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ABSTRACT

A new method is described for setting up the effective potential for elec-
trons in non-transition metals, including liquid metals and alloys. It is
based on a model potential fitted to the spectroscopically measured energy
levels of the free ions. The potential between the atomic cores is obtained
from the dielectric screening calculation of Cohen and Phillips (1961) with
some refinements. The method is tested on the band structures of the
(solid) alkali metals. The Fermi surfaces of K, Rb and Cs are found to be
considerably less distorted than calculated by Ham (1962), and thus in
better agreement with experiment.

§ 1. THE POTENTIAL IN A METAL

THis is the main paper in a series developing a new approach to calculating
the electronic structure of non-transition metals. Basically it is an appli-
cation of the spirit of the Quantum Defect Method (Ham 1955) to poly-
valent metals taking proper account of the potential between the ion cores.

In setting up the potential or effective potential seen by a conduction
electron in the metal, we have to discuss separately (a) the behaviour of the
electron inside the ion core of one of the atoms, and (b) the potential in the
region between the ions, with its problem of finding the self-consistent
potential of the conduction electrons screening the ions. As regards (b),
we follow the path initiated by Cohen and Phillips (1961) and recently
become fashionable (see e.g. Harrison 1963, Sham 1963, Ziman 1964) in
which we start with a rigid uniform jelly of electrons into which we place
the bare positive ions of the metal at positions R;. The potential in this
system is expressed in the form :

(const) + >'A(q)exp (iq.r), N ¢ 8

where the >’ excludes the term q=0. We now unfreeze the electron jelly,
allowing the electrons to move and screen the potential. We make the

1 Much of the present work was done while the author was a vacation con-
sultant at the Atomic Energy Research Establishment, Harwell.

{Permanent address: Department of Theoretical Physics, The University,
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linearity approximation that each term in (1) is screened individually by
some dielectric constant or screening factor €(q), so that the self-consistent
potential becomes :

(const) + >’ (q))exp(zq . . . . . .. (2

In (1), since the electron density is uniform, it does not contribute to the
q # 0 components of the charge density or the potential. In fact we have :

Aq)=V(q)Sq), . . . . . . . . . . . (3

where
%Zexp (—iq.R;). B €3

Here
=(1/Q)fan(r)exp(—iq.r)dv, R ()]

and depends only on the potential of a bare ion. N is the total number of
atoms and ( the volume per atom. Note that the formalism covers any
configuration of the atomic centres, and thus includes solid metals, liquid
metals, and metals disturbed by a vacancy, dislocation or a phonon. In
the case of an alloy with several atomic species «, we generalize (3) to :

=SV @S @ - (8

We shall term this approach the Screened Ion method, and we shall have
nothing to add to it except a more careful discussion of some points of
detail.

To take account of the inside of the atom, we use for Vio, the Model
Potential of Abarenkov and Heine (1964, hereafter referred to as I) :

Vy=—-2A(E)P, forr<Ry . . . . . (70)
1
=—2Z|r forr>Ry . . . . . (7))

in atomic units (¢e=%=m=1), where 4, is a constant (independent of r)
which varies slowly with the energy E of the incident conduction electron
as well as with the chosen model radius R,;, and where P, is a projection
operator which picks out the Ith spherical harmonic component of the
incident wave function. Thus ¥, is not simply a function of 7 but an /- and
E-dependent operator. We reiterate that what one requires in the
screened ion method is the potential seen by a single electron outside a
free closed-shell ion. The use of the model potential follows the spirit of
the quantum defect method (Ham 1955), firstly because the 4,(E) in (7) is
fitted to the spectroscopically measured energy levels of the free atom or
ion (e.g. sodium atom or Alt+jon). Secondly the quantum defect method
emphasizes that the energy band structure of the solid depends only on
the logarithmic derivative of the wave function at some radius such as By,
independent of what goes on inside, and this logarithmic derivative is
correctly reproduced by V,,. Inside Ry, however, Vy produces a bogus
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wave function ¢ which is slowly varying and does not have the atomic-like
oscillations of the real wave function ¢ produced by Vion. In this respect
the model potential follows the spirit of the pseudo-potential (Cohen and
Heine 1961, Austin ef al. 1962), although mathemaitically it does not come
within the precise definition of a pseudo-potential adopted there. Thus
as in the use of a pseudo-potential, what we have gained is that we have
replaced a strong and unknown potential Vion by a weak potential V,
which is adjusted to the spectroscopic data on the free atom or ion, and
which can be treated by expanding the wave function in plane waves.
Note that the method works just as easily for heavy metals and metals
with large valence (when the spectroscopic data are available!) as for light
metals.

It should be emphasized that there is no approximation introduced by
using the model potential. Let ¢ be some solution of the Schridinger
equation for energy E calculated with the actual ionic potentials, and let
é be the corresponding solution calculated with the model potentials at
the same energy. If we integrate outwards from any nucleus, the whole
point of the model potential is that it gives ¢ the same radial derivative
as ¢ at the radius Ry. Outside Ry in the region between the atoms, the
two potentials are identical and so are 4 and ¢. Thus to every eigen-
function of the s equation there corresponds an eigenfunction of the ¢ equa-
tion with the same energy, and hence the eigenvalue spectrum calculated
from the model potential is the same as that from the real potential. There
is of course the linear screening approximation involved in (2) and there
are several approximations in the calculation of ¢ (see §4), but this does
not affect the validity of the model potential in itself. The only real
doubt in the model potential comes from interpolating or extrapolating
A(E) from the atomic energy levels to the required energy in the solid.

Incidently the linear screening approximation is probably very good for
most purposes. In a pure solid, 4A(q) is non-zero only for reciprocal
lattice vectors, which are sufficiently large for 4(q) there to be usually
small. In any case €(q) there is already as low as about 1-1 to 1-2. In the
case of a long wavelength or a liquid metal, we have S(q) small at small q,
and it is well known that the linear approximation then gives the right
answer as q—0 even though V(q) and ¢(q) diverge as 1/¢2. March and
Boardman (1963) have shown that the linear approximation gives rather
bad results for the potential round a point charge in a free electron gas.
While this may apply directly to dissolved hydrogen or injected positrons,
the situation with atomic impurities is rather different. Here the pseudo-
potential cancels off most of the potential at small r, where the potential
of a point charge would be very strong and where the non-linearities
reported by March and Boardman presumably came from. We therefore
expect the linearity approximation to be much better for an impurity atom,
substitutional or interstitial, than for a bare charge such as a proton or
positron. It should also be noted that the approximation should be about
equally good for (pure) polyvalent metals as for monovalent ones.



454 V. Heine and 1. Abarenkov on a

Although the strength of the potential increases with Z, the relevant
parameter is the ratio of the strength of the potential to the Fermi energy,
which is proportional to (ZQ)Y, and varies only a factor of two between
the extreme cases of lithium and bismuth.

The purpose of the present calculations is to test the above method of
setting up the effective potential on the band structure of the alkali metals.
In § 2 we test first by itself the model potential for the inside part of the atom,
retaining the older Wigner-Seitz construction of the potential between the
ion cores as modified by Ham (1962). Since Ham calculated the band
structures using such a potential and using a combination of the quantum
defect and Kohn-Rostocker methods with the same spectroscopic data as
in I, we expect to reproduce by our model potential exactly the same energy
spectrum. Employing only perturbation theory, we do indeed find band
gaps very close to Ham’s, with a total amount of labour which must be
some orders of magnitude less.

Having found a quick and satisfactory method of treating the potential
from the core of the atom, we can explore different constructions for the
potential in the regions in between. In §3 we set up the Screened Ion
potential (2)-(5), calculate the matrix element which determines the dis-
tortion of the Fermi surface, and compare it with that given by the Wigner—
Seitz—Ham (WSH) potential. With an energy- and angular-momentum-
dependent model potential, this matrix element is of course not simply
equal to half the band gap. We find that the Screened Ion potential gives
congiderable less distorted Fermi surfaces for K, Rb and Cs than Ham’s
results, in accordance with the suggestion of Bienenstock (1962), and thus
much better agreement with experiment (Okumura and Templeton 1962,
1963, Shoenberg and Stiles 1964).

In §4 we give our version of how to calculate e. Results on polyvalent
metals, the noble metals and the resistence of liquid metals are reserved
for another publication (hereafter called III).

§ 2. TEsT oF THE MODEL POTENTIAL

As already mentioned, we set up the WSH potential for the alkali
metals, equivalent to that used by Ham (1962) modelled on the Wigner—
Seitz approach. Inside R;, the radius of a sphere inscribed in each atomic
polyhedron, the potential is that of a bare ion, for which we use the model
potential (7) with B, chosen at some convenient value less than R;. The
values of the constants Ay(E), 4,(E) and A,(E) were taken from the
tables in I, and we put :

A(E)=AyE) forl=3. . . . . . . (8)
This approximation should introduce negligible error since (a) it should be
about right, (b) the wave functions in the filled band are expected to con-
tain very little f and higher components, and (c) these components do not
feel the potential near the nuclei much because of the centrifugal barrier.
(8) should be compared with Ham’s assumption which appears to be
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A;=0 for 1 >3. A further difference is that we have not incorporated a
‘ polarization correction’ in calculating our 4,(E) (see §3).
With assumption (8), (7 @) becomes for 7 < By, :

Vy=—A3—(Ag—As)Py—(4;—A)P,. . . . . (9)

In the calculation of a matrix element (k,|V,|k,) between plane wave
states k, and k,, the 4, in (9) and the part of V,; at r > Ry are ordinary
local potentials and present no difficulty. The P, and P, in (9) pick out
from the plane wave exp (7k,.r) the components :

jolkyr) and 3ijy(kyr)coskyr, . . . . . (10)

respectively, which because of the overall spherical symmetry of (9) combine
only with the corresponding pieces of exp (tk,.r). In the region between
the inscribed spheres, Ham put the potential equal to a constant C, which
is equal to the mean value of — 1/r between an inscribed (radius Ry) and an
atomic sphere (radius B;). The potential in the whole metal therefore is :

C+3v(E;r—R), . . . . . . . (11)
with v(EB;r)=Vy—C forr<RB;
=0 forr>B;. . . . . . (12)

Let Es and Ey, be the energies of the first s-like and p-like states at the
centre ky of the Brillouin zone face. With the abbreviations :

vo(E) = (kylo(B)|ky)
and ... (18)
vy(E) = (—kylo(E)|ky),

the parameter V,(N) tabulated by Ham, which is half the band gap,
becomes:

Vi(N)=3(Es— Ep)
= §[vo(Es) +v,(Es)] — $[vo(Ep) — v1(Ep)]. e (14)

If we asume v(E) varies sufficiently nearly linearly between Es and Ep, (14)
becomes :

Vy(N)=4(Es —Ep)% + vl(Es;Ep)

=vl<F—J—s——-‘2_—E9)x[l—-av0/aE]—1. N £ 1))

We see therefore that the energy-dependent potential introduces a cor-
rection factor, and it is not adequate to use some of the simple formulae of
the original nearly-free-electron approximation. Incidentally, the varia-
tion of (k|v(E)|k) with k and E contributes to the effective mass in the
band in a similar way to (14), but we do not calculate this effect here.
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We can improve on (15) by taking for v, not just the matrix element (13)
itself, but by including all second-order effects (Pryce 1950) :

(—kylvlky +K;)(ky+Kijolky )
ky®—(ky+K;)? )

The summation is over all reciprocal lattice vectors K; except 0 and — 2k,,.

The numerical results are shown in table 1. The first line is the lattice
constant, which is close to the equilibrium one and is the value used by
Ham (1962). The next line gives the energy }(Es+ Ep) as required for
calculating »; in (15) and (16). In a complete band structure calculation,

v =(—kyllky)+>’

(16)

Table 1. Band gap with WSH potential
Li Na K Cs Rb

a 6-65 8-11 10-05 10-74 11-46
HEs+ E) —0-311 —0-300 —0-278 —0-267 —0-253
R 28 34 4-2 4-6 4-8
v l\gonver ence 0-0951 0-0065 0-0060 | —0-0145 | —0-0200
L rdor 00973 | 00085 | 0-0082—|—0-0178 |—0-0259
corrections 0-0982 0-0064 | —0-0087 |—0-0184¢ | —0-0271

0-0983 0-0064 | —0-0088 | —0-0184 |—0-0272
By 20 2-2 2-4 32 34
v, with second order 0-095 0-007 —0-007 —-0-014 +0-009
(1 —0vy/OE)L 1-00 1-07 1-16 1-21 1-27
¥, () [WSH] 0-098 0006 |—0010 |—0022 |—0034
¥, (V) [Ham] 0-101 0008 |—0-016 |[—0028 |—0-042

Note : distances are in atomic units and energies in rydbergs.

this energy should be adjusted self-consistently in accordance with the
position of the band. In our case we estimated the energy of the bottom
of the band for sodium self-consistently as —0-600 Ryd, compared with
Ham’s value of —0:604 Ryd. Thus it is clear that our method gives the
absolute position of the bands in substantial agreement with Ham’s
calculation, and the values of }(Es+ Ep) were therefore taken from his
work. Nextin table 1 come the value of Ry, the value of the simple matrix
element v, (13), and the effect of summing over 25, 123 and 341 reciprocal
lattice vectors in (16). Also given is the corresponding result (341 K/'s)
for a much smaller value of Ry, : the potential is then far from smooth, and
it is surprising that the second-order theory (16) still gives such consistent
results in all cases except caesium. Actually it is not quite fair to compare
v, itself ; it is the whole product (15) that should be invariant to choice of
R,. However, we may conclude that cutting off the series (16) at second
order is quite satisfactory except possibly for caesium. In the latter case
we know from the work of Ham (1962) that the lowest d-state falls only
just above Ep, so that we expect (16) to be somewhat inadequate and to
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underestimate the band gap. The following lines in table 1 give the v, cor-
rection of (15) calculated for the larger Ry, and the final value of V,(N)
from (16) and (15). Comparison with Ham’s (1962) results shows agree-
ment to about 0-005Ryd except for caesium (0-008 Ryd). We regard
this as a very satisfactory and a good check on the concept of the model
potential, on the usefulness of the various approximations and on the
computer programmes.

§ 3. THE ScREENED IoN POTENTIAL

We proceed to compare the screened ion potential ((2)—(5) with the
Wigner—Seitz—Ham potential and with experiment. We calculate not
the band gap but the matrix element determining the distortion of the
Fermi surface in the direction of the zone faces. The latter is more directly
determined by experiment and incidentally avoids the #, correction
factor in (15). We require the matrix element.

V(Ep) = {ky|V(Ey)|k, )+ (second-order and higher corrections), (17)

where k, has magnitude k (the Fermi radius) in thedirection k4, k, =k, — K,
and K, =2k, is the first reciprocal lattice vector. Table 2 shows first of
all the results for V,(E}) using the WSH potential (12) for V. The second-
order corrections were not caleulated but simply taken from table 1,
which is not quite right but should be within our limits of error, particularly
for comparison purposes. Similarly the differences in table 1 between
our values and Ham’s have a systematic trend : to some extent they arise
from neglect of third-order terms as already discussed in connection
with caesium, and we have also added them in here as ‘a higher order
correction’.
In the screened ion method (2)—(5), we need :

QIVI1Y=2|Vy+ Voo + Vo1 el Ky). . . . (18)

Vy is the full model potential (7), not cut off at Ry like the WSH potential
(12). Vyo and Vi, are described below. All four quantities in (18) are
shown in table 2, € being taken from §4. The second-order and ‘higher’
corrections were again taken from table 1.

In calculating A4,(E) for Vy, we have not incorporated a ‘polarization
correction’ such as used by Ham (1962) and by Brooks and Ham (1958).
What such a correction would amount to is adding a polarization term
b/r* to (7b) outside Ry, with a consequent change in A4,(¥) inside B, such
that the whole potential still reproduces the atomic energy levels correctly.
When one cuts the potential in half and throws one half away as in the
WSH method, such a procedure may be physically significant. How-
ever, in the screened ion method we use the whole of V. In view of the
rather arbitrary choice of Ry and of the form inside Ry (see I), it would
appear pedantic to alter the shape of the potential slightly by a polari-
zation correction. If the screened ion method is to be at all useful, its

P.M. . 2H
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results must be roughly invarient under changes in the shape of the poten-
tial, as we have already tested with respect to changes in Ry,.

In (18) V is an ‘orthogonality’ correction, omitted in § 1, coming from
the non-uniformity of the conduction electron density. The mean charge
density of a conduction state is reduced inside the ion core due to the
oscillations of the wave function, and is correspondingly enhanced, by a
factor 1+« say, in the rest of the atomic cell to preserve normalization.
‘We therefore have an additional uniform negative charge density of «Z/Q,
and an extra positive charge of «Z at each atomic site spread over a radius
about the size of the ion core R.. The contribution to the Kth Fourier
component of the potential is :

24maZ[ xcosx —sinx
VoK)= Q’;{z[ - :lFKR Ryd. . . . (19)

In the past the value of « has usually been estimated from the orthogon-
ality terms of the orthogonalized plane wave method (Heine 1957, Harrison
1963). We expect a to be proportional to the volume of the core and have
used :

a=(Re/Ba)®, . . . . . . . . (20)

with R, taken from Seitz (1940). Since the whole correction is quite
small, the precise value of « does not matter very much. However, the
correction becomes more significant for polyvalent metals and (20) will be
discussed further in III in connection with aluminium.

We return to ¥V, in (18) which is a correlation correction arising as
follows. In the screened ion method, the conduction electrons to a first
approximation are treated as a free electron gas. The exchange and
correlation hole follows the electron around and contributes an effective
potential Vi, (k) which depends on % but not on position. It is of course
large, comparable with the band width, and variations of it may be
important. The periodic potential causes various complications. First
of all exchange with different occupied electron states is additive, and the
exchange with the core orbitals is included in V,. Secondly, however,
correlation is not additive. At high electron densities it varies only very
slowly (Gell-Mann and Brueckner 1957), and for our purposes we may
regard it as approximately saturating at some value ~0-1Ryd inside the
atomic core. The relatively constant figure of about lev correlation
energy is also well known in atomic and molecular calculations. If we
regard the core as a dense electron gas, we have that Vy includes a cor-
relation hole of ~ —0-1Ryd and Vg,(k) one of —0-08 to —0-06 Ryd (Pines
1955, p. 398), whereas we only want a total correlation hole of ~ —0-1 Ryd
when the electron is in the core. We therefore introduce a correlation
correction potential :

V ¢o(r) = |correlation part of V5| for r< Re }

=0 for r> R, (21)

2H2
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to be included in (18). Thirdly, the periodic potential causes a periodic
fluctuation in the density of the electron gas and hence in Vy(k). This
effect is included in. the theory of ¢(K) in §4. Fourthly, there is the varia-
tion of Vy,(k) with k round the Fermi surface if the latter is not a sphere.
If one looks at the simple formula for Vi.(k) given by Pines (1955, pp.
407-8), one findsit hasalarge variation with £. However, when calculating
the total band width (Pines 1955, p. 411), one finds most of this is cancelled
off by other effects. Experimentally the band widths are very close to
the simple Hartree values (Fletcher and Larson 1958). So to a first
approximation Vg.(k) is constant. The most recent calculations (Rice
1963) indicate that 0V ,.(k)/0k increases the density of states at the Fermi
level less than 109, and effects any distortion of the Fermi surface by the
same factor, which for present purposes is negligible (table 2). Fifthly,
the wave functions are not plane waves exp (tk . r) but if for instance the
Fermi surface touches the zone face one has linear combinations like
sin(ky .r) or cos(ky.r). These do not have the same exchange energy
with some other state in the band, but when summed over the whole band
such effects seem to cancel out (Falicov 1962).

The final results for V,(Ey) with the screened ion potential are shown in
table 2, to be compared with those from the Wigner—Seitz—Ham potential.
The distortion of the Fermi surface depends on V,. We see that the
screened ion method gives lithium a slightly more distorted Fermi surface,
but not enough to resolve the paradox of the x-ray spectrum (Ham 1962).
We also see that potassium, rubidium and caesium should have more
nearly spherical Fermi surfaces than calculated by Ham, while sodium
receives a slight but noticeable distortion. To obtain quantitatively the
bulge Ak, of the Fermi surface towards the zone faces, we plotted Ham’s
(1962) values of Ak,,, against the values of V,(Eg) calculated from the
WSH potential (table 2). For |V,|/kg? < 0-25 they lie very nearly on the
curve :

Akyo _. V_12
ky _04kF4’

which was anticipated theoretically. The values of Ak, for the screened
ion potential were then read off the graph. The results in table 2 are
quoted with an error in V, of 0-03 k2, i.e. ranging from 0-010 Ryd for
lithium to 0-003;Ryd for caesium, which is a reasonable guess. It is
intended to cover the uncertainties of the potentials as well as approxi-
mations in the computations, both of which should be down to this magni-
tude now. The values of lattice constant used in table 2 are the same as
in table 1 and are sufficiently near the equilibrium ones for the results
not to require further correction on this account (Ham 1962). Finally in
table 2 we show experimental results. Where the experimental informa-
tion does not refer to Aky;, directly, we have used Ham’s results on the
ratios of area-, mass-, and radius-anisotropies to reduce the data to state-
ments about Akyy,.

(22)
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In conclusion, we note that the Screened Ion potential gives substantially
better agreement with experiment than the Wigner—Seitz—Ham potential.
The error in the Wigner—Seitz approximation for the exchange and cor-
relation hole is therefore sufficiently large (about 0-01 Ryd) that we can
probably say now for the first time it leads to significant disagreement
with experiment. We regard the results both as an improved theory of
the band structure of the alkali metals, and as a validation of
the model potential plus screened ion approach to the potential. How-
ever, the major discrepancy (about 0-06 Ryd) with the apparent soft
X ray spectrum of lithium leaves a nagging doubt. Aside from this, the
accuracy achieved is a few thousandths of a rydberg. As for instance the
magnitudes of the orthogonality and correlation corrections show, to
advance significantly beyond this raises several problems of self-consistency
and many-body effects.

§ 4. THE DIELECTRIC CONSTANT
For the dielectric constant or screening factor in (2) we use :

1,2
=14+ X(gm*(1 - ), ...
€(q) =1+ X(g)m*( +°‘)< q2+kF2+ks2>’ =
(2 \ by Bl
. X (42N (2 ¥ I ! .. (24
where (9) (qu )(3 F°> <%+ 8qky n|2kF+9|’ -

and Ky, is the free-electron Fermi energy #%k2/(2m). The simple Hartree
approximation for the dielectric constant is 1+ X(g), and gives $E, for
the matrix element (5) in the limit as ¢—0.

The last term in (23) represents a correction for exchange, calculated by
Sham (1963) in the spirit of Hubbard (1957, 1958). When going beyond
the Hartree approximation, it is necessary to distinguish three different
screening factors : (a) when the field is set up by some ‘external’ charge
and measured by another ‘external’ charge, by which we mean that
neither of them is an electron ; (b) when the field is generated by an ‘ex-
ternal’ charge felt by an electron which can exchange with the conduection
electrons, and in particular with the screening cloud set up by the ‘ external’
charge ; (') when the field around an electron is felt by an ‘external’
charge, this situation being presumably related to (b) by reciprocity;
(c) the screening factor for the interaction between two of the conduction
electrons. We are here concerned with (b) whereas Hubbard (1957-8)
considered (c), which explains the slight difference from his result. For
the screening constant ks which screens the exchange, we have used

ks? =2k, /m (atomic units)

= %(kSZ )Thomns—Fermi (25)

as a reasonable estimate between the Thomas—Fermi and Bohm-Pines
values (see also Sham 1963).
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Next we consider the effect of having Bloch states or at least orthogonal-
lized plane waves instead of free electrons. In (3) and (4), the S(g) for
small ¢ comes from the long-wavelength density fluctuations due to
thermal vibrations. The matrix element is well known from the theory
of the electron—phonon interaction to have the limit :

Vion(q) > Z

—E(q—)masq—w, o .. (26)
where n(E}) is the density of states per atom at the Fermi level (Ziman
1960, p. 194). We therefore introduce m* in (23) as a density-of-states
mass factor, and the factor (14 «) to cancel the fact that our orthogonality
correction (§3) has added an extra charge Za around each atomic site.
When gq is not small, we want m* to represent an average effective mass
over the whole band, since it comes from a summation of type :

1
gE(k)_—E(kﬂj,.......m)

where k is inside the Fermi surface and k +q outside (Cohen and Phillips
1961). We have in table 2 therefore used the mass values calculated by
Ham (1962) for the spherical part of the band. For ¢ > ky, the factor 1+«
cannot correctly represent the effect of using orthogonalized plane waves
instead of free electrons. However, for ¢ equal to the first reciprocal
lattice vector, ¢(q) is already down to 1-1 to 1-2. If we say that the wave
functions differ in charge density from plane waves by about 109, then
this suggests an error in ¢(K) of 19, to 29,. Rather larger, perhaps as
large as 109, is the error from neglecting the non-local nature of the
potential to be screened (Harrison 1963).

We now discuss whether there are further many-body effects. For many
applications this may be somewhat pedantic at the present time. How-
ever, the electron—electron Coulomb interaction can increase the density
of states in (26) by up to 109, (Rice 1963) and give quasi-particle renormali-
zation factors N, (Langer 1961 ; 2, in the notation of Noziéres 1963) of
0-6 to 0-8. Likewise the interaction via virtual phonons increases the
density of states measured in the low temperature specific heat by about
309%. If in liquid sodium for instance we hope to use the present theory
to calculate the resistivity to better than a factor of two, then we must
take some account of the many-body effects, because most of the scattering
occurs at relatively low g where correction factors in (26) are important.
Our conclusion is that m* and (28) should contain the Coulomb corrections
but not the virtual phonon one.

As regards the Coulomb interaction, this result can be proved by the
Landau theory of quasi-particles. We apply a potential Vapplieq
expi(q.r—wt), which sets up a distribution of quasi-particles dn(k;r,¢).
An incident quasi-particle feels a scattering potential which is the sum of
Vapplied, the electrostatic Hartree field determined from 8n by Poisson’s
equation, and the Landau field Y f(k, k’)én(k’) determined by the Boltzmann

-
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equation. Here f(k, k') is the interaction energy of two quasi-particles.
The equations are all set out by Noziéres (1963, pp. 16, 18, 21-3) and can
be solved self-consistently. The result is an effective scattering potential

Vappiiea/€(q)

with (28)

where n(Ey) is the single-particle density of states including all inter-
actions with the ground state, The following less sophisticated deri-
vation is based on the deformation potential. We consider an electron
moving from an unstrained piece of material (band structure K(k)) to a
strained region with band structure £,(k). In the limit of long wave-
length, each region is electrically neutral but a dipole layer of potential
Vpy, is set up between them. Vy, is determined by the condition that the
Fermi level is the same in both regions ;

By =Eykpo)=Vpr+ By(kp) + 2f(k, K )on(K), . . . (29)

where the last term is the interaction energy with the extra distribution
dn(k) of quasi-particles in the strained region. E,(ky,) is given by :
— ZA
E (ky)=Eylkge) +0yE ———, . . . . . (30
1( Bl) 0( FO) Y n(EF) ( )
where the term 8, F represents the change £,(k)— Ey(k) in the form of the
Hartree band structure, averaged over the Fermi surface, and the last
term comes from the change in the electron density and hence in by due to
the dilatation A : see Ziman (1960, pp. 192-3) for details. We therefore
have :

—5,E—3f(k, K)on(k). . . . . (31)

Vou n(Eg)
We now imagine a classical kind of scattering calculation with an electron
wave of fixed frequeney (energy) incident from the unstrained region onto
the strained one. The energy (frequency) remains constant, and the
scattering is produced by the change in wavelength between the two
media, the scattered wave being required to match the derivative of the
wave function at the boundary. We therefore consider an incident
electron with wave vector k,, changing its wave vector to k, in the strained
region. The equation determining k, is :

E=Eyk)
=Vout+Ei(k) + 2 fky, k)Bn(k’). . . . . . (32)

The effective scattering potential V; is now defined as that potential,
which when placed as a perturbation in the unstrained medium with band
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structure Zy(k), produces exactly the same change in wave vector : i.e.
E=Eyky)=Vs+Eyky). . . . . . . (33)
Combining (31)-(33), we have :

VS=LA, . . . . . . - . (34)

n(Ey)
which leads again to (26) since for small q the structure factor S(q) of (3) is
simply the Fourier transform of the dilation A(r) (Ziman 1961).

We return now to the effect on n(E) of the excitation of virtual phonons.
As is well known, it changes the effective band structure E(k) and enhances
n(E;) as measured by the electronic specific heat by some 30%, How-
ever, it only produces a narrow kink in E(k) of width fiwp (wp=Debye
frequency) just at the Fermi level. This is seen for instance in the theory
of superconductivity or is evident from the fact that the total energy of
the system is only changed to order m/M (electron to ion mass). In (27)
the excitation by wave-vector q carries the energy right across the kink
for all but exceptionally small q’s. Alternatively in the argument of
(29)—(34), the kink in E(k) rides up and down with the Fermi level and
does not contribute to the last term in (30) which is the change in Eg.
We conclude therefore that the virtual phonon correction to the density
of states should not be included in m*, and must be subtracted out before
experimental values of m* are used.
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