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SPATIAL RESOLUTION OF SEM-EBIC IMAGES 
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AbstracGExperiments indicate that the spatial resolution of SEM-EBIC images of semiconductor defects is not 
limited by the minority carrier diffusion length L. It is shown that this property can be explained by a three-dimensional 
analysis of the diffusion of beam generated minority carriers in a semiconductor having L+m. For a small localized 
defect, the resolution is expected to be limited by the defect depth or the extension of the generation region, whichever 
is the greatest. 

The electron beam induced conductivity (EBIC) mode of 
the scanning electron microscope (SEM) has been widely 
used for investigating the electrical activity of crystal 
defects in semiconductors, using a p-n junction[ 1,2] or, 
more recently, a Schottky barrier[3,4] to collect the 
beam generated carriers. 

Relevant questions related to this method concern the 
dependence of the resolution of EBIC images on the 
shape of defects and their position relative to the sur- 
face, on the generation volume and possibly the minority 
carrier diffusion length in the bulk semiconductor. While 
the influence of the geometrical factors on the resolution 
seems to be well understood[3], there is still some 
difficulty in explaining the role played by the semicon- 
ductor diffusion length. In fact, it is generally assumed 
that carrier diffusion should cause an image broadening 
of the order of the diffusion length L; however, resolu- 
tions much better than L have been obtained 
experimentally[5,7]. 

This note presents an argument to explain this con- 
tradiction, by taking into account the three-dimensional 
character of carrier diffusion. The derivation given below 
deals chiefly with small localized defects (i.e. defects that 
can be contained in a small sphere), but it will be shown 
that the argument also holds for extended defects like 
dislocations. The model applies to observations where a 
defect acts as a recombination site, thereby reducing the 
collected current; in some instances, however, as at high 
reverse bias of the collecting diode[l] or in bipolar 
transistors[9] enhancement of the EBIC signal at a 
defect is also possible. 

The usual experimental arrangement for the Schottky 
barrier charge-collection to be discussed here is illus- 
trated schematically in Fig. 1; similar considerations 
apply to a shallow p-n junction. The electron beam of 
the SEM is scanned over the surface of the diode and 
generates, through the thin metal electrode, electron-hole 
pairs in the semiconductor. The volume over which the 
generation is significant (the pear-like region about the 
beam axis in Fig. 1) has dimensions of the order of the 
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range of incident electrons. In general, minority carriers 
will be generated both within the depletion layer of the 
diode at 0 < z < W and in the neutral region at z > W. 

We suppose that a localized defect F is present in the 
neutral region, where minority carriers move only by 
diffusion; this location of the defect, therefore, should 
give the greatest diffusion broadening of the image. To 
prove that the resolution of the corresponding EBIC 
image is not limited by L, we shall consider the limiting 
case of L +m and show that, even with this extreme 
hypothesis, the resolution can be good. We shall do this 
by showing that the EBIC signal of the defect still 
decreases rapidly as the beam moves away from the 
defect. The problem of the charge collection at a defect 
when L is finite requires a more elaborate analysis and 
has been discussed elsewhere[lO]. 

The defect is described as a region F where the 
lifetime of minority carriers (for instance holes in an 
n-type semiconductor) has a constant value TV The 
assumption of L-00 entails neglecting hole recom- 
bination in the bulk outside F and, therefore, also in the 
depletion layer. Let g(r) be the electron-hole generation 
rate per unit volume due to the electron beam; the steady 
state continuity equation for the excess hole concen- 
tration p(r) in the half-space z 2 0 is then 

(l/q) div J, = g(r) - (l/+)p(r)e(r) (1) 

where q is the magnitude of electronic charge, J, is the 
hole current density and e(r) is a function with value one 
inside F and zero outside. Integrating eqn (1) in the 
half-space V(z 2 0) and applying the divergence theorem 
we obtain 

= qjv g(r) d V - (qhdjF p(r) d V (2) 

where Z is the surface of the half-sphere at r = m, The 
first term on the left side of eqn (2) is the total collected 
current I; the integral over Z vanishes, since J, goes to 
zero at least as I/r’ (this can be seen, for instance, by 
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Fig. 1. Schematic illustration of the Schottky barrier EBIC im- 
aging of a localized defect. 

calculating J, = -@VP with the aid of the dipole ap- 
proximation for p(r) as given in eqn (8)). We may then 
write 

I = qG - q( VJTF)~F = qG - IF (3) 

where G is the total generation rate, VF is the volume of 
the defect and pF is the mean value of p(r) inside E 

The term denoted by IF in eqn (3) represents the 
decrease of the collected current brought about by the 
defect, i.e. the EBIC signal by which the defect is 
imaged. A first approximation for this term may be 
obtained by replacing, inside F, the unknown hole dis- 
tribution p(r) with p”(r), the distribution in absence of 
the defect. This approximation is expected to be 
adequate when IF is small in comparison with the back- 
ground current qG, that is for low-contrast defects, 
which is the most frequent practical case[4]. Moreover, 
if the defect dimension is much smaller than its depth, 
p”(r) will be approximately constant inside F, so that we 
have pF = pFo = p”(rF), rF denoting the position of the 
defect. Equation (3) then gives 

(4) 

To determine the hole distribution p”(r) in the bulk of the 
semiconductor (z 2 W) we have to solve a steady state 
diffusion equation, which can be written, in the limit 
L+m. as 

V’pYr) = -b g(r) (5) 

where D is the hole diffusion coefficient. The boundary 
condition at the edge of the depletion layer is 

p”(r)lZZw = 0. (6) 

Equation (5) is analogous to the Poisson’s equation of 
electrostatics; with the boundary condition (6) it can be 

solved by the method of images[ll], and the solution is 

_ __ rr~r~l-lr~rr,, 1 gW)dV’ (7) 

r” defining the image point of r’ relative to the plane 
z = W. Since g(r’) has cylindrical symmetry about the z 
axis, p”(r) will have the same symmetry, so that for a 
given defect depth p’(r) and hence 1, (eqn 4) will only 
be functions of the beam-defect horizontal distance xF-. 
The resolution of the image can be taken equal to the 
half-width w of the current profile I.&x~), or 
equivalently of the hole distribution p”(xF). 

To show that a finite (and small) value of w is to be 
expected, we prove that p”(xF) rapidly approaches zero 
as xF increases. Since g(r’) is essentially different from 
zero only inside a region with dimensions of the order of 
the primary electron range R,, for r % R, we may apply 
to eqn (7) the well-known dipole approximation of 
electrostatics[ 111; this yields p”(xF) - l/xF’ for large x6-. 

To give an estimate of the actual resolution when 
L-tm and to point out which are the resolution limiting 
factors, we consider the case of a defect lying at a depth 
a 9 W, but still within the maximum range of primary 
electrons. This situation can be found in low resistivity 
semiconductors; for instance, in la cm p-type silicon W 
is about equal to 0.3 pm and a defect at a depth a = 
3 pm would be within the generation volume when R, > 
3 pm, i.e. for electron beam energies E > 20 keV [3]. It is 
convenient to discuss separately the cases where R, is 
small in comparison to a and where R,, is about equal or 
greater than a. 

(a) R, 4 a but still R, > W in order to produce some 
contrast in the image. Since a B R,,, we have also rF + R, 
for any xF and the dipole approximation for eqn (7) 
holds; this yields 

PO(XF) a a(a2 t xF2)-3’2 (8) 

The half-width of this distribution is w = 1.5a; for the 
above example this gives w = 4.5 pm. 

Fig. 2. Schematic diagram of the geometrical relations for the 
case of R, Q a. The same diagram is relevant for the imaging of 

dislocations. 
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surface, which is represented as a dotted line through F 
in Fig. 2. For xF 9 R, the dipole approximation holds for 
any a and relation (8) can be applied to the single points 
of the dislocation. Apart from constant factors, the EBIC 
signal of a dislocation ZD(xF) for large xF is then found 
by integrating eqn (8) with respect to a from zero to 
infinity; the integration is immediate and gives Z&X~)-- 
l/xF. This result indicates that the EBIC signal due to a 
dislocation is still going to zero as xy. + m, although not 
so strongly as in the case of a localized defect. Thus 
good resolution is also to be expected in the EBIC 
images of dislocations in a semiconductor with ,!,+a; 
further properties of dislocation images are considered in 
Ref.[l3]. 

Fig. 3. Schematic diagram of the geometrical relations for the 
case of R, = 2R 3 a. 

(b) R, 3 a. To estimate the resolution in this case, we 
suppose, as is frequently done[S, 121, that g(r’) is con- 
stant inside a sphere S of radius R = RJ2 tangent to the 
surface and equal to zero outside. Being a B W we have 
now R,, + W and the generation sphere S can be con- 
sidered to lie entirely in the neutral region. Thus the 
integral in eqn (7) reduces to well-known integrals of 
electrostatics, whose evaluation yields 

The present discussion has been concerned with the 
EBIC imaging mode of defects, but it is thought that the 
main conclusions about resolution apply to the CL 
(cathodoluminescence) imaging mode as well. In fact, in 
both modes a defect is imaged because it enhances 
locally the recombination (the non-radiative recom- 
bination, in the case of CL) of beam generated carriers. 
Since the recombination rate at a defect is proportional 
to the excess minority carrier density at that point, both 
the EBIC and the CL signals decrease with the beam- 
defect distance as the minority carrier concentration 
does. The three-dimensional character of carrier 
diffusion is therefore equally relevant for the two 
methods and consequently similar resolution properties 
of EBIC and CL images are expected. 

(Up)-(Up’) ifpaR 
(1/2R)[3-(p/R)‘]-(l/p’) ifp<R 

(9) 

where p and p’ are the distances of F and its image F’ to 
the centre fl of S. respectively (Fig. 3). By expressing p 
and p’ through R, a and xF, an explicit form for p“(+) 
can be obtained. A numerical evaluation of the half- 
width of this distribution shows that w -2R = R, when 
R,aa. 

Thus, according to the present model, the resolution 
limiting factors in the EBIC imaging of small localized 
defects are the defect depth or the extension of the 
generation region, whichever is the greatest. For the 
previous example of a defect at a depth a =3pm this 
means that for E>20 keV a resolution approximately 
equal to the corresponding range should be obtained; 
decreasing the beam energy well under 20 keV should 
not improve any further the resolution, which should 
remain about equal to 4.5 hrn. 

The main argument about resolution can be easily 
extended to the case of a dislocation, by representing 
this defect as a continuous distribution of point-like 
defects on a line. We consider here the simplest case of a 
straight semi-infinite dislocation perpendicular to the 
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