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Abstract—In this paper we show that there is sufficient information in the two-dimensional perspective
projection of an arbitrary quadrilateral of known shape and size in three-space to determine the exact
three-dimensional coordinates of its vertices, generalizing known results for rectangles. Implementation

results are also discussed.
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1. INTRODUCTION

In Haralick,’ it is shown that there is sufficient
information in the two-dimensional perspective pro-
jection of a rectangle of unknown size in three-space
to determine the camera look-angle parameters, and
that if the size of the rectangle is given then the exact
three-dimensional coordinates of its vertices can be
computed. In this paper we show that there is suf-
ficient information in the two-dimensional per-
spective projection of an arbitrary quadrilateral (an
arbitrary four-sided linear figure) of known shape
and size in three-space to determine the exact three-
dimensional coordinates of its vertices.

Our result generalizes the second result presented
in Haralick")) since a quadrilateral is more general
than a rectangle. Our result applies, for example,
to a quadrilateral determined by four sides of a
polygonal face of an object, while the result pre-
sented in Haralick!D does not. For a rectangle of
unknown size, we can determined the camera look-
angle parameters (thus giving us the first result pre-
sented in Haralick") as well as the ratio of length to
width of the rectangle. Our computations are simple,
making our approach easy to implement. Further,
our approach is line-based (as opposed to point-
based) so it is numerically stable in the presence of
noise.

This paper is organized as follows: in Section 2 we
present an algorithm for determining, from the two-
dimensional perspective projection of an arbitrary
quadrilateral of known shape and size in three-space,
its exact three-dimensional coordinates. Since this
algorithm draws heavily on Penna and Patterson,'?
a brief introduction to projective geometry is pro-
vided in Appendix 1; in Appendix 2 we briefly discuss
the formulas presented in Haralick!!?) from this point
of view. In Section 3, we discuss some implemen-
tation results. In Section 4 we show that for a rec-
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tangle of unknown size, we can determine the camera
look-angle parameters as well as the ratio of length
to width of the rectangle.

2. THE ALGORITHM

We assume that we are given an image of a quadri-
lateral taken with a camera whose focal length f is
known. We use a pin-hole camera model, and we
assume (see Fig. 1) that coordinates are chosen so
that the focal point of the camera is the origin
0(0,0,0) and that the (positive) image plane T is the
plane whose equation is z = d = (M + 1)f where M
is the factor by which a negative image is magnified
in creating a positive image. (The lens equation is
1/d + 1/d’' = 1/f where d is the distance from the
focal point of the lens to the positive image plane,
and d' is the distance from the focal point of the lens
to the negative image plane. Since M =d/d’, d' =
d/M, so that 1/d + M/d = 1/f. Thus d = (M + 1)f.)
The x- and y-coordinate axes are chosen so that the

Fig. 1. The perspective viewing mechanism.
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Fig. 2. The display transformation.

induced X- and Y-coordinate axes on Il (the lines
of intersection of IT with the xz- and yz-coordinate
planes) are the canonical image plane coordinate
axes. Perspective projection s maps the point
P(x,y, z) to the point Q(X, Y) in II defined by inter-
secting the line determined by O and P with II; it
follows that

2(x,y,2) = (X, ¥) = (d{ dTy)

Let us now consider the process of displaying an
image of a planar figure (see Fig. 2). If a (closed
and bounded) figure is contained in a model xy-
coordinate plane, then the model xy-coordinate
plane can be mapped to the xy-coordinate plane in
three-space by the transformation

1 0 00
xy,1]=((x,y,DI0 1 0 0
0 0 01

=[x,y,0,1].

(Throughout this paper we use parentheses (. . .) to
denote Cartesian coordinates, and brackets [. . .] to
denote homogeneous coordinates. (2T Appendix 1)y The
image of this figure can then be mapped into an

arbitrary position in three-space by the rigid motion

[x,y,2,1]—> [("’y’ i D(: (1))]

where the 3 x 3 orthogonal matrix

r i Tz T
R={r|= ry rp Iy
r; F31 Iy I3

represents rotation, and the 1x3 matrix T=
(hy h, h3) represents translation. The image of this
figure is mapped by perspective projection into II by

0
0
1d
0

ferg- (2]
= x,y,d il PR
Thus the composition of mapping the model plane

into three-space, performing a rigid motion of three-
space, and perspectively projecting three-space to I1

[x’yvza 1]_—’ (xsy’z’ 1)

S O O
S O =
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is represented by the matrix

1 00
1 0 00
R O 010
M=|01 0 0O ( )
T 1 0 0 1/d
0 0 0 1
0 0 0
i T2 fxs/d
Sira a2 r23/d.
hy hy, h3/d

For the purpose of exposition we let d = 1 so that
ra Tz ns
M={ry rp ra
hy hy by

Observe that the first two rows of M are the first two
rows r; and r; of R, and that the third row of M is
T. Since the third row r; of R is the cross product
ry =ry X r, of the first two rows of R, we can deter-
mine both R and T if we can determine M.

dinates I}, i =1, .. ., 4, of the images of these lines
under the composition of embedding into the xy-
coordinate plane, a rigid motion, and perspective
projection.

Output. The entries of rotation matrix R and the
translation matrix T representing the rigid motion.

Step 1. Perform Gauss-Jordan elimination on the
3 X 4 matrix (1} 1513 13); the entries in the fourth
column of the resulting matrix are the constants
1. k3, k3. Let A" = (kil] k315 k313).
Step 2. Perform Gauss-Jordan elimination on the
3 x 4 matrix (I} I3 I3 I}); the entries in the fourth
column of the resulting matrix are the constants
1, k4, k3. Let A” = (k{17 k315 k315) L.
Step 3. Let A=(a;)=A'A" and let k be either
(al; + at, +a};)'? or (a3 +ak, +a%)'? (both
numbers are the same and non-zero). Thenr, = (a,,,
ayp, ap)/k, ry=(ay, az, az)/k, r;=ry xry, and
h = (hy, hy, h3) = (a3, a3, ass)/k.

Having retrieved R, the camera look-angle par-
ameters «, § and y can be computed (in any number
of ways) using the fact that

cos acos 8

R =.

cos asin B cos y + sin asin y

sin & cos f3

—sin 3

cos asin Bsin y — sin @wcos y sin asin fcos y + cos wcosy cos Bsiny |-

sin a’sin Bcos y ~ cos asiny  cos Bcos y

To do this, we use the fact that M represents a
projective transformation. RecallorAppendix1) that 5
projective transformation T of two-space is repre-
sented by an invertible 3 X 3 matrix A (which is
unique, up to a scalar multiple)

T=Ta:[x.y,2]=[(x.y,2)4]

and that this matrix can be determined by how it
maps a quadrilateral. Indeed, if /[, i=1,...,4, are
the lines determined by the edges of a quadrilateral
in the model plane, and /{, i=1,..., 4, are the
corresponding image lines in the image plane, then
the projective transformation taking /; ,i=1, .. ., 4,
tol},i=1,...,4,is represented by the matrix

A= (kil] k5L kSB)(KTT K51 k515) !
where ki, k3, k3 and k7, k5, k3 are constants for which
L=kl + k315 + kil and 5= k(I + k315 + k313,
respectively. It follows that

u re s
M={ry ryn ry
hy  hy hy
= k(ki1] k313 RS15)(RTEY K313 R315)
for some non-zero constant k.

Thus we can determine R and T by using the
following algorithm:

Inpur: The homogeneous coordinates I/, i, . . ., 4, of
the lines /] determined by the sides of a quadrilateral
in the image plane, and the homogeneous coor-

For example, a=tan"Y(r;;/ry;), B=tan"'(-r;3/
(731 + r2)'?) and y = tan~(ra5/r33).

3. IMPLEMENTATION RESULTS

Our algorithm was implemented on a system con-
sisting of a Panasonic WV-BL200 CCTV Camera
equipped with an MN516 16 mm lens and connected
to an Apple Macintosh II via a DataTranslation
QuickCapture Frame Grabber Board. Numerous

experiments were performed under varying
0¢0,0> 10 z
P4 P1
P1C 1.0384, 1.5504)
P2(12.0825, 11.2826)
P3( 2.6916, 1.2611)

P4C 1.0040, 0.4984)

Fig. 3. An example.
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conditions, and in this section we discuss our results.

First we determined the intrinsic camera cali-
bration parameters of our system.®* In presenting
our algorithm in the last section, we made several
simplifying assumptions for the purpose of
exposition. Determining the intrinsic camera cali-
bration parameters is necessary both for
implementing our algorithm (it is necessary to know
the horizontal and vertical image scale factors, the
center or principal point of the image, and d to
implement it) and for correcting for real phenomena
(such as spherical lens distortion) that we have sup-
pressed in our discussion.

Next we implemented our algorithm and applied
it to synthetic images to examine its response to
noise. For rectangles, a comparison of the response
of our algorithm to the response of the formulas
presented in Haralick” depends on how the coor-
dinates of vertices are (or the input is) computed for
the latter. If the Hough method (or least squares) is
used to determine the equations of the sides of the
image quadrilateral, and these equations are used to
determine the coordinates of the vertices, then the
results obtained by applying the formulas presented
in Haralick®™ would be the same as the results
obtained by using our algorithm If the coordinates
of the vertices are estimated directly, then the results
obtained by using our algorithm. If the coordinates
be more accurate than results obtained by applying
the formulas presented in Haralick.(!! This occurs
especially when the various image formation par-
ameters are at extremes, and is probably simply
because our algorithm is line-based (as opposed to
point-based) and line-based techniques are generally
more stable in the presence of noise than point-based
techniques.

To illustrate, noise was randomly introduced both
into the line data and into the vertex data of the
rectangle image illustrated in Fig. 3. To the resulting
line data we applied our algorithm, and to the
resulting vertex data we applied the results of Hara-
lick.( This was done 500 times at each maximum
noise level of £2.25%1.17", n=1,.... Our results
are presented in Fig. 4. For each Euler angle, the
average ratio of output noise to input noise is plotted
against maximum input noise. (The value of
1.68840880 at the noise level £0.27640344 in «, for
example, represents the factor by which input noise
in the range of £0.276403 44 was modified in output
noise in «.) Since jumps in these graphs occur at
unstable input noise levels, the implication of these
data is that, at least in this case, point-based formulas
cannot tolerate noise over approximately 2.72%, but
line-based results can easily tolerate noise up to
approximately 10.00%.

Next, we applied our algorithm to real images. We
created images of a known object, an object such as
a piece of paper with lines drawn on it, that was
resting on a table (see Fig. 5). We created images of
the object in different positions, the camera being
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(b)
Fig. 5. A test image: (a) original test pattern: (b) actual
image.

held fixed. Given that the planes of the (faces of the)
objects being studied were constant, constancy of
the computed normal vector was taken as a measure
of success of our algorithm.

In general, we found that the accuracy of our
algorithm depends on many factors. Least squares
was used to determine the equations of lines, and
the longer the line segments the more consistent was
the output of our program. Also, the finer the line
width, and the darker and more refined the image
(the more contrast in the image), the more consistent
was the output of our program. These properties of
image lines were obviously greatly affected by the
focus of the camera, the amount of light on the scene,
and the type of material on which the lines appeared.
Other factors that made major differences in the
consistency of the output of our program were the
degree of planarity of the surface on which the
quadrilateral appeared, whether the lines were visual
(e.g. drawn in ink) or structural (e.g. the edges of a
polyhedron), the accuracy and optical properties of
the real lines themselves, and whether the image
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being analyzed was obtained through simple
thresholding or through some form of differenti-
ation.

Studies were performed of quadrilaterals (includ-
ing squares and rectangles) of different shapes and
sizes. In general, there was no noticeable difference
between working with squares, rectangles, and arbi-
trary quadrilaterals, except that if the dependence
relation between the sides of a quadrilateral was
close to being degenerate, then the accuracy of our
algorithm began to suffer.

4. A SPECIAL CASE

The fact that there is sufficient information in the
2D perspective projection of an arbitrary quadri-
lateral of known shape and size in 3D space to
determine its exact 3D coordinates, generalizes one
of the primary results in Haralick.» We now show
that the other primary result, namely that there is
sufficient information in the 2D perspective pro-
jection of a rectangle of unknown size in 3D space
to determine the camera look-angle parameters, is
an immediate consequence of our first result.

Suppose that the (original) quadrilateral in the
model plane is a rectangle, and, in particular, that
the vertices of this rectangle are V(0, 0), V,(L, 0),
Vi(L, W), and V (0, W). If [; = V| V,, [; = V,V,,
13 =V;3V,, and I} = V,V, (I = PQ denoting the line
determined by the points P and @), then

0 w 0
A =\|L 0 -L
0 —-LW LW
Thus, if a; is the ith row of A", i =1, 2, 3, then
0 w 0 a’
A=A'A"=|L 0 ~L a’
0 —-LW LW 'a}
Wa12’ r
" n 1
=| L(aj — a5 =
LW(a3 — a3 h
so ry=a3/las|, r,=(a] ~a3)/la] —a5|, r3=

ry X ry, and h is a multiple of (a} — a3)/|a} — a5].
Since we can thus determine R, we can thus again
completely determine the camera look-angle par-
ameters (as well as the translation T up to a scalar
multiple). Note also, in passing, that in this case we
can actually say more: indeed, L/W = |aj|/|a} —
asi|.

5. CONCLUSION

There are many more patterns in nature that have
quadrilaterals in them than there are patterns that
only have rectangles in them, so the algorithm pre-

sented in this paper significantly broadens the scope
of the algorithms presented in Haralick.)) Further,
the algorithm presented in this paper is easy to
implement and numerically stable in the presence of
noise. The real issue, of course, is whether
adequately accurate input data can be deduced from
an arbitrary real image so that any of these algorithms
can yield useful information. Our experiments con-
firm that under most conditions, accurate input data
can be deduced from an image so that our algorithms
can yield wuseful information. Under certain
conditions, however, accurate input data cannot be
deduced, and the best that our (or any other similar)
algorithm can do is to yield coarse information:
information that may not be useful in itself, but
information which when combined with other knowl-
edge is useful. This, however, is not too surprising.

SUMMARY

In a recent paper of Haralick appearing in this
journal,) it is shown that there is sufficient infor-
mation in the two-dimensional perspective pro-
jection of a rectangle of unknown size in three-space
to determine the camera look-angle parameters, and
that if the size of the rectangle is given then its exact
three-dimensional coordinates can be computed. In
this paper we show that there is sufficient information
in the two-dimensional perspective projection of an
arbitrary quadrilateral of known shape and size in
three-space to determine its exact three-dimensional
coordinates. This result generalizes Haralick’s
second result since a quadrilateral is more general
than a rectangle. (Our result applies, for example,
to a quadrilateral determined by four sides of a
polygonal face of an object, while Haralick’s does
not.) For a rectangle of unknown size, we can deter-
mine the camera look-angle parameters, giving us
Haralick’s first result, as well as the ratio of length
to width of the rectangle. Our computations are
simple, making our approach easy to implement.
Further, our approach is line-based (as opposed to
point-based) so it is numerically stable in the pres-
ence of noise. Finally, in this paper we also discuss
implementation results.
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APPENDIX 1. A BRIEF INTRODUCTION TO PROJECTIVE
GEOMETRY

In this section we provide a brief background on pro-
jective geometry. For more complete details, see Penna
and Patterson.??

(a) The projective plane and homogeneous
coordinates

The origin of homogeneous coordinates is in the quan-
titative analysis of perspective. Given, in three-space, a
plane Il and a point O not in I, the perspective image of
an object is formed by associating to each point P of the
object the point Q of intersection of II and the line OP
determined by O and P (see Fig. 1). The plane II is the
image plane, the point O is the center of perspectivity, and
the map & from world space to Il is perspective projection.
If coordinates are chosen so that O is the origin and 11 is
the plane whose equation is z = 1, then

Xy
Jt(x,y,z) = (;, ;, 1).

Observe that x is a many-to-one mapping: indeed, for any
point Q(X,Y,1) in II and any non-zero real number
z, n(zX,2Y,2) = (X, Y, 1).

In the study of perspective, one often thinks of (or
identifies) each point Q(X, Y, 1) in Il with one or more
points P(x, y, z) that project to it. (Rather than thinking of
a point as a glob of paint on a canvas, one thinks of the
point for what it artistically represents in the picture as a
whole.) If we identify each point Q(X, Y, 1) in [1 with all
points P(x, y, z) in Euclidean three-space that project to it,
then we are naturally associating to Q the set

oyorl =y, lx =2y =2}

These are the homogeneous coordinates of Q(X, Y, 1); that
is, the homogeneous coordinates of Q(X, Y, 1) are the set
[x,y, z] of all triples (x, y. ) of real numbers for which X =
x/fzand Y = y/z.

Note that the homogeneous coordinates of Q(X, Y, 1)
are not the entries of a triple of real numbers (as are
Cartesian coordinates); rather, they are a set of triples
(x,y, z) of real numbers. An element of this set is a rep-
resentative of the homogeneous coordinates for Q(X, Y, 1),
and such representatives are uniquely defined only up to
scalar multiples. That is, given two representatives
(x1,¥1, zy) and (x,, y,, 2,) of the homogeneous coordinates
[x,y.z], there is a constant k for which x, = kx,, y, = ky,
and z, = kz,. (For example, (2,3,1) and (10, 15, 5) are
both representatives of the homogeneous coordinates
{2,3,1] of the point Q(2,3,1); indeed, [2,3,1]=
{10, 15, 5).) Note also that the third Cartesian coordinate
for each point Q(X, Y, 1) in [l is 1; hence, when there is
no room for ambiguity, we may use a phrase such as
... the point Q(X.Y) in the plane whose homogeneous
coordinates are [x, y, z] .. ."” for short.

Now, consider the line / in [1 whose direction numbers
are (a,b,0) and which passes through the point whose
Cartesian coordinates are (x, y,, 1). This line can be par-
ametrized by the equations x =ar + xp, y=br+ y,, z =1
where ¢ € R. The limit of the points on / as t— = is the
ideal point of I; ideal points arise in addressing vanishing
points in perspective images. Since

lim [x,y,1] = lim [ar + x,. bt + y,, 1}
1% (—xx
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it follows that the homogeneous coordinates of the ideal
point of [ are [a, b, 0]. The set of Euclidean points Q =
Q(X,Y,1) on II together with the set of ideal points of
lines in [1 form the projective plane or projective two-space.

(b) Projective transformations

Among the most important transformations of the
Euclidean plane are the linear transformations, those trans-
formations represented by right matrix multiplication:
T(x) = xA. Right multiplication by an invertible 3 x 3
matrix A

T=T,:[x,y,z}=[(x,y, 2)A]

represents an important transformation of the projective
plane known as a projective transformation. One can think
of a projective transformation as an image transformation
which is associated to (or induced by) the linear trans-
formation of world space represented by multiplication by
A. The study of projective transformations is important in
image analysis where, for example, one might wish to say
things about a rigid motion of an object in world space
based on the induced projective transformation observed
in the image plane. The matrix representing a projective
transformation is unique up to a scalar multiple. Further,
for any projective transformations 7, and T, T, © Ty =
T4 4 (© denoting composition), and thus the inverse of the
projective transformation 7, represented by the matrix A
is the projective transformation T,_, represented by A~
The most important results of projective geometry (the
Fundamental Theorems of Projective Geometry) are state-
ments about projective transformations. The Fundamental
Theorem of Projective Geometry for points in the pro-
jective plane states that if {P;,P5,P{ P;} and
{P7, P31, P5, Pi} are two sets of points in the projective
plane, no three points in either set being collinear, then
there is a unique projective transformation T taking P, to
P!, i=1...., 4. The existence part of this result is impor-
tant, it is by construction, and it goes as follows:
Suppose p; is a representative of the homogeneous coor-

dinates of the point P/, i=1,..., 4. Since the vectors
pi.i=1,..., 4arelinearly dependent, there are constants
ki,i=1,..., 3 for which pi = k{p} + kip} + kipi. Now
if
Kipi
A'=lkip;
‘kip;
is the matrix whose ith row is k/p/,i=1, ..., 3, then the

projective transformation T, represented by A’ maps the
points /,[1,0,0], 1[0, 1,0}, 00,0, 1] and U1, 1, 1] to the
points Py, P;, P; and P}, respectively:

Ta[1,0,0]=[(1,0,004"] = [kip{] = [p}]
Ta[0,1,0] = (0, 1,0)A"] = [k;p:] = [p3]
Ta[0,0,1] = [(0,0,)A’] = [k3p3] = [ps]
Tao[l L =[(1, 1, DA = [kipi + k3ps + kip3] = [pi].

Thus the projective transformation 7, -1 represented by
A" 'maps P}, P;, P; and P} to I, I,, O and U. Conse-
quently, if A” is the matrix representing the projective
transformation T,. that maps I,, I,, O and U to P}, P},
P5 and Py, then the composite T, -1 O Ty = T, -1, maps
Pi,P;, Pyand Py to (I, I, Oand U, and then I, I,, O
and U back to) P}, P4, P} and P;.

(¢) Generalizations

We close this section by generalizing some of the ideas
presented above.
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First, although it may be difficult to visualize perspective
projection from Euclidean four-space into a Euclidean
three-plane, we can still formally define the homogeneous
coordinates [x, y, z, w] of points in Euclidean three-space,
ideal points on lines in Euclidean three-space and finally
projective three-space. Further, we can discuss projective
transformations of projective three-space: these are trans-
formations

T=Ta[x,y,2z,w]=[(x,y, 2, w)A]

represented by right multiplication by a 4 X 4 invertible
matrix A. For such transformations there is a Fundamental
Theorem of Projective Geometry which states that if
{P{, P, P}, P}, P} and {P], P;, P;, P}, P§} are two sets
of points in the projective plane, no four points in either
set being coplanar, then there is a unique projective trans-
formation T taking P; to P/, i=1,..., 5.
Second, we can discuss projective transformations

T=Ts:[x,y,2) = [(x,y, 2, w)A]

from the projective plane to projective three-space, and
projective tranformations

T=T,:[x,y,z, w]—[(x,y, 2)A]

from projective three-space to the projective plane. These
are transformations represented by 3 X 4 and 4 x 3 matrices
A, respectively, of rank 3. Again, for any projective trans-
formations T, and T4, T4 © T4 = T4.4- (O denoting com-
position).

Third, we can extend our statements about points in the
projective plane to lines in the projective plane: as in the
Euclidean plane, a line / in the projective plane can be
characterized as the set of points Q[x,y, z] for which
ax + by + cz = 0 for some constants a, b, c. (This definition
is independent of the representative (x, y, z) of [x, y, 2].)
Since ka, kb, kc, for k # 0, define the same line as a, b, c,
there is a natural association to / of [a, b, ¢]; [a, b, c] are
the homogeneous coordinates of /. Since Q[x, y, z] lies on
l[a, b, ] if and only if

MICHAEL A. PENNA

Finally, there is a Fundamental Theorem of Projective
Geometry for lines in the projective plane which states that
if{l}, 0,13, iy and {17, 15, 15, {3} are two sets of lines in the
projective plane, no three lines in either set meeting at one
point, then there is a unique projective transformation T
of the projective plane taking !/ to lf, i=1,...,4: asin
the case for points in the projective plane, if I/ is a rep-
resentative of the homogeneous coordinates of the line
I},i=1,...,4,thenthere are constants k1, k3, k3 for which
L=kily +kjly + kil Thusif A" = (k{l] k315 k3l3) is
the 3 x 3 matrix whose ith column is k/I] =1, 2, 3, then
the projective transformation represented by A’ maps the
lines (1, 0, 0], 4,[0, 1, 0], [0, 0, 1] and &[1, 1, 1] to the lines
I, 8, 5 and I§, respectively, and the projective trans-
formation represented by A’~! maps the lines /{, /3, I3 and
li to i, i,, o and u. Consequently, if A" is the matrix
representing the projective transformation that maps i, i,,
oandutol], I, I3 and I, then the composite transformation,
which is represented by A’"'A", maps /], I, I3 and I3 to [},
5, I and I.

APPENDIX 2. HARALICK REVISITED

The formulas presented in Haralick are based on a
different mechanism for modeling the perspective display
of a rectangle than the mechanism used in the present
paper. In this section we briefly discuss the formulas pre-
sented in Haralick” from the point of view of this paper.
For simplicity we assume throughout this section that the
focal length f= 1.

A rigid motion of three-space may be written in Cartesian
coordinates

(x7y’z)_)(x7y1 Z)R+ (h],hz,h3)
=(x+hj,y+hi, z+h})R,

where (h}, 3, h3) = (hy, by, h3)R7VIE (R, By, ) # (0,0,0),
then this map does not induce a projective transformation
of the projective plane. However, right multiplication
(x,y,2)— (x,y, 2)R by R does induce a projective tran-
formation [x, y, z]— [(x, ¥, z)R] of the projective plane,
and we have the following result.

Theorem. U (x},z}),i=1,..., 4, are the vertices of the
a image of a rectangle under perspective projection into the
x y 2)|b}=0 plane whose equation is y = 1, (x5, y2, 22) = (x; + W, y,,
zy), (43,3, 23) = (X, y1 + L, 20), (g, yas z) = (i + W,
c yi+ L, z)) and
cos 8cos & + sin Osin psin§ —sin Gcos ¢ —cos Hsin & + sin O sin ¢ cos &
R=|sinfcosE—cosfsingsing cosBcos¢ —sinPsin & — cos Osin ¢ cos &
cos ¢sin & sin ¢ cos ¢ cos &
and since then the system
a a [x#, 1,2} = {{xi, yi, z:)R]
x y 2) =0ifandonlyif(x y 2)AA~'|b]|=0 represents a system

C [

it follows that the projective transformation 7, of the
projective plane represented by the matrix A, maps lines
by

a a
T=Ty:|bj>|A7l]|b
c c

(xi*slwz;‘):A'i(xi’yiszi)R i=1""’4

of 12 real equations in 12 unknowns—namely x,, y,, z,, L,
W, 0, ¢, &, A, A3, A3, A,—which can be solved explicitly for
6, ¢ and &. Further, if L and W are known, then this system
can be solved explicitly for x,, y,, z, as well.

(Note that the form of the rotation matrix R in this result
is somewhat different than the form of the rotation matrix
used in Section 2.)

This result is proved in Haralick by explicitly solving
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the system of equations. What is perhaps most interesting  the rotational part as a linear .tran'sformation of Euclidean
about this result is the way in which it handles arigid motion  three-space that induces a projective transformation of the
by absorbing the translational part into data, and treating projective plane.
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