
69

Contributions to Wavelength Shifts of DFB Fiber
Lasers used as Acoustic Sensors in Air.

Sigurd Weidemann Løvseth*, Kjell B1øtekjar*,
and Jon Thomas Kringlebotnt

*
Norwegian University of Science and Technology

Department of Physical Electronics, 7034 Trondheim, Norway
Phone: +47 7359 4400, Fax: +47 7359 1441, E-mail: Sigurd.W.Lovseth©fysel.ntnu.no

t Optoplan A/S, Bjørkhaugvegen 27, 7035 Trondheim, Norway
Phone: +47 7394 2007, Fax: +47 7394 3823, E-mail: Thomas.Kringlebotn©optoplan.no

1 Introduction
Our aim is to investigate the use of distributed feedback (DFB) fiber lasers [1] as acoustic
sensors. In this paper we will discuss the various contributions to the frequency shifts
that make such sensing possible, and compare the theoretical results with preliminary
experimental results. In model used in this paper the fiber is spanned perpendicularly
to the wave vector of an acoustic plane wave. The fiber laser used so far has no coating
and a center wavelength of ) = 1550nm, but the model is easily extendable to coated
fiber lasers.

2 Temperature and pressure variations in the fiber
at the acoustic frequency

When the pressure of the air varies due to the acoustic wave, the work applied to
compress and decompress the air leads to temporal temperature variations, following
the first principle of thermodynamics, which may be expressed by [2]:

(DT \
dq=pcvdT+(c—cv)p() dV

7
'p (1)

= pcdT — (c — cv)p—dp

Here q is heat per unit volume added to a differential amount of air, T is the temperature,
p is the pressure, p is the density and c and CV are the specific heat capacities at
constant pressure and temperature, respectively. In the last line of equation (1) the
ideal gas approximation is used. dq must equal heat conducted from the surroundings
[3]:

dq = rbV2Tdt (2)
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Here Ic is the thermal conductivity. Due to the relative smallness of acoustic pressure
compared with the static pressure, we can usually set T/p Tstatjc/pstatjc. By combining
equations (1)-(2) and assuming a harmonic acoustic field with frequency w = 2irf we
thus get:

iw T = V2T + jw CV Tstatic
DT . V2T + jw T0

PCp Cp Pstatic (3)
T(i?, t) = Tstatic + LT() . ejWt p(;#, t) = Pstatic + Lp(r .

Here DT j the thermal diffusivity of air. We may neglect the Laplacian term in
equation (3) far away from the fiber, and assume that the process is adiabatic, if:

DT ()2 DTai2f = 22.5 . 1O_6. 2f 1.15 . iOs . f 1 (4)w C
(350?)

Here c is the velocity of sound, and typical values [3] for air at 300K are inserted. Thus,
for frequencies up to several MHz, the only significant contributions to the Laplacian
term in equation (3) come from the inhomogeneities caused by the presence of the fiber.
In this paper we are working with acoustic frequencies in the range 100-20kHz, and we
may therefore also safely ignore the spatial dependence of the acoustic pressure in the
vicinity of the fiber. Thus, the temperature field is spatially dependent only on the
radius r in cylinder coordinates, and equation (3) simplifies to an inhomogeneous Bessel
equation of the zeroth order with general solution:

Tair(r) = T0 + Ci . Jo (j r) + C2 . y0 (jair r) (5)

In silica there is no significant acoustic generation of heat, and thus the temperature in
the fiber is determined from a homogenous Bessel equation with general solution:

Tfiber(T) = C3 . Jo (/w . r)
+ . Yo (Dw . r) (6)

The constants Ci,2,3,4 in equations (5)-(6) are found by using the boundary condition
lim LT(r) = LiT0 and requiring that both T(r) and its derivative are finite and contin-

r—*oo

uous everywhere.

The total frequency shift of the laser at the acoustic frequency can now be found
by adding the frequency shifts due to the temperature and pressure variations in the
fiber. The temperature sensitivity of the Bragg wavelength is approximately LxA/A =
8.85106K1LT [4, 5], and T0 0.85mKPa1 Lip at 300 K and atmospheric pressure.
The acoustic pressure sensitivity has a predicted value of L\A/A = 4.5. 1012Pa1zp
[6, 7]. Because of the large ratio between the wavelength of the acoustic wave and the
diameter of the fiber, we assume that the pressure is uniform across the transverse area
of the fiber. We assume a Gaussian optical mode [8], and by integrating over the fiber
cross section the product between the intensity of the mode and the temperature trans-
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fer function, the spatial variation of the latter may be accounted for. This correction
was however found to have only negligible effect. The total frequency shift per rms Pa
sound pressure at a temperature of 300K is shown in figure 1 . At low frequencies the
total shift is many orders of magnitude larger than the contribution from the pressure
variations alone, and this is confirmed by our preliminary experiments. The thermal
effect is negligible for frequencies above r'8kHz.

RMS frequency shift of laser per Pa rms acoustic pressure

"""
102 i03 io

Acoustic frequency f

Figure 1 : The various contributions to frequency shifts per Pa rrns acoustic pressure of
a stripped fiber laser. The straight dash-dotted line is frequency shift of the laser due to
pressure variations in the fiber. The dashed line is the contribution from the temperature
variation, while the solid declining line is the sum of the two. The other solid line is the
frequency shift due to longitudinal strain in a tightly spanned fiber laser as discussed in
section 3.

3 Longitudinal strain in fiber due to pressure gra-
dients in the acoustic wave.

Although the pressure gradients of the acoustical field are small for the modest frequen-
cies we have been working with here, the gradients will lead to a transverse force on the
fiber. If the fiber is spanned tightly, this will lead to a longitudinal stress and strain
in the fiber, and thus to a frequency shift of the laser. If the acoustic field propagates
perpendicularly to the longitudinal axis of the fiber, it is straight forward to show that
the rms transverse force Frms per unit length of a fiber with radius R and rms acoustic
pressure 'Prms is:
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ir/2

Frms 4v' LprmsR f 9 Sjfl (R COS 9) d9 (7)

It may also be shown that the longitudinal stress c in the fiber can be found by numerical
solution of the following set of equations:

s I Fl0 \ 2
Fl0 f Fl0 \L\l= .+arcsinh)

(8)

=k
Here lo iS the distance between the points of suspension of the fiber, Lil is the elongation
of the fiber due to the transverse force, S is the longitudinal force along the fiber axis
and E = K/ (irR2) is Young's modulus. Note that due to the nonlinearity of equations
(8), the wavelength shift will vary with an even multiplum of the acoustic frequency,
and will therefore not interfere directly with the shifts discussed in section 2. Note also
that this shift would be considerably reduced if the fiber is loosely spanned or is close to
a maximum in a standing wave pattern. Using the same logic, we would suspect larger
noise due to drifts in the air etc. when the fiber is tightly spanned, something that is
confirmed in our preliminary experiments. Equation (8) also requires that F is constant
along the span of the fiber, which is unlikely for very high frequencies. In order to give
an idea of the magnitude of the effect, we solved equations (8) by inserting the rms value
of F for iPa rms acoustic pressure, and using lo 10cm, E = 7.2 . 1O10Pa, and a strain
sensitivity of LA/A = O.78f [5] we get the result shown in figure 1.

4 Conclusions
We have found that adiabatic processes in the surrounding air are important when using
fiber lasers as acoustic sensors for low frequencies. Likewise we have found that the way
the fiber laser is spanned is important for its sensing capabilities. More experimental
work will be done in order to confirm these theoretical results.
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