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ABSTRACT 
A new method is described for setting up the effective potential for elec- 

trons in  non-transition metals, including liquid metals and alloys. It is 
baaed on a model potential fitted to the spectroscopically measured energy 
levels of the free ions. The potential between the atomic cores is obtained 
from the dielectric screening calculation of Cohen and Phillips (1961) with 
some refinements. The method is tested on the band structures of the 
(solid) alkali metals. The Fermi surfaces of K, R b  and Cs are found t o  be 
considerably less distorted than calculated by Ham (1962), and thus in 
better agreement with experiment. 

Q 1. THE POTENTIAL IN A METAL 
THIS is the main paper in a series developing a new approach to calculating 
the electronic structure of non-transition metals. Basically it is an appli- 
cation of the spirit of the Quantum Defect Method (Ham 1955) to poly- 
valent metals taking proper account of the potential between the ion cores. 

In setting up the potential or effective potential seen by a conduction 
electron in the metal, we have to discuss separately ( a )  the behaviour of the 
electron inside the ion core of one of the atoms, and ( b )  the potential in the 
region between the ions, with its problem of finding the self-consistent 
potential of the conduction electrons screening the ions. As regards (b ) ,  
we follow the path initiated by Cohen and Phillips (1961) and recently 
become fashionable (see e.g. Harrison 1963, Sham 1963, Ziman 1964) in 
which we start with a rigid uniform jelly of electrons into which we place 
the bare positive ions of the metal at  positions Rj. The potential in this 
system is expressed in the form : 

(1) (const) + x'A(q)  exp (iq . r), . . . . .  
where the 2' excludes the term q = 0. 
allowing the electrons to move and screen the potential. 

We now unfreeze the electron jelly, 
We make the 

t Much of the present work was done while the author was a vacation con- 
sultant at the Atomic Energy Research Establishment, Harwell. 

$ Permanent address : Department of Theoretical Physics, The University, 
Leningrad, U.S.S.R., British Council exchange student at Cambridge University 
1962-3. 
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452 V. Heine and I. Abarenkov on a 

linearity approximation that each term in (1) is screened individually by 
some dielectric constant or screening factor e(q), so that the self-consistent 
potential becomes : 

(const) + x’-exp A h )  (iq . r). . 
4) 

. . . . .  

In  (l), since the electron density is uniform, it does not contribute to the 
q # 0 components of the charge density or the potential. In  fact we have : 

where 
. . . . . . . . . . .  A(q) = V(q)S(q), (3) 

(4) 

V(q)=(l/Q) Vion(r)exp(-iq.r)dv, ( 5 )  

. . . . . . .  1 S(q)=-zexp(-iq .Ri). 
Ni 

Here 

. . . .  s 
and depends only on the potential of a bare ion. N is the total number of 
atoms and 51 the volume per atom. Note that the formalism covers any 
configuration of the atomic centres, and thus includes solid metals, liquid 
metals, and metals disturbed by a vacancy, dislocation or a phonon. In  
the case of an alloy with several atomic species a,  we generalize (3) to : 

A(q)=xVa(q)’a(q). . * * . * * * (6) 
a 

We shall term this approach the Screened Ion method, and we shall have 
nothing to add to it except a more careful discussion of some points of 
detail. 

To take account of the inside of the atom, we use for Vjon the Model 
Potential of Abarenkov and Heine (1964, hereafter referred to as I) : 

V , = - x A , ( E ) P ,  forrcR, . . . . .  ( 7 a )  
1 

= -Z/r forr>R, . . . . .  (7b )  

in atomic units (e= n=m= l), where A, is a constant (independent of r) 
which varies dowly with the energy E of the incident conduction electron 
as well as with the chosen model radius R,, and where P, is a projection 
operator which picks out the Zth spherical harmonic component of the 
incident wave function. Thus V, is not simply a function of r but an I -  and 
E-dependent operator. We reiterate that what one requires in the 
screened ion method is the potential seen by a single electron outside a 
free closed-shell ion. The use of the model potential follows the spirit of 
the quantum defect method (Ham 1955), firstly because the A @ )  in (7) is 
fitted to the apeotroscopically measured energy levels of the free atom or 
ion (e.g. sodium atom or Al++ ion). Secondly the quantum defect method 
emphasizes that the energy band structure of the solid depends only on 
the logarithmic derivative of the wave function at some radius such as R,, 
independent of what goes on inside, and this logarithmic derivative is 
correctly reproduced by V,. Inside RM, however, V ,  produces a bogus 
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wave function 4 which is slowly varying and does not have the atomic-like 
oscillations of the real wave function $ produced by Vion. In this respect 
the model potential follows the spirit of the pseudo-potential (Cohen and 
Heine 1961, Austin et al. 1962), although mathematically it does not come 
within the precise definition of a pseudo-potential adopted there. Thus 
as in the use of a pseudo-potential, what we have gained is that we have 
replaced a strong and unknown potential Vion by a weak potential V,, 
which is adjusted to the spectroscopic data on the free atom or ion, and 
which can be treated by expanding the wave function in plane waves. 
Note that the method works just as easily for heavy metals and metals 
with large valence (when the spectroscopic data are available!) as for light 
metals. 

It should be emphasized that there is no approximation introduced by 
using the model potential. Let $ be some solution of the Schrodinger 
equation for energy E calculated with the actual ionic potentials, and let + be the corresponding solution calculated with the model potentials at  
the same energy. If we integrate outwards from any nucleus, the whole 
point of the model potential is that it gives 4 the same radial derivative 
as $ at the radius R,. Outside RM in the region between the atoms, the 
two potentials are identical and so are $ and 4. Thus to every eigen- 
function of the $ equation there corresponds an eigenfunction of the 4 equa- 
tion with the same energy, and hence the eigenvalue spectrum calculated 
from the model potential is the same as that from the real potential. There 
is of course the linear screening approximation involved in (2) and there 
are several approximations in the calculation of E (see §a), but this does 
not affect the validity of the model potential in itself. The only real 
doubt in the model potential comes from interpolating or extrapolating 
A,(E) from the atomic energy levels to the required energy in the solid. 

Incidently the linear screening approximation is probably very good for 
most purposes. In a pure solid, A(q) is non-zero only for reciprocal 
lattice vectors, which are sufficiently large for A(q) there to be usually 
small. In any case c(q) there is already as low as about 1.1 to 1.2. In the 
case of a long wavelength or a liquid metal, we have S(q) small at small q, 
and it is well known that the linear approximation then gives the right 
answer as q+O even though V(q) and e(q) diverge as' l/g2. March and 
Boardman (1963) have shown that the linear approximation gives rather 
bad results for the potential round a point charge in a free electron gas. 
While this may apply directly to dissolved hydrogen or injected positrons, 
the situation with atomic impurities is rather different. Here the pseudo- 
potential cancels off most of the potential at  small r ,  where the potential 
of a point charge would be very strong and where the non-linearities 
reported by March and Boardman presumably came from. We therefore 
expect the linearity approximation to be much better for an impurity atom, 
substitutional or interstitial, than for a bare charge such as a proton or 
positron. It should also be noted that the approximation should be about 
equally good for (pure) polyvalent metals as for monovalent ones. 
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454 V. Heine and I. Abarenkov on a 

Although the strength of the potential increases with 2, the relevant 
parameter is the ratio of the strength of the potential to the Fermi energy, 
which is proportional to (ZLl)1’3, and varies only a factor of two between 
the extreme cases of lithium and bismuth. 

The purpose of the present calculations is to test the above method of 
setting up the effective potential on the band structure of the alkali metals. 
In  2 we test fbst by itself the model potential for the inside part of the atom, 
retaining the older Wigner-Seitz construction of the potential between the 
ion cores as modified by Ham (1962). Since Ham calculated the band 
structures using such a potential and using a combination of the quantum 
defect and Koh-Rostocker methods with the same spectroscopic data as 
in I, we expect to reproduce by our model potential exactly the same energy 
spectrum. Employing only perturbation theory, we do indeed find band 
gaps very close to Ham’s, with a total amount of labour which must be 
some orders of magnitude less. 

Having found a quick and satisfactory method of treating the potential 
from the core of the atom, we can explore different constructions for the 
potential in the regions in between. In  $3 we set up the Screened Ion 
potential (2)-(5), calculate the matrix element which determines the dis- 
tortion of the Fermi surface, and compare it with that given by the Wigner- 
Seitz-Ham (WSH) potential. With an energy- and angular-momentum- 
dependent model potential, this matrix element is of course not simply 
equal to half the band gap. We find that the Screened Ion potential gives 
considerable less distorted Fermi surfaces for K, Rb and Cs than Ham’s 
results, in accordance with the suggestion of Bienenstock (1962), and thus 
much better agreement with experiment (Okumura and Templeton 1962, 
1963, Shoenberg and Stiles 1964). 

Results on polyvalent 
metals, the noble metals and the resistence of liquid metals are reserved 
for another publication (hereafter called 111). 

In 5 4 we give our version of how to calculate E .  

$ 2. TEST OF THE MODEL POTENTIAL 
As already mentioned, we set up the WSH potential for the alkali 

metals, equivalent to that used by Ham (1962) modelled on the Wigner- 
Seitz approach. Inside R,, the radius of a sphere inscribed in each atomic 
polyhedron, the potential is that of a bare ion, for which we use the model 
potential (7) with R, chosen at  some convenient value less than R,. The 
values of the constants A@),  A,(E) and A,(E) were taken from the 
tables in I ,  and we put : 

This approximation should introduce negligible error since (a) it  should be 
about right, ( b )  the wave functions in the filled band are expected to con- 
tain very little f and higher components, and (c) these components do not 
feel the potential near the nuclei much because of the centrifugal barrier. 
(8) should be compared with Ham’s assumption which appears to be 

A,@) = A,(E) for I B 3. . . . . . . (8) 
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A further difference is that we have not incorporated a A, = 0 for 1 2 3. 
‘polarization correction’ in calculating our A,(E)  (see 5 3) .  

With assumption (8), (7 a) becomes for r c RM : 

VM=-A,- (Ao-A, )Po-(A, -A, )P, .  . . . .  (9) 

In the calculation of a matrix element ( k , ~ V M ~ k l )  between plane wave 
states k, and k,, the A ,  in (9) and the part of V ,  at r >B& are ordinary 
local potentials and present no difficulty. The Po and P, +I (9) pick out 
from the plane wave exp ( ik ,  . r )  the components : 

h 

jo(klr)  and 3ij,(k,r)cosk,r, . . . . .  (10) 

respectively, which because of the overall spherical symmetry of (9) combine 
only with the corresponding pieces of exp ( ik ,  . r ) .  In the region between 
the inscribed spheres, Ham put the potential equal to a constant C,  which 
is equal to the mean value of - l / r  between an inscribed (radius R,) and an 
atomic sphere (radius Ra). The potential in the whole metal therefore is : 

. . . . . . .  C + z v ( E ;  r - R j ) ,  (11) 

= O  forr>R,. (12) 

with v ( E ;  r ) =  VM-C for r<R,  

. . . . .  
Let E, and E ,  be the energies of the first s-like and p-like states at  the 

centre k,,, of the Brillouin zone face. With the abbreviations : 

and 

the parameter V, (N)  tabulated by Ham, which is half the band gap, 
becomes : 

V,(N)  = 8(Es - E,) 

=S[Ifo(E~)+~l(Es)l-S[~o(Ep)-~l(Ep)]. . . .  (14 )  

If we asume v (E)  varies sufficiently nearly linearly between E, and E,, (14) 
becomes : 

We see therefore that the energy -dependent potential introduces a cor - 
rection factor, and it is not adequate to use some of the simple formulae of 
the original nearly -free-electron approximation. Incidentally, the varia- 
tion of (k lv (E) lk)  with k and E contributes to the effective mass in the 
band in a similar way to (14 ) ,  but we do not calculate this effect here. 
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456 V. Heine and I. Abarenkov on a 

We can improve on (15) by taking for wl not just the matrix element (13) 
itself, but by including all second-order effects (Pryce 1950) : 

The summation is over all reciprocal lattice vectors Ki except 0 and - 2kN. 
The first line is the lattice 

constant, which is close to the equilibrium one and is the value used by 
Ham (1962). The next line gives the energy &(E,+E,) as required for 
calculating wl in (15) and (16). In  a complete band structure calculation, 

The numerical results are shown in table 1. 

Table 1. Band gap with WSH potential 

a 
S( Es + E )  
R M  
w1 convergence 
of second-order 
corrections 

6-65 

2.8 
0.0951 
0.0973 
0.0982 
0.0983 
2.0 
0.095 
1.00 
0.098 
0.101 

- 0.31 1 
8-11 

- 0.300 
3.4 
0.0065 
0.0065 
0.0064 
0.0064 
2.2 
0.007 
1.07 
0.006 
0.008 

K 

10.05 
- 0.278 

4-2 
0*0060 
0.0082 - 

- 0.0087 
- 0@088 

2.4 
- 0.007 

1.16 
-0~010 
-0.016 

Cs I Rb 

10.74 

4.6 
- 0.267 

- 0.0145 
- 0.0178 
-0.0184 
- 0.01 84 

3.2 
- 0.014 

1.21 
- 0.022 
- 0.028 

11-46 
- 0.253 

4.8 
- 0.0200 
- 0.0259 
- 0.0271 
- 0.0272 

3.4 + 0.009 
1.27 

- 0.034 
- 0.042 

Note : distances are in atomic units and energies in rydbergs. 

this energy should be adjusted self-consistently in accordance with the 
position of the band. In  our case we estimated the energy of the bottom 
of the band for sodium self-consistently as - 0.600 Ryd, compared with 
Ham's value of -0.604 Ryd. Thus it is clear that our method gives the 
absolute position of the bands in substantial agreement with Ham's 
calculation, and the values of Q(Es+E,) were therefore taken from his 
work. Next in table 1 come the value of R,, the value of the simple matrix 
element wl (13), and the effect of summing over 25, 123 and 341 reciprocal 
lattice vectors in (16). Also given is the corresponding result (341 K,'s) 
for a much smaller value of R, : the potential is then far from smooth, and 
it is surprising that the second-order theory (1 6) still gives such consistent 
results in all cases except caesium. Actually it is not quite fair to compare 
wl itself ; it is the whole product (la) that should be invariant to choice of 
R,. However, we may conclude that cutting off the series (1 6) at second 
order is quite satisfactory except, possibly for caesium. In  the latter case 
we know from the work of Ham (1962) that the lowest d-state falls only 
just above ED,  so that we expect (16) to be somewhat inadequate and to 
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underestimate the band gap. The following lines in table 1 give the wo cor- 
rection of (15) calculated for the larger R,, and the final value of V,(N)  
from (16) and (15). Comparison with Ham’s (1962) results shows agree- 
ment to about 0.005Ryd except for caesium (0-008Ryd). We regard 
this as a very satisfactory and a good check on the concept of the model 
potential, on the usefulness of the various approximations and on the 
computer programmes. 

0 3. THE SCREENED ION POTENTIAL 
We proceed to compare the screened ion potential .(2)-(5) with the 

Wigner-Seitz-Ham potential and with experiment. We calculate not 
the band gap but the matrix element determining the distortion of the 
Fermi surface in the direction of the zone faces. The latter is more directly 
determined by experiment and incidentally avoids the wo correction 
factor in (15). 

(17) 

where k, has magnitude kF (the Fermi radius) in the direction k,, k ,  = k, - K,, 
and K1=2k, is the first reciprocal lattice vector. Table 2 shows first of 
all the results for Vl(EF) using the WSH potential (12) for V.  The second- 
order corrections were not calculated but simply taken from table 1, 
which is not quite right but should be within our limits of error, particularly 
for comparison purposes. Similarly the differences in table 1 between 
our values and Ham’s have a systematic trend : to some extent they arise 
from neglect of third-order terms as already discussed in connection 
with caesium, and we have also added them in here as ‘ a higher order 
correction ’. 

We require the matrix element. 

V,(E,) = (k,l V(EF)Ik,)  + (second-order and higher corrections), 

In the screened ion method (2)-(5), we need : 

( 2 ~ ~ ~ 1 ) = ( 2 ~ V M + ~ O ~ + V C C [ 1 ) / ~ ( ~ l ) .  * . * (18) 

V ,  is the full model potential (7), not cut off at  R, like the WSH potential 
(12). All four quantities in (18) are 
shown in table 2, E being taken from 9 4. The second-order and ‘higher’ 
corrections were again taken from table 1. 

In  calculating A,(E)  for V,, we have not incorporated a ‘polarization 
correction’ such as used by Ham (1962) and by Brooks and Ham (1958). 
What such a correction would amount to is adding a polarization term 
b/r4 to (7 b )  outside R,, with a consequent change in A,(E)  inside R, such 
that the whole potential still reproduces the atomic energy levels correctly. 
When one cuts the potential in half and throws one half away as in the 
WSH method, such a procedure may be physically significant. How- 
ever, in the screened ion method we use the whole of V,. In  view of the 
rather arbitrary choice of R, and of the form inside RM (see I), it would 
appear pedantic to alter the shape of the potential slightly by a polari- 
zation correction. If the screened ion method is to be at all useful, its 

Vo, and Vcc are described below. 

P.M. 2H 
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results must be roughly invarient under changes in the shape of the poten- 
tial, as we have already tested with respect to changes in R,. 

In (18) Vo, is an ' orthogonality ' correction, omitted in 5 1, coming from 
the non-uniformity of the conduction electron density. The mean charge 
density of a conduction state is reduced inside the ion core due to the 
oscillations of the wave function, and is correspondingly enhanced, by a 
factor 1 +a say, in the rest of the atomic cell to preserve normalization. 
We therefore have an additional uniform negative charge density of aZ/R, 
and an extra positive charge of LYZ at each atomic site spread over a radius 
about the size of the ion core R,. The contribution to the Kth Fourier 
component of the potential is : 

] Ryd. . . . (19) 
RK2 z=ER,  

In  the past the value of 01 has usually been estimated from the orthogon- 
ality terms of the orthogonalized plane wave method (Heine 1957, Harrison 
1963). We expect LY to be proportional to the volume of the core and have 
used : 

with R, taken from Seitz (1940). Since the whole correction is quite 
small, the precise value of LY does not matter very much. However, the 
correction becomes more significant for polyvalent metals and (20) will be 
discussed further in I11 in connection with aluminium. 

We return to Vo, in (18) which is a correlation correction arising as 
follows. In the screened ion method, the conduction electrons to a first 
approximation are treated as a free electron gas. The exchange and 
correlation hole follows the electron around and contributes an effective 
potential VEc(k)  which depends on k but not on position. It is of course 
large, comparable with the band width, and variations of it may be 
important. The periodic potential causes various complications. First 
of all exchange with different occupied electron states is additive, and the 
exchange with the core orbitals is included in V,. Secondly, however, 
correlation is not additive. At high electron densities it varies only very 
slowly (Gell-Mann and Brueckner 1957), and for our purposes we may 
regard it as approximately saturating at some value - 0.1 Ryd inside the 
atomic core. The relatively constant figure of about lev  Correlation 
energy is also well known in atomic and molecular calculations. If we 
regard the core as a dense electron gas, we have that V,  includes a cor- 
relation hole of - - 0.1 Ryd and VEc(k)  one of - 0.08 to - 0.06 Ryd (Pines 
1955, p. 398), whereas we only want a total correlation hole of - - 0.1 Ryd 
when the electron is in the core. We therefore introduce a correlation 
correction potential : 

01 = (Rc/Ra)3, . . . . . . . . (20) 

} - * (21) 
VCc( r) = lcorrelation part of V,, I for r < Rc 

= O  for r > R,, 
2 H 2  
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460 V. Heine and I. Abarenkov on a 

to be included in (18). Thirdly, the periodic potential causes a periodic 
fluctuation in the density of the electron gas and hence in VEc(k) ,  This 
effect is included in the theory of E ( K )  in $4. Fourthly, there is the varia- 
tion of V,,(k) with k round the Fermi surface if the latter is not a sphere. 
If one looks a t  the simple formula for VEc(k)  given by Pines (1955, pp. 
407-8), one findsit hasalarge variation with k. However, when calculating 
the total band width (Pines 1955, p. al l ) ,  one finds most of this is cancelled 
off by other effects. Experimentally the band widths are very close to 
the simple Hartree values (Fletcher and Larson 1958). So to a first 
approximation V,,(k) is constant. The most recent calculations (Rice 
1963) indicate that aV,,(k)/ak increases the density of states at  the Fermi 
level less than lo%, and effects any distortion of the Fermi surface by the 
same factor, which for present purposes is negligible (table 2). Fifthly, 
the wave functions are not plane waves exp ( i k  , r) but if for instance the 
Fermi surface touches the zone face one has linear combinations like 
sin ( k, . r) or cos (k, . r). These do not have the same exchange energy 
with some other state in the band, but when summed over the whole band 
such effects seem to cancel out (Falicov 1962). 

The final results for Vl(EF) with the screened ion potential are shown in 
table 2, to be compared with those from the Wigner-Seitz-Ham potential. 
The distortion of the Fermi surface depends on V,. We see that the 
screened ion method gives lithium a slightly more distorted Fermi surface, 
but not enough to resolve the paradox of the x-ray spectrum (Ham 1962). 
We also see that potassium, rubidium and caesium should have more 
nearly spherical Fermi surfaces than calculated by Ham, while sodium 
receives a slight but noticeable distortion. To obtain quantitatively the 
bulge Ak,,, of the Fermi surface towards the zone faces, we plotted Ham’s 
(1962) values of Akllo against the values of V,(E,) calculated from the 
WSH potential (table 2). For IV,l/kp2 < 0.25 they lie very nearly on the 
curve : 

(22) 

which was anticipated theoretically. The values of Akllo for the screened 
ion potential were then read off the graph. The results in table 2 are 
quoted with an error in V ,  of 0-03kF2, i.e. ranging from 0.010Ryd for 
lithium to 0.003,Ryd for caesium, which is a reasonable guess. It is 
intended to cover the uncertainties of the potentials as well as approxi- 
mations in the computations, both of which should be down to this magni- 
tude now. The values of lattice constant used in table 2 are the same as 
in table 1 and are sufficiently near the equilibrium ones for the results 
not to require further correction on this account (Ham 1962). Finally in 
table 2 we show experimental results. Where the experimental informa- 
tion does not refer to Ak,,, directly, we have used Ham’s results on the 
ratios of area-, mass-, and radius-anisotropies to reduce the data to state- 
ments about Akllo. 
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In  conclusion, we note that the Screened Ion potential gives substantially 
better agreement with experiment than the Wigner-Seitz-Ham potential. 
The error in the Wigner-Seitz approximation for the exchange and cor- 
relation hole is therefore sufficiently large (about 0.01 Ryd) that we can 
probably say now for the first time it leads to significant disagreement 
with experiment. We regard the results both as an improved theory of 
the band structure of the alkali metals, and as a validation of 
the model potential plus screened ion approach to the potential. How- 
ever, the major discrepancy (about 0-06Ryd) with the apparent soft 
x-ray spectrum of lithium leaves a nagging doubt. Aside from this, the 
accuracy achieved is a few thousandths of a rydberg. As for instance the 
magnitudes of the orthogonality and correlation corrections show, to 
advance significantly beyond this raises several problems of self -consistency 
and many-body effects. 

8 4. THE DIELECTRIC CONSTANT 
For the dielectric constant or screening factor in ( 2 )  we use : 

and E,, is the free-electron Fermi energy ?i2kF2/(2m). The simple Hartree 
approximation for the dielectric constant is 1 + X ( q ) ,  and gives j E F o  for 
the matrix element (5) in the limit as p 0 .  

The last term in (23) represents a correction for exchange, calculated by 
Sham (1963) in the spirit of Hubbard (1957, 1958). When going beyond 
the Hartree approximation, it is necessary to distinguish t.hree different 
screening factors : (a )  when the field is set up by some ‘ external ’ charge 
and measured by another ‘external’ charge, by which we mean that 
neither of them is an electron ; ( b )  when the field is generated by an ‘ex- 
ternal ’ charge felt by an electron which can exchange with the conduction 
electrons, and in particular with the screening cloud set up by the ‘ external ’ 
charge ; (b’)  when the field around an electron is felt by an ‘external’ 
charge, this situation being presumably related to ( b )  by reciprocity ; 
(c) the screening factor for the interaction between two of the conduction 
electrons. We are here concerned with ( b )  whereas Hubbard (1957-8) 
considered ( c ) ,  which explains the slight difference from his result. For 
the screening constant k, which screens the exchange, we have used 

k,2 = 2kF/n  (atomic units) 
= &( ks2)Thomns-Fermi . . . . . . . . 

as a reasonable estimate between the Thomas-Fermi and Bohm-Pines 
values (see also Sham 1963). 
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Next we consider the effect of having Bloch states or at least orthogonal- 
lized plane waves instead of free electrons. In  (3) and (a), the S(q) for 
small q comes from the long-wavelength density fluctuations due to 
thermal vibrations. The matrix element is well known from the theory 
of the electron-phonon interaction to have the limit : 

where n(E,) is the density of states per atom at the Fermi level (Ziman 
1960, p. 194). We therefore introduce m* in (23) as a density-of-states 
mass factor, and the factor (1 + a) to cancel the fact that our orthogonality 
correction ($3)  has added an extra charge Za around each atomic site. 
When q is not small, we want m* to represent an average effective mass 
over the whole band, since it comes from a summation of type : 

1 
E(k)-E(k+q) ’ . . . . . . . (27) 

where k is inside the Fermi surface and k + q outside (Cohen and Phillips 
1961). We have in table 2 therefore used the mass values calculated by 
Ham (1962) for the spherical part of the band. For q > k,, the factor 1 + a 
cannot correctly represent the effect of using orthogonalized plane waves 
instead of free electrons. However, for q equal to the first reciprocal 
lattice vector, e(q) is already down to 1.1 to 1.2. If we say that the wave 
functions differ in charge density from plane waves by about lo%, then 
this suggests an error in E ( K )  of 1% to 2%. Rather larger, perhaps as 
large as loyo, is the error from neglecting the non-local nature of the 
potential to be screened (Harrison 1963). 

For many 
applications this may be somewhat pedantic at the present time. How- 
ever, the electron-electron Coulomb interaction can increase the density 
of states in (26) by up to 10% (Rice 1963) and give quasi-particle renormali- 
zation factors N ,  (Langer 1961 ; zk  in the notation of Nozihres 1963) of 
0.6 to 0-8. Likewise the interaction via virtual phonons increases the 
density of states measured in the low temperature specific heat by about 
30%. If in liquid sodium for instance we hope to use the present theory 
to calculate the resistivity to better than a factor of two, then we must 
take some account of the many-body effects, because most of the scattering 
occurs at relatively low q where correction factors in (26) are important. 
Our conclusion is that m* and (28) should contain the Coulomb corrections 
but not the virtual phonon one. 

As regards the Coulomb interaction, this result can be proved by the 
Landau theory of quasi-particles. We apply a potential Vapplied 

expi(q. r - w t ) ,  which sets up a distribution of quasi-particles 6n(k; r, t ) .  
An incident quasi-particle feels a scattering potential which is the sum of 
Vapplied, the electrostatic Hartree field determined from 6n by Poisson’s 
equation, and the Landau field zf( k, k’)6n( k’) determined by the Boltzmann 

We now discuss whether there are further many-body effects. 

k‘ 
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New Method for the Electronic Structure of Metals 463 

equation. Here f ( k ,  k’) is the interaction energy of two quasi-particles. 
The equations are all set out by Nozihres (1963, pp. 16, 18, 21-3) and can 
be solved self-consistently . The result is an effective scattering potential 

. . . . . . (28) I VVapplied/&) 

with 477ea 
‘ ( q )  = - n ( E F ) ,  

Qq2 

where n(EF)  is the single-particle density of states including all inter- 
actions with the ground state, The following less sophisticated deri- 
vation is based on the deformation potential. We consider an electron 
moving from an unstrained piece of material (band structure E,(k))  to a 
strained region with band structure E,(k) .  In  the limit of long wave- 
length, each region is electrically neutral but a dipole layer of potential 
VDL is set up between them. VDL is determined by the condition that the 
Fermi level is the same in both regions ; 

EF=EO(kFO)= VDL +El(kFJ + xf (k ,  W n ( k ’ ) ,  . . . (29) 

where the last term is the interaction energy with the extra distribution 
6n(k) of quasi-particles in the strained region. El(kF1) is given by : 

where the term 6,E represents the change E,(k)  - E,(k) in the form of the 
Hartree band structure, averaged over the Fermi surface, and the last 
term comes from the change in the electron density and hence in kF due to 
the dilatation A : see Ziman (1960, pp. 192-3) for details. We therefore 
have : 

AZ - VDL=-- 6 , E - x f ( k ,  k’)6n(k’). . . . . 
NEF) 

We now imagine a classical kind of scattering calculation with an electron 
wave of fixed frequency (energy) incident from the unstrained region onto 
the strained one. The energy (frequency) remains constant, and the 
scattering is produced by the change in wavelength between the two 
media, the scattered wave being required to match the derivative of the 
wave function at  the boundary. We therefore consider an incident 
electron with wave vector k,, changing its wave vector to k,  in the strained 
region. The equation determining k,  is : 

E = Eo(k,) 

= vDL+El(kl)+x:f(kl,k’)6n(k‘). . . . . . (32) 

The effective scattering potential V s  is now defined as that potential, 
which when placed as a perturbation in the unstrained medium with band 
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464 V. Heine and I. Abarenkov on a 

structure Eo(k), produces exactly the same change in wave vector : i.e. 

Combining (31)-(33)) we have : 
E=Eo(ko)=Vs+Eo(kJ.  . . . . .  - (33) 

. . . . . . . .  A, (34) vs=- 
NEF) 

z 

which leads again to (26) since for small q the structure factor S(q) of (3) is 
simply the Fourier transform of the dilation A(r) (Ziman 1961). 

We return now to the effect on n(E)  of the excitation of virtual phonons. 
As is well known, it  changes the effective band structure E(k)  and enhances 
n(E,) as measured by the electronic specific heat by some 30%. How- 
ever, it only produces a narrow kink in E(k)  of width fiuD (w,=Debye 
frequency) just at the Fermi level. This is seen for instance in the theory 
of superconductivity or is evident from the fact that the total energy of 
the system is only changed to order m/M (electron to ion mass). In  (27) 
the excitation by wave-vector q carries the energy right across the kink 
for all but exceptionally small 9’s. Alternatively in the argument of 
(29)-(34)) the kink in E(k)  rides up and down with the Fermi level and 
does not contribute to the last term in (30) which is the change in EF. 
We conclude therefore that the virtual phonon correction to the density 
of states should not be included in m*, and must be subtracted out before 
experimental values of m* are used. 
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