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Arrott plots are computed for a certain model of a heterogeneous system of ferromagnets. These are shown to fit very well 

the experimental data of Berkowitz on amorphous Fe,sSit,B,, particles and ribbon. They also give the general shape of the 

experimental data of Kaul on amorphous Fe,,Ni,,P,,B, alloy, even though the fine details cannot be found from the 
experimental data. This fit supports the view that basic non-linearity of these plots indicates heterogeneity. 

The Curie temperature, T,, of ferromagnets is 
often determined by plotting the experimental data 
of the magnetization, M, as isotherms of M’lP vs. 

(WW”‘, where H is the (internal) magnetic 
field. For good crystalline samples, and for prop- 
erly chosen values of the exponents p and y, the 
isotherms are usually straight lines near T,, in 
accordance with the equation of state [l] 

Here T is the temperature, and the other symbols 
are adjustable parameters. As long as this equation 
holds, the isotherms are straight lines, the intercept 
of which with the M1jp axis is positive or negative 
when T < or T > T,, respectively. Interpolation 
between these intercepts then determines T, more 
accurately than any other method. 

Difficulties arise, however, when the plots are 
curved lines, and interpolation to the M”p axis 
becomes impossible. Sometimes such non-lineari- 
ties are caused [2] only by a poor presentation of 
the experimental data. Such a case is an arbitrary 
choice of wrong critical exponents, p and y, or 
including measurements in a field which is too low 
to remove the vestigial domains. Other non-lineari- 
ties might be due to the use of a large field, H, 

* Some aspects of this work were presented orally at the 1985 

Intermag Conference. 

beyond the validity of the first-order relation, (1). 
But for the latter case, the non-linearity in crystal- 
line materials may be taken into account to a 
reasonable first-approximation by generalising [3] 
eq. (1) to: 

m= (l-t+q(t) tanh[r(t)(h/m)“Y])B/D(t), 

(2) 

with 

t = T/T,, m=M/M,, h=H/H,, (3) 

where 

D(t)=1-j3t+At3/2-Ct7’2 for tgl, 

=l-/3+A-C for t&l, 

q(t) = [o(t)y + t - 1, 

r(t) = bwl”P/[tk4(t)l. 

(4) 

(5) 

(6) 
In the appropriate limits, this relation contains 
both the Arrott and Heinrich equation [4] and eq. 
(l), and the saturation m = 1 for large H or low T. 

Besides /?, y and c, it contains 5 adjustable 
parameters, it4,, H,, A, C and k. 

Now that such an approximate relation exists 
for all temperatures and fields, it is possible to 
calculate theoretical Arrott plots for a heteroge- 
neous system of ferromagnets, with a distribution 
of their Curie temperatures. From the many kinds 
of feasible distributions, a simple model [2,5] is 
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adopted, which contains only one adjustable 
parameter, u, the width of that distribution. It 
assumes a collection of clusters, each with an 
M(T, H) curve which is p times a universal curve, 
given by eqs. (2)-(6). Only the gaussian distribu- 
tion is somewhat modified here, and is now taken 
as 

P(p)=Cp2exp[-(p-l+20’)2/2a2], (7) 

whose peak is at p = 1. The width, u, may be 
taken as the 9th adjustable parameter. 

Fig. 1 plots theoretical curves thus obtained by 

integrating the contribution of clusters, whose dis- 
tribution is given by eq. (7). These are fitted to the 
actual experimental values as communicated by 
A.E. Berkowitz, for amorphous particles in the 
20-30 pm size range, using the values of the 8 
adjustable parameters as given in the figure cap- 
tion. The value of the 9th parameter, M,,, is not 
adjusted, since it is obtained from the measure- 
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Fig. 1. Plot of m* vs. h/m of the experimental data [6] on 

amorphous Fe,SSi,,B,O particles, with a diameter of 20-30 

pm. The theoretical curves are computed by integrating over 

the probability distribution of eq. (7) of clusters, each with the 
magnetization curve of eqs. (2)-(6), with the values T, = 683.7 

K, k= -0.587, a =0.01565, H,=5.56X106 Oe, p=O.5517, 

y = 2.1852, A = 0.1986, C = 0.1096 and [7] Mc = 157.3 emu. 
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Fig. 2. Same as fig. 1, for lo-20 nm particles. The experimental 

data are from ref. [6], and the theoretical curves are plotted 

with the values T, = 651.0 K, k = -4.637, o = 0.057, Ho = 

7.30 x 106 Oe, /3 = 0.4056, y = 2.2045, A = 0.2707, C = 0.2465 

and [7] Ma = 146.4 emu 
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Fig. 3. Same as fig. 1, for 0.5-5 ym particles. The experimental 

data are from ref. [6], and the theoretical curves are plotted 
with the values T, = 611.6 K, k ~1.002, LT = 0.0589, Ho = 

2.691 x 10’ Oe, p = 0.2672, y = 2.1596, A = 0.4628, C = 0.2271 

and [7] Ma = 132.8 emu. 
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ment [7] for the same sample at low temperatures. 
It can be seen that the fit of the theoretical curves 
to the experimental data is very good, except for 
the points at the lowest fields. But the latter is 
expected [2] for fields which are too low to remove 
the domains, so that the measured magnetization 
is lower than its intrinsic value. 

Similar plots are given in fig. 2 for smaller 
particles, in the lo-20 pm size range, and in fig. 3 
for the smallest particles studied by Berkowitz, in 
the 0.5-5 pm range. Again, the values of M, are 
taken from experimental [7] values, and not fitted. 
And again, the fit between theory and experiment 
is very good, except for the lowest field values, for 
which one may assume the sample is subdivided 
into domains. The latter points were not included 
in the least-square fitting computations, since it 
was found that including them led to very large 
discrepancies in the high-field region of all the 
curves. 

The wide variation of the ‘critical’ exponents, p 
and y, between the different particle sizes might 
make one suspect the conventional idea of univer- 
sality of these parameters, at least for an 
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Fig. 4. Same data as fig. 3, but theoretical curves plotted with 
T, = 622.8 K, k = -6.806, CT =0.0490, Ho= 3.069~10” Oe, 
/3 = 0.6086, y = 2.4925, A = 0.3928, C = 0.4413 and [7] M, = 
132.8 emu. 

amorphous material, in which the immediate vicin- 
ity of one spin can be very different from that of 
other spins, so that there is no meaning to symme- 
try group classification. In a crystal, one can use 
the idea of superposition, but such a concept is 
lost in a true amorphous arrangements. Neverthe- 
less, it is risky to jump into conclusions from the 
data of one system, and many more systems should 
be studied before concluding anything about the 
universality of these parameters. Besides, the de- 
termination of all 8 parameters from the few 
hundred data points in each of the figs. 1-3 is 
neither very accurate, nor necessarily unique. To 

demonstrate this point, the same data of fig. 3 
were fitted to a completely different set of parame- 
ters, as plotted in fig. 4 (note, in particular, the 
factor of 10 in H,). It is seen that the fit in fig. 4 is 

just as good as that in fig. 3, and actually the sum 
of squares of distances between points and curves 
is almost identical for the two cases. This makes 
one wonder how experimentalists manage to re- 
port any value at all, when the fit they use is not 
even nearly as good as in the figures reported here. 
A much deeper understanding of some of the 
parameters, or some method of eliminating some 
of them before fitting the others, is needed before 
drawing any valid conclusions. 

Another example is a ribbon of the same 
amorphous composition, Fe,,Si,,B,,, plotted in 
fig. 5. The fit is quite good, though not as good as 
that of the particles in figs. l-4. It should be noted 
that the distribution is quite narrow for the rib- 
bon, indicating a large degree of short-range order, 
which is also found in other studies [7] of such a 
ribbon. And it is interesting to note that the ‘criti- 
cal’ exponents p and y of the ribbon are rather 
close to those of a crystal. 

In order to try a different system as well, data 
were read from the published figure of Kaul [8], 
and fitted by the same procedure. It should be 
noted, however, that besides the inaccuracies of 
reading data from a small-size figure, difficulties 
arise from the use by Kaul[8] of the same notation 
for all data points. This makes it impossible to 
know which point belongs to which temperature, 
and a wrong guess can easily lead to very large 
errors in fitting parameters to the curves. In the 
first place, it is clear from figs. l-5 that some 
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Fig. 5. Same as fig. 1, for an amorphous ribbon, with experi- Fig. 6. Plot of m2 vs. h/m of the experimental data from ref. 

mental data from ref. [6]. The theoretical curves are plotted for 

T, = 713.0 K, k = -4.303, (r = 0.00326, H, = 4.171~10~ Oe, 

[8], compared to theoretical curves computed by integrating 

over the probability distribution of eq. (7). of clusters, each 

p = 0.4080, y = 1.675, A = 0.2590, C = 0.2023 and [7] Me = with the magnetization curve of eqs. (2)-(6) with adjustable 

178.4 emu. parameters’ values given in eqs. (8)-(10). 

low-field data points might belong to temperatures 
which are different from the line on which these 
points seem to lie. But in the case of Kaul [S], 
many of the points are between the drawn, em- 
pirical curves, and it is not clear to which of the 

curves they are meant to belong. Therefore, without 
such information, one cannot expect a good fit, 
and a semi-qualitative one should be good enough. 
Yet, for lack of other available data, it was consid- 
ered worth trying this too, just in order to compare 
to another system. But in view of the crudeness of 
the data, and the fact that for this case no inde- 
pendent measurement is given for A&, that has to 
be fitted as an extra parameter, it seemed better to 
reduce the number of adjustable parameters by 
applying the arbitrary constraint [3] 

latter is chosen because it was found, in fitting 
figs. l-5, that these parameters made little dif- 
ference. 

k=y, (8) 

and by fixing A and C at the values obtained [4] 
for iron whiskers, namely 

A = 0.110, C = 0.129, (9) 

even though a different material is involved. The 

Fig. 6 plots theoretical curves similarly ob- 
tained by integrating the contribution of clusters, 
whose distribution is given by eq. (7) using the 
particular values: 

T, = 225.6 K, Ma = 46.0 emu, Ho = 13.6 kOe, 

p = 0.556, y = 1.46, u = 0.0193, (10) 

for the parameters, and these are compared to the 
experimental data of Kaul [8] on amorphous 
Fe,,,Ni,,P,,$ alloy. The fit is not particularly 
good, especially for the highest fields, at the lowest 
temperatures, which is rather similar to what one 
obtains in figs. l-5 when the lowest field points 
are included. But the general shape of the theoreti- 
cal and experimental curves is quite similar, which 
is all one can expect for the uncertainties involved 
in the temperatures. This similarity is even more 
obvious in fig. 7, where the same theoretical curves 
and the same experimental data points are plotted 
in the more appropriate fashion [2,9] of m”p vs. 



A. Aharoni / Interpretation of non -linear Arroti plots 301 

(h/m)“Y 

Fig. 7. Same data of fig. 6, plotted with the appropriate values 
of p and y. 

(h/m) . *‘Y At any rate, the fit is not much worse 
than that of the empirical curves which Kaul draws 
between the points. 

In considering the discrepancy between theory 
and this particular experiment, it should also be 
noted that a highly specialized distribution is cho- 
sen. In particular, there is no physical reason that 
a ‘cluster’ with a high Curie point would also have 
a high magnetization at low temperatures, and vice 
versa. Also, the basic relation of eq. (2) had only a 

fair success in describing crystalline materials [3], 
and the t k dependence in eq. (6) is a mere geuss. 
The latter cannot even be checked for crystals, for 
which data are available only near the Curie point, 
while very different temperatures contribute to the 
integration in the model for amorphous alloys, and 
for all one knows at this stage, the good fit of 
Berkowitz’s data might be just a coincidence. 

In view of these limitations, and the high inac- 
curacy and uncertainty involved in reading the 
data from a published figure, it was decided to 
save some of the impossibly-large computation 
time involved in a large number of integrations 
over the function m, which has to be evaluated by 

tedious successive iterations of eq. (2). Therefore, 
the least-square fitting was done, in this case, to a 
low accuracy, by integrating over few points only. 
But the curves in all the figures were computed 
with adequate number of integration points, so 
that the comparison in figs. 6 and 7 is correct for 
eq. (10). It is just not certain if the parameters of 
eq. (10) actually give the best fit to the data. 

To demonstrate how unreliable the values of eq. 
(10) are, fig. 8 compares the same Kaul data to 

theoretical curves plotted with the values: 

T, = 218.8 K, M, = 50.2 emu, H,, = 17.2 kOe, 

p = 0.416, y = 1.61, u = 0.0691. (II) 

Although these are considerably different than 
those of eq. (lo), the fit is not much worse than in 
fig. 6. To the eye it might even look better that no 
point is far from a curve. It is not clear how Kaul 

[8] could deduce, from the same data, parameter 
values to a high accuracy, without even assuming a 
distribution. 

The distribution width, u = 0.0193, needed for 
plotting figs. 1 and 2, is quite small, and not easy 
to detect directly. This can be seen from the aver- 
age magnetization for this model, which is plotted 
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Fig. 8. Same as fig. 6, for the parameters’ values of eq. (11). 
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Fig. 9. The average reduced magnetization vs. the reduced 

temperature, for the distribution of clusters, whose Arrott plots 

are shown in fig. 6. Values of the reduced field, h, refer to the 

internal field. 

in fig. 9 for this u. The curve for h = 0 is a 
theoretical plot of what should be observed, if 
sufficiently accurate data could be taken without 
applying a field (like in the Mossbauer effect), or 
if data could be properly extrapolated down to 

zero field. The latter is not trivial because experi- 
mental data at low fields depend strongly on de- 
magnetization, which increases [5] the ‘smearing’ 
near T,. 

It may, thus, be concluded that the intrinsic 
curvatures of Arrott plots in amorphous ferromag- 
nets, are consistent with those of a heterogeneous 
system of ferromagnets. Instead of one, well-de- 
fined, Curie temperature, such a system has only a 
distribution of such points. But, obviously, a good 
analysis of amorphous ferromagnets is not possi- 
ble before much more details are known on the 
behaviour of crystalline ferromagnets. And the 
real problem is to find a sufficiently accurate 
formular for m(t, h) in crystals, preferably one 
that does not call for numerical iterations. 
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