

Cr²⁺(3d⁴) ABSORPTION IN GaAs*

B. Clerjaud

Laboratoire de Luminescence II, équipe de recherche associée au CNRS,
Université Pierre et Marie Curie, 4, place Jussieu, 75230 Paris Cedex 05, France
and

A.M. Hennel[†] and G. Martinez

Laboratoire de Physique des Solides associé au CNRS,
Université Pierre et Marie Curie, 4, place Jussieu, 75230 Paris Cedex 05, France

(Received 16 November 1979 by M. Balkanski)

We report the observation of the zero-phonon structure of the 0.9 eV absorption in GaAs : Cr, which correspond to intracenter Cr²⁺ transition. This result and the existence of the stable Cr²⁺ state in our *n*-type GaAs : Cr samples, allow to consider that Cr²⁺ is the dominant chromium state in these crystals.

IT IS WELL KNOWN that in GaAs single crystals the three charge states Cr³⁺(3d³), Cr²⁺(3d⁴) and Cr¹⁺(3d⁵) of substitutional chromium impurity can be observed by Electron Paramagnetic Resonance (EPR) [1], but in spite of the large number of published papers there is no clear correlation between the optical properties of chromium impurity in GaAs and its different charge states.

For instance the 0.839 eV luminescence and absorption of GaAs : Cr is interpreted as intracenter Cr²⁺ transition [2, 3], although the observed zero-phonon lines do not correspond with the Cr²⁺ ground state structure found in EPR [1].

An absorption broad band at 0.9 eV was reported [4-6] in *n*-type GaAs. This band was also interpreted [5, 6] as intracenter Cr²⁺ transition, but its zero-phonon structure has not been observed even at liquid helium temperature [4]. Furthermore some authors state that in *n*-type GaAs only Cr¹⁺ state exists [7, 8] although the Cr²⁺ signal was observed in EPR in *n*-type samples [9].

In this communication we show that Cr²⁺ is the dominant chromium state in *n*-type GaAs : Cr, and that its zero-phonon absorption structure exists at an energy of 0.82 eV and corresponds very well with EPR results.

We have performed magnetic resonance and optical absorption measurements on *n*-type GaAs : Cr obtained by diffusion of chromium into *n*-type

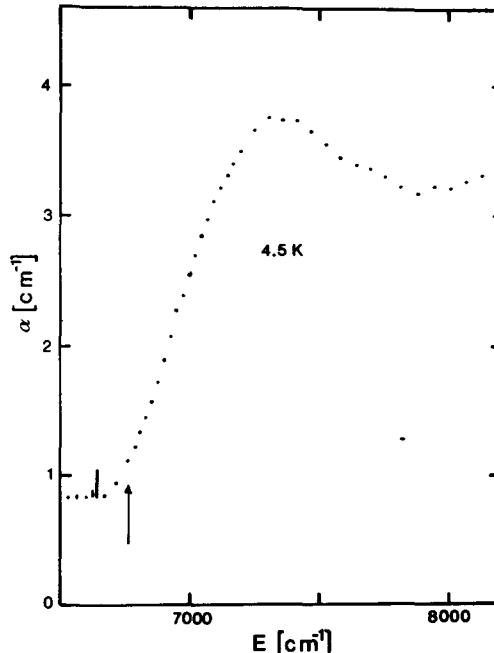


Fig. 1. Intracenter Cr²⁺ absorption band (⁵T₂ → ⁵E) with its zero-phonon lines. The arrow shows the position of the zero-phonon lines observed by Lightowers *et al.*

GaAs : Te(*n* ≈ 10¹⁸ cm⁻³) [10]. The magnetic resonance spectrum exhibits several features:

- (i) a cyclotron resonance signal of conduction electrons;
- (ii) a Cr²⁺ EPR signal non sensitive to 1.09 μm argon laser illumination;
- (iii) Cr¹⁺ and Fe³⁺ EPR signals which are growing under 1.09 μm argon laser illumination.

*Work supported in part by DGRST under Contract No. 78-7-0307.

† On leave of Institute of Experimental Physics, Warsaw University, Hoza 69, 00-681 Warszawa, Poland.

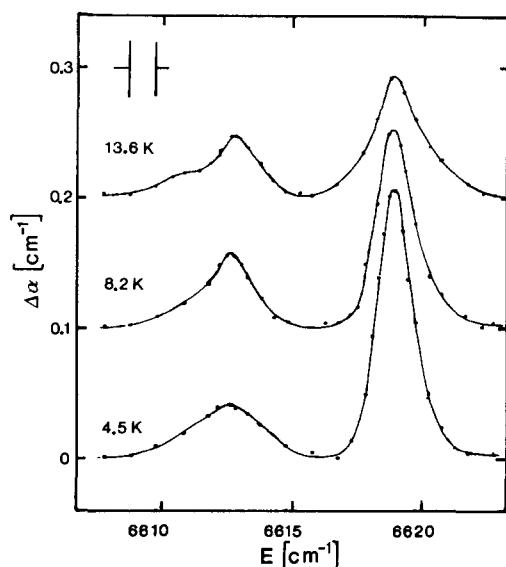


Fig. 2. Absorption due to zero-phonon lines at three different temperatures; the raising of the third line in the lower energy side can be observed. The slitwidth is 1 cm^{-1} . For 8.2 and 13.6 K the absorption curves are shifted towards higher absorption respectively by 0.1 and 0.2 cm^{-1}

This last feature, encountered in all samples we made whatever is their type, will be discussed in a further publication [10].

In the optical absorption experiments, we observe the 0.9 eV band previously reported [4–6]; we also observe two weak zero-phonon lines at 4.5 K (Figs. 1 and 2). The main line is at 6619 cm^{-1} , and the weaker one $6.5 \pm 0.3 \text{ cm}^{-1}$ lower in energy. With the increasing temperature one can observe an intensity transfer between these lines, and a third weak line which appears at about 8.5 cm^{-1} from the main line towards low energies. It should be noticed that the absorption structure which was interpreted as Cr²⁺ intracenter transition by Lightowers *et al.* [3] exists at energy 0.839 eV (6770 cm^{-1}), i.e. about 150 cm^{-1} higher in energy than the lines we observe and cannot correspond to zero-phonon lines of the 0.9 eV band (Fig. 1).

The observed zero-phonon structure and its temperature dependence can be explained with the help of the Cr²⁺(d⁴) ground state (5T_2) splitting determined by EPR [1]. The 5T_2 state is suffering a tetragonal Jahn-Teller distortion and is split into 5B_2 and 5E levels [1] (Fig. 3). The ground 5B_2 level is further split (for instance by spin-orbit coupling) into four levels Γ_1 , Γ_2 , Γ_5 and Γ_4 . The Γ_1 – Γ_2 splitting $a_{B_2} = 0.031 \text{ cm}^{-1}$ can be neglected at the scale of an optical experiment as well as the quartic axial field F_{B_2} (which has also been neglected in [1]). With these approxi-

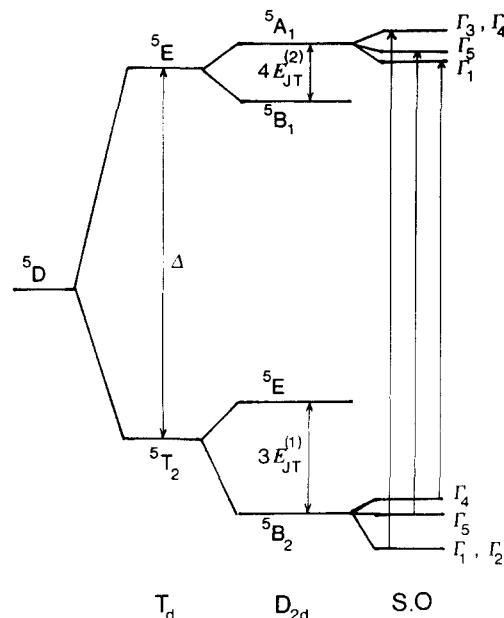


Fig. 3. Level scheme of 5D state of Cr²⁺ ion in GaAs, the dipolar electric allowed optical transitions are represented by arrows.

mations, the Γ_1 , Γ_2 – Γ_5 splitting is equal to $3D_{B_2} = -5.6 \text{ cm}^{-1}$ and the Γ_5 – Γ_4 splitting is $D_{B_2} = -1.9 \text{ cm}^{-1}$.

If the excited state 5E was not subjected to Jahn-Teller effect, one should observe 7 zero-phonon lines in absorption [11]. If one consider also a Jahn-Teller distortion in the excited state (such effect exists in the excited state of Cr²⁺ in II–VI compounds [12]), the 5E state is split into 5A_1 and 5B_1 levels (Fig. 3). It is important to note that only the $^5B_2(^5T_2) \rightarrow ^5A_1(^5E)$ transition is dipolar electric allowed. The 5A_1 state is further split into Γ_1 , Γ_5 , Γ_3 and Γ_4 levels. If one make the same approximations as in the ground state, the Γ_3 , Γ_4 – Γ_5 splitting is equal to $3D_{A_1}$ and Γ_5 – Γ_1 splitting is equal to D_{A_1} . The dipolar electric allowed transitions are shown in Fig. 3. In such a case, one should observe at high temperature three lines split by $3(D_{A_1} - D_{B_2})$ and $(D_{A_1} - D_{B_2})$. This situation corresponds exactly to what is observed. From the experimental values, we deduced $D_{A_1} = (+0.3 \pm 0.1) \text{ cm}^{-1}$. The temperature dependence of the line intensities can be also explained considering the thermal population of the ground state levels (Fig. 3).

The obtained energy difference between the zero-phonon lines and the maximum of the absorption band $\Delta E \simeq 700 \text{ cm}^{-1}$, allows to estimate the Jahn-Teller energy (E_{JT}) in the 5T_2 state. In the case of the same phonon energy for the ground and excited states one obtains

$$\Delta E = \left(1 - \frac{V_2}{V_1}\right)^2 E_{JT} \quad (1)$$

where V_1 and V_2 are the coupling coefficients of the lattice to the orbital 5T_2 and 5E states respectively. If we make the rough approximation

$$0 \leq -\frac{V_2}{V_1} \leq 1 \quad (2)$$

the limits of which correspond to the cases where there is no Jahn-Teller coupling in the 5E state, or where its absolute value is as strong as the one in the 5T_2 state, it is easy to obtain from equations (1) and (2)

$$175 \text{ cm}^{-1} \leq E_{JT} \leq 700 \text{ cm}^{-1} \quad (3)$$

for $\Delta E = 700 \text{ cm}^{-1}$.

The lower energy limit corresponds to the value of the ratio of the intensities of the zero-phonon lines to the absorption band [11] $\alpha_L \approx 10^{-3}$, the higher energy limit to $\alpha_H \approx 5 \times 10^{-5}$. These values were calculated for TA phonon energy $E_p = 70 \text{ cm}^{-1}$, according to the results obtained for Cr²⁺ in II-VI compounds [12]. The fact that the experimental value $\alpha_{\text{exp}} \approx 3 \times 10^{-4}$, is between these two limits suggests that the estimation (3) is reasonable and that the value proposed by Krebs and Stauss [13] ($E_{JT} = 1500 \text{ cm}^{-1}$) is probably too large.

It should be mentioned that similar zero-phonon structure of Cr²⁺ was observed by Kaufmann *et al.* [14] in GaP, by Vallin *et al.* [11] in ZnSe and by Grebe and Schulz in ZnS [15].

In conclusion we want to stress that Cr²⁺ charge state in GaAs is stable in *n*-type crystals and that the zero-phonon structure at 0.839 eV observed in lumin-

escence and absorption [2, 3] by several authors is undoubtedly connected with chromium but not directly with substitutional Cr²⁺ intracenter $^5T_2 \rightarrow ^5E$ transition. The interpretation of this very complex structure is still open to discussion.

REFERENCES

1. J.J. Krebs & G.H. Stauss, *Phys. Rev.* **B16**, 971 (1977).
2. W.H. Koschel, S.G. Bishop & B.D. McCombe, *Solid State Commun.* **19**, 521 (1976).
3. E.C. Lightowler, M.O. Henry & C.M. Penchina, *Inst. Phys. Conf. Ser. No. 43*, 307 (1979).
4. D. Bois & P. Pinard, *Phys. Rev.* **B9**, 4171 (1974).
5. S.A. Abagyan, G.A. Ivanov, Yu. N. Kuznetsov, Yu. A. Okunev & Yu. E. Shanurin, *Sov. Phys. Semicond.* **7**, 989 (1974).
6. G.K. Ippolitova, E.M. Omel'yanovskii & L.Ya. Pervova, *Sov. Phys. Semicond.* **9**, 1308 (1975).
7. M.R. Brozel, J. Butler, R.C. Newman, A. Ritson, D.J. Stirland & C. Whitehead, *J. Phys. C: Solid State Phys.* **11**, 1857 (1978).
8. T. Instone & L. Eaves, *J. Phys. C: Solid State Phys.* **11**, L771 (1978).
9. A. Goltzene, G. Poiblaud & C. Schwab, *J. Appl. Phys.* **50**, 5425 (1979).
10. A.M. Hennel, W. Szuszkiewicz, M. Balkanski, G. Martinez & B. Clerjaud (to be published).
11. J.T. Vallin, G.A. Slack, S. Roberts & A.E. Hughes, *Phys. Rev.* **B2**, 4313 (1970).
12. M. Kaminska, J.M. Baranowski, S.H. Uba & J.T. Vallin, *J. Phys. C: Solid State Phys.* **12**, 2197 (1979).
13. J.J. Krebs & G.H. Stauss, *Phys. Rev.* **B20**, 795 (1979).
14. U. Kaufmann & H. Ennen, *Second "Lund" Deep Impurities Conference*, St Maxime, France (1979).
15. G. Grebe & H.J. Schulz, *Z. Naturforsch.* **29a**, 1803 (1974).