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Abstract-The measurement of the specific contact resistance of ohmic contacts to semiconductors can be made in 
a number of ways. One of the methods uses a transmission line model of an ohmic contact on a semiconductor and 
this paper describes the application of the transmission line model to a contact test pattern of circular symmetry. 
By using a circular test pattern, the mesa etch step necessary for the standard rectangular test pattern may be 
omitted, thus simplifying test pattern fabrication. 

I. INTRODUCTION 

The improvements in GaAs device performance in recent 
years have resulted in part from improved ohmic contact 
technology [l, 21. In order to compare the “quality” of 
ohmic contacts, the parameter p,-the specific contact 
resistance-is generally determined and quoted. The 
measurement of pc for ohmic contacts to GaAs has been 
detailed by a number of people who used the trans- 
mission line model[3,4]. This technique requires the 
deposition of three or more contacts with in-line 
geometry together with a mesa etch to isolate the contact 
pattern. With this model, the value of pc for contacts on 

epitaxial layers on semi-insulating substrates and ion- 
implanted layers in semi-insulating GaAs can be found. 

This paper describes a transmission line contact pat- 
tern of circular symmetry which eliminates the necessity 
for the mesa isolation of the contact pattern, thus sim- 
plifying test pattern fabrication. 

2.TmMom 

The test pattern for the determination of pc is shown 
in Fii. 1 and consists of a central dot contact and two 
concentric ring contacts. The usual resistances and con- 
ductances which describe the transmission line model for 
a rectangular contact have to be modified to account for 
the circular contact geometry. Following Kellner’s[4] 
work, the sheet resistance of the GaAs beneath the 
contacts is written as &K to distinguish it from the 
normal sheet resistance RsH. As shown in Fig. 1, the 
series resistance element under the contact becomes 
(&,&~/Z?rx) and the conductance element is 2rx-dx/p) 
where x is the radius of a contact element of width dx. 
Thus the basic transmission line equations become 

d V i(x)*RsK and di V(x).Z?rx 
-=zlrx z=p dx (1) 

where i(x) and V(x) represent respectively, the current 
flowing beneath the contact at x and the voltage drop 
across the contact interface at x. 

Eliminating i(x) from the eqns in (1) gives the follow- 
ing differential equation for voltage, 

d*V 1dV 
v+;dx-a*v=o (2) 

-- I,.,,I,,,,iWl 
RSK dx/2ltx 

x:0 x-r 

Fig. 1. Circular contact pattern and transmission line model 
parameters for circular contact. 

where 

a* = RsKipc. 

The solution to this differential equation is (see for 
example Chapter 6 of Ref. [SD, 

V(x) = al&x) + K&x) 
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where, lo and K. are zero order modified Bessel functions with the bulk semiconductor resistance between the in- 
of the first and second kind respectively. ner two contacts being R,, and between the outer two 

Considering first the outer ring contact whose inner contacts being Rs. Thus the resistance measured be- 
and outer radii are r2’ and rz respectively, then with the tween the inner two contacts is 
following boundary conditions at x = ri, V(x) = V(rz’) 
and i(x) = i(r2’), the equation for V(x) is calculated as R, = Ra t (R, t R:,) (9) 

V(x) = (c&[ V(r$A(r;, x) - i(ri)*ZG.D(r$, x)] (3) and between the outer two contacts, RZ 

where ZS = R&2rar; and the functions A(& x), etc. are 
defined in the appendix. 

R2 = Rs t (R,, t Rq). (10) 

Likewise, the current distribution for the outer contact 
is found to be, 

Since RA = $ log, 
0 
: andRg=$log, $ , 

0 

i(x) = (ax)* F.C(r;, x) 
3 
. (4) 

then RsH may be eliminated from eqns (9) and (10) 
2 giving 

The contact resistance R2 for the outer contact is defined 
as [V(rW(rb)l and since i(r2) = 0, then using eqn (4), 

log, (!)*R, -log, ($).Rz 

R, 

2 
= Zi.B(ri, d 

C(r2, ri)’ 
= loge 

0 
E .[Rco t R:,] -log, ($R, t I&]. 

(11) 

Considering next the innermost dot contact of radius ro, 
Equation (11) contains two unknowns-RsK and a and 

the corresponding equations for V(x) and i(x) may be 
by measuring the contact end resistance RE of the centre 

derived and hence the contact resistance for the inner dot 
contact, RsK can be eliminated. The contact end resis- 

contact Rco is found to be 
tance is defined as the ratio of the contact output voltage 
to the contact input current when the contact output 
current is zero. 

(6) Thus, 

where 

Z. = R&2?raro. 

Finally, for the centre ring contact, the voltage and 
current distributions beneath the contact will depend on 
whether the voltage is applied between the centre con- 
tact and the inner dot or between the centre contact and 
outer ring contact. Thus in the latter case when current 
flows between the centre and outer ring contact, the 
contact resistance of the centre ring (whose inner and 
outer radii are ri and rl respectively) is RcI where 

and 

RE=$y.( )=. 
I I’ 

or V(rl) 
I ih’) i(q)=0 

depending on whether the current is between the outer 
two or inner two contacts. Either way the same expres- 
sion for RE is obtained, namely 

A(r,,rl)~~tD(rr,r;)). (12) 

On eliminating R.&27r from eqns (11) and (12), then 

#en the current flow is between the centre ring and 
the inner dot contact, the contact resistance is R:, where 

and 

R, = ZI*B(rL rd 
ct Ch 4) 

Z; = RsKi2?rarl. 

(8) 

GoAS 
EPILAVER 

Figure (2) shows a cross section of the contact pattern Fig. 2. Crossection of circular transmission line contact pattern. 
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The RHS of eqn (13) is computed and plotted as a 
function 4 of @rO) for a given contact contiguration. On 
determining the LHS of eqn (13) experimentally, the 
value of (a~,) and hence a can be found. Figure 3 shows 
such a plot for a contact pattern with the following 
dimensions, 

r; = 1.65 10 r, = 2.14 ro rl = 4.34 ro rz = 5.45 10. 

The specific contact resistance pF, can be determined 
directly without first calculating o. Since p = 
[RsK/(aro)2]~(ro)2 and from eqns (12) and (13), on eli- 
minating RE - 

PC = (loge ($a, -log, (z).R+roJ2*A (14) 

where 4. CONCLUSION 

The function A is also shown in Fig. (3). 

3. RWIJLTS 

A number of transmission line contact patterns of both 
circular symmetry and in-line geometry were prepared 
on a single epitaxial GaAs (h% = 1.5 x 10%m3) wafer 
with a semi-insulating substrate. The dimensions of the 
circular pattern are given in the previous section, so that 
Fig. (3) is applicable to the calculation of pc. The value of 
r. is 46.5 pm. The contacts are conventional Au&e-Ni 
and were prepared in the following way. The GaAs 
wafers were cleaned in hot solvents prior to the ap- 
plication of Shipley AZ135OH photoresist. After 
exposure and development of the photoresist, the con- 
tact openings were briefly etched with a H202:NaOH 
solution to minimize the thickness of the oxide layer[6]. 
The contact metals with the ratio of Au: Ge : Ni being 
83.6:9.9:6.5 were then evaporated. The thickness of the 
contact metals was 80~1. A final Au evaporation 
brought the total contact thickness up to 200~1. Fol- 
lowing tloat-off of the unwanted metalization, the sample 
was alloyed in a continuous flow of & gas for 90s at 
440°C. The final sample preparation step was the mesa 
isolation of the in-line geometry transmission line pat- 
tern. 
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Fig. 3. The dependence of Q and A on the parameter (~0). 

Measurements were made on 10 of each type of test 
pattern. On the circular patterns, the value of 4 ranged 
from 4.1 to 16.0 with an average of 10.5. The correspond- 
ing values of A are obtained from Fig. 3 and pC is 
calculated from eqn (14) as (4.1-8.7) X 10s5 fkm2, with 
an average value of 6.8 X 10e5 Rcm2. Similar measure- 
ments on the in-line geometry test pattern gave for pC a 
range of (4.7-9.1) x lo-’ &cm2 with an average value of 
6.6 X 10e5 &cm2. 

A technique for measuring specific contact resistance 
using a circular transmission line model has been des- 
cribed. The values obtained are in good agreement with 
those measured using the more conventional in-line 
geometry, but by eliminating the mesa etch, the produc- 
tion of a test pattern is simplified. Further, this technique 
could well be incorporated into the Corbino effect test 
pattern reported by Poth[7], thus extending the 
parameters which this test pattern can measure. In his 
analysis, Poth justified neglecting contact resistance in his 
samples. There may well arise occasions when contact 
resistance cannot be neglected and by incorporating a third 
circular ohmic contact, such a determination may be made. 
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A(r, x) = I,(ar).Kdax) t lo(ax).Kl(ar) 

B(r, x) = I,(ax).K&xr) t &,(ar).K&rx) 

C(r, x) = I,(ar).K,(crx) - I&&K&v) 

D(r, x) = l&rx)~&(ar) - Z&r). K&x) 

APPENDIX 
E(r) = b(ar)/lAar) 

To simplify the equations in the text, the following functions where I and K are modified Bessel functions of the first and 
are defined: second kind respectively. 


