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Abstract--In this paper we show that there is sufficient information in the two-dimensional perspective 
projection of an arbitrary quadrilateral of known shape and size in three-space to determine the exact 
three-dimensional coordinates of its vertices, generalizing known results for rectangles. Implementation 
results are also discussed. 
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1. I N T R O D U C T I O N  

In Haralick,(r~ it is shown that there is sufficient 
information in the two-dimensional perspective pro- 
jection of a rectangle of unknown size in three-space 
to determine the camera look-angle parameters,  and 
that if the size of the rectangle is given then the exact 
three-dimensional coordinates of its vertices can be 
computed. In this paper  we show that there is suf- 
ficient information in the two-dimensional per- 
spective projection of an arbitrary quadrilateral (an 
arbitrary four-sided linear figure) of known shape 
and size in three-space to determine the exact three- 
dimensional coordinates of its vertices. 

Our result generalizes the second result presented 
in Haralick0) since a quadrilateral is more general 
than a rectangle. Our result applies, for example, 
to a quadrilateral determined by four sides of a 
polygonal face of an object,  while the result pre- 
sented in HaralickIt) does not. For a rectangle of 
unknown size, we can determined the camera look- 
angle parameters (thus giving us the first result pre- 
sented in Haralick (1)) as well as the ratio of length to 
width of the rectangle. Our computations are simple, 
making our approach easy to implement. Further,  
our approach is line-based (as opposed to point- 
based) so it is numerically stable in the presence of 
noise. 

This paper is organized as follows: in Section 2 we 
present an algorithm for determining, from the two- 
dimensional perspective projection of an arbitrary 
quadrilateral of known shape and size in three-space, 
its exact three-dimensional coordinates. Since this 
algorithm draws heavily on Penna and Patterson, 12) 
a brief introduction to projective geometry is pro- 
vided in Appendix 1; in Appendix 2 we briefly discuss 
the formulas presented in Haralick tl) from this point 
of view. In Section 3, we discuss some implemen- 
tation results. In Section 4 we show that for a rec- 
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tangle of unknown size, we can determine the camera 
look-angle parameters as well as the ratio of length 
to width of the rectangle. 

2. T H E  A L G O R I T H M  

We assume that we are given an image of a quadri- 
lateral taken with a camera whose focal length f is 
known. We use a pin-hole camera model, and we 
assume (see Fig. 1) that coordinates are chosen so 
that the focal point of the camera is the origin 
O(0,0,0) and that the (positive) image plane 11 is the 
plane whose equation is z = d = (M + 1)f where M 
is the factor by which a negative image is magnified 
in creating a positive image. (The lens equation is 
1/d + 1/d' = 1If where d is the distance from the 
focal point of the lens to the positive image plane, 
and d'  is the distance from the focal point of the lens 
to the negative image plane. Since M = d/d' ,  d' = 
d/M, so that 1/d + M/d  = 1If. Thus d = (M + 1)f.) 
The x- and y-coordinate axes are chosen so that the 

/ :  
z 

P (x. y, z) TI 

Y 

x/° 
Fig. 1. The perspective viewing mechanism. 
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Fig. 2. The display transformation. 

induced X- and Y-coordinate axes on II (the lines 
of intersection of Fl with the xz- and yz-coordinate 
planes) are the canonical image plane coordinate 
axes. Perspective projection :r maps the point 
P(x, y, z) to the point Q(X, Y) in II defined by inter- 
secting the line determined by O and P with II; it 
follows that 

/dx d r \  
:r(x,y,z) = (X, Y)=  [ - - ,  ---~-~ ] 

\ Z  Z/" 

Let us now consider the process of displaying an 
image of a planar figure (see Fig. 2). If a (closed 
and bounded) figure is contained in a model xy- 
coordinate plane, then the model xy-coordinate 
plane can be mapped to the xy-coordinate plane in 
three-space by the transformation 

[ (1° ° 
[x,y, 1]---~ (x,y, 1 )0  1 0 =[x,y,0,1] .  

\0 0 0 

(Throughout this paper we use parentheses ( . . . )  to 
denote Cartesian coordinates, and brackets [ . . . ]  to 
denote homogeneous coordinates. (2°rAppc"dix ~)) The 
image of this figure can then be mapped into an 

arbitrary position in three-space by the rigid motion 

[x'Y'z ' l]- '~[(x'Y'z 'x)(RT ~)] 

where the 3 × 3 orthogonal matrix 

(r]) (rll  r12 r13 ) 
R = r, = r21 r22 F23 

r r31 /'32 r33 
represents rotation, and the 1 × 3 matrix T= 
(h~ h2 h3) represents translation. The image of this 
figure is mapped by perspective projection into H by 

[x,y, z, 1]--'* 
(x, y, z, 1) 0 0  lid 

O 0 0 / A  

= Ix, Y, d] = [~'~, '~, 1 ] • 

Thus the composition of mapping the model plane 
into three-space, performing a rigid motion of three- 
space, and perspectively projecting three-space to H 
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is represented by the matrix 

M =  1 0 
T 1 0 1/ 

0 0 
0 0 / 

frtl  r12 rla/d~ 

=t r21  r22 r23/dJ. 

hi h2 ha/d / 

For the purpose of exposition we let d = 1 so that 

rll r12 r13 / 

M = ~r21 r22 r23). 

\ h  1 h 2 h3 / 

Observe that the first two rows of M are the first two 
rows r 1 and r2 of R, and that the third row of M is 
T. Since the third row r 3 of R is the cross product  
r 3 = r~ x r 2 of the first two rows of R, we can deter- 
mine both R and T if we can determine M. 

dinates l",  i = 1 , . . . ,  4, of the images of these lines 
under  the composi t ion of embedding  into the xy- 
coordinate plane,  a rigid mot ion,  and perspective 
projection.  
Output. The entries of rotat ion matrix R and the 
translat ion matrix T represent ing the rigid motion.  

Step 1. Perform Gauss - Jordan  el iminat ion on the 
t r t . 3 × 4 matrix (ll lz 13 14), the entries in the fourth 

column of the resulting matrix are the constants 
k l ,  k~, k~. Let A '  = ( k i l i  k~l~ k;l;).  
Step 2. Perform Gauss -Jordan  el imination on the 

~i , t t  . 3 x 4 matrix (1~ 12 13 14), the entries in the fourth 
column of the resulting matrix are the constants 
k l , k z , k 3 .  L e t  A"  = (k111 k:12, ,3,3) • 

Step 3. Let A = ( a # ) = A ' A "  and let k be either 
2 1/2 2 2 a 2 3 )  1/2 (both (a21 + a22 + a13 ) or (a21 --I- a22 + 

numbers  are the same and non-zero) .  Then rl = (a i 1, 
a12 , al3)/k , r 2 = (a21 , a22 , a23)/k , r 3 = r 1 x r2, and 
h = (hi,  h2, h3) = (a31, a32, a33)/k. 

Having retrieved R, the camera look-angle par- 
ameters 0:, fl and Y can be computed (in any number  
of ways) using the fact that 

cos oc cos/3 sin tr cos/3 

R =- cos a~ sin/3 sin 7 - sin tr cos 7 sin tr sin/3 cos V + cos o< cos Y 

\cos o< sin/3 cos y + sin tr sin Y sin o< sin/3 cos Y - cos tr sin Y 

- s i n / 3  

cos/3 sin y ] .  

cos/3 cos , /  

To do this, we use the fact that  M represents a 
projective t ransformation.  Recall (2 °r Appendix 1) that a 
projective t ransformat ion T of two-space is repre- 
sented by an invert ible 3 x 3 matrix A (which is 
unique,  up to a scalar multiple) 

T = T A :[x, y, z] ~ [(x, y, z)A] 

and that this matrix can be determined by how it 
maps a quadrilateral .  Indeed,  if l~, i = 1 , . . . ,  4, are 
the lines de termined by the edges of a quadrilateral  
in the model  plane,  and 17, i =  1 , . . . ,  4, are the 
corresponding image lines in the image plane,  then 
the projective t ransformat ion taking l : ,  i = 1 , . . . ,  4, 
to / ' i ' ,  i = 1 . . . . .  4, is represented by the matrix 

t I i ! tt tt tt , , , - I  A = (kil l  k212 kal3)(kll  1 k212 k313) 
where k~, k~, k~ and kay, k~, k~ are constants for which 
1'4 k ; l ;  + k~l~ + k~l; and l~ . . . . .  = - k i l l  + 14~1~ + 14~1~, 
respectively. It follows that 

{rll rt2 r13 1 

M =  /r21 r22 r23) 

hi h2 h3 ! 

= k (k i l l  k~l~ k'31;)(k~'t~' k~t'; k~t~)- '  

for some non-zero constant  k. 
Thus we can determine R and T by using the 

following algorithm: 

Input: The homogeneous  coordinates l [ ,  i . . . . .  4, of 
the lines l[ de termined by the sides of a quadrilateral  
in the image plane,  and the homogeneous  coor- 

For example,  a ' =  tan-1(r12/rll), /3 = t a n - l ( - r t 3 /  
(r~l + re2)1/2) and Y = tan-l(r23/r33) . 

3. IMPLEMENTATION RESULTS 

Our  algorithm was implemented  on a system con- 
sisting of a Panasonic WV-BL200 CCTV Camera 
equipped with an MN516 16 mm lens and connected 
to an Apple  Macintosh II via a DataTransla t ion 
QuickCapture Frame Grabber  Board. Numerous  
experiments were performed under  varying 

O(OiO) 110 Z 

P4 P 1 

PI( 1.0384, 1.5504 ) 
X N P2( 12.0825, 11.2826) 

~ P3( 26016, 1.2511) ~ P4( 1.0040, 0.4984) 

'10 " X ~ p  2 

Fig. 3. An example. 
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conditions, and in this section we discuss our results, 
First we determined the intrinsic camera cali- 

bration parameters of our system. (3.4) In presenting 
our algorithm in the last section, we made several 
simplifying assumptions for the purpose of 
exposition. Determining the intrinsic camera cali- 
bration parameters is necessary both for 
implementing our algorithm (it is necessary to know 
the horizontal and vertical image scale factors, the 
center or principal point of the image, and d to 
implement it) and for correcting for real phenomena 
(such as spherical lens distortion) that we have sup- 
pressed in our discussion. 

Next we implemented our algorithm and applied 
it to synthetic images to examine its response to 
noise. For rectangles, a comparison of the response 
of our algorithm to the response of the formulas 
presented in Haralick (1) depends on how the coor- 
dinates of vertices are (or the input is) computed for 
the latter. If the Hough method (or least squares) is 
used to determine the equations of the sides of the 
image quadrilateral,  and these equations are used to 
determine the coordinates of the vertices, then the 
results obtained by applying the formulas presented 
in Haralick 0) would be the same as the results 
obtained by using our algorithm If the coordinates 
of the vertices are estimated directly, then the results 
obtained by using our algorithm. If the coordinates 
be more accurate than results obtained by applying 
the formulas presented in Haralick. o) This occurs 
especially when the various image formation par- 
ameters are at extremes, and is probably simply 
because our algorithm is line-based (as opposed to 
point-based) and line-based techniques are generally 
more stable in the presence of noise than point-based 
techniques. 

To illustrate, noise was randomly introduced both 
into the line data and into the vertex data of the 
rectangle image illustrated in Fig. 3. To the resulting 
line data we applied our algorithm, and to the 
resulting vertex data we applied the results of Hara- 
lick.O) This was done 500 times at each maximum 
noise level of ---2.25,1.1 -~, n = 1 . . . . .  Our results 
are presented in Fig. 4. For each Euler angle, the 
average ratio of output noise to input noise is plotted 
against maximum input noise. (The value of 
1.68840880 at the noise level +-0.27640344 in tr, for 
example, represents the factor by which input noise 
in the range of +-0.27640344 was modified in output 
noise in o:.) Since jumps in these graphs occur at 
unstable input noise levels, the implication of these 
data is that, at least in this case, point-based formulas 
cannot tolerate noise over approximately 2.72%, but 
line-based results can easily tolerate noise up to 
approximately 10.00%. 

Next, we applied our algorithm to real images. We 
created images of a known object, an object such as 
a piece of paper with lines drawn on it, that was 
resting on a table (see Fig. 5). We created images of 
the object in different positions, the camera being 

(a) 

(b) 
Fig. 5. A test image: (a) original test pattern: (b) actual 

image. 

held fixed. Given that the planes of the (faces of the) 
objects being studied were constant, constancy of 
the computed normal vector was taken as a measure 
of success of our algorithm. 

In general, we found that the accuracy of our 
algorithm depends on many factors. Least squares 
was used to determine the equations of lines, and 
the longer the line segments the more consistent was 
the output of our program. Also, the finer the line 
width, and the darker and more refined the image 
(the more contrast in the image), the more consistent 
was the output of our program. These properties of 
image lines were obviously greatly affected by the 
focus of the camera, the amount of light on the scene, 
and the type of material on which the lines appeared. 
Other factors that made major differences in the 
consistency of the output of our program were the 
degree of planarity of the surface on which the 
quadrilateral appeared,  whether the lines were visual 
(e.g. drawn in ink) or structural (e.g. the edges of a 
polyhedron), the accuracy and optical properties of 
the real lines themselves, and whether the image 
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being analyzed was obtained through simple 
thresholding or through some form of differenti- 
ation. 

Studies were performed of quadrilaterals (includ- 
ing squares and rectangles) of different shapes and 
sizes. In general, there was no noticeable difference 
between working with squares, rectangles, and arbi- 
trary quadrilaterals, except that if the dependence 
relation between the sides of a quadrilateral was 
close to being degenerate,  then the accuracy of our 
algorithm began to suffer. 

4. A SPECIAL CASE 

The fact that there is sufficient information in the 
2D perspective projection of an arbitrary quadri- 
lateral of known shape and size in 3D space to 
determine its exact 3D coordinates, generalizes one 
of the primary results in Haralick.O) We now show 
that the other primary result, namely that there is 
sufficient information in the 2D perspective pro- 
jection of a rectangle of unknown size in 3D space 
to determine the camera look-angle parameters,  is 
an immediate consequence of our first result. 

Suppose that the (original) quadrilateral in the 
model plane is a rectangle, and, in particular, that 
the vertices of this rectangle are VI(0, 0), V2(L, 0), 
V3(L, W),  and V4(O , W). If l~ = VIV2, 1~ = V 2 V 3 ,  

l~ = V3V4, and l~ = V4VI (1 = PQ denoting the line 
determined by the points P and Q), then 

A ' =  0 - . 

- L W  W 

Thus, if a~ is the ith row of .4", i = 1, 2, 3, then 

A = A ' A " =  0 - L  } / a ~ ]  

- L W  LW/ \a~  / 

{ Wa~ \ l f r l l  

= [  L(a ' l ' -a~)  ] =~/~2  ) 

\ L W(a~ - a~ ) /  

so r, = a'~/lag ], r2 = (a~ - a~)/la~ - a~ I, r3 = 
rl × r2, and h is a multiple of (a~ - a~)/la~ - a~ I. 
Since we can thus determine R, we can thus again 
completely determine the camera look-angle par- 
ameters (as well as the translation T up to a scalar 
multiple). Note also, in passing, that in this case we 
can actually say more: indeed, L / W =  [a'~[/la'~- 

5. CONCLUSION 

There are many more patterns in nature that have 
quadrilaterals in them than there are patterns that 
only have rectangles in them, so the algorithm pre- 

sented in this paper  significantly broadens the scope 
of the algorithms presented in Haralick. (1) Further, 
the algorithm presented in this paper is easy to 
implement and numerically stable in the presence of 
noise. The real issue, of course, is whether 
adequately accurate input data can be deduced from 
an arbitrary real image so that any of these algorithms 
can yield useful information. Our experiments con- 
firm that under most conditions, accurate input data 
can be deduced from an image so that our algorithms 
can yield useful information. Under  certain 
conditions, however, accurate input data cannot be 
deduced, and the best that our (or any other similar) 
algorithm can do is to yield coarse information: 
information that may not be useful in itself, but 
information which when combined with other knowl- 
edge is useful. This, however, is not too surprising. 

SUMMARY 

In a recent paper  of Haralick appearing in this 
journal, (1) it is shown that there is sufficient infor- 
mation in the two-dimensional perspective pro- 
jection of a rectangle of unknown size in three-space 
to determine the camera look-angle parameters,  and 
that if the size of the rectangle is given then its exact 
three-dimensional coordinates can be computed. In 
this paper we show that there is sufficient information 
in the two-dimensional perspective projection of an 
arbitrary quadrilateral of known shape and size in 
three-space to determine its exact three-dimensional 
coordinates. This result generalizes Haralick's 
second result since a quadrilateral is more general 
than a rectangle. (Our result applies, for example, 
to a quadrilateral determined by four sides of a 
polygonal face of an object,  while Haralick's does 
not.) For a rectangle of unknown size, we can deter- 
mine the camera look-angle parameters,  giving us 
Haralick's first result, as well as the ratio of length 
to width of the rectangle. Our computations are 
simple, making our approach easy to implement. 
Further, our approach is line-based (as opposed to 
point-based) so it is numerically stable in the pres- 
ence of noise. Finally, in this paper we also discuss 
implementation results. 
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APPENDIX 1. A BRIEF INTRODUCTION TO PROJECTIVE 
GEOMETRY 

In this section we provide a brief background on pro- 
jective geometry.  For more complete details, see Penna  
and Patterson, (2) 

(a) The projective plane and homogeneous 
coordinates 

The origin of homogeneous  coordinates is in the quan- 
titative analysis of perspective. Given,  in three-space, a 
plane 1] and a point  O not in II, the perspective image of 
an object  is formed by associating to each point  P of the 
object the point Q of intersection of II and the line OP 
determined by O and P (see Fig. I). The plane 1-I is the 
image plane, the point  O is the center ofperspectivity, and 
the map :t from world space to I1 is perspective projection. 
If coordinates are chosen so that O / s  the origin and H is 
the plane whose equat ion is z = 1, then 

z,=Ixy 0 
Observe that ~ is a many-to-one mapping: indeed, for any 
point Q(X, Y, 1) in II and any non-zero real number  
z, :r(zX, zY, z) = (X, Y, 1). 

In the study of perspective, one often thinks of (or 
identifies) each point  Q(X, Y, 1) in 11 with one or more 
points P(x, y, z) that  project  to it. (Rather  than thinking of 
a point as a glob of paint  on a canvas, one thinks of the 
point for what  it artistically represents in the picture as a 
whole.) If we identify each point Q(X, Y, 1) in [I with all 
points P(x, y, z) in Euclidean three-space that project  to it, 
then we are naturally associating to Q the set 

x y 
[ x , Y , Z ] = { ( x , Y , z ) I X = z , Y = z } .  

These are the homogeneous  coordinates of Q(X, Y, 1); that 
is, the homogeneous coordinates of Q(X, Y, 1)a re  the set 
[x, y, z] of all triples (x, y, z) of real numbers  for which X = 
x/z and Y = y/z. 

Note that  the homogeneous  coordinates of Q(X, Y, 1) 
are not the entries of a triple of real numbers  (as are 
Cartesian coordinates);  rather ,  they are a set of triples 
(x, y, z) of real numbers .  A n  element  of this set is a rep- 
resentative of the homogeneous  coordinates for Q(X, Y, 1), 
and such representatives are uniquely defined only up to 
scalar multiples. That  is, given two representatives 
(x~, y~, z 0  and (x2, Y2, z2) of the homogeneous  coordinates 
[x,y, z], there is a constant  k for which xl = kx2, Yl = ky2 
and zl = kz2. (For example,  (2,3,  1) and (10, 15,5) are 
both representatives of the homogeneous  coordinates 
[2,3, 11 of the point Q(2 ,3 ,  1); indeed, [2,3, 1] = 
[10, 15, 5].) Note also that  the third Cartesian coordinate 

for each point Q(X, Y, l)  in 1-I is 1; hence,  when there is 
no room for ambiguity, we may use a phrase such as 
" . . .  the point  Q(X, Y) in the plane whose homogeneous  
coordinates are [x, y, z ] . . . "  for short.  

Now, consider the line l in H whose direction numbers  
are (a, b ,0 )  and which passes through the point whose 
Cartesian coordinates are (x~, y,, 1). This line can be par- 
ametrized by the equations x = at + xo, y = bt + Yo, z = l 
where t E  R. The limit of the points on l as t---, - -~ is the 
ideal point of l; ideal points arise in addressing vanishing 
points in perspective images. Since 

lim [x,y, 1] = lim [at + xo, bt + y, ,  1] t ~  t~±~ 

[ X,I yo l] 
=)_!m a+T,b +T,?~ 

[ Y" !tl:Ia, ,01 : l !m(a+T,b+ , ' , ,~ 

it follows that  the homogeneous  coordinates of the ideal 
point of l are [a, b, 0]. The  set of Euclidean points Q = 
Q(X, Y, 1) on II together  with the set of ideal points of 
lines in II form the projective plane or projective two-space. 

( b ) Projective transformations 

Among the most  important  t ransformations of the 
Euclidean plane are the linear transformations,  those trans- 
formations represented by right matrix multiplication: 
T(x) = xA. Right multiplication by an invertible 3 × 3 
matrix A 

T : T a : [x, y, z] --* [(x, y, z)a] 

represents an important  t ransformation of the projective 
plane known as a projective transformation. One can think 
of a projective t ransformation as an image transformation 
which is associated to (or induced by) the linear trans- 
formation of world space represented by multiplication by 
A. The study of projective t ransformations is important  in 
image analysis where,  for example,  one might wish to say 
things about  a rigid motion of an object  in world space 
based on the induced projective t ransformation observed 
in the image plane. The matrix representing a projective 
t ransformation is unique up to a scalar multiple. Further,  
for any projective t ransformations TA. and Ta,., TA. 0 TA" = 
TAW' (0 denoting composit ion),  and thus the inverse of the 
projective t ransformation TA represented by the matrix A 
is the projective t ransformation TA-~ represented by A ~. 

The most important  results of projective geometry (the 
Fundamenta l  Theorems of Projective Geometry)  are state- 
ments about  projective transformations.  The Fundamenta l  
Theorem of Projective Geometry  for points in the pro- 
jective plane states that if {P'I,P;-,P_~,P~} and 
{P]', P", P~, P~} are two sets of points in the projective 
plane, no three points in ei ther set being collinear, then 
there is a unique projective t ransformation T taking P[ to 
P',', i = 1 . . . . .  4. The existence part  of this result is impor- 
tant,  it is by construction,  and it goes as follows: 

Suppose p[ is a representat ive of the homogeneous  coor- 
dinates of the point P f ,  i = 1 . . . . .  4. Since the vectors 
p [ ,  i = 1 . . . . .  4 are linearly dependent ,  there are constants 
k~, i = 1 . . . . .  3 for which P'4 = k~pl + kip" + k~p~. Now 
if 

,klp~, 

A' = (k;.p')  

'k~p; 
is the matrix whose ith row is k~p~, i = 1 . . . . .  3, then the 
projective t ransformation TA, represented by A '  maps the 
points Ix[l, 0, 0], ly[0, 1,0], O[0, 0, 1] and U[1, 1, 1] to the 
points P I ,  P~, P~ and P~, respectively: 

TA.[I, 0, 0] = [(1,0,  0)A']  = [klp't] = [p'~] 

TA.[0, 1,0] = [(0, 1 ,0)A' ]  = [k;p'] = [p;] 

TA,[0, 0, l] = [(0, 0, 1)A'] = [k~p;] = [p;] 

Ta,[1, 1, 11 = [(1, 1, I )A']  = [k{p[ + k;p;. + k;p~] = [P'4]. 

Thus the projective transformation TA,-~ represented by 
A '-~ maps P'~, P~, P~ and P~ to Ix, It,, O and U. Conse- 
quently, if A" is the matrix representing the projective 
transformation TA,, that maps .l,, Ix,, 0 and U to P'I', P", 
P~ and P~, then the composite TA' ~ o TA" = TA,-~A, maps 
P[ ,  P~, P;  and P~ to ((,, 1,., 0 and U, and then Ix, It., 0 
and U back to) P]', P",  P~ and P:~. 

(c) Generalizations 

We close this section by generalizing some of the ideas 
presented above. 
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First, al though it may be difficult to visualize perspective 
projection from Euclidean four-space into a Euclidean 
three-plane,  we can still formally define the homogeneous  
coordinates [x, y, z, w] of points in Euclidean three-space, 
ideal points on lines in Euclidean three-space and finally 
projective three-space. Further ,  we can discuss projective 
transformations of projective three-space: these are trans- 
formations 

T = TA: IX, y, Z, W] ~ [(X, y, Z, w)A] 

represented by right multiplication by a 4 × 4 invertible 
matrix A. For such t ransformations there  is a Fundamenta l  
Theorem of Projective Geomet ry  which states that  if 

. . . . . . .  P : ,  P3, P~, two sets { P ~ , P ~ , P s , P ~ , P ~ } a n d { P ~ ,  ' . . . . .  P~} are 
of points in the projective plane, no four points in ei ther 
set being coplanar,  then there is a unique projective trans- 
formation T taking P '  to P'{, i = 1 . . . . .  5. 

Second, we can discuss projective transformations 

T =  TA :[x,y,z]--~ [ (x ,y , z ,  w)A] 

from the projective plane to projective three-space, and 
projective t ranformations 

T =  T~ :[x, y , z ,  w]---~ [(x, y , z ) A l  

from projective three-space to the projective plane. These 
are t ransformations represented by 3 x 4 and 4 × 3 matrices 
A,  respectively, of rank 3. Again,  for any projective trans- 
formations Ta, and Ta,,, T~. o TAo = T~,A° (o denoting com- 
position). 

Third, we can extend our  s tatements  about  points in the 
projective plane to lines in the projective plane: as in the 
Euclidean plane, a line l in the projective plane can be 
characterized as the set of points Q[x,y , z]  for which 
ax + by + cz = 0 for some constants  a, b, c. (This definition 
is independent  of the representat ive (x, y, z) of Ix, y, z].) 
Since ka, kb,  kc, for k 4: 0, define the same line as a, b, c, 
there is a natural  association to / of [a, b, c]; [a, b, c] are 
the homogeneous  coordinates of l. Since Q[x, y, z] lies on 
l[a, b, c] if and only if 

a 

Finally, there is a Fundamenta l  Theorem of Projective 
Geometry  for lines in the projective plane which states that 
if {l~, l~, l ; ,  l~ } and {l~', l'~, l], l'~} are two sets of lines in the 
projective plane, no three lines in ei ther set meeting at one 
point, then there is a unique projective transformation T 
of the projective plane taking 1" to l'[, i = 1 , . . . ,  4: as in 
the case for points in the projective plane, if l: is a rep- 
resentative of the homogeneous  coordinates of the line 
l : ,  i = 1 . . . . .  4, then there are constants k[, k~, k; for which 
1'4 = kil'4 + k~l~ + k~l~. Thus i f A  ' - t  = (k~l{ k~l~ k'31~) is 
the 3 x 3 matrix whose ith column is k:l~ = 1, 2, 3, then 
the projective t ransformation represented by A '  maps the 
lines i~[1,0, 0], it[0, 1, 0], o[0, 0, 1] and u[1, 1, 1] to the lines 
l~, l~, l~ and l~, respectively, and the projective trans- 
formation represented by A '-t maps the lines l'~, l~, l~ and 
l~ to ix, iy, o and u. Consequently,  if A" is the matrix 
representing the projective t ransformation that  maps i~, iy, 
o and u to/'(, l~,/'~ and/'~, then the composite transformation,  
which is represented by A '-~A", maps l[, l~, l[ and l~ to/'~, 
/'~,/'~ and l~. 

APPENDIX 2. HARALICK ~l) REVISITED 

The formulas presented in Haralick ~t) are based on a 
different mechanism for modeling the perspective display 
of a rectangle than the mechanism used in the present  
paper. In this section we briefly discuss the formulas pre- 
sented in Haralick ~) from the point  of view of this paper. 
For simplicity we assume throughout  this section that  the 
focal length f = 1. 

A rigid motion of three-space may be written in Cartesian 
coordinates 

(x, y, z) --~ (x, y, z)R + (hi,  h2, h3) 

=' (x  + h l , y  + h~, z + h~)R, 

where (hi, h~, h'3) = (hi, h2, ha)R -l. If (hi,  h2, h3) :¢: (0, O, 0), 
then this map does not induce a projective transformation 
of the projective plane. However,  right multiplication 
(x, y, z ) ~  (x, y, z)R by R does induce a projective tran- 
formation [x, y, z]--~ [(x, y, z)R] of the projective plane, 
and we have the following result. 

Theorem. If (x*,  z* ) ,  i = 1 . . . . .  4, are the vertices of the 
image of a rectangle under  perspective projection into the 
plane whose equat ion is y = 1, (x2, Y2, z2) = (x~ + W, Yt, 
Zl), (X3, Y3, Z3) = (Xl, Yt + L,  Zl), (X4, Y4, Z4) = (Xt + W, 
Yt + L, zt)  and 

R =  

cos 0 cos ~ + sin 0 sin q~ sin ~ - sin 0 cos q~ 

sin 0 cos ~ - cos 0 sin tp sin ~ cos 0 cos q~ 

cos q~ sin ~ sin tp 

- c o s  0 sin ~ + sin 0 sin q~ cos ~ 

- s i n  0sin ~ - cos 0sin tpcos ~ 

cos  ~ cos  ~ 

and since 

a a 

z) b - - - 0 i f a n d o n l y i f ( x  y z ) A A - I  b = 0  

c c 

it follows that the projective t ransformation TA of the 
projective plane represented by the matrix A, maps lines 
by 

T =  TA : ~ A -1 . 

then the system 

Ix*, 1, z,* ] = [(xl, Yi, zi)R] 

represents a system 

(x*,  1 , z * )  = Ai(xl,y~,zi)R i =  1 . . . . .  4 

of 12 real equations in 12 unknowns---namely x~, Yt, zt,  L, 
W, 0, q), ~, At, A2, ).3, A4--which can be solved explicitly for 
0, q~ and ~. Further,  if L and W are known, then this system 
can be solved explicitly for x~, Yt, z~ as well. 

(Note that  the form of the rotat ion matrix R in this result 
is somewhat  different than the form of the rotation matrix 
used in Section 2.) 

This result is proved in Haralick tt) by explicitly solving 



Perspective projection 541 

the system of equations. What is perhaps most interesting 
about this result is the way in which it handles a rigid motion 
by absorbing the translational part into data, and treating 

the rotational part as a linear transformation of Euclidean 
three-space that induces a projective transformation of the 
projective plane. 
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