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Effects of Zeeman splitting and spin-orbit scattering on the resistance in two-
dimensional disordered systems are theoretically studied. The field dependence of
the magnetoresistance is shown to have the characteristic anisotropy. The present
theory explains the qualitative features of the experimental observations by

Komori et al. in Cu granular films.

§1. Introduction

Recent scaling theory by Abrahams et al.l
and Anderson et al.?) have demonstrated that
two-dimensional metals are not truly metallic
but that the conductivity of a macroscopic
sample vanishes at absolute zero if electrons
are scattered only by normal impurities. The
precursor of this complete localization at 7=0
is seen at higher temperatures as a small
correction to the metallic conductivity, which
depends on temperature logarithmically.’~"
This logarithmic region can be called as weakly
localized regime (WLR). Since a perturbational
treatment from the metallic limit is applicable,®
we can perform rather detailed comparison
between theory and experiments in WLR,®
and it is now known that the logarithmic cor-
rection is sensitive to such scattering mech-
anisms as inelastic,” spin-orbit,>"'" para-
magnetic impurity!®!Y) and mutual inter-
actions.'27 14

One of characteristic features of WLR is
the existence of magnetoresistance (MR). In
the case of Si-MOS® and cesiated Si surface®
MR is negative and depends only on the com-
ponent of the magnetic field perpendicular to
the interface. This experimental fact has been
explained by the theory which takes account of
scattering due to normal impurities and some
unspecified inelastic scattering.5-1

Besides interfaces of silicon, recent experi-
ments by Komori et al.'®'®) demonstrated

that the resistivity of Cu granular films of
average thickness around 30 A also exhibits
the characteristic temperature dependence of
WLR, e.g. samples with sheet resistance of
several hundreds Q show In T correction to the
resistivity. However, MR in this system has
turned out to be not so simple as in MOS:
It is finite even if the magnetic field is applied
parallel to the surface and, moreover, MR in
a perpendicular field is positive at weak fields
and becomes negative at higher fields.

The purpose of this paper is to explain such
features of MR in WLR. Basic assumption
here is that electrons in the metallic granular
films are represented as two-dimensional elec-
trons with some effective mass and potential
scattering. Since spin-orbit scattering is known
to play a role in an isolated fine particle of
Cu,'” we also assume scattering due to spin-
orbit interaction in the two-dimensional elec-
trons. The existence of finite MR in a parallel
field indicates the importance of Zeeman
splitting, and we will investigate the interplay
between Zeeman splitting and spin-orbit scatter-
ing. Such interplay has been investigated in
superconductors in a magnetic field.'® In the
former discussions of MR!Y) this effect of
Zeeman splitting was neglected.

In §2 we define our model and calculate MR
in a magnetic field applied parallel to the
surface. MR in a perpendicular field is evaluated
in §3. In §4 we show some examples of numer-
ical results and compare these with experi-
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mental data by Komori et al. In Appendix A,
the theoretical expression of MR in the presence
of both spin-orbit scattering potentials and
paramagnetic impurities is given. In this paper
we take units hA=kz=1.

§2. Model and Magnetoresistance in a Parallel
Field

Our model is two-dimensional independent
electrons scattered both by normal impurities
and spin-orbit interactions. The actual inter-
faces between metallic fine particles of a
diameter around 30 A,'%-1%) where normal and
spin-orbit scatterings take place, are represented
as impurities for convenience, since the loga-
rithmic correction to the conductivity in WLR
is not sensitive to the details in an atomic scale.
Then, our Hamiltonian is written as

1 e \?
”ﬂ%(”#)
+3 14— 4 4
; +4m202 P+c o x
@.1)

where m and g are the effective mass and the
g-factor of electrons, respectively, 4 is the
vector potential, ¢ is the Pauli spin matrix,
and u(r—R)) is the potential by an impurity
located at R;. We note that m may be different
from the free electron mass m, because the
conduction is partly due to the tunneling
between grains. Because of the same reason
the Fermi energy, &g, may be considered to be
a parameter.

The Fourier transform of the impurity
scattering potential given in eq. (2.1) and the
relaxation time are written as

xu(r—R,)+%uBH-a,

uk—k)=uo+iu(kxk')-e, (2.2)
Tl =gt o L b, (23)
15 ' =2nuinN(0), 2.9
T = 202, ENO) (R x K2,

(i=x,y, 2), 2.5)

where (k x k')? denotes the i-th component of
the angular average, N(0) is the density of
states of electrons at the Fermi level, and n;
is the number density of impurities. Both N(0)
and n; are defined per unit area in the film.

Magnetoresistance in Two-Dimensional Disordered. . . .

2517

It should be noted that one-electron states here
are essentially three-dimensional, since the
Fermi energy is much larger than the energy
spacing of the quantized perpendicular motion.
We take coordinate axes x and y in a film and
the z axis normal to the film, and then 7, ,=
Ty, However, 7,, , may be different from others.
Instead of the three-dimensionality of one-
electron states, the conduction process can be
treated as two-dimensional because the distance
L, an electron diffuses between inelastic colli-
sions is estimated to be L,~210A for our
choice of parameters for Cu granular films
(Appendix B) and then the relationship, (L,>
film thickness, grain size), is satisfied.

Let us first examine the case where a magnetic
field is in the film plane, e.g. x-direction. In
this case, the effect of the field on orbital
motions can be ignored as far as L, >film
thickness and w_ 1«1, where w,=eH/mc is the
cyclotron frequency. However, the cffect of
Zeeman splitting given by the last term in eq.
(2.1) should be taken into account. The electron
Green’s function with spin v= +1 is written as

: -1
Gv(ka En) = <i8n_ ék,v + 2-1_1. sgn 8n> > (26)

k2

g
ék,v= 5+ 5 vusH—¢p,

2m 2 2.7)

where ¢,=2nT(n+1) with n being integer. In
order to evaluate the correction to the con-
ductivity in WLR, we have to determine the
diffusion processes defined in Fig. 1. In the
figure, the Greek letters denote the spin indices
of electrons, and the crosses denote impurity
potentials, eq. (2.2). The upper propagators of
electrons have the frequency ¢, and the lower
ones have ¢,—w,. The equation in Fig. 1 is
written as

o] B a B a u B
i : i
b= x4+ x
11 H 1
11 H H 11
7 6 7 6 ¥ v 6
Fig. 1. Equations for the diffusion propagators.

The upper propagators of electrons have the fre-
quency ¢, and the lower ones have &,—m,;, where
£,(en—®;)<0. The Greak letters denote the spin
states. The crosses denote impurity potentials,
eq. (2.2).
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F“ﬁﬂ&—[‘aﬁ yot Z Fau va vruﬂ,vaa (28)
Faﬂ,ya=(70 0ap0ys— Z T10si0 ;ﬁayﬁ)/zﬂN(O) 2.9
Huv=§ G(—k, &,— )G (k+4,&,). (2.10)

If &,(e,— ;) <0 and |w,|t<« 1, Dg*t« 1 and ht«1 where D=ggt/m is the diffusion constant and
h=(g/2)ugH, we obtain

11, ,= 27N (0)e(1 - |w,|t— Dg*t)=11(g, w), (2.11)
I, _,=2nN(0)t(l — |o,|t— Dg >t + 2ivhr). 2.12)
In terms of Iy, 5 the quantum correction to the conductivity in the order of (ep7) ! is given

by

e? qc
)= = oeNO) | @0y o+ T AT AT, @Y
0

where g,=(Dt)”!/? is the cut-off momentum. By solving egs. (2.8) and (2.9), we obtain

(x—2)+(x+y—22)(y—x)I(g, ®)

Povior=l - =G0, )Y - =27 Tq, o)’ (2.19)
| (y+2)
e L (e e T P
where

1
x=2n:—N(_O)TO’ (2.16a)

1
y=m(5)r—s,,;’ (2.16b)
z= ! = ! . (2.16¢c)

2rN(O)tg,,, 2nN(O)tg,,,

Using eqgs. (2.11) and (2.12) in egs. (2.14) and (2.15), and replacing |w,| by the inverse of the
energy relaxation time t,, we find

o(H) 1 (1 T 4z 1 T 2y+2)
oo _ZnEFT{Zln (‘ca+x+y——2z>+21n (15+ x—y

1 [L’(ﬁ_; (”*/—1‘_”’)]}

+ In .17
2/1=y, Lz (y+z -
—+ (52 )a-vT=m)
where 6, =¢pTe?/n and y ;; is defined as follows,
y,/—(Zhrx i) . (2.18)

The last term of r.h.s. of eq. (2.17) is due to the spin-flip processes, which depends on magnetic
fields. In the absence of the field, ¢'(0) is given by

a0 1 T 2(y+2) 41,z

o~ —27[8Ft{ln <12+ X +21 1+ ty—22)) " 2.19)
In ordinary cases of weak spin-orbit scattering, i.e. y, z<x, eq. (2.19) takes the following limiting
values,
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1
e <1_> for = and (2.20a)
g ’(O) 27'581::7: T . e X X
o 1 X—y 1 41,z Ty z
2mepT {]n (2(y+z)> 3 (r(x +y—22))§’ for . % and . (2.20b)

On the other hand, ¢'(H) in weak fields is given by
40'(H) _o'(H)—0'(0)

oo o,
S/ { P 1— y+z 4
B 87‘581:’5{(36 J))< >(1+1 2(% <y+z ) In (1+2( )(x_y>>}+0(h ).
y ?> x_‘y> @.21)
If ©/7,»> (y+2)/(x—p) is satisfied, eq. (2.21) leads to
AG’(H)_ 1 ‘Es(y+z)
P Ak = pompe { C L 2.22)

As seen in egs. (2.21) and (2.22), MR is positive; the resistivity increases quadratically in weak
fields and it saturates once 21, !. The total amount of variation due to the field is
do’(0) 1 .‘ca(y+z) T y+z

o = 27‘681:17 t(x—y)’ for T_e» xTy (223)

§3. Magnetoresistance in a Perpendicular Field

When the magnetic field is applied perpendicularly to the film, the equations for the diffusion
processes (Fig. 1) are solved as follows:

AT L s
Pt Tl e T — (x—p)(g, @)
1 2 !
=—2nN(O)T[Dq21+Iwzlt+ gcy_-l_;)] , GD
- _r 3 -2z
+omt -+’+-‘(1—(x+y)n+_)(1—(x+y)n_+) (2z)2H+ n_,
1
[Dq THloft+ oo (1= \/l—n)] } (3.2)
where h=(_x++—2z ht) , (3.3)

For this geometry the orbital motion is also affected by the field and Dg? in egs. (3.1) and (3.2)
is to be replaced by 4Dm(N+1)w, as far as w,t« 1, where N is the Landau quantum number. The
correction to the conductivity, eq. (2.13), is now given by the summation over N instead of in-
tegration over ¢ and the result is

a:(,:[)=~2niFt[¢(%+;1;)—t/f<%+X) 2\/1——n< <1+Y+> ¢<%+Y_>>:I, X))

where (z) is the di-gamma function, a=4Dmw,, and

i)

171 1 2 ‘
Yi=al:t—a+;<;17}i_22)(li'\/ 1_71)]~ (3.6)
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In the absence of the Zeeman effect and in the case of weak spin-orbit scattering (y, z«x), eq.
(3.4) is reduced to the results in ref. 11.* If we assume 7, =175, , =T, . =15, and 7,71, €q. (3.4)

yields the following in weak magnetic fields,

Ac'(H) 1 {(ms)2

0o 2mept

The first term of r.h.s. in eq. (3.7) is due to the
orbital motion of electrons, whereas the second
term is due to the Zeeman effect. In a weak
perpendicular field MR is mainly determined
by (at,)* and is stronger than that for a parallel
field, where the (kt,)> dependence is expected
(eq. (2.22)). As seen in eq. (3.7), the relative
magnitude of 7, and 7, i.e. 7,/t,, S (/3—1)/4=
0.183, determines the sign of MR in weak
perpendicular fields. If spin-orbit scattering is
weak, 71./1,<(3—1)/4, MR remains to be
negative for any strength of the field, whereas
in the case of stronger spin-orbit scattering,
W3-1Djd<rt,/t,, MR is positive in weak
fields and changes sign at higher fields.

§4. Numerical Results and Discussions

Komori et al.'® have measured MR in Cu
granular films with various sheet resistances
Rp. As a typical example we consider the film
with R;=2809.21 Q at 2.02 K. The temperature
dependence of the sheet resistance is shown in
Fig. 2. The field dependence of MR is shown in
Fig. 3 for both geometries of parallel and
perpendicular fields at 7=1.67 K and 2.97 K.
The characteristic features of MR are the
following: (i) In a parallel field, MR increases
with increasing the field, attains a maximum at
several tesla and then decreases. (ii) In a
perpendicular field, MR is positive at low
fields and then changes sign at H~1 7.

We have numerically calculated MR by using
eqs. (2.21) and (3.4). The relative MR (which
is given in terms of the magnetoconductivity
Ae’(H)[6'(0)) is shown for various values of 7,
in a parallel field in Fig. 4 and in a perpendicular
field in Fig. 5. Since direct measurements of
the parameters 14, 7,,, and m have not been
done, we tentatively took the values t5'=
100K, t;'=3K, and m/my=3.3 for our

so

qualitative comparison with experiments. We

* Inref. 11, 77! should be revised as
1 2 2
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Fig. 2. Experimental data by F. Komori, S.
Kobayashi, Y. Ootuka, and W. Sasaki (private
communication) of the temperature dependence of
the sheet resistance in a Cu granular film.
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Fig. 3. Experimental data by F. Komori, S.

Kobayashi, Y. Ootuka, and W. Sasaki (private
communication) of the magnetoresistance ( —Aa’D

(H)) in a parallel field (C] and M) and in a per-
pendicular field (O and @) in the film shown in
Fig. 2.

may conclude that our theoretical results of
Figs. 4 and 5 are in rough agreement with
experimental results of Fig. 3. Especially the
existence of positive MR in weak fields for both
geometries of the magnetic field is understood
as due to spin-orbit scattering weaker than
inelastic scattering. Such positive MR is not
clearly seen in Si-MOS. The Figs. 4 and 5 also
predict the temperature dependence of positive
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l AC(H)
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75 = 100K

08k 1= 3k A

0 1 2
H//(T) .

Fig. 4. Theoretical results of the magnetoresistance
(—40'(H)) in a parallel field H,, for various values
of 7, for the choice of 75!'=100K and 7;,'=3 K.

MR. The temperature dependence in the
perpendicular field was experimentally con-
firmed, but the definite experimental conclu-
sion in the case of the parallel field has not
been drawn.

The resistivity is proportional to In t, in the
range 7K <171 <20K for the above choices
of 7 and 7,. This Int, dependence will be
consistent with the experimentally observed
In T dependence in the temperature range
1.3 KST<4K if 1,<T7? with p~1. In some
samples'® the In T dependence is observed in
the wide temperature range 0.1 K<T<10K.
Within our present model we need very weak
spin-orbit scattering in such cases, and we
expect positive MR in the weak perpendicular
field on the low temperature side in the range
and negative MR on the high temperature side.
Positive MR may be seen in the parallel field
in the whole temperature range.

Our theory fails to explain the negative MR
observed at higher fields applied parallel to
the film. One possible mechanism for this
negative MR is the reduction of the inelastic
scattering rate, 7,, due to a small amount of
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Fig. 5. Theoretical results of the magnetoresistance
(—406'(H)) in a perpendicular field H, for various
values of 7, for the choice of 75 '=100K, t5;' =3 K,
and m/my,=3.3.

paramagnetic impurities,??*?")  which are

known?®?) to exist in the oxide layers of Cu
grains. This 7, affects the classical conductivity,
0o, as 0o=(e%eg/m)(t” 1+, 1)~ 1. Existence of
such paramagnetic impurities, however, does
not change the qualitative conclusions of
MR in WLR drawn in the text as is shown in
Appendix A.

Quite recently, Giordano®*® has observed
the resistance rise in AuPd films in a magnetic
field of 75kOe applied in the plane of the
film at 4 K. These experimental results may
also be explained by the present theory.
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Appendix A
In this Appendix, we examine the effect of magnetic impurities on the magnetoresistance (MR).

The impurity potential is written as

uk—k")=uy+iu(kxk')-6+1IS-a,

A-1)
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where S is the operator of an impurity spin. The relaxation time due to eq. (A-1) is given by

tTi=ggt Y (ks (A-2)
i=x,y,2z
T4 =2nNOn,I*(SY?, (i=x,y, 2), (A-3)

where 1, ; is given in eq. (2.5) and (S%)? denotes the thermal average of (S%2. In order to evaluate
the diffusion processes given in Fig. 1, we first write the function I Sp’yé as

T0p45=10 '9up0yst X (T5,] — T2, )00p0351/2N (0). (A-4)

In a parallel magnetic field (H//x), we find
_ (x=z42)+[(r—2° — (x—z+2)*]lI(g, @)

Fivivs =l = G720, o)P = (=2 1(g, @)’ (A-3)
2y—y—z
L T | B ey ) G B ey, gy g e 7 s G
where
ys=02nN(0)z, )" ' =(2nN(0)z,,) ", (A7)
z,=(2nN(0)z, )~ . (A-8)
Then, the quantum correction to the conductivity given in eq. (2.13) is calculated to be
I 1+
o(H) 1 T 22+2)\ . () 5, 1M
=—A<In(—+ + In s (A'9)
oo  2megt T, X—y+Yys) (X+y—yvs T
=~ Ln+my,
(x+y—y)(x+3y+3y)
- A-10
(x—=y+y)(x+3y—3y)’ ( )
_ 2(s—)
C_x+y—ys’ (A-11)
Y=~/ — (2hz[n)>. (A-12)

The last term of r.h.s. in eq. (A-9) is due to the spin-flip processes. Here, we took the value of an

impurity spin S to be 1/2, so that (S)?=1/4 and 7, ;=1 for i=x, y, z. We also took 7, ;=1,.
Assuming 7,>1, and 7,,>71,, we find MR in weak fields as

Add'(H) 1 2 2T Te :
oo men3 (2ht,) ) (A-13)
MR saturates once A7, 1. The total amount of the variation due to the field is
Ao’ 1
20 (©) (°°)=_<E_£>‘ (A-14)
oo EET\Ts  Tgo

The sign of MR in a parallel field depends on the ratio 7,,/t,. When the effect of paramagnetic
impurities overcomes spin-orbit interaction (z,<7,,), MR is negative at any value of the parallel
field. On the other hand, for t,>1,, MR is positive at any value of the field.

In a perpendicular field (H//z), we obtain

_ _ x—y+Zs
Tors =l = TG 2010, @)
1 1
" 2zNO)c (A-15)

y+2+ys)’

2
Dqg“t+ Iw,|1:+2(x_y+Zs
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F+—,—+=F—+,+——

_ 2(y;—2)
—=(c+y—zIl, 1= (x+y—z)I _ ,]—4(ys—2)* M, _1I _

_ (ys—2) [ 1 _ 1 ] (A-16)
2aN(0)t(x+y—z)y,| Dg*t+|w)lt—1+n—1ny, Dg*t+|w|t—1+n+ny, |’

_ Ay +2z4 29+ 2)(x+y—2)

Gry—z) 42 (A-17)
vo=/ O I, (A-18)
r= 2(ys—2) (A-19)

x+y—z

Then, taking into account the orbital motion of electron, we find the correction to the conductivity

as
o' (H) 1 1 1 1
oo T 21egT [¢<§+(7r> N 'ﬁ(i +XS>

o)) a2
)
Vo=t t-t0-nzm)], (A-22)

where a=4Dmaw,. If we assume 7, ;=7,,>»7 and 7, ;=7,»7 for i=Xx, y, z, MR in weak magnetic
fields is written as

Ad'(H) 1 {2 5 (‘z:8 1:8> (at,)? |: 3 1
——L = 2h )| - )+ 7~ s v, (A-23)
oo 2nept |3 Ty Te 48 < 1421, <12 + Tl >> <l + 6T£>

s

As seen in eq. (A-23), the sign of MR in weak fields depends on the relative magnitude of 7,
and 7. For 7,,1,, MR is negative irrespective of the ratio of z, and 7.
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