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SPATIAL RESOLUTION OF SEM-EBIC IMAGES
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Abstract—Experiments indicate that the spatial resolution of SEM-EBIC images of semiconductor defects is not
limited by the minority carrier diffusion length L. It is shown that this property can be explained by a three-dimensional
analysis of the diffusion of beam generated minority carriers in a semiconductor having L - %, For a small localized
defect, the resolution is expected to be limited by the defect depth or the extension of the generation region, whichever

is the greatest.

The electron beam induced conductivity (EBIC) mode of
the scanning electron microscope (SEM) has been widely
used for investigating the electrical activity of crystal
defects in semiconductors, using a p-n junction[1, 2] or,
more recently, a Schottky barrier[3,4) to collect the
beam generated carriers.

Relevant questions related to this method concern the
dependence of the resolution of EBIC images on the
shape of defects and their position relative to the sur-
face, on the generation volume and possibly the minority
carrier diffusion length in the bulk semiconductor. While
the influence of the geometrical factors on the resolution
seems to be well understood[3], there is still some
difficulty in explaining the role played by the semicon-
ductor diffusion length. In fact, it is generally assumed
that carrier diffusion should cause an image broadening
of the order of the diffusion length L; however, resolu-
tions much better than L have been obtained
experimentally[5, 7].

This note presents an argument to explain this con-
tradiction, by taking into account the three-dimensional
character of carrier diffusion. The derivation given below
deals chiefly with small localized defects (i.e. defects that
can be contained in a small sphere), but it will be shown
that the argument also holds for extended defects like
dislocations. The model applies to observations where a
defect acts as a recombination site, thereby reducing the
collected current; in some instances, however, as at high
reverse bias of the collecting diode[8] or in bipolar
transistors[9] enhancement of the EBIC signal at a
defect is also possible.

The usual experimental arrangement for the Schottky
barrier charge-collection to be discussed here is illus-
trated schematically in Fig. 1; similar considerations
apply to a shallow p-n junction. The electron beam of
the SEM is scanned over the surface of the diode and
generates, through the thin metal electrode, electron-hole
pairs in the semiconductor. The volume over which the
generation is significant (the pear-like region about the
beam axis in Fig. 1) has dimensions of the order of the
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range of incident electrons. In general, minority carriers
will be generated both within the depletion layer of the
diode at 0 < z < W and in the neutral region at z > W.

We suppose that a localized defect F is present in the
neutral region, where minority carriers move only by
diffusion; this location of the defect, therefore, should
give the greatest diffusion broadening of the image. To
prove that the resolution of the corresponding EBIC
image is not limited by L, we shall consider the limiting
case of L »» and show that, even with this extreme
hypothesis, the resolution can be good. We shall do this
by showing that the EBIC signal of the defect still
decreases rapidly as the beam moves away from the
defect. The problem of the charge collection at a defect
when L is finite requires a more elaborate analysis and
has been discussed elsewhere[10).

The defect is described as a region F where the
lifetime of minority carriers (for instance holes in an
n-type semiconductor) has a constant value 7 The
assumption of L— entails neglecting hole recom-
bination in the bulk outside F and, therefore, also in the
depletion layer. Let g(r) be the electron-hole generation
rate per unit volume due to the electron beam; the steady
state continuity equation for the excess hole concen-
tration p(r) in the half-space z =0 is then

(1/q) div J, = g(r)— (1/7r)p(r)e(r) n
where q is the magnitude of electronic charge, J, is the
hole current density and e(r) is a function with value one
inside F and zero outside. Integrating eqn (1) in the
half-space V(z=0) and applying the divergence theorem
we obtain

—” J,,,dxdy+fJ,,-da
z=0 =

=af smav-@m[ pwav @

where 3, is the surface of the half-sphere at r =, The
first term on the left side of eqn (2) is the total collected
current I; the integral over X vanishes, since J, goes to
zero at least as 1/r° (this can be seen, for instance, by
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Fig. 1. Schematic illustration of the Schottky barrier EBIC im-
aging of a localized defect.

calculating J, = —qDVp with the aid of the dipole ap-
proximation for p(r) as given in eqn (8)). We may then
write

I=4G - q(Vdre)pr = qG - Ir 3

where G is the total generation rate, Vi is the volume of
the defect and pr is the mean value of p(r) inside F.

The term denoted by I- in eqn (3) represents the
decrease of the collected current brought about by the
defect, i.e. the EBIC signal by which the defect is
imaged. A first approximation for this term may be
obtained by replacing, inside F, the unknown hole dis-
tribution p(r) with p°(r), the distribution in absence of
the defect. This approximation is expected to be
adequate when Ir is small in comparison with the back-
ground current gG, that is for low-contrast defects,
which is the most frequent practical case[4]. Moreover,
if the defect dimension is much smaller than its depth,
p°(r) will be approximately constant inside F, so that we
have pr = pr’ = p°(rr), rr denoting the position of the
defect. Equation (3) then gives

Iy = q(VA1e)p°(rs). )
To determine the hole distribution p°(r) in the bulk of the
semiconductor (z = W) we have to solve a steady state

diffusion equation, which can be written, in the limit
L->», as

V) = -3 80 )

where D is the hole diffusion coefficient. The boundary
condition at the edge of the depletion layer is

P -w=0. (6

Equation (5) is analogous to the Poisson’s equation of
electrostatics; with the boundary condition (6) it can be

solved by the method of images{11], and the solution is

o) = U N dv
P(r)—47rD :?W(Ir‘r!l Ir—r”])g(r)dv )]

r’ defining the image point of r' relative to the plane
z= W. Since g(r') has cylindrical symmetry about the z
axis, p°(r) will have the same symmetry, so that for a
given defect depth p°(r) and hence /¢ (eqn 4) will only
be functions of the beam-defect horizontal distance xg
The resolution of the image can be taken equal to the
half-width w of the current profile [Ir-(xg), or
equivalently of the hole distribution p°(xf).

To show that a finite (and small) value of w is to be
expected, we prove that p°(xy) rapidly approaches zero
as xp increases. Since g(r') is essentially different from
zero only inside a region with dimensions of the order of
the primary electron range R,, for r> R, we may apply
to eqn (7) the well-known dipole approximation of
electrostatics[11]; this yields p°(xg) ~ 1/x5° for large x

To give an estimate of the actual resolution when
L - and to point out which are the resolution limiting
factors, we consider the case of a defect lying at a depth
a > W, but still within the maximum range of primary
electrons. This situation can be found in low resistivity
semiconductors; for instance, in 1Q cm p-type silicon W
is about equal to 0.3 um and a defect at a depth a =
3 um would be within the generation volume when R, >
3 um, i.e. for electron beam energies E >20keV[3]. It is
convenient to discuss separately the cases where R, is
small in comparison to a and where R, is about equal or
greater than a.

(a) R, <a but still R, > W in order to produce some
contrast in the image. Since a > R, we have also rr > R,
for any xr and the dipole approximation for eqn (7)
holds; this yields

poxr) = a(a®+x¢) " (8)

The half-width of this distribution is w = 1.5a; for the
above example this gives w =4.5 um.

v? :

Fig. 2. Schematic diagram of the geometrical relations for the
case of R, <a. The same diagram is relevant for the imaging of
dislocations.
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Fig. 3. Schematic diagram of the geometrical relations for the
case of R, =2R =z a.

(b) R, = a. To estimate the resolution in this case, we
suppose, as is frequently done[5, 12], that g(r) is con-
stant inside a sphere S of radius R = R,/2 tangent to the
surface and equal to zero outside. Being a > W we have
now R, > W and the generation sphere S can be con-
sidered to lie entirely in the neutral region. Thus the
integral in eqn (7) reduces to well-known integrals of
electrostatics, whose evaluation yields

(Iip)—(1/ph if p=R
(2R3~ (a/RY)-(1/p") if p<R
)

p°(xr) = (G/4nD) {

where p and p' are the distances of F and its image F' to
the centre ) of S, respectively (Fig. 3). By expressing p
and p’ through R, a and x, an explicit form for p°(xr)
can be obtained. A numerical evaluation of the half-
width of this distribution shows that w =2R = R, when
R, =a.

Thus, according to the present model, the resolution
limiting factors in the EBIC imaging of small localized
defects are the defect depth or the extension of the
generation region, whichever is the greatest. For the
previous example of a defect at a depth a =3 um this
means that for E >20keV a resolution approximately
equal to the corresponding range should be obtained;
decreasing the beam energy well under 20 keV should
not improve any further the resolution, which should
remain about equal to 4.5 um.

The main argument about resolution can be easily
extended to the case of a dislocation, by representing
this defect as a continuous distribution of point-like
defects on a line. We consider here the simplest case of a
straight semi-infinite dislocation perpendicular to the

surface, which is represented as a dotted line through F
in Fig. 2. For x¢ > R, the dipole approximation holds for
any a and relation (8) can be applied to the single points
of the dislocation. Apart from constant factors, the EBIC
signal of a dislocation Ip(x) for large x is then found
by integrating eqn (8) with respect to a from zero to
infinity; the integration is immediate and gives Ip(xg)~
1/xg. This result indicates that the EBIC signal due to a
dislocation is still going to zero as xy — %, although not
so strongly as in the case of a localized defect. Thus
good resolution is also to be expected in the EBIC
images of dislocations in a semiconductor with L —»c;
further properties of dislocation images are considered in
Ref.[13].

The present discussion has been concerned with the
EBIC imaging mode of defects, but it is thought that the
main conclusions about resolution apply to the CL
(cathodoluminescence) imaging mode as well. In fact, in
both modes a defect 1s imaged because it enhances
locally the recombination (the non-radiative recom-
bination, in the case of CL) of beam generated carriers.
Since the recombination rate at a defect is proportional
to the excess minority carrier density at that point, both
the EBIC and the CL signals decrease with the beam-
defect distance as the minority carrier concentration
does. The three-dimensional character of carrier
diffusion is therefore equally relevant for the two
methods and consequently similar resolution properties
of EBIC and CL images are expected.
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