978) and (1981), and Raggiani 
(1985). 

THEORETICAL BACKGROUND 

The nonequilibrium Green functions were developed simulataneously, and independently by Baym and Kadanoff 
(1962), and by Keldysh (1965). These two formalisms are equivalent, and an elegant demonstration can be found in 
the review article by Langreth (1976). Several review articles focusing on different aspects have recently appeared 
(Danielewicz 1984 (an interesting application to nonequilibrium nuclear collisions); Mahan 1984, 1987 (focusing 
on linear transport); Rammer and Smith 1986 (quasi-classical Green functions; applications to degenerate Fermi 
systems); and Jauho 1989 (derivation of quantum kinetic equations for model systems)). We refer the interested 
reader to these articles for technical details, and additional references: here we try to elucidate the main physical 
content the various formalisms. 

1265 



1266 ANTTI-PEKKA JAUHO 

In equilibrium (and consequently also in linear reponse theory, which only involves equilibrium quantities) one 
can prove the fluctuation-dissipation theorem which connects the causal (or time-ordered) Green function to the 
retarded (or advanced) Green function. This relation is of great importance: Wick's theorem, and hence the 
diagrammatic perturbation techniques can be proved only for the causal function while physical observables are 
obtained from response functions which are related to retarded functions, or correlation functions. Thus equilibrium 
theory is in a way short-circuited: it is not necessary to develop calculational schemes for both causal and retarded 
functions. This fortunate situation does not hold in nonequilibrium: one has to develop a theory which contains the 
two types of Green functions as independent objects. This was the bad news, the good news is that nonequilibrium 
theory can formally be written in a form which appears entirely equivalent to the equilibrium theory for the causal 
Green function (and thus the diagrammatic perturbation theory exists). The price that has to be paid is that the 
time-labels of the Green function no longer are real: the reside on a complex path which goes form - o o  to +oo, 
and back to - co .  As shown by Craig (1968), and Langreth (1976), the Baym-Kadanoff and Keldysh formalisms 
correspond to two slightly differenct choices of this contour in the complex time plane. Complex time integrals 
are not convenient to work with, and the set of rules which tell how to extract real time quantities out of objects 
defined on a complex contour are known as 'analytic continuation' or 'Langreth theorems' (Langreth and Wilkins, 
1972; Langreth 1976). Applying these rules to the Dyson equation obeyed by the complex time Green function 
yields the basic equations of the non-equilibrium Green function theory: 

- u , a < ] -  [r~, a<] -It,<, al = -½{r<, a>} + ½{r~>, c<} (1) [ao I 

Gr(a) = G0,r(=) + G0,r(a)~,r(a)Gr(a) (2) 

Here the we introduced the (nonequilibrium) correlation function G < and the retarded (advanced) Green function 
G~(~): 

G<(1,1')  = i < ~t(1 ' )~(1)  > , G~,)(1,1 ')  = ~:ie(±ta :Ft~) < {~(1) ,~t(1 ' )}  > , (3) 

where 1 = (xl ,  tl ) etc. Fhrther, U(x, t) contains single particle potentials (driving fields, heterojunction conduction 
band edge potentials, self-consistent Hartree potentials etc.), and the self-energy E < = E<[G <] contains the 
interactions (carrier-impurity scattering, phonon scattering, carrier-carrier scattering etc.). We also defined E = 
½(E~ + Ea) and G = ½(G~ + G=). Brackets indicate commutators and curly brackets mean anticommutators. A 
product of two terms implies multiplication/integration over intermediate variables. 

Eqs.(1) and (2) are exact, and they form the starting point of the theory. Their physical interpretation is as 
follows. Ll~om the definition of the correlation function it follows that the Wigner distribution function f w  can 
be extracted from it: 

r, T) = - i G < ( p ,  r = 0, It ,  T) = -i / 2~G<(p,w,  R, T) (4) fW(p,  

Here we introduced the center-of-mass coordinates: R - (x + x ') /2,  r - x - x' ;  p is Fourier transform of r. Anal- 
ogous definitions hold for the temporal variables. The Wigner function is the quantum mechanical generalization 
of the semiclassical Boltzmann distribution; in particular physical observables such as density, or current density, 
are obtained as its moments. Thus, Eq.(1) governs the distribution of particles: it is a quantum kinetic equation 
which generalizes the Boltzmann equation. Its structure is also suggestive: the first term on the left hand side 
gives rise to a driving term, the second and third terms are renormalization terms, and the right hand side is the 
quantum collision term with the characteristic gain-loss structure. A demonstration of how Eq.(1) reduces to the 
BE can be found in Langreth (1976), or Janho (1989). - A final point to note is that the initial value for the 
distribution used in the kinetic equation (1) should be chosen consistently with the Dyson equation (Barker, 1987, 
Klukadahl and others, 1989). 

Let us now exarnine the second equation, Eq.(2). We recall from equilibrium Green function theory the definition of 
the spectral density A - i(Gr - Ga ). Many important objects (e.g. density of states, scattering rates, quasi-particle 
life-times) require the knowledge of the spectral density, and thus the solution of Eq.(2) is a prerequisite before 
proceeding with the kinetic equation Eg.(1). (It may occur that E~ involves G<: in this case the two equations 
must be solved simultaneously. Such complications fall beyond the scope of the present discussion.) Below we 
analyze several model spectral densities. 

Eqs.(1) and (2) are too complicated to be solved directly, and during recent years many research groups have 
developed simplifications and approximation schemes which allow further progress. We now turn to these appli- 
cations. 

QUANTUM KINETIC EQUATIONS FOR THE WIGNER FUNCTION 

There are a number of reasons for trying to develop quantum kinetic equations for the Wigner function f w  rather 
than the correlation function G <. First, f w  depends on one less variable than G <, and is therefore hopefully a 
less complicated object. (Actual numerical studies show, however, that for spatially inhomogenous systems f w  
is an exceedingly complex object (!) (Kluksdahl and others, 1989)) Second, most physical observables do not 
require the knowledge of the full correlation function and the knowledge of f w  suffices. Next, since f w  has many 
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properties of a true distribution function, its equation of motion may resemble the seml-dassical BE so much that 
some of the vast body of experience on interpreting and solving the BE can perhaps be carried over to the quantum 
case. Finally, many other semiconductor quantum transport equations have been proposed (e.g. Barker and Ferry, 
1979; Levinson, 1970; Seminozhenko 1982) and it would be desirable to obtain independent rederivations and/or 
generalizations of these results. 

In order to reduce Eq.(1) to an equation governing the Wigner function some assumptions must be made. The 
approach chosen by many groups has been to make an Ansatz which directly expresses the G < in terms of fw. 
The relation (4) between the Wigner function and the correlation function provides an important sum rule (in 
w-space) or a boundary condition (in r-space) which any guess for G < must satisfy. In equilibrium the exact 
relation 

G<(p,w) = iA(p,w)fFD(W) (5) 

holds (here /fo(w) is the Fermi-Dirac distribution), and early papers (Barker, 1981; Jauho and Wilkins, 1982) 
employed a direct generalization of this relation to nonequilibrium: 

C<(p, w, R, T) = iA(p, w, R, T)fW(p, R, T) (6) 

Here A is the nonequilibrium spectral function obtained from the solution of the Dyson equation Eq.(2). This 
assumption satisfies the sum rule Eq.(4), and for vanishing fields it reduces to the exact equilibrium result Eq.(5) 
if the spectral function A is strongly peaked at w = e(p) (quasi-particle approximation). Using Eq.(6) in the 
kinetic equation then leads to a closed equation for f w  which one may then attempt to solve for various types of 
interactions. The weak point of this approach is that guessing an Ansatz does not provide any means of estimating 
its limits of validity. Even worse, it was soon realized (Jauho and Wilkins, 1984) that the Ansatz (6) led to a 
collision integral which differed slightly from the one derived with the density matrix method (Barker and Ferry, 
1979; Levinson 1970). The resolution to this paradox came in two steps: it was first realized that the theory should 
be formulated in a gauge invariant manner (the crucial ideas occur already in the early work of Langreth, 1966, and 
in the linear theory of Mahan and H&nsch, 1983, hut it took some time before they were adopted to semiconductor 
high-field transport: Sarker, 1985; Khan and others, 1987; Reggiaui and others, 1987), and secondly, Vinogradov 
(1986), and Lipavsk3~, Spi6ka and Velick3~ (1986) (from this on LSV) gave the first systematic derivation of an 
Ansatz of the type of Eq.(6). With these improvements perfect agreement was found between the Green function 
methods, and the earlier density matrix results. - For uniform and steady fields the new Ansatz of LSV reads 

G<(k, r)  = iA(k, r ) fW(k - -~EIr[) (7) 

Note that here one uses the kinematical momentum k rather than the canonical momentum p. The point of the 
derivation of LSV is that the correlation function G < is written as its time-diagonal piece, and a correction term 
which has an integral equation structure. The integral equation does not represent a perturhative expansion in a 
small coupling constant but rather an expansion in the various relaxation times: the quasi-particle life-time and 
the chareteristlc decay time for correlations. We flnd this approach very promising and strongly encourage further 
work, perhaps in the form of simple model systems which would allow a quantitative estimate of the accuracy of 
the various Ans&tze relating the correlation function to the Wigner function. 

We conclude this section by giving the quantum kinetic equation obtained with the Ansatz of LSV for non- 
degenerate carriers, driven by a uniform and steady driving field of arbitrary strength, and the electron-phonon 
interaction treated within the self-consistent Born approximation (Khan and others, 1987, from this on KDW) : 

E .  Vk/W(k) ---- dr[P(k - Er, k -  q - Er;  r ) fW(k - q -  Er )  

- P ( k  + q - E% k - Er;  r ) fW(k - Er)] , (8) 

where 

P(k  + q,k; r) = 21r[Mq[ 2 E [Nq + 1(1 + 7)]× 
T/=~-I 

R e l [ A ( k  + q + 2E% r)A(k + 1Er,  -r)e-inwqr] . (9) 

Setting E -- 0 in the collision integral and using free spectral densities, A(k, r) = exp(-ie(k)r) ,  recovers the BE. 
Eqs.(8-9) generalize the Barker-Ferry equation (1979): the interacting nonequilibrium spectral densities allow, in 
principle, a rigorous and nonperturbative treatment of interference effects between driving fields and scattering. 

The mathematical structure of Eq.(8) differs crucially from the BE: the additional integral appearing on the right 
hand side makes it unsuitable for standard Monte Carlo simulation schemes, and additional simplifications are 
called for. In the next section we describe some of the suggested approximation schemes. Very little is known 
about Eq.(8)'s formal properties and we mention only a few points where our undertanding is still incomplete: 
conservation laws, convergence, stability, existence of solutions, (ir)reversibility, and consistency within a given 
order of perturbation theory. 
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FURTHER APPROXIMATIONS 

As mentioned above, Eq.(8) appears unsuitable for a numerical evaluation: this is because of the retardation, or 
memory effects in the collision integral. Rather than approximating Eq.(8) directly, it is advantageous to integrate 
both sides, and after some manipulations one finds (here we follow KDW) 

~0 °° f (k)  = ~ dt[l~(k - Et, k - q - Et; t ) f (k  - q - Et)  - l~df] 
q 

(10) 

where 

W(K + q , K ; 0  = ~r 'P(K + q,K,~') (11) 

In the second 14rf term in Eq.(10) one should make the replacement k ---* k + q .  This form bears a striking similarity 
to the integrated BE: the ordy formal difference is the explicit time-dependence in l~ ,r. Further simplification is 
possible if W approaches its asymptotic value on a time scale faster than any other relevant time scale, and hence 
could be replaced by its limiting value W(t --~ o¢). A condition for this is that P(r) (Eq.(9)) be a short ranged 
functiorL of r.  KDW argue that this is indeed the case (see their Appendix C), while other groups are content 
in passing to the asymptotic limit ('completed collisions limit') phenomenologically (Kim and others, (1987); 
Reggiani and others (1987), (1988a)). According to the analysis of KDW the asymptotic limit becomes the better 
the stronger the field is. These conclusions depend sensitively on the form of the Ansatz used to relate G < and 
f w  thus stressing the importance of further work on the points raised in the previous section. 

Summarizing, the completed collisions limit gives rise to a Boltzmann type of transport equation with the energy 
conserving &functions replaced by a 'joint spectral density' K(k  + q, k): 

6(e(k + q) - e(k) - T/wq) 

~ 1 1 1 i~, r 
K(k  + q, k) - drRe[TA(k + q + ~Er ,  r)A(k + 5Er ,  - r )e -  q (12) 

In recent years several groups have performed Monte Carlo simulations based on Eq.(12). A detailed description of 
a particular set of simulations can be found in Reggiani and others (1988a); here we summarize the main results. 
The simulations can be classified according to what physical effects were included in the joint spectral density. 

Iatraeollisio,zal field effee* (ICFE). (aauho and Reggiani, 1988; Reggiani and others, 1988b) The spectral density 
for free electrons in a parabolic band in the precence of a uniform static electric field can be solved analytically: 

E 2 
A(k, r )  = exp[-i(e(k)r + 2-~mr3)] , (13) 

and the resulting joint spectral density can be expressed in terms of F~esnel integrMs. Here one encounters a 
conceptual difficulty: the joint spectral function is not a positive semidefinite quantity, and the probabilistic 
interpretation required in Monte Carlo simulations breaks down. In the numerical calculations the suggestion 
of Barker (1978) was followed: the main peak in K was fitted with a Lorentzian thus suppressing the negative 
oscillations. This procedure has a physical motivation: inclusion of scattering would imply a smearing of all sharp 
features, and hence the rapid oscillations, which integrate to zero, should be strongly supressed. The shift and 
width of the Lorentzian depend on the strength on the electric field, and its orientation with respect to k and q 
(see Reggiani and others, 1988a for several illustrations). 

Collisional broadening (GB). (Kim and others, 1987; Reggiani and others, 1987) In this case the field in Eq.(12) 
can be set to zero, and the integral reduces to a convolution in energy space. Kim and others (1987) solve the 
spectral density self-consistently for dispersionless optical phonon scattering, and use a realistic density of states, 
while Reggiani and others (1987) work analytically in lowest order of perturbation theory and use a free electron 
density of states. The resulting joint spectral densities are similar, and there are no problems with the joint 
spectral density going negative. It is tempting to suggest that the differing behavior between ICFE and CB is 
due to the singular nature of a perturbing electric field: recall that the Hamiltonian including a scalar potential 
U(x) = - x .  E, giving rise to a uniform electric field, is not bounded, and that the spectral function Eq.(13) in 
energy space does not approach uniformly the free spectral density (but it does in the distribution sense, Jauho 
and Wilkins, 1984). These difficulties suggest that it maybe necessary to explicitly accout for the finiteness of the 
sample: a consistent nonlinear theory cannot be formulated without accounting for end effects. This would imply 
that even the uniform field case should be treated with a spatially inhomogenous theory. 

The Monte Carlo simulation for the ICFE and CB give similar results. For low fields, E < lOkV/cm, the results 
differ very little from those obtained with the conventional semiclassical BE while for higher fields there is an 
increase of carriers both in the low- and the high-energy tails of the distribution function. The high-energy 
electron population enhancement may have some relevance to the onset of impact ionization. In simulations of 
this kind one should be on guard against spurious run-away effects that may occur if there is no inherent high- 
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energy cut-off in the problem. - To our knowledge no results have been reported where ICFE and CB have been 
treated with equal footing: this would require a solution to the noneqnilibrium Dyson equation (2). Studies of 
this sort would be most opportune. 

SPATIALLY INHOMOGENOUS SYSTEMS 

All the applications discussed above deal with the uniform field case. However, all microdevices are (almost by 
definition!) extremely inhomogenous, and it is important to ask how much of the above can be generalized to 
spatially inhomogenous systems. This is a very difficult task and only few results have been reported. To illustrate 
the difficulties we write down explicitly the driving term (first commutator in Eq.(1)) for a general poten, tial U(x) 
(for simplicity consider a one-dimensional system): 

O _ p O  w f d ~ '  Of xco u [~ -i- ~ ] f  (p,X,T) - J ~iM(p-p',X)fW(p',X,T) = (-~'~) , (14) 

where 
M(q, x )  = J dx~-"~[U(X + x/2) - U(X - x/2)] (15) 

The driving term is nonlocal, which implies considerable difficulties in numerical implementation. A few applica- 
tions to the resonant tunneling diode have been reported (Frensley, 1987; Kluksdahl and others, 1989); in these 
calculations the collision term has been treated in the relaxation time approximation. We would like to issue 
a warning here: the simple relaxation time approximation violates particle conservation (Mermin, 1970), and 
spurious effects may result. 

Very recently (Ziep and others, 1986; Jauho and Ziep, 1989; Bertoncini and others, 1989a and 1989b; however 
related procedures have been used earlier, e.g. Herbert and Till, 1982) an alternative idea has been proposed: rather 
than working directly with Eq.(14) one transforms to a new basis defined by the eigenfunctious of the potential 
U(x). For the uniform field case, for example, this means that the kinetic equation and the Dyson equation should 
be 'Airy-transformed' (Bertoncini and others, 1989a and 1989b). Here we sketch the procedure for a system where 
the translational invariance is broken in one spatial direction. The eigenfunctions are determined by 

[ 1 d ~ ½k~]@n(z) = en(k±)@n(z) , - 2  d--~" + V(z) + (16) 

where V(z) is the perturbing one-dimensional potential, for example the position dependent conduction band 
edge found in heterostruetures. The transformed Green functions axe defined by (the self-energies have analogous 
definitions) 

G(k.L, z, z',w) = ~ @~(z)G~n,(k.L,w)@*,(z') (17) 
n j n  s 

and the transformed Dyson equation reads (the kinetic equation has a similar structure and will not be given here) 

G~m' (k.L, w) = 6ram' Gm(k.L, u~) + Z G,,(k.L, ~)~3~,(k.L, uJ)G,m, (k_L, w) (18) 
*t 

with 1 

G,(k£,~) = uJ - e,(k.L) + iT/ (19) 

The transformation has achieved the field, or the non-uniform potential, has essentially been eliminated, and for 
many cases of interest the self-energy term may well be dominated by the diagonal term (for the uniform field 
case see Bertoncini and others (1989b)) in which case Eq.(18) is immediately solved. We expect to see more work 
along these lines in the future. 

NONEQUILIBRIUM SCREENING 

Screening in the presence of strong electric fields and scattering has, despite of its central importance, up to date 
received only little attention. Of the earlier work we mention the Monte Carlo simulations by Lngli and Ferry 
(1986), and the work by Lowe and Barker (1985), which is based on nonequilibrium Green functions and thus 
of interest for the present review. Very recently Hu and others (1989a, 1989b) considered linear nonequilibrium 
screening without assuming a specific form for the distribution function; in the first paper the Boltzmann equation 
was used as a starting point, while in the second paper the quantum kinetic equation. Eq.(1) was us.eft, with 
the collision integral approximated by a number.conserving generalization of the relaxatlon tlme approxamatlon 
(Mermln, 1970). The procedure to calculate the density response function x(q, ta) (from which the dielectric 
constant can be extracted) is as follows: (i) Set up, and solve the quantum transport equation for the "unperturbed" 
(i.e. without the imposed density variation) Wigner function f0 W. (ii) Linearly perturb the transport equation 
with a perturbation U1 ei(q'R-~aT) to produce a first order response in the Wigner function f~, and solve for it. 
(iii) Integrate fw to get the induced density nl. The ratio nl/U1 then gives X. Hu and others (1989b) find that 
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for q << qds (qdB is the deBroglie wave-length) the quantum results are practically indistinguishable from BE 
results (Hu and others (1989a)) while for q > qds quantum effects due to spatial nonlocality begin to dominate, 
and the susceptibility approaches a Lind_hard-like formula, with the eqilibrium distribution functions replaced by 
the nonequilibrium ones. 

The above results are extremely interesting in their own right, but they are obtained withing a very simple model 
for the collisions: for example, neither intra-collisional field effect nor collisional broadening are accounted for. 
The obvious question is whether the scheme can be extended to a more general collision integral. The step (i) 
given above has been accomplished with simulations based on Eq.(12), and the crucial point is whether the step 
(ii) can be carried through. While no definite answer is known at the moment, we hope to see progress along this 
lines in near future. 
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